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RESUMO

BILOTTO, F. Implementação de ferramenta de tolerância a falhas para
sistema de alta disponibilidade. 2017. 69p. Monografia (Trabalho de Conclusão de
Curso) - Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos,
2017.

Em sistemas voltados para telefonia móvel suportado por computadores, supõem-se que o
sistema opere devidamente, sem interrupção do serviço. Disponibilidade absoluta, porém,
está longe de ser alcançada. A disponibilidade de serviços não é um conceito abstrato,
mas sim um parâmetro de um sistema que pode ser medido quantitativamente. Podem
ser utilizadas técnicas de projeto para aumentar esse número, que pode chegar bem
próximo a cem por cento. Contudo, falhas são inevitáveis e sistemas infalíveis são, portanto,
impossíveis de serem atingidos. É por isso que aplicam-se técnicas de tolerância a falhas
em sistemas, que podem garantir o fornecimento do serviço sem interrupção mesmo em
caso de falha. Este presente trabalho tem o objetivo de apresentar a implementação de
uma ferramenta automática de tolerância a falhas implementada em uma empresa de
telefonia móvel, bem como seus resultados.

Palavras-chave: Alta disponibilidade. Tolerância a falhas. Redundância. Ferramenta
Open-Source.





ABSTRACT

BILOTTO, F. Implementation of fault tolerance tool for high availability
system. 2017. 69p. Monografia (Trabalho de Conclusão de Curso) - Escola de Engenharia
de São Carlos, Universidade de São Paulo, São Carlos, 2017.

In systems oriented to mobile telephony supported by computers, it is assumed that
the system operates properly, without interruption of the service. Absolute availability,
however, is far from being achieved. The availability of services is not an abstract concept,
but rather a parameter of a system that can be measured quantitatively. Project techniques
can be used to increase this number, which may well be close to one hundred percent.
However, failures are inevitable and infallible systems are therefore impossible to achieve.
This is why fault tolerance techniques are applied in systems, which can guarantee service
delivery without interruption even in the event of failure. This paper aims to present
the implementation of an automatic fault tolerance tool implemented in a mobile phone
company, as well as its results.

Keywords: High availability. Fault Tolerance. Automatic Failover. Redundancy. Open
Source Tool
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1 INTRODUÇÃO

A necessidade de alta disponibilidade não teve origem recentemente com o avanço
da Internet ou o comércio virtual. Na verdade, esse conceito existe há milhares de anos.
Quando navios gregos partiam para descobrir novas terras, os capitães faziam questão
de levar a bordo velas e remos de reposição. Se algum desses itens falhasse, a equipe
imediatamente o substituiria e continuava a viagem, enquanto reparavam o danificado
(JAYASWAL, 2005).

Com a nossa crescente dependência de sistemas de informação, a alta disponibilidade
assumiu um novo significado e importância. Empresas e consumidores estão se voltando
para a Internet para comprar bens e serviços. Pessoas realizam negócios a qualquer
momento a partir do computador, ou melhor, do celular.

A indústria de telecomunicações também está em um período de grandes mudanças
com a rápida convergência dos serviços para dispositivos móveis. Atualmente, os telefones
móveis são considerados computadores pessoais, com alto poder de processamento e arma-
zenamento de dados, não mais sendo utilizados apenas para chamadas de voz (MAGUELA;
AQUINO, 2015).

As redes de telefonia também precisaram se adaptar para passar a oferecer serviços
cada vez mais rápidos e confiáveis. As redes de telefonia de quarta geração (4G) foram
instaladas com o intuito de suprir a necessidade dos usuários móveis por serviços de alta
taxa de transmissão. O padrão conhecido como LTE (Long Term Evolution) se tornou
a principal rede móvel 4G para transmissão de dados (MAGUELA; AQUINO, 2015).
Algumas provedoras de telefonia já prometeram até o fim do ano corrente a instalação de
redes 4.5G. Fora do país, já se fala muito em redes 5G.

A exigência dos consumidores tem feito as companhias de telefonia móvel buscarem
por sistemas cada vez melhores e mais capazes de atendê-los. Não apenas isso, mas
também o uso da rede de dados para serviços B2B (Business to business) está em alta.
Sistemas de alta disponibilidade tornam-se cada vez mais essenciais em aplicações no
ramo de telecomunicações. Isso porque paradas indesejadas neste tipo de sistema estão
intimamente associadas à significantes perdas de receita para a companhia, além de que
afetam diretamente os clientes finais, prejudicando a reputação e imagem da empresa.

De acordo com Weber (WEBER, 2003), falhas são inevitáveis, mas as consequências
destas, como por exemplo a interrupção no fornecimento do serviço, podem ser evitados
pelo uso de técnicas de fácil compreensão. Para estas empresas, portanto, um plano
anti-falhas é fundamental para agregar qualidade ao serviço e evitar interrupções. Além
disso, a concorrência de mercado e a exigência dos consumidores tem incitado as empresas
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a minimizarem taxas de falhas (SCHMIDT, 2017).

É nesse contexto que foi desenvolvida uma ferramenta de tolerância a falhas para
uma empresa que atua no ramo de telecomunicações. A companhia já aplicava diversos
conceitos de alta disponibilidade em seus sistemas, como a redundância, mas quando um
cliente requisitou uma ferramenta automática de tolerância a falhas, o trabalho que deu
origem a esta monografia teve início.

1.1 Objetivos

O presente trabalho tem como objetivo apresentar ao leitor a implementação de
uma ferramenta de tolerância a falhas projetada para melhorar a disponibilidade de um
sistema.

Primeiramente serão introduzidos os conceitos de alta disponibilidade e suas métri-
cas. Também será descrito o sistema LTE, bem como seus componentes e suas padroniza-
ções.

Então, será descrito o sistema em que a ferramenta de tolerância a falhas foi
aplicado, antes de finalmente ser apresentada a ferramenta em si.

O trabalho foi estruturado de maneira que o leitor não precise possuir nenhum
conhecimento prévio sobre o assunto. Os conceitos envolvidos no trabalho são descritos de
forma gradual, de forma que a leitura não se torne cansativa.

1.2 Estrutura do trabalho

O trabalho foi estruturado em seis capítulos, que são:

• Capítulo 1: apresenta a introdução e os objetivos do trabalho;

• Capítulo 2: apresenta o conceito de alta disponibilidade e conceitos relacionados;

• Capítulo 3: descreve o principal sistema de telecomunicações, bem como seus compo-
nentes e suas padronizações;

• Capítulo 4: descreve o sistema em que foi implementada a ferramenta de tolerância
a falhas;

• Capítulo 5: apresenta a ferramenta de tolerância a falhas;

• Capítulo 6: apresenta os resultados da implementação da ferramenta;

• Capítulo 7: apresenta as conclusões do trabalho.
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2 ALTA DISPONIBILIDADE

Com a crescente dependência de sistemas computacionais para diversos tipos de
atividades, torna-se uma preocupação manter esses sistemas disponíveis, se possível, todo
o tempo. Sistemas com disponibilidade contínua são ideais, porem teóricos e hipotéticos.

Em termos técnicos, disponibilidade é a probabilidade de que um sistema estará
operacionalmente disponível em dado momento. Alta disponibilidade pode ser encontrada
em sistemas que garantem soluções em torno de 99,99% a 99,9999% de disponibilidade.
Existe competição entre as companhias para ver quem consegue adicionar mais noves
(MOSER, 2004).

De acordo com Costa (COSTA, 2009), o objetivo de promover alta disponibilidade
resume-se na garantia de que um serviço esteja sempre disponível quando um cliente ou
usuário requisitá-lo. Já Batista (BATISTA, 2007), diz que o objetivo da alta disponibilidade
é manter os serviços prestados por um sistema mesmo que este venha a falhar.

2.1 Tolerância a falhas

Segundo Jayaswal, tolerância a falhas é a capacidade de um sistema se recuperar de
uma falha de um componente sem interrupção do serviço (JAYASWAL, 2005). Já Avizienis
(AVIZIENIS, 1998) diz que um sistema é tolerante a falhas se suas funções podem ser
executadas independentemente da ocorrência de falhas.

Gartner (GARTNER, 1967) diz que sobre sistemas tolerantes a falhas, duas coisas
são certas. Primeiramente, não importa quão bem projetado um sistema é ou de quão boa
qualidade são seus componentes, sempre existe a possibilidade de ele falhar, pois falhas são
inevitáveis e podem acontecer por qualquer motivo. Falhas comuns em sistemas de alta
disponibilidade são devido a condições meteorológicas, mas elas também podem ocorrer
por simples falhas de equipamento ou cortes acidentais de energia elétrica. Não importa a
razão, uma interrupção no serviço pode custar a uma companhia muito dinheiro.

Em segundo lugar, Garter demonstrou que, para atingir alta disponibilidade ou
tolerância a falhas, é imprescindível a aplicação de alguma forma de redundância. Redun-
dância é a principal técnica utilizada para aumentar a disponibilidade de um sistema. É
praticamente impossível falar de alta disponibilidade sem falar de redundância.

Redundância

Uma definição típica de redundância em engenharia, segundo Allen (ALLEN, 2017),
é a duplicação de componentes críticos ou funções em um sistema com a intenção de
aumentar a confiabilidade do sistema. Segundo Marshall (MARSHALL; CHAPMAN,
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2002), ao aplicar redundância, circuitos alternativos, equipamentos ou componentes são
instalados de modo que, em caso de falha, a funcionalidade seja preservada.

Redundância pode ser aplicada de diversas maneiras, mas duas arquiteturas se
destacam no trabalho:

Redundância 1+1

A configuração 1+1 é um exemplo de redundância em paralelo. Nessa, dois siste-
mas equivalentes e independentes são conectados em paralelo. Os dois sistemas podem
desempenhar juntos uma mesma função (Ativo-Ativo), dividindo a carga entre eles, ou
podem ser configurados como Ativo-Passivo, em que um sistema desempenha as funções
sozinho, enquanto o outro fica em espera, pronto para assumir caso o primeiro venha a
falhar.

Redundância geográfica pode ser aplicada nesses sistemas para garantir ainda mais
disponibilidade. Isso significa que cada sistema está geograficamente isolado do outro,
podendo estar sujeitos a condições meteorológicas diferentes e evitando falhas do tipo
desastre natural.

Redundância N+1

A configuração N+1 é capaz de assegurar a disponibilidade do sistema em caso de
falha de um componente. O mínimo de componentes necessários (N) possui um componente
extra de suporte. Esse componente pode ser ativo, trabalhando juntamente com os outros
componentes para entregar o serviço, ou passivo, ou seja, em espera pronto para assumir
caso um componente venha a falhar.

Segundo Marshall (MARSHALL; CHAPMAN, 2002), a redundância N+1 é uma
alternativa de menor custo do que a redundância 1+1 e uma forma de garantir mais
disponibilidade através da disponibilização de uma unidade redundante extra.

2.2 Tempo indisponível

O objetivo de qualquer solução de alta disponibilidade é ter capacidade de se
recuperar de uma falha dentro do menor tempo possível, causando pouca ou nenhuma
janela de tempo indisponível. Conforme um dos artigos da CNT sobre alta disponibilidade
(CNT, 2003), tempo indisponível se refere a uma interrupção do serviço em qualquer
camada de um ambiente de aplicação. Ambiente de aplicação se refere não somente a todo
hardware e software requerido para prover uma função, mas também inclui os recursos
humanos envolvidos e seus ambientes de trabalho.
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Causas

Diversos fatores podem causar o downtime ou tempo indisponível de uma aplicação.
Software pode apresentar bugs que necessitam ser corrigidos. O hardware pode falhar,
por mais confiável que seja. Esses fatores podem requerer manutenção ou downtime
programado. Indisponibilidade também pode ser causada por outras áreas da empresa,
como por exemplo a área responsável pela manutenção da energia elétrica. Além disso,
há problemas externos que estão fora do alcance de todos, como por exemplo desastres
naturais (BATISTA, 2007).

Um estudo de 1999, da revista Data Quest (CNT, 2003), mostrou que apenas
23 por cento das interrupções dos serviços eram causadas por falhas no hardware. O
estudo mostrou que 27 por cento era causado por falhas no software. Outras fontes
de indisponibilidade incluem falhas humanas (18 por cento). A Figura 1 demonstra os
resultados deste estudo.

Figura 1: Causas comuns de falha

Fonte: (CNT, 2003)
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Custos

Por custo de indisponibilidade, entende-se como sendo as consequências ou os
prejuízos que uma empresa pode ter em decorrência da interrupção da aplicação (BATISTA,
2007).

O custo de indisponibilidade varia muito de indústria para indústria. Um estudado
publicado pelo Meta Group em 2000 (CNT, 2003), coloca os custos de downtime para
indústrias comuns entre 500 mil até três milhões de dólares por hora. A Figura 2 demonstra
os resultados desse estudo.

Figura 2: Custo da indisponibilidade em diversos tipos de indústria

Fonte: (CNT, 2003)

Quantificar o custo da indisponibilidade é útil pois detalha de maneira clara o risco
que uma companhia enfrenta. Uma maneira de mitigar este risco é através de soluções
de alta disponibilidade. A Figura 3 demonstra os custos de implementação de sistemas
disponíveis. Nota-se que sistemas redundantes com pouco tempo de indisponibilidade são
os mais caros.

2.3 Medição de disponibilidade

Não há como afirmar que uma solução é mais disponível que outra ou que esta
melhorou a sua disponibilidade se não há como medi-la. A disponibilidade de um sistema
é a probabilidade de encontrá-lo operando em determinado momento. Essa probabilidade,
portanto, leva em conta o uptime (tempo em que o sistema está operando) e o downtime
(FILHO, 2004).
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Figura 3: Custo da disponibilidade em função do tempo de recuperação

Fonte: (CNT, 2003)

Uma notação comum para representar disponibilidade é a partir do "número de
noves". Dessa forma, uma solução que apresenta cinco noves de disponibilidade está
disponível por 99,999% do tempo. Ter cinco noves de disponibilidade é praticamente
impossível sem algum tipo de redundância total (BATISTA, 2007).

A Tabela 1 mostra alguns exemplos de sistemas conhecidos, bem como suas
disponibilidades.

Tabela 1: Exemplos de sistemas e suas disponibilidades

Disponibilidade Tempo indisponível por ano Exemplo
90% 35,5 dias computadores pessoais
98% 7,3 dias
99% 3,65 dias sistemas de acesso
99,8% 17 horas e 30 minutos
99,9% 8 horas e 45 minutos provedores de Internet
99,99% 52,5 minutos CPD, sistemas de negócios

99,999% 5,25 minutos
sistemas de telefonia;
sistemas de saúde;
sistemas bancários

99,9999% 31,5 segundos sistemas de defesa militar

Fonte: (FILHO, 2004)

A disponibilidade é calculada através da Equação 2.1, em que MTBF corresponde
ao Mean Time Between Failures, ou seja, o tempo médio entre as falhas de um serviço
e MTTR Mean Time to Repair representa o tempo médio para reparar o serviço. Esses
parâmetros e equação são provenientes de modelos probabilísticos estudados em engenharia
de confiabilidade.

d = MTBF

MTBF + MTTR
x 100% (2.1)
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Tendo em posse apenas os tempos em que um sistema esteve up ou down, a
disponibilidade pode ser calculada pela Equação 2.2. O resultado de ambas as equações é
a disponibilidade do sistema em porcentagem.

d = Tup

Tup + Tdown

x 100% (2.2)
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3 O SISTEMA LTE

De acordo com Schmidt (SCHMIDT, 2017), um sistema é um conjunto de com-
ponentes arranjados de acordo com um projeto específico com a finalidade de atender
determinadas funções com desempenho e confiabilidade adequados. O sistema tratado
neste Capítulo, conhecido como sistema LTE, é o sistema que atualmente entrega voz e
serviço de dados para 1,3 bilhões de pessoas e espera entregar para até 3,8 bilhões em
2020 (SKINNER, 2016).

LTE é baseada em padrões criados pela 3rd Generation Partnership Project (3GPP).
O 3GPP é o órgão do ramo de telecomunicações que padroniza e define a rede de telefonia
móvel. Esta organização escreve as definições, os protocolos utilizados entre os sistemas,
os diferentes blocos estruturais, como estes se comunicam entre si e como o sistema todo
deve funcionar. De acordo com o site da organização, o projeto abrange as tecnologias de
redes de telecomunicação celular e fornece as especificações completas do sistema.

De acordo com (OLSSON et al., 2013), a necessidade de uma padronização global
para a rede móvel é direcionada por muitos fatores, mas principalmente para garantir a in-
teroperabilidade entre os sistemas em um verdadeiro meio de multi-vendedores. Operadores
precisam ter certeza que eles poderão comprar dispositivos de rede de várias companhias,
aumentando a conpetição entre estas. Para que isso seja possível, os aparelhos de diferentes
vendedores devem trabalhar uns com os outros e isto só pode ser atingido especificando
uma série de descrições de interface, em que os diferentes nós são capazes de comunicar-se
uns com os outros.

3.1 O Evolved Packet System

O sistema LTE é formado por uma rede de acesso chamada E-UTRAN (Evolved
Universal Terrestrial Radio Access) e um núcleo de rede conhecido como EPC (Evolved
Packet Core). Combinados, o EPC, E-UTRAN e o User Equipment (UE) ou dispositivo
móvel (celulares, tablets), formam o EPS (Evolved Packet System).

A Figura 4 mostra uma arquitetura básica do EPS quando o equipamento do
usuário (UE) está conectada ao EPC através de E-UTRAN, O Evolved NodeB (eNodeB)
é a estação radio base LTE. Estações Radio Base (ERB) são equipamentos que fazem a
conexão entre os telefones celulares e a companhia telefônica. Na figura o EPC é composto
de quatro elementos de rede: o Serving Gateway (S-GW), o PDN Gateway (P-GW), o
Mobility Management Entity (MME) e o Home Subscriber Server (HSS).

Existe pelo menos um eNodeB em uma rede de rádio LTE. Na verdade, em uma
rede de tamanho razoável, podem existir milhares. Todos as estações rádio base são
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Figura 4: Arquitetura básica EPS com acesso E-UTRAN

Fonte: Firmin (2017)

conectadas em pelo menos um MME. O MME é o elemento responsável pela autenticação
e autorização de usuários na rede. Ele lida com a sinalização relacionada à mobilidade
e segurança para o acesso E-UTRAN. O HSS, por sua vez, é a database que contém
informações relacionadas aos usuários e assinantes. O HSS é responsável por armazenar
as informações de identificação e autenticação dos usuários da rede LTE (MAGUELA;
AQUINO, 2015).

Os gateways (S-GW e P-GW) lidam com o o plano do usuário. Eles transportam o
tráfego de dados IP entre o UE (User Equipment) ou equipamento do usuário e as redes
externas. O 3GPP especifica os gateways como entidades independentes, mas na prática
eles podem ser combinados em uma única “caixa” pelos vendedores de equipamentos de
rede (FIRMIN, 2017). O S-GW é o ponto de conexão entre o E-UTRAN e o EPC. Tal
como seu nome, este gateway serve o equipamento do usuário através do roteamento dos
packets, mais especificamente IP packets, que chegam e vão. O P-GW é o ponto de conexão
entre o EPC e as redes IP externas. Essas redes são conhecidas como PDN (Packet Data
Network).

PDN é uma descrição genérica para uma rede que fornece serviços de dados por
meio de packets. Um packet é uma estrutura unitária formatada de dados transportada por
uma rede que utilize comutação de pacotes. Packet switching ou Comutação de Pacotes
é um modo de transmitir dados em que as mensagens são divididas em diversas partes
que são enviadas de forma independente e remontadas no destino final. A Internet é um
exemplo de PDN (DIALOGIC, 2017).

O P-GW é responsável por rotear packets do EPC para o PDN e do PDN para o
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EPC. Além disso, o P-GW tem um papel chave no conceito de policy control and charging
ou controle de políticas e cobrança. Este conceito também é definido e padronizado pelo
3GPP como um subsistema do EPS conhecido como PCC Architecture.

Policy Control and Charging é um conceito fundamental na rede LTE que está
relacionado à cobrança baseada em quantidade de dados utilizados e também ao controle
de políticas.

3.2 PCC Architecture

Definido na especificação 23.203 (3GPP-23.203, 2017), o framework PCC é uma
arquitetura que permite o controle de políticas na rede LTE e também está relacionado a
cobrança dos assinantes por parte das operadoras.

Uma política, na arquitetura 3GPP, é uma regra ou um tratamento que um IP
específico recebe na rede, como por exemplo, como os dados serão cobrados ou qual Quality
of Service (QoS) receberá um serviço (OLSSON et al., 2013).

O QoS a que é submetido o assinante é o valor do bit rate em que ele pode fazer
download e upload. Bit rate é o número de bits convertidos ou processados por unidade de
tempo. O bit rate é medido em ’bits por segundo’ (bps ou b/s), muitas vezes utilizado em
conjunto com um prefixo SI, como kbps ou Mbps. Sem grande rigor, QoS é a velocidade
da internet de um assinante.

O PCC é representado na Figura 5. Nem todas as entidades e interfaces entre os
elementos do PCC foram representadas na figura por não fazerem parte do escopo deste
trabalho. O leitor é convidado a checar as referências para aprofundar-se na arquitetura
PCC, seus elementos e interfaces.

3.2.1 Policy and Charging Rules Function

O PCRF (Policy and Charging Rules Function) é o componente chave responsável
pelo controle de políticas da arquitetura PCC. Ele tem o papel fundamental de determinar
as regras de navegação aos usuários da rede LTE, definindo se e quando determinado
assinante tem permissão para navegar, com qual QoS e qual quantidade de uso. O PCRF
também define quais serviços serão monitorados para cada usuário. Por exemplo, algumas
operadoras atualmente fornecem serviços grátis, como Facebook e Whatsapp. É função do
PCRF definir que esses serviços não serão cobrados.

O PCRF está estritamente relacionado ao PCEF (Policy and Charging Enforcement
Function), que garante que as políticas definidas por aquele sejam impostas na rede para
cada usuário. O PCRF fornece controle de rede baseado em detecção de fluxo de dados e
QoS para o PCEF (3GPP-29.214, 2017), enquanto este basicamente lida com o tráfego
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Figura 5: Arquitetura PCC

Fonte: 3GPP-23.203 (2017)

do usuário. O PCEF reporta ao PCRF quando um usuário conecta-se na rede, quando o
mesmo atinge a sua quantidade de uso fornecida por este e quando o usuário desconecta-se.

O PCEF também reporta ao PCRF quando há uma mudança na tecnologia de
acesso. Por exemplo, quando um usuário sai da área de cobertura 4G e entra na área 3G.
O PCEF reporta o ocorrido ao PCRF, que alterará a velocidade do usuário. Além disso,
quando um usuário viaja para outro país e conecta-se na rede local (roaming), o PCEF
local identifica o caso e reporta ao PCRF local, que provavelmente aplicará um QoS baixo
para esse usuário.

Em todos os casos, há uma resposta ou ACK (acknowledgement) do PCRF para
o PCEF. ACK é um sinal transmitido entre processos de comunicação que significa
reconhecimento, ou uma confirmação do recebimento da mensagem, como parte de um
protocolo de comunicação.

Vale ressaltar que a comunicação entre o PCRF e o PCEF se dá através da interface
Gx e é padronizada pelo protocolo Diameter.
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Protocolo Diameter

Diameter é um protocolo de rede que oferece serviços de AAA (Authentication,
Authorization e Accounting) para aplicações que envolvam acesso a rede móvel. De acordo
com Souza, Pires e Lima (2015), ele é amplamente utilizado em redes que transportam
informação e serviços de voz, dados, entre outros, através de pacotes, como as redes IMS
(IPMultimedia Subsystem) e o próprio EPS.

O DIAMETER usa tanto o Transmission Control Protocol (TCP) quanto o Stream
Control Transmission Protocol (STCP) para transporte de mensagens entre os peers. O
TCP e STCP exigem que seja estabelecida uma conexão antes de qualquer mensagem
DIAMETER ser enviada (SOUZA; PIRES; LIMA, 2015).

A Tabela 2 mostra algumas das mensagens padronizadas pelo Diameter que são
trocadas entre o PCRF e o PCEF. A título de exemplo, quando um usuário inicia uma
sessão na rede, o PCEF envia um CCR_I (I de inicial) ao PCRF, que responde com um
CCA_I. Por exemplo, quando um usuário atinge sua cota determinada pelo PCRF, o
PCEF envia um CCR_U (U de update) e é respondido com um CCA_U.

Tabela 2: Alguns comandos comuns Diameter definidos no protocolo

Nome do comando Abreviatura Código
Capabilities-Exchange-Request CER 257
Capabilities-Exchange-Answer CEA 257

Credit-Control-Request CCR 272
Credit-Control-Answer CCA 272

Device-Watchdog-Request DWR 280
Device-Watchdog-Answer DWA 280

Diameter Routing Agent

Com o crescente tráfego de dados móveis, tornou-se indispensável o uso do DRA
(Diameter Routing Agent) em sistemas que utilizam procotolo Diameter. O DRA foi
introduzido pelo 3GPP para lidar com o aumento do tráfego de sinalização Diameter e
a crescente complexidade das redes LTE (F5, 2017). O DRA é um elemento funcional
que garante que todas as sessões Diameter estabelecidas nos pontos de referência Gx

para um determinado usuário atinjam o mesmo PCRF quando múltiplos PCRF são
implementados em um sistema Diameter. O DRA não é necessário em uma rede que
implante um único PCRF (3GPP-29.213, 2017). Portanto, o DRA fornece roteamento
em tempo real, garantindo que mensagens da rede sejam transmitidas entre os elementos
corretos e que as conexões apropriadas sejam estabelecidas. Vale ressaltar que as conexões
estabelecidas entre o DRA e o PCRF e PCEF são do tipo P2P (Peer to Peer) segundo o
protocolo SCTP (Stream Control Transmission Protocol).
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Situando-se entre o PCRF e o PCEF, o DRA atua como um load balancer. Load
balancing ou balanceamento de carga melhora a distribuição de de carga através de
múltiplos recursos computacionais, como computadores e cluster. O balanceamento de
carga visa otimizar o uso de recursos, maximizar a taxa de transferência, minimizar o tempo
de resposta e evitar a sobrecarga de qualquer recurso. Segundo Teodoro (TEODORO et
al., 2004), balanceamento de carga é um mecanismo usado para atingir escalabilidade.

Figura 6: DRA - o ponto comum entre o PCRF e o PCEF

O DRA e o conceito de load balancing são muito importantes no processo de failover
pois o DRA é o único ponto comum entre o PCRF e o PCEF. A Figura 6 ilustra esse
conceito. O cluster ativo e passivo de PCRF possuem conexões SCTP ativas com o peer
do DRA, mas este prioriza as conexões do cluster ativo. Caso o cluster ativo falhe, o
DRA imediatamente começa a direcionar o tráfego para o cluster passivo, não havendo
necessidade de reconfigurar todos o cluster de PCEF.

3.2.2 Policy and Charging Enforcement Function

O PCEF é o elemento funcional que engloba a execução de políticas determinadas
pelo PCRF e funcionalidades de cobrança. Localizada no P-GW, essa entidade tem controle
sobre o tráfego do usuário e seu QoS e provê detecção e contagem do fluxo de dados, assim
como interações com sistemas de cobrança online e offline (BARTON, 2012).

O PCEF deve permitir que o serviço de dados passe através do Gateway se e
somente se houver uma PCC rule definida pelo PCRF. Quando requisitado, o PCEF deve
reportar ao PCRF mudanças relacionadas ao serviço de dados, como por exemplo, uma
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alteração na localização do usuário (o usuário pode entrar em uma região que só há acesso
3G, por exemplo).

O PCEF é logicamente conectado ao OFCS (Offline Charging System) e OCS
(Online Charging System) através das interfaces Gz e Gy. Esses sistemas permitem que a
operadora de telefonia cobrem seus clientes baseado no uso do serviço. O OCS, inclusive,
é utilizado para cobranças em tempo real.

3.2.3 Subscriber Profile Repository

A entidade lógica SPR contém informações relacionadas aos assinantes e assinaturas
necessárias para tomada de decisões de políticas (3GPP-23.203, 2017) e definição das PCC
rules por parte do PCRF. O SPR é a base de dados que foi originalmente definida para
manter dados de assinaturas para o framework PCC. Comparado ao HSS, o SPR armazena
regras mais dinâmicas e comerciais necessárias para o PCC, enquanto o HSS contém dados
de assinaturas mais estáticos necessários para acesso a rede (OLSSON et al., 2013).

Já foi visto que quando o PCEF estabelece uma sessão na rede, ele envia a mensagem
Diameter CCR_I para o PCRF. Este então, primeiramente consulta o perfil do assinante,
que inclui suas características e serviços contratados no SPR para então definir uma regra
para este usuário. O PCRF consulta informações no SPR como quantos dados esse usuário
já consumiu no ciclo de seu plano e qual qualidade de serviço o seu plano oferece. O PCRF
então, define uma PCC rule para este usuário e envia ao PCEF através do CCA_I, que
executa essa regra nesse usuário.

O PCRF também pode estar constantemente atualizando as informações no SPR
com base nas informações oriundas do PCEF. O PCEF informa ao PCRF quando deter-
minado usuário atingiu a cota de dados que este determinou. O PCRF então, incrementa
esse valor gasto na base de dados, e checa se ele ainda possui dados para serem consumidos
no seu plano. Se sim, o PCRF garante mais dados ao usuário, se não, pode tomar outras
decisões como o bloqueio da internet ou redução do QoS. Tudo dependerá das configurações
pré-determinadas pela operadora, tais quais plano de dados, área de cobertura, etc.

O ponto de referência Sp situa-se entre o SPR e o PCRF. Segundo 3GPP-23.203
(2017), a interface Sp permite que o PCRF requisite informação relacionada ao assinante e
suas características relevantes e assim possa aplicar políticas a um assinante.
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4 IMPLEMENTAÇÃO DE UM SISTEMA PCC

O EPC e o PCC envolvem diversas entidades padronizadas pelo 3GPP, mas cabe
a cada projetista definir qual será a configuração do sistema a ser implementado para
operadoras de telefonia móvel. Cada uma delas possui suas particularidades, como a
quantidade de clientes, quantidade de ofertas oferecidas ao assinante, área de cobertura,
etc.

Para o projeto descrito neste capítulo, foi requisitado um sistema de PCRF com
suporte para integração com diversos outros módulos já pré-existentes no sistema. O cliente
já possuía previamente um PCRF provido por outra companhia, mas quando optou por
trocar para a solução de outra empresa, o sistema foi reconfigurado da maneira descrita
nas próximas seções.

4.1 Definição de componentes

A partir de informações providas pelo cliente sobre sistemas anteriores, estimou-se
a quantidade e particularidades do hardware que será utilizado. Informações como quantas
sessões ativas e concorrentes são mantidas e quantas transações deverão ser processadas
ou se há ou não a necessidade de arquivos serem lidos e escritos são fundamentais no
projeto desse tipo de sistema. Quantidades de processos maiores implicam em mais dados
para serem processados, mas esse critério está intimamente relacionado ao tempo em que
esses dados necessitam ser processados. Latência baixa é preferível e obrigatória em alguns
processos e sistemas.

Sistemas de telecomunicações normalmente exigem diversos computadores para
lidar com o alto tráfego de dados e resolver tarefas que apenas um não conseguiria. Um
cluster consiste em dois ou mais computadores que trabalham juntos para prover uma
solução (HOCHSTETLER; BERINGER, 2004). Ainda segundo Hochstetler, um cluster de
alta disponibilidade é tipicamente construído com a intenção de prover um ambiente seguro
contra falhas através da redundância, ou seja, prover um ambiente computacional em que
a falha de um ou mais componentes, não seja significante para afetar a disponibilidade da
aplicação em uso.

Foi definido que cada hardware neste projeto seria separado em duas máquinas
virtuais (VM, do inglês virtual machines) distintas. Ao separar o hardware em VMs distintas,
garante-se que os recursos da máquina como CPU e memória não serão concorrentes entre
os processos executados em cada VM. É estratégia da companhia adotar máquinas virtuais
separadas para máquinas voltadas para base de dados e máquinas de aplicação. Em termos
de performance e organização lógica essa prática é eficiente, pois os recursos de base de
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dados não serão concorrentes com os recursos de aplicação. Aplicação é um termo genérico
utilizado para referir-se as máquinas virtuais que rodam o componente PCRF. Outros
componentes responsáveis por outros processos também podem ser encontrados na VM de
aplicação.

A Figura 7 representa um hardware do sistema. Nota-se que a máquina de aplicação
é representada apenas com componente PCRF, mesmo que isso não seja obrigatório.
A VM de aplicação também pode possuir outros componentes responsáveis por outros
processos. As máquinas de database, por outro lado, rodam os componentes Dados e
Sessões, responsáveis pelo armazenamento de dados dos usuários (SPR) e das sessões Gx,
respectivamente.

Figura 7: Representação de um hardware do projeto separado em duas máquinas virtuais
distintas

Definiu-se para o sistema que duas máquinas de aplicação e base de dados seriam
suficientes para cumprir todos os requisitos de TPS (Transações por segundo) e latência
do sistema. A estratégia adotada pela companhia é utilizar-se de um cluster local com
redundância N+1. Nesse caso, um cluster local composto de três nós. A fim de garantir
mais disponibilidade, outro grupo de máquinas idêntico geograficamente isolado é utilizado
como redundância em paralelo.

Em uma configuração de cluster Ativo-Passivo, a solução executa em um dos
sistemas, enquanto o outro sistema fica em modo de espera, pronto para tomar o lugar da
solução em caso de falha do primeiro. Quando o cluster ativo não é capaz de garantir o
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serviço, o segundo sistema assume os recursos apropriados. Este processo é normalmente
chamado de failover. O segundo sistema substitui totalmente o sistema que falhou, sem
que o serviço sofra interrupção.

Apesar da configuração Ativo-Passivo, o cluster de base de dados possui replicação
ativa de dados entre os componentes SPR. A replicação consiste em duas cópias de um
único banco de dados residindo em máquinas diferentes. A replicação ocorre para manter
a consistência do perfil do assinante e não haver perdas de controle dos dados de cada
assinatura ou atualização do perfil, caso ocorra um failover.

A Figura 8 representa o diagrama completo do sistema implementado. Os elementos
representados na cor verde são elementos externos ao sistema que foram implementados
por outras companhias. O DRA, representado nessa figura como um único bloco, é o ponto
comum de comunicação entre o PCRF e o PCEF. Também, apesar dos componentes PCRF,
Sessões Gx e Dados serem representados individualmente, eles são diferentes componentes
dentro de um mesmo hardware como já descrito.

Figura 8: Diagrama completo do sistema

4.2 Integração com o DRA

Como visto na Seção 3.2.1, todos os PCRF do sistema possuem conexões ativas
com o DRA, cabendo a este priorizar as conexões com o cluster ativo. No sistema anterior
da provedora de telefonia móvel, já haviam dois DRA implementados com redundância em
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paralelo Ativo-Ativo. Nessa configuração, os dois DRA desempenham os processos juntos,
mesmo que apenas uma seja suficiente. Esse caso especial de redundância também poder
ser visto como N+1 em paralelo.

Figura 9: Conexões SCTP entre o PCRF e os peers do DRA

A Figura 9 detalha as conexões do cluster de aplicação com o DRA. Em um
cenário que todas as máquinas do cluster ativo viessem a falhar, ou fossem derrubadas
propositalmente, o DRA automaticamente tornaria prioritárias as conexões do cluster
passivo e passaria a direcionar o tráfego para este.

4.3 Cenários de falha

Após introduzido o sistema implementado e sua configuração, voltemos agora a
atenção para os cenários em que o sistema pode ser considerado em estado de falha,
necessitando a comutação para o cluster secundário, processo este denominado failover.

Cluster de aplicação

Visto que o cluster local possui redundância N+1, a perda de um PCRF não
caracteriza um cenário de failover. Porém, a continuidade do serviço não pode ser garantida
em caso de mais de um nó de PCRF estiver down. Isso acontece pois apenas um nó de
PCRF não seria capaz de lidar com todo o tráfego Diameter que seria estabelecido. O
sistema até funcionaria, em partes, mas muito dos requests provindos do PCEF não seriam
atendidos com a prioridade necessária.
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Portanto, a perda de mais de um nó de aplicação implica num cenário de failover.

Cluster de base de dados

A Tabela 3 representa a distribuição de dados através do cluster local. Cópias dos
dados são feitas de tal maneira que o sistema possua redundância N+1. Note que ainda
que um nó de base de dados falhe, o cluster ainda terá uma cópia de todos os dados e
não há impacto na continuidade do serviço. A perda de uma base de dados, portanto,
não requer migração para o outro site. Porém, é necessária a migração para o sistema
redundante caso mais que uma VM de base de dados venha a falhar.

Tabela 3: Distribuição de dados através das runtimes

DB 1 DB 2 DB 3
A C’ B A’ C B’
D F’ E D’ F E’
G I’ H G’ I H’
J L’ K J’ L K’

Falhas no DRA

O DRA, como qualquer outro componente, também reside em uma máquina e
também é sujeito a falhas. Apesar de ser implementado por outra companhia, uma falha
no DRA implicaria diretamente em uma falha do sistema, pois é o DRA que garante a
comunicação do sistema com o PCEF.

Figura 10: Representação da falha de uma maquina de DRA
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Perda de mais de um peer

A Figura 11 demonstra o caso em que dois PCRF perderam a conexão com o peer
do DRA. Isso pode ocorrer devido a falhas no DRA ou nas máquinas de PCRF. Nesse
caso, todo o tráfego é direcionado ao PCRF remanescente que não é capaz de lidar com o
tráfego sozinho.

Figura 11: Representação das conexões com o DRA quando duas máquinas de PCRF estão
down

No cenário da Figura 11, um procedimento manual ou automatico deve ser tomado
para que o PCRF ativo seja derrubado para o estado down. Dessa forma, o DRA passaria
imediatamente a transferir o tráfego para o cluster passivo. Essa situação é demonstrada
na Figura 12.

Perda de uma máquina de DRA

Pode ocorrer a falha de uma das máquinas do DRA, o que implicaria em todo o
tráfego do cluster primário passar a ser direcionado para o DRA secundário, que é capaz
de lidar com o tráfego total graças a redundância do DRA. Esse cenário, representado na
Figura 13, portanto, não implica em um cenário de failover.
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Figura 12: Representação das conexões com o DRA quando são transferidas para o cluster
secundário

Figura 13: Falha de uma máquina de DRA
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5 A FERRAMENTA DE TOLERÂNCIA A FALHAS

Tolerância a falhas é a capacidade de um sistema de recuperar-se de uma falha
de um componente sem interrupção do serviço. Um sistema tolerante a falhas possui
componentes redundantes que monitoram-se entre si, de forma que a transição para o
cluster passivo, diante de uma falha, ocorra quase instantaneamente. Esta definição de
tolerância a falhas por Jayaswal (JAYASWAL, 2005) pode ser aplicada para a ferramenta
descrita neste capítulo. O Automatic Failover Tool (AFT) é a ferramenta de tolerância
a falhas desenvolvida nesse trabalho para a empresa de telecomunicações de modo a
otimizar a alta disponibilidade do sistema de seu cliente. Utilizando apenas ferramentas
open source, o AFT é genérico e pode ser utilizado para qualquer tipo de aplicação que
envolva monitoramento de componentes através de requests HTTP e/ou SNMP Traps,
conceitos estes que serão definidos na próxima seção.

Ainda segundo Jaywaswal, a primeira regra para garantir alta disponibilidade de
uma aplicação é evitar ao máximo intervenção manual. Deve ser possível iniciar, parar e
monitorar a aplicação sem qualquer assistência de um operador. Se um aplicativo não pode
ser executado em um servidor, ele deve começar rapidamente em outro servidor no cluster.
Se iniciar um aplicativo requer uma interface GUI ou executar um script interativo, pode
levar horas para alguém para fazer login no sistema e realizar o trabalho necessário. Se o
sistema não pode ser acessado remotamente, alguém deve fisicamente chegar ao escritório
ou data center. O hardware também pode estar localizado em um lugar geograficamente
isolado, caso em que pode ser difícil para encontrar alguém com experiência requerida
rapidamente.

Por último, Moser (MOSER, 2004) define failover como o processo no qual uma
máquina assume os serviços de outra, quando esta apresenta falha. O failover pode ser
automático ou manual, sendo o automático o que normalmente é esperado de uma solução
de alta disponibilidade. Porém, algumas soluções não críticas podem tolerar um tempo
maior até que o serviço se recupere, podendo utilizar técnicas de failover manual.

5.1 Definições

5.1.1 Web service

A W3C, principal organização internacional de padronização da World Wide Web
(WWW), define Web service como um sistema de software projetado para suportar
a interação entre máquinas através da rede (W3C, 2004). Diferente de software, que
normalmente se refere a um conjunto de instruções que executam uma tarefa específica,
um sistema de software se refere a um conceito mais abrangente, envolvendo outros
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componentes, como especificações, resultados de testes, documentação para o usuário final,
dentre outros (GRUB; TAKANG, 2003).

Em outras palavras, Web service é um serviço oferecido por uma máquina para
outra máquina, possibilitando a comunicação entre elas através da Web. Em um Web
service, um protocolo de comunicação voltado para a Web, como o HTTP, é utilizado
para a comunicação entre máquinas, mais especificamente para transferir arquivos de
leitura entre elas. Segundo Gurugé (2004), Web services operam através da troca de
dados no formato XML. Em verdade, Web services do tipo SOAP ((Simple Object Access
Protocol,em português Protocolo Simples de Acesso a Objetos) trocam dados apenas no
formato XML. Os do tipo REST podem também trocar dados no formato JSON, dentre
outros.

O HTTP é outro protocolo de comunicação pertencente a camada de aplicação,
assim como o Diameter. Ele funciona como um protocolo de request-response ou requisição-
resposta no modelo computacional cliente-servidor. De acordo com Downey (2007), sempre
que alguém acessa uma página na internet, existe comunicação entre dois computadores.
Em um deles há um software conhecido como navegador e no outro, outro software
conhecido como web server. O navegador envia um request para o servidor e o servidor
envia a resposta para o navegador. A requisição contém o nome da página que está sendo
requisitada e a resposta contém a própria página em si que está sendo acessada (caso
esteja disponível). Esta situação é representada na Figura 14.

Figura 14: Request/response trocados entre um navegador de internet e um website (server)

Fonte: Downey (2007)

5.1.2 SNMP traps

O Simple Network Management Protocol (SNMP) é um protocolo de rede padrão,
pertencente a camada de aplicação e integrante do conjunto de protocolos TCP/IP, e
tem como finalidade o gerenciamento de dispositivos em uma rede IP. As principais
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funcionalidades do protocolo consistem em monitoramento dos dispositivos da rede e
configuração remota de parâmetros nos mesmos, tanto de forma manual ou quanto
automaticamente em resposta a um incidente determinado (ALVARENGA; RAMOS,
2011).

Dispositivos gerenciados podem enviar notificações SNMP para seus gerentes
quando certos eventos ocorrem. Um exemplo de notificação importante que um SNM
(System and Network Monitor) pode receber seria de uma falha em algum dos roteadores.
Trap é um dos dois tipos de notificação que o SNMP suporta. O envio de uma mensagem
Trap permite que um agente notifique o sistema de gerenciamento para a ocorrência de
qualquer evento relevante em qualquer instante de tempo. No entanto, não há qualquer
confirmação por parte do gerente do recebimento da Trap. De acordo com Mauro e Schmidt
(2001), Traps são um método para que um agente envie a uma estação de monitoração
uma notificação assíncrona sobre as condições que o monitor deve conhecer. Em mensagens
assíncronas, o remetente não espera por uma resposta.

Figura 15: Tipo de mensagens trocadas entre cliente e servidor SNMP

Fonte: Cisco (2006)

No AFT, Traps são utilizadas para monitorar as conexões entre as máquinas de
PCRF e as máquinas de DRA. A solução é capaz de gerar traps em diversas situações de
erro, como a queda de um peer, e enviá-las a servidores configurados na solução.

5.2 Automatic Failover Tool

5.2.1 Design

Foi requisitado pelo cliente uma ferramenta que rapidamente detectasse situações
de falha no cluster ativo e caso os critérios fossem atingidos, iniciasse automaticamente o
processo de failover para o cluster passivo.
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Figura 16: Diagrama de alto nível de projeto do AFT

A ferramenta foi projetada inicialmente com três principais blocos, representados na
Figura 16 Um bloco de monitoramento (Monitoring) que seria responsável por monitorar
o estado dos componentes rodando nas máquinas do cluster ativo. Foi definido que
seriam utilizados requests HTTP para a monitoramento do estado desse componentes. Um
servidor HTTP, que não faz parte do escopo desse trabalho, foi instalado nas máquinas e
configurado para que ao receber requests HTTP do tipo GET, respondesse com o estado up
ou down dos componentes rodando naquela máquina. O bloco de monitoramento também
seria o responsável por monitorar as conexões SCTP com os peers do DRA. A solução
é capaz de gerar SNMP traps em diversas situações de erro e enviá-las para servidores
pré-configurados.

Definiu-se que haveria uma estrutura de dados principal encapsulada em uma das
classes que conteria o estado de todos os elementos monitorados. Essa estrutura de dados,
denominada sumário e representada na Figura 17, seria acessada então pelo bloco de
decisão (Deciding) que seria capaz de julgar se o cenário atual é ou não um dos cenários
de failover.

Em caso positivo, o bloco de decisão acionaria o bloco de ação (Acting), que tomaria
uma ação de iniciar a migração para o cluster passivo. Como visto na Seção 4.2, basta
que as máquinas do cluster ativo sejam derrubadas para que o DRA automaticamente
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Figura 17: O sumário, a principal estrutura de dados

comece a redirecionar o tráfego para o cluster secundário. Determinou-se que o bloco
de ação agiria exatamente dessa maneira, disparando um request HTTP nas máquinas
de aplicação e derrubando todos os componentes. Não haveria a necessidade de realizar
nenhum comando no cluster de base de dados, pois essas máquinas no cluster secundário
já estão ativas devido a replicação de dados.

O diagrama de sequência representado na Figura 18 demonstra os principais
processos que ocorrem na ferramenta. A fim de agilizar o processo de detecção, threads
distintas seriam utilizadas para as principais classes. Threads são tarefas independentes
dentro de um mesmo processo e executadas em paralelo. Como todas as classes direta ou
indiretamente acessariam o sumário, foi implementado o conceito de locking nas threads, ou
seja, apenas uma thread por vez pode interagir com a estrutura, evitando assim conflitos,
como por exemplo uma thread executar a leitura da estrutura enquanto outra thread
distinta está atualizando a mesma estrutura.
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Figura 18: Diagrama de alto nível de projeto do AFT

5.2.2 Classes

Esta seção descreve as classes que foram implementadas de modo a atingir os
objetivos descritos no design.

Classe Requests

A classe Requests possui métodos que enviam requests do tipo GET e PUT para o
web server que foi implementado nas máquinas do cluster ativo, interpretam a resposta e
podem utilizar essa informação para atualizar o sumário.

Os métodos da classe Request são representados na Figura 19 pelos blocos internos
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ao bloco Request. A Figura 20 demonstra o diagrama de sequência para essa classe.

Os métodos “GET status DB” e “GET status App” enviam requests do tipo GET
aos web servers. É pré-configurado no server que a resposta pros requests GET seja o
estado up ou down dos componentes que rodam na máquina. Quando o request GET
chega no servidor, a máquina executa comandos que verificam se o componente está
funcionalmente rodando ou não. O resultado desses comandos é então transformado em
respostas para o request e devolvida ao cliente.

Podem haver ocasiões em que a máquina não seja capaz de executar esses comandos
e responder o request apropriadamente. O request pode então falhar e nesse caso as máquinas
seriam consideradas down pelos métodos de análise da resposta.

Além do estado de falha, os requests também podem apresentar o estado de
timeout. Timeout é um parâmetro de rede relacionado a eventos que foram projetados
para ocorrer até a conclusão de um tempo decorrido pré-determinado. No contexto do
AFT, timeout é o tempo em que o AFT aguarda até uma máquina responder o seu request.
O timeout no AFT é parametrizável no código através da constante TIMEOUT e foi
definido em cinco segundos. Caso o servidor não tenha respondido o request nesse período,
o AFT tentará executar o request outras vezes antes de considerar os componentes dessa
máquina com o estado down. Essa quantidade de vezes também é parametrizável pela
constante TIMEOUT_MAX_RETRY, que tem valor igual a três. Outra constante de
tempo importante no AFT, denominada TIME_BETWEEN_REQUESTS, é o tempo
em que a classe Requests leva para executar novamente os requests nas máquinas. As
constantes de tempo são representadas na Tabela 4.

Tabela 4: Constantes de tempo da ferramenta

Constante de tempo Valor (s)
TIME_BETWEEN_REQUESTS 5
TIME_BETWEEN_DECISIONS 30

REQUEST_TIMEOUT 5
TIME_PEERS 10

Classe TrapReceiver

A classe TrapReceiver, representada na Figura 21, possui dois métodos: SNMP Trap
Server e Parse Trap. O método SNMP Trap Server é basicamente um SNMP Notification
Receiver. É um servidor que recebe traps que a solução é capaz de gerar em situações de
erro. Diversos tipos de traps da solução podem chegar nesse servidor, mas apenas traps
referentes aos estados dos peers que conectam as máquinas de aplicação com as máquinas
de DRA são interessantes para o AFT. É por isso que toda trap que chega nesse servidor
é enviada ao método Parse Trap, que analisa e identifica a trap. Caso esta seja o estado de
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Figura 19: Classe Request e seus principais métodos

algum dos peers, o método envia a informação para a classe UpdateSummary, que atualiza
o sumário. A Figura 22 contém o diagrama de sequência com os processos descritos.

Classe UpdateSummary

A classe UpdateSummary é onde está encapsulada a variável que armazena a
principal estrutura de dados do AFT, o sumário. Este, já representado na Figura 17, contém
o estado up ou down de todos os componentes envolvidos no processo de monitoramento.
A classe, representada na Figura 23, possui métodos que, ao serem invocados por outras
classes, atualizam os estados dos componentes no sumário.

Um arquivo YAML de input é utilizado pelo método "Read Initial Summary"para
carregar o sumário com valores iniciais e a cada mudança registrada, o método "Dump
Summary"escreve outro arquivo YAML de output. A utilidade desse arquivo é no caso de
o AFT precisar ser interrompido por qualquer motivo e depois reiniciado com os últimos
valores registrados do sumário.

O conceito de locking é muito importante nessa classe, pois como representado na
Figura 24, diferentes processos interagem com o sumário ao mesmo tempo. O sumário
é atualizado pelos métodos "App Update Status", "Db Update Status"e "Peer Update
Status"com os estados das máquinas de aplicação, base de dados e das conexões com os
peers do DRA.
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Figura 20: Diagrama de sequência da classe Requests

Figura 21: Classe TrapReceiver e seus principais métodos

Classe Deciding

A classe Deciding é a responsável por interpretar o sumário e julgar se o cenário atual
representa um cenário de failover ou não. Ela possui o método “decide_current_scenario”
que executa um loop em uma thread individual a cada 30 segundos. Esse valor é parametrizá-
vel e representa outra constante de tempo do AFT chamada de TIME_BETWEEN_DECISIONS
(Tabela 4).

O método lê as colunas do sumário e procura pelos cenários de failover descritos na
Seção 4.3. Os cenários são relativamente simples com exceção do cenário representado pela
Figura 13, em que ocorre a falha de uma das máquinas de DRA, o que não caracteriza
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Figura 22: Diagrama de sequência da classe TrapReceiver

um cenário de failover. Esse cenário pode ser facilmente confundido com o cenário da
Figura 11, em que mais de uma máquina de PCRF perdeu a conexão com o peer do DRA
e é considerado um cenário de failover. Por isso, foi introduzida a constante de tempo
parametrizável TIME_PEERS em que o bloco, ao identificar um peer down, aguarda por
mais 10 segundos até uma atualização do sumário sobre os outros peers, para ter certeza
se o que caiu foi de fato um ou mais peers ou uma das máquinas de DRA.

Tabela 5: Cenários de failover com base nos nós de aplicação e base de dados

Cenário Cenário de failover
Perda de um nó de aplicação Não

Perda de mais de um nó de aplicação Sim
Perda de um nó de base de dados Não

Perda de mais de um nó de base de dados Não

Tabela 6: Cenários de failover com base nos componentes

Cenário Cenário de failover
Queda de um componente PCRF Não

Queda de mais de um componente PCRF Sim
Queda de um componente Sessões Não

Queda de mais de um componente Sessões Sim
Queda de um componente Dados Não

Queda de mais de um componente Dados Sim

Quando uma situação de failover é detectada, o bloco Deciding aciona um método
da classe Requests que imediatamente faz um request do tipo PUT nas máquinas de
aplicação do cluster ativo. O request executa um comando nas máquinas que derruba
todos os componentes. Quando o DRA nota que perdeu todas as conexões com o cluster
primário, ele automaticamente passa a direcionar o tráfego para o cluster secundário (12).
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Figura 23: Classe UpdateSummary e seus principais métodos

Nás máquinas de base de dados, nenhuma operação necessita ser realizada, devido
a conexão ativo-ativo entre os clusters.

Procedimentos manuais devem ser tomados para reparar as falhas no cluster que
falhou, não sendo parte do escopo do AFT reparar ou evitar nenhum tipo de erro.
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Figura 24: Diagrama de sequência da classe UpdateSummary
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6 RESULTADOS

Durante o tempo de implementação, foi possível testar o AFT no ambiente de
produção em que ele seria de fato aplicado. Os testes realizados na ferramenta resumiam-se
em “derrubar” propositalmente os componentes nas máquinas em que o AFT monitorava.
O objetivo dos testes não era somente verificar se o AFT reconheceria o cenário de failover,
como também quantificar o tempo aproximado em que esse processo ocorria. A Tabela 7
contém o tempo registrados nos logs de alguns eventos. Além disso, a Figura 25 demonstra
as quatro principais classes do AFT descritas no Capítulo 5 e os principais processos que
ocorrem no AFT.

Figura 25: Diagrama de alto nível de projeto do AFT

Tabela 7: Tempo registrado entre eventos de falha e a detecção dos mesmos

Evento Tempo (ms)
Detecção da queda de um componente de aplicação 11
Detecção da queda de um componente de database 20

Tempo até o failover 17,78

Como visto no Capítulo 2, a Equação 2.1 calcula a disponibilidade de um sistema
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utilizando dois parâmetros, o MTBF e o MTTR. Após apresentada a ferramenta de failover
automático, podemos concluir que o AFT está diretamente relacionado ao parâmetro
MTTR, ou Mean Time to Repair. Isto porque o AFT não é uma ferramenta que possui a
função de evitar falhas, ou minimizá-las de qualquer forma e sim, uma ferramenta que
possui uma resposta a falhas. Vale evidenciar que o AFT não repara nenhum tipo de falha
nos componentes ou na máquina em que ela ocorreu, mas ao realizar a migração para
o cluster secundário, o AFT repara o sistema como um todo, minimizando o seu tempo
down.

Um procedimento manual se torna necessário para realizar a migração para o cluster
secundário sem a utilização de uma ferramenta automática. Além disso, o processo de
detecção do cenário de falha é consideravelmente demorado sem o uso de uma ferramenta
de detecção. É conhecido que a solução da companhia envia registros de status a cada
cinco minutos para um servidor do cliente. No pior caso, a falha ocorreria no momento
em que um registro foi enviado e levaria outros cinco minutos até que fosse enviado outro
registro com essa falha. A esse tempo, soma-se o tempo até alguém verificar esse log e
executar o procedimento manual de failover. Sabe-se através do histórico da companhia
que esse processo já chegou a levar até 30 minutos.

Por outro lado, o AFT pode levar, no pior cenário, cerca de 47 segundos para
executar o processo de failover. No pior cenário, uma falha ocorre exatamente no momento
em que o AFT acabou de tomar uma decisão, e levará agora mais 30 segundos até a próxima.
A esse tempo é somado os 17 segundos que o AFT leva para desligar os componentes das
máquinas do cluster principal. No melhor caso, em contrapartida, o AFT registra a falha
no momento em que uma decisão vai ter início e leva apenas 17 segundos para o processo
de failover.

Com base nesses valores de MTTR dos processos automático e manual, plotou-se a
curva de disponibilidade do sistema em função do tempo médio entre falhas (MTBF) para
os dois cenários: utilizando o AFT e utilizando o procedimento manual. As curvas estão
representadas na Figura 26. Nota-se que para valores baixos de tempo médio entre falhas,
ou seja, quando o sistema falha bastante, o uso do AFT aumenta consideravelmente a
disponibilidade do sistema em relação ao procedimento manual. Porém, para sistemas
que falham muito pouco, o AFT faz pouca diferença na disponibilidade em relação ao
procedimento manual.

Também, plotou-se o número de noves em função do tempo médio entre falhas
para os dois cenários. O resultado está representado na Figura 27. Nota-se uma grande
diferença no número de noves que o AFT garante a solução em relação ao procedimento
manual.

Visto que sistemas de telecomunicação normalmente possuem cinco noves de
disponibilidade (Tabela 1), o que equivale a um tempo down de 5,25 minutos por ano.
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Figura 26: Curvas de disponibilidade em função do tempo médio entre falhas utilizando
failover manual e automático (AFT)

Podemos aplicar uma análise teórica em que o AFT seria capaz de reduzir o tempo
de indisponibilidade para o tempo que o AFT leva até o failover. Utilizando o melhor
e pior caso descritos nos parágrafos anteriores, criou-se a Tabela 8, que representa a
disponibilidade atingida pela ferramenta utilizando esses tempos.

Tabela 8: Tempo até o failover e disponibilidade atingida no melhor e pior caso

Tempo até o
failover (s)

Disponibilidade
atingida

Pior caso 47 99,999%
Melhor caso 17 99,9999%

Portanto, é possível visualizar que a ferramenta de tolerância a falhas implementada
é capaz de garantir a adição de outro nove na disponibilidade de sistemas de telecomunica-
ção, aumentando ainda mais a disponibilidade de sistemas que já são considerados muito
disponíveis.
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Figura 27: Número de noves em função do tempo médio entre falhas utilizando failover
manual e automático (AFT)
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7 CONCLUSÃO

A implementação da ferramenta apresentada no trabalho mostrou-se uma solução
simples, viável e de baixo custo de alta disponibilidade. Quando aplicada a solução em um
ambiente real, foi possível manter a disponibilidade do sistema mesmo diante de cenários
de falha.

O tempo de resposta em situações simuladas de falha que ativaram o failover foi
bastante adequado, ficando abaixo do tempo de um minuto exigido pela companhia.

Outros marcos notáveis alcançados com esta solução foram o emprego de ferramentas
open-source com todos seus benefícios agregados como menor custo de implementação,
menores taxas de manutenção, facilidade de escalabilidade sem aquisição de licenças
especiais e uso de tecnologia inovadora.

Também foi notável a exigência do avanço no conhecimento da linguagem de
programação e nos conceitos envolvidos.
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