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RESUMO

Neste trabalho visa-se a implementagio de um software (em Linguagem C) capaz
de otimizar a topologia de uma pega, baseando-se no critério de méxima rigidez,
restringido o peso total. As equagBes diferenciais que descrevem o equilibrio do sistema
sdo aproximadas por equagbes algébricas através do Método dos Elementos Finitos,
obtendo-se entdo a chamada matriz de rigidez do sistema. As equagBes ou sistema de
equacdes sio resolvidas pelo Método dos Gradientes Conjugados para sistemas lineares
esparsos (ou de matrizes esparsas) e a solugio ¢ usada no algoritmo de otimizagfio
propriamente dita, baseado na Programagio Linear. Devido ao uso da Programagio
Linear como método numérico de otimizagdo estrutural, sdo realizadas diversas iteragdes
até que o resultado 6timo seja alcangado. Pretende-se por fim, ainda, o teste comparativo

do programa ¢ conseqiiente validagdo, para uso posterior.



ABSTRACT

In this work the implementation of a software is sought (in C language) capable
to optimize the topology of a piece, basing on the criterion of maxim stiffness, restricted
the total weight. The differential equations that describe the equilibrium of the system
are approximate for algebraic equations through the Finite Elements Method, and then
being obtained the stiffness matrix of the system. The equations or system of equations
are solved for the Conjugate Gradient Method for systems of linear equations and the
solution is used in the optimization algorithm, based on the Linear Programming. Due to
the use of the Linear Programming as numeric method of structural optimization, several
iterations are accomplished until the optimum is reached. It is intended finally, the

comparative test of the software and consequent validation, for subsequent use.
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INTRODUGAO

O conceito de otimizacdo sempre esteve presente na vida humana. Nas inven¢des
mais antigas desenvolvidas pelo homem, como, por exemplo, a alavanca ou polias
usadas para elevagio de carga, nota-se a manifestagio clara do desejo do homem de
maximizar o rendimento mecénico. Mesmo nos dias de hoje, ao escolher um ou outro
caminho que compreende um nimero finito de ruas a ligar dois lugares diferentes (o
lugar de saida e o de chegada), uma pessoa estd tentando minimizar o tempo gasto na
realizagdo de uma tarefa — o que, na maioria das vezes nfio acontece, uma vez que a
fungio de excitagio do sistema, dependente do tempo e da posicio no dominio
considerado {(como o fendmeno climético conhecido como chuva), nfo ¢, normalmente,
inicialmente conhecida, apesar do suposto desenvolvimento atual das ciéncias
meteoroldgicas; sendo assim, a solugio 6tima varia com o tempo de maneira
praticamente randomica, o que torna quase impossivel a sua obteng#o.

Existem basicamente dois métodos ou abordagens diferentes de obtengio de
solugGes Otimas. A primeira é conhecida como abordagem de analise e compreende a
variagio de pardmetros de projeto, de maneira aleatéria, ou mesmo com algum
direcionamento, em busca da otimizagic de um objetivo, ou fungdo objetivo. Como um
exemplo deste método, pode-se citar uma estrutura de trelica, sujeita a um dado
carregamento e sustentada por alguns dos nds de suas extremidades. Suponha-se que a
estrutura deva ser formada por dez barras de comprimentos iguais € com areas de segdo
transversal podendo variar de forma descontinua, assumindo apenas dez wvalores
diferentes (disponiveis), e que se quer maximizar a sua rigidez (da estrutura),
restringindo-se o peso total. A abordagem apresentada consistiria em se construir um
modelo do sistema e entfio calcular sua rigidez para as combinag3es possiveis das areas.
Os valores de rigidez seriam tabelados para melhor visualizagdio e o maior valor,
satisfazendo a restri¢iio de peso imposta, seria escolhido como valor étimo, juntamente

com as areas correspondentes.
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Pode-se notar que este método ¢ vidvel apenas para um nimero reduzido de
parametros, ou variaveis de projeto.

A outra abordagem, utilizada inicialmente em areas de conhecimento como na
Economia, Logistica ou Engenharia de Produggo, ¢ denominada sintese on, como ¢é mais
conhecida, otimiza¢io. Pode ser definida de maneira genérica como a busca do melhor
resultado de uma dada operagdo, satisfeitas certas restrigdes, ou como a busca
sistemdtica da solugdo 6tima dentro de vdrias configuragdes possiveis. Sio utilizados,
para estas buscas, algoritmos matematicos.

A otimizacio estrutural, area tratada neste trabalho, apresenta basicamente trés
abordagens diferentes: a paramétrica, a de forma e a topologica. A ditima prové os
melhores resuliados no que diz respeito a redugiio de peso da estrutura e otimizagiic do
objetivo. Portanto foi escolhida como base fundamental deste estudo.

Como ilustragdo, assim como para desperiar o interesse do leitor, foi exposta a
Figura 1, um exemplo de aplicagdo industrial. Nela, podem ser vistas as etapas
complementares pelas quais passa a estrutura projetada - além da otimizagio

propriamente dita, tema deste estudo.
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Resultado da OT

TN

algoritino de
suavizacio

¢ et Avaliacio final por MEF
Modelo de CAD (IGES)

Coriesh Aliair Engineering, Inc., Mickigan, EUA

Figura 1 Exemplo de aplicacédo industrial: brago de suspensio dianteira de um
caminhao.

Este exemplo demonstra o procedimento adotado, mas levando-se em conta um
dominio tridimensional. Como ilustragdo da otimiza¢dio em dominios bidimensionais,
mostra-se a Figura 2, na qual sdo vistos o carregamento considerado e os corpos original
e otimizado de uma pega estrutural de sustenta¢dio do piso de um avido. A distribuigdio
final tem a mesma rigidez apresentada pela estrutura original, mas com redugio de,
aproximadamente, 40% de material, o que representa um grande ganho - sobretudo para
a industria, para quem uma pequena economia num objeto pode significar poupar

mithares de dolares.

Interpretacio con
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Figura 2 Exemplo de aplicagio bidimensional: viga de sustentacdo do piso de um avido.

Neste trabalho visa-se a implementagio de um software (em Linguagem C) capaz
de otimizar a topologia de uma pega, baseando-se no critéric de méaxima rigidez,
restringido o peso total. As equagGes diferenciais que descrevem o equilibrio do sistema
sdo aproximadas por equagGes algébricas através do Método dos Elementos Finitos,
obtendo-se entdio a chamada matriz de rigidez do sistema. As equagdes ou sistema de
equagdes sdo resolvidas pelo Método dos Gradientes Conjugados para sistemas lineares
esparsos (ou de matrizes esparsas) ¢ a solugdo € usada no algoritmo de otimizacdo
propriamente dita, baseado na Programacio Linear. Devido ao uso da Programagio
Linear como método numérico de otimizagdo estrutural, sdo realizadas diversas iteragdes
até que o resultado 6timo seja alcancado. Pretende-se por fim, ainda, o teste comparativo
do programa e conseqiiente validagdo, para uso posterior.

Nos proximos capitulos, relacionar-se-a a fundamentacio teorica necesséria para
o entendimento da implementagfio, serdio introduzidos a forma de implementagio do
software e os resultados obtidos, e entdo divulgada a conclusdio. A exposicdo dos
fundamentos tedricos serd feita em ordem, de acordo com o programa principal, para

que se torne mais simples a sua compreensdo {do programa).
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FUNDAMENTOS TEORICOS

METODO DOS ELEMENTOS FINITOS (MEF)

No presente trabalho, visa-se 2 implementagio do modelo formulado a partir da
simplificacio para a qual se considera apenas o estado plano de tenses. O problema
pode entdo ser tratado como possuidor de apenas duas dimensdes. Exemplos deste tipo

de simplificagdio podem ser vistos na Figura 3.

Hole

~
=
«Y
L 4 )
i
5
<3
3
3

Tion Typ Txy @re uniform
across the thickness
All other stress components

; are zero
P

Figura 3 Condigdes de estado plano de tensdes: uma chapa e uma viga engastada sob
tenses no plano da folha.

P ALALLRLRAAS

Esta situagdio pode acontecer quando nfo existem forgas agindo na diregiio Z,
definida na Figura 4 juntamente a um cubo infinitesimalmente pequeno e que contém
um ponto dentro de um material qualquer. As tenses existentes no cubo, provenientes
da aplicacdo de forcas externas, também sfio vistas na figura e representam o estadc de
tensdes do ponto.

Para o caso da Figura 4, o estado de tensdes se reduz a:

[“’]Tz[ﬂxx Tyy Txy)
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sendo oxy € Gyy tensdes normais e Tyy = Tyy (a igualdade vem da condigdo de equilibrio)

as componentes de cisalhamento.

ncw
g T
YX
E J“
t Txy
t
g
ey 15 -t
Cxx I - Gy x
s
Txy’ ! I A s . ¢
- Tyx /
g Aemmmp=
= ’
& o GYY
Z Tyx
Txy
Oxi Oxx
Txy

Tyx

Oyy

Figura 4 Simplificacdo obtida para estado plano de tenses.

Além de tensdes, as forgas aplicadas também provocam deslocamentos de pontos
pertencentes a um corpo, que se torna deformado. Pode-se definir um vetor de
deslocamentos que mede mudangas ocorridas na posigio de tais pontos, o qual, descrito

em termos de coordenadas cartesianas, rende;
—_ > - -
& =u(x,y,2)i + v(x,y,2)j + wix,y, 2)k

onde:
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wx,y,2)=x" —=x
ux,y,2) =y —y
wix,y,z) =2 — 2

As posi¢des indicadas juntamente com o apostrofo significam posi¢Ses novas, obtidas
apos serem aplicados os carregamentos e as outras posi¢les (X, v e z) referem-se &
posi¢des originais dos pontos.

Uma alternativa para se medir a mudanga no formato da estrutura em estudo é
introduduzida pelo conceito de deformagdes do corpo, que relacionam-se com as tensSes

através da Lei de Hooke, dada para o estado plano de tensSes por:

o 1 v 0 Exx
xx E
Ty = = v 1 0 €y
. 1-v ¥
Ty 0 0 --—2— ¥

ou numa forma compacta:

{e} = [vl{e}
£ ¢ o mddulo de elasticidade, v € o coeficiente de Poisson, €xy € sy sdo deformagdes
normais e yyxy ¢ a componente de cisalhamento. Essas (deformagdes) também se
relacionam aos deslocamentos estruturais a partir de:

du _ 9 du | dv
=T Ty Mot

Torna-se agora necessaria a introducgio do termo energia de deformagdo. Esta
acumula-se no interior do material no qual séo aplicados carregamentos e é resultado do

trabalho realizados por estas for¢as externas ou carregamentos. Pode ser dada por:

1

A = "2-[ (“Hau T oye, + Tx,v?xy) dv

¥
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ou numa forma matricial:
1 T
A =_|[e]{e}dV
2},
que, considerando-se a Lei de Hooke simplificada discutida anteriormente, resulta em:

A =3 e av

DI | e

Neste ponto, € introduzida o formulacio do Método dos Elementos Finitos
propriamente dita. Pode-se entdio representar os deslocamentos # e v dos pomios do
material com auxilio de fun¢Bes aproximadas definidas em cada elemento em que se
subdivide a estrutura ou material em questio. No caso deste trabalho, optou-se por
elementos quadrilaterais e, portanto, sendo também escolhidas equagdes polinomiais,
foram obtidas func¢Oes ditas bilineares, que geram deslocamentos os quais variam
linearmente nas bordas do elemento e apresentam variages nfio-lineares no interior. Os
deslocamentos s3o ainda definidos num sistema alternativo de coordenadas
adimensional denominado Sistema de Coordenadas Natural. O elemento fica desta
forma definido como na Figura 5.

A transformagiio de um sistema de coordenadas qualquer para o Natural é
extremamente benéfica, uma vez que forga o elemento quadrilateral a ter uma geometria
regular, sendo os limites desta geometria —1 ¢ 1, tanto no eixo das ordenadas quanto no
das abscissas. (os beneficios serdo notados no momento do calculo das matrizes de
rigidez dos elementos, visto mais adiante)

No caso também deste trabalho, por comodidade de implementacio, designou-se
a chamada Formulagfio Isoparamétrica como componente essencial. Segundo esta, a
mesma fungo interpoladora utilizada para aproximacg#o dos deslocamentos sera também

utilizada para expressar a posi¢io de qualquer ponto no interior do elemento.
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Resolvendo o sistema de equagdes obtido da fungdo interpoladora, pode-se entdio
representar deslocamentos (ou posigdes) no interior do elemento através das funcgdes de
forma § e dos deslocamentos nodais U/ (ou posigdes nodais) do elemento, sendo que
estes ultimos (Us) serdo definidos num sistema de coordenadas global (o sistema no
qual se definem os deslocamentos e posiges nodais & escolhido arbitrariamente em

fungdo da comodidade que representa para obtengio das matrizes de um elemento).

n
Un A
i Ut
( 1 1) ——)—Um’ (Ll)
i, T ) 4 mx
n
e A )
> &
¥ Uy
L, I
(-1,-1) & = 4 »Uj,

i

j
(1,-1)

Figura § Elemento quadrilateral usado na formulagéo de problemas envolvendo o estado
plano de tensdes, definido no sistema natural de coordenadas e com deslocamentos
definidos no sistema global de coordenadas.

Tém-se entdo:

it = S;U;x + SjU:ix + SmUmx + SnUnx
v = Sjt]jy + S_,l}_;; + SmUmy + SnUny

Ou numa notagdo matricial:
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E para o elemento isoparamétrico:

x=8x+8x+ Sux, + 8,
y= Siyi ity Sjyj + Smym + Sn.Vn

onde;

5= (1 - &)1 - m)
i 4 M
$;= 3L+ 6 - )

S, = 3 (1+ )1+ m)

S, = 3 (1= 81 +m)

Como ja foi dito, pode-se estabelecer que:

~

L
-

.

3
e

S F
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-
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[ ou )
ax
Exx _ (2 l!
{e} = :yy = 3y
xy
o
3y ox,

Nota-se, porém, que tanto # quanto v estio definidos em fun¢io das coordenadas
naturais £ e 1, problema este contornado pela introdugfio da regra da cadeia, ou numa

terminologia conhecida, da matriz denominada Jacobiano (/). Tem-se entdo:

]
af(x, y) dax 8y | [of(x, y)
3k _| 9 o ax
af(x, y) ax dy | |of(x,y)
an an am ay
e
af(x.y) af(x,y)
ax - 9§
oy |~ T arce, )
ay an

Ainversade] é:

O = — ] [@ %ﬂ= 1[&'11
Jidp = Jphy L =dn Iy detd | -5, 1

Para o tipo de elemento em questio, obtém-se:
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=1 [[—(1 = + (1= mx; + (1 + 0)xm — (1 + 1)x,]
4L [0 - 8% — (1 + 8+ 1+ Oxa + (1 - E)x,]

[Fl-mn+ Q-+ A+ )y~ 1+ n)yn]] _ [Ju Ju]
A -8y -0+ 8y + U +Ey+ 1 - E)yl by

E retornando a energia de deformacéio, para o caso em estudo:

o=l f (¥ vlie} dv = £ () L{a}f[v]{e} dA

onde 7, ¢ a espessura do elemento e o indice (e) refere-se a elemento. A partir do exposto

até agora, pode-se obter:

due
¢ ou 3 [A] E
3 g i =
az 1 Jrz‘& _Jm 0 O 'g_u
n
= { R — — ==

{E} ay ) detd 0 0 Jn J]] . ay ;

ﬁ‘_‘_ 92 —hy Iy Jn “'112 Eg

Lay axJ _!_3_7_)_
ta“J

e as derivadas parciais dos deslocamentos sdo:
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[D]

“(l-m) 0 (Q-m) 0 (I+m) 0 -(1+m) O

}=1 -1-& o0 -(1+& 0 (1+§ 0 (1-§ 0
4 0 -1-m) 0 (Q-m) 0 (Q+m) 0 —(1+n)
0 -(1-¢ 0 -Q+¢ ©0 (@1+¢ o (1-¢)

Cuy

{e} =

~lel,

e

Y
o

Sheighe

b

~

~

=

’”

Chega-se a expressio:
(Al[DHU}

Nesta etapa mostra-se porque € benéfico definir os limites de um elemento como

Sendo transformado o termo diferencial dA = dxdy em dA = det Jdédn, uma

integral definida no dominio representado pela area de um elemento pode ser calculada

com limites de integracdio descritos no sistema natural de coordenadas, de valores entdo

iguais a -1 e 1. A equagéo da energia torna-se:

PR ——

=16 f (e v Herda = 3 c) | | :{e}fm{e} det Jdgdq
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Os deslocamentos nodais, por serem constantes no dominio, sio “colocados para fora da
integral” e a expressdo resultante, derivada em relagfio a estes deslocamentos, resulta em

[KI9¢U}. A matriz [K]® é denominada de matriz de rigidez do elemento ¢ é dada por:

(K1 = «| [ [ANDIvATD] det sagan

=]

Nota-se que a obtengiio requer a solu¢iio de uma integral. Esta ¢ resolvida pelo

Meétodo de Gauss-Legendre, para o qual é conhecida a formula:

1 |

- [[Aenmeen= [ Saseon ins 3 Smmsten
-1

<1 -
21 ! a

Os pesos w; e wy e os pontos &; e 1; sdo dados em fungdo dos limites de integracio
e do tipo de relagdo funcional a ser integrada, e padronizados (e tabelados) para limites
iguais a —1 e 1 e para fungdes polinomiais. Dai a necessidade de uso dos valores -1 e 1,
citada anteriormente.

No caso deste trabalho, foi utilizada a Quadratura Gaussiana (Método de Gauss-
Legendre) de dois pontos, e prova-se que a somatoria obtida representa a integral exata
de um polinbmio de grau igual a, no maximo, trés, o que atende s necessidades
vigentes.

Em posse da matriz do elemento, pode-se entdo obter a matriz de rigidez da
estrutura, denominada global. Este procedimento ¢ comum na implementagio do
Método dos Elementos Finitos e consiste numa soma de contribui¢des de cada elemento
para a rigidez total da estrutura. Cada linha desta matriz pode ser interpretada como um
conjunto de parcelas constituintes de uma das forgas nodais - todas estas parcelas ¢ a
propria forgca nodal definidas no mesmo sistema de coordenadas - para deslocamentos

dos nds da estrutura unitirios {esta interpretaciio é valida para problemas estiticos).
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Maiores detalhes sobre matrizes de rigidez podem ser obtidos nas referéncias [1], [2] e
[3]

Para obtengdo das ja citadas forgas ou carregamentos nodais, € necessario que,
em primeiro lugar, calcule-se o trabatho realizado pelas forgas externas, concentradas ou
distribuidas. Este ¢ entdo derivado em relagio aos deslocamentos nodais e pode ser
igualado, como matriz de carregamentos, a [K]{U3}, onde K e U sfio matrizes globais.
Neste procedimento nada mais se estd fazendo a nio ser igualar as derivadas do trabatho
externo em relagio a cada deslocamento, as da energia interna armazenada no material.
Considerando-se apenas forgas concentradas, caso tratado neste estudo, o trabalho é
igual ao produto do carregamento pelo deslocamento correspondente. Derivado em
relagdo ao deslocamento, logicamente fornece a carga nodal. E, portanto, obtido o

sistema de equag3es linear:

[KI{U} = {F}

onde {F} compreende forgas externas (é o vetor de forgas externas).

OTIMIZACAO TOPOLOGICA

A OT consiste num meétodo computacional que gera a topologia 6tima de
estruturas. Basicamente, distribui o material no interior de um dominio fixo de forma a
maximizar ou minimizar uma fungio custo especificada (por exemplo, maxima rigidez
estrutural ou minimo volume de material). O material em cada ponte do dominio pode,
por exempio, variar de um material do tipo A (ar, por exemplo) a um material do tipo B
(por exemplo, um material s6lido), assumindo materiais intermediarios entre A e B, de
acordo com uma lei de “mistura” definida, chamada modelo de material.

Um algoritmo de otimizagdo é usado para se determinar, de forma iterativa, a
distribui¢do 6tima dos materiais, o que torna o processo rapido. Caso contrario, mithdes

de analises seriam necesséarias para encontra-la. A distribui¢iio de um dado material é
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representada, por exemplo, associando-se um valor de “densidade” (ou pseudo-
densidade, conforme seri discutido adiante no texto) a cada elemento (subdominio),
obtido da discretizag@o do dominio inicial. Dessa forma, a OT combina, essencialmente,
métodos de otimizagdo com um método numérico de analise, no caso deste trabalho o
MEF. Outros metodos numeéricos de andlise podem ser usados. No entanto, devem ser
genéricos o suficiente, de forma a lidar com estruturas de formas complexas, resultantes
da otimizag#o. Os métodos de otimizac8io aceleram o processo de busca da distribuico
otima de material, utilizando-se para isso da informagio do gradiente {ou derivadas) da
fungdo custo em relagdo & quantidade de material em cada elemento. O célculo deste
gradiente é feito com base na andlise estrutural (mais especificamente, 4 partir dos
deslocamentos nodais) ¢ sera tratado, detalhadamente, adiante no texto.

Desde sua introdugdio, a OT vem ganhando destaque no meio académico e na
indGstria. Torna o processo de projeto mais genérico, sistematico, otimizado, e
independente da experiéncia especifica de alguns engenheiros, fornecendo a topologia
inicial, otimizada para uma certa aplicagio do dispositivo a ser construido. A presenca
do engenheiro ¢ necessaria para a obtencgio do projeto final e verificagio do desempenho
para o qual foi projetado (0 que ¢ feito com o auxilio de métodos numéricos e
experimentais). Tem sido expandido, recentemente ¢ com sucesso, para atuacdo em
varias outras aplicagdes, como no projeto de atuadores piezoelétricos, antenas ¢ motores
eletromagnéticos, e mecanismos flexiveis [8].

No modelo de material adotado, a rigidez de cada elemento serd tanto maior
quanto maior for a sua “densidade”, - ou “pseudo-densidade” (serdo também tratadas
simplesmente por densidades), j4 que se desconsidera o efeito da massa da estrutura —
podendo variar de O (vazio, ou ar) a 1 (apesar de uma densidade igual a O ser
perfeitamente possivel para o problema de otimizagio, deve ser evitada no MEF devido
a possibilidade de divis@io por este mesmo valor). Uma pergunta que pode surgir neste
momento €: por que ndo utilizar apenas 0 e 1 como valores a serem assumidos, uma vez
que tal fato simplificaria em demasia a fabricagdo da estrutura obtida na OT? A resposta

€ a seguinte: niio se pode garantir a obtengdo da resposta do problema de OT, devido as



27

instabilidades numéricas geradas pela variagdo brusca causada pela parametrizagio
discreta. Assim, admitindo a continuidade de valores, é garantido o alcance de soluggo.
O chamado método das densidades, ou, de outro modo, “Simple Isotropic
Material with Penalization” (SIMP) engloba a continuidade das densidades e ainda
introduz o conceito de fator de penalidade. E explicitado (0 método) pela seguinte

equacio, modelo matematico do comportamento do material:

C(x) = p(x)’Co

O fator de penalidade p tem como fungfo reduzir as densidades intermediarias no
resultado final. O tensor Cy é isotropico e depende do mddulo de elasticidade e do
coeficiente de Poisson do material. Na implementagio, simplesmente multiplica-se
pxcF, onde p, “pseudo-densidade”, € varidvel referente a um elemento finito {como ji
dito), por cada componente da matriz de rigidez do proprio elemento, o que da origem a
sua propriedade (ou rigidez) efetiva.

O ajuste do valor de p é discutido na literatura e pode-se mostrar que, para
garantir a existéncia de uma estrutura formada quase que totalmente apenas por material
com p=1 e p= 0 (inexisténcia de material), para o estado plano de tensSes (caso
abordado), o fator deve ser maior ou igual a trés. Porém ¢é limitado superiormente, ja que
um valor muito alto faz o problema tornar-se aproximadamente discreto, e entdo
experimentar a ja citada nfo garantia de solugdo. Utilizou-se p = 3. Este valor de p,
apesar de prevenir o aparecimento de densidades intermediarias, torna o problema ndo-
convexo, ou seja, com varios minimos locais. A ilustracdo de uma fungdo convexa e

uma ndo-convexa, para apenas uma dimensdo, pode ser vista Figura 6.
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0

Figura 6 Fun¢fies convexa e ndo-convexa.

Uma explicagfio mais detalhada sobre os possiveis valores de p, bem como uma
discussdo sobre demais modelos de material encontrados na literatura sio visto na
referéncia [8]. E aqui apenas importante salientar que se pode descrever a prova da
existéncia de solugdes com pequenas quantidades de densidades intermediarias, fator
extremamente importante para a fabrica¢iio, apesar de serem estas solugbes Otimos
locais, e ndo globais, o que seria o ideal. Porém, o chamado método da continuagio pode
dar origem a resultados methores.

O método da continuagio consiste em se obter a resposta do problema convexo
(obtido com valor do fator de penalidade unitario), o qual conta com apenas um minimo
- alcangado independentemente do valor inicial dado as densidades dos elementos, valor
este necessario para analise de elementos finitos, ocu seja, obtengdo de deslocamentos
nodais - ¢ partir desta para a resolucdo do problema ndo-convexo (obtido para valor de
fator de penalidade maior do que a unidade). Partir da solugio convexa significa utilizar
como valores iniciais de densidades as respostas da otimiza¢io da fungdio convexa. O
resultado final estara sempre proximo do étimo do problema convexo, e, provavelmente,
sera melhor do que uma solugiio encontrada para uma distribuigdo inicial de densidades
qualquer e uso do fator de penalidade diferente de um. Computacionalmente, o método

sera discutido adiante.
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OBTENGCAO DOS DESLOCAMENTOS NODAIS

Sabe-se que nem todos os deslocamentos nodais definidos num mathamento de
elementos finitos sfio responsaveis pelo equilibrio de uma determinada forca nodal.
Assim, a matriz de rigidez global possuird diversos valores iguais a zero. Isto remete ao
uso de métodos de armazenamento de matrizes esparsas, que diminuem a quantidade de
memoria necessaria para armazenamento de dados. Além disto, existem diversos
procedimentos que se utilizam das matrizes definidas nestes métodos na solugio de
sistemas lineares, e reduzem o tempo de processamento computacional.

Um dos procedimentos de solugio (neste caso, a obtengéio dos deslocamentos) é
0 Método dos Gradientes Conjugados para Sistemas Esparsos (MGCSE) que, em um de
seus algoritmos mais simples, resolve um sistema de equagdes lineares e apenas no caso

em que a matriz A ¢ simétrica e positiva definida, sendo o sistema igual a:

[Al{x} = {b}

O método ¢ baseado na idéia de minimizacio de:

fx) = Va{x}[AJ{x} - {b}{x}

Para este trabalho, serd, porém, utilizado o Método dos Gradientes Biconjugados
para Sistemas Esparsos (MGBSE), uma vez que se tem em mios, da referéncia [4], o
algoritmo correspondente implementado. Porém, este método engloba 0 MGCSE, sendo
seu caso “um pouco mais genérico”, para o qual permitem-se equagdes lineares nfio
necessariamente positivas definidas ou simétricas. No entanto, nio apresenta uma
conexdo simples e direta com a minimizagdo de fungdes, como a apresenta 0 MGCSE,
relagdo esta citada acima. Maiores detalhes sobre 0 MGCSE, o MGBSE ou sobre

matrizes esparsas € métodos de armazenamento podem ser obtidos na referéncia [4].
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PROGRAMAGCAOQ LINEAR (PL) E PROGRAMACAO LINEAR
SEQUENCIAL (PLS)

Optou-se para a solugio do problema de otimizagio pela PLS por ser esta
abordagem bem conhecida (e, portanto, confidvel) e pela comodidade apresentada pela
existéncia de uma fungio praticamente pronta para uso (para Programacio Linear),
escrita em Linguagem Fortran de programag#io, que se encaixou perfeitamente nos
requisitos deste trabalho.

A PLS é um caso especial da PL, para a qual o processc de otimizagio se da
iterativamente. E necessaria quando se lida com fungdes nfio lineares (o caso em
questdo), linearizadas entZo em torno de um ponto (no caso unidimensional) para uso no
algoritmo.

Se uma funglo € linearizada, representa 0 comportamento da ndo linear apenas
num pequeno intervalo ao redor do ponto utilizado. Por outro lado, se sdc tomados
varios pontos, pertencentes a fun¢do ndio linear, ¢ esta Gltima é aproximada por uma
sucessdo de linearizagdes em tomo dos pontos, € representada de forma mais
satisfatoria.

A otimizagdo por PL de uma relagfio ndo linear deve entdio ser levada a cabo
iterativamente e, em cada iteragfio, ser restrita a um intervalo definido como aceitavel
(ou, em outras palavras, para o qual a divergéncia entre as duas fungdes — linearizada e
nio linear - ¢ pequena), tomado em torno dos valores das variaveis obtidas na iteragfio
anterior. O processo termina quando ¢ verificada a condigiio (ou condigdes) verdadeira
para o critério de parada.

Atendo-se agora a PL, pode-se dizer que compreende a identificagio ou
obtengdo, de forma organizada, das NV, restrigbes dadas que devem ser satisfeitas pelas
varidveis de projeto 6timas, ou seja, aquelas variaveis cujos valores, uma vez inseridos
na fungdo objetivo, ou a fungdo a ser otimizada, tornam-na 6tima. N; é o nimero de
variaveis. No caso deste trabalho, estas variaveis sio as densidades dos elementos em

que se divide a estrutura ou corpo estudado.
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Este tipo de abordagem em forma de busca de restrigdes € particular de
algoritmos baseados em PL. Isto porque se sabe de antemdo que os valores maximos de
uma funcio linear restringida (e de gradiente diferente de zero) ocorrem necessariamente
nos limites destas restrigdes, o que ndo pode ser afirmado para fungdes ndo lineares. Um
caso simples deste tipo de problema, para apenas duas variaveis independentes, pode ser

visto na Figura 7.

a feasible basic vector
(not optimal)

&
- :
¢

Figura 7 Visualizacdo de um caso simples de problema de PL.

Esta representa um problema de maximizag8o, sendo z a fungdo objetivo, ou
variavel dependente, para a qual plotaram-se as curvas de nivel. O vetor possivel €
aquele que satisfaz todas as restrighes impostas e o vetor basico possivel também se
encontra nos limites da regido permitida. Pode-se notar a existéncia tanto de restrigbes
em forma de equacgdes quanto na forma de inequagdes. O método de solugdo

simplesmente procura entre vetores basicos possiveis até que o chamado vetor 6timo
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possivel seja encontrado. Néo o faz aleatoriamente, mas com base nos componentes do
gradiente da funcdo objetivo (como ja explicitado), relativos a cada variavel, o que
direciona a busca do ponto de 6timo, organizando-a.

Quer-se maximizar a rigidez. Entdo, indiretamente, minimiza-se a chamada
flexibilidade F; da estrutura, tida como fungiio objetivo e igual, por definigio, ao dobro
da energia elastica. E dada por:

Fi=FU

e, pelo equilibrio estatico:

Fi=U'KU

Sendo as “pseudo-densidades” as variaveis de projeto, o gradiente, que contém as

derivadas primeiras da fungfio objetive considerada, deve ser calculado com base nessas.

Sendo p; a “pseudo-densidade” do elemento finito 7, tem-se que:

o, _du'xy) o r)KU+U’§—(§—)U+U’K?—(@

op; p, op; op, op;

Apos alguma manipulagio matricial € depois da introdugiio da derivagio da
equagdo de equilibrio ([K]{U} = {F}), chega-se, conforme ¢ visto na referéncia [7]
(nesta, as variaveis de projeto sdo as areas das barras de trelica; mas o desenvolvimento,

ou manipula¢fio matricial, € 0 mesmo) na relagio:

Como ja se disse, o problema néo linear deve ser dividido em diversos lineares,

abordagem esta adotada pelo PLS. Obtém-se entdo, a partir da expansdo em série de
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Taylor, fungfio />, linearizada, conforme referéncia [7]. As constantes, obtidas quando
da lenearizagdo, ndo influenciam no processo de otimizagdo; por isso s3o retiradas da

equacdo. O problema de PL assume a forma:

Iinear aﬁ; aF; a}?l
Frer=—3d |  p+—t| L pt.t | = w2
ap, "* op, ** op, 7
AL

Sendo o volume maximo restringido, o que € representado pela inequacgdc que engloba a
somatoria das “pseudo-densidades”, e sendo as restricbes as “pseudo-densidades”
(limites méveis) variadas a cada passo de lineariza¢io. Uma forma de calculo de limites
moveis € dada a seguir, sem que, no entanto, seja usada neste trabalho (a usada no
trabalho é descrita no topico referente a implementagiio numérica).

Um limite maior ou menor é imposto s variagdes de restrigdes, dependendo da
taxa de crescimento da funcio objetivo com relagiio as varidveis de projeto, em cada
iteragdo do processo, 0 que diminui consideravelmente o tempo computacional em
relagdo & abordagem de limites fixos, se estes forem muito pequenos. Por outre lado, se
apresentarem nimeros exagerados, de modo a se economizar tempo, pode-se ignorar,
numa iteragio, o verdadeiro ponto de 6timo, o que dari origem & oscilagiio do valor da
funcdo objetivo. Assim, se, por exemplo, a fung¢fio ndo linear apresenta valores baixos
para as suas derivadas, pode-se admitir grandes valores para os limites moveis, ja que,
na regido considerada, a relagio ndo linear possui praticamente o mesmo
comportamento de sua equivalente linear. Caso contrario, admitem-se pequenos limites

moveis.
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No caso de multiplos casos de carregamento, o que muda € apenas o célculo do

gradiente, para o qual cada componente sera:

oF
—= —pesol.U,ta—K—U1 ~ peso:lJ,! ?-Ig—Uz +eee— pesoU, 6£UL
p; op; op; op,

Os indices 1, 2 e L referem-se aos casos de carregamento e cada peso deve ser ajustado
para que o carregamento mais importante seja considerado como tal.

Fica assim definido o “subproblema” de otimiza¢do, explicitado pela
minimizacio da funglo linear.

Maiores detalhes sobre a PLS podem ser obtidos na referéncia [5] e sobre PL, nas

referéncias [4], [5] e [6]. Sobre limites moveis, na referéncia [10].

INSTABILIDADE DE TABULEIRO E COMPLEXIDADE ESTRUTURAL

Este tdpico n3o € parte estrutural do programa, mas seu estudo tedrico se faz
muito importante, uma vez que introduz os principais problemas encontrados quando da
utilizagdo do método de OT.

Primeiramente, sera citado o problema da instabilidade de tabuleiro, ou do
tabuleiro de damas, ou do tabuleiro de xadrez, nomes estes encontrados na literatura. A
literatura encontrada em [10] sugere que surge pela diferenca nas ordens de interpolagio
dos campos de deslocamentos e de “pseudo-densidades”. Manifesta-se na forma de
descontinuidades da fungiio o(x,y) (“pseudo-densidade™) - sendo x e y as coordenadas
que definem o dominio da estrutura -, de tal forma que os vizinhos de vértice de um
clemento apresentem valores de “pseudo-densidade” praticamente iguais € os vizinhos
de aresta os apresentem também praticamente iguais, mas com valores extremamente
maiores (ou menores), aproximadamente como num tabuleiro de damas. Dependente da
discretizagiio, a instabilidade de tabuleiro ¢ indesejavel, principalmente por nfo ser, de

fato, uma solugiio oOtima ao problema estrutural, mas uma solugdo oOtima para a
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representagio matematica deste problema, e por representar dificuldades construtivas

exacerbadas. Um exemplo ¢ dado e corresponde Figura 8.

Figura 8 Estrutura obtida para discretizacdo de 300 elementos, engastada do lado
esquerdo e com ¢arregamento aplicado no canto superior direito. Nota-se a presenca de
tabuleiro de damas.

A complexidade estrutural, por sua vez, ocorre devido ao aumento da
discretizagio do dominio, o que, por outro lado, melhora a aproximagdo do campo de
deslocamentos estruturais e, também, a interpretacido dos contormos da estrutura. Um

exemplo deste problema € visto na Figura 9.

Figura 9 Problema da complexidade estrutural.

Varios métodos foram propostos para o controle da instabilidade, como o uso de
superelementos, ou seja, a unido de dois ou mais elementos, o uso de elementos — de
“pseudo-densidades” constantes - de oito ou nove nos e relagles lineares entre as
propriedades do material base e as propriedades efetivas do material estrutural, etc.
Porém, o método mais difundido atualmente, sem que, no entanto, ataque as causas dos

problemas, mas suas conseqiiéncias, ¢ o0 Método do Controle de Gradientes (MCG) [10].
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O MCG pode ser aplicado na forma de filtros ou restrigdes na formulagdo de OT,
¢ consiste em se restringir a variagio espacial da variavel de projeto, de tal forma que se
evitem a complexidade estrutural e o tabuleiro de damas. Apesar de ser o controle de
gradientes mais elegante matematicamente ¢ efetivo, em sua forma de restrigSes, torna o
programa lento. Neste trabalho, entdio, sera usado o método de filtros, que apresenta
resultados bastante interessantes do ponto de vista construtivo, principalmente quando
aliado a um método de pds-processamento de eliminagio de “pseudo-densidades”
intermediarias do contorno estrutural, discutide adiante no texto. O filtro calcula, com
base num certo nimero de elementos vizinhos considerados, o valor de uma quantidade
(referente ao elemento possuidor dos vizinhos) importante para a otimizagdo, como a
“pseudo-densidade” ou o gradiente da fungio objetivo em relacdo & varidvel de projeto,
ou outros, a cada iteragdo. Assim, o valor da nova quantidade, apos a alteracio realizada
pela PL, sera uma média, no caso deste trabalho ponderada pela distincia entre os
elementos e seus volumes.

Pretende-se aplicar o filtro aos limites moveis, o que gera alguns inconvenientes.
Sdo eles: o desempenho do filtro depende do método de determinacio dos limites
moveis e dos valores extremos definidos para estes limites {10]. Deve-se, para contornar
estes problemas, impedir variagBes bruscas dos limites moéveis e impor valores pequenos
o suficiente para eles, de tal forma que o efeito do filtro ndo seja atenuwado. Pode-se
perceber, porém, que estas duas abordagens sdo, de fato, pré-requisitos para uso efetivo
da PLS, o que elimina, pelo menos para o filtro, as limitagdes ou problemas na

aplicac#o.



37

IMPLEMENTACAO NUMERICA

Foram criadas geometrias arbitrarias no software ANSYS 5.4 e gerados arquivos
de dados de entrada para o programa desenvolvido pelo aluno, do tipo ASCIL Um
exemplo deste tipo de arquivo € visto no Anexo A. A construgdo de estruturas ou corpos
quaisquer pode ser auxiliada por texto encontrado na referéncia [2] e no proprio manual
do programa ANSYS, apesar de ser o citado na referéncia [9] pertencente a uma versio
mais antiga do software usado.

Os dados de entrada sdo as conectividades de cada elemento, as coordenadas dos
nos, locais e valores de aplicagio de cargas concentradas, indicagiio de quais nés estiio
impedidos de se moverem (condiges de contorno ou restrigdes), valores do coeficiente
de Poisson e do modulo de elasticidade, o niimero de nés (V) e o niimero de elementos
finitos (M). A conectividade de um elemento define os nos aos quais este elemento esta
conectado; assim, no caso de um elemento de quatro nds, quatro valores, que
representam a numeragio dos nos (previamente estabelecida pelo prépric ANSYS, sem
a interferéncia, neste caso, do usuario), descrevem sua conectividade. Retornando ao
tratamento de dados, estes estdo salvos em arquivos com extensdio “txt”, criados pelo
software ANSYS, como j& mencionado. A partir deles, foram criadas as matrizes fixas
ID, ou matriz de graus de liberdade ndo restritos e enumerados, a matriz edof, formada
com valores representativos das conectividades dos elementos (ja orientada para criago
da matriz /M), a fb, ou vetor de carregamentos nodais, a coord, ou matriz de
coordenadas nodais e a comect, de conectividades nodais; tirou-se também o valor de
ksize, ou namero de nos livres da estrutura, para os quais se calculam deslocamentos.
Com ID e edof, desenvolve-se entdo a matriz LA{. Apenas LM, fb, ksize, coord e conect
serfio usados diretamente no MEF e na solugdo do sistema de equagBes resultante.

A criagio das matrizes LM, coord e, finalmente, conect sio importantes para a
montagem da matriz de rigidez global de MEF, sendo que se calcula uma matriz de
rigidez de um elemento sem ser considerada a existéncia dos outros nos e elementos da

estrutura. Desta forma, necessita-se do conhecimento da correspondéncia entre as
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posigdes das componentes de rigidez na matriz local a as posigdes das componentes de
rigidez na matriz global, correspondéncia esta dada por LM. O leitor interessado em
detathes sobre a montagem da matriz de rigidez global e em mais explicagdes sobre a
matriz LM, pode consultar as referéncias [1], [3] e [7].

Para o caso deste trabalho, a matriz do elemento tera oito linhas e colunas, uma
vez que cada n6 tem dois graus de liberdade, e a global (para a estrutura inteira) podera
apresentar um nimero muito maior (no caso, serd definido, este niimero, pela razio de
aspecto ksize x ksize).

Com a montagem da matriz de rigidez global finalizada, e em posse dos
carregamentos aplicados, pode-se resolver o sistema de equagdes lineares, como ja se
disse, pelo MGBSE, ¢ entdo se obtém os deslocamentos nodais.

Algo a ser ressaltado € o seguinte fato: ndo foi aproveitado o beneficio da
utilizagdo das matrizes esparsas no que diz respeito 4 economia de memoria. A
implementagio direta da matriz global pelo método do armazenamento indexado, do
modo como foi estudado em referéncia recomendada sobre o assunto ([4]), no era
simples o suficiente para que se mostrasse viavel neste trabalho. Em outras palavras, o
desenvolvimento do programa ficaria bem mais complicado. Mas, a mesma referéncia
bibliografica ([4]) apresenta uma fungio em Linguagem C que armazena uma matriz
esparsa pelo armazenamento indexado (da forma requerida pelo algoritmo de MGBSE),
e assim pdde-se, a0 menos, aproveitar a maior eficiéncia computacional no calculo,
introduzida pelo MGBSE, quando comparado, por exemplo, a algoritmos baseados no
método de Gauss-Jordan.

As respostas do MEF podem ser consideradas bem proximas numa comparagio
entre o0 ANSYS e o software desenvolvido, ¢ mostram precisdo suficiente para a OT.
Resultdos sdo mostrados no Anexo C.

No estudo do software de elementos finitos desenvolvido, como primeira etapa
do projeto, notou-se a existéncia, em alguns casos de estrutura, de elementos triangulares
na malha de MEF. Este problema {existente ja que o sofiware criado trabalha apenas
com elementos de quatro lados) é contornado pelo proprio ANSYS, que gera quatro

coordenadas, mesmo para o elemento de trés lados, sendo que duas destas terdo valores
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iguais, ou seja, o mesmo no € tomado duas vezes. O arquivo ASCII ndo € prejudicado, e,
portanto, a rotina de leitura de dados n3o encontra qualquer tipo de problema. Assim, se
uma linha deste arquivo contém os nimeros “1 2 5 67, relativos & conectividade do
elemento, a linha correspondente ao elemento triangular poderé, por exemplo, ser da
forma: “1 2 6 6”. A existéncia do “nd duplo” também ndo prejudica o funcionamento do
software na etapa de anélise por MEF (ndo ha ocorréncia de singularidade), na qual “se
enxerga’ o elemenio como um “quadrilatero de trés lados”, sendo um deles de
comprimento nulo.

Prosseguindo com a implementagdo, salienta-se a obtengfo de alguns valores
necessarios, fornecidos por interface com o usuario. Sdo estes as “pseudo-densidades”
iniciais x0, o volume méximo de material Ffrac, dado como fragio ou porcentagem do
volume total (varia de zero a um), o raio do filtro € o nimero de iteragdes para
eliminagdo de densidades intermediarias no contorno da estrutura final. O programa
recebe o valor de x0 e o repassa para todos os elementos, o que causara uma distribuigiio
inicial de material uniforme. Qutros modos de distribuir-se inicialmente material no
dominio, como a distribui¢do randémica, podem ser usados, sobretudo em casos de teste
de unicidade de solugdo [10].

Nesta etapa do programa, € criado o vetor de carregamentos f, que engloba todos
os casos de carga possivels, tendo o tamanho de ksize*num load cases, onde a (ltima
variavel contém o nimero de casos. E usado na analise estrutural, para a qual ksize
valores sdo tomados a cada calculo de deslocamentos, ou seja, em cada caso de
carregamento.

O loop de otimizagdo € iniciado com o calculo da matriz de rigidez global, para
os valores de “pseudo-densidades” x0 dados pelo usudrio, e prossegue com a
esparsificacio desta matriz. Num loop menor, cada setor de £, de tamanho ksize, € entdo
usado no célculo dos deslocamentos nodais, e o componente do gradiente de cada
elemento de discretizagdo &, posteriormente, contemplado com o valor correspondente,
advindo de formula de calculo ja definida anteriormente. Este loop recomega para o caso

de carga seguinte e os novos valores dos componentes do gradiente, referentes, ¢ claro, a
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um mesmo elemento, sdio somados aos anteriores. No fim do loop, ¢ obtido o gradiente
da fungdio objetivo.

Calculam-se os limites méveis e a rotina de otimizagdo é chamada, recebendo o
gradiente e as restriches ao problema de minimizag3o de trabalho, ¢ devolvendo as
novas densidades. Uma rotina, em linguagem computacional Fortran, foi usada, por
representar economia de fempo. Esta tem o “nome” de dspip.

Os limites moveis sdo calculados a partir de um valor inicial e limitados por
valores superiores e inferiores. A sua variag30 serd pequena, numa iteragio, se signl, ou
sefa, uma variavel definida para cada elemento e representativa do sinal da densidade da
iteragiio corrente menos a da iteragdo anterior, for positiva, sign2, a variadvel também
definida para cada elemento e representativa do sinal da densidade da iteracio anterior
menos a da iteragio anterior 4 anterior, for negativa e sign3, definida da mesma forma,
mas para a iteragdo anterior & anterior € para a anterior a esta, for positiva, ou se sign/
for negativa, sign2 for positiva e sign3 negativa. Em outras palavras, a variagido dos
limites moveis serd pequena se a densidade estiver oscilando ao redor de um valor
médio, o que pode ocorrer, no processo iterativo, quando se estd proximo ao minimo da
fun¢io objetivo. Caso contrario, esta variagio sera maior.

A cada iteragio, sdo testadas as condigdes de loop. Este pode terminar (e, entdo,
serem gerados os arquivos de saida, tratados adiante no texto) caso o nimero maximo de
iteragdes NUMIT seja excedido, ou caso a variagdo relativa da fungdo objetivo seja
menor que J7ERTOL, tipicamente igual a 10”. Uma condigdo positiva para numero
méaximo de iteragBes ultrapassado significa que se pode afirmar que a resposta nido
convergiu, enquanto que uma resposta afirmativa para a questiio da variagdo pequena da
fungdo objetivo, rende a considera¢io da convergéncia. Verificada esta Gltima, o usuério
deve informar se quer continuar com as iteragGes. O caso afirmativo significa que o
filtro podera ser acionado, reativado ou desativado, e que o valor do fator de penalidade
sera modificado (do valor unitario para o valor de interesse trés), para realiza¢io do
método da continuagfo. Desativar o filtro e “rodar” o programa por mais trés iteragdes,

de maneira geral, elimina contornos estruturais ndo definidos (melhora a resolugio
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destes contornos), ou seja, de densidades intermediarias, o que facilita a interpretagio
dos resultados para posterior fabricagdo.

Finalmente, sdo gerados os arquivos de saida de dados para o software MATLAB
e para o ANSYS que compreendem, no primeiro caso, os graficos para volume e fungéo
objetivo por iteracéo ¢ as densidades dos elementos finitos e, no segundo caso, dados ja
formatados para plotagem da estrutura final, com a correspondéncia entre cores ¢
densidades definida previamente. No caso de malhas regulares, as densidades escritas no
arquivo “.m” (de leitura do MATI.AB) podem ser usadas para plotagem da estrutura,
porém, com escalas de cores entre 0 preto e o branco, e com correspondéncia entre cores
e densidades definida intemmamente pelo proprio software MATLAB.

Prosseguindo, o programa encerra com a liberagio de memoria alocada.

A listagem do programa desenvolvido ¢ relatada no Anexo B, com partes

julgadas menos importantes suprimidas.
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RESULTADOS

A ndo ser em casos especiais, os quais serfio previamente comunicados, a
discretizagio serd feita em elementos finitos regulares e isoparamétricos de quatro nos,
numa razao de aspecto 3x1 (ou seja, comprimento divido por largura resulta em trés). A
visnalizagiio ¢ feita no software MATLAB. Cada elemento tem uma unidade de lado,
sendo a unidade de medida, uma qualquer. Os elementos t&m sempre a unidade como
comprimentos laterais para facilitar o uso do filtro, que pode ser pensado em termos de

mimero de elemenios. Assim, o raio do filtro sera:

raio = cam- \/5

Sendo cam o nimero de camadas de vizinhos. Para que o leitor se situe melhor, a
primeira camada possui oito vizinhos, 0 que pode ser visto na Figura 10. Obviamente,
um mimero diferente para o raio pode ser adotado (por exemplo, o valor 1.2, para o qual
seriam considerados apenas os vizinhos de aresta do elemento em questiio, ou, em outras
palavras, quatro vizinhos somente), ou seja, este ndo precisa ser discretizado da forma
como foi aqui posto, através da equagfo vista acima. Mas, esta forma de utilizagdo do
filtro ja ¢ suficiente para a solugio dos problemas existentes ¢ facilita ¢ trabalho do

USuario.
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abrangéncia

Figura 10 Efeito do filtro sobre densidade do elemento central e defini¢do de raio {do
filtro).

As estruturas a serem otimizadas, ou os dominios estruturais iniciais podem ser
vistos nas figuras: Figura 11, Figura 12 e Figura 13. Cada figura ira corresponder a um
chamado Caso. Assim, a estrutura engastada com carregamento inferior direito,

compreende o Caso 1.

AR

Figura 11 Situacdo referente ao Caso 1. A discretizacado foi feita com dois mil e
setecentos elementos finitos.
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Figura 12 Situac&o referente ao Caso 2. A discretizagéo foi feita com dois mil e
quatrocentos elementos finitos.

RTI

S

Figura 13 Situacédo referente ao Caso 3. A discretizacdo foi feita com dois mil e
quatrocentos elementos finitos.

Para os Casos 1, 2 e 3, com densidades iniciais uniformes no dominio e iguais a
0.5, volume restringido em sessenta por cento do dominio total considerado, fator de
penalidade igual a trés e com um raio abrangendo uma camada, obteve-se,
respectivamente (em relagdo 4 numeragio dos casos dada no inicio do paragrafo), as
figuras: Figura 14, Figura 15 e Figura 16. Foram também postos aqui os gréficos do
volume ¢ da funcio objetivo (os graficos para a fungdo objetivo sio também

denominados de curvas de convergéncia), ambas as variaveis tomadas por iteragfo.
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Demais curvas de convergéncia e de volume, para outros tipos de problema de

otimizagdo, serdo omitidas.

Figura 14 Estrutura obtida para o Caso 1. A fungdo objetivo tem o valor final 11.334118.

Figura 1§ Estrutura obtida para o Caso 2. A fungéo objetivo tem o valor final 2.799411.




Figura 16 Estrutura obtida para o Caso 3. A funcéo objetivo tem o valor final 7.650370
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Figura 17 Curvas obtidas para o Caso 1.
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Figura 18 Curvas obtidas para o Caso 2.
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Figura 19 Curvas obtidas para o Caso 3.

Figura 20 Caso 2 rebatido por simetria. Esta seria a estrutura real obtida.

Figura 21 Caso 3 rebatido por simetria. Esta seria a estrutura real obtida.

Pode-se observar, pelas figuras, a potencialidade do método. Nota-se,
claramente, que, no local de aplicagio das cargas (incluindo os apoios ou engastes
ativos, ou seja, aqueles que “trabalham” para manter o equilibrio, sendo entdo, as
reagdes, diferentes de zero), como era de se supor, ha a existéncia de material. Porém,

nota-se também problemas de resolugio de contornos ¢ mesmo algumas estruturas
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extremamente delgadas que, apesar de reforcarem o conjunto, imprimem grandes
dificuldades de fabrica¢do, devendo ser retiradas, com prejuizo da performance da peca.
Para solucionar os problemas, propdem-se o método da continuacgio aliado a um
raio diferente para o filtro ¢ o prolongamento, por mais algumas iteracdes, para
eliminagdo das densidades intermediarias nos contornos. S&o obtidas as figuras: Figura
22, Figura 23 e Figura 24, para o caso do raio igual a 1.5 (uma camada), sessenta por
cento de dominio ocupado, uso de método da continuagio e trés iteragdes para melhorar
a resolugéo. Pelos valores finais obtidos para a fungo objetivo, pode-se notar que as
estruturas geradas pelo método da continua¢io sfo mesmo mais rigidas, por estarem
mais proximas do 6timo global. No Caso 1, porém, percebe-se que os minimos obtidos
foram praticamente iguais, o que pode mesmo ser identificado pela comparagdo entre
figuras, ou pelos valores da funcio objetivo, a saber, 11.334116 para o Caso 1 sem a
continuagdo e 11.248780 para o caso com continuagio. Nesta situagio, o que fez a
diferenca final foram as trés iteragBes, que contribuem para deixar o resultado mais

proximo de uma resposta com tabuleiro de damas, mais rigida.

Figura 22 Estrutura obtida para o Caso 1 e o método da continuacio ativo. A fungdo
objetivo tem o valor final 10.934071.
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Figura 23 Estrutura obtida para o Caso 2 e 0 método da continuagio ativo. A fungdo
objetivo tem o valor final 2.767086 (para apenas uma metade).

Figura 24 Resposta para o Caso 3 e 0 método da continuagdo ativo. A fungido objetivo
tem o valor final 7.399160 (para apenas uma metade).

No Caso 1, mas para um volume de quarenta por cento do volume total
considerado, € obtida a Figura 25. Esta mostra um resultado bem mais interessante do
ponto de vista construtivo, 0 que sugere que se estude a aplicagio deste valor de
restricio (quarenta por cento do volume total). Com isto em mente, foram obtidas as
figuras: Figura 26 e Figura 27, para os Casos 2 e 3, respectivamente. No caso da Figura
26, um maior valor de fungdo objetivo foi obtido devido a um maior valor de
carregamento aplicado. Optou-se por aumentar este carregamento pois o original gerava

valores de flexibilidade muito préximos de zero, o que ocasionou problemas numéricos.
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Figura 25 Estrutura obtida para o Caso 1, porém com restricdo de quarenta por cento do
volume, & 0 método da continuagio ativo. A funcéo objetivo tem o valor final 16.652338.

Figura 26 Estrutura obtida para o Caso 2, porém com restricdo de quarenta por cento do
volume, e 0 método da continuagdo ativo. A funcéo objetivo tem o valor final 398.857108
(para apenas uma metade}.

Figura 27 Estrutura obtida para o Caso 3, porém com restri¢io de quarenta por cento do
volume, e o0 método da continuagao ativo. A fungéo objetivo tem o valor final 10.823697
(para apenas uma metade).

No caso de raios maiores, sdo plotadas as figuras: Figura 28, Figura 29, Figura
30 e Figura 31, as quais ndo mostraram bons resuitados. O filtro for¢a o método de
otimizagdo a estruturas com gradientes de material, no dominio, muito pouco
acentuados, o que da origem a estas “anomalias”, as quais sio, no que diz respeito &

rigidez, estruturas de comportamento inferior.
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Figura 28 Estrutura obtida para o Caso 1, o raio abrangendo duas camadas de elementos
e 0 método da continuacéio ativo. A fungdo objetivo tem o valor final $3.486223.

Figura 29 Estrutura obtida para o Caso 1, o raio abrangendo duas camadas de elementos,
guarenta por cento do dominio permitido € 0 método da continuacgao ativo. A fungio
objetivo tem o valor final 29.668639.

Figura 30 Estrutura obtida para o Caso 1, o raio abrangendo trés camadas de elementos e
0 método da continuacdo ativo. A fungio objetivo tem o valor finai 13.695132.

Figura 31 Estrutura obtida para o Caso 1, o raio abrangendo trés camadas de elementos e
o método da continuagdo ativo. A fungéo objetivo tem o valor final 14.163698.
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CONCLUSAO

A proxima etapa do trabalho, no caso em que existisse uma maior preocupagio
com a fabricacio da peca, seria a chamada interpretagio do resultado, que nada mais é
que a geragdo de um modelo, ou desenho, equivalente & estrutura obtida. Uma posterior
analise por elementos finitos seria realizada, para verificagdo e validagio, ¢ entdo a etapa
de CAM, ou fabricagfio assistida por computador, & partir do resultado validado, seria
levada a cabo.

Neste trabalho, com maior valor académico que industrial, no entanto, optou-se
pela aplicagio e estudo de métodos, como o da continuagdo, para melhor explicitar as
nuangas da OT, preocupacdo esta inexistente fora do ambiente da graduagio, onde se
querem apenas resultados. Assim, mesmo podendo as solugdes encontradas serem
testadas pelo MEF, basta que sejam comparadas, qualitativamente, & resultados vistos na
literatura.

Apesar da preocupagio académica, € inegavel o qudo interessante pode ser um
meétodo deste para a indlstria. Para malhas relativamente “pesadas”, ou seja, de
aproximadamente trés mil elementos, num computador Genuinelntel x86 Family 6
Model 8 Stepping 10, com 512MB RAM, atingiu-se, para a obtengio da resposta para
um problema, dados o dominjo, restricgdo e as demais entradas, o tempo de,
aproximadamente, dez minutos.

Como continuag¢do do trabalho, propde-se, em primeiro lugar, o desenvolvimento
de uma rotina de filtragem, a qual trabalhe com a nog¢do de camadas, mesmo no caso de
malhas irregulares, problema este de solugdo nfo trivial e que admite diversas variagdes
de implementagio (mas que ndio representard um grande desafio, no entanto). Além
disto, pode-se propor o uso de uma interpolagio linear, do mesmo modo que foi feito
para a descrigdo do campo de deslocamentos no MEF, mas no caso das densidades
estruturais, o que, como € sabido da literatura, pode eliminar o problema de tabuleiro de

damas, sem que, no entanto, seja utilizado o filtro, o qual torna o programa lento.
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Apesar de relativamente rapido, o programa ainda pode, em alguns pontos, ser
melhorado ¢ tomado ainda mais veloz. Isto ¢ possivel de ser feito em pontos como na
montagem da matriz de rigidez global, 4 partir do conhecimento do fato de ser simétrica
em relagdo & diagonal principal. Um outro ponto que aumenta o tempo ¢ a alocagdo de
memoria, que deve ser reduzida a um minimo, mesmo que, para tanto, o software se
utilize de bastante meméria, o que é feito colocando-se toda a alocagio fora do loop de
otimizagdo.

Desde que tenha nog¢des basicas de construgdo de modelos em CAD, sobre uso
do software ANSYS e da OT, qualquer um pode utilizar esta nova ferramenta
desenvolvida, tanto para projeto quanto para o aprofundamento nas técnicas de
otimizagdo topologica, campo da engenharia que se encontra em franca expansio, ndo s6
na area de estruturas mecanicas, mas também na 4rea médica, como na obtengdo de
imagens do corpo humano através de um tomografo por impedéancia elétrica, e na area
de micromecanismos, para obtengio de microdispositivos otimos [8], como

manipuladores de células, micropingas, microvalvulas, sensores, etc.
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ANEXO A

Exemplo de Arquivo de Entrada (gerado pelo ANSYSED 5.5; o programa listado no
Anexo B deve ser ligeiramente modificado para lé-lo, uma vez que foi desenvolvido, o

programa, para leitura de arquivos do ANSYS 54). Os dados ndo lidos foram

suprimidos.

()

NUMOFF,NODE, 23
NUMOFF.ELEM, 14

()

(3i8,616.9)
1 0 0 1.00000000
2 0 0 2.00000000
3 0 0 125000000
4 0 0 1.50000000
5 0 0 175000000
6 0 0 800000000
7 0 0 3.50000000
8 0 0 500000000
9 0 0 650000000
10 0 0 10.0000000
110 0 9.00000000
12 0 0 4.00000000
13 0 0 8.50000000
14 0 0 7.00000000
15 0 0 550000000
16 0 0 2.50000000
17 0 0 231866004
18 0 0 407969155
19 0 0 253708790
200 0 0 2.93530951
21 0 0 585529995
22 0 0 724862177
23 0 0 821077018

N,R5.3LOC, -1,

EBLOCK, 19,SOLID

(19i7)
11 0 0
I “d 1 0 0
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ANEXO B

Listagem do Programa (as fungdes dsprsin.c, linbeg.c, nratil.c, simplx.c ¢ o “header”
nrutiLh podem ser encontrados na referéncia [4]; as fun¢des mais simples foram
retiradas deste anexo)

#include <stdio.h>
#include <malloc.h>
#include <stdlib.h>
#include <math.h>
#include <string h>
#include "nrutil.h"
#include "funcs.h"

#define arquivol "2400_e rx_id_rxy_f-50_di_f-50 mli.txt" /*input*/

#define argANSYS "2400 e rx_id rxy £50_di f-50 mli saida.txt" / *output*/
#define argMATLAB "2400_e_rx_id_rxy £50 di £~50 mli.m"

#define TAM 150

#define NMAX (300000*TAM)

extern void dusrmt_();
extern void dsplp ();

unsigned long *ija;
double *sa;

void main () {

//declaragao de variaveis
int *flagl, *pos_node, *pos_node_ksize, filter en, opcao, contador, Iprc, flag2;
int i, j, k, p, M, N, count, *spcl, *LM, *ID, iter;

int al, a2, a3, d2, £2, compara, *conect, q[8]. *izrov, *iposv, flag, it;
int b1, b2, b3, b4, b5, b6, b7, b8, b9, b10, b11, dofl, dof2, dof3, dofd, *edof:
int mrelas, nvars, *ind, *ibasis, *iwork;

int lw, liw, info, lamat, {bm;

double *fcases, *f, *filt_xupper, *filt_xlower, resultado_final, *resultado, penal;
double *Kel, **K, ni, E, *fb, *ye, *xe, *signl, *sign2, *sign3, *ml;

double *ub, *bf, *ubif, err, passo, *loada3;
double *xnew, *xold, *xmin, *xmax, *xupper, *xlower, *volume, *difer;
double ube[8], tempmat{8], dcompl, objetivold;
double *compliancia, *objetivo, *gradF, xmin0, xmax0;
double valorl, valor2, *funcbj, *volitera,
double *bl, *bu, *prgopt, *dattev, *primal, *duals, *work, *costs;
unsigned long *count_forces, num_load cases;
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unsigned long count_cases, count_cases_aux, fatl, fat2, fat3, *store;
unsigned long ii, jj, kk, ksize;
float *percent, *g, Vfrac, x0, radius, gg;
float *a, **A;
float a4, a5, {5, *coord;
char *direction, *direction_ksize;
char *temp, d1[5], d3[5], e, €2, e3;
char f1[5], £3[5], f4[5], £6, {7, 18, c1[14], c2[14], c3[15], c4[5], ¢5, c6[5], <7[5];
char g1[15], g2[10], g3[5], g4[5};
FILE *arquivo;
FILE *arql, *arq3;
I T T T T T
WL TNECIO DA LEXTURA DE DADOQS///HITHHTTTHITITHTITITTT
T T TR R
/* Abertura do arquivo txt */
arql=fopen(arquivol,"r");
temp = (char *)malloc(TAM*sizeof{char ));
T T T I I
/* VALOR DE "N" (NUMERO DE NOS) */
compara = -1;
while ( compara > 0 || compara < 0) {
fgets(temp, TAM, arqgl);
compara = strncmp( temp, "NUMOFF,NODE,", 12);
}
sscanf{ temp, "%s %d", c1, &N ); /*Ie a string do temp e atribui a N como inteiro*/
T L
/* VALOR DE "M" (NUMERQO DE ELEMENTOS) */
fgets(temp, TAM, arql);
sscanf( temp, "%s %d", ¢2, &M ); /*le a string do temp e atribui a M como inteiro*/
I T T T T T T
/* VETOR "COORD" (COORDENADAS DOS NOS) */
compara = -1;
while ( compara > 0 || compara < 0) {
fgets(temp, TAM, arql);
compara = strncmp( temp, "(318,6e¢16.9)", 12);
H
fgets(temp, TAM, argl);
coord = (float *)malloc(2*N*sizeof{ float));
count = 1;
k=0;
while (count<=N){
sscanf{( temp, "%d %d %d %f %f", &al, &a2, &a3, &ad, &as );
coord{k] = a4,
coord[N+kj] = a5;
count = count+1;
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k++;
fgets(temp, TAM, arql);
)
i T
/* VETOR "CONECT" (GRAUS DE LIBERDADE DOS NOS) */
conect = (int *)malloc(4*M*sizeof{int ));
fgets(temp, TAM, arql);
fgets(temp, TAM, arql);
fgets(temp, TAM, arql);
count=1;
k=0;
while (count<=M){
fgets(temp, TAM, argl);
sscanf( temp, "%d %d %d Y%d %d %d %ed %ed %d %d Y%d %d Y%d Yed %d",
&bl, &b2, &b3, &b4, &b35, &b6, &b7, &b, &b9, &b10, &bl 1, &dofl,
&dof2,
&dof3, &dof4 );//bl1 deve ser tirado ou adicionado, conforme a versio
do ANSYS
conect{k*4] = dofl;
conect[k*4+1] = dof2;
conect[k*4+2] = dof3;
conect[k*4+3] = dof4;
count=count+1;
k++;

i
T T T
/* MODULO DE ELASTICIDADE "E" */
compara = -1;
while { compara > 0 || compara < 0) {

fgets(temp, TAM, arql);

compara = strnemp( temp, "MPDATA,R5.0, 1 EX", 17);
}
sscanf( temp, "%s %s Yac %os Yos %lf", ¢3, ¢4, &c5, ¢6, ¢7, &E );
e
/* COEFICIENTE DE POISSON "NI" */
compara = -1;
while ( compara > 0 || compara < 0) {

fgets(temp, TAM, arql),

compara = strnemp{ temp, "MPDATA R5.0, 1, NUXY,”, 20);
}
sscanf( temp, "%s %s Yos %s %lf", g1, g2, g3, g4, &ni );
printf{"%f", ni);
T T
/* MATRIZ DE RESTRICOES "SPC1" (GRAUS DE LIBERDADE FIXOS) */
spcl = (int *)malloc(2*N*sizeof{int ));



for (k=0; k<2*N; k++) spclk]=1;

compara = -1;

while { compara > 0 || compara < 0) {
fgets(temp, TAM, arql),
compara = strncmp( temp, "D,", 2);

}

while ( compara == 0) {
sscanf (temp, "%2s5%d%3s", d1, &d2, d3);
sscanf(d3, "%c %c %c", &el, &e2, &e3);
if (3 = "X'H{

spcl{2*d2-2]=0;

}

if (e3 =="Y"){
spel[2*d2-1]=0;
}

fgets(temp, TAM, arql);
compara = strnemp( temp, "D,”, 2);
}
T T T LT L T T
/* MATRIZ DE FORCAS "LOADA3" */
loada3 = (double *)malloc(2*N*sizeof(double));
pos_node = (int *)malloc(2*N*sizeof{int));
direction = (char *)malloc{2*N*sizeof{char));
for (k=0; k<2*N; k++) {
loada3[k}=0;
pos _nodefk] = 0;
}
compara = strncmp( temp, "F.,", 2);
while ( compara==10) {
sscanf( temp, "%25%d%3s%s%f", {1, &12, 3, f4, &5 );
sscanf(f3, "Yoc %c %oc", &16, &17, &18),
if (f8 == 'X"){
loada3[2*£2-2]=f5,
pos_node[2*f2-2] = {2;
direction[2*f2-2] = 'X";

t

if (8 =="Y"){
loada3[2*12-1]~f5;
pos_node[2*{2-1] = {2;
direction[2*2-1] ='Y";

}

fgets(temp, TAM, arql);
compara = strncmp( temp, "F,", 2);

}
fclose( arql );//final da leitura de dados
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T T T
HHITHITTTTTTTTTTTMAAT RIZES FIXAS/HITHTTTHTTIITT
T
/* VETOR "ID" (MATRIZ DE DOF's NAO RESTRITOS ENUMERADOS) */
ID = (int *)malloc(2*N*sizeof{(int));
count=1;
for (i=0; i<2*N; i+3) {

if (spcl[i]==0) {

ID[i]=0;

}

else {
ID[i]=count;
count++;

}

3
THITHTTTH I T T T T T T
/* TAMANHO "SIZEM" DA MATRIZ REDUZIDA */
ksize = count-1;
L i
/* VETOR DE CARGAS "FB" */
b = (double *)malloc(ksize*sizeof(double));
pos_node_ksize = (int *)malloc(2*N*sizeof{int));
direction_ksize = (char *)malloc(2*N*sizeof{char));
for (ii=0; ii<ksize; ii++) {
fb[ii]=0;
pos node ksize[ii] = 0;
'
count=0;
count_cases = 0;
for (j=0; j<2*N; j++) {
if (ID[j]!=0) {
fb[count]=loada3[j];
pos_node_ksize[count] = pos node[j];
direction_ksize[count] = direction{j];
if (fb[count]!=0) {
count_casest++,
H

count++;
} }
i T
/* MATRIZ "EDOF" (GRAUS DE LIBERDADE) */
edof = (int *)malloc(8*M*sizeof{(int));
=0;
for (i=0; 1<4*M; i++) {



edof[j] = 2*conect[i}-1;
edof[j+1] = 2*conect[i];
=it2;
}
T T T T T T
/* VETOR "LM" */
LM = (int *)malloc(8*M*sizeof{int}),
for (i=0; i<8*M; i++) LM[1]=0;/*para zerar o vetor inicial*/
for (i=0; 1<M; i++) {
for =1; j<=4; j++) {
for (k=1; k<=2; k++) {
p=2%G-1)+k;
LM[p-1+(8*)]=ID{(k-1)+(edof[(j-1)*2+(8*)]-1)};

}

free(temp);

free(spcl);

free(loada3);

free(ID);

free(edof);

T T T T

I ALOCAGAO DE MEMORIA/V/HIHHIHTHITHIIIIIITIHT
T T

// Valores necessarios
penal = 1;
printf{"Digite o valor das densidades iniciais xnew: ");
scanf{"%f",&x0);
printf{"\nDigite o valor da quantidade de material maxima permitida: "),
scanf("%f",& Vfrac);
printf("\nDeseja utilizar o filtro?(s = 1, n= 0): ");
scanf{"%d" &filter_en);
if (filter_en){
printf{"\n Digite o valor do raio para o filtro: ");
scanf{"%f",&radius);

}

printf{"\n  Digite o numero de iteragoes para melhorar a resolucao dos contornos: "),

scanf{"%d",&lprc);
printf{"\n\n");

xmin0 = TOL;

xmax0 = ITOL;

/! matriz das densidades
for (i=0; i<M; i++) {
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xmin|i]=xmin0;
xmax[1}=xmax0;

//chute inicial para a rotina linbcg

for (ii=0; ii<ksize; ii++){
ublii]=0.0;

}

/fvetor das densidades iniciais

for (i=0; i<M; i++) {
xnew[1]=x0;

}

/finicializagdo das variaveis auxiliares para calculo dos limites
/fmbveis
for (i=0; i<M i++) {

signlfi] = 1;

sign2[i] = 1;
sign3[i]=1;
ml[i] = 0.15;

i
i

//ICRIACAOQ DO VETOR f COM TODOS OS CASOS DE CARGA//IIIN
i
/*calculo do mimero de casos de carga num_load_cases para alocagéo
de memoéria e obten¢io de condicdo de loop*/
num_load_cases = 0;
count_cases_aux = count_cases;
while (count_cases_aux > 0) {
fat1 = fatorial(count_cases), /fatorial: calcula o fatorial do argumento;
fat2 = fatorial(count_cases aux);
fat3 = fatorial(count_cases - count_cases_aux};
num_load cases =num load cases + fatl/(fat2*fat3);
count_cases_aux--;
}
/fvetor de forgas f (contém todos os "num_load cases" casos)
f=(double *)malloc(ksize*num load cases*sizeof{double ));
percent = (float *)malloc(num_load cases*sizeof{float ));
num_load_cases = 0;
count_cases_aux = count_cases - 1;
for(kk = 0; kk < count_cases; kk++) {
for(ii = 0; i < count_cases; ii++) {
store[ii] = 0,
}

fatl = fatorial(count cases);
fat2 = fatorial(count_cases_aux + 1),
fat3 = fatorial(count_cases - count_cases_aux - 1);
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for (i1 = 0; 1i < fat1/{fat2*fat3); ii++) {
for(jj = 0; jj < ksize; j++) {
fcases{jj] = 0;

}

count_forces[0] = 0;

flag1[0] = 0;

printf{"Caso %d de cargas: ", num_load_cases);
vector_forces(direction_ksize, pos node ksize, flagl, store,

count_cases aux + 1, count_forces, ksize, fcases, fb, count cases aux);

for (jj=0; jj < ksize; jj++){
fljj + num_load_cases * ksize] = fcases|ji];
}

printf("\n\nDigite o peso deste caso para que a estrutura seja otimizada:

scanf{("%f", g);

printf{"\n");
percent/num_load cases] = g[0];
num_load_cases++;

count_cases_aux--,

}
HIHIHTHIHH1HINICIO DO LOOP DE OTIMIZAGAQ/// I
for (i=0; i<(MAXITER+1); i++) {

difer[i]=1;

}

for (I=0; i<MAXITER,; i++) {
volume[i]=0;

}

for (i=0; i<MAXITER, i++) {
complianciafi}=0;
}
/I inicio do loop
it=0;
opcao=1;
flag2 = 0;
contador = 0;
while (opcao) {
while (opcao) {
it =1t+1;
/fatribui a xold o valor de xnew

I éalculo do volume total
for (i=0; i<M; i++) {

volumefit-1] = volume[it-1]+xold[i];
3
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/{zera a matriz "K"
(.-)
for(k=0; k<M; k++) {
for(i=0; 1< 4; iH++){
xe[i] = coord[conect[itk*4]-1];
ye[i] = coord[conect[i+k*4]+N-1];

}

//Ke: modifica Kel, o qual recebe a matriz de rigidez do elemento;
Ke(xe,ye,E,ni Kel);
i i
HIHINHIIMATRIZ DE RIGIDEZ GLOBAL K/////11iH
I e e i
for(j=0;j <8 j++H

qj] = LM[j+k*8];
i

for (i=1; i<=8; i++) {
if (q[i-1}'=0) {
for (=1, j<=8; j++) {
if (q[j-1]'=0) {
Klq[i-111[ql-11] = Kiqli-1]][q[j-11]
+ pow(xold[k],penal)*Kel[(i-1)*8-+(j-1)];

} !
HiNHCALCULO DO DESLOCAMENTOS UB/////1/1111111/
i i
//montagem da matriz esparsa
dsprsin(K, ksize, THRESH, NMAX sa, ija);
//resolugao do sistema K.UB = fb
for (i=0; i<M; i++) {
gradF[i]=0;
}

for(kk = 0; kk <num_load_cases; kk++) {
if(percent[kk] 1= 0) {
for (it=1; ii<=ksize; ii++){
bifii]=flii - 1 + kk * ksize];
ubiffii}=ub[i - 1];

)
linbeg(ksize, bf, ubif, ITOL, TOL, ITMAX, &iter, &err);

for (jj=0; jj<ksize; jj++){
ubfjj] = ubiffij+1];
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}
for (1i=0; ii<ksize; ii-++) {
compliancia[it-1] = complianciafit-1] + ub[ii]*{Jii +
kk * ksize];
}

i
/{1IIIGRADIENTE DA FUNCAO OBIETIVO///iiHHITHIN
i i i

for (i=0; i<M; i++) {
for (k=0; k<8; k++) {
ube[k]=0;
H

/lextrai de "ub" o vetor de deslocamento de cada
elemento
for (j=0; j<8; j++) {
if (LM[i*8+j]1=0) {
ube[j]=ub[LM[i*8+j]-1];
}
}

/lcalcula a derivada da compliancia de cada
elemento
for (k=0; k<8; k++) {
tempmat[k]=0;
}

for(k = 0; k < 4; k++){
xe[k] = coord[conect[k-+1*4]-1];
yefk] = coord[conect[k+1*4]+N-1];
}
Ke(xe,ye,E,ni,Kel);
for =0; j<8; j++) {
for (k=0; k<8; k++) {
tempmat[jl=tempmat|[j} +
ubefk]*Kei{(G*8)+k];
}
}
dcompl=0;
for (=0, <8, j++) {

dcomp! = dcompl + -
penal*pow(xold[i],(penal-1))*ube[j*tempmat[j];

}
gradF[i] = gradF[i] + percent[kk] * dcompl;



}
/i
for (i=1; i<=M; i++) {
costs[i] = gradF[i-1];
}

objetivo[it-1] = compliancia[it-1];

T T T
T L imites Moveis// TN
T e

()

T
I Filtragem dos Limites Maoveis////11/1111111111]
T T T T T T

if (filter_en) {
filter(M, N, coord, conect, xupper, filt_xupper, radius);
fitter(M, N, coord, conect, xlower, filt xlower, radius);

3

U T
HIHTTTITIPROGRAMAGCAO LINEAR (PL)//HHIIHIINIITT
i i

//Preparagio dos dados para DSPLP (Programagio Linear)
/* Rotina "DSPLP" que roda o LP em fortran

Recebe:

nvars -> numero de variaveis de projeto

mrelas -> numero de restricoes

flag -> minimizacao (0) ou maximizacao (1)
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bu e bl -> limites moveis superior e inferior (arrays com nvars posicoes)

costs -> derivadas da funcao objetivo

Retorna;

info -> flag de sucesso do LP

xnew -> nova distribuicao das variaveis de projeto
*/

/fmameros de variaveis (nvars) e nimero de restrigdes (mrelas)
nvars = M;

mrelas = 1;

//Dimensiona arrays que serao utilizados na dsplp
bl=dvector(1,mrelas+nvars),
bu=dvector(1,mrelas+nvars),

prgopt=dvector(1,4),
dattrv=dvector(1,(2*mrelas*nvars)+1+nvars);



ind=ivector(1,mrelas+nvars);
primal=dvector{1,mrelas+nvars);
duals=dvector(1,mrelas+nvars),
tbasis=ivector(1,mrelas+nvars);
//Copia as informacoes de restricao lateral
if(filter_en) {
for (1=1;i<=nvars;i++) {
buli]=filt_xupperfi-1];
bl[i]=filt xlower[i-1};
//Significa que a variavel e maior ou igual ao limite
/finferior e menor ou igual ao limite superior
ind[i]=3;

¥

else {
for (i=1;i<=nvars;i++) {
bufi]=xupper[i-1];
bl[i]=xlower[i-1];
/fSignifica que a variavel e maior ou igual ao limite
{/inferior € menor ou igual ao limite superior
ind[i]=3;
}
}
//Copia o vetor com os valores das restricoes
bu[nvars+mrelas] = Virac*M;
ind[nvars+mrelas] = 2;
//Copia dos valores de A para o vetor Ax<=b
count=1,
for (i=1;i<=nvars;i++) {
dattrv]count]=-i;
count++;
for (k=1;k<=mrelas;k++) {
dattrv{count]=k;

count++;
dattrv[count}=grad V[k][i];
countt++;
}
}
//Fim de A

dattrvfcount]=0;
//Minimizacio sem opgles
prgoptf1}=1,

prgopt[2]=1,

//Dados auxiliares para dsplp
lamat=4*nvars+7;
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Ibm=8*mrelas;
lw=4*nvars+8*mrelas+lamat+lbm;
liw=nvars+11*mrelas+lamat+2*lbm;
work=dvector(1,lw);
iwork=ivector(1,1iw);
//Chama o otimizador
dsplp ( dusrmt_,&mrelas, &nvars, &costs[1], &prgopt[1], &dattrv[1],
&Bbl[1], &bu[1], &ind[1], &info, &primal[1], &duals{1],
&ibasis[1], &work[1], &lw, &iwork[1], &liw);
//Resultado da otimizagio (info>0 -> OK)
printf{"%d\n", info);
//Copia os valores de saida do otimizador
for (i=1;i<=nvars;i++) {
xnew[i-1]=primal[i];
¥
//Liberagdo dos arrays locais
free dvector(bl,1,mrelas+nvars);
free_dvector(bu,1,mrelas+nvars);
free_dvector(prgopt,1,4);
free dvector(dattrv,1,(2*mrelas*nvars)+1+nvars);
free_ivector(ind, 1, mrelas+nvars);
free_dvector(primal, 1, mrelas+nvars);
free dvector(duals, 1, mrelas+nvars);
free_ivector(ibasis, 1, mrelas+nvars);
free_dvector(work,1,lw);
free_ivector(iwork, 1,liw);
T T T T
for (i=0; i<M; i++) {
sign3[i] = sign2[i};
sign2{i] = sign1[i];
signl[i] = xnew{i] - xold[i],

}
T T T T T T
//Verificacao da condigoes de loop
if(it==1){
objetivold = objetivolit-1];

}

else {
difer{it] = fabs((objetivo[it-1]-objetivold)/objetivold);
objetivold = objetivo[it-1];

}

printf{"iteracao %d\t obj: %f\t vol: %f\t difer: %f\n", it, objetivold,
volumelit-1], difer[it]),

if(flag2) {

contador++t;
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printf{"\n\n%d\n\n",contador);
if{contador==lprc) {

opcao =0;
break;
H
h
else {
if (it=NUMIT) {
break;
}
else if (difer[it] < ITERTOL) {
printf{"\nDeseja continuar a busca?(s = 1, n= 0). ");
scanf{"%d", &opcao);
penal = 3;
if{lopcao) {
printf{"\nDeseja ativar o filtro?(s = 1, n=0): "),
scanf{"%d",&filter en),
if (filter_en){
printf{"\n  Digite o valor do raio para o
filtro; ");
scanf{"%of", &radius),
i
}
}
}
}
if (it==NUMIT) {
break;
}
if{contador==lprc) {
break;
}

printf{("\nDeseja continuar para melhorar a resolugao dos contornos?(s = 1, n = 0): ");
scanf{"%d",&flag2);

if{flag2) {
opcao =1;
filter en=0;
}

}//final do loop
/IGERACAQ DOS VETORES PARA PLOTAGEM DE GRAFICOS/////11iiHH1

T T T T T T

()
T IICRIACAO DO ARQUIVO MATLAB///HHHHTHHTHHTHIHITHTNT
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T ALTBERACAO DE MEMORIA//IHTIHIHIHIHIIITIIT
U,

(..)

}

#include <stdio.h>

void vector_forces(char *direction_ksize, int *pos_node ksize, int *flag, unsigned long
*store, unsigned long aux, unsigned long *count, unsigned long ksize, double *fcases, double
*tb, unsigned long count_cases aux) {

unsigned long i;
for(i = store[count_cases_aux]; i < (ksize - count_cases_aux); i++) {

if{fb[i] !=0) {
fcases[i] = fb[i];
count[0]++;
if{store[count_cases aux - 1] <= store[count cases aux] &&
count_cases_aux !=0) {
store[count cases aux - 1]=1i-+1;
}

store[count_cases_aux] =1,
if (count cases aux [=0) {
vector_forces(direction_ksize, pos node ksize, flag, store, aux,
count, ksize, fcases, fb, count cases aux - 1);
}
else {
storefcount cases_aux]++;
}
3

if{count[0] == aux) {
printf{"\n\nForca F%c de %f ", direction ksize[i], fcases[i]);
printi{"aplicada ao no %d. ", pos_node_ksize[i]),

break;
H
else if{flag[0] == 1) {

flag[0] = O,

fcases[i] = 0;

count[0]--;

store[count_cases_aux - 1] = store[count_cases aux];
}
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if(count[0] = aux) {
flag{0] = 1;
}

}
// header funcs.h

void nrerror(char error_text[]);

void dspr(double *a, unsigned long n, double thresh, unsigned long nmax, double saf],
unsigned long ijaf]);

void linbcg(unsigned long n, double b[], double x[], int itol, double tol, int itmax, int *iter,
double *err),

void simplx (float **a, int m, int n, int m1, int m2, int m3, int *icase, int izrov]], int iposv[]);
void Ke(double *xe, double *ye, double E, double v, double *Kel);

unsigned long fatorial(unsigned long num);

void vector_forces(char *direction_ksize, int *pos_node ksize, int *flag, unsigned long
*store, unsigned long aux, unsigned long *count, unsigned long ksize, double *fcases, double
*fb, unsigned long count_cases_aux);

void filter(int M, int N, float *coord, int *conect, double *b, double *filt b, float radius);
double dist(float *xei, float *yei, float *xej, float *yej);

double size elem(float *xe, float *ve);

#define ITERTOL 1.0e-3
#define TTMAX 200
#define MAXITER 200
#define THRESH 1.0e-12
#define TOL 1.0e-3
#define ITOL 1

#define PI 3.1415192
#define NUMIT 100
#define minf 0.95
#define msup 1.05
#define mllower 0.04
#define mlupper 0.15
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Para a estrutura da Figura 32, foram obtidos os seguintes deslocamentos nodais,

para cargas FY = 40, FY = -20 e FY = 40, aplicadas aos nos 6, 10 e 12, respectivamente:

ANSYS 5.4 Software desenvolvido
NODE [12:4 Uy Ux Uy
1 0.0000 0.0000 0.0000 0.0000
2 0.0000 0.0000 0.0000 0.0000
3 0.0000 0.0000 0.0000 0.0000
4 0.0000 G.0000 0.0000 0.0000
5 0.0000 0.0000 0.0000 06.0000
6 0.21173E-02 0.66067E~-02 0.002117 0.006607
7 0.0000 0.0000 0.0000 0.0000
8 -0.47833E-03 0.26724F-02 -0.000478 0.002672
G 0.11642E-03 0.482378-02 0.000116 0.004824
10 -0.71797E-02 -0.13228E-01 ~0.007180 -0.,013228
11 0.28627E-02 0.2813%E-03 0.002863 0.00281
12 0.14355E-02 0.30810E-02 0.001436 0.003081
13 -0.28440E-02 0.45754E-02 -0.002844 0.004575
14 0.16573E-02 0.59531E-02 0.001657 0.005853
15 .21195E-02 0.37504E~02 0.002120 (.003750
e 0.85436E-03 0.662065E-03 0.000854 0,00066%
17 0.54250E-04 0.38021E-03 0.000054 0.000380
18 0.47532E-03 0.18909E-02 0.000475 0.001891
18 0.25872E-03 0.70756E-03 0.000259 0.000708
20 -0.28140E-03 0.52029E-03 -0.000281 0.000520
21 0.12685E-02 0.42731E~02 0.001269 0.004273
22 0.17282E-02 0.58939E-02 0.001728 0.005894
23 0.868%9E-03 0.51530E-02 0.000869 G.005153




Figura 32 Teste da etapa de MEF do software de OT.
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