
Bruno Scaglione; Pedro Marzagão

Integrating a high fidelity ship maneuvering simulator with
ROS: a path-following case study

USP - São Paulo

June 2021



SERVIÇO DE GRADUAÇÃO DA POLI-USP

Data de Depósito:

Assinatura: ______________________

Bruno Scaglione; Pedro Marzagão

Integrating a high fidelity ship maneuvering simulator with
ROS: a path-following case study

Monograph submitted to the Polytechnic School of
the University of São Paulo, for the obtention of
the Bachelor’s degree in Mechatronics Engineering.

Concentration Area: Robotics and Control Systems

Advisor: Prof. Dr. Eduardo Aon Tannuri

USP – São Paulo
June 2021



Bruno Scaglione; Pedro Marzagão

Integrating a high fidelity ship maneuvering simulator with
ROS: a path-following case study

Monograph submitted to the Polytechnic School of
the University of São Paulo, for the obtention of
the Bachelor’s degree in Mechatronics Engineering.

Concentration Area: Robotics and Control Systems

Advisor: Prof. Dr. Eduardo Aon Tannuri

USP – São Paulo
June 2021





ACKNOWLEDGEMENTS

To professor Eduardo Aon Tannuri, for giving us directions, help and advice throughout
this year. To Humberto Makiyama and Benedito Moraes from TPN, who helped us with pydyna.
We thank all of you.

To my parents, Claudio César de Carvalho Scaglione and Rosely Costa de Carvalho
Scaglione, who worked so hard to give me this opportunity and support me no matter what. To
my brother, Luiz Fernando de Carvalho Scaglione, who has always been there for me at the
hard times. To my grandmothers, Gessi Costa and Iracema Dolácio, who always demonstrated
unconditional support and love for me. To my friends, who helped me relieve the stress and made
me enjoy some good times. I sincerely thank all of you.

Bruno Scaglione

First and foremost, I would like to thank my whole family for their guidance and support
throughout my whole life, especially my parents, Jonas Marzagão and Flávia Martelli Marzagão.
Also, I would like to thank my friends, that despite any distance, were always there for me when
I needed them the most. And lastly, I want to thank all the people that in any way helped me
become better than I was the day before.

Pedro Marzagão





ABSTRACT

BRUNO, S.; PEDRO, M. Integrating a high fidelity ship maneuvering simulator with ROS:
a path-following case study. 2021. 230 p. Monografia (Bacharelado em Engenharia –
Engenharia Mecatrônica) – Escola Politécnica, Universidade de São Paulo, São Paulo – SP, 2021.

Ship maneuvering is a difficult task, especially in restricted areas such as port access canals.
Non-robust design of canals can lead to huge accidents in the future. The stochastic nature of
humans and the environment make the prediction of ship trajectories a probabilistic problem.
The design of these access passages is done by analyzing the empirical distribution of ship
trajectories. Sections with large variability of trajectories demand greater width and areas with
lower variability can have smaller width to save money. The samples are taken both from computer
run simulations, known as fast-time, and human pilot run simulations, known as real-time. This
monograph tackles the problems with the current situation of the fast-time simulations. The
current software that controls the craft is relatively legacy and does not take advantage of the vast
capabilities of the state-of-the-art ship maneuvering simulator, named pydyna, and developed
inside the Numerical Offshore Tank (TPN) of the University of São Paulo (USP). The Robot
Operating System 2 (ROS2) is presented as a solution to host these applications. The simulator is
integrated within ROS2 in the form of a ROS2 package, and a proof-of-concept study case is
developed to approximate real-world fast-time simulations. The study case is about a ship that
follows a desired path defined by waypoints containing desired 2D localization coordinates and
desired surge velocity. It is implemented as a Guidance-Navigation-Control (GNC) architecture,
with a visualization module. The results show that the craft is able to follow smooth paths, at
the environmental condition in which it was tuned and with a favourable initial yaw angle. The
velocity control works for collinear waypoints. The maneuvering simulator and path-following
packages are available to be used by TPN to kick-off their applications using ROS2, especially
regarding fast-time simulations. Therefore, port canal design, and other applications, can be
optimized by using the advantages and tools provided by the robotics distributed framework.

Keywords: Ship, Simulator, ROS2, GNC, Control.





RESUMO

BRUNO, S.; PEDRO, M. Integrando um simulador de manobras de navios, de alta fidelidade,
com ROS: estudo de caso de um seguidor de caminho. 2021. 230 p. Monografia (Bachare-
lado em Engenharia – Engenharia Mecatrônica) – Escola Politécnica, Universidade de São Paulo,
São Paulo – SP, 2021.

Manobrar navios é uma tarefa difícil, especialmente em áreas restritas como canais de acesso
à portos. Projetos não-robustos de canais podem acarretar em grandes acidentes no futuro. A
natureza estocástica de humanos e do ambiente fazem da predição de trajetória do navio um
problema probabilístico. O design dessas passagens de acesso é feito analizando a distribuição
empírica das trajetória do navio. Áreas com grande variabilidade de trajetórias demandam
maior espessura e áreas com menor variabilidade podem ter menor espessura para economizar
dinheiro. As amostras são tiradas tanto de simulações computadorizadas, conhecidas como
fast-time, quanto de simulações feitas com pilotos humanos, conhecidas como real-time. Esta
monografia ataca os problemas envolvendo a situação atual das simulações fast-time. O software
atual que controla o navio é relativamente legado e não tira vantagem de várias capacidades
do simulador de manobras estado-da-arte, chamado pydyna, e desenvolvido dentro do Tanque
de Provas Numérico (TPN) da Universiade de São Paulo (USP). O Robot Operating System 2
(ROS2) é apresentado como uma solução para hospedar estas aplicações. O simulador é integrado
dentro do ROS2 como um pacote ROS2. Adicionalmente, uma prova de conceito, em forma
de estudo de caso, é realizada com objetivo de aproximar uma aplicação real de simulações
fast-time. O estudo de caso trata de um navio que precisa seguir um caminho especificado por
waypoints com coordenadas 2D de localização e velocidade longitudinal desejadas. O estudo
de caso é implementado como uma arquitetura Guidance-Navigation-Control (GNC), com um
módulo de vizualização. Os resultados mostram que o navio é capaz de seguir caminhos suaves,
na condição ambiental em que foi tunado e para ângulos de guinada favoráveis. O controle de
velocidade funciona para casos com waypoints colineares. Os pacotes do simulador de manobras
e do seguidor de caminho estão disponíveis para serem usados pelo TPN como ponto de partida
para aplicações usando ROS2, especialmente para simulações fast-time. Portanto, o projeto de
canais de acesso à portos, assim como outras aplicações, podem ser otimizados ao aproveitar as
vantagens e ferramentas oferecidas pelo framework de robótica distribuído.

Palavras-chave: Navio, Simulador, ROS2, GNC, Controle.





LIST OF FIGURES

Figure 1 – Animation of Ever Given stuck in Suez Canal . . . . . . . . . . . . . . . . 30
Figure 2 – MayFlower autonomous ship . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 3 – Real-time simulator: Full Mission Simulator 1 . . . . . . . . . . . . . . . . 32
Figure 4 – Example of a fast-time simulation . . . . . . . . . . . . . . . . . . . . . . . 33
Figure 5 – TPN’s simulations summary . . . . . . . . . . . . . . . . . . . . . . . . . 35
Figure 6 – Block diagram of pydyna’s craft model . . . . . . . . . . . . . . . . . . . . 38
Figure 7 – Different views and parametrization of the Tanker55000DWT . . . . . . . . 38
Figure 8 – Simplified schematic diagram of the GNC architecture for a closed-loop

guidance and control system . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Figure 9 – Schematic diagram of the 3-DOF configuration space of a marine craft . . . 43
Figure 10 – LOS guidance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Figure 11 – Block diagram of a heading autopilot system . . . . . . . . . . . . . . . . . 47
Figure 12 – Motion of a marine craft due to only LF (filtered) and WF+LF (not filtered) 48
Figure 13 – Bode plot for the notch wave filter . . . . . . . . . . . . . . . . . . . . . . . 49
Figure 14 – Bode plot for the low-pass noise filter . . . . . . . . . . . . . . . . . . . . . 50
Figure 15 – Marine positions terminology diagram . . . . . . . . . . . . . . . . . . . . 52
Figure 16 – Linear and quadratic damping and their regimes . . . . . . . . . . . . . . . 53
Figure 17 – Different kinds of mathematical models as a result of the amount theoretical

and experimental influence . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Figure 18 – GNC System with LOS guidance and wind feed-forward . . . . . . . . . . . 59
Figure 19 – Coefficient KT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Figure 20 – typical GNC system structure . . . . . . . . . . . . . . . . . . . . . . . . . 65
Figure 21 – Example of pydyna’s visualisation for a given simulation . . . . . . . . . . 66
Figure 22 – Craft visualized with Venus . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Figure 23 – pydyna_simple topics in graph . . . . . . . . . . . . . . . . . . . . . . . . 82
Figure 24 – Vessel dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Figure 25 – Schematic regarding the general scenario of the path-following task . . . . . 86
Figure 26 – Architecture of the production environment, of the path-following system.

Where: nodes in green are implemented with the use of public libraries; node
in blue is implemented with the use of private libraries and public libraries;
node in red is a third-party tool; nodes in yellow are files; node with no color
is a web browser. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Figure 27 – Architecture of the yaw control design environment . . . . . . . . . . . . . 88



Figure 28 – Architecture of the Nomoto Model Identification environment . . . . . . . . 88
Figure 29 – Architecture of the yaw control tuning environment . . . . . . . . . . . . . 89
Figure 30 – Architecture of the surge control design environment . . . . . . . . . . . . . 89
Figure 31 – Architecture of the surge control tuning environment . . . . . . . . . . . . . 89
Figure 32 – Vessel reproduced with Venus in Angra dos Reis . . . . . . . . . . . . . . . 91
Figure 33 – Vessel reproduced with Venus in close-up . . . . . . . . . . . . . . . . . . . 92
Figure 34 – Example of the POST request for setting the vessel’s initial state, using

Insomnia client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Figure 35 – Example of the POST request for setting waypoints, using Insomnia client . 93
Figure 36 – Example of the GET request for starting the simulation, using Insomnia client 94
Figure 37 – Example of the GET request for killing only pydyna node, using Insomnia client 94
Figure 38 – Example of the GET request for killing all nodes but backend node, using

Insomnia client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Figure 39 – Visualization of all active nodes and the topics which they interact with. The

direction of the arrows indicates the messages flow. In addition to custom
nodes, there are some built-in nodes and topics necessary for ROS2 and some
of it’s tools functioning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Figure 40 – Vectors that describe the environment conditions. Errata: α = 225 deg . . . 100
Figure 41 – Case 1: beginning of the path-following task . . . . . . . . . . . . . . . . . 101
Figure 42 – Case 1: real and sensor surge velocity. Real surge velocity is in orange and

sensor surge velocity is in blue. . . . . . . . . . . . . . . . . . . . . . . . . 103
Figure 43 – Case 1: filtered and sensor surge velocity. Filtered surge velocity is in orange

and sensor surge velocity is in blue. . . . . . . . . . . . . . . . . . . . . . . 103
Figure 44 – Case 1: real and sensor yaw angle. Real yaw angle is in orange and sensor

yaw angle is in blue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Figure 45 – Case 1: filtered and sensor yaw angle. Filtered yaw angle is in orange and

sensor yaw angle is in blue. . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Figure 46 – Case 1: propeller rotation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Figure 47 – Case 1: rudder angle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Figure 48 – Case 1: cross-track and width errors. Cross-track error is in blue and width

error is in orange. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Figure 49 – Case 2: beginning of the path-following task . . . . . . . . . . . . . . . . . 105
Figure 50 – Case 2: real and sensor surge velocity. Real surge velocity is in orange and

sensor surge velocity is in blue. . . . . . . . . . . . . . . . . . . . . . . . . 107
Figure 51 – Case 2: filtered and sensor surge velocity. Filtered surge velocity is in orange

and sensor surge velocity is in blue. . . . . . . . . . . . . . . . . . . . . . . 107
Figure 52 – Case 2: real and sensor yaw angle. Real yaw angle is in orange and sensor

yaw angle is in blue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107



Figure 53 – Case 2: filtered and sensor yaw angle. Filtered yaw angle is in orange and
sensor yaw angle is in blue. . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Figure 54 – Case 2: propeller rotation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Figure 55 – Case 2: rudder angle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Figure 56 – Case 2: cross-track and width errors. Cross-track error is in blue and width

error is in orange. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Figure 57 – Case 3: beginning of the path-following task . . . . . . . . . . . . . . . . . 109
Figure 58 – Case 3: real and sensor surge velocity. Real surge velocity is in orange and

sensor surge velocity is in blue. . . . . . . . . . . . . . . . . . . . . . . . . 111
Figure 59 – Case 3: filtered and sensor surge velocity. Filtered surge velocity is in orange

and sensor surge velocity is in blue. . . . . . . . . . . . . . . . . . . . . . . 111
Figure 60 – Case 3: real and sensor yaw angle. Real yaw angle is in orange and sensor

yaw angle is in blue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Figure 61 – Case 3: filtered and sensor yaw angle. Filtered yaw angle is in orange and

sensor yaw angle is in blue. . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Figure 62 – Case 3: propeller rotation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Figure 63 – Case 3: rudder angle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Figure 64 – Case 3: cross-track and width errors. Cross-track error is in blue and width

error is in orange. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Figure 65 – Case 4: beginning of the path-following task . . . . . . . . . . . . . . . . . 113
Figure 66 – Case 4: real and sensor surge velocity. Real surge velocity is in orange and

sensor surge velocity is in blue. . . . . . . . . . . . . . . . . . . . . . . . . 115
Figure 67 – Case 4: filtered and sensor surge velocity. Filtered surge velocity is in orange

and sensor surge velocity is in blue. . . . . . . . . . . . . . . . . . . . . . . 115
Figure 68 – Case 4: real and sensor yaw angle. Real yaw angle is in orange and sensor

yaw angle is in blue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Figure 69 – Case 4: filtered and sensor yaw angle. Filtered yaw angle is in orange and

sensor yaw angle is in blue. . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Figure 70 – Case 4: propeller rotation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Figure 71 – Case 4: rudder angle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Figure 72 – Case 4: cross-track and width errors. Cross-track error is in blue and width

error is in orange. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Figure 73 – Case 5: beginning of the path-following task . . . . . . . . . . . . . . . . . 117
Figure 74 – Case 5: real and sensor surge velocity. Real surge velocity is in orange and

sensor surge velocity is in blue. . . . . . . . . . . . . . . . . . . . . . . . . 119
Figure 75 – Case 5: filtered and sensor surge velocity. Filtered surge velocity is in orange

and sensor surge velocity is in blue. . . . . . . . . . . . . . . . . . . . . . . 119
Figure 76 – Case 5: real and sensor yaw angle. Real yaw angle is in orange and sensor

yaw angle is in blue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119



Figure 77 – Case 5: filtered and sensor yaw angle. Filtered yaw angle is in orange and
sensor yaw angle is in blue. . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Figure 78 – Case 5: propeller rotation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Figure 79 – Case 5: rudder angle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Figure 80 – Case 5: cross-track and width errors. Cross-track error is in blue and width

error is in orange. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Figure 81 – Case 6: beginning of the path-following task . . . . . . . . . . . . . . . . . 121
Figure 82 – Case 6: real and sensor surge velocity. Real surge velocity is in orange and

sensor surge velocity is in blue. . . . . . . . . . . . . . . . . . . . . . . . . 123
Figure 83 – Case 6: filtered and sensor surge velocity. Filtered surge velocity is in orange

and sensor surge velocity is in blue. . . . . . . . . . . . . . . . . . . . . . . 123
Figure 84 – Case 6: real and sensor yaw angle. Real yaw angle is in orange and sensor

yaw angle is in blue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Figure 85 – Case 6: filtered and sensor yaw angle. Filtered yaw angle is in orange and

sensor yaw angle is in blue. . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Figure 86 – Case 6: propeller rotation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Figure 87 – Case 6: rudder angle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Figure 88 – Case 6: cross-track and width errors. Cross-track error is in blue and width

error is in orange. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Figure 89 – Case 7: beginning of the path-following task . . . . . . . . . . . . . . . . . 125
Figure 90 – Case 7: real and sensor surge velocity. Real surge velocity is in orange and

sensor surge velocity is in blue. . . . . . . . . . . . . . . . . . . . . . . . . 127
Figure 91 – Case 7: filtered and sensor surge velocity. Filtered surge velocity is in orange

and sensor surge velocity is in blue. . . . . . . . . . . . . . . . . . . . . . . 127
Figure 92 – Case 7: real and sensor yaw angle. Real yaw angle is in orange and sensor

yaw angle is in blue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Figure 93 – Case 7: filtered and sensor yaw angle. Filtered yaw angle is in orange and

sensor yaw angle is in blue. . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Figure 94 – Case 7: propeller rotation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Figure 95 – Case 7: rudder angle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Figure 96 – Case 7: cross-track and width errors. Cross-track error is in blue and width

error is in orange. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Figure 97 – Case 8: beginning of the path-following task . . . . . . . . . . . . . . . . . 129
Figure 98 – Case 8: real and sensor surge velocity. Real surge velocity is in orange and

sensor surge velocity is in blue. . . . . . . . . . . . . . . . . . . . . . . . . 131
Figure 99 – Case 8: filtered and sensor surge velocity. Filtered surge velocity is in orange

and sensor surge velocity is in blue. . . . . . . . . . . . . . . . . . . . . . . 131
Figure 100–Case 8: real and sensor yaw angle. Real yaw angle is in orange and sensor

yaw angle is in blue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131



Figure 101–Case 8: filtered and sensor yaw angle. Filtered yaw angle is in orange and
sensor yaw angle is in blue. . . . . . . . . . . . . . . . . . . . . . . . . . . 131

Figure 102–Case 8: propeller rotation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Figure 103–Case 8: rudder angle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Figure 104–Case 8: cross-track and width errors. Cross-track error is in blue and width

error is in orange. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Figure 105–Case 9: beginning of the path-following task . . . . . . . . . . . . . . . . . 133
Figure 106–Case 9: real and sensor surge velocity. Real surge velocity is in orange and

sensor surge velocity is in blue. . . . . . . . . . . . . . . . . . . . . . . . . 135
Figure 107–Case 9: filtered and sensor surge velocity. Filtered surge velocity is in orange

and sensor surge velocity is in blue. . . . . . . . . . . . . . . . . . . . . . . 135
Figure 108–Case 9: real and sensor yaw angle. Real yaw angle is in orange and sensor

yaw angle is in blue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Figure 109–Case 9: filtered and sensor yaw angle. Filtered yaw angle is in orange and

sensor yaw angle is in blue. . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Figure 110–Case 9: propeller rotation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Figure 111–Case 9: rudder angle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Figure 112–Case 9: cross-track and width errors. Cross-track error is in blue and width

error is in orange. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
Figure 113–Case 10: beginning of the path-following task . . . . . . . . . . . . . . . . 137
Figure 114–Case 10: real and sensor surge velocity. Real surge velocity is in orange and

sensor surge velocity is in blue. . . . . . . . . . . . . . . . . . . . . . . . . 139
Figure 115–Case 10: filtered and sensor surge velocity. Filtered surge velocity is in orange

and sensor surge velocity is in blue. . . . . . . . . . . . . . . . . . . . . . . 139
Figure 116–Case 10: real and sensor yaw angle. Real yaw angle is in orange and sensor

yaw angle is in blue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Figure 117–Case 10: filtered and sensor yaw angle. Filtered yaw angle is in orange and

sensor yaw angle is in blue. . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Figure 118–Case 10: propeller rotation. . . . . . . . . . . . . . . . . . . . . . . . . . . 140
Figure 119–Case 10: rudder angle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
Figure 120–Case 10: cross-track and width errors. Cross-track error is in blue and width

error is in orange. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
Figure 121–Case 11: beginning of the path-following task . . . . . . . . . . . . . . . . 141
Figure 122–Case 11: real and sensor surge velocity. Real surge velocity is in orange and

sensor surge velocity is in blue. . . . . . . . . . . . . . . . . . . . . . . . . 143
Figure 123–Case 11: filtered and sensor surge velocity. Filtered surge velocity is in orange

and sensor surge velocity is in blue. . . . . . . . . . . . . . . . . . . . . . . 143
Figure 124–Case 11: real and sensor yaw angle. Real yaw angle is in orange and sensor

yaw angle is in blue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143



Figure 125–Case 11: filtered and sensor yaw angle. Filtered yaw angle is in orange and
sensor yaw angle is in blue. . . . . . . . . . . . . . . . . . . . . . . . . . . 143

Figure 126–Case 11: propeller rotation. . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Figure 127–Case 11: rudder angle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Figure 128–Case 11: cross-track and width errors. Cross-track error is in blue and width

error is in orange. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144



LIST OF ALGORITHMS

Algorithm 1 – PID gains for a yaw controller . . . . . . . . . . . . . . . . . . . . . . 58





LIST OF SOURCE CODES

Source code 1 – InitValues.srv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Source code 2 – State.msg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Source code 3 – Position.msg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Source code 4 – Velocity.msg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82





LIST OF TABLES

Table 1 – Case 1: waypoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Table 2 – Case 1: metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Table 3 – Case 2: waypoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Table 4 – Case 2: metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Table 5 – Case 3: waypoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Table 6 – Case 3: metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Table 7 – Case 4: waypoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Table 8 – Case 4: metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Table 9 – Case 5: waypoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Table 10 – Case 5: metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Table 11 – Case 6: waypoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Table 12 – Case 6: metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Table 13 – Case 7: waypoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Table 14 – Case 7: metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Table 15 – Case 8: waypoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Table 16 – Case 8: metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Table 17 – Case 9: waypoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
Table 18 – Case 9: metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
Table 19 – Case 10: waypoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
Table 20 – Case 10: metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
Table 21 – Case 11: waypoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Table 22 – Case 11: metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Table 23 – Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Table 24 – ROS packages for SV applications . . . . . . . . . . . . . . . . . . . . . . . 167





LIST OF ABBREVIATIONS AND ACRONYMS

ROS2 Robot Operating System 2
AI Artificial Intelligence
ASVs Autonomous Surface Vehicles
CG Center of Gravity
COLREGS International Regulations for Avoiding Collisions at Sea
DOF Degrees of freedom
DP Dynamic Positioning
GNSS global Navigation Satellite System
GPS Global Positioning System
GUI Graphical User Interface
IMU Inertial Measurement Unit
LF Low Frequency
LIDAR Light Detection And Ranging
LOS Line of Sight
MIMO Multiple Input Multiple Output
MISO Multiple Input Single Output
MOS Meta-Operating System
OS Operating System
PID Proportial Integral Derivative
SIMO Single Input Multiple Output
SISO Single Output Single Input
SV Surface Vehicle
TPN Numerical Offshore Tank
USP University of São Paulo
USVs Unmanned Surface Vehicles
UUV Unmanned Underwater Vehicle
WF Wave Frequency





CONTENTS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.2 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
1.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2 THEORETICAL BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . 37
2.1 Maneuvering model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.2 GNC systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.2.1 Guidance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.2.2 Navigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.2.2.1 Wave filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.2.2.2 Noise filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.2.2.3 Filters in cascade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.2.3 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.2.3.1 Dynamical system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.2.3.1.1 Surge model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.2.3.1.2 Yaw model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.2.3.2 Model Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.2.3.3 Controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.2.3.3.1 Yaw Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.2.3.3.2 Surge Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
2.2.3.4 Control allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.3 Computational tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
2.3.1 pydyna . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
2.3.2 ROS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
2.3.3 Venus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3 STATE OF THE ART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.1.1 Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.1.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.2 ROS Surface Vehicle packages . . . . . . . . . . . . . . . . . . . . . . . 71
3.2.1 Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72



3.2.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4 PROBLEM FORMALIZATION . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.1.1 Primary objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.1.2 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.2 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.3 Technical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5 METHODS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.1 ROS2 terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.2 The pydyna_ros package . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.2.2 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.2.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.2.4 Getting Started . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.3 Case study: path-following ship . . . . . . . . . . . . . . . . . . . . . . . 84
5.3.1 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.3.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.3.2.1 Yaw control development architectures . . . . . . . . . . . . . . . . . . . . 88
5.3.2.2 Surge control development architectures . . . . . . . . . . . . . . . . . . . 89
5.4 Sensor emulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.5 The path_following package . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.5.2 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.5.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.5.4 Getting Started . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6 RESULTS AND DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.1.1 Main environmental condition . . . . . . . . . . . . . . . . . . . . . . . . 99
6.1.2 Case 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.1.3 Case 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.1.4 Case 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.1.5 Case 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.1.6 Case 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.1.7 Case 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.1.8 Case 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.1.9 Case 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
6.1.10 Case 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133



6.1.11 Case 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
6.1.12 Case 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
6.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
6.2.1 Path-following ability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
6.2.2 Ability to reach final waypoint . . . . . . . . . . . . . . . . . . . . . . . . 146
6.2.3 Velocity-following ability . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
6.2.4 Actuators behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
6.2.5 Radius of acceptance influence . . . . . . . . . . . . . . . . . . . . . . . 147
6.2.6 Initial state influence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
6.2.7 Environmental condition influence . . . . . . . . . . . . . . . . . . . . . 148
6.2.8 Sensor noise emulation influence . . . . . . . . . . . . . . . . . . . . . . 148

7 CONTRIBUTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

8 CONCLUSIONS AND FUTURE WORK . . . . . . . . . . . . . . . . . . . . 151
8.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
8.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

APPENDIX A RELATED WORK . . . . . . . . . . . . . . . . . . . . . . . . 159

APPENDIX B ROS SV PACKAGES . . . . . . . . . . . . . . . . . . . . . . . 163

APPENDIX C PYTHON PUBLIC LIBRARIES . . . . . . . . . . . . . . . . . 169

APPENDIX D PYDYNA_ROS CODE . . . . . . . . . . . . . . . . . . . . . . 173
D.1 pydyna_simple.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
D.2 setup.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
D.3 package.xml . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
D.4 pydyna_simple.launch.py . . . . . . . . . . . . . . . . . . . . . . . . . 178
D.5 setup.cfg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

APPENDIX E PATH_FOLLOWING CODE . . . . . . . . . . . . . . . . . . . 181
E.1 backend.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
E.2 control_allocation.py . . . . . . . . . . . . . . . . . . . . . . . . . . 186
E.3 gps_imu_simul.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
E.4 los_guidance.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
E.5 surge_controller.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
E.6 venus.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
E.7 wave_filter.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214



E.8 yaw_controller.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
E.9 setup.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
E.10 package.xml . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
E.11 path_following.launch.py . . . . . . . . . . . . . . . . . . . . . . . . 226
E.12 setup.cfg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

APPENDIX F PATH_FOLLOWING_INTERFACES CODE . . . . . . . . . . . 229
F.1 Control.msg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
F.2 Position.msg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
F.3 PositionsXY.msg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
F.4 State.msg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
F.5 Velocity.msg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
F.6 Waypoints.msg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
F.7 InitValues.srv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
F.8 package.xml . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230



29

CHAPTER

1
INTRODUCTION

1.1 Motivation

When it comes to ship maneuvering, it takes tremendous skill from the pilot to operate
in difficult areas such as: restricted areas, areas with significant environmental disturbance
or many obstacles. Not only does the operator have to be aware of the surroundings, he also
needs to take into account wind, waves and current that influence the ship’s movement. In a
restricted environment, such as a canal, large deviation from the desired trajectory can lead to
huge accidents.

Recently, in March 2021, the whole world witnessed a single ship stranded in the Suez
Canal blocking 12 percent of the world’s trade and costing nearly 10 billion dollars a day
(STEIGRAD, 2021). An animation of the accident can be seen in Figure 1.

According to the European Maritime Safety Agency, in 2016 there were 3145 casualties
and incidents. There were also 26 ship lost due to maritime accidents, regarding 3500 ships. By
far, the biggest cause of the reported accidents were human erroneous actions, making up 60.5
percent of them. Not only that, the majority of ships involved in these situations are general cargo
ships, making up 43 percent of the accidents. But what might be the most important data among
all these, is the fact that 42 percent of the casualties occurred in port areas, and 28 percent in
coastal areas (EUROPEAN MARITIME SAFETY AGENCY, 2017).

One of the solutions to avoid these problems would be autonomous surface vehicles
(ASV). They would be able to fully grasp the environmental conditions online and act accordingly
to the situation in a precise manner. The major issue with this solution is that this technology is
still under development. The most recent tests involve smaller vessels, an AI captain, still needs
an on-site crew and operates without any cargo or passengers. On example is the 50-foot-long
Mayflower Autonomous Ship, seen in Figure 2.



30 Chapter 1. Introduction

Figure 1 – Animation of Ever Given stuck in Suez Canal

Source: Kofi (2021).

Considering the use of autonomous ships is a far cry from the current paradigm, solutions
taking into account humans are used. Solving all human errors is not realistic, however, these
errors can be minimized through training with realistic simulators and learning from successful
autonomous algorithms decisions. In addition, sometimes the line between a situation that is
considered an error by the pilot and accounting for human navigation variability (and error-prone
nature), can be difficult to draw. With this is mind, much of the safety engineering can drift
towards the design of canals.

With the advancement of simulation techniques, design of ports and canals by hand has
become outdated. Not only the calculations take time, but different ship dynamics, environmental
influences and pilot navigation variability1 must be taken into account. The simulations are able
to recreate the studied area, with different models of ships. Regions in the canal can be separated
through the variability of trajectories they present after a set of simulation runs. High variability
regions demand a greater width. It is essential to guarantee a secure gap between the border of
the region and the canal coast.

Another pertinent point that must be taken into consideration is how costly building a
canal is. For example, in nowadays currency, the Panama Canal would have cost approximately
14.3 billion dollars and its length is of around 82 kilometers, with a depth of 12m and width of
33.5 meters (WHAT IT COSTS, 2016). Just a meter less or more in construction would have had
an absolutely great impact on the total cost. This means that saving money is a huge concern

1 Although there is training and there are navigation norms to follow, innate human variability can
produce different trajectories for the same conditions.



1.2. Scope 31

also, and needs to be handled together with safety efforts.

In order to spend only as much as required, the engineers in charge of the construction
should always be aware that, due to the production of new and bigger ships, the canal should be
able to withstand future modifications2.

Therefore, by using simulators it is possible to analyze, under a myriad of conditions,
ship trajectories. Based on the results found, the ones building or adapting the port canal are then
able determine the required shape of the course that guarantees that specific types of ships can
securely pass trough, while only spending as much as needed in the process.

Figure 2 – MayFlower autonomous ship

Source: Niller (2020).

1.2 Scope

Optimal port design is one of the main areas of work, having significant expertise, inside
Numerical Offshore Tank (TPN)3, known as “Tanque de Provas Numérico”, Laboratory of the
University of São Paulo (USP) (NUMERICAL OFFSHORE TANK, 2020a). TPN is a “[...]
computational and experimental hydrodynamic laboratory for the design and analysis of offshore
systems, ports, platforms, ships and barges” (NUMERICAL OFFSHORE TANK, 2021).

Considering the costly, unsafe and large-scale unfeasibility nature of conducting experi-
ments with real ships; ship maneuvering simulators are developed to model real world dynamics.

2 Information obtained with Prof. Dr. Eduardo Aoun Tannuri.
3 Details can be found in <https://tpn.usp.br/>.

https://tpn.usp.br/


32 Chapter 1. Introduction

These simulators can be used along with a statistical approach for the design of safe and efficient
access canals to ports.

TPN has a state-of-the-art ship maneuvering simulator developed on-premise, by the Ship
Maneuvering Simulation Center, and using proprietary knowledge and technology. There are two
types of maneuvering simulations conducted: real-time and fast-time. Real-time simulations are
the ones that aim to mimic real-world operation. The pilot controls the simulator, as if it were a
real ship, to perform the trajectory (e.g. navigating through a port access canal). The Full Mission
Simulator 1, one of TPN’s real-time simulators, can be seen in Figure 3. Differently, fast-time
simulations are done by computer controlled maneuvers, named path-following autopilot, that
follows desired waypoints. These waypoints contain desired locations and may present desired
surge velocities as well. An example of a fast-time simulation, of a ship entering a port, can be
seen in Figure 4.

Figure 3 – Real-time simulator: Full Mission Simulator 1

Source: Numerical Offshore Tank (2020c).

Although real-time simulations are more realistic in terms of real-world operations,
fast-time simulations have a number of advantages over the former and are described below.

• Number of runs. Does not have the real-world time constraint imposed by mimicking real-
world conditions, therefore, it can be executed much faster and consequently conduct much
more runs in the same time span as real-time simulations (NUMERICAL OFFSHORE
TANK, 2020d).

• Less amount of resources. Does not require scheduling of experts coming to the simulation
center neither costly infrastructure setup.



1.2. Scope 33

Figure 4 – Example of a fast-time simulation

Source: Numerical Offshore Tank (2020d).

• Standardization and reproducibility.4 Humans are systems subjected to a large amount
of external factors which interact in a complex way, still far from current modelling
capabilities. Therefore, treating them in a systematic way and assuring reproducible results
is very difficult. Computer programs provide these qualities to a great extent.

Therefore fast-time can contribute a lot to "[...] optimize existing ports, increase ship size
or draft and to assess the safety of new operations" (NUMERICAL OFFSHORE TANK, 2020a).

Currently TPN makes use of both types of simulations for analysis and design of port
access canals. With a small amount of real-time (approximately 30) runs and a vast amount
fast-time (aproximately 500) runs (verbal information5). This approach ensures robustness of the
design to auto-pilot and pilot conditions, and also enables the comparison of auto-pilot vs pilot
trajectories to identify potential improvements in fast-time software or pilot skills.

The fast-time software in TPN is composed of two parts: the core state-of-the-art
maneuvering simulator implemented in C++ with a Python Interface, distributed as a private
Python library and named pydyna; and the surrounding path-following architecture implemented
in MatLab.

However, this structure does not take advantage of the vast capabilities provided by the
state-of-the-art maneuvering simulator. The control software presents some limitations, such as
the ones described below.

4 In a statistical sense, considering a sufficiently large sample size.
5 Information obtained with Prof. Dr. Eduardo Aoun Tannuri.



34 Chapter 1. Introduction

• Lack of native integration with the maneuvering simulator. There is not a low-level
layer that supports the communication between the systems. Consequently, development
becomes cumbersome, unscalable and with low communication performance. Further, the
fast-time software does not make use of additional resources provided by the simulator
such as Dynamic Positioning (DP), hardware in the loop, mooring and cable control
infrastructure capabilities; illustrated in Figure 5.

• Lack of support for modularity. The current software is, to a great extent, a monolith,
and thus cannot have independent development, interchangeable parts and fault tolerance.

• Does not enable easy aggregation of state-of-the-art robotics packages. For example,
to implement a new control algorithm, sensor model or visualization modules. These tasks
would require the developers to learn how the module was coded in a third-party project
and re-implement from scratch the modules and their communication, and at the same
time, trying to make the newest version still compatible with the older ones.

• Does not enable rapid prototyping and experimenting. Since everything is done from
scratch, the development cycle is very big, making it very costly to try new approaches and
test hypotheses. Consequently experimenting alternatives off-the-shelf is not a possibility
and quick evaluation of new modules cannot be done. Finally, since there is not a framework
controlling the architecture (it is hard-coded), rapid experimenting of different architectures
and configurations is unmanageable.

• Requires experts to develop and maintain. It is not a trivial task to deal with advanced
control algorithms or complex modelling. Furthermore, dealing with the increasing
complexity in a hard-coded communication system, as more components are added to the
architecture, is not easy neither practical6.

• Does not have hardware in the loop. The current implementation does not take into
account the dynamics of the hardware components in real world non-ideal conditions.

• Cannot scale easily to a complex robotic system. Improvements in fast-time simulations
requires incorporating more aspects of reality into the closed-loop system and having
more intelligent algorithms. These generally come in the form of independently developed
modules that communicate, with one or more other components, in synchronous or
asynchronous manner. The increasingly complexity of dealing with: communication
between services, compatibility issues and hardware drivers; while working on the modules
themselves, requires a low-level abstraction layer7. With an abstraction layer, low level
development and integration can be abstracted, and components can be re-utilized. This

6 Considering the evolution of the current architecture from only a path-following control algorithm and
the core simulator to possibly many components.

7 Not present in the current software.



1.2. Scope 35

enables research and development deep focus only on the area of interest, while still having
state-of-the-art tools at disposal.

In addition, although current ship operations in access canals are conducted by pilots,
more and more automation is being integrated into maritime applications, such as, the
rise of Unmanned Surface Vehicles (USVs) and Autonomous Surface Vehicles (ASVs).
Therefore, cargo ship operation in a near future might be subject to a shift to complex
robotic systems. At the same time in which path-following control algorithms, which
have limitations such as a non-systematic way of setting waypoints and not having future
knowledge incorporated (for anticipation of dynamics), might give place to approaches
such as Artificial Intelligence (AI) (verbal information8).

Figure 5 – TPN’s simulations summary

Source: Numerical Offshore Tank (2020d).

The Robot Operating System 2 (ROS2) is a low-level framework, that operates on top
of an Operating System (OS), and provides solutions to many of these problems; in addition to
having a large community behind it. ROS2 “[...] provides libraries and tools to help software
developers create robot applications. It provides hardware abstraction, device drivers, libraries,
visualizers, message-passing, package management, and more [...]” (WIKI, 2020).

A great advantage also resides in the fact that the framework operates mainly in Python
and C++. The Python language provides a wide range of useful open-source libraries and
applications to be used right away. The C++ library also provides a lot of libraries, but aggregates
8 Information obtained with Prof. Dr. Eduardo Aoun Tannuri.



36 Chapter 1. Introduction

the advantage of code efficiency. With these two, quality software can be aggregated into the
ROS2 environment, without having any relation to ROS2.

This project develops the pydyna_simple package that encapsulates the maneuvering
simulator in a ROS2 node and enables taking advantage of it in the ROS2 environment. There, it
can be combined with multiple other packages natively and in modular fashion. In this structure,
the project can also scale very well to a complex robotic system when more modules are added.

The package proposition is done in the context of a proof-of-concept case study, where
the aim is to provide enough demonstration of the capabilities that come along with the ROS2
environment. It is a path-following scenario, similar to the ones in fast-time simulations.

1.3 Methodology

The methodological framework adopted for the development of this monograph consists
on a sequence of steps, which are directly related to the chapters. The steps, in sequence, are the
following:

1. Overview of GNC systems, pydyna, ROS2 and common approaches adopted in the
literature for surface vehicles in ROS2. Furthermore, an “off-literature” search for similar
implementations;

2. Study on GNC systems (with focus on the path-following scenario), pydyna and ROS2;

3. Formalization of the problem, by stating the objectives and requirements. The objectives
are the fulfillment of the TPN team subjective needs. The requirements are objective
constraints of the problem and proxies for the objectives.

4. Development of the pydyna-ros package;

5. Development of a prototype for the case study with a simple GNC architecture;

6. Improvement of the prototype, by adding more functionality;

7. Development of user documentation for the software;

8. Formalization of the problem (more specifically, the solution to the problem), by stating
the specifications. The specifications should guarantee full description and reproducibility;

9. Exposure and discussion of the results obtained by the path-following simulation;

10. Exposure of the project’s contributions;

11. Discussion of future work paths based on this project.



37

CHAPTER

2
THEORETICAL BACKGROUND

2.1 Maneuvering model

There are two types of dynamical models in this context: production and control design
models. These are described below.

• Production models: these are models which intend to mirror as much as possible the
real-world system. These are useful for simulating the system. Pydyna’s core is a model of
this kind, for craft maneuvering.

• Control design models: these models are simplified versions intended to design controllers.
These are used do design the yaw angle and surge velocity controllers in the case study.

The maneuvering model analyzed in this section is pydyna’s production model. The
model is described by Equation 2.1, as presented by Amendola et al. (2020).


m− X Ûu 0 0

0 m−YÛv mxG −YÛr
0 mxG −YÛr Iz −NÛr



Ûu
Ûv
Ûr

 +


0 −mr −mxGr + YÛvv + YÛrr

mr 0 −X Ûuu

mxGr + YÛvv + YÛrr X Ûuu 0

 ×
u

v
r

 + (X Ûu −YÛv)


0 r 0
r 0 0
−v uc −u 0



uc

vc

0

 = Frudder + Fprop + Ftugs + Fcurr + Fwind + Fwave

(2.1)

Respectively, the vectors ν = [u v r]T and Ûν = [ Ûu Ûv Ûr]T are the velocity and acceleration
of the vessel. The generalized coordinates are explained on page 43. According to Amendola et



38 Chapter 2. Theoretical Background

al. (2020), "This model assumes an ocean current velocity of slow and irrotational variation that
can be decomposed in the LRF as νc = [uc vc 0]T"

As for the right side of the equation: Frudder , Fprop, Ftugs, Fcurr , Fwind , Fwave are,
respectively, the forces of the rudder, propeller, tug boats, current, wind and waves. The force
Ftugs is not considered in this project, since only single ship simulations are performed. The
variable m is the mass of the ship. The other variables are coefficients; it is not interesting to
expand on them for the present moment.

A block diagram representing a simplified version of the craft’s model can be seen below:

Figure 6 – Block diagram of pydyna’s craft model

Source: Elaborated by the author.

In Figure 6, the inputs of Fcurr , Fwind and Fwave represent the environmental disturbances
due to current, wind and waves respectively; these are the most relevant disturbances. The other
inputs, δ and n, are respectively rudder angle and the propeller rotation. The outputs, η, ν and Ûν,
are, in order, the position, velocity and acceleration 3-Degrees of freedom (DOF) vectors of the
vessel at a given time in the simulation.

The specific craft used in simulation is the Tanker55000DWT, which is illustrated1 in
Figure 7.

Figure 7 – Different views and parametrization of the Tanker55000DWT

Source: Numerical Offshore Tank (2020b).

1 The illustration was provided by TPN-USP but is not currently public.



2.2. GNC systems 39

2.2 GNC systems

This section presents a brief overview of GNC systems, following a more detailed
explanation of Guidance, Navigation and Control in the context of ASVs. The choices and
simplifications adopted for the case study are highlighted along the way.

The GNC system is composed of three subsystems which interact with each other to
successfully control the craft in a desired fashion. In order to do this, first it is necessary to
determine what is the desired behaviour, this is handled by the Guidance subsystem. Secondly,
inputs to the system need to be provided in a way that controls it to the desired behaviour, this
is handled by the Control subsystem. These systems typically make their decisions based on
information of the current state of the craft and on the environment, this is provided by the
Navigation subsystem. The division in three independent modules is a common and efficient
approach, since it provides modularity in a relatively loosely coupled manner (FOSSEN, 2011).
Modular development enables more practical, scalable and fault-tolerant development. However,
the boundaries of these systems are not always that clear with some approaches, especially
between Guidance and Control.

In practical terms, these systems “[...] generally consist of commercial off-the-shelf
(COTS) sensors coupled with on-board computers which carry out the path planning and generate
signals to directly control the actuators” (CAMPBELL; NAEEM; IRWIN, 2012).

A formal description of each of the subsystems is presented by Liu et al. (2016):

• Guidance: “[...] responsible for continuously generating and updating smooth, feasible, and
optimal trajectory commands to the control system according to the information provided by
the navigation system, assigned missions, vehicle capability, and environmental conditions”.

• Navigation: “[...] concentrates on identifying the USV’s current and future states (such as
position, orientation, velocity, and acceleration), and its surrounding environment based
on the past and current states of the USV as well as environmental information including
the ocean currents and wind velocity) obtained from its onboard sensors”.

• Control: “[...] focuses on determining the proper control forces and moments to be
generated in conjunction with instruction provided by the guidance and navigation systems,
while at the same time satisfying desired control objectives”.

A simplified diagram representing the GNC architecture for a closed-loop guidance
and control system (which is the most common approach and also the one used in the case
study) can be seen in Figure 8.

It is important to highlight that in this project the whole system is digital. The input
and output of the plant is discrete, at approximately 10 Hz. Also, this frequency is less than



40 Chapter 2. Theoretical Background

the sampling frequency of the sensors (GPS and IMU). Therefore, digital controllers and filters
become native, making blocks such as Sampling and Zero-Order Hold not present.

To approximate the behaviour of the simulated discrete system to the real system, which
uses a continuous plant, the controllers of the GNC architecture cannot wait for processing to
occur to give their outputs. Processing must occur asynchronously to update the current output
value. The most current control action value is given directly by the controller when it receives
the filtered state. This procedure delays response, but approximates what would happen in a
digital GNC architecture with a continuous plant. In the last mentioned case, a Zero-Order Hold
would be present to always provide input to the dynamical system. Additionally, like in real
systems, large amounts of computation are penalized, since it takes a longer time to run the
program and update the outputs. This makes the craft act in delay for longer periods of time.

The Guidance block could have been implemented synchronously or asynchronously
with respect to the controllers. In the synchronous way the controller only acts when receives
a new set-point, this causes the craft to use “old” control action values, during roughly the
processing time of Guidance, for up-to-date set-points. In the asynchronous way the craft does
not wait for the set-points and uses the last set-point provided by Guidance, this causes the
craft to use up-to-date action values for “not so old” (because Guidance has slower updates
than Control) set-points. The second approach is chosen, because the processing time of
Guidance is relatively significant, making acting based on small delays for set-points more
promising than large delays in control action.

Figure 8 – Simplified schematic diagram of the GNC architecture for a closed-loop guidance and control
system

Source: Fossen (2011).

Given the necessary introduction, it is possible to dive in each of the modules. Starting
with Guidance, following with Navigation and then Control.



2.2. GNC systems 41

2.2.1 Guidance

Complete Guidance can be viewed as planning for the craft in three hierarchical stages:
global, local and micro; given a goal, the craft and the available control and navigation resources.
From global to micro, the stages consider a smaller absolute search space, however by adding
more realistic modelling, they also consider a higher number of variables and constraints. This
separation aims to make each stage a more feasible problem to solve. Stages act upon the output of
the previous one (if there is one), refining and/or adapting the solution (ZHOU et al., 2020). The
micro stage is usually denoted as motion planning in the literature and it’s output are setpoints to
the control subsystem.

Global planning considers the craft as a particle and can take into account macro
constraints, such as: the environment map, weather forecasts and high level protocols to follow;
in order to calculate the best path. This stage uses search and/or optimization methods for this
objective. The output is usually a set of discrete waypoints, but can also be a continuous path.

Local planning2 provides capabilities such as local optimization and obstacle avoidance;
considering partial and decoupled dynamic constraints of the craft and/or collision avoidance
protocols, such as, the International Regulations for Avoiding Collisions at Sea (COLREGS).
The output is usually a set of discrete waypoints, but can also be a continuous trajectory.

Micro or Motion Planning considers all the proposed constraints and focuses on generating
smooth and feasible paths or trajectories, taking into account the actuators constraints and the
dynamic system stability. Motion Planning methods aim to guarantee convergence of a path or
trajectory related error metric to zero, as time goes to infinity. The output are state3 setpoints for
the control system to achieve.

Depending on the problem scope and the level of human intervention, complete guidance
can be reduced. Global or even local planning may not be required if the initial search space is
not so big, or a human is already providing the functionality. In this monograph’s case study,
only motion planning is considered due to the access canal being a reduced search space, the
environment being static and for simplicity purposes (by having the waypoints set by a human).

A focus can now be given to the Micro stage. Motion Planning is usually control-based
or sampling-based and can be divided according to the control objectives, as follows.

• Setpoint Regulation: “[...] is a special case where the desired position and attitude are
chosen to be constant” (FOSSEN, 2011).

• Path Following: “[...] is following a predefined path independent of time” (FOSSEN,
2011).

2 Motion planning can also be called Local Planning or Local Methods in the literature, however this is
not the terminology used here.

3 Often partial state setpoint, this is directly related to the number of actuators.



42 Chapter 2. Theoretical Background

• Path Maneuvering: “[...] Relates vehicle motion to feasible path following, often with
less importance placed on time in favour of spatial constraint” (CAMPBELL; NAEEM;
IRWIN, 2012).

• Trajectory Tracking: “[...] where the objective is to force the system output y(t) ∈ Rm to
track a desired output yd(t) ∈ Rm” (FOSSEN, 2011).

It is important to highlight that the control objectives need to be closely related to the
actuation system of the craft. When the number of actuators of the craft is less than the number of
degrees of freedom of the motion planning workspace, the problem is not trivial neither can be
solved by linear theory, due to non-holonomic constraints. “It is trivial to control a fully actuated
marine craft while underactuation puts limitations on what control objectives can be satisfied.
More specifically, the control objective must be formulated such that the craft can satisfy all
requirements even if it is equipped with actuators that purely produce forces in some directions.
Unfortunately, most marine craft are underactuated since they cannot produce control forces and
moments in all DOFs.” (FOSSEN, 2011).

A typical marine craft has two actuators:

• rudder: controls the yaw angle;

• propeller or thruster: controls surge velocity.

Therefore, the path-following control objective is chosen as the case study for sim-
plicity, since the chosen method works on a 2-D workspace, where the coordinates are the
cross-track error e(t) and along-track distance s(t). Hence, it becomes a fully actuated control
setting. The path following guidance, however, only focuses on converging the cross-track error to
zero. Converging along-track distance to zero is typically seen in trajectory tracking. Along-track
distance is also used for velocity guidance laws in path maneuvering scenarios.

A popular method (and also the chosen one for the case study) for path-following
motion planning, is the Line of Sight (LOS) guidance law. This method receives as input
discrete waypoints and guarantees the convergence of the cross-track error e(t) to zero, as time
goes to infinity, along the straight line connecting the waypoints. The method provides a steering
law, in other words, it only controls the yaw angle of the craft and assumes positive absolute
velocity. The yaw angle is controlled based on the knowledge of the current position of the
craft, and a point between the craft and the next waypoint; where this point needs be inside the
straight line connecting the waypoints. The surge velocity shouldn’t be too high, in order to avoid
potential problems related to high turning rates such as actuator wear and craft instability. A
summary of the LOS enclosure-based steering law is presented next. A graphical representation
can be seen in Figure 10.



2.2. GNC systems 43

Firstly, it is necessary to introduce the generalized coordinates and references frames
adopted. The original 6-DOF configuration space of the craft can be reduced to 3-DOF for a
marine craft operating in the horizontal plane (FOSSEN, 2011). An illustration of the 3-DOF
configuration space is present in Figure 9, where OE XETE is the earth-fixed reference frame and
OB XBYB is the body-fixed reference frame, that is positioned at the Center of Gravity (CG) of the
craft.

Based on Fossen (2011), the generalized positions and velocities (in order) in the 3-DOF
configuration space are:

η = [x y ψ]T ∈ R2× S (2.2)

ν = [u v r]T ∈ R3 (2.3)

where R is the Euclidean space; S is a circumference; [x, y, ψ]T has coordinates in the
earth-fixed reference frame; and [u, v, r]T has coordinates in the body-fixed reference frame.

Figure 9 – Schematic diagram of the 3-DOF configuration space of a marine craft

Source: Liu et al. (2016).

The following description of the LOS enclosure-based steering law is based on Fossen
(2011) and Liu et al. (2016). As a note, given any real numbers a and b, arctan2(a, b) denotes
the four-quadrant version of arctan

( a
b

)
∈

[
− π2,

π
2
]
.

U(t) :=
√

u2 + v2 (2.4)

where U(t) is the absolute velocity of the craft and U(t) > 0.



44 Chapter 2. Theoretical Background

χ(t) := arctan2( Ûx(t), Ûy(t)) ∈ S := [−π, π] (2.5)

where χ(t) is the course angle (angle between XE and the craft resultant velocity vector).

β = arcsin
( v
U

)
(2.6)

where β is the sideslip angle (angle between XB and the craft resultant velocity vector).

Considering a straight line defined by two waypoints pn
k = [xk, yk]T ∈ R2 and pn

k+1 =

[xk+1, yk+1]T ∈ R2:

αk := arctan2(yk+1 − yk, xk+1 − xk) ∈ S (2.7)

where αk the angle is the angle of rotation of the earth-fixed reference frame to the
path-fixed reference frame, which has it’s x axis aligned with the vector connecting the two
waypoints.

The desired yaw angle is given by4:

ψd(t) = χd(t) − β (2.8)

where :

χd(t) = arctan2(ylos − y(t), xlos − x(t)) (2.9)

where χd(t) is the desired course angle and pn
los = [xlos, ylos] is found by solving

Equation 2.10 and Equation 2.11 for xlos and ylos.

(xlos − x(t))2 + (ylos − y(t))2 = R2
los (2.10)

where :

tan (αk) =
ylos − yk

xlos − xk
= constant (2.11)

for a chosen Rlos > 0.

4 Observation: the convention used here for β is assuming the sway velocity of the craft is positive to
starboard (10), differently from 9, where it is positive to port.



2.2. GNC systems 45

The circle around the craft Rlos is typically given by:

Rlos = 2Lpp (2.12)

where Lpp is the vessel length, more specifically, the length between perpendicular,
illustrated in Figure 24.

Figure 10 – LOS guidance

Source: Fossen (2011).



46 Chapter 2. Theoretical Background

2.2.2 Navigation

The Navigation subsystem is usually composed of physical sensors along with software-
based data processing methods. It’s job is to make available to the guidance and control systems
the most useful state-related information, so that these systems can do their jobs.

The sensors should always provide information about the craft’s current state. This is
usually done by a global Navigation Satellite System (GNSS) such as the Global Positioning
System (GPS) along with motion sensors such as the Inertial Measurement Unit (IMU). The GPS
measures position, velocity and heading; while IMU measures angular velocity and acceleration.
Additionally, the sensors can also gather information about the environment, with objectives such
as modelling wind and waves; or avoiding obstacles. This can be done, for example, passively by
the use of cameras or actively by the use of Light Detection And Ranging (LIDAR). Following
the requirements of this monograph, sensor models need to be present in the simulation to
capture hardware-in-the-loop dynamics.

However the data that comes out of these sensors are usually very noisy “[...] due to
influences from (1) environmental noises; (2) accumulative errors resulting from inherent drift;
(3) time-varying model uncertainties; and (4) sensor faults. Additional correction actions are
hence required to improve navigation performance” (LIU et al., 2016). Furthermore, the high
frequency disturbances, related to the wave elevation5, can cause unnecessary use of the actuators6
(FOSSEN, 2011) and potentially severe damage to the aforementioned, if fed directly to the other
systems (CAMPBELL; NAEEM; IRWIN, 2012).

Considering the problems mentioned, some data processing modules are usually used in
conjunction with the sensors. A wild point removal can remove outliers; a wave filter can remove
high frequency components and a state estimator, such as a Kalman Filter, can estimate the state
of the craft and/or environment based on noisy and possibly incomplete data from the sensors. A
block diagram exposing some of these navigation capabilities can be seen in Figure 11, which is
a heading autopilot system.

A special attention is given to frequency filters for their simplicity and effectiveness.
They provide the capabilities of removing known unwanted frequencies and high frequency noise.
Since waves are a major source of disturbances which operate at a given frequency and Gaussian
noise is introduced by the sensors, these capabilities are fundamental to GNC system.

These methods are not explicitly in the project’s requirements, however, are necessary due
to the high-fidelity aspect of the simulation in conjunction with hardware-in-the-loop dynamics
added by sensor error models.

5 Which is described as a stochastic process.
6 Reducing tracking performance and increasing fuel consumption (FOSSEN, 2011).



2.2. GNC systems 47

Figure 11 – Block diagram of a heading autopilot system

Source: Fossen (2011).

2.2.2.1 Wave filter

Fossen (2011) describes wave disturbances as two components. These components can
be visualized as their effect on the craft control in Figure 12 and are described next.

• First order wave forces: produce high frequency oscillations around a mean wave force,
usually denoted as Wave Frequency (WF). To remove this component it is necessary to
perform Wave Filtering.

• Second order wave forces: produce the mean wave force (drift) which has Low Frequency
(LF). These can be compensated by using integral action in the control law.

A common approach is to do Notch Filtering around the main frequency of the waves.
The filtered state X f is expressed, in the z domain, by:

X f (z) = hn(z)X(z) (2.13)

where hn is a 6th notch filter7 which attenuates frequencies around the wave frequency
w f = 0.083 Hz; for sampling period Ts = 0.1 s8:

The filter is presented by Fossen (2011) in the s domain (continuous signals). Since it is
a digital system, the continuos filter must be discretized. The equivalent discrete transfer function
in the z domain is obtained trought the bi-linear transform. The steps are described below.

7 A filter which attenuates frequencies within a specific range.
8 Which is the time step of the simulator.



48 Chapter 2. Theoretical Background

Figure 12 – Motion of a marine craft due to only LF (filtered) and WF+LF (not filtered)

Source: Fossen (2011).

First, the continuous-time transfer function of the filter is defined as:

hn(s) =
3∏

i=1

s2 + 2ζ s + w2
i

(s + wi)2
(2.14)

where: ζ = 0.7; w1 = 0.29124 rad/s, w2 = 0.52124 rad/s and w3 = 0.89124 rad/s are
values adapted from Fossen (2011) to be centered at the project’s wave frequency.

The bi-linear transform is defined as:

s = C · 1 − z−1

1 + z−1 (2.15)

with C = 2
Ts
> 0 as a typical value.

Applying 2.15 to 2.14 results in the following discrete transfer function:

hn(z) =
an + bn · z−1 + cn · z−2 + dn · z−3 + en · z−4 + fn · z−5 + gn · z−6

hn + in · z−1 + jn · z−2 + kn · z−3 + ln · z−4 + mn · z−5 + nn · z−6 (2.16)

where the coefficients are described until the second decimal place and are the following:
an = 0.75; bn = −4.68; cn = 12.17; dn = −16.89; en = 13.18; fn = −5.48; gn = 0.95; hn = 0.71;
in = −4.51; jn = 11.959; kn = −16.87; ln = 13.39; mn = −5.67; nn = 1.



2.2. GNC systems 49

The bode plot of the notch filter can be seen in Figure 13.

Figure 13 – Bode plot for the notch wave filter

Source: Elaborated by the author.

2.2.2.2 Noise filter

To bypass the noise added by the sensors, a number of techniques can be used. These
include: kalman filters, time-frequency filters and frequency filters. The approach chosen is
frequency filters, more specifically, a low-pass filter. Although the low-pass filter may not be
the best option between the mentioned techniques (because it does not filter out low frequency
noise), when the cut-off frequency is tuned to give the best results, it can work well, by finding
the right trade-off between filtering high frequency noise and not removing real signal. This is
the technique chosen mainly to avoid adding more complexity to the system, considering the
purpose of the monograph is not to construct a high-performing GNC system, but a sufficiently
representative scenario.

The filtered state X f is expressed, in the z domain, by:

X f (z) = hlp(z)X(z) (2.17)

where hlp is a 6th order dgital Butterworth low-pass filter9 with cut-off frequency
w f = 0.10625 Hz and sampling period Ts:

9 A filter which attenuates frequencies above a specific threshold.



50 Chapter 2. Theoretical Background

hlp(z) =
1

hlp + ilp · z−1 + jlp · z−2 + klp · z−3 + llp · z−4 + mlp · z−5 + nlp · z−6 (2.18)

where the coefficients are described until the second decimal place and are the following:
hlp = 0.77; ilp = −4.83; jlp = 12.61; klp = −17.55; llp = 13.74; mlp = −5.74; nlp = 1.

The bode plot of the low-pass filter can be seen in Figure 14.

Figure 14 – Bode plot for the low-pass noise filter

Source: Elaborated by the author.

2.2.2.3 Filters in cascade

When the Wave Filter is used in combination with the Noise Filter, they act in cascade.
The input to the Noise Filter is the output of the Wave Filter.

The filtered state X f is expressed, in the z domain, by:

X f (z) = hlp(z)hn(z)X(z) (2.19)



2.2. GNC systems 51

2.2.3 Control

The job of the Control system, in the GNC setting, is to make the controlled variables reach
the set-point given by the Guidance system, as fast and stable as possible. Firstly, it is necessary
to model the system as a dynamical system; then identify the parameters by experimenting with
the real system10; and finally, establish a control law to control state variables to the desired
value. In this case study (and generally) it is used a closed-loop control system. The control
system gets the current state information from the Navigation system, and based on the difference
between the desired state and the current state (the error), it calculates the control signal that is
input to the dynamical system.

2.2.3.1 Dynamical system

"It is well known that coupled nonlinear differential equations are needed to fully represent
the complicated ship maneuvering dynamics" (TZENG; CHEN, 2002). However simplifications
are usually implemented by linearization and decoupling of the system. The following description,
of the steps and assumptions required to get to the simplified11 models used in the case study, is
based on Fossen (2011).

The Nonlinear Maneuvering Equations are expressed, in matrix form, as:

MRB Ûν + CRB(ν)ν︸                ︷︷                ︸
rigid-body forces

+ MA(νr)νr + CA(νr)νr + D(νr)νr︸                                     ︷︷                                     ︸
hydrodynamic forces

+ g(η) + go︸     ︷︷     ︸
hydrostatic forces

= τact + τext (2.20)

where: τact =
[
τ1, act, τ2, act, τ6, act

]T ∈ R3 is the vector of forces and moments acting
on the craft, generated by the actuators, expressed by the craft’s coordinate system and τext =

τwind + τwave =
[
τ1, ext, τ2, ext, τ6, ext

]T ∈R3 is the same as the aforementioned, with the difference
that it’s generated by external agents, more specifically wind and waves; νr = ν− νc is the relative
velocity vector, where νc is the current velocity vector; MRB, CRB, MA, CA and D are matrices.

With the following simplifying assumptions:

• restoring forces (hydrostatic forces) negligible;

• coriolis and centripetal forces linear around fixed cruise speed U;

• linear damping (the non-linear component of the damping matrix D(vr) is zero) which
implies ν being small.

• ocean current is negligible;
10 In the case of this monograph, the real system is the pydyna simulator.
11 These models are also very popular.



52 Chapter 2. Theoretical Background

• starboard-port symmetry (which is symmetry between both sides of the ship, illustrated in
Figure 15).

Figure 15 – Marine positions terminology diagram

Source: Specialist ().

Equation 2.20 reduces to two decoupled equations, Equation 2.21 (in component form)
and Equation 2.25 (in matrix form).

2.2.3.1.1 Surge model

Consequently, the surge model is given by:

(m − X Ûu) Ûu − Xuu = τ1act + τ1ext + wu (2.21)

Where: τ1 [kN] = τ1, act + τ1, ext is the x axis force, in the craft’s reference frame, where
τ1act is the force caused by the actuators and τ1ext the force caused by external disturbances;
X Ûu = −3375 t and Xu = −86 kN

(m/s) are the added mass and linear damping coefficients respectively;
m = 40415 t is the mass of the craft; u

[m
s

]
is the surge velocity of the craft used in simulation

(craft is illustrated in Figure 7); and wu is the process noise that accounts for unmodelled
dynamics.

However, the most common approach is to consider the non-linear damping component
−X |u|uu|u| where X |u|u = −8.36 kN

(m/s)2 12 for the surge velocity equation, because assuming u being
small (|u| < 2 m/s) deviates substantially from real applications. Additionally, τ1ext is not directly

12 Assuming sideslip angle β = constant = 0 as a simplification.



2.2. GNC systems 53

modelled due to the complexity involved, therefore this term introduces relevant process noise.
This noise merges with wu to form the resultant process noise wτ1 , as follows:

(m − X Ûu) Ûu − Xuu − X |u|uu|u| = τ1 + wτ1 (2.22)

The linear damping coefficient is given by (FOSSEN, 2011):

Xu = ce
(
− u2

2

)
(2.23)

where c is constant.

As illustrated in Figure 16, for |u| > 2 m/s, Xu ≈ 0. Since the path-following task is
imposed to work mostly on the |u| > 2 m/s13 regime, the term Xu can be discarded.

Figure 16 – Linear and quadratic damping and their regimes

Source: Fossen (2011).

13 All waypoints have velocity above 2 m/s.



54 Chapter 2. Theoretical Background

Therefore, the final model used for surge velocity control in the case study is:

(m − X Ûu) Ûu − X |u|uu|u| = τ1 + wτ1 (2.24)

The surge model, Equation 2.24, is based on two coefficients: X Ûu and X |u|u. The first one
is the added mass, whereas the second is the drag coefficient. Both of them are assumed given14.

2.2.3.1.2 Yaw model

The yaw model is given by:

M Ûνsway−yaw + N(uo)νsway−yaw = bδ (2.25)

where: νsway−yaw = [v, r]T ∈ R2 is the velocity vector for sway and yaw only; δ is the
rudder angle and bδ = τT

sway−yaw = [τ2, τ6]T , where b is a vector. The equation is valid when:
νsway−yaw is small; and u ≈ uo = constant. Here, the process noise ends up hidden inside the
coefficients, because they are identified via empirical data (2.2.3.2)15 .

Equation 2.25 has 2 DOF which makes it inherently more complex. With the earlier
assumption that r (1) and v (2) are small, this equation can be transformed into two second order
decoupled equations for sway and yaw. By choosing to use the assumption (1) while freeing
assumption (2), and choosing to use the assumption (2) while freeing assumption (1); for sway
and yaw respectively.

The transfer function of the second order decoupled yaw equation, derived from Equa-
tion 2.25, considering δ as the input with r as the output, can expressed as:

r
δ
(s) = K(1 + T3s)

(1 + T1s)(1 + T2s) (2.26)

where: T1, T2 and T3 are time constants; and K = 1.6e−5 [dimensionless] is the static
gain.

Finally, since in practice T3 ≈ T2, the zero nearly cancels with the pole (TZENG; CHEN,
2002), and the First Order Nomoto Model can be expressed as:

r
δ
(s) = K

1 + Ts
(2.27)

14 The values of the coefficients are extracted from the vessel configuration file
15 This identification was done without the influence of waves.



2.2. GNC systems 55

and therefore:

ψ

δ
(s) = K

s(1 + Ts) (2.28)

and in the time domain:

T Üψ + Ûψ = Kδ (2.29)

where T = T1 + T2 − T3 = 133 s. The parameters K and T are identified by analyzing the
step response.The First Order Nomoto Model is used in the study case for yaw control.

2.2.3.2 Model Identification

Calculating the coefficients of Equation 2.29 with precision is neither practical nor trivial,
due to difficulties in micro-scale theoretical modelling, a range of complicated experiments
needed16 and the uncertainties involved. A popular approach is to treat the coefficients as
unknown parameters, and estimate them based on empirical data related to the system response,
using known predefined inputs. This is one type of Model Identification that places more
focus on theoretical analysis and gives rise to a Light-Gray-Box Model, illustrated in Figure 17
(ISERMANN; MüNCHHOF, 2011). In the aforementioned case, a previous structure for the
differential equations is given from theoretical modelling; and is the approach used in the
case study.

Model Identification methods can be divided broadly into two categories according to the
setting in which they are performed: off-line and on-line methods. Off-line approaches estimate
the system, through experimentation, before it is deployed for control; and on-line approaches
estimate the system in real-time, at the same time the system is being controlled (LIU et al.,
2016). In this case study, it is used the off-line approach, by assuming that the simplified
model is sufficiently robust to model all situations of the craft17; and by the fact that there
is easy access to experimentation, since it is all done in simulation.

Other useful separations can be drawn between methods based on the working domain,
parametrization, linearity, time modelling and number of controlled variables. These are described
below:

• working domain: time-domain and frequency-domain;

• parametrization: parametric and non-parametric;

• linearity: linear and non-linear.
16 Experiments to get general coefficients, not related to the specific system as a whole.
17 Therefore, e.g., does not need to keep changing the linearized model for each operating point, during

the operation of the craft.



56 Chapter 2. Theoretical Background

Figure 17 – Different kinds of mathematical models as a result of the amount theoretical and experimental
influence

Source: Isermann and Münchhof (2011).

• time modelling: continuous-time and discrete-time.

• number of controlled variables: Single Output Single Input (SISO), Single Input Multiple
Output (SIMO), Multiple Input Single Output (MISO) and Multiple Input Multiple Output
(MIMO).

Based on the established categories, the requirements present for the identification
of Equation 2.29 in case study are: the use of a linear method, since the model is linear;
and the use of SISO methods, since surge and yaw motions are decoupled.

The coefficients of Equation 2.24 are not identified in the case study. Instead, they
are extracted from the vessel configuration file18. This is because the equation is non-linear and
identifying the coefficients is a much harder task, judged beyond the scope of this monograph.

18 This file is mandatory for performing the simulation.



2.2. GNC systems 57

2.2.3.3 Controllers

There are a number of methods for Controller design, but the most popular one,
for it’s simplicity and good results, is the Proportial Integral Derivative (PID) method. This
method is intended for linear systems, thus it can be applied directly to the heading model derived
in 2.2.3.1, for yaw control. In this case, since the system can be represented as a transfer function,
the controller design is usually done in the complex domain, by satisfying predefined control
criteria which are based on the natural frequency wn and the damping ratio ζ of the closed-loop
or resultant system.

However, the surge velocity model is non-linear, thus this method cannot be applied
directly. The method chosen for surge velocity is Sliding Mode Control. This technique
basically cancels the nonlinear terms and makes the sliding surface variable s converge to zero.
The sliding surface variable is related to the variable of interest (velocity u) such that when s
goes to zero, u goes to the set-point. In this case, since the system cannot be represented as a
transfer function, the controller design must be done initially in the time domain.

After the controllers are theoretically designed, they are further tuned two times to obtain
the best response: first with a closed-loop surge control, using pydyna as the dynamical system;
and second in the production path following architecture, where the other modules are present.
The values for the parameters, in the following sections, are the final values obtained after these
procedures.

2.2.3.3.1 Yaw Controller

The continuous-time yaw controller is of the form:

δ(θ̃) = − Kp · θ̃ − Kd · Û̃θ − enable(θ̃) ·
(
Ki ·

∫ t

0
θ̃(τ)dτ

)
(2.30)

But, since it is a digital implementation, becomes:

δ(θ̃) = − Kp · θ̃k − Kd ·
θ̃k − θ̃k−n

tk − tk−n
− enable(θ̃k) ·

(
Ki ·

k−1∑
i=0

θ̃i ·∆t

)
(2.31)

where a bigger n makes the derivative approximation less subjective to noise but increases
delay. The value used is n = 1 due to the presence of noise removing filters.

with:

0 ≤ |δ | ≤ SM · radians(35) (2.32)



58 Chapter 2. Theoretical Background

and:

enable(θ̃) =


1 θ̃ ≤ C

0 θ̃ > C
(2.33)

with the error being:

θ̃ =


θ − θd |θ − θd | ≤ π

− (π − (θ % π − θd % π)) θ − θd > π

π + (θ % π − θd % π) θ − θd < − π

(2.34)

where: θ = π
2 −ψ if π

2 −ψ > 0 else θ = 2 ·π−( π2 −ψ)19 is the yaw angle measured from east
counterclockwise; θd is the desired yaw angle or yaw set-point; Kp = 1.6 > 0 [dimensionless],
Kd = 65 > 0 [s] and Ki = 0.00075 > 0 [1/s] are the controller gains; enable(θ̃) is the anti-windup
strategy with C = 0.1 as the integration threshold; δ is in radians and 0 ≤ SM = 0.99 ≤ 1 is the
safety margin coefficient used to avoid actuator wear; ∆t = 0.1 is the time step of the simulator;
and radians(x) is a function that converts degrees to radians. The values for the parameters
where found after these procedures.

An illustration of the mentioned controller, with an additional wind feed-forward term
(which is not present in the case study), and in conjunction with a LOS-based guidance can be
seen in Figure 18. The wind feed-forward term is the torque to compensate for wind disturbances,
which is calculated by an added estimation module.

An algorithm for computing the gains is also described by Fossen (2011):

Algorithm 1 – PID gains for a yaw controller

1: procedure yawControllerPidGains(wb, ζ) . wb > 0 and ζ > 0
2: wn← 1√

1 − 2ζ2 +
√

4ζ4 − ζ2 + 2
wb

3: Kp← mw2
n − k . Proportional Gain

4: Kd← 2ζwnm − d . Derivative Gain
5: Ki← Kp

wn

10 . Integral Gain
6: return (Kp,Kd,Ki)
7: end procedure

where: wb is the desired bandwidth20 of the closed-loop transfer function; ζ is the desired
damping ratio of the closed-loop transfer function, which commonly follows the rule of thumb
ζ = 0.8; m = T

K is the mass; d = 1
K is the damping coefficient; and k = 0 is the spring coefficient;

for the First Order Nomoto Model (Equation 2.29).
19 pydyna gives the yaw angle of the craft as θ, not ψ
20 Frequency at which the magnitude of the transfer function is equal to -3dB.



2.2. GNC systems 59

Figure 18 – GNC System with LOS guidance and wind feed-forward

Source: Fossen (2011).

2.2.3.3.2 Surge Controller

The surge controller is designed using Sliding Mode Control. First, some definitions:
the controlled variable x receives x := u (velocity) and u is free to be used as the system’s input.
Next, it is important to explain that the form of the resultant controller will be the same for any
point located between the same waypoints. This means that the controller changes every time the
craft reaches the next waypoint and remains constant until reaches the next one.

The sliding surface s(x) is s(x) =
(

d
dt +λ

)n−1
· x̃ where λ is a parameter and x̃ = x− xdes

is the error, where xdes is the desired velocity of the next waypoint. Since the order n of the
system is n = 1, the surface reduces to the error, so then:

s(x) = x̃ (2.35)

Deriving the surface with respect to time gets Ûs = Û̃x = Ûx since xdes is a constant. Therefore,
Ûs = f (x)+u where f (x) = X |x |x x |x |

(m − X Ûx) + wτ1 and u is the input with:

τ1 = u · (m − X Ûx) (2.36)

The continuous-time controller is defined as:

u = − f̂p − k · sat
(

s(x)
φ

)
(2.37)



60 Chapter 2. Theoretical Background

where: f̂ is the estimate of f and f̂p is the point estimate of f . With the minimum value
that guarantees slipping in Equation 2.38. The digital version of the controller does not present
significant notation changes, besides changing from a continuous signal x(t) to a discrete signal
x[k]. Therefore, although the digital version is the one that is implemented, the notation of the
continuous version can be maintained for simplicity.

k = |η | + F (2.38)

where: F is the uncertainty bound; η can be thought as the imposed acceleration21; and
−k · sat

(
s(x)
φ

)
is used in place of the theoretical best controller −k · sign(s(x)) to avoid chattering

of the input. Developing f̂p:

f̂p = [ f ] =
[X |x |x]
[m] − [X Ûx]

· x |x | = −8.36
40415 − (−3375) · x |x |

∴ f̂p = −1.9091 ·10−4 · x |x | (2.39)

The sat regards the saturation function and φ is a parameter that balances the smoothness
of the input close to the sliding surface and the control guarantees (by diminishing the time it
takes to reach the sliding surface and imposing a steady-state error bounded by |φ|). The value
chosen is φ = 0.19 after the tuning procedures explained here, which is just enough to avoid
chattering and maintains to great extent the method’s initial control guarantees.

The parameter η is obtained as follows: η = s(0)
tr
=

x−xdes
tr
=

x−xdes
test

, where tr is the time
it takes for s = 0, which is relaxed to s > −φ due to the boundary layer imposed by the sat

function22, and substituted by test which is the estimated time from one waypoint to the next. This
happens since the problem is not time constrained, it is actually spatially constrained. Therefore,
the time between waypoints can be estimated knowing roughly the velocity function.

21 Assuming the theoretical best controller.
22 The sat function is sat(x) = max(−1, min(1, x)).



2.2. GNC systems 61

Using the theoretical best controller −k · sign(s(x)) the velocity should have an linear
behaviour between the waypoints. But by using −k · sat

(
s(x)
φ

)
the response get smoother and

goes towards an exponential behaviour at the end. With this in mind, the estimated velocity is a
weighted average between the estimated time with linear testLin response and estimated time with
exponential response testE xp dictated by φ:

test =
φ · testE xp + (∆x − φ) · testLin

∆x
(2.40)

where ∆x = xdes − xwayOld with xwayOld being the surge velocity of the craft when it
crossed the last waypoint.

The caculation of testLin is simply:

testLin =
d(

xwayOld + xdes
2

) (2.41)

where d is the euclidean distance between waypoints.

The caculation of testE xp is done by integrating the velocity function between waypoints23
to get the distance function; and solving d = distance(testE xp) for testE xp. Developing the last
expression:

distance(t) =
∫

velocity(t)dt + C =
∫
[xwayOld + (xdes − xwayOld) · (1 − exp(−t · k))]dt + C (2.42)

with the initial condition distance(0) = 0 which leads to C = −
(

1
k

)
· (xdes − xwayOld)

d = distance(testExp) = (xwayOld · testExp + (xdes − xwayOld) · (testExp +

(
1
k

)
· exp(−testExp · k)) + C

(2.43)

is solved for testE xp using a numerical solver.

However, there is another problem. The aforementioned approach assumes the craft has
zero angle relative to the line connecting the waypoints, which is generally not the case. To solve
this, an empirical approach was adopted. A linear model for correcting the estimated time was
derived based on the craft’s behaviour. When the craft reaches a waypoint and starts following
another line, the more angled it is relative to the steady state angle of the craft when following
the aforementioned line, larger the time.
23 This step is performed assuming the model is linear for simplicity, the quadratic term x |x | is for this

step just x.



62 Chapter 2. Theoretical Background

The linear correction model is the following:

testCorr = Ccorr ·
( |θdi f |

2 · π + 1
)
·
(

1
cos(θss)

)
· test (2.44)

with:

θdi f =


θwayOld − θss |θwayOld − θss | ≤ π

− (π − (θwayOld % π − θss % π)) θwayOld − θss > π

π + (θwayOld % π − θss % π) θwayOld − θss < − π

(2.45)

where: Ccorr = 0.7 is a constant; θss is the steady state yaw angle the craft in path
line (measured counterclockwise from east); θwayOld is the yaw angle of the craft (measured
counterclockwise from east) when it crossed the last waypoint.

The value of θss is calculated based on the angle of the path line ζ , (measured counter-
clockwise from east) and the sway velocity when it crossed the last waypoint vwayOld . The steady
state surge velocity xss of the craft is approximated to be the desired velocity of the next waypoint
xdes and the steady state sway velocity vss is approximated to be the projection of xwayOld and
vwayOld onto the unit vector which draws 90 degress counterclockwise from the line path. With
the steady state velocities, it is possible to calculate the steady state yaw angle.

First, the steady state surge velocity:

xss = xdes (2.46)

the steady state sway velocity:

vss = cos
(π
2
− ∆θ

)
· xwayOld + cos(∆θ) · vwayOld (2.47)

where ∆θ = ζ − θwayOld .

The steady state beta angle:

βss = arcsin

(
vss√

v2
ss + x2

ss

)
(2.48)

and finally the steady state yaw angle:

θss = ζ − βss (2.49)



2.2. GNC systems 63

The parameter F accounts for the uncertainty in f̂ , expressed in the term wτ1 . This can
refer to uncertainty in the parameters or unmodelled dynamics. Since the parameters for the
surge model were obtained from ground truth, this type of uncertainty is not the major concern in
this context. The major concern is about unmodelled dynamics, since the real model is coupled,
stochastic and full of environmental disturbances among other complexities involved. The model
used for control is a strong simplification, that does not account for the aforementioned effects.
Therefore, the objective of F is to counteract these unmodelled forces. The final value F = 0.08
was found after the tuning procedures explained here.

By substituting Equation 2.39, Equation 2.38 and Equation 2.35 in Equation 2.37 with
the values for F and φ, and defining params = (xwayOld, θwayOld, ζ, xdes) the final control law
obtained in Equation 2.50.

u(params) = 1.9091 ·10−4 · x |x | −
(���� x̃

testCorr(params)

���� + 0.08
)
· sat

(
x̃

0.19

)
(2.50)

2.2.3.4 Control allocation

Control Allocation is the subsystem responsible for mapping the generalized forces,
obtained from the Controllers, to the inputs of the dynamical system (FOSSEN, 2011). In this case,
the yaw control, obtained from the First Order Nomoto Model (Equation 2.28), has already it’s
output equal to the input of the dynamical system. However, for surge control, control allocation
is needed.

Pydyna implements the common constrained (due to saturation of the actuator) Main
Propeller, that is, a propeller that produces forces only in the x direction in the craft’s coordinate
frame. Therefore, the dynamical system expects a control model adequate for this purpose.

There are several actuator models for thrusters and propellers, depending on the craft
actuator implementation. A quadratic actuator model, given by Equation 2.51, is chosen for
the study case, since it is the model used by TPN (TANNURI, 2002).

τ1 = ρD4
p KT (J)np |np | (2.51)

where: τ1 [kN] is the thrust force; ρ = 1.0245 t
m3 is the specific mass of the water;

Dp = 7 m is the diameter of the propeller; KT (J) is a coefficient dependent on u where J = u
npD ;

and np [Hz] is the propeller rotation.

The values of KT (J) are found by a linear fit using three known24 data points: (0; 0.32),
(0.7; 0.12) and (1; 0). The plot of KT (J) is shown in Figure 19 and the formula is described in
Equation 2.52.

24 Experimental results found by TPN-USP.



64 Chapter 2. Theoretical Background

Figure 19 – Coefficient KT

Source: Elaborated by the author.

KT = 0.3246 − 0.3139 · J (2.52)

By isolating np in Equation 2.51 and substituting the values of coefficients, np is obtained
as a function of τ1 in Equation 2.53.

np =


c1 ·

√(
c2 ·u2 + τ1

)
+ c3 ·u τ ≥ 0

−c1 ·
√(

c2 ·u2 − τ1
)
− c3 ·u τ < 0

(2.53)

where c1 = 0.036, c2 = 3.53, c3 = 0.067 and u is the surge velocity.

With:

0 ≤ |np | ≤ SM ·1.75 (2.54)

due to propeller saturation. Where 0 ≤ SM = 0.99 ≤ 1 is the safety margin coefficient
used to avoid actuator wear.



2.2. GNC systems 65

2.2.4 Summary

A summary of a typical GNC system structure can be found in Figure 20.

Figure 20 – typical GNC system structure

Source: Liu et al. (2016).



66 Chapter 2. Theoretical Background

2.3 Computational tools

Two important computational tools are used in this project: pydyna and ROS. These are
explained briefly in the following sections, along with the most important aspects of each.

2.3.1 pydyna

As already stated in the scope of the project, pydyna is a maneuvering simulator developed
by TPN and found as a Python library, but it’s core is written in C++ and goes by the name
dynasim.

So far the library is still under development, therefore it’s use is quite restricted at
the moment. The only people allowed access are TPN members or researchers with granted
permission.

The first releases of pydyna were only for Windows OS. Due to more and more fronts of
research involving pydyna, there are also newer versions for Linux OS, however they are still
considered to be experimental.

For every step of the simulation dynasim is able, through a fourth order Runge-Kutta
numerical integration, to output the position of the vessel . These outputs can be displayed either
as an image (illustrated in Figure 21) or as a .txt file.

Figure 21 – Example of pydyna’s visualisation for a given simulation

Source: TPNSHIP (2021).

The simulation must be created alongside a configuration file that contains vessel
parameters. This other file may contain a variety of vessels, and as soon as the simulation is
created, any of them can be used.

For the simulation, the system requires an initial state vector (initial positions and
velocities) and some configuration parameters. Such parameters include the time interval between
every step, and the maximum number of steps.



2.3. Computational tools 67

The trajectory of the vessel is described according to the inputs given, which can be set
before the simulation or during it. E.g., all the inputs to the propellers and rudders could be given
beforehand, in a static file; or these might be calculated at run-time by a controller.

2.3.2 ROS

ROS is defined as an Meta-Operating System (MOS) for robotics software development.
This means that it runs on top of an OS, however, provides functionalities of a typical OS and
also of a typical application framework (HASAN, 2019). In ROS2 all main OSs are supported,
and it is developed in Python and C++.

The Robotics Back-End (2021) breaks down ROS as two main components, presented
next.

• Core middle-ware with communication tools: infrastructure for distributed processes;

• Set of plug-and-play libraries: reusable tested software for common usage. E.g., these
can be drivers, algorithms, visualizations tools or simulators.

The goals of the MOS are to solve problems related to the complexity of developing and
maintaining complex robotic systems infrastructure and applications. Three of these goals are
stated, as described in Wiki (2020) and The Robotics Back-End (2021):

• standardize robotics software development;

• provide code reuse;

• provide an infrastructure that supports distributed processes and abstracts low-level device
control.

Wiki (2020) describes some important ROS features that make robotics software develop-
ment in the platform much more practical, these are described below.

• ROS agnostic libraries: developing ROS libraries is totally independent of ROS25;

• Language agnostic processes: processes running within ROS can be written in any
language, although Python and C++ are the main interfaces;

• Scaling: due to it’s distributed nature, it can scale well to a complex robotic system setting.
25 In the sense that the core software of the library is independent, of course it depends on ROS to be

integrated as a ROS package.



68 Chapter 2. Theoretical Background

Some of the best use-cases are for research and prototyping purposes. In research,
the focus is usally in some area of the robotic system, but requires that a whole infrastructure
is set-up for testing the solution. ROS2 let’s the researcher focus on the area of interest, while
providing ready-to-use software for the other parts. In prototyping, the goal to to build the
solution fast. With ROS2 knowledge this can be done without being an expert in all areas (THE
ROBOTICS BACK-END, 2021). These use-cases relate a lot, not only with this monograph,
but especially with the research environment in which pydyna is already used.

2.3.3 Venus

Venus is a web-based visualization tool, developed by the TPN team. It is a python library
specialized for sea-related objects. It uses MapQuest as a third-party service, which provides
the map images. The tool is used in the case study to visualize the craft in real-time.. An
example of the craft visualized with Venus can be seen in 22.

Figure 22 – Craft visualized with Venus

Source: Elaborated by the author.



69

CHAPTER

3
STATE OF THE ART

3.1 Related Work

As the main objective of this work is to develop an integration between pydyna and
ROS2, it is of utmost importance to verify whether similar integrations have been done before.
Considering pydyna is not an open-source software, it is safe to say that this integration was
never made before; however the general concept is to find maritime simulators implemented in
the platform. Therefore, the bibliographic review is focused on USV’s and AUV’s in combination
with ROS2 implementations over the past 5 years.

As was established in conjunction with the professor advisor, the first 17 articles (ordered
by relevance) were selected in Scopus. The query used was the following:

“TITLE-ABS-KEY ( usv OR "unmanned surface vehicle" OR asv

OR "autonomous surface vehicle" OR "Maritime Autonomous Surface Ships" )

AND ( ros OR "Robot Operating System" ) AND ( LIMIT-TO ( SUBJAREA ,

"COMP" ) OR LIMIT-TO ( SUBJAREA , "ENGI" ) ) AND ( LIMIT-TO ( PUBYEAR ,

2021 ) OR LIMIT-TO ( PUBYEAR , 2020 ) OR LIMIT-TO ( PUBYEAR , 2019 ) OR

LIMIT-TO ( PUBYEAR , 2018 ) OR LIMIT-TO ( PUBYEAR , 2017 ) OR LIMIT-TO

( PUBYEAR , 2016 ) )”

https://www.scopus.com/


70 Chapter 3. State of the Art

3.1.1 Findings

The table constructed can be found in Appendix A. The most important findings, relative
to this project, will be presented below:

• Gazebo and Qt ROS integrations are used tools that provide Graphical User Interface (GUI)
(VELAMALA; PATIL; MING, 2017) (SMITH; DUNBABIN, 2019);

• if necessary to use a third-party service, which is not wrapped as a ROS package a ROS
bridge can be used (VELAMALA; PATIL; MING, 2017);

• one of the most common guidance techniques, implemented in ROS for USVs, is the
line-of-sight algorithm (VILLA; AALTONEN; KOSKINEN, 2020);

• the main sensor used for USVs and ASVs is LiDAR, often in an obstacle avoidance setting.
There are already simulator implementations of the aforementioned (VILLA; AALTONEN;
KOSKINEN, 2020); (KRUPINSKI; MAURELLI, 2018).

• the GNC system can be composed by the following modules: path planner, path manager,
path following, autopilot; which then control the USV (IOVINO; SAVVARIS; TSOURDOS,
2018);

• being an application agnostic framework, ROS can easily incorporate existing software
modules by simply implementing them in a node or wrapping them in a package that can
contain one or more nodes (VILLA; AALTONEN; KOSKINEN, 2020)(VELAMALA;
PATIL; MING, 2017);

• existing other ASV and USV simulators software have been integrated in ROS (FE-
DORENKO; GURENKO, 2016) (SMITH; DUNBABIN, 2019);

• sensor high-fidelity modelling has been created and implemented using ROS, for hardware-
in-the-loop simulations. (SMITH; DUNBABIN, 2019).

3.1.2 Discussion

The most blatant output that came from this first research would be that existing projects
can be integrated into ROS without great difficulty. Software can be implemented as a node, or
being wrapped in packages. Specifically, as integrations of other USV and ASV simulators have
been made before, there should not be to many inherent obstacles for this project.

Also, it is important to highlight the possibilities of using hardware-in-the-loop simula-
tions. Through already implemented ROS’ applications, a user can emulate sensors, allowing
realistic data gathering, which is likely to get results closer to the ones found with the physical
sensor hardware.



3.2. ROS Surface Vehicle packages 71

As for the GNC architecture, some concepts were clarified. The path planner would be
based on the inputs of destination, obstacles and map, that can be given to the system both from
sensors and a database. Based on this planner, the waypoints generated are then used by the path
manager, creating a path definition. In turn, this input is then used in the path following, that
defines the speed and heading of the USV, leading to the autopilot. Finally, the autopilot gives
the servo-commands to the USV.

Currently, pydyna’s interface is not user-friendly to those that have little knowledge of
programming or system modelling, such as ship operators or newcomers; nor does it provide a
practical and insightful way of analyzing the ship and its surroundings 1. As mentioned earlier,
tools such as Gazebo and Qt can provide GUI’s, making TPN’s software’s usability better, for a
wide range of people.

3.2 ROS Surface Vehicle packages

A search for ROS packages involving maritime applications is necessary for understanding
the current situation of maritime simulators inside ROS environment. It is important to examine
the type of package, the amount of attention it has from the community, information regarding
it’s functioning and/or use and relevant features regarding Surface Vehicle (SV) simulation.

This search helps to gain insight on the relevance of integrating a new state-of-the-art ship
maneuvering simulator in ROS. Furthermore, these existing packages can be essential learning
material for developing the current package, theme of this monograph.

The search was done in ROS Index, a recent ROS project2, as well as in GitHub. For
ROS Index the following search entries were used separately: maritime, boat, ship, usv, asv. For
GitHub the aforementioned entries were used in combination with ROS.

The project type can be obtained by the GitHub repository about section (if there is one
for the repository); number of stars and forks can be used as a proxy for community adoption;
information about the package is a boolean: if the repository has a reasonable README file
or points to some other informative resource it is true, else it is not3; and relevant features are
obtained scanning the information provided.

1 Information obtained with Humberto Makiyama, one of pydyna’s coordinators.
2 Still in beta fase.
3 Reasonable is subjective, however it’s in the sense that installation and a basic use of the package are

minimum requirements.



72 Chapter 3. State of the Art

3.2.1 Findings

The table constructed can be found in Appendix B. The most important findings, relative
to this project, will be presented below:

• all packages are related to small vessel USV’s, not large boats or ships;

• communication with non ROS2 resources is not necessary;

• some packages are self-contained, meaning they provided a complete set of components
such as motion simulation, control, sensing and visualization;

• many packages are based on Gazebo usv plugins and Virtual RobotX Maritime Challenge
simulator;

• the most relevant resources are related to Virtual RobotX Maritime Challenge (offered by
the organization or by participating teams);

• most packages don’t present large use from the community, neither have decent documen-
tation.

3.2.2 Discussion

The fact that none of the packages are related to ship simulation shows the current
state of autonomous SVs efforts. These efforts are mainly restricted to Maritime Robotics
Competitions, especially RobotX virtual competition. The advantage is that teams use the base
simulator resources from the organization and build on top of it. Control, sensing, visualization
and other capabilities are then added to the simulation. However, development does not reach
larger scales, such as large boats or ships. Considering this is a promising area of development,
having a state-of-the-art ship simulator at disposal for the community could open a new door for
future work and research. In consequence, this work could then help TPN’s fast-simulation and
autonomous ship efforts.

About the construction of the package itself, it is clear that most of the necessary tools
can be obtained within the ROS2 environment, even further, the package can not only encapsulate
the simulator but also other modules such as control, sensing and visualization; for a more robust
simulation.

The use of Gazebo usv plugins and Virtual RobotX Maritime Challenge resources may be
a path to follow in this project, however all the physics of pydyna core simulator would need to
be provided to the simulator and it would increase the complexity of the project. Since the exact
dynamical model that governs pydyna is not available to the authors and unnecessary complexity
may damage the project, using a purely visualization tool appears to be the best approach.



3.2. ROS Surface Vehicle packages 73

Due to most relevant resources being related to the Virtual RobotX Maritime Challenge,
exploring the competition, as well as, the participating teams’ projects is worthwhile.

Finally, considering most of the packages offer little to no documentation, they can be used
as a secondary resource option, mainly for advanced development efforts, when ROS2 knowledge
and experience is sufficient. Furthermore, presenting a package with good documentation for
newcomers can be very powerful in this setting.





75

CHAPTER

4
PROBLEM FORMALIZATION

4.1 Objectives

The objectives of this project are divided into two categories: primary objectives and
extensions. Primary objectives are the main goals of the project and need to be reached. Extensions
are bonus achievements, on top of the main goals of the project.

4.1.1 Primary objectives

The primary objectives can be listed as follows.

1. Make available a ROS2 package that enables usage of pydyna in a modular manner,
within the whole system. So that the high-fidelity maneuvering simulator could be used in
combination with other ROS2 packages, in a practical and scalable way.

2. Demonstrate a native integration of the maneuvering simulator with ROS2, together with a
GNC system and visualization capabilities; through a path-following task.

3. Describe how the software should be used.



76 Chapter 4. Problem Formalization

4.1.2 Extensions

The extensions can be listed as follows.

1. Make available a ROS2 path-following package. The package would include the TPN
maneuvering simulator, controllers and one or more of the following: sensor emulation
and visualization tool.

2. Private maintenance documentation: besides a documentation for general usage, a docu-
mentation for maintenance.

3. Distribute the package to the scientific community1

4.2 Requirements

The following are requirements of the project.

• User documentation: the project must have a documentation for any potential user. This
is mainly how to interact with ROS2 interfaces to run the simulation;

• OS support: the project must be developed and tested on Ubuntu 18.04 or Windows 10, to
avoid potential compatibility issues, since pydyna was built and tested in these settings;

• Case study requirements: the case study needs to be sufficiently representative of a
real TPN maritime application. The use of hardware-in-the-loop for navigation and a
visualization tool represent important contributions to the existing software and should
be present. A metric, along with a pre-defined minimum value for it2, is required for the
evaluation of the path-following task. Important to state that this metric should not depend
on time, since the path-following motion objective consists solely on the defined path
spatial constraints.

1 Depends also on TPN’s decision to make the package public or not.
2 Assuming a metric that is subject to maximization.



4.3. Technical specifications 77

4.3 Technical specifications

The following list states specifies software requirements of the project that should be
installed in the machine:

• Windows 10;

• Python 3.6.8;

• pydyna 3;

• venus 4;

• ROS2 galactic;

• Chocolatey;

• vcredist2013;

• vcredist140;

• OpenSSL;

• Visual Studio 2019;

• DDS implementations;

• OpenCV;

• CMake;

• Qt5;

• Graphviz;

• xmllint;

• Python public libraries listed in Appendix C.

3 pydyna is private to TPN
4 venus is private to TPN





79

CHAPTER

5
METHODS

5.1 ROS2 terminology

In order to understand the packages, some of ROS2 terms must be explained:

• node: independent processes that are able to send and receive data from each other;

• topic: one of the means in which nodes can send (by publishing to a topic) and receive
(subscribing to a topic) data;

• service: another mean of communication between nodes with a request and response pattern.
Can be asynchronous or synchronous. In our application only asynchronous services are
used;

• msg and srv files: msg files define the data structure for topics and srv files for services.
There are standard libraries with basic data types and structures available for use, but
custom implementations are also needed in the application;

• rosbag: tool that subscribes to topics and writes a bag file with the contents of all messages
published on those specified topics. A bag file is essentially a sqlite database.



80 Chapter 5. Methods

5.2 The pydyna_ros package

This section is the user documentation of the pydyna_ros package package.

5.2.1 Overview

The pydyna_ros package1 has the objective of integrating pydyna to ROS2. This package
contains the pydyna_ros node2, which runs the simulation. The package also includes a launch
file that should be used to launch the node, and consequently, the simulation. A config folder
contains the necessary archives to support pydyna’s functioning and installation (the main files
are the .p3d files of the vessels, and the .whl file of the pydyna library). The code used in the
package can be found in Appendix D.

5.2.2 Requirements

The requirements can be found in the following list:

• Python 3.6.8;

• ROS2 Galactic;

• pydyna3;

• venus4;

• Python public libraries listed in Appendix C.

5.2.3 Features

With this package, the user is able to start the simulation with a request using a service
containing the initial state of the vessel, propeller rotation and yaw angle. After the simulation is
initialized, the user can give two inputs to pydyna: propeller rotation and the rudder angle. The
pydyna node subscribes to these two inputs as topics, runs one step of the simulation only when
it has received both of these inputs, and publishes the next state of the vessel to the state topic.
Ending the simulation is also an option and can be done with one of two topics: end or shutdown.
The last relates to the path_following package that will presented afterwards.

To start a simulation, a request has to be sent using the service InitValues.srv, as
shown in Source code 1. This service is a custom srv file. This file contains a request and response
in yaml format. Request and response are separated by a dashed line. The request contains
1 So far the package is still under development, and is called pydyna_simple
2 Just like the package, the Node is also under development and called pydyna_simple node
3 pydyna is private to TPN
4 venus is private to TPN



5.2. The pydyna_ros package 81

four properties: initial_state, waypoints, surge and yaw. The initial_state property
contains the initial state of the vessel (in the same format that will be explained for the state
topic in the next section). The waypoints property is not used in tis case. The surge and yaw
properties are the inital values for propeller rotation and rudder angle, respectively. The values to
the right are the default values for the properties.

The three, mentioned earlier, topics are: propeller_rotation, rudder_angle and
state; and are defined by their msg files. Propeller rotation and rudder angle use the standard
library Float32 msg file. The state, seen in Source code 2, uses a custom yaml-styled msg file that
contains time, position and velocity properties, which are msg files by themselves. Position
is a set of three Float32 properties: x, y and theta, seen in Source code 3. Velocity, in the same
way, is defined by having u, v and r, seen in Source code 4. The values to the right are the default
values for the properties.

All custom msg and srv files are defined and in a separate package for flexibility. This
package is called path_following_interfaces. After building the aforementioned package, these
data structures can be imported in nodes as Python objects. The code for this package can found
in Appendix F.

Source code 1 – InitValues.srv

1: #request
2: State initial_state
3: Waypoints waypoints
4: float32 surge 0.0
5: float32 yaw 0.0
6: ---
7: #response
8: float32 surge 0.0
9: float32 yaw 0.0

Source code 2 – State.msg

1: # 3DOF state of the craft
2: Position position
3: Velocity velocity
4: float32 time 0.0



82 Chapter 5. Methods

Source code 3 – Position.msg

1: # positions (earth-fixed reference frame)
2: float32 x 0.0
3: float32 y 0.0
4: # 1.57079632679 radians = 90 degrees
5: float32 theta 1.57079632679

Source code 4 – Velocity.msg

1: # velocities (craft-fixed reference frame)
2: float32 u 1.0
3: float32 v 0.0
4: float32 r 0.0

Figure 23 – pydyna_simple topics in graph

Source: Elaborated by the author.

5.2.4 Getting Started

To setup ROS2 and pydyna, it’s necessary to follow the steps in the ROS2 Galactic and
TPN 5 pages respectively. Then, the user must clone this repository.

1. To build packages, run the following command in main_ws/src with the x64 Prompt for
Visual Studio 2019 terminal as admin:

~/tcc-autonomous -ship/src/main_ws/src>colcon build --merge

-install

2. On the newly created install directory, run6:
5 TPN page is private
6 For every new terminal, this command must be run to setup the workspace environment

https://github.com/BrunoScaglione/TCC-Autonomous-Ship


5.2. The pydyna_ros package 83

~/tcc-autonomous -ship/src/main_ws/install>call setup.bat

3. Next, run the launch file. This will create rosbags in the same directory. Therefore, the
recommendation is to run it in src/main_ws/install/share/pydyna_simple/db
which is intended to store rosbags.

~/tcc-autonomous -ship/src/main_ws/install/share/

pydyna_simple/db>ros2 launch pydyna_simple pydyna_simple.launch.py

4. In order to verify active nodes and topics, the user may run:

~/>ros2 topic list -t

~/>rqt_graph

5. With the pydyna_simple node active, the user can, from the command line, start the simu-
lation with the init_simul service, send topics for rudder_angle and proppeller_-
rotation and listen to state; each one of them in a separate terminal7.

a) start simulation by making request to init_simul:

~/> ros2 service call /init_simul

path_following_interfaces/srv/InitValues "{}"

b) publish 0 (example) to rudder_angle:

~/> ros2 topic pub --once /rudder_angle std_msgs/

msg/Float32 "{data: 0}"

c) publish 1 (example) to proppeller_rotation:

~/> ros2 topic pub --once /propeller_rotation

std_msgs/msg/Float32 "{data: 1}"

d) subscribe to state:

~/> ros2 topic echo /state

7 The values used here are simply for the sake of testing, and can be changed



84 Chapter 5. Methods

5.3 Case study: path-following ship

This section exposes the methods used in the case study as well as contains user
documentation for the path-following package. First, the evaluation metrics are discussed, then
the software architecture is exposed, followed by an explanation of the sensor emulation block
and the documentation for the path-following package.

5.3.1 Evaluation

The necessity of reaching exactly the defined waypoints is not a requirement in this
setting. Therefore, the notion of reaching the next waypoint can be relaxed to touching a circle of
acceptance around it. When the craft enters the circle, the LOS algorithm considers it has already
reached the waypoint and starts guiding to the next waypoint. This configuration is beneficial to
the actuators since it smoothens the path.

The main evaluation matric is the cross-track error cte of the path followed by the craft
relative to the desired desired LOS path (lines connecting the waypoints). Also, it is necessary
to assure that the craft reaches the final waypoint, therefore the along-track error ate must be
smaller than the final radius of acceptance, at the end of the simulation. In addition, the width
error we is introduced. The aforementioned is the cross-track error measured at the end-point of
the ship further from the line it has to follow. It measures the maximum distance from any point
of the ship to the line connecting the waypoints. Both of the mentioned errors are positive when
the craft is above the current path line, and negative when the craft is below the current path line.

Although the main objective is the calculation of the mean cross-track error, there are
situations in which there are problems. Some of these are: the vessel reaches a circle of acceptance
and then for some reason turns and starts going back; or if the vessel passes the next waypoint
without reaching it. To adress these situations, the craft automatically changes it’s current desired
waypoint to match the position where the craft is. This means that, for example, if the craft passes
a waypoint without reaching it, it does not keep trying to reach it at the costs of ruining the path
following task, instead, it simply changes the desired waypoint to the next one.

The general scenario can be visualized in Figure 25, however, it is important to point out
that the schematic is not drawn to scale. Where inside_area is the place the craft will generally be,
and the cross-track error is measured normally. If the craft is in inside_area of the next waypoint,
it will change it’s desired waypoint to the following one, however, the cross-track will remain
being measured relative to the line inside inside_area. If the craft is in after_area it will change
it’s desired waypoint to the next one, and will measure cross-track relative to the line inside
after_area. The same procedure applies when the craft is in inside_area of the last waypoint or
in before_area, but in practice these situations don’t occur, therefore are not coded.



5.3. Case study: path-following ship 85

The following conditions must be satisfied in order to judge the path-following algorithm
as successful:

ate ≤ RwFinal (5.1)

where RwFinal is explained right before Equation 5.4. The simulation shuts down
automatically if the craft has ate ≤ RwFinal at the last waypoint.

ctem <
beam

2
(5.2)

Where: ctem is the mean cross-track error; and beam = 32.2 m is the width of the vessel
used in this project, at it’s widest point. Also illustrated in Figure 24.

The radius of acceptance Rw is typically in the range:

0 ≤ Rw ≤ Rlos (5.3)

The value chosen for Rw provides a trade-off between reaching the waypoints precisely
and having a smooth path. If it is small, the craft will be concerned in reaching almost exactly the
waypoints, however, this causes the craft to start adjusting to the next path line too late. Since
the craft has a very low response time, it drifts a lot away from the path8. If it is high, the craft
will exhibit a very smooth path (interpolation between path lines) which can give good results
concerning path error and give smoother rudder commands, however, the craft will not reach the
waypoints by a decent amount of distance9.

One exception is for the final waypoint. After reaching the final waypoint’s radius of
acceptance, the craft would end it’s path, since there are no more waypoints to change to. For
large values of Rw, this means that the craft would end it’s path far away from the final waypoint.
This is not a desired behaviour, therefore, a circle of acceptance exclusive to the final waypoint
RwFinal is introduced:

0 ≤ RwFinal ≤ Rw (5.4)

8 When the path lines are not co-linear
9 Here, distance is used in a generalized manner. Not only in the xy plane, but also for velocity.



86 Chapter 5. Methods

Figure 24 – Vessel dimensions

Source: Davies (2012).

Figure 25 – Schematic regarding the general scenario of the path-following task

Source: Elaborated by the author.



5.3. Case study: path-following ship 87

5.3.2 Architecture

The project’s main architecture is composed of five major groups: Dynamical Model,
Control, Guidance, Navigation and Visualization; as illustrated in Figure 26. They are all
explained in Chapter 2. In this environment, the controllers and filters are subject to a final tuning,
guided by the error metrics, to get a better path-following behaviour. Figure 26 portrays the main
interactions10 between the blocks that compose the system:

Figure 26 – Architecture of the production environment, of the path-following system. Where: nodes in
green are implemented with the use of public libraries; node in blue is implemented with the
use of private libraries and public libraries; node in red is a third-party tool; nodes in yellow
are files; node with no color is a web browser.

Source: Elaborated by the author.

where: wps are the waypoints; ψre f is the reference yaw angle; n is the propeller angular
velocity; δ is the rudder angle; X is the state; Xs is the simulated state, that is, considering
hardware-in-the-loop dynamics; X̄s is the filtered simulated state; initial conditions are position
η and velocity ν.

10 there are other data exchanged between blocks in some cases, but they are not fundamental to the
description of the system and would pollute the schematic.



88 Chapter 5. Methods

The project makes use of other sub-architectures for the development of the blocks
portrayed in Figure 26. These other architectures are explored in the rest of this section. It
is important to state that the tuning environments, which will be presented in the following
subsections, consider the craft subjected to wind and current, but not waves.

5.3.2.1 Yaw control development architectures

In order to control yaw motion of the vessel, the First Order Nomoto Model is used as the
control design model. The control design environment of yaw control can be seen in Figure 27.

Figure 27 – Architecture of the yaw control design environment

Source: Elaborated by the author.

In order to identify the model, the gain M and the time constant τ of the first-order model
are extracted from the step response. The architecture of the Nomoto Model identification can be
seen in Figure 28.

Figure 28 – Architecture of the Nomoto Model Identification environment

Source: Elaborated by the author.

After the controller is designed, it is tuned with the simulator to obtain a better response.
The architecture for this step is illustrated in Figure 29.



5.3. Case study: path-following ship 89

Figure 29 – Architecture of the yaw control tuning environment

Source: Elaborated by the author.

Where n0 is a constant propeller angular velocity. The value of n0 can be set to 0 for
simplicity of analysis.

5.3.2.2 Surge control development architectures

The surge control design environment is portrayed in Figure 30.

Figure 30 – Architecture of the surge control design environment

Source: Elaborated by the author.

After the controller is designed, it is tuned with the simulator to obtain a better response.
The architecture for this step is illustrated in Figure 31.

Figure 31 – Architecture of the surge control tuning environment

Source: Elaborated by the author.



90 Chapter 5. Methods

Where δ0 is a constant rudder angle. The value of δ0 can be set to 0 for simplicity of
analysis.

5.4 Sensor emulation

There is a block in the architecture which has the job of emulating a suite of sensors,
more specifically GPS and IMU, illustrated in Figure 26 as “GPS/IMU Simulator” block. The
objective is, by introducing a hardware-in-the-loop component, approximate the simulation to
the real system operating with non ideal sensors.

The input of the block is the actual state variables, and the output are simulated state
variables. The output is the input summed with a certain zero mean Gaussian noise, depending
on the variable. The variance of the noise, for each variable, is extracted from GPS and IMU
data-sheets. The state transformation along with the data-sheets are presented below:

states =



xs

ys

θs

us

vs

rs


=



x + xn ∼ N(µ = 0, σ = xσ)
y + yn ∼ N(µ = 0, σ = yσ)
θ + θn ∼ N(µ = 0, σ = θσ)
u +un ∼ N(µ = 0, σ = uσ)
v +vn ∼ N(µ = 0, σ = vσ)
r + rn ∼ N(µ = 0, σ = rσ)


(5.5)

where: xσ = 5.46 m, yσ = 5.46 m, θσ = 0.05 rad are “horizontal acc”, “horizontal acc”,
“heading acc”, respectively, from San Jose Technology, Inc (2021); rσ = 0.005 rad/s is calculated
using “random walk” from Inertial Labs (); and uσ and vσ are obtained from the error propagation
of Ûxσ and Ûyσ as follows:


uσ

vσ

 =

√
(cos(θ) · Ûxσ)2 + (sin(θ) · Ûyσ)2 + ((−sin(θ) · Ûx + cos(θ) · Ûy) · θσ)2√
(−sin(θ) · Ûxσ)2 + (cos(θ) · Ûyσ)2 + ((cos(θ) · Ûx − sin(θ) · Ûy) · θσ)2

 (5.6)

where Ûxσ = 0.1 m/s and Ûyσ = 0.1 m/s are “velocity acc” (industrial) from u-blox (). The
formula is derived from the rotation matrix used to change from the frame [ Ûxσ, Ûyσ]T to the frame
[uσ, vσ]T .



5.5. The path_following package 91

5.5 The path_following package

This section is the user documentation of the path_following package.

5.5.1 Overview

The path_following package is a complement to pydyna_ros package as it integrates the
architecture of Navigation, Guidance and Control determined in subsection 5.3.2 to pydyna’s
dynamical system.

This package not only complements pydyna as a way of implementing it into the
architecture of a path following vessel, but also includes a GUI to visualize the vessel. Given the
starting state and the desired waypoints, the vessel will then follow a path given by straight lines
connecting the waypoints positions, following also the surge velocity given by the waypoints
velocities.

The ship and its path can be seen through Venus, illustrated in Figure 32, where the path
to follow is dictated by straight lines in yellow, connecting the starting point in green and the
waypoints in red. A close-up image of the vessel can be seen in Figure 33. The green contour
represents the structure of the ship, and the orange one represents the rudder.

Figure 32 – Vessel reproduced with Venus in Angra dos Reis

Source: Elaborated by the author.



92 Chapter 5. Methods

Figure 33 – Vessel reproduced with Venus in close-up

Source: Elaborated by the author.

5.5.2 Requirements

The requirements can be found in the following list:

• Python 3.6.8;

• ROS2 Galactic;

• pydyna11;

• venus12;

• Python public libraries listed in Appendix C;

5.5.3 Features

With the nodes active, it’s possible to visualize the vessel in <http://localhost:6150>.
Using the packages’ HTTP API, then send requests to start the simulation, the initial state of the
vessel, and the desired waypoints to <http:localhost:5000>.

In order to run the simulation with desired parameters, the user must send two POST and
one GET request. Send the initial state to /initial_condition, illustrated in Figure 34, and
desired waypoints to /waypoints, illustrated in Figure 35. In /waypoints, the “from_gui”
property, for the time being, is always zero. This is because the waypoints are given solely through
the HTTP Client, however, in future work the value 1 will say to the backend that it should ignore
the waypoints in the payload, and instead get them from the GUI’s application server. Then, the
user sends a GET request to /start, illustrated in Figure 36.

The user can also end the simulation in two ways: killing only pydyna node or killing all
nodes except for backend node. The first one is achieved with a GET request to /end, illustrated
11 pydyna is private to TPN
12 venus is private to TPN

http://localhost:6150
http:localhost:5000


5.5. The path_following package 93

in Figure 37; while the second option is achieved with a GET request to /shutdown, illustrated
in Figure 38.

Figure 34 – Example of the POST request for setting the vessel’s initial state, using Insomnia client

Source: Elaborated by the author.

Figure 35 – Example of the POST request for setting waypoints, using Insomnia client

Source: Elaborated by the author.



94 Chapter 5. Methods

Figure 36 – Example of the GET request for starting the simulation, using Insomnia client

Source: Elaborated by the author.

Figure 37 – Example of the GET request for killing only pydyna node, using Insomnia client

Source: Elaborated by the author.

Figure 38 – Example of the GET request for killing all nodes but backend node, using Insomnia client

Source: Elaborated by the author.



5.5. The path_following package 95

5.5.4 Getting Started

To setup of the ROS2 and pydyna, it’s necessary to follow the steps in ROS2 Galactic
and TPN13 pages respectively. Then, the user must clone this repository. The first two steps are
identical to the ones in 5.2.4.

1. To build packages, run the following command in src/main_ws/src with the x64 Prompt
for Visual Studio 2019 terminal as admin:

~/tcc-autonomous -ship/src/main_ws/src>colcon build --merge

-install

2. On the newly created install directory, run14:

~/tcc-autonomous -ship/src/main_ws/install>call setup.bat

3. Next, run the launch file. This will create rosbags in the same directory. Therefore, the
recommendation is to run it in main_ws/install/share/pydyna_simple/db which
is intended to store rosbags.

~/tcc-autonomous -ship/src/main_ws/install/share/

pydyna_simple/db>ros2 launch path_following path_following.launch.

py

4. In order to verify active nodes and topics, the user may run:

~/>ros2 topic list -t

~/>rqt_graph

When using rqt_graph, a new window opens with the contents of Figure 39. The text within
the oval shapes represent the nodes, while the text within the rectangles are the topics.

5. Just like for the pydyna_simple node, the user can publish and subscribe to different topics,
or call services; to verify if they are working accordingly.

6. With all the nodes working, the user can visualize the vessel through Venus on <http:
//localhost:6150>

13 TPN page is private
14 For every new terminal, this command must be run to setup the workspace environment, which sets

environment variables that point to your workspace instead of the base environment

https://github.com/BrunoScaglione/TCC-Autonomous-Ship
http://localhost:6150
http://localhost:6150


96 Chapter 5. Methods

7. Once the server is up and running, the user can send HTTP requests, giving the initial
conditions and waypoints. Illustration of this can be seen in Figure 34 and Figure 35,
respectively, using Insomnia client. Once this is done, the user can send a request to start
the simulation, as illustrated in Figure 36.



5.5. The path_following package 97

Figure 39 – Visualization of all active nodes and the topics which they interact with. The direction of the
arrows indicates the messages flow. In addition to custom nodes, there are some built-in nodes
and topics necessary for ROS2 and some of it’s tools functioning.

Source: Elaborated by the author.





99

CHAPTER

6
RESULTS AND DISCUSSION

6.1 Results

The results are relative to the case study. These are presented in the format of various
Cases. Each Case tests the path-following task in a different way, by varying some of the
conditions. Each Case is divided in four sections: Path-following, Conditions, Metrics and Plots.
The Path-following section presents the path and links to the video of the craft performing
the path-following task; Conditions presents the conditions that define the Case and make it
reproducible; Metrics presents the error metrics obtained for three different runs; Plots shows the
most significant plots obtained from the first run and links to the other plots.

Before the results are presented, it is necessary to describe the environmental condition
in which the modules were tuned and the majority of results, cases 1 to 10, were obtained.

6.1.1 Main environmental condition

The main environmental condition is defined by three major components, which can be
visualized in Figure 40 and are described below:

• waves: with Tw = 12 s, h = 2 m and acting at 225 deg (from east counterclockwise). Where
Tw is the wave’s period and h is the wave’s height.

• wind: with vw = 8.74 m/s and acting at 210 deg (from east counterclockwise). Where vw

is the wind’s velocity.

• current: with vc = 1 m/s and acting at 330 deg (from east counterclockwise). Where vc is
the current’s velocity.



100 Chapter 6. Results and Discussion

Figure 40 – Vectors that describe the environment conditions. Errata: α = 225 deg

Source: Elaborated by the author.



6.1. Results 101

6.1.2 Case 1

This case portrays the most simple case for the path following algorithm, as the ship only
has to follow a straight line.

Path-following

The path to be followed can be seen in Figure 41, which was captured at the beginning of
the path-following task. The full video of the task can be found here.

Figure 41 – Case 1: beginning of the path-following task

Source: Elaborated by the author.

Conditions

• Collinear waypoints, described in Table 1;

• Initial State:

– x = 0 m;

– y = 0 m;

https://drive.google.com/file/d/1uveCOujNLnCYxFS7MSrYfEjwolP_eTPU/view?usp=sharing


102 Chapter 6. Results and Discussion

– θ = 1.2 rad;

– u = 2 m/s;

– v = 0 m/s;

– r = 0 rad/s;

• Sensor noise emulation: off (sensor output is the actual state);

• Rw = 50 m;

• RwFinal = 50 m;

• Ship initial coordinates: (-23.06255, -44.2772)1;

• Environmental condition: main environmental condition;

• Reached final waypoint: yes.

Table 1 – Case 1: waypoints

Waypoints Position x [m] Position y [m]) Velocity u [m/s]
1 500 500 3
2 1000 1000 3.5
3 1500 1500 4
4 2000 2000 4.5
5 2500 2500 5

Source: Elaborated by the author.

Metrics

The metrics can be seen in Table 2.

Table 2 – Case 1: metrics

Run ctem [m] ctemax [m] wem [m] wemax [m]
1 6.4 27.6 28.7 53.4
2 6.6 27.5 29.2 53.2
3 6.7 27.5 29.1 53.2

Source: Elaborated by the author.

Where: ctem is the mean cross-track error; ctemax is the max cross-track error; wem is
the mean width error; wemax is the max width error.

Plots

The most relevant plots are presented below. All the generated plots can be found here.
1 Location is: “Angra dos Reis, Rio de Janeiro, Brazil.”

https://drive.google.com/drive/folders/1lV4nWpZvn_AaPTSIZNnUBsdwLfZIr9qA?usp=sharing


6.1. Results 103

Figure 42 – Case 1: real and sensor surge
velocity. Real surge velocity
is in orange and sensor surge
velocity is in blue.

Source: Elaborated by the author.

Figure 43 – Case 1: filtered and sensor
surge velocity. Filtered surge
velocity is in orange and sen-
sor surge velocity is in blue.

Source: Elaborated by the author.

Figure 44 – Case 1: real and sensor yaw
angle. Real yaw angle is in
orange and sensor yaw angle
is in blue.

Source: Elaborated by the author.

Figure 45 – Case 1: filtered and sensor yaw
angle. Filtered yaw angle is in
orange and sensor yaw angle
is in blue.

Source: Elaborated by the author.

Figure 46 – Case 1: propeller rotation.

Source: Elaborated by the author.

Figure 47 – Case 1: rudder angle.

Source: Elaborated by the author.



104 Chapter 6. Results and Discussion

Figure 48 – Case 1: cross-track and width errors. Cross-track error is in blue and width error is in orange.

Source: Elaborated by the author.



6.1. Results 105

6.1.3 Case 2

This case is just like Case 1, but the desired velocities are different, so that there’s a peak
of velocity, and then the velocity decreases.

Path-following

The path to be followed can be seen in Figure 49, which was captured at the beginning of
the path-following task. The full video of the task can be found here.

Figure 49 – Case 2: beginning of the path-following task

Source: Elaborated by the author.

Conditions

• Collinear waypoints, described in Table 3;

• Initial State:

– x = 0 m;

– y = 0 m;

– θ = 1.2 rad;

https://drive.google.com/file/d/12XA6c-N8Xbd7c_bjZqLf2bVqqp21hKa5/view?usp=sharingg


106 Chapter 6. Results and Discussion

– u = 2 m/s;

– v = 0 m/s;

– r = 0 rad/s;

• Sensor noise emulation: off (sensor output is the actual state);

• Rw = 50 m;

• RwFinal = 50 m;

• Ship initial coordinates: (-23.06255, -44.2772)2;

• Environmental condition: main environmental condition;

• Reached final waypoint: yes.

Table 3 – Case 2: waypoints

Waypoints Position x [m] Position y [m]) Velocity u [m/s]
1 500 500 3.5
2 1000 1000 4
3 1500 1500 3.5
4 2000 2000 3
5 2500 2500 2.5

Source: Elaborated by the author.

Metrics

The metrics can be seen in Table 4.

Table 4 – Case 2: metrics

Run ctem [m] ctemax [m] wem [m] wemax [m]
1 12.2 38.6 37.8 84.8
2 12.9 44.3 39.0 93.5
3 12.4 39.5 38.4 86.0

Source: Elaborated by the author.

Where: ctem is the mean cross-track error; ctemax is the max cross-track error; wem is
the mean width error; wemax is the max width error.

Plots

The most relevant plots are presented below. All the generated plots can be found here.
2 Location is: “Angra dos Reis, Rio de Janeiro, Brazil.”

https://drive.google.com/drive/folders/1idt2fTvZ3HIbJ5v5imi8ZecdeFvC7wrL?usp=sharing


6.1. Results 107

Figure 50 – Case 2: real and sensor surge
velocity. Real surge velocity
is in orange and sensor surge
velocity is in blue.

Source: Elaborated by the author.

Figure 51 – Case 2: filtered and sensor
surge velocity. Filtered surge
velocity is in orange and sen-
sor surge velocity is in blue.

Source: Elaborated by the author.

Figure 52 – Case 2: real and sensor yaw
angle. Real yaw angle is in
orange and sensor yaw angle
is in blue.

Figure 53 – Case 2: filtered and sensor yaw
angle. Filtered yaw angle is in
orange and sensor yaw angle
is in blue.

Source: Elaborated by the author.

Figure 54 – Case 2: propeller rotation.

Source: Elaborated by the author.

Figure 55 – Case 2: rudder angle.

Source: Elaborated by the author.



108 Chapter 6. Results and Discussion

Figure 56 – Case 2: cross-track and width errors. Cross-track error is in blue and width error is in orange.

Source: Elaborated by the author.



6.1. Results 109

6.1.4 Case 3

This case is just like Case 1, but with the sensor noise emulation on.

Path-following

The path to be followed can be seen in Figure 57, which was captured at the beginning of
the path-following task. The full video of the task can be found here.

Figure 57 – Case 3: beginning of the path-following task

Source: Elaborated by the author.

Conditions

• Collinear waypoints, described in Table 5;

• Initial State:

– x = 0 m;

– y = 0 m;

– θ = 1.2 rad;

https://drive.google.com/file/d/1dG6PzS0aDIOgQfvMNJ5VmZGHFhgMb6RB/view?usp=sharing


110 Chapter 6. Results and Discussion

– u = 2 m/s;

– v = 0 m/s;

– r = 0 rad/s;

• Sensor noise emulation: on;

• Rw = 50 m;

• RwFinal = 50 m;

• Ship initial coordinates: (-23.06255, -44.2772)3;

• Environmental condition: main environmental condition;

• Reached final waypoint: yes.

Table 5 – Case 3: waypoints

Waypoints Position x [m] Position y [m]) Velocity u [m/s]
1 500 500 3
2 1000 1000 3.5
3 1500 1500 4
4 2000 2000 4.5
5 2500 2500 5

Source: Elaborated by the author.

Metrics

The metrics can be seen in Table 6.

Table 6 – Case 3: metrics

Run ctem [m] ctemax [m] wem [m] wemax [m]
1 9.7 27.7 32.9 63.8
2 10.0 26.5 33.8 64.8
3 11.6 39.9 36.6 89.2

Source: Elaborated by the author.

Where: ctem is the mean cross-track error; ctemax is the max cross-track error; wem is
the mean width error; wemax is the max width error.

Plots

The most relevant plots are presented below. All the generated plots can be found here.
3 Location is: “Angra dos Reis, Rio de Janeiro, Brazil.”

https://drive.google.com/drive/folders/1EHU3ONkTM5YyvK8aEEX3KVMRUFq3CIx2?usp=sharing


6.1. Results 111

Figure 58 – Case 3: real and sensor surge
velocity. Real surge velocity
is in orange and sensor surge
velocity is in blue.

Source: Elaborated by the author.

Figure 59 – Case 3: filtered and sensor
surge velocity. Filtered surge
velocity is in orange and sen-
sor surge velocity is in blue.

Source: Elaborated by the author.

Figure 60 – Case 3: real and sensor yaw
angle. Real yaw angle is in
orange and sensor yaw angle
is in blue.

Source: Elaborated by the author.

Figure 61 – Case 3: filtered and sensor yaw
angle. Filtered yaw angle is in
orange and sensor yaw angle
is in blue.

Source: Elaborated by the author.

Figure 62 – Case 3: propeller rotation.

Source: Elaborated by the author.

Figure 63 – Case 3: rudder angle.

Source: Elaborated by the author.



112 Chapter 6. Results and Discussion

Figure 64 – Case 3: cross-track and width errors. Cross-track error is in blue and width error is in orange.

Source: Elaborated by the author.



6.1. Results 113

6.1.5 Case 4

This case is just like Case 3, but with θ = π
2 rad in the initial state.

Path-following

The path to be followed can be seen in Figure 65, which was captured at the beginning of
the path-following task. The full video of the task can be found here.

Figure 65 – Case 4: beginning of the path-following task

Source: Elaborated by the author.

Conditions

• Collinear waypoints, described in Table 7;

• Initial State:

– x = 0 m;

– y = 0 m;

– θ = π
2 rad;

https://drive.google.com/file/d/1CMr7fXC5DuN3gEW0Xp0lFrjzQhvwrW5j/view?usp=sharing


114 Chapter 6. Results and Discussion

– u = 2 m/s;

– v = 0 m/s;

– r = 0 rad/s;

• Sensor noise emulation: on;

• Rw = 50 m;

• RwFinal = 50 m;

• Ship initial coordinates: (-23.06255, -44.2772)4;

• Environmental condition: main environmental condition;

• Reached final waypoint: yes.

Table 7 – Case 4: waypoints

Waypoints Position x [m] Position y [m]) Velocity u [m/s]
1 500 500 3
2 1000 1000 3.5
3 1500 1500 4
4 2000 2000 4.5
5 2500 2500 5

Source: Elaborated by the author.

Metrics

The metrics can be seen in Table 8.

Table 8 – Case 4: metrics

Run ctem [m] ctemax [m] wem [m] wemax [m]
1 20.6 86.6 45.2 112.8
2 20.8 87.7 44.0 112.4
3 21.4 87.7 45.7 112.5

Source: Elaborated by the author.

Where: ctem is the mean cross-track error; ctemax is the max cross-track error; wem is
the mean width error; wemax is the max width error.

Plots

The most relevant plots are presented below. All the generated plots can be found here.
4 Location is: “Angra dos Reis, Rio de Janeiro, Brazil.”

https://drive.google.com/drive/folders/1pMJyO9mJ6kDiKyKBL7BpJEd6iR07yVQr?usp=sharing


6.1. Results 115

Figure 66 – Case 4: real and sensor surge
velocity. Real surge velocity
is in orange and sensor surge
velocity is in blue.

Source: Elaborated by the author.

Figure 67 – Case 4: filtered and sensor
surge velocity. Filtered surge
velocity is in orange and sen-
sor surge velocity is in blue.

Source: Elaborated by the author.

Figure 68 – Case 4: real and sensor yaw
angle. Real yaw angle is in
orange and sensor yaw angle
is in blue.

Source: Elaborated by the author.

Figure 69 – Case 4: filtered and sensor yaw
angle. Filtered yaw angle is in
orange and sensor yaw angle
is in blue.

Source: Elaborated by the author.

Figure 70 – Case 4: propeller rotation.

Source: Elaborated by the author.

Figure 71 – Case 4: rudder angle.

Source: Elaborated by the author.



116 Chapter 6. Results and Discussion

Figure 72 – Case 4: cross-track and width errors. Cross-track error is in blue and width error is in orange.

Source: Elaborated by the author.



6.1. Results 117

6.1.6 Case 5

This case is just like Case 3, but with the starting surge velocity at u = 1 m/s in the initial
state.

Path-following

The path to be followed can be seen in Figure 73, which was captured at the beginning of
the path-following task. The full video of the task can be found here.

Figure 73 – Case 5: beginning of the path-following task

Source: Elaborated by the author.

Conditions

• Collinear waypoints, described in Table 9;

• Initial State:

– x = 0 m;

– y = 0 m;

– θ = 1.2 rad;

https://drive.google.com/file/d/1f6oXZzN8I2lAYQcSGWrfObhscOum8zSa/view?usp=sharing


118 Chapter 6. Results and Discussion

– u = 1 m/s;

– v = 0 m/s;

– r = 0 rad/s;

• Sensor noise emulation: on;

• Rw = 50 m;

• RwFinal = 50 m;

• Ship initial coordinates: (-23.06255, -44.2772)5;

• Environmental condition: main environmental condition;

• Reached final waypoint: yes.

Table 9 – Case 5: waypoints

Waypoints Position x [m] Position y [m]) Velocity u [m/s]
1 500 500 3
2 1000 1000 3.5
3 1500 1500 4
4 2000 2000 4.5
5 2500 2500 5

Source: Elaborated by the author.

Metrics

The metrics can be seen in Table 10.

Table 10 – Case 5: metrics

Run ctem [m] ctemax [m] wem [m] wemax [m]
1 10.4 27.3 36.9 72.0
2 9.7 26.5 36.3 59.3
3 9.9 29.8 36.0 62.9

Source: Elaborated by the author.

Where: ctem is the mean cross-track error; ctemax is the max cross-track error; wem is
the mean width error; wemax is the max width error.

Plots

The most relevant plots are presented below. All the generated plots can be found here.
5 Location is: “Angra dos Reis, Rio de Janeiro, Brazil.”

https://drive.google.com/drive/folders/1YNEHbG7qZCan6sCSC3WJ05qqsSXL9Eo9?usp=sharing


6.1. Results 119

Figure 74 – Case 5: real and sensor surge
velocity. Real surge velocity
is in orange and sensor surge
velocity is in blue.

Source: Elaborated by the author.

Figure 75 – Case 5: filtered and sensor
surge velocity. Filtered surge
velocity is in orange and sen-
sor surge velocity is in blue.

Source: Elaborated by the author.

Figure 76 – Case 5: real and sensor yaw
angle. Real yaw angle is in
orange and sensor yaw angle
is in blue.

Source: Elaborated by the author.

Figure 77 – Case 5: filtered and sensor yaw
angle. Filtered yaw angle is in
orange and sensor yaw angle
is in blue.

Source: Elaborated by the author.

Figure 78 – Case 5: propeller rotation.

Source: Elaborated by the author.

Figure 79 – Case 5: rudder angle.

Source: Elaborated by the author.



120 Chapter 6. Results and Discussion

Figure 80 – Case 5: cross-track and width errors. Cross-track error is in blue and width error is in orange.

Source: Elaborated by the author.



6.1. Results 121

6.1.7 Case 6

Just like Case 3, but instead of a collinear path, with a slight zigzag.

Path-following

The path to be followed can be seen in Figure 81, which was captured at the beginning of
the path-following task. The full video of the task can be found here.

Figure 81 – Case 6: beginning of the path-following task

Source: Elaborated by the author.

Conditions

• Zigzag waypoints, described in Table 11;

• Initial State:

– x = 0 m;

– y = 0 m;

– θ = 1.2 rad;

https://drive.google.com/file/d/15nWBdZTlcBHgvywQkbv1TFeKv4S7xWA8/view?usp=sharing


122 Chapter 6. Results and Discussion

– u = 2 m/s;

– v = 0 m/s;

– r = 0 rad/s;

• Sensor noise emulation: on;

• Rw = 50 m;

• RwFinal = 50 m;

• Ship initial coordinates: (-23.06255, -44.2772)6;

• Environmental condition: main environmental condition;

• Reached final waypoint: yes.

Table 11 – Case 6: waypoints

Waypoints Position x [m] Position y [m]) Velocity u [m/s]
1 500 600 3
2 1000 900 3.5
3 1500 1600 4
4 2000 1900 4.5
5 2500 2600 5

Source: Elaborated by the author.

Metrics

The metrics can be seen in Table 12.

Table 12 – Case 6: metrics

Run ctem [m] ctemax [m] wem [m] wemax [m]
1 38.4 118.6 72.9 179.1
2 40.9 151.4 75.7 218.5
3 43.1 169.5 77.4 234.7

Source: Elaborated by the author.

Where: ctem is the mean cross-track error; ctemax is the max cross-track error; wem is
the mean width error; wemax is the max width error.

Plots

The most relevant plots are presented below. All the generated plots can be found here.
6 Location is: “Angra dos Reis, Rio de Janeiro, Brazil.”

https://drive.google.com/drive/folders/1bHfDST0mdnYokniAx9Ci9tAKrLtLXr2y?usp=sharing


6.1. Results 123

Figure 82 – Case 6: real and sensor surge
velocity. Real surge velocity
is in orange and sensor surge
velocity is in blue.

Source: Elaborated by the author.

Figure 83 – Case 6: filtered and sensor
surge velocity. Filtered surge
velocity is in orange and sen-
sor surge velocity is in blue.

Source: Elaborated by the author.

Figure 84 – Case 6: real and sensor yaw
angle. Real yaw angle is in
orange and sensor yaw angle
is in blue.

Source: Elaborated by the author.

Figure 85 – Case 6: filtered and sensor yaw
angle. Filtered yaw angle is in
orange and sensor yaw angle
is in blue.

Source: Elaborated by the author.

Figure 86 – Case 6: propeller rotation.

Source: Elaborated by the author.

Figure 87 – Case 6: rudder angle.

Source: Elaborated by the author.



124 Chapter 6. Results and Discussion

Figure 88 – Case 6: cross-track and width errors. Cross-track error is in blue and width error is in orange.

Source: Elaborated by the author.



6.1. Results 125

6.1.8 Case 7

This case is similar to Case 6, but instead of Rw = 50 m, its with Rw = Rlos = 2Lpp.

Path-following

The path to be followed can be seen in Figure 89, which was captured at the beginning of
the path-following task. The full video of the task can be found here.

Figure 89 – Case 7: beginning of the path-following task

Source: Elaborated by the author.

Conditions

• Zigzag waypoints, described in Table 13;

• Initial State:

– x = 0 m;

– y = 0 m;

– θ = 1.2 rad;

– u = 2 m/s;

https://drive.google.com/file/d/1SoxF2F4tg1XCXDPFP8dkcI4qdgSZ-cwu/view?usp=sharing


126 Chapter 6. Results and Discussion

– v = 0 m/s;

– r = 0 rad/s;

• Sensor noise emulation: on;

• Rw = Rlos = 2Lpp;

• RwFinal = 50 m;

• Ship initial coordinates: (-23.06255, -44.2772)7;

• Environmental condition: main environmental condition;

• Reached final waypoint: yes.

Table 13 – Case 7: waypoints

Waypoints Position x [m] Position y [m]) Velocity u [m/s]
1 500 600 3
2 1000 900 3.5
3 1500 1600 4
4 2000 1900 4.5
5 2500 2600 5

Source: Elaborated by the author.

Metrics

The metrics can be seen in Table 14.

Table 14 – Case 7: metrics

Run ctem [m] ctemax [m] wem [m] wemax [m]
1 14.8 35.6 39.3 87.3
2 15.3 34.6 40.6 95.5
3 16.3 47.2 43.2 98.7

Source: Elaborated by the author.

Where: ctem is the mean cross-track error; ctemax is the max cross-track error; wem is
the mean width error; wemax is the max width error.

Plots

The most relevant plots are presented below. All the generated plots can be found here.

7 Location is: “Angra dos Reis, Rio de Janeiro, Brazil.”

https://drive.google.com/drive/folders/168jj8uLB69ziLZ3fcFm6CTbPwXI4uRkk?usp=sharing


6.1. Results 127

Figure 90 – Case 7: real and sensor surge
velocity. Real surge velocity
is in orange and sensor surge
velocity is in blue.

Source: Elaborated by the author.

Figure 91 – Case 7: filtered and sensor
surge velocity. Filtered surge
velocity is in orange and sen-
sor surge velocity is in blue.

Source: Elaborated by the author.

Figure 92 – Case 7: real and sensor yaw
angle. Real yaw angle is in
orange and sensor yaw angle
is in blue.

Source: Elaborated by the author.

Figure 93 – Case 7: filtered and sensor yaw
angle. Filtered yaw angle is in
orange and sensor yaw angle
is in blue.

Source: Elaborated by the author.

Figure 94 – Case 7: propeller rotation.

Source: Elaborated by the author.

Figure 95 – Case 7: rudder angle.

Source: Elaborated by the author.



128 Chapter 6. Results and Discussion

Figure 96 – Case 7: cross-track and width errors. Cross-track error is in blue and width error is in orange.

Source: Elaborated by the author.



6.1. Results 129

6.1.9 Case 8

This case is a path in which the vessel makes a slight counterclockwise turn, with the
initial yaw angle at θ = 1 rad in the initial state, and increasing velocity similar to previous cases.

Path-following

The path to be followed can be seen in Figure 97, which was captured at the beginning of
the path-following task. The full video of the task can be found here.

Figure 97 – Case 8: beginning of the path-following task

Source: Elaborated by the author.

Conditions

• Curve waypoints, described in Table 15;

• Initial State:

– x = 0 m;

– y = 0 m;

– θ = 1 rad;

https://drive.google.com/file/d/1O7jQmmZ6uA8C-C89AZkrVuTcZaa5GsGX/view?usp=sharing


130 Chapter 6. Results and Discussion

– u = 2 m/s;

– v = 0 m/s;

– r = 0 rad/s;

• Sensor noise emulation: on;

• Rw = 50 m;

• RwFinal = 50 m;

• Ship initial coordinates: (-23.06255, -44.2772)8;

• Environmental condition: main environmental condition;

• Reached final waypoint: yes.

Table 15 – Case 8: waypoints

Waypoints Position x [m] Position y [m]) Velocity u [m/s]
1 480 300 2.5
2 880 650 3.0
3 1350 1050 3.5
4 1850 1650 4
5 2150 2000 4.5
6 2400 2500 5

Source: Elaborated by the author.

Metrics

The metrics can be seen in Table 16.

Table 16 – Case 8: metrics

Run ctem [m] ctemax [m] wem [m] wemax [m]
1 42.7 137.5 83.2 221.8
2 15.5 43.2 44.6 100.2
3 18.3 68.5 55.2 138.5

Source: Elaborated by the author.

Where: ctem is the mean cross-track error; ctemax is the max cross-track error; wem is
the mean width error; wemax is the max width error.

Plots

The most relevant plots are presented below. All the generated plots can be found here.
8 Location is: “Angra dos Reis, Rio de Janeiro, Brazil.”

https://drive.google.com/drive/folders/1MneRAt27zZM3Xr3RpOPj8pZOkIuTX0vI?usp=sharing


6.1. Results 131

Figure 98 – Case 8: real and sensor surge
velocity. Real surge velocity
is in orange and sensor surge
velocity is in blue.

Source: Elaborated by the author.

Figure 99 – Case 8: filtered and sensor
surge velocity. Filtered surge
velocity is in orange and sen-
sor surge velocity is in blue.

Source: Elaborated by the author.

Figure 100 – Case 8: real and sensor yaw
angle. Real yaw angle is in
orange and sensor yaw angle
is in blue.

Source: Elaborated by the author.

Figure 101 – Case 8: filtered and sensor
yaw angle. Filtered yaw angle
is in orange and sensor yaw
angle is in blue.

Source: Elaborated by the author.

Figure 102 – Case 8: propeller rotation.

Source: Elaborated by the author.

Figure 103 – Case 8: rudder angle.

Source: Elaborated by the author.



132 Chapter 6. Results and Discussion

Figure 104 – Case 8: cross-track and width errors. Cross-track error is in blue and width error is in orange.

Source: Elaborated by the author.



6.1. Results 133

6.1.10 Case 9

This case is similar to Case 8, but instead of Rw = 50 m, with Rw = Rlos = 2Lpp.

Path-following

The path to be followed can be seen in Figure 105, which was captured at the beginning
of the path-following task. The full video of the task can be found here.

Figure 105 – Case 9: beginning of the path-following task

Source: Elaborated by the author.

Conditions

• Curve waypoints, described in Table 17;

• Initial State:

– x = 0 m;

– y = 0 m;

– θ = 1 rad;

– u = 2 m/s;

https://drive.google.com/file/d/1B4194yqeuJJ7j7z_XZADZ9iuHRtLtg6f/view?usp=sharing


134 Chapter 6. Results and Discussion

– v = 0 m/s;

– r = 0 rad/s;

• Sensor noise emulation: on;

• Rw = Rlos = 2Lpp;

• RwFinal = 50 m;

• Ship initial coordinates: (-23.06255, -44.2772)9;

• Environmental condition: main environmental condition;

• Reached final waypoint: yes.

Table 17 – Case 9: waypoints

Waypoints Position x [m] Position y [m]) Velocity u [m/s]
1 480 300 2.5
2 880 650 3.0
3 1350 1050 3.5
4 1850 1650 4.0
5 2150 2000 4.5
6 2400 2500 5.0

Source: Elaborated by the author.

Metrics

The metrics can be seen in Table 18.

Table 18 – Case 9: metrics

Run ctem [m] ctemax [m] wem [m] wemax [m]
1 14.2 32.0 42.0 85.4
2 12.2 36.4 39.5 77.1
3 14.1 32.4 41.5 88.1

Source: Elaborated by the author.

Where: ctem is the mean cross-track error; ctemax is the max cross-track error; wem is
the mean width error; wemax is the max width error.

Plots

The most relevant plots are presented below. All the generated plots can be found here.

9 Location is: “Angra dos Reis, Rio de Janeiro, Brazil.”

https://drive.google.com/drive/folders/1U_q9cC0YizKsmqfLCJcI2KFMARG6aTyN?usp=sharing


6.1. Results 135

Figure 106 – Case 9: real and sensor surge
velocity. Real surge velocity
is in orange and sensor surge
velocity is in blue.

Source: Elaborated by the author.

Figure 107 – Case 9: filtered and sensor
surge velocity. Filtered surge
velocity is in orange and sen-
sor surge velocity is in blue.

Source: Elaborated by the author.

Figure 108 – Case 9: real and sensor yaw
angle. Real yaw angle is in
orange and sensor yaw angle
is in blue.

Source: Elaborated by the author.

Figure 109 – Case 9: filtered and sensor
yaw angle. Filtered yaw angle
is in orange and sensor yaw
angle is in blue.

Source: Elaborated by the author.

Figure 110 – Case 9: propeller rotation.

Source: Elaborated by the author.

Figure 111 – Case 9: rudder angle.

Source: Elaborated by the author.



136 Chapter 6. Results and Discussion

Figure 112 – Case 9: cross-track and width errors. Cross-track error is in blue and width error is in orange.

Source: Elaborated by the author.



6.1. Results 137

6.1.11 Case 10

Similar to Case 7, but instead of zizag path, an “S” shaped path with strong direction
change, and with θ = 0.8 rad in the initial state.

Path-following

The path to be followed can be seen in Figure 113, which was captured at the beginning
of the path-following task. The full video of the task can be found here.

Figure 113 – Case 10: beginning of the path-following task

Source: Elaborated by the author.

Conditions

• "S" waypoints, described in Table 19;

• Initial State:

– x = 0 m;

https://drive.google.com/file/d/1OfyxFOwMj711Q6Y_2HLWnhM5PyB_lYmE/view?usp=sharing


138 Chapter 6. Results and Discussion

– y = 0 m;

– θ = 0.8 rad;

– u = 2 m/s;

– v = 0 m/s;

– r = 0 rad/s;

• Sensor noise emulation: on;

• Rw = Rlos = 2Lpp;

• RwFinal = 50 m;

• Ship initial coordinates: (-23.06255, -44.2772)10;

• Environmental condition: main environmental condition;

• Reached final waypoint: no.

Table 19 – Case 10: waypoints

Waypoints Position x [m] Position y [m]) Velocity u [m/s]
1 800 300 3.0
2 800 500 3.5
3 0 1100 4.0
4 0 1300 4.5
5 800 1600 5.0

Source: Elaborated by the author.

Metrics

The metrics can be seen in Table 20.

Table 20 – Case 10: metrics

Run ctem [m] ctemax [m] wem [m] wemax [m]
1 58.2 234.9 113.6 276.9
2 56.6 261.2 111.7 336.9
3 42.6 256.3 97.6 329.0

Source: Elaborated by the author.

Where: ctem is the mean cross-track error; ctemax is the max cross-track error; wem is
the mean width error; wemax is the max width error.
10 Location is: “Angra dos Reis, Rio de Janeiro, Brazil.”



6.1. Results 139

Plots

The most relevant plots are presented below. All the generated plots can be found here.

Figure 114 – Case 10: real and sensor
surge velocity. Real surge ve-
locity is in orange and sensor
surge velocity is in blue.

Source: Elaborated by the author.

Figure 115 – Case 10: filtered and sensor
surge velocity. Filtered surge
velocity is in orange and sen-
sor surge velocity is in blue.

Source: Elaborated by the author.

Figure 116 – Case 10: real and sensor yaw
angle. Real yaw angle is in
orange and sensor yaw angle
is in blue.

Source: Elaborated by the author.

Figure 117 – Case 10: filtered and sensor
yaw angle. Filtered yaw angle
is in orange and sensor yaw
angle is in blue.

Source: Elaborated by the author.

https://drive.google.com/drive/folders/1TSY_qoJUoD70_sAVzWOIUabdDETI1xmT?usp=sharing


140 Chapter 6. Results and Discussion

Figure 118 – Case 10: propeller rotation.

Source: Elaborated by the author.

Figure 119 – Case 10: rudder angle.

Source: Elaborated by the author.

Figure 120 – Case 10: cross-track and width errors. Cross-track error is in blue and width error is in
orange.

Source: Elaborated by the author.



6.1. Results 141

6.1.12 Case 11

This case is just like Case 3, but with the environmental conditions altered. The current’s
angle is now of 280 deg, the winds are at 10 m/s and the waves are 2.5 m tall.

Path-following

The path to be followed can be seen in Figure 121, which was captured at the beginning
of the path-following task. The full video of the task can be found here.

Figure 121 – Case 11: beginning of the path-following task

Source: Elaborated by the author.

Conditions

• Linear waypoints, described in Table 21;

• Initial State:

– x = 0 m;

– y = 0 m;

– θ = 1.2 rad;

https://drive.google.com/file/d/15oXxem6MMt98RHRNIGv5SQLwlOhEEvTZ/view?usp=sharing


142 Chapter 6. Results and Discussion

– u = 2 m/s;

– v = 0 m/s;

– r = 0 rad/s;

• Sensor noise emulation: on;

• Rw = Rlos = 2Lpp;

• RwFinal = 50 m;

• Ship initial coordinates: (-23.06255, -44.2772)11;

• Environmental condition:

– waves: with Tw = 12 s, h = 2.5 m and acting at 225 deg (from east counterclockwise).
Where Tw is the wave’s period and h is the wave’s height;

– wind: with vw = 10 m/s and acting at 210 deg (from east counterclockwise). Where
vw is the wind’s velocity;

– current: with vc = 1 m/s and acting at 280 deg (from east counterclockwise). Where
vc is the current’s velocity;

• Reached final waypoint: no.

Table 21 – Case 11: waypoints

Waypoints Position x [m] Position y [m]) Velocity u [m/s]
1 500 500 3
2 1000 1000 3.5
3 1500 1500 4
4 2000 2000 4.5
5 2500 2500 5

Source: Elaborated by the author.

Metrics

The metrics can be seen in Table 22.

Where: ctem is the mean cross-track error; ctemax is the max cross-track error; wem is
the mean width error; wemax is the max width error.

Plots

The most relevant plots are presented below. All the generated plots can be found here.
11 Location is: “Angra dos Reis, Rio de Janeiro, Brazil.”

https://drive.google.com/drive/folders/1bvsYMHRXF_llO3kKdL1hxNvronyp1EHk?usp=sharing


6.1. Results 143

Table 22 – Case 11: metrics

Run ctem [m] ctemax [m] wem [m] wemax [m]
1 37.3 116.7 81.8 157.4
2 25.8 68.8 66.8 117.6
3 21.3 73.5 61.0 138.2

Source: Elaborated by the author.

Figure 122 – Case 11: real and sensor
surge velocity. Real surge ve-
locity is in orange and sensor
surge velocity is in blue.

Source: Elaborated by the author.

Figure 123 – Case 11: filtered and sensor
surge velocity. Filtered surge
velocity is in orange and sen-
sor surge velocity is in blue.

Source: Elaborated by the author.

Figure 124 – Case 11: real and sensor yaw
angle. Real yaw angle is in
orange and sensor yaw angle
is in blue.

Source: Elaborated by the author.

Figure 125 – Case 11: filtered and sensor
yaw angle. Filtered yaw angle
is in orange and sensor yaw
angle is in blue.

Source: Elaborated by the author.



144 Chapter 6. Results and Discussion

Figure 126 – Case 11: propeller rotation.

Source: Elaborated by the author.

Figure 127 – Case 11: rudder angle.

Source: Elaborated by the author.

Figure 128 – Case 11: cross-track and width errors. Cross-track error is in blue and width error is in
orange.

Source: Elaborated by the author.



6.2. Discussion 145

6.2 Discussion

The discussion is done, separately, for different signals extracted from the results. The
topics, in order, are the following: path-following ability; ability to reach final waypoint; velocity-
following ability; actuators behaviour; radius of acceptance influence; initial condition influence;
environmental condition influence and sensor noise emulation influence.

6.2.1 Path-following ability

To see if the cases were successful at the path-following task, the first thing to check is if
the craft reached the final waypoint. If it did not reach it, the case was not successful. If it reached
it, attention is turned to the mean cross-track error ctem. Taking the mean of ctem, over all three
runs, it is possible to state that a Case was successful. This can be done by using the evaluation
metric exposed in Equation 5.2. Therefore, success is defined by:∑3

run=1 ctem

3
< 16.1

With this in mind, Case 1, Case 2, Case 3, Case 5, Case 7, and Case 9 were successful;
whereas Case 4, Case 6, Case 8, Case 10, Case 11 were not. However Case 6 and Case 8 only
vary by a controlled parameter from Case 7 and Case 9 respectively. Therefore, the conditions
which the craft is not able to perform well the path-following task are the ones described in Case
4, Case 10 and Case 11.

The situations where the craft is successful present themselves as smooth paths, where
the craft’s initial yaw angle is close to the angle of the path line and the craft is under the
main environmental condition, in which the modules were tuned. The situations where the craft
under performs, are when some of these factors do not hold. In Case 4 initial yaw angle is not
favourable; in Case 10 the path is not smooth; and in Case 11 the craft is subjected to a different
environmental condition.

It is also important to notice that in all cases, the angular position does not stabilize very
well, it keeps oscillating. This behaviour is not ideal, but did not affect too much the ability to
retain a low error. When the PID yaw controller was tuned, this behaviour was identified. Efforts
were made to try to make the craft stabilize, by increasing the integral term and decreasing the
gain. However, this affected other dynamics and increased the path-following error. Therefore,
it was chosen to remain with this oscillating behaviour. Improvements should be done to this
oscillating response, but require a careful look at the methods chosen and implications on the
overall task. One important factor is that, by not using a Kalman Filter type of filter, the error in
the state estimation remained significant throughout the whole path, instead of converging to a
low steady-state error in some sense.



146 Chapter 6. Results and Discussion

6.2.2 Ability to reach final waypoint

In all cases, but Case 10 and Case 11, the craft reached the final waypoint (in a reasonable
amount of time, approximately 5 minutes). These situations where the craft got stuck in the
middle of the way, may be explained by the conditions of these situations, together with the
simplifying assumptions adopted for the models and by the type of surge controller used.

In cases Case 10 and Case 11 the craft is subjected to harsh direction changes and new
external forces, respectively. These factors can cause the craft to become less stable, oscillate
around the path and rotate around it’s axis. Specifically, Case 11 also increases the amount of
latitudinal force the craft is being subjected to, increasing the sway velocity. The simplified
models used in this monograph adopted the assumption that the sway linear velocity v and yaw
angular velocity r were small. This gap between the simulated scenarios and the assumptions can
be related to the poor performance of the craft. Finally, the controller used is not very dynamic, it
is relatively constant between two waypoints. This means that, for example, if some novel effect
occurs to the craft that makes it lose velocity along the way, the controller doesn’t compensate for
it by increasing the gain. The maximum gain of the controller is a constant.

6.2.3 Velocity-following ability

The ability not only to reach the desired waypoints locations, but also, the waypoints
velocities is defined as the velocity-following ability. This is not part of the path-following task,
however, it is a bonus desired behaviour. The craft is able to follow very well the desired velocities
in Case 1 and Case 2; follow reasonably well in Case 3, Case 4 and Case 5; and was not able to
follow in the other cases.

The fact that the filter used for noise removal is a simple low-pass filter may have an
influence on the damage in performance from the cases without noise emulation to the cases
with noise emulation. The noise is Gaussian around the actual values, therefore has presence
all over the frequency spectrum. The low-pass filter only filters out the high-frequency noise,
however, leaves the low-frequency noise that can damage the craft’s performance.

A possible explanation for the poor performances, with respect to velocity-following,
may be the simplified models adopted. The craft suffered to follow the velocities when subjected
to noise and it got even worse when it had to follow a curvy path. These both effects cause the
craft to exhibit important rotation, important enough to affect significantly the surge velocity.
This coupling effect is not considered in the monograph, and therefore may be a source of
theoretical-practical mismatch for the unsuccessfully situations.

Another possible explanation for poor performance is the use of Rw = Rlos = 2 · Lpp. This
is a big radius of acceptance. Although it is beneficial for the path-following task, it ruins the
accuracy of the velocity control. Way before reaching exactly the desired waypoint, the craft
changes it’s desired waypoint to the next one, and therefore, also starts following another velocity.



6.2. Discussion 147

When the craft actually crosses the waypoint it is in the middle of trying to reach the next
waypoint’s velocity.

6.2.4 Actuators behaviour

Ideally, the actuators (propeller and rudder) would exhibit smooth curves. When high
frequency components are present, it causes the actuators to wear faster and the craft to oscillate
frequently. With this in mind, the propeller rotation and rudder angle curves are analyzed.

In general the propeller rotation appeared to be relatively smooth, but in some cases like
Case 9 has some moments of unwanted ( medium and high amplitude) high frequency behaviour.
The rudder presented (low and medium amplitude) high frequency components in all cases,
however, it got worse in Case 8 with the high frequency component having more amplitude; and
in Case 10 and Case 11 it shattered.

All above situations could be employed in a real-scenario, except the ones were the
input shattered. These require a rethinking of the modelling, control or parameters used. For the
other situations, a smoothing filter, such as moving average filter, could be used to smoothen
these curves. However, these would add significant response delay that can damage a lot the
path-following ability, therefore, it is necessary to analyze if the actuator wear and craft oscillation
are bad enough to give away path-following performance.

6.2.5 Radius of acceptance influence

The radius of acceptance Rw does not influence the path-following task for the cases
where the waypoints are collinear, because the path lines to follow are exactly the same. That is
why, for these cases, this parameter does not vary. A small value Rw = 50 is chosen so that the
surge velocity control can work as expected.

Outside the specific case mentioned before, this parameter plays a huge role. When the
path has changes in direction, varying this parameters influences a lot the path-following task. If
the radius of acceptance is big, the craft starts adapting to the new path line way before it reaches
the exact location of the current waypoint. This is extremely helpful in settings like this one,
where the craft has a slow response (large time constant). The drawback is that the craft doesn’t
reach exactly the desired waypoint and depending on the type of path and craft, may adapt to
early to the next path line, losing grip with the actual path line.

In the cases exposed, it was extremely advantageous the use of a large radius of acceptance.
The advantages can be seen by comparing Case 6 to Case 7 and Case 8 to Case 9. The errors
were are all way smaller, for Case 7 and Case 9, which are the ones using larger radius.



148 Chapter 6. Results and Discussion

6.2.6 Initial state influence

The initial state influences a lot the the path-following task. Especially, the initial yaw
angle and surge velocity, which should be the ones that vary the most in real scenarios. This is
evidenced when comparing Case 4 and Case 5 to Case 3.

In Case 4 the initial yaw angle is much less favourable, as the craft needs to turn a lot to
get to the desired angle. This causes the craft to have very large errors at the beginning of the
trajectory, which influences a lot the overall error and makes it not successful. The craft also
oscillates around the desired path in higher frequency in this case.

In Case 5 the initial surge velocity is smaller. The surge velocity at 1 m/s is out of the
assumptions adopted, which stated that surge velocity would be higher than 2 m/s. However,
the craft did not deteriorate it’s path-following performance. Also produced higher frequency
oscillations around the desired path, and additionally, deteriorated a bit it’s velocity-following
performance.

6.2.7 Environmental condition influence

The modules were tuned at the main environmental condition. Since wave, wind and
current forces are not modelled directly neither measured, these disturbances were embedded in
the controllers, by tuning them to perform well at this environment. Unfortunately, the craft does
not perform well when subjected to a different environmental condition. It would be necessary to
tune the modules again, to the new environment, to obtain good performance.

The loss of performance can be seen by comparing Case 3 to Case 11. In the last case, the
craft gets stuck in the middle of the way and does not complete the path. Further investigations
and analysis should be done to understand better this behaviour and make the craft more robust.

6.2.8 Sensor noise emulation influence

Sensor noise emulation is an important part of the architecture, because approximates
real-world scenarios, where systems rely on non-ideal sensors to get the actual state of the craft.
The influence of turning on this block can be seen by comparing Case 1 to Case 3. When noise
was included in the state signal, it made the task harder. Therefore, it can be seen that the resultant
behaviour got worse in many dimensions. The velocity-following went from a very good to a
reasonably good; the angular position instead of being damped, remained with high oscillations;
and the actuators presented more harsh variations due to the inconsistent behaviour of noise and
the oscillations just mentioned. That being said, in Case 3 the craft was still able to be successful
at the path-following task.



149

CHAPTER

7
CONTRIBUTIONS

The main contributions of the project are:

• The integration of pydyna with ROS2. This integration opens a new door for the use of
all the simulator’s capabilities. The ROS2 environment enables faster developing cycles,
modular development, fast experimenting, scalability, additional robotics tools, and support
of a large community. Also, it may provide the community with a high-fidelity ship
maneuvering simulator as a ROS2 package, which can contribute to a wide range of
applications all over the world.

• The development of a project to be used as a proof of concept and starting point for
future maritime applications. This project can guide TPN’s first efforts with the ROS2
framework. Although the framework is well known, there is not much material on the
internet, especially for more complex applications. Furthermore, the project provides a
path-following ship, which should be useful in the context of fast-time simulations. It is
not expected that the project substitutes directly TPN’s current piece of software, however,
chunks of knowledge, modified versions of the project or applications built on top of it
could be used. Applications other than canal design may also be impacted, such as dynamic
positioning of ships.

• The development of a very simple form of an autonomous ship. The path-following
ship obtained in this project is far for a fully autonomous ship application, as are the
methods used far from the most accurate and general ones. With this in mind, the project
does contribute with a simple form of autonomy, were the ship is able follow feasible desired
paths, and in some cases, also reach the desired velocities; given a set of human-crafted
waypoints. This monograph can help guide future projects related to providing some
form of simple autonomy to ships, as a source of theory or starting point for practical
implementations.





151

CHAPTER

8
CONCLUSIONS AND FUTURE WORK

8.1 Conclusions

The conclusions are divided in two parts: a revisit to the monograph’s objectives and a
revisit to the monographs’ results.

Revisiting objectives

An integration of pydyna with ROS2 in the form of a ROS2 package was built. This
package can be used in a modular manner within the ROS2 environment. Additionally, a proof-of-
concept study case was developed to demonstrate an application using pydyna and ROS2 together.
The application was designed to be close to the fast-time simulations done by TPN, in actual
routines regarding canal design. Finally, user documentation was provided for the packages.

Therefore, all the primary objetives were achieved.

With regards to the extensions: a path-following package was developed with control,
sensing and visualization capabilities; a private maintenance documentation is being made at
the moment, in conjunction with TPN staff; neither one of the packages were distributed to
the scientific community because the subject was not discussed yet with TPN and a few code
optimizations and test routines are to be done.

Therefore, one of the extensions was achieved.



152 Chapter 8. Conclusions and Future Work

Revisiting results

The results show that the craft was able to succeed at the path-following task, for a
favourable initial yaw angle, at the main environmental condition and for simple paths such as
collinear, slight zigzag or a slight curve. When the craft starts with a discrepant yaw angle, when
paths have more harsh direction changes, or different environmental conditions are acting, the
craft does not succeed at the task. These results can have a lot to do with the fact that the craft
has a very slow time response (large craft) and was tuned in a specific environmental condition.

The craft was able to reach very well the desired velocities at the waypoints only in the
collinear without sensor noise emulation case, but also managed to reach them reasonably well
when noise emulation was on. In other cases, the velocity control did not work so well. These
results have a lot to do with the simplified decoupled models for surge and yaw, and with the
filters used. The decoupled models ignore important dynamics of the craft, for example, when the
craft starts rotating it affects the surge velocity, but this effect is not modelled. The filter used for
sensor noise removal was not the best option. The low-pass filter filtered high-frequency noise,
however, low-frequency noise still remained.

The code for this project can be found here.

8.2 Future work

Due to the scope of the project and time constraints, some capabilities were not developed
or not explored to their maximum potential. These can be divided in two large groups: code and
methods. Code is about the implementation itself, not related to GNC theory. Methods are the
theoretical techniques employed for the development of the GNC system. These two categories
are explored below:

• Code. The code written for this project is far from optimized code. Therefore, there is
plenty of room for making the system more efficient. Efficiency can not only make the
simulations run faster, but are key for the quality of the path-following task, since the
modules operate asynchronously. This means the faster the modules run, the lower is the
delay of craft’s actions.

The graphical user interface can also have several improvements. As for the moment of
this monograph, it only acts as a visualization tool. The GUI could also let the user change
waypoints by dragging them in the screen, track the path developed by the craft and run
several simulations without ending and starting the process again.

https://github.com/BrunoScaglione/TCC-Autonomous-Ship


8.2. Future work 153

• Methods. The models used for surge and yaw are consequence of the adoption of a set
of simplifying assumptions. When the scenario drifts away from these assumptions, the
performance of the task drops a lot. The decoupling of surge from yaw is a strong factor
that restrains the performance of the system to some level.

Also, environmental disturbances are not modelled directly neither measured, therefore,
they are a source of unmodelled dynamics. Tuning of the controllers solves some of the
problems in theoretical modelling, however, is not the best approach, because it doesn’t
generalize. A robustness analysis would be a recommended next step, mainly to gain quality
in different environmental conditions.

The choice of Sliding Mode method for the surge controller may not have been the best
choice, since it provides a relatively constant controller for each path line. In many cases
the craft suffers some problems along the way, and would need to adjust it’s control action
severely, based on it’s current state.

With regards to the PID yaw controller, it did not damp well the oscillating yaw angle for
most of the cases. Ideally, the craft should stabilize at the steady state yaw angle. Therefore,
efforts can be made in this direction as well.

As for navigation, the use of a Kalman Filter for state estimation and wave filtering
would probably be the best option to avoid maintaining low-frequency noise, but adds a
significant amount of complexity. Finally, with regards to guidance, path maneuvering or
even trajectory tracking could be next steps to obtain a more powerful autonomous ship.

Tackling these problems can be subject of future work that wish to improve, or build on
top of, this project. This will lead to a more efficient, robust, and user-friendly system that may
bridge the gap between a proof of concept to a production level application.





155

BIBLIOGRAPHY

AMENDOLA, J.; MIURA, L. S.; COSTA, A. H. R.; COZMAN, F. G.; TANNURI, E. A.
Navigation in restricted channels under environmental conditions: Fast-time simulation by
asynchronous deep reinforcement learning. IEEE Access, Institute of Electrical and Electronics
Engineers (IEEE), v. 8, p. 149199–149213, 2020. Citations on pages 37 and 38.

CAMPBELL, S.; NAEEM, W.; IRWIN, G. A review on improving the autonomy of unmanned
surface vehicles through intelligent collision avoidance manoeuvres. Annual Reviews in Control,
Elsevier BV, v. 36, n. 2, p. 267–283, dec 2012. Citations on pages 39, 42, and 46.

DAVIES, E. A. J. Ship. 2012. Available: <https://www.britannica.com/technology/ship/
Dynamic-stability>. Citation on page 86.

EUROPEAN MARITIME SAFETY AGENCY. ANNUAL OVERVIEW OF MARINE CASU-
ALTIES ANDINCIDENTS. 2017. Available: <https://www.isesassociation.com/wp-content/
uploads/2017/11/Annual-overview-of-marine-casualties-and-incidents-2017_final.pdf>. Cita-
tion on page 29.

FEDORENKO, R.; GURENKO, B. Local and global motion planning for unmanned surface
vehicle. MATEC Web of Conferences, EDP Sciences, v. 42, p. 01005, 2016. Citation on page
70.

FOSSEN, T. I. Handbook of Marine Craft Hydrodynamics and Motion Control. [S.l.]: John
Wiley & Sons, Ltd, 2011. Citations on pages 39, 40, 41, 42, 43, 45, 46, 47, 48, 51, 53, 58, 59,
and 63.

GITHUB. 2021. Available: <https://github.com>. Citation on page 167.

HASAN, K. S. B. What, Why and How of ROS. 2019. Available: <https://towardsdatascience.
com/what-why-and-how-of-ros-b2f5ea8be0f3>. Citation on page 67.

INERTIAL LABS. High Performance Advanced MEMS Industrial Tactical Grade Inertial
Measurement Units. [S.l.]. Citation on page 90.

IOVINO, S.; SAVVARIS, A.; TSOURDOS, A. Experimental testing of a path manager for
unmanned surface vehicles in survey missions. IFAC-PapersOnLine, Elsevier BV, v. 51, n. 29,
p. 226–231, 2018. Citation on page 70.

ISERMANN, R.; MüNCHHOF, M. Identification of Dynamic Systems. [S.l.]: Springer Berlin
Heidelberg, 2011. Citations on pages 55 and 56.

KOFI, L. G. The Ever Given – Suez Canal Accident: The Genesis to the
current legal proceedings. 2021. Available: <https://odomankoma.com/2021/04/19/
the-ever-given-suez-canal-accident-the-genesis-to-the-current-legal-proceedings/>. Citation on
page 30.

https://www.britannica.com/technology/ship/Dynamic-stability
https://www.britannica.com/technology/ship/Dynamic-stability
https://www.isesassociation.com/wp-content/uploads/2017/11/Annual-overview-of-marine-casualties-and-incidents-2017_final.pdf
https://www.isesassociation.com/wp-content/uploads/2017/11/Annual-overview-of-marine-casualties-and-incidents-2017_final.pdf
https://github.com
https://towardsdatascience.com/what-why-and-how-of-ros-b2f5ea8be0f3
https://towardsdatascience.com/what-why-and-how-of-ros-b2f5ea8be0f3
https://odomankoma.com/2021/04/19/the-ever-given-suez-canal-accident-the-genesis-to-the-current-legal-proceedings/
https://odomankoma.com/2021/04/19/the-ever-given-suez-canal-accident-the-genesis-to-the-current-legal-proceedings/


156 Bibliography

KRUPINSKI, S.; MAURELLI, F. Positioning aiding using LiDAR in GPS signal loss scenarios.
In: 2018 IEEE 8th International Conference on Underwater System Technology: Theory
and Applications (USYS). [S.l.]: IEEE, 2018. Citation on page 70.

LIU, Z.; ZHANG, Y.; YU, X.; YUAN, C. Unmanned surface vehicles: An overview of develop-
ments and challenges. Annual Reviews in Control, Elsevier BV, v. 41, p. 71–93, 2016. Citations
on pages 39, 43, 46, 55, and 65.

NILLER, E. The Robot Ships Are Coming . . . Eventually. 2020. Available: <https:
//www.wired.com/story/mayflower-autonomous-ships/#:~:text=Ithasidentifiedfourlevels,is\a\
fully\autonomous\ship>. Citation on page 31.

NUMERICAL OFFSHORE TANK. Expertise. 2020. Available: <https://tpn.usp.br/simulador/
Expertise.html>. Citations on pages 31 and 33.

. Homepage. 2020. Available: <https://tpn.usp.br>. Citation on page 38.

. Simulators. 2020. Available: <https://tpn.usp.br/simulador/Simulators.html>. Citation
on page 32.

. Technical Studies. 2020. Available: <https://tpn.usp.br/simulador/TechnicalStudies.html>.
Citations on pages 32, 33, and 35.

. Profile. 2021. Available: <https://www.linkedin.com/company/
numerical-offshore-tank-tpn-/?originalSubdomain=br>. Citation on page 31.

SAN JOSE TECHNOLOGY, INC. Marine GPS Receiver. [S.l.], 2021. Citation on page 90.

SMITH, P.; DUNBABIN, M. High-fidelity autonomous surface vehicle simulator for the maritime
RobotX challenge. IEEE Journal of Oceanic Engineering, Institute of Electrical and Electronics
Engineers (IEEE), v. 44, n. 2, p. 310–319, apr 2019. Citation on page 70.

SPECIALIST, G. G. T. What is Port and Starboard ? Available: <https://www.globalior.com/
what-is-port-and-starboard/port-and-starboard-diagram/>. Citation on page 52.

STEIGRAD, A. Giant ship blocking Suez Canal freed, but eco-
nomic impact looms. 2021. Available: <https://nypost.com/2021/03/29/
giant-ship-blocking-suez-canal-freed-but-economic-impact-looms/>. Citation on page
29.

TANNURI, E. A. Desenvolvimento de metodologia de projeto de sistema de posicionamento
dinâmico aplicado a operações em alto-mar. Phd Thesis (PhD Thesis), 2002. Citation on
page 63.

THE ROBOTICS BACK-END. What is ROS? 2021. Available: <https://roboticsbackend.com/
what-is-ros/>. Citations on pages 67 and 68.

TPNSHIP. pydyna documentation. 2021. Available: <https://doccode.tpn.usp.br/projetos/
tpnship/install/dyna_deploy_7_2_3/pydyna/doc/site/>. Citation on page 66.

TZENG, C.; CHEN, J. Fundamental properties of linear ship steering dynamic models. In: . [S.l.:
s.n.], 2002. Citations on pages 51 and 54.

U-BLOX. NEO-6u-blox 6 GPS Modules. [S.l.]. Citation on page 90.

https://www.wired.com/story/mayflower-autonomous-ships/##:~:text=It has identified four levels,is\ a\ fully\ autonomous\ ship
https://www.wired.com/story/mayflower-autonomous-ships/##:~:text=It has identified four levels,is\ a\ fully\ autonomous\ ship
https://www.wired.com/story/mayflower-autonomous-ships/##:~:text=It has identified four levels,is\ a\ fully\ autonomous\ ship
https://tpn.usp.br/simulador/Expertise.html
https://tpn.usp.br/simulador/Expertise.html
https://tpn.usp.br
https://tpn.usp.br/simulador/Simulators.html
https://tpn.usp.br/simulador/Technical Studies.html
https://www.linkedin.com/company/numerical-offshore-tank-tpn-/?originalSubdomain=br
https://www.linkedin.com/company/numerical-offshore-tank-tpn-/?originalSubdomain=br
https://www.globalior.com/what-is-port-and-starboard/port-and-starboard-diagram/
https://www.globalior.com/what-is-port-and-starboard/port-and-starboard-diagram/
https://nypost.com/2021/03/29/giant-ship-blocking-suez-canal-freed-but-economic-impact-looms/
https://nypost.com/2021/03/29/giant-ship-blocking-suez-canal-freed-but-economic-impact-looms/
https://roboticsbackend.com/what-is-ros/
https://roboticsbackend.com/what-is-ros/
https://doccode.tpn.usp.br/projetos/tpnship/install/dyna_deploy_7_2_3/pydyna/doc/site/
https://doccode.tpn.usp.br/projetos/tpnship/install/dyna_deploy_7_2_3/pydyna/doc/site/


Bibliography 157

VELAMALA, S. S.; PATIL, D.; MING, X. Development of ROS-based GUI for control of
an autonomous surface vehicle. In: 2017 IEEE International Conference on Robotics and
Biomimetics (ROBIO). [S.l.]: IEEE, 2017. Citation on page 70.

VILLA, J.; AALTONEN, J.; KOSKINEN, K. T. Path-following with LiDAR-based obstacle
avoidance of an unmanned surface vehicle in harbor conditions. IEEE/ASME Transactions on
Mechatronics, Institute of Electrical and Electronics Engineers (IEEE), v. 25, n. 4, p. 1812–1820,
aug 2020. Citation on page 70.

WHAT IT COSTS. How Much Did the Panama Canal Cost to Build. 2016. Available:
<https://www.whatitcosts.com/panama-canal-cost-build>. Citation on page 30.

WIKI, R. Documentation. 1. ed. [S.l.], 2020. Citations on pages 35 and 67.

ZHOU, C.; GU, S.; WEN, Y.; DU, Z.; XIAO, C.; HUANG, L.; ZHU, M. The review unmanned
surface vehicle path planning: Based on multi-modality constraint. Ocean Engineering, Elsevier
BV, v. 200, p. 107043, mar 2020. Citation on page 41.

https://www.whatitcosts.com/panama-canal-cost-build




159

APPENDIX

A
RELATED WORK

Table 23 – Related Work

Title Objectives Integration

Radar-based target tracking
for Obstacle Avoidance for an
Autonomous Surface Vehicle
(ASV)

Obstacle avoidance, near ship
harbors

"The system was designed for
ROAZ II ASV belonging to
INESC TEC/ISEP and imple-
mented in Robot Operating
System (ROS) for easier in-
tegration with the already ex-
isting software"

“Development of ROS-based
GUI for control of an au-
tonomous surface vehicle”

GUI for ROS

Integrated mainly with Qt for
GUI and OpenCV for media
transportation and processing.
Qt already has built-in support
in ROS, however, OpenCv re-
quired a ROS bridge

“A compact, low-cost un-
manned surface vehicle for
shallow inshore applications”

USV to aid and support po-
lice search teams in shallow-
water and inshore reconnais-
sance operations

The system is built purely with
ROS and it’s packages

“Local and global motion
planning for unmanned sur-
face vehicle”

Control System for motion
planning of USV

The author built a plugin pack-
age for hte ROS navigation
stack

“Obstacle detection system de-
sign for an autonomous sur-
face vehicle using a mechani-
cal scanning sonar”

Use a mechanical scanning
sonar (sensor) for object de-
tection iin ASV

Author implemented a custom
Object Detection ROS pack-
age

https://ieeexplore.ieee.org/document/8867477
https://ieeexplore.ieee.org/document/8867477
https://ieeexplore.ieee.org/document/8867477
https://ieeexplore.ieee.org/document/8867477
https://ieeexplore.ieee.org/document/8324487
https://ieeexplore.ieee.org/document/8324487
https://ieeexplore.ieee.org/document/8324487
https://ieeexplore.ieee.org/document/8324246
https://ieeexplore.ieee.org/document/8324246
https://ieeexplore.ieee.org/document/8324246
https://www.matec-conferences.org/articles/matecconf/abs/2016/05/matecconf_iccma2016_01005/matecconf_iccma2016_01005.html
https://www.matec-conferences.org/articles/matecconf/abs/2016/05/matecconf_iccma2016_01005/matecconf_iccma2016_01005.html
https://www.matec-conferences.org/articles/matecconf/abs/2016/05/matecconf_iccma2016_01005/matecconf_iccma2016_01005.html
https://ieeexplore.ieee.org/document/8211620
https://ieeexplore.ieee.org/document/8211620
https://ieeexplore.ieee.org/document/8211620
https://ieeexplore.ieee.org/document/8211620


160 APPENDIX A. Related Work

Title Objectives Integration

“High-Fidelity Autonomous
Surface Vehicle Simulator for
the Maritime RobotX Chal-
lenge”

ASV simulator
Integration of ASV simulator
with ROS, like what we have
to do

“Experimental Testing of a
Path Manager for Unmanned
Surface Vehicles in Survey
Missions”

GNC for USV. An adaptive
path planner that can switch
between following stricltly
waypoints or "interpolating"
between lines to optimize

GNC in Matlab inntegrated
with ROS

“AUV docking and recovery
with USV: An experimental
study”

Docking and recovery of ASV
with an USV

Seems like the Matlab was in-
tegrated with ROS (based on
author citing that object recog-
nition was done in Matlab)

“Path-Following with LiDAR-
Based Obstacle Avoidance of
an Unmanned Surface Vehicle
in Harbor Conditions”

Combining a pre-existing
USV model with ROS in order
to enable their model to navi-
gate in harbor-like conditions
with no human interference

GNC architecture of USV +
ROS

“Development of a Simulator
for the Study of Path Plan-
ning of An Autonomous Sur-
face Vehicle in Lake Environ-
ments”

Simulator for ASV (Au-
tonomous Surface Vehicles)
testing two different frame-
works, Matlab and Robotar-
ium, for use in lake environ-
ments

ASV integrated with the
framework of Matlab or Rob-
otarium. Simulator is inte-
grated to ROS

“Model-Based Control Archi-
tecture for a Twin Jet Un-
manned Surface Vessel”

Implement control architec-
ture for USV using LOS
path algorithm with the con-
trol system done by Matlab’s
Simulink and ROS, in order
to make the process easier for
non-programmer researchers

Control architecture for USV
using Matlab’s Simulink and
ROS

“Positioning aiding using Li-
DAR in GPS signal loss sce-
narios”

In order to avoid dangerous
situations when a ship is in an
area with many obstacles and
no GPS signal, LiDAR would
be used to gather information
on the environment and gener-
ate positioning data

Data processing and position-
ing pipeline was implemented
on a Reef Explorer 4 (REx4)
with ROS environment, and
using Point Cloud Library for
operations on 3D point clouds

https://ieeexplore.ieee.org/document/8548594
https://ieeexplore.ieee.org/document/8548594
https://ieeexplore.ieee.org/document/8548594
https://ieeexplore.ieee.org/document/8548594
https://www.sciencedirect.com/science/article/pii/S2405896318321967
https://www.sciencedirect.com/science/article/pii/S2405896318321967
https://www.sciencedirect.com/science/article/pii/S2405896318321967
https://www.sciencedirect.com/science/article/pii/S2405896318321967
https://ieeexplore.ieee.org/document/8867159
https://ieeexplore.ieee.org/document/8867159
https://ieeexplore.ieee.org/document/8867159
https://ieeexplore.ieee.org/document/9102385
https://ieeexplore.ieee.org/document/9102385
https://ieeexplore.ieee.org/document/9102385
https://ieeexplore.ieee.org/document/9102385
https://ieeexplore.ieee.org/abstract/document/8987711
https://ieeexplore.ieee.org/abstract/document/8987711
https://ieeexplore.ieee.org/abstract/document/8987711
https://ieeexplore.ieee.org/abstract/document/8987711
https://ieeexplore.ieee.org/abstract/document/8987711
https://www.researchgate.net/publication/342764613_Model-based_path_planning_and_obstacle_avoidance_architecture_for_a_twin_jet_Unmanned_Surface_Vessel
https://www.researchgate.net/publication/342764613_Model-based_path_planning_and_obstacle_avoidance_architecture_for_a_twin_jet_Unmanned_Surface_Vessel
https://www.researchgate.net/publication/342764613_Model-based_path_planning_and_obstacle_avoidance_architecture_for_a_twin_jet_Unmanned_Surface_Vessel
https://ieeexplore.ieee.org/document/8779060
https://ieeexplore.ieee.org/document/8779060
https://ieeexplore.ieee.org/document/8779060


161

Title Objectives Integration

“Experimental validation of
boundary tracking using the
suboptimal sliding mode algo-
rithm”

Validate the results obtained
from the tracking algorithm
used based on the ’suboptimal
sliding mode’ on their ASV

ASV running by a on-
shore laptop (Decision Mak-
ing Module) via Wi-fi that
uses Matlab and ROS

“Design of a self-moving au-
tonomous buoy for the local-
ization of underwater targets”

ASV buoy able to identify un-
derwater targets, and commu-
nicate with them

Not many details beside the
fact that ROS is used as the
onboard software

“A low-cost and small USV
platform for water quality
monitoring”

Propose a open-source, low-
cost USV for measuring near-
surface water quality in real
time

ROS master is connected to
bluetooth, controller, mapviz
and driver node

“MallARD: An autonomous
aquatic surface vehicle for in-
spection and monitoring of
wet nuclear storage facilities”

Develop an ASV able to mon-
itor and inspect wet nuclear
storage facilities, in order to
minimize risks for human per-
sonnel

Ethernet Switch connecting
Control laptop, Lidar (ROS)
and a Raspberry Pi

“Cloud-based mission control
of USV fleet: Architecture,
implementation and experi-
ments”

Integrate USVs to cloud-
based architecture using ROS

Remote client can control the
cloud server, that in turn sends
commands to the fleet

Table 23 – Related Work

Source: Elaborated by the author.

https://ieeexplore.ieee.org/document/7963710
https://ieeexplore.ieee.org/document/7963710
https://ieeexplore.ieee.org/document/7963710
https://ieeexplore.ieee.org/document/7963710
https://ieeexplore.ieee.org/document/8867202
https://ieeexplore.ieee.org/document/8867202
https://ieeexplore.ieee.org/document/8867202
https://www.sciencedirect.com/science/article/pii/S2468067219300367
https://www.sciencedirect.com/science/article/pii/S2468067219300367
https://www.sciencedirect.com/science/article/pii/S2468067219300367
https://www.mdpi.com/2218-6581/8/2/47
https://www.mdpi.com/2218-6581/8/2/47
https://www.mdpi.com/2218-6581/8/2/47
https://www.mdpi.com/2218-6581/8/2/47
https://www.sciencedirect.com/science/article/pii/S0967066120302276
https://www.sciencedirect.com/science/article/pii/S0967066120302276
https://www.sciencedirect.com/science/article/pii/S0967066120302276
https://www.sciencedirect.com/science/article/pii/S0967066120302276




163

APPENDIX

B
ROS SV PACKAGES

The ROS Index search only found one package1, while in GitHub were found over 20 packages.

A table was constructed for all the packages found with the features mentioned at the end of section 3.2,
plus the repository URL as the source. When information about the project is not presented, the field

Relevant Features automatically receives the value “Not presented”.

Table 24 – ROS packages for SV applications

Source Summary Stars Forks Information available Relevant features

https://github.com
/bsb808/usv_-
gazebo_plugins

“Unmanned Sur-
face Vehicle
plugins for Gazebo
simulation”

17 19 No

Gazebo plugins;
Gazebo has a lot
of community
adoption and good
documentation

https://github.com
/hongsj235/End_-
to_end_USV

“End_to_end
learning to con-
trol autonomous
ship(ROS/
Gazebo)”

3 1 Yes
Cameras as sensors;
used in Gazebo

https://github.com
/OUXT-
Polaris/robotx_-
packages

“ROS packages for
Maritime RobotX
Challenge”

22 7 Yes
“Simulation,Remo
te Viewer, Control
System, etc...”

https://github.com
/alexglzg/vtec_-
usv_ros_pkg

“ROS package for
USV guidance, nav-
igation and control
research.”

1 1 No Not presented

1 Which is the first row of Table 24.

https://github.com/bsb808/usv_gazebo_plugins
https://github.com/bsb808/usv_gazebo_plugins
https://github.com/bsb808/usv_gazebo_plugins
https://github.com/hongsj235/End_to_end_USV
https://github.com/hongsj235/End_to_end_USV
https://github.com/hongsj235/End_to_end_USV
https://github.com/OUXT-Polaris/robotx_packages
https://github.com/OUXT-Polaris/robotx_packages
https://github.com/OUXT-Polaris/robotx_packages
https://github.com/OUXT-Polaris/robotx_packages
https://github.com/alexglzg/vtec_usv_ros_pkg
https://github.com/alexglzg/vtec_usv_ros_pkg
https://github.com/alexglzg/vtec_usv_ros_pkg


164 APPENDIX B. ROS SV packages

Source Summary Stars Forks Information available Relevant features

https://github.com
/vanttec/usv_simu-
lation

“USV simulation
ROS package”

2 1 No Not presented

https://github.com
/Unmanned-
Surface-
Vehicle/usv_-
mission_planner

“USV Mission Plan-
ner ROS package.”

2 1 Yes Not presented

https://github.com
/alexglzg/sensors

“ROS package to
test USV GNC sys-
tems”

0 0 No Not presented

https://github.com
/vanttec/usv_mas-
ter

“Master ROS Pack-
age for the VantTec
USV.”

0 0 No Not presented

https://github.com
/rohantiw96/USV-
ROS-Stack

“ROS Stack for Un-
manned Surface Ve-
hicle”

0 0 No Not presented

https://github.com
/bsb808/usv_con-
trol

“ROS Low-Level
PID Feedback Con-
trol for Unmanned
Surface Vessel”

1 0 No Not presented

https://github.com
/vanttec/usv_-
comms

“ROS Package for
the communica-
tions between the
USV and the Land
Station using Digi
XTends.”

0 1 No Not presented

https://github.com
/vanttec/usv_con-
trol

“ROS package for
usv autonomous
control of position,
speed and heading.”

0 0 No Not presented

https://github.com/vanttec/usv_simulation
https://github.com/vanttec/usv_simulation
https://github.com/vanttec/usv_simulation
https://github.com/Unmanned-Surface-Vehicle/usv_mission_planner
https://github.com/Unmanned-Surface-Vehicle/usv_mission_planner
https://github.com/Unmanned-Surface-Vehicle/usv_mission_planner
https://github.com/Unmanned-Surface-Vehicle/usv_mission_planner
https://github.com/Unmanned-Surface-Vehicle/usv_mission_planner
https://github.com/alexglzg/sensors
https://github.com/alexglzg/sensors
https://github.com/vanttec/usv_master
https://github.com/vanttec/usv_master
https://github.com/vanttec/usv_master
https://github.com/rohantiw96/USV-ROS-Stack
https://github.com/rohantiw96/USV-ROS-Stack
https://github.com/rohantiw96/USV-ROS-Stack
https://github.com/bsb808/usv_control
https://github.com/bsb808/usv_control
https://github.com/bsb808/usv_control
https://github.com/vanttec/usv_comms
https://github.com/vanttec/usv_comms
https://github.com/vanttec/usv_comms
https://github.com/vanttec/usv_control
https://github.com/vanttec/usv_control
https://github.com/vanttec/usv_control


165

Source Summary Stars Forks Information available Relevant features

https://github.com
/osrf/vrx

“Virtual RobotX
(VRX) resources.”

77 30 Yes

“This repository
is the home to the
source code and
software documen-
tation for the VRX
Simulation and
the VRX Chal-
lenge. Challenge
documentation is
available on the
project wiki [...]”

https://github.com
/ingeniarius-
ltd/aquatic_simula-
tor

“This work use is
based on uuv_sim-
ulator and usv_vrx
to create a test bed
simulation world in
Gazebo, to deploy
multi-robot system
MRS algorithm in
ROS framework”

0 0 Yes

Simulation World
with multiple
USV’s; based
on Gazebo’s
Unmanned Un-
derwater Vehicle
(UUV) and Virtual
RobotX resources

https://github.com
/uf-mil/NaviGator

“NaviGator ASV
on-board software”

30 55 Yes
project competing
in Maritime RobotX
Challenge

https://github.com
/thomsten/ros_-
asv_system

Not presented 10 6 No

Contains modules
for the core motion
simulator, obstacle
avoidance and path-
following

https://github.com
/srmainwaring/asv
_wave_sim

“This package con-
tains plugins that
support the simula-
tion of waves and
surface vessels in
Gazebo.”

11 6 Yes

Requirements are
Ubuntu 18.04 and
ROS Melodic More-
nia

https://github.com
/srv/xiroi_stack

“Xiroi ASV soft-
ware architecture
based on ROS”

0 0 No Not presented

https://github.com/osrf/vrx
https://github.com/osrf/vrx
https://github.com/ingeniarius-ltd/aquatic_simulator
https://github.com/ingeniarius-ltd/aquatic_simulator
https://github.com/ingeniarius-ltd/aquatic_simulator
https://github.com/ingeniarius-ltd/aquatic_simulator
https://github.com/uf-mil/NaviGator/tree/8d00ec94b4602946f11954bedf2ba36202bafe12
https://github.com/uf-mil/NaviGator/tree/8d00ec94b4602946f11954bedf2ba36202bafe12
https://github.com/thomsten/ros_asv_system
https://github.com/thomsten/ros_asv_system
https://github.com/thomsten/ros_asv_system
https://github.com/srmainwaring/asv_wave_sim
https://github.com/srmainwaring/asv_wave_sim
https://github.com/srmainwaring/asv_wave_sim
https://github.com/srv/xiroi_stack
https://github.com/srv/xiroi_stack


166 APPENDIX B. ROS SV packages

Source Summary Stars Forks Information available Relevant features

https://github.com
/disaster-robotics-
proalertas/awa-sv

“Autonomous Wa-
ter Assessment Sur-
face Vehicle (AWA-
SV) software meta
repository”

0 0 Yes
Requirements are
Ubuntu and ROS In-
digo/Kinetic

https://github.com
/iscumd/snapping
_turtle

“A ROS based ASV
garbage collection
system for calm wa-
ters.”

1 1 No Not presented

https://github.com
/CRAWlab/robobo
at

“Repository of ROS
code for the Uni-
versity of Louisiana
at Lafayette en-
try into the 2020
RoboBoat competi-
tion. General doc-
umentation and de-
velopment code is
in a separate reposi-
tory.”

0 0 No Not presented

https://github.com
/jhlenes/complete
_coverage

“ROS implementa-
tion of online com-
plete coverage ma-
neuvering for un-
manned surface ve-
hicles”

20 11 Yes

Details can be found
in the author’s mas-
ter thesis and video
implementation.

https://github.com
/Liquid-
ai/Plankton

“Open source
simulator for
maritime robotics
researchers”

57 7 Yes
Actually an UUV
simulator

https://github.com
/OUXT-
Polaris/ros_-
ship_packages

“USV simulator for
ROS”

53 32 No

Contains also
control, simulated
sensors, gazebo
plugins, naviga-
tion recognition
and visualization
packages

https://github.com/disaster-robotics-proalertas/awa-sv
https://github.com/disaster-robotics-proalertas/awa-sv
https://github.com/disaster-robotics-proalertas/awa-sv
https://github.com/iscumd/snapping_turtle
https://github.com/iscumd/snapping_turtle
https://github.com/iscumd/snapping_turtle
https://github.com/CRAWlab/roboboat
https://github.com/CRAWlab/roboboat
https://github.com/CRAWlab/roboboat
https://github.com/jhlenes/complete_coverage
https://github.com/jhlenes/complete_coverage
https://github.com/jhlenes/complete_coverage
http://hdl.handle.net/11250/2622919
http://hdl.handle.net/11250/2622919
https://www.youtube.com/watch?v=hqOUKtosnFw
https://www.youtube.com/watch?v=hqOUKtosnFw
https://github.com/Liquid-ai/Plankton
https://github.com/Liquid-ai/Plankton
https://github.com/Liquid-ai/Plankton
https://github.com/OUXT-Polaris/ros_ship_packages
https://github.com/OUXT-Polaris/ros_ship_packages
https://github.com/OUXT-Polaris/ros_ship_packages
https://github.com/OUXT-Polaris/ros_ship_packages


167

Source Summary Stars Forks Information available Relevant features

https://github.com
/Southampton-
Maritime-
Robotics/Autonom
ous-Ship-and-
Wavebuoys

“ROS and Arduino
code for the au-
tonomous operation
of a 1:60 scale
model of a tanker”

3 0 Yes

“[...] autonomous
self-propulsion ves-
sel which could self-
monitor its perfor-
mance (seakeeping,
manoeuvring and
powering).”

https://github.com
/wangzhao9562/us
v_navigation

“About usv_naviga-
tion Modified navi-
gation pkg for USVs
and under-actuated
AUVs based on
ros navigation stack
Origin navigation
stack”

10 6 Yes
Based on ROS navi-
gation stack

Table 24 – ROS packages for SV applications

Source: GitHub (2021)

https://github.com/Southampton-Maritime-Robotics/Autonomous-Ship-and-Wavebuoys
https://github.com/Southampton-Maritime-Robotics/Autonomous-Ship-and-Wavebuoys
https://github.com/Southampton-Maritime-Robotics/Autonomous-Ship-and-Wavebuoys
https://github.com/Southampton-Maritime-Robotics/Autonomous-Ship-and-Wavebuoys
https://github.com/Southampton-Maritime-Robotics/Autonomous-Ship-and-Wavebuoys
https://github.com/Southampton-Maritime-Robotics/Autonomous-Ship-and-Wavebuoys
https://github.com/wangzhao9562/usv_navigation
https://github.com/wangzhao9562/usv_navigation
https://github.com/wangzhao9562/usv_navigation




169

APPENDIX

C
PYTHON PUBLIC LIBRARIES

The following are the public libraries needed for Python in order to use ROS.

• atomicwrites==1.4.0

• attrs==21.2.0

• catkin-pkg==0.4.23

• cffi==1.14.6

• click==8.0.1

• colcon-cmake==0.2.26

• colcon-common-extensions==0.2.1

• colcon-core==0.6.1

• colcon-defaults==0.2.5

• colcon-devtools==0.2.2

• colcon-library-path==0.2.1

• colcon-metadata==0.2.5

• colcon-notification==0.2.13

• colcon-output==0.2.12

• colcon-package-information==0.3.3

• colcon-package-selection==0.2.10

• colcon-parallel-executor==0.2.4

• colcon-pkg-config==0.1.0



170 APPENDIX C. Python public libraries

• colcon-powershell==0.3.6

• colcon-python-setup-py==0.2.7

• colcon-recursive-crawl==0.2.1

• colcon-ros==0.3.21

• colcon-test-result==0.3.8

• colorama==0.4.4

• coloredlogs==15.0.1

• coverage==5.5

• cryptography==3.4.8

• cycler==0.10.0

• dataclasses==0.8

• distlib==0.3.2

• distro==1.6.0

• docutils==0.17.1

• empy==3.3.4

• flake8==3.9.2

• flake8-blind-except==0.2.0

• flake8-builtins==1.5.3

• flake8-class-newline==1.6.0

• flake8-comprehensions==3.6.1

• flake8-deprecated==1.3

• flake8-docstrings==1.6.0

• flake8-import-order==0.18.1

• flake8-quotes==3.3.0

• Flask==2.0.1

• geographiclib==1.52

• humanfriendly==9.2

• ifcfg==0.22



171

• importlib-metadata==4.8.1

• importlib-resources==5.2.2

• iniconfig==1.1.1

• itsdangerous==2.0.1

• Jinja2==3.0.1

• kiwisolver==1.3.1

• lark-parser==0.12.0

• lxml==4.6.3

• MarkupSafe==2.0.1

• matplotlib==3.3.4

• mccabe==0.6.1

• mock==4.0.3

• mypy==0.761

• mypy-extensions==0.4.3

• netifaces==0.11.0

• numpy==1.19.5

• opencv-python==4.5.3.56

• packaging==21.0

• pep8==1.7.1

• Pillow==8.3.2

• pluggy==1.0.0

• psutil==5.8.0

• py==1.10.0

• pycairo==1.20.1

• pycodestyle==2.7.0

• pycparser==2.20

• pydocstyle==6.1.1

• pydot==1.4.2



172 APPENDIX C. Python public libraries

• pyflakes==2.3.1

• pyparsing==2.4.7

• PyQt5==5.15.4

• PyQt5-Qt5==5.15.2

• PyQt5-sip==12.9.0

• pyreadline==2.1

• pytest==6.2.5

• pytest-cov==2.12.1

• pytest-mock==3.6.1

• pytest-repeat==0.9.1

• pytest-rerunfailures==10.1

• python-dateutil==2.8.2

• pywin32==301

• PyYAML==5.4.1

• rosdistro==0.8.3

• rospkg==1.3.0

• six==1.16.0

• snowballstemmer==2.1.0

• toml==0.10.2

• tornado==6.1

• typed-ast==1.4.3

• typing==3.7.4.3

• typing-extensions==3.10.0.2

• vcstool==0.3.0

• Werkzeug==2.0.1

• zipp==3.5.0



173

APPENDIX

D
PYDYNA_ROS CODE

The files that compose the pydyna_simple package, which is the first version of the ideal pydyna_ros
package, can be found below.

D.1 pydyna_simple.py

import sys

import os

import numpy as np

import traceback

import pydyna

import rclpy

from rclpy.node import Node

from std_msgs.msg import Float32

from std_msgs.msg import Bool

# custom interface

from path_following_interfaces.msg import State

#custom service

from path_following_interfaces.srv import InitValues

class PydynaSimpleNode(Node):

def __init__(self):

super().__init__('pydyna_simple_node')

self.TIME_STEP = 0.1

# need to declare them before

self.declare_parameter('pkg_dir', './')

self.declare_parameter('pkg_share_dir', './')

# this will be overwritten by launch file

self.declare_parameter('p3d_file', './')

self.pkg_dir = self.get_parameter('pkg_dir').get_parameter_value().string_value



174 APPENDIX D. pydyna_ros code

self.pkg_share_dir = self.get_parameter('pkg_share_dir').get_parameter_value().string_value

self.p3d_file = self.get_parameter('p3d_file').get_parameter_value().string_value

self.num_simul = 0

self.end_simul = 0

self.subscription_end = self.create_subscription(

Bool,

'/end',

self.callback_end,

1)

self.subscription_shutdown = self.create_subscription(

Bool,

'/shutdown',

self.callback_shutdown,

1)

self.server_init_simul = self.create_service(InitValues, '/init_simul', self.callback_init_simul)

self.subscription_propeller = self.create_subscription(

Float32,

'/propeller_rotation',

self.callback_propeller,

1)

self.subscription_rudder = self.create_subscription(

Float32,

'/rudder_angle',

self.callback_rudder,

1)

self.publisher_state = self.create_publisher(State, 'state', 1)

def callback_end(self):

self.get_logger().info('User requested simulation to end')

sys.exit()

def callback_shutdown(self, _):

sys.exit()

def callback_init_simul(self, req, res):

if self.num_simul != 0:

pydyna.destroy_report(self.rpt)

self.get_logger().info('Initializing Simulation')

# self.propeller_rotation = 0

# self.rudder_angle = 0

self.propeller_rotation = req.surge

self.rudder_angle = req.yaw

self.subscriptions_synced = False

self.rpt = pydyna.create_text_report(os.path.join(self.pkg_share_dir, 'logs', 'pydynalogs', f'pydyna_log_{self.num_simul}'))

self.sim = pydyna.create_simulation(os.path.join(self.pkg_dir, 'config', self.p3d_file))

self.ship = self.sim.vessels['104']



D.1. pydyna_simple.py 175

x, y, theta = req.initial_state.position.x, req.initial_state.position.y, req.initial_state.position.theta

u, v, r = req.initial_state.velocity.u, req.initial_state.velocity.v, req.initial_state.velocity.r

self.ship.linear_position = [x, y, 0]

self.ship.angular_position = [0, 0, theta]

self.ship.linear_velocity = [u, v, 0]

self.ship.angular_velocity = [0, 0, r]

self.proppeler_counter = 0

self.rudder_counter = 0

self.num_simul += 1

self.state = req.initial_state

self.log_state('server')

return res

def callback_propeller(self, msg):

self.get_logger().info('listened propeller rotation: %f' % msg.data)

self.propeller_rotation = msg.data

self.proppeler_counter += 1

def callback_rudder(self, msg):

self.get_logger().info('listened rudder angle: %f' % msg.data)

self.rudder_angle = msg.data

self.rudder_counter += 1

def extrapolate_state(self):

propeller = self.ship.thrusters['0']

propeller.dem_rotation = self.propeller_rotation

rudder = self.ship.rudders['0']

# pydyna uses counterclockwise convention

rudder.dem_angle = -self.rudder_angle

self.sim.step()

self.state.position.x = self.ship.linear_position[0]

self.state.position.y = self.ship.linear_position[1]

self.state.position.theta = self.ship.angular_position[2]%(2*np.pi)

self.state.velocity.u = self.ship.linear_velocity[0]

self.state.velocity.v = self.ship.linear_velocity[1]

self.state.velocity.r = self.ship.angular_velocity[2]

self.state.time += self.TIME_STEP

def publish_state(self):

self.publisher_state.publish(self.state)

self.rpt.write(self.state.time, self.ship)

self.log_state('publisher')

def log_state(self, communicator):

log_str = 'responded request with inital' if communicator == 'server' else 'published'

self.get_logger().info(

'%s state: {position: {x: %f, y: %f, theta: %f}, velocity: {u: %f, v: %f, r: %f}, time: %f}'

% (

log_str,

self.state.position.x,

self.state.position.y,



176 APPENDIX D. pydyna_ros code

self.state.position.theta, # yaw angle

self.state.velocity.u,

self.state.velocity.v,

self.state.velocity.r,

self.state.time

)

)

def main(args=None):

try:

rclpy.init(args=args)

my_pydyna_node = PydynaSimpleNode()

my_pydyna_node.get_logger().info('started main')

while rclpy.ok():

my_pydyna_node.get_logger().info('entered rclpy.ok loop')

rclpy.spin_once(my_pydyna_node)

if my_pydyna_node.proppeler_counter == my_pydyna_node.rudder_counter:

if not my_pydyna_node.subscriptions_synced:

my_pydyna_node.extrapolate_state()

my_pydyna_node.publish_state()

my_pydyna_node.subscriptions_synced = True

else:

my_pydyna_node.subscriptions_synced = False

except KeyboardInterrupt:

print('Stopped with user interrupt')

except:

print(traceback.format_exc())

finally:

my_pydyna_node.get_logger().info('Ended Simulation')

my_pydyna_node.destroy_node()

rclpy.shutdown()

if __name__ == '__main__':

main()

D.2 setup.py

import os

from glob import glob

from setuptools import setup

package_name = 'pydyna_simple'

setup(

name=package_name,

version='0.0.0',

packages=[package_name],

data_files=[

('share/ament_index/resource_index/packages', [os.path.join('resource', package_name)]),

(os.path.join('share', package_name), ['package.xml']),

(os.path.join('lib', package_name, 'config'), glob('config/*')),

(os.path.join('share', package_name, 'logs', 'mylogs'), []),

(os.path.join('share', package_name, 'logs', 'pydynalogs'), []),

(os.path.join('share', package_name, 'logs', 'roslogs'), []),

(os.path.join('share', package_name, 'db'), []),



D.3. package.xml 177

(os.path.join('share', package_name), glob('launch/*.launch.py'))

],

install_requires=['setuptools'],

zip_safe=True,

maintainer='bruno',

maintainer_email='bruno.c.scaglione@gmail.com',

description='High Fidelity Ship Maneuvering Simulator',

license='Apache License 2.0',

tests_require=['pytest'],

entry_points={

'console_scripts': [

'simul = pydyna_simple.pydyna_simple:main',

],

},

)

D.3 package.xml

<?xml version="1.0"?>

<?xml-model href="http://download.ros.org/schema/package_format3.xsd" schematypens="http://www.w3.org/2001/XMLSchema"?>

<package format="3">

<name>pydyna_simple</name>

<version>0.0.0</version>

<description>High Fidelity Ship Maneuvering Simulator</description>

<maintainer email="bruno.c.scaglione@gmail.com">Bruno</maintainer>

<license>Apache License 2.0</license>

<exec_depend>std_msgs</exec_depend>

<exec_depend>pydyna</exec_depend>

<exec_depend>os</exec_depend>

<exec_depend>traceback</exec_depend>

<exec_depend>sys</exec_depend>

<exec_depend>numpy</exec_depend>

<depend>path_following_interfaces</depend>

<depend>rclpy</depend>

<test_depend>ament_copyright</test_depend>

<test_depend>ament_flake8</test_depend>

<test_depend>ament_pep257</test_depend>

<test_depend>python3-pytest</test_depend>

<export>

<build_type>ament_python</build_type>

</export>

</package>



178 APPENDIX D. pydyna_ros code

D.4 pydyna_simple.launch.py

import os

from ament_index_python.packages import get_package_share_directory, get_package_prefix

from launch import LaunchDescription

from launch.actions import ExecuteProcess

from launch_ros.actions import Node

# obs: not exaclty shure where generate_launch_description is invoked

# however absolute paths should do, with get_package_share_directory

def generate_launch_description():

P3D_FILES = [

'TankerL186B32_T085.p3d',

'NoWaves_TankerL186B32_T085.p3d',

'NoCurrent&Wind_TankerL186B32_T085.p3d',

'NoWaves&Current&Wind_TankerL186B32_T085.p3d'

]

pkg_share_dir = get_package_share_directory('pydyna_simple')

pkg_install_dir = get_package_prefix('pydyna_simple')

pkg_dir = os.path.join(pkg_install_dir, 'lib', 'pydyna_simple')

logs_dir = os.path.join(pkg_share_dir, 'logs')

p3d = P3D_FILES[0] # change p3d here

os.environ['ROS_LOG_DIR'] = os.path.join(logs_dir, 'roslogs')

# Set LOG format

os.environ['RCUTILS_CONSOLE_OUTPUT_FORMAT'] = '[{severity} {time}] [{name}]: {message} ({function_name}() at {file_name}:{line_number})'

ld = LaunchDescription()

rosbag_record_all = ExecuteProcess(

cmd=['ros2', 'bag', 'record', '-a'], # '-o', 'rosbags'
output='screen'

)

start_pydyna_simple_node = Node(

package='pydyna_simple',

executable='simul',

name='pydyna_simple_node',

output='screen',

parameters=[

{'pkg_share_dir': pkg_share_dir},

{'pkg_dir': pkg_dir},

{'p3d': p3d}

]

)

# start pydyna_simple_node

ld.add_action(rosbag_record_all)

ld.add_action(start_pydyna_simple_node)

return ld



D.5. setup.cfg 179

D.5 setup.cfg

[develop]

script_dir=$base/lib/pydyna_simple

[install]

install_scripts=$base/lib/pydyna_simple





181

APPENDIX

E
PATH_FOLLOWING CODE

The files that compose the path_following package can be found below.

E.1 backend.py

import os

import glob

import json

from datetime import datetime

import traceback

from flask import Flask, request

import rclpy

from rclpy.node import Node

from std_msgs.msg import Bool

# custom interfaces

from path_following_interfaces.msg import Waypoints

from path_following_interfaces.srv import InitValues

class Backend(Node):

def __init__(self):

super().__init__('backend_node')

self.declare_parameter('db_dir', './')

self.db_dir = self.get_parameter('db_dir').get_parameter_value().string_value

self.end_msg = Bool()

self.end_msg.data = True

self.shutdown_msg = Bool()

self.shutdown_msg.data = True

self.init_values_srv = InitValues.Request()

self.waypoints_msg = Waypoints()

waypoints = {'position': {}}

waypoints['position']['x'] = list(self.waypoints_msg.position.x)



182 APPENDIX E. path_following code

waypoints['position']['y'] = list(self.waypoints_msg.position.y)

waypoints['velocity'] = list(self.waypoints_msg.velocity)

self.save_waypoints(waypoints)

self.client_init_setpoints = \

self.create_client(InitValues, '/init_setpoints')

self.client_init_surge_control = \

self.create_client(InitValues, '/init_surge_control')

self.client_init_yaw_control = \

self.create_client(InitValues, '/init_yaw_control')

self.client_init_simul = \

self.create_client(InitValues, '/init_simul')

self.publisher_waypoints = self.create_publisher(

Waypoints,

'/waypoints',

1)

self.publisher_end = self.create_publisher(

Bool,

'/end',

1)

self.publisher_shutdown = self.create_publisher(

Bool,

'/shutdown',

1)

def save_waypoints(self, waypoints):

now = datetime.now()

time_stamp = now.strftime("%Y_%m_%d-%H_%M_%S")

waypoints_dir = os.path.join(self.db_dir, 'waypoints')

waypoints_path = os.path.join(waypoints_dir, f'waypoints_{time_stamp}.json')

# clean before

files = glob.glob(os.path.join(waypoints_dir, '*.json'))

for f in files:

os.remove(f)

with open(waypoints_path, 'w', encoding='utf-8') as f:

json.dump(waypoints, f, ensure_ascii=False, indent=4)

def log_state(self, state):

self.get_logger().info(

'Received from client initial state: {position: {x: %f, y: %f, theta: %f}, velocity: {u: %f, v: %f, r: %f}}'

% (

state['position']['x'],

state['position']['y'],

state['position']['theta'], # yaw angle from west spanning [0, 2pi]

state['velocity']['u'],

state['velocity']['v'],

state['velocity']['r'],



E.1. backend.py 183

)

)

def wait_future(node, future_str):

my_future = getattr(node, future_str)

rclpy.spin_until_future_complete(node, my_future, timeout_sec=15)

if my_future.done():

try:

return my_future.result(), 0

except:

return None, 0

else:

return None, 1

rclpy.init(args=None)

backend_node = Backend()

app = Flask(__name__)

@app.route("/waypoints", methods=['POST'])

def receive_waypoints():

try:

waypoints = request.json

if not waypoints['from_gui']:

backend_node.save_waypoints(waypoints)

num_waypoints = len(waypoints['position']['x'])

backend_node.get_logger().info('received from client %d waypoints' % num_waypoints)

for i in range(num_waypoints):

backend_node.get_logger().info(

'Received waypoint %d: %f %f %f' %

(i, waypoints['position']['x'][i], waypoints['position']['y'][i], waypoints['velocity'][i])

)

backend_node.waypoints_msg.position.x = waypoints['position']['x']

backend_node.waypoints_msg.position.y = waypoints['position']['y']

backend_node.waypoints_msg.velocity = waypoints['velocity']

backend_node.init_values_srv.waypoints.position.x = waypoints['position']['x']

backend_node.init_values_srv.waypoints.position.y = waypoints['position']['y']

backend_node.init_values_srv.waypoints.velocity = waypoints['velocity']

backend_node.get_logger().info('Returning HTTP OK to client')

return json.dumps({'success':True}), 200, {'ContentType':'application/json'}

else:

# TODO: service for getting the updated waypoints from venus server

pass

except:

backend_node.get_logger().info(

"Waypoints received from client are not valid\n"

"Returning HTTP bad request to client"

)

return json.dumps({'success':False}), 400, {'ContentType':'application/json'}

@app.route("/initialCondition", methods=['POST'])

def receive_initial_condition():

try:



184 APPENDIX E. path_following code

initial_condition = request.json

backend_node.log_state(initial_condition)

backend_node.init_values_srv.initial_state.position.x = \

initial_condition['position']['x']

backend_node.init_values_srv.initial_state.position.y = \

initial_condition['position']['y']

backend_node.init_values_srv.initial_state.position.theta = \

initial_condition['position']['theta']

backend_node.init_values_srv.initial_state.velocity.u = \

initial_condition['velocity']['u']

backend_node.init_values_srv.initial_state.velocity.v = \

initial_condition['velocity']['v']

backend_node.init_values_srv.initial_state.velocity.r = \

initial_condition['velocity']['r']

backend_node.get_logger().info('Returning HTTP OK to client')

return json.dumps({'success':True}), 200, {'ContentType':'application/json'}

except:

backend_node.get_logger().info(

"Initial condition received from client is not valid\n"

"Returning HTTP bad request to client"

)

return json.dumps({'success':False}), 400, {'ContentType':'application/json'}

@app.route("/start")

def start_system():

try:

backend_node.get_logger().info("Starting system")

backend_node.publisher_waypoints.publish(backend_node.waypoints_msg)

# get initial setpoints

backend_node.future_init_setpoints = backend_node.client_init_setpoints. \

call_async(backend_node.init_values_srv)

res_setpoints, timeout_setpoints = wait_future(backend_node, "future_init_setpoints")

delattr(backend_node, "future_init_setpoints")

service_failed = False if timeout_setpoints else True

# set initial setpoints and get initial control actions

backend_node.init_values_srv.surge = res_setpoints.surge

backend_node.future_init_surge_control = backend_node.client_init_surge_control. \

call_async(backend_node.init_values_srv)

res_surge_control, timeout_surge_control = wait_future(backend_node, "future_init_surge_control")

delattr(backend_node, "future_init_surge_control")

service_failed = False if not service_failed and not timeout_surge_control else True

backend_node.init_values_srv.yaw = res_setpoints.yaw

backend_node.future_init_yaw_control = backend_node.client_init_yaw_control. \

call_async(backend_node.init_values_srv)

res_yaw_control, timeout_yaw_control = wait_future(backend_node, "future_init_yaw_control")

delattr(backend_node, "future_init_yaw_control")

service_failed = False if not service_failed and not timeout_yaw_control else True

# set inital state and control action of the simulation



E.1. backend.py 185

backend_node.init_values_srv.surge = res_surge_control.surge

backend_node.init_values_srv.yaw = res_yaw_control.yaw

backend_node.future_init_simul = backend_node.client_init_simul. \

call_async(backend_node.init_values_srv)

_, timeout_simul = wait_future(backend_node, "future_init_simul")

delattr(backend_node, "future_init_simul")

service_failed = False if not service_failed and not timeout_simul else True

backend_node.get_logger().info('returning HTTP OK to client')

return json.dumps({'success':True}), 200, {'ContentType':'application/json'}

except:

if not service_failed:

backend_node.get_logger().info('returning HTTP Gateaway timedout to client')

return json.dumps({'success':False}), 504, {'ContentType':'application/json'}

else:

backend_node.get_logger().info('returning HTTP internal server error to client')

return json.dumps({'success':False}), 500, {'ContentType':'application/json'}

@app.route("/end")

def end_simul():

try:

backend_node.get_logger().info("Ending system")

backend_node.publisher_end.publish(backend_node.end_msg)

backend_node.get_logger().info('returning HTTP OK to client')

return json.dumps({'success':True}), 200, {'ContentType':'application/json'}

except:

backend_node.get_logger().info('returning HTTP internal server error to client')

return json.dumps({'success':False}), 500, {'ContentType':'application/json'}

@app.route("/shutdown")

def shutdown_nodes():

try:

backend_node.get_logger().info("Shutting down nodes")

backend_node.publisher_shutdown.publish(backend_node.shutdown_msg)

backend_node.get_logger().info('Returning HTTP OK to client')

return json.dumps({'success':True}), 200, {'ContentType':'application/json'}

except:

backend_node.get_logger().info('returning HTTP internal server error to client')

return json.dumps({'success':False}), 500, {'ContentType':'application/json'}

def main():

try:

app.run() # port 5000 by default

except KeyboardInterrupt:

print('Stopped with user interrupt')

except:

print(traceback.format_exc())

finally:

backend_node.destroy_node()

rclpy.shutdown()

if __name__ == '__main__':

main()



186 APPENDIX E. path_following code

E.2 control_allocation.py

import sys

import os

import glob

import traceback

import math

import numpy as np

import matplotlib.pyplot as plt

import rclpy

from rclpy.node import Node

from std_msgs.msg import Bool

from std_msgs.msg import Float32

# custom iterfaces

from path_following_interfaces.msg import State

class ControlAllocation(Node):

def __init__(self):

super().__init__('control_allocation_node')

self.declare_parameter('plots_dir', './')

self.plots_dir = self.get_parameter('plots_dir').get_parameter_value().string_value

self.TIME_STEP = 0.1

# controller parameters

self.C1 = 0.036

self.C2 = 3.53

self.C3 = 0.06696

self.PROPELLER_SAT = 1.75 # Hz

self.propeller_history = [] #debugging

self.rotation_msg = Float32()

self.subscription_shutdown = self.create_subscription(

Bool,

'/shutdown',

self.callback_shutdown,

1)

self.subscription_filtered_state = self.create_subscription(

State,

'/filtered_state',

self.callback_filtered_state,

1)

self.subscription_propeller_thrust = self.create_subscription(

Float32,

'/propeller_thrust',

self.callback_propeller_thrust,



E.2. control_allocation.py 187

1)

self.publisher_propeller_rotation = self.create_publisher(

Float32,

'/propeller_rotation',

1)

def callback_shutdown(self, _):

sys.exit()

def callback_filtered_state(self, msg):

self.get_logger().info('listened filtered surge velocity: %f' % msg.velocity.u)

self.surge_velocity = msg.velocity.u

def callback_propeller_thrust(self, msg):

self.get_logger().info('listened propeller thrust: %f' % msg.data)

propeller_rotation_msg = self.control_allocation(msg.data, self.surge_velocity)

self.publisher_propeller_rotation.publish(propeller_rotation_msg)

self.get_logger().info('published propeller rotation: %f' % propeller_rotation_msg.data)

def control_allocation(self, tau, u):

if tau > 0:

Np = self.C1*(math.sqrt(self.C2*(u**2) + tau)) + self.C3*u

else:

Np = -(self.C1*(math.sqrt(self.C2*(u**2) - tau)) + self.C3*u)

# saturation of the propeller (with 1% safety margin)

# real sat is 1.75 Hz

Np = max(-self.PROPELLER_SAT*0.99, min(Np, self.PROPELLER_SAT*0.99))

self.propeller_history.append(Np)

self.rotation_msg.data = Np

return self.rotation_msg

def generate_plots(self):

# clean before

files = glob.glob(os.path.join(self.plots_dir, 'propellerRotation*.png'))

for f in files:

os.remove(f)

params = {'mathtext.default': 'regular'}

plt.rcParams.update(params)

t = self.TIME_STEP*np.array(range(len(self.propeller_history)))

fig, ax = plt.subplots(1)

ax.set_title("Proppeler rotation")

ax.plot(t, self.propeller_history)

ax.set_xlabel("t [s]")

ax.set_ylabel(r"$n_p\;[Hz]$")

# ax.set_ylim(min(self.propeller_history),max(self.propeller_history))

graphics_file = "propellerRotation.png"

fig.savefig(os.path.join(self.plots_dir, graphics_file))

def main(args=None):

try:

rclpy.init(args=args)

control_allocation_node = ControlAllocation()

rclpy.spin(control_allocation_node)



188 APPENDIX E. path_following code

except KeyboardInterrupt:

print('Stopped with user interrupt')

control_allocation_node.get_logger().info('Stopped with user interrupt')

except SystemExit:

pass

except:

print(traceback.format_exc())

finally:

control_allocation_node.generate_plots()

control_allocation_node.destroy_node()

rclpy.shutdown()

if __name__ == '__main__':

main()

E.3 gps_imu_simul.py

'''
Datasheets used:

1. GPS 1: https://pdf.nauticexpo.com/pdf/san-jose-technology-inc/marine-gps-receiver/23414-76823.html

2. GPS 2 (just for velocity): {

https://www.u-blox.com/sites/default/files/products/documents/NEO-6_DataSheet_(GPS.G6-HW-09005).pdf or

https://docs.rs-online.com/c0e9/0900766b80df94d1.pdf or

https://www.generationrobots.com/media/GP-635T-121130-datasheet.pdf or

https://4.imimg.com/data4/SO/GH/MY-23669504/gps-shield-skg13c-module.pdf

}

3. IMU (indutrial): https://inertiallabs.com/wp-content/uploads/2020/09/IMU-P_Datasheet.rev3_.3_Sept_2020.pdf

'''

import sys

import os

import glob

import traceback

import collections

import numpy as np

import matplotlib.pyplot as plt

import rclpy

from rclpy.node import Node

from std_msgs.msg import Bool

# custom interface

from path_following_interfaces.msg import State

class GpsImuSimulator(Node):

def __init__(self):

super().__init__('gps_imu_simulator_node')

self.declare_parameter('plots_dir', './')

self.plots_dir = self.get_parameter('plots_dir').get_parameter_value().string_value

# GPS_rate == 10 # [Hz]

# IMU_rate == 2000 # [Hz]

# both rates are faster than the simulation



E.3. gps_imu_simul.py 189

# (which is 10-e Hz where e is due to the time do do 1 step of computations)

# therefore wont have sampling effect

self.TIME_STEP = 0.1

# assuming sensors are already calibrated (no bias)

# assuming same variance for x and y, and 0 covariance

self.SIGMA_X = 5.46112744197 # GPS 1: from horizontal acc

self.SIGMA_Y = 5.46112744197 # GPS 1: from horizontal acc

self.SIGMA_THETA = 0.0523599 # GPS 1: from heading acc

# self.sigma_u is calculated dynamically

# self.sigma_v is calculated dynamically

self.SIGMA_R = 0.0005 # IMU: from random walk

self.SIGMA_XDOT = 0.1 # GPS 2: from velocity acc

self.SIGMA_YDOT = 0.1 # GPS 2: from velocity acc

self.state_history = [[],[],[],[],[],[]]

self.simulated_state_history = [[],[],[],[],[],[]]

# State() has by default all zeros

self.last_two_states = collections.deque([State()], maxlen=2)

self.xs_msg = State()

self.subscription_shutdown = self.create_subscription(

Bool,

'/shutdown',

self.callback_shutdown,

1)

self.subscription_state = self.create_subscription(

State,

'/state',

self.callback_state,

1)

self.publisher_simulated_state = self.create_publisher(

State,

'/simulated_state',

1)

def callback_shutdown(self, _):

sys.exit()

def callback_state(self, msg):

self.log_state(msg, 'subscriber')

self.state_history[0].append(msg.position.x)

self.state_history[1].append(msg.position.y)

self.state_history[2].append(msg.position.theta)

self.state_history[3].append(msg.velocity.u)

self.state_history[4].append(msg.velocity.v)

self.state_history[5].append(msg.velocity.r)

self.last_two_states.appendleft(msg)

self.calculate_velocity_sigmas()



190 APPENDIX E. path_following code

simulated_state_msg = self.state_simul(msg)

self.publisher_simulated_state.publish(simulated_state_msg)

self.log_state(simulated_state_msg, 'publisher')

def calculate_velocity_sigmas(self):

x_dot = ( list(self.last_two_states)[0].position.x - list(self.last_two_states)[1].position.x )/self.TIME_STEP

y_dot = ( list(self.last_two_states)[0].position.y - list(self.last_two_states)[1].position.y )/self.TIME_STEP

sigma_theta = self.SIGMA_THETA

theta = list(self.last_two_states)[0].position.theta

# error propagation ([u, v].T = R@[xdot, ydot].T linear transformation or rotation matrix)

self.sigma_u = ( (np.cos(theta)*self.SIGMA_XDOT)**2 + (np.sin(theta)*self.SIGMA_YDOT)**2 \

+ ((-np.sin(theta)*x_dot + np.cos(theta)*y_dot)*sigma_theta)**2 )**0.5

self.sigma_v = ( (-np.sin(theta)*self.SIGMA_XDOT)**2 + (np.cos(theta)*self.SIGMA_YDOT)**2 \

+ ((-np.cos(theta)*x_dot - np.sin(theta)*y_dot)*sigma_theta)**2 )**0.5

def state_simul(self, x):

self.xs_msg.position.x = x.position.x + np.random.normal(0, self.SIGMA_X) # gps

self.xs_msg.position.y = x.position.y + np.random.normal(0, self.SIGMA_Y) # gps

self.xs_msg.position.theta = x.position.theta + np.random.normal(0, self.SIGMA_THETA) # gyrocompass

self.xs_msg.velocity.u = x.velocity.u + np.random.normal(0, self.sigma_u) # gps

self.xs_msg.velocity.v = x.velocity.v + np.random.normal(0, self.sigma_v) # gps

self.xs_msg.velocity.r = x.velocity.r + np.random.normal(0, self.SIGMA_R) # imu

self.xs_msg.time = x.time

self.simulated_state_history[0].append(self.xs_msg.position.x)

self.simulated_state_history[1].append(self.xs_msg.position.y)

self.simulated_state_history[2].append(self.xs_msg.position.theta)

self.simulated_state_history[3].append(self.xs_msg.velocity.u)

self.simulated_state_history[4].append(self.xs_msg.velocity.v)

self.simulated_state_history[5].append(self.xs_msg.velocity.r)

return self.xs_msg

# # code below is to not implement gps_imu_simul

# self.simulated_state_history[0].append(x.position.x)

# self.simulated_state_history[1].append(x.position.y)

# self.simulated_state_history[2].append(x.position.theta)

# self.simulated_state_history[3].append(x.velocity.u)

# self.simulated_state_history[4].append(x.velocity.v)

# self.simulated_state_history[5].append(x.velocity.r)

return x

def log_state(self, state, communicator):

log_str = 'listened' if communicator == 'subscriber' else 'published simulated'

self.get_logger().info(

'%s state: {position: {x: %f, y: %f, theta: %f}, velocity: {u: %f, v: %f, r: %f}, time: %f}'

% (

log_str,

state.position.x,

state.position.y,

state.position.theta, # yaw angle

state.velocity.u,

state.velocity.v,

state.velocity.r,



E.3. gps_imu_simul.py 191

state.time

)

)

def generate_plots(self):

params = {'mathtext.default': 'regular'}

plt.rcParams.update(params)

# clean before

files = glob.glob(os.path.join(self.plots_dir, 'simulatedState', '*.png'))

for f in files:

os.remove(f)

t = self.TIME_STEP*np.array(range(len(self.simulated_state_history[0])))

ss_dir = "simulatedState"

simulated_state_props = [

{

"title": "Simulated Linear Position X",

"ylabel": "x [m]",

"file": "simulatedLinearPositionX.png"

},

{

"title": "Simulated Linear Position Y",

"ylabel": "y [m]",

"file": "simulatedLinearPositionY.png"

},

{

"title": "Simulated Angular Position Theta",

"ylabel": r"$\theta\;[rad\;(from\;east\;counterclockwise)]$",

"file": "simulatedAngularPositionTheta.png"

},

{

"title": "Simulated Linear Velocity U",

"ylabel": "u [m/s]",

"file": "simulatedLinearVelocityU.png"

},

{

"title": "Simulated Linear Position V",

"ylabel": "v [m/s (port)]",

"file": "simulatedLinearVelocityV.png"

},

{

"title": "Simulated Angular Velocity R",

"ylabel": "r [rad/s (counterclockwise)]",

"file": "simulatedAngularVelocityR.png"

},

]

files = glob.glob(os.path.join(self.plots_dir, 'state', '*.png'))

for f in files:

os.remove(f)

s_dir = "state"

state_props = [

{

"title": "Linear Position X",



192 APPENDIX E. path_following code

"ylabel": "x [m]",

"file": "linearPositionX.png"

},

{

"title": "Linear Position Y",

"ylabel": "y [m]",

"file": "linearPositionY.png"

},

{

"title": "Angular Position Theta",

"ylabel": r"$\theta\;[rad\;(from\;east\;counterclockwise)]$",

"file": "angularPositionTheta.png"

},

{

"title": "Linear Velocity U",

"ylabel": "u [m/s]",

"file": "linearVelocityU.png"

},

{

"title": "Linear Position V",

"ylabel": "v [m/s (port)]",

"file": "linearVelocityV.png"

},

{

"title": "Angular Velocity R",

"ylabel": "r [rad/s (counterclockwise)]",

"file": "angularVelocityR.png"

},

]

dirs = [ss_dir, s_dir]

propss = [simulated_state_props, state_props]

histories = [self.simulated_state_history, self.state_history]

for (dir, props, history) in list(zip(dirs, propss, histories)):

for j in range(len(history)):

fig, ax = plt.subplots(1)

ax.set_title(props[j]["title"])

ax.plot(t, history[j])

ax.set_xlabel("t [s]")

ax.set_ylabel(props[j]["ylabel"])

# ax.set_ylim(min(history[j]), max(history[j]))

fig.savefig(os.path.join(self.plots_dir, dir, props[j]["file"]))

############## report plots

files = glob.glob(os.path.join(self.plots_dir, "reportPlots", "gpsImuSimul", '*.png'))

for f in files:

os.remove(f)

# u simulated and u filtered together

fig, ax = plt.subplots(1)

ax.set_title("Linear Velocity U")

ax.plot(t, self.simulated_state_history[3])

ax.plot(t, self.state_history[3])

ax.set_xlabel(r"$t\;[s]$")

ax.set_ylabel("u [m/s]")

ax.legend([r"$u$ from sensor", r"$u$ real"])

fig.savefig(os.path.join(self.plots_dir, "reportPlots", "gpsImuSimul", "surgeReal&Simulated.png"))



E.4. los_guidance.py 193

# theta simulated and theta filtered together

fig, ax = plt.subplots(1)

ax.set_title(r"Angular Position $\theta$")

ax.plot(t, self.simulated_state_history[2])

ax.plot(t, self.state_history[2])

ax.set_xlabel("t [s]")

ax.set_ylabel(r"$\theta\;[rad]$")

ax.legend([r"$\theta$ from sensor", r"$\theta$ real"])

fig.savefig(os.path.join(self.plots_dir, "reportPlots", "gpsImuSimul", "yawReal&Simulated.png"))

def main(args=None):

try:

rclpy.init(args=args)

gps_imu_simulator_node = GpsImuSimulator()

rclpy.spin(gps_imu_simulator_node)

except KeyboardInterrupt:

print('Stopped with user interrupt')

gps_imu_simulator_node.get_logger().info('Stopped with user interrupt')

except SystemExit:

pass

except:

print(traceback.format_exc())

finally:

gps_imu_simulator_node.generate_plots()

gps_imu_simulator_node.destroy_node()

rclpy.shutdown()

if __name__ == '__main__':

main()

E.4 los_guidance.py

import sys

import os

import glob

import traceback

import matplotlib.pyplot as plt

import math

import numpy as np

from sympy import symbols, Eq, solve

# import stackprinter

import rclpy

from rclpy.node import Node

from std_msgs.msg import Float32

from std_msgs.msg import Bool

#custom service

from path_following_interfaces.msg import State, Control

from path_following_interfaces.srv import InitValues

class LosGuidance(Node):

def __init__(self):



194 APPENDIX E. path_following code

super().__init__('los_guidance_node')

self.declare_parameter('plots_dir', './')

self.plots_dir = self.get_parameter('plots_dir').get_parameter_value().string_value

self.TIME_STEP = 0.1

# los parameters

self.SHIP_LENGHT = 186.4

# los radius

self.R = self.SHIP_LENGHT*2

###########################################

# VERY IMPORTANT, CHANGING THIS VALUE ALLOWS TRADEOFF

## BETWEEN SMOOTH TRAJECTORY (higher value) AND REACHING WAYPOINTS PRECISELY

# When craft is inside acceptance radius for a waypoint that

# it considers waypoint was reached

# tuned for:

# self.R_ACCEPTANCE = 50 # use this for linear waypoints

self.R_ACCEPTANCE = self.SHIP_LENGHT*2 # use this for zigzag waypoints

############################################

# final radius of accceptance

self.R_ACCEPTANCE_FINAL = 50

# Size of radius around last waypoint.

# When craft is outside this radius it should have stopped

# self.R_STOP = 100.0

self.desired_values_history = {

'values': [[],[]],

'time': []

}

self.path_error = []

self.width_error = []

# When true, completed all waypoints

self.no_more_waypoints = False

# When true, craft is within self.R_ACCEPTANCE_FINAL of the final waypoint

self.finished = False

# index of waypoint the ship has to reach next (first waypoint is starting position)

self.current_waypoint = 1

self.des_yaw_msg = Control()

# self.des_velocity_msg = Float32()

self.des_velocity_msg = Control()

self.shutdown_msg = Bool()

self.shutdown_msg.data = True

self.server_init_setpoints = self.create_service(

InitValues, '/init_setpoints', self.callback_init_setpoints

)



E.4. los_guidance.py 195

self.subscription_shutdown = self.create_subscription(

Bool,

'/shutdown',

self.callback_shutdown,

1)

self.subscription_filtered_state = self.create_subscription(

State,

'/filtered_state',

self.callback_filtered_state,

1)

self.publisher_desired_yaw_angle = self.create_publisher(

Control,

'/desired_yaw_angle',

1)

self.publisher_desired_surge_velocity = self.create_publisher(

Control,

'/desired_surge_velocity',

1)

self.publisher_shutdown = self.create_publisher(

Bool,

'/shutdown',

1)

def callback_shutdown(self, _):

sys.exit()

def callback_init_setpoints(self, req, res):

req.waypoints.position.x.insert(0, req.initial_state.position.x)

req.waypoints.position.y.insert(0, req.initial_state.position.y)

req.waypoints.velocity.insert(0, req.initial_state.velocity.u)

self.waypoints = req.waypoints # {position: {x: [...], y: [...]} velocity: [...]}

self.get_steady_state_yaw_angles(self.waypoints)

self.num_waypoints = len(req.waypoints.position.x)

self.get_logger().info('initial waypoint + listened %d waypoints' % (self.num_waypoints-1))

for i in range(self.num_waypoints):

self.get_logger().info('listened waypoint %d: %f %f %f' % (i, req.waypoints.position.x[i], req.waypoints.position.y[i], req.waypoints.velocity[i]))

des_velocity_msg, des_yaw_msg = self.los(req.initial_state)

res.surge, res.yaw = des_velocity_msg.desired_value, des_yaw_msg.desired_value

return res

def get_steady_state_yaw_angles(self, waypoints):

self.desired_steady_state_yaw_angles = []

for i in range(1, len(waypoints.velocity)):

desired_steady_state_yaw_angle = math.atan2(

waypoints.position.y[i]-waypoints.position.y[i-1],

waypoints.position.x[i]-waypoints.position.x[i-1]

)

self.desired_steady_state_yaw_angles.append(desired_steady_state_yaw_angle)

def callback_filtered_state(self, msg):



196 APPENDIX E. path_following code

try: # need have received waypoints first

self.log_state(msg)

des_velocity_msg, des_yaw_msg = self.los(msg)

self.publisher_desired_yaw_angle.publish(des_yaw_msg)

self.get_logger().info('published desired yaw angle: %f' % des_yaw_msg.desired_value)

self.publisher_desired_surge_velocity.publish(des_velocity_msg)

self.get_logger().info('published desired velocity: %f' % des_velocity_msg.desired_value)

except AttributeError:

self.get_logger().info('Has not received waypoints yet, will ignore listened state')

def reached_next_waypoint(self, xf, R_acceptance):

x, y = xf.position.x, xf.position.y

idx = self.current_waypoint

wx_next , wy_next = self.waypoints.position.x[idx], self.waypoints.position.y[idx]

return 1 if (x-wx_next)**2 + (y-wy_next)**2 <= R_acceptance**2 else 0

def missed_waypoint(self, xf):

# when craft passes line that is orthogonal to los line and

# intercept the next waypoint

# instead of going back trying to reach waypoint missed,

# craft will change to next waypoint

x, y = xf.position.x, xf.position.y

idx = self.current_waypoint

wx, wy = self.waypoints.position.x[idx-1], self.waypoints.position.y[idx-1]

wx_next , wy_next = self.waypoints.position.x[idx], self.waypoints.position.y[idx]

if (wx_next - wx) == 0:

self.get_logger().info('1')

passed_wnext = True if (wy_next-wy)*(y - wy_next) > 0 else False

elif (wy_next - wy) == 0:

passed_wnext = True if (wx_next-wx)*(x - wx_next) > 0 else False

else:

c = (wy_next - wy)/(wx_next - wx)

self.get_logger().info('c: %f' % c)

a_wnext = -1/c

b_wnext = wy_next - a_wnext*wx_next

passed_wnext = True if (wx_next-wx)*a_wnext*(a_wnext*x + b_wnext - y) > 0 \

else False

self.get_logger().info('passed_wnext: True') if passed_wnext else \

self.get_logger().info('passed_wnext: False')

return passed_wnext

def get_xy_los(self, x, y, wx, wy, wx_next, wy_next):

x_los, y_los = symbols('x_los, y_los')

eq1 = Eq((x_los-x)**2 + (y_los-y)**2, self.R**2)

if (wx_next - wx) == 0:

eq2 = Eq(x_los, wx)

elif (wy_next - wy) == 0:

eq2 = Eq(y_los, wy)

else:

eq2 = Eq(((wy_next - wy)/(wx_next - wx)), (y_los - wy)/(x_los - wx))



E.4. los_guidance.py 197

sol = solve([eq1, eq2], [x_los, y_los])

soln = [tuple(v.evalf() for v in s) for s in sol] # evaluated numerically

x_los1, y_los1 = soln[0]

self.get_logger().info('x_los1: %f, y_los1: %f' % (x_los1, y_los1))

x_los2, y_los2 = soln[1]

self.get_logger().info('x_los2: %f, y_los2: %f' % (x_los2, y_los2))

# dot product -> projection of (los intercept - craft positio) vector

# onto los line vector (connecting waypoints)

(x_los, y_los) = (x_los1, y_los1) if (wx_next-wx)*(x_los1-x) + (wy_next-wy)*(y_los1-y) > 0 else (x_los2, y_los2)

self.get_logger().info('wx_next: %f' % wx_next)

self.get_logger().info('x_los: %f, y_los: %f' % (x_los, y_los))

return (x_los, y_los)

def get_current_width_error(self, idx, theta):

if math.radians(90) < theta < math.radians(180) or math.radians(270) < theta < math.radians(360):

self.get_logger().info('theta = %f : in second or forth quadrants' % theta)

zeta = math.radians(90) - self.desired_steady_state_yaw_angles[idx-1]

beta = math.radians(90) - zeta

alfa = beta - (theta - math.radians(90))

self.get_logger().info('alfa: %f' % alfa)

if self.path_error[-1] == 0:

if math.radians(90) < theta < math.radians(180):

return self.path_error[-1] + abs((self.SHIP_LENGHT/2)*np.cos(alfa))

else:

return self.path_error[-1] - abs((self.SHIP_LENGHT/2)*np.cos(alfa))

elif self.path_error[-1] > 0:

return self.path_error[-1] + abs((self.SHIP_LENGHT/2)*np.cos(alfa))

else:

return self.path_error[-1] + -abs((self.SHIP_LENGHT/2)*np.cos(alfa))

else:

self.get_logger().info('theta = %f : in first or third quadrants' % theta)

chi = theta - self.desired_steady_state_yaw_angles[idx-1]

alfa = math.radians(90) - chi

self.get_logger().info('alfa: %f' % alfa)

if self.path_error[-1] == 0:

if 0 <= theta <= math.radians(90):

return self.path_error[-1] + abs((self.SHIP_LENGHT/2)*np.cos(alfa))

else:

return self.path_error[-1] - abs((self.SHIP_LENGHT/2)*np.cos(alfa))

elif self.path_error[-1] > 0:

return self.path_error[-1] + abs((self.SHIP_LENGHT/2)*np.cos(alfa))

else:

return self.path_error[-1] + -abs((self.SHIP_LENGHT/2)*np.cos(alfa))

def append_current_errors(self, x, y, theta, wx, wy, wx_next, wy_next):

idx = self.current_waypoint

use_current_waypoint = True

if idx > 1:

# cx + d is line connecting waypoints

# ax + b is orthogonal to cx + d, passing through a waypoint or through the craft

wx_before, wy_before = self.waypoints.position.x[idx-2], self.waypoints.position.y[idx-2]

calc_intercept_result_with_check = self.calc_intercept(x, y, wx_before, wy_before, wx, wy, check=True)



198 APPENDIX E. path_following code

if calc_intercept_result_with_check[3]:

(xi, yi, positive_error, _) = self.calc_intercept(x, y, wx, wy, wx_next, wy_next)

else:

use_current_waypoint = False

(xi, yi, positive_error, _) = calc_intercept_result_with_check

else:

(xi, yi, positive_error, _) = self.calc_intercept(x, y, wx, wy, wx_next, wy_next)

current_path_error = ((x - xi)**2 + (y - yi)**2)**0.5

if not positive_error:

current_path_error = - current_path_error

self.get_logger().info('current_path_error: %f' % current_path_error)

self.path_error.append(current_path_error)

if use_current_waypoint:

current_width_error = self.get_current_width_error(idx, theta)

else:

current_width_error = self.get_current_width_error(idx-1, theta)

self.width_error.append(current_width_error)

@staticmethod

def calc_intercept(x, y, wx1, wy1, wx2, wy2, check=False):

if check:

xi = None

yi = None

positive_error = None

not_between_waypoints = False

if (wy1 - wy2) == 0:

if (wx2-wx1)*(x-wx2) < 0:

xi = x

yi = wy2

positive_error = True if y > wy1 else False

else:

not_between_waypoints = True

elif (wx1 - wx2) == 0:

if (wy2-wy1)*(y-wy2) < 0:

xi = wx2

yi = y

positive_error = True if x < wx1 else False

else:

not_between_waypoints = True

else:

c = (wy1 - wy2)/(wx1 - wx2)

d = wy1 - c*wx1

a = -1/c

b = y - a*x

e = wy2 - a*wx2

if (wx2 - wx1)*a*(a*x + e - y) < 0:

# craft changed from waypoint a to waypoint b, but hasnt passed

# waypoint a yet, so error will be relative to line that goes to waypoint a

# waypoint a is w, waypoint b is w_next, and waypoint before a is w_before

xi = (b - d)/(c - a)



E.4. los_guidance.py 199

yi = c*xi + d

positive_error = True if y > yi else False

else:

not_between_waypoints = True

return (xi, yi, positive_error, not_between_waypoints)

else:

if (wy1 - wy2) == 0:

xi = x

yi = wy2

positive_error = True if y > wy1 else False

elif (wx1 - wx2) == 0:

xi = wx2

yi = y

positive_error = True if x < wx1 else False

else:

c = (wy1 - wy2)/(wx1 - wx2)

d = wy1 - c*wx1

a = -1/c

b = y - a*x

# craft changed from waypoint a to waypoint b, but hasnt passed

# waypoint a yet, so error will be relative to line that goes to waypoint a

# waypoint a is w, waypoint b is w_next, and waypoint before a is w_before

xi = (b - d)/(c - a)

yi = c*xi + d

positive_error = True if y > yi else False

return (xi, yi, positive_error, None)

def los(self, xf):

if not self.no_more_waypoints:

if self.reached_next_waypoint(xf, self.R_ACCEPTANCE) or self.missed_waypoint(xf):

if self.current_waypoint == self.num_waypoints - 1:

self.no_more_waypoints = True

else:

self.current_waypoint += 1

self.get_logger().info('changed waypoint at time: %f' % xf.time)

else:

self.finished = True if self.reached_next_waypoint(xf, self.R_ACCEPTANCE_FINAL) else False

idx = self.current_waypoint

x, y, theta = xf.position.x, xf.position.y, xf.position.theta

u, v = xf.velocity.u, xf.velocity.v

U = (u**2 + v**2)**0.5

wx_next, wy_next, wv_next = self.waypoints.position.x[idx], self.waypoints.position.y[idx], self.waypoints.velocity[idx]

wx, wy = self.waypoints.position.x[idx-1], self.waypoints.position.y[idx-1]

if not self.finished:

# Find x_los and y_los by solving 2 eq.

# Analytic solution:

# 1. isolating x_los



200 APPENDIX E. path_following code

# ((wy - wy_past)/(wx - wx_past))*(x_los - wx) == (y_los - wy)

# x_los == ((y_los - wy) + wx*((wy - wy_past)/(wx - wx_past)))/((wy - wy_past)/(wx - wx_past))

# 2. substitute and solve for y_los

# (x_los-wx)**2 + (y_los-wy)**2 == self.R**2

# 3. get x_los

# x_los == ((y_los - wy) + wx*((wy - wy_past)/(wx - wx_past)))/((wy - wy_past)/(wx - wx_past))

x_los, y_los = self.get_xy_los(x, y, wx, wy, wx_next, wy_next)

beta = math.asin(v/U)

chi_d = math.atan2(x_los - x, y_los - y)

psi_d = chi_d + beta

# theta is how pydyna_simple measures yaw (starting from west, spanning [0,2pi])

desired_value = 1.57079632679 - psi_d # psi to theta (radians)

# format to positive angles

if desired_value < 0:

desired_value = 6.28318530718 + desired_value

self.des_yaw_msg.desired_value = desired_value

self.des_velocity_msg.desired_value = wv_next

distance_waypoints = ((wx_next - wx)**2 + (wy_next - wy)**2)**0.5

self.get_logger().info('wx_next: %f' % wx_next)

self.get_logger().info('wx: %f' % wx)

self.get_logger().info('distance_waypoints: %f' % distance_waypoints)

self.des_yaw_msg.distance_waypoints = distance_waypoints

self.des_velocity_msg.distance_waypoints = distance_waypoints

else:

# Will shutdown all nodes when reached final waypoint

self.publisher_shutdown.publish(self.shutdown_msg)

# norm of vector from craft location to path, making 90 degrees with path line

self.append_current_errors(x, y, theta, wx, wy, wx_next, wy_next)

self.desired_values_history['values'][0].append(self.des_velocity_msg.desired_value)

self.desired_values_history['values'][1].append(self.des_yaw_msg.desired_value)

self.desired_values_history['time'].append(xf.time)

self.des_velocity_msg.current_waypoint, self.des_yaw_msg.current_waypoint = idx, idx

return (self.des_velocity_msg, self.des_yaw_msg)

def generate_plots(self):

#clean before

files = glob.glob(os.path.join(self.plots_dir, 'setpoints', '*.png'))

for f in files:

os.remove(f)

params = {'mathtext.default': 'regular'}

plt.rcParams.update(params)

t = self.desired_values_history['time']

ss_dir = "setpoints"

desired_values_props = [

{



E.4. los_guidance.py 201

"title": "Linear Veloicity U Setpoint",

"ylabel": r"$u_{des}\;[m/s]$",

"file": "linearvelocityUSetpoint.png"

},

{

"title": "Angular Position Theta Setpoint",

"ylabel": r"$\theta_{des}\;[rad]$",

"file": "angularpositionThetaSetpoint.png"

},

]

for i in range(len(self.desired_values_history['values'])):

fig, ax = plt.subplots(1)

ax.set_title(desired_values_props[i]["title"])

ax.plot(t, self.desired_values_history['values'][i])

ax.set_xlabel(r"$t\;[s]$")

ax.set_ylabel(desired_values_props[i]["ylabel"])

# ax.set_ylim(min(self.desired_values_history['values'][i]), max(self.desired_values_history['values'][i]))

fig.savefig(os.path.join(self.plots_dir, ss_dir, desired_values_props[i]["file"]))

# Program may be interrupted when self.path_error was already updated (appended value)

# but t was not

if len(self.path_error) > len(t):

self.path_error = self.path_error[:-1]

if len(self.width_error) > len(t):

self.width_error = self.width_error[:-1]

# clean before

files = glob.glob(os.path.join(self.plots_dir, 'errors', 'error*.png'))

for f in files:

os.remove(f)

fig, ax = plt.subplots(1)

ax.set_title("Path error")

ax.plot(t, self.path_error)

ax.set_xlabel("t [s]")

ax.set_ylabel("path error [m]")

# ax.set_ylim(min(self.path_error), max(self.path_error))

fig.savefig(os.path.join(self.plots_dir, "errors", "errorPath.png"))

fig, ax = plt.subplots(1)

ax.set_title("Width error")

ax.plot(t, self.width_error)

ax.set_xlabel("t [s]")

ax.set_ylabel("width error [m]")

# ax.set_ylim(min(self.width_error), max(self.width_error))

fig.savefig(os.path.join(self.plots_dir, "errors", "errorWidth.png"))

######## report plots

# clean before

files = glob.glob(os.path.join(self.plots_dir, "reportPlots", "losGuidance", '*.png'))

for f in files:

os.remove(f)



202 APPENDIX E. path_following code

fig, ax = plt.subplots(1)

ax.set_title("Errors")

ax.plot(t, self.path_error)

ax.plot(t, self.width_error)

ax.set_xlabel("t [s]")

ax.set_ylabel("error [m]")

ax.legend([r"$cross-track$ error", r"$width$ error"])

fig.savefig(os.path.join(self.plots_dir, "reportPlots", "losGuidance", "errors.png"))

def print_metrics(self):

mean_path_error = np.mean(np.abs(self.path_error))

print('Mean path error: ', mean_path_error)

self.get_logger().info('Mean path error: %f' % mean_path_error)

max_path_error = np.max(np.abs(self.path_error))

print('Max path error: ', max_path_error)

self.get_logger().info('Max path error: %f' % max_path_error)

mean_width_error = np.mean(np.abs(self.width_error))

print('Mean width error: ', mean_width_error)

self.get_logger().info('Mean width error: %f' % mean_width_error)

max_width_error = np.max(np.abs(self.width_error))

print('Max width error: ', max_width_error)

self.get_logger().info('Max width error: %f' % max_width_error)

def log_state(self, msg):

self.get_logger().info(

'listened filtered state: {position: {x: %f, y: %f, theta: %f}, velocity: {u: %f, v: %f, r: %f}, time: %f}'

% (

msg.position.x,

msg.position.y,

msg.position.theta, # yaw angle

msg.velocity.u,

msg.velocity.v,

msg.velocity.r,

msg.time

)

)

def main(args=None):

try:

rclpy.init(args=args)

los_guidance_node = LosGuidance()

rclpy.spin(los_guidance_node)

except KeyboardInterrupt:

print('Stopped with user interrupt')

los_guidance_node.get_logger().info('Stopped with user interrupt')

except SystemExit:

if los_guidance_node.finished:

print('Finished path')

los_guidance_node.get_logger().info('Finished path')

else:

print('Stopped with user shutdown request')

los_guidance_node.get_logger().info('Stopped with user shutdown request')

except:



E.5. surge_controller.py 203

print(traceback.format_exc())

finally:

los_guidance_node.print_metrics()

los_guidance_node.generate_plots()

los_guidance_node.destroy_node()

rclpy.shutdown()

if __name__ == '__main__':

main()

E.5 surge_controller.py

import sys

import os

import glob

import traceback

import math

import matplotlib.pyplot as plt

import numpy as np

from scipy.optimize import fsolve

import rclpy

from rclpy.node import Node

from std_msgs.msg import Float32

from std_msgs.msg import Bool

# custom interface

from path_following_interfaces.msg import State, Control

from path_following_interfaces.srv import InitValues

class SurgeController(Node):

def __init__(self):

super().__init__('surge_controller_node')

self.declare_parameter('plots_dir', './')

self.plots_dir = self.get_parameter('plots_dir').get_parameter_value().string_value

self.TIME_STEP = 0.1

self.X_ADDED_MASS = -3375

self.M = 40415

self.KF_CONSTANT = 13

self.thrust_history = []

# self.phi_slope_tuning_factor = 10**-10 # without waves: 10**-10

#self.phi_offset_tuning_factor = -0.13 # -0.13 without waves: -0.13

self.phi = 0.19 # last 0.19

self.kf_constant_tuning_factor = 12 # 8 without waves: 3.4

self.est_time_correct_tuning_factor = 0.7



204 APPENDIX E. path_following code

self.server_init_control = self.create_service(

InitValues, '/init_surge_control', self.callback_init_control

)

self.subscription_shutdown = self.create_subscription(

Bool,

'/shutdown',

self.callback_shutdown,

1)

self.subscription_filtered_state = self.create_subscription(

State,

'/filtered_state',

self.callback_filtered_state,

1)

self.subscription_desired_surge_velocity = self.create_subscription(

Control,

'/desired_surge_velocity',

self.callback_desired_surge_velocity,

1)

self.publisher_propeller_thrust = self.create_publisher(

Float32,

'/propeller_thrust',

1)

self.thrust_msg = Float32()

def callback_shutdown(self, _):

sys.exit()

def callback_init_control(self, req, res):

self.waypoints = req.waypoints

self.initial_state = req.initial_state

# format waypoints

self.waypoints.position.x.insert(0, self.initial_state.position.x)

self.waypoints.position.y.insert(0, self.initial_state.position.y)

self.waypoints.velocity.insert(0, self.initial_state.velocity.u)

self.current_waypoint = 1

self.last_waypoint_yaw_angle = self.initial_state.position.theta

self.last_waypoint_surge_velocity = self.initial_state.velocity.u

self.last_waypoint_sway_velocity = self.initial_state.velocity.v

self.last_xu_d = self.waypoints.velocity[1]

self.get_steady_state_yaw_angles(self.waypoints)

self.desired_surge_velocity = req.surge

self.desired_surge_velocity_old = self.initial_state.velocity.u

self.distance_waypoints = (

(self.waypoints.position.x[1] - self.initial_state.position.x)**2 +

(self.waypoints.position.y[1] - self.initial_state.position.y)**2

)**0.5



E.5. surge_controller.py 205

self.get_logger().info('initial distance_waypoints: %f' % self.distance_waypoints)

thrust_msg = self.surge_control(self.initial_state)

res.surge = thrust_msg.data

return res

def callback_filtered_state(self, msg):

self.get_logger().info('listened filtered surge velocity: %f' % msg.velocity.u)

self.publisher_propeller_thrust.publish(self.thrust_msg)

self.thrust_history.append(self.thrust_msg.data)

self.surge_control(msg)

self.get_logger().info('published thrust force: %f' % self.thrust_msg.data)

def callback_desired_surge_velocity(self, msg):

self.get_logger().info('listened desired surge velocity: %f' % msg.desired_value)

if self.desired_surge_velocity != msg.desired_value:

self.desired_surge_velocity_old = self.desired_surge_velocity

self.desired_surge_velocity = msg.desired_value

self.distance_waypoints = msg.distance_waypoints

self.get_logger().info('updated distance_waypoints: %f' % self.distance_waypoints)

self.current_waypoint = msg.current_waypoint

def surge_control(self, xf):

# xu is surge velocity

xu = xf.velocity.u

xu_d = self.desired_surge_velocity

self.get_logger().info('xu_d: %f' % xu_d)

xu_dold = self.desired_surge_velocity_old

self.get_logger().info('xu_dold: %f' % xu_dold)

if xu_d != self.last_xu_d:

self.last_waypoint_surge_velocity = xu

self.last_waypoint_yaw_angle = xf.position.theta

self.last_waypoint_sway_velocity = xf.velocity.v

self.last_xu_d = xu_d

# sliping variable

s = xu - xu_d

self.get_logger().info('s: %f' % s)

# distace between waypoints

distance = self.distance_waypoints

self.get_logger().info('distance_waypoints: %f' % self.distance_waypoints)

# estimated time to get from the old waypoint to the next

# solution of following equation

# distance(t) = integral of velocity(t) from 0 to est_time (xway_dold*est_time + (xu_d - xway_dold)*(est_time + (1/k)*exp(-est_time*k)))

# velocity(t) = xway_dold + (xu_d - xway_dold)*(1 - exp(-t*k))

# distance(t) = (xway_dold*est_time + (xu_d - xway_dold)*(est_time + (1/k)*exp(-est_time*k)) -(1/k)*(xu_d - xway_dold))

kf = self.kf_constant_tuning_factor*(self.KF_CONSTANT)

est_time = self.get_est_time(distance, kf, self.last_waypoint_surge_velocity, xu_d)

self.get_logger().info('est_time_corrected: %f' % est_time)

F = kf*5.18*(10**-5)

eta = abs(self.last_waypoint_surge_velocity-xu_d)/est_time

k = F + eta

self.get_logger().info('k: %f' % k)

# 0.0106734 is the baseline k (kf=13, from 0 to 5m/s in 500s) from my surge control project



206 APPENDIX E. path_following code

# 0.32 is the baseline phi from my surge control project

#phi = self.phi_slope_tuning_factor*k + (0.32 - self.phi_slope_tuning_factor*0.0106734) + self.phi_offset_tuning_factor

self.get_logger().info('phi: %f' % self.phi)

# sat function

sats = max(-1, min(s/self.phi, 1))

# sats = np.sign(s) # for tuning only

self.get_logger().info('sats: %f' % sats)

# input as function of x (control action)

f_hatp = xu*abs(xu)*1.9091*(10**-4)

u = f_hatp - k*sats

self.get_logger().info('u: %f' % u)

# thrust

tau = u*(self.M - self.X_ADDED_MASS)

self.thrust_msg.data = tau

return self.thrust_msg

def get_steady_state_yaw_angles(self, waypoints):

self.desired_steady_state_yaw_angles = []

for i in range(1, len(waypoints.velocity)):

desired_steady_state_yaw_angle = math.atan2(

waypoints.position.y[i]-waypoints.position.y[i-1],

waypoints.position.x[i]-waypoints.position.x[i-1]

)

self.desired_steady_state_yaw_angles.append(desired_steady_state_yaw_angle)

def get_est_time(self, distance, kf, initial_velocity, final_velocity):

data = (distance, kf, initial_velocity, final_velocity)

# ponderates between linear and exponential response

# when phi is higher goes from linear to exponential

est_time_exp = fsolve(self.func, (2*final_velocity + initial_velocity)/3, args=data)[0]

self.get_logger().info('est_time_exp: %f' % est_time_exp)

est_time_lin = distance/((initial_velocity+final_velocity)/2)

self.get_logger().info('est_time_lin: %f' % est_time_lin)

try:

est_time = (

(((final_velocity-initial_velocity) - self.phi)*est_time_lin + self.phi*est_time_exp)

/(final_velocity-initial_velocity)

)

except OverflowError: # est_time = est_time_lin

est_time = est_time_lin

self.get_logger().info('est_time: %f' % est_time)

steady_state_yaw_angle = self.desired_steady_state_yaw_angles[self.current_waypoint-1]

self.get_logger().info('steady_state_yaw_angle: %f' % steady_state_yaw_angle)

u_ss = final_velocity

theta_change_basis = (self.last_waypoint_yaw_angle - steady_state_yaw_angle)

v_ss = (

np.cos(np.pi/2 - theta_change_basis)*self.last_waypoint_surge_velocity

+ np.cos(theta_change_basis)*self.last_waypoint_sway_velocity

)

self.get_logger().info('v_ss: %f' % v_ss)

# vss is used as velocity perpendicular to path(of the actual waypoint) at last waypoint

# uss is used as final surge velocity



E.5. surge_controller.py 207

beta = math.asin(v_ss/(v_ss**2 + u_ss**2)**0.5)

self.get_logger().info('beta: %f' % beta)

craft_steady_state_yaw_angle = steady_state_yaw_angle - beta

self.get_logger().info('craft_steady_state_yaw_angle: %f' % craft_steady_state_yaw_angle)

# used the results obtained from when there wasnt estimated time correction as baseline for

# self.est_time_correct_tuning_factor

# at th begginging the estimated timme was 347 and the actual time was 275 to reach the waypoint

# with initial surge velocity = 1 and initial yaw angle = 90 for linear waypoints

# 347 = self.est_time_correct_tuning_factor*1.125*1*347

self.get_logger().info('last_waypoint_yaw_angle: %f' % self.last_waypoint_yaw_angle)

self.get_logger().info('last_waypoint_surge_velocity: %f' % self.last_waypoint_surge_velocity)

abs_angle_dif = self.last_waypoint_yaw_angle - craft_steady_state_yaw_angle

if abs_angle_dif > 3.14159265359:

abs_angle_dif = abs(self.last_waypoint_yaw_angle - (6.28318530718 + craft_steady_state_yaw_angle))

angle_dif = self.last_waypoint_yaw_angle - craft_steady_state_yaw_angle

self.get_logger().info('angle_dif: %f' % angle_dif)

if angle_dif > np.pi:

angle_dif = -(np.pi - (self.last_waypoint_yaw_angle%np.pi-craft_steady_state_yaw_angle%np.pi))

elif angle_dif < - np.pi:

angle_dif = np.pi + (self.last_waypoint_yaw_angle%np.pi-craft_steady_state_yaw_angle%np.pi)

# est_time_corrected = est_time

# est_time_corrected = self.est_time_correct_tuning_factor*(abs(angle_dif)/2*np.pi + 1)*self.last_waypoint_surge_velocity*est_time

# est_time_corrected = self.est_time_correct_tuning_factor*(abs(angle_dif)/2*np.pi + 1)*est_time

est_time_corrected = self.est_time_correct_tuning_factor*(abs(angle_dif)/2*np.pi + 1)*est_time*(1/abs(np.cos(craft_steady_state_yaw_angle)))

return est_time_corrected

def generate_plots(self):

#clean before

files = glob.glob(os.path.join(self.plots_dir, 'thrustForce*.png'))

for f in files:

os.remove(f)

params = {'mathtext.default': 'regular'}

plt.rcParams.update(params)

t = self.TIME_STEP*np.array(range(len(self.thrust_history)))

fig, ax = plt.subplots(1)

ax.set_title("Thrust force")

ax.plot(t, self.thrust_history)

ax.set_xlabel("t [s]")

ax.set_ylabel(r"$\tau_1\;[N]$")

# ax.set_ylim(min(self.thrust_history), max(self.thrust_history))

graphics_file = "thrustForce.png"

fig.savefig(os.path.join(self.plots_dir, graphics_file))

@staticmethod

def func(t, *data):

distance, kf, initial_velocity, final_velocity = data

return ( # expression == 0

- distance + (initial_velocity*t + (final_velocity - initial_velocity)

*(t + (1/(kf*5.18*(10**-5) + (abs(initial_velocity-final_velocity)/t)))

*np.exp(-t*(kf*5.18*(10**-5) + (abs(initial_velocity-final_velocity)/t))))



208 APPENDIX E. path_following code

- (1/(kf*5.18*(10**-5) + (abs(initial_velocity-final_velocity)/t)))

*(final_velocity - initial_velocity))

)

def main(args=None):

try:

rclpy.init(args=args)

surge_controller_node = SurgeController()

rclpy.spin(surge_controller_node)

except KeyboardInterrupt:

print('Stopped with user interrupt')

surge_controller_node.get_logger().info('Stopped with user interrupt')

except SystemExit:

pass

except:

print(traceback.format_exc())

finally:

surge_controller_node.generate_plots()

surge_controller_node.destroy_node()

rclpy.shutdown()

if __name__ == '__main__':

main()

# GRAVEYARD

# - Iterating to get est time (for when phi is not a constant)

# est_time = (est_time_lin + est_time_exp)/2

# but the claculation depends on knowing phi, which depend on k which depends on est_time itself

# so, begins with a guess for est_time and runs 5 iterations

# for _ in range(5):

# k = (kf*5.18*(10**-5) + (abs(initial_velocity-final_velocity)/(est_time)))

# phi_bootstrap = self.phi_slope_tuning_factor*k + (0.32 - self.phi_slope_tuning_factor*0.0106734) + self.phi_offset_tuning_factor

# est_time = (((final_velocity-initial_velocity) - phi_bootstrap)*est_time_lin + phi_bootstrap*est_time_exp)/(final_velocity-initial_velocity)



E.6. venus.py 209

E.6 venus.py

import sys

import traceback

import math

import venus.viewer

from venus.objects import (

GeoPos,

Rudder,

Vessel,

Beacon,

Size,

KeyValue,

Line

)

import rclpy

from rclpy.node import Node

from std_msgs.msg import Float32

from std_msgs.msg import Bool

# custom interface

from path_following_interfaces.msg import Waypoints, State

class Venus(Node):

def __init__(self):

super().__init__('venus_node')

# could receive initial propeller rotation from init_simul msg

# but not urgent now, can be done later

self.propeller_rotation = 0

self.venus_init()

self.subscription_shutdown = self.create_subscription(

Bool,

'/shutdown',

self.callback_shutdown,

1)

self.subscription_state = self.create_subscription(

State,

'/state',

self.callback_state,

1)

self.subscription_propeller = self.create_subscription(

Float32,

'/propeller_rotation',

self.callback_propeller_rotation,

1)

self.subscription_rudder = self.create_subscription(

Float32,

'/rudder_angle',

self.callback_rudder_angle,



210 APPENDIX E. path_following code

1)

self.subscription_waypoints = self.create_subscription(

Waypoints,

'/waypoints',

self.callback_waypoints,

1)

def callback_shutdown(self, _):

sys.exit()

def venus_init(self):

# GET MAPQUEST API KEY

self.viewer = venus.viewer.Venus(mapquest_key = "1bZQGGHqFLQBezmB29WKAHTJKBXM0wDl", logging=True, port=6150)

# self.initial_position = GeoPos(-23.06255, -44.2772) # angra dos reis

self.initial_position = GeoPos(-23.992557, -46.318) # santos

self.viewer.set_viewport(self.initial_position, 15)

vessel_config = Vessel(

position = self.initial_position,

angle = 0,

size = Size(32.2, 186.4),

# could receive initial rudder angle from init_simul msg

# but not urgent now, can be done later

rudders=[Rudder(angle=0, length=0.1, visual_options={"color": "orange"})],

visual_options={

"stroke": True,

"color": "green", # stroke color

"weight": 3, # stroke weight

"opacity": 1.0, # stroke opacity

"lineCap": "round",

"lineJoin": "round",

"dashArray": None,

"dashOffset": None,

"fill": True,

"fillColor": "red",

"fillOpacity": 0.2,

"fillRule": "evenodd",

},

data_panel= [

KeyValue("ID", "104"),

KeyValue("Width", "32 m"),

KeyValue("Height", "186 m"),

KeyValue("Linear Position X", "Waiting simul init"),

KeyValue("Linear Position Y", "Waiting simul init"),

KeyValue("Angular Position Theta", "Waiting simul init"),

KeyValue("Linear Velocity U", "Waiting simul init"),

KeyValue("Linear Velocity V", "Waiting simul init"),

KeyValue("Angular Velocity R", "Waiting simul init"),

KeyValue("Time", "Waiting simul init"),

KeyValue("Rudder angle", "Waiting simul init"),

KeyValue("Propeller rotation", "Waiting simul init")

]

)

self.vessel = self.viewer.add(vessel_config)

self.viewer.on_object_drag_end = self.on_object_drag_end



E.6. venus.py 211

def callback_state(self, msg):

state = msg

self.get_logger().info(

'listened state: {position: {x: %f, y: %f, theta: %f}, velocity: {u: %f, v: %f, r: %f}, time: %f}'

% (

state.position.x,

state.position.y,

state.position.theta, # yaw angle

state.velocity.u,

state.velocity.v,

state.velocity.r,

state.time

)

)

#sleep(0.05)

self.vessel.position = self.initial_position.relative(state.position.x, state.position.y)

# measured from north clockwise (normal convention)

self.vessel.angle = 90 - math.degrees(state.position.theta) # theta to psi

# slice indexing was throwing error

self.vessel.data_panel[3] = KeyValue("Linear Position X", str(round(state.position.x, 2)) + " m")

self.vessel.data_panel[4] = KeyValue("Linear Position Y", str(round(state.position.y, 2)) + " m")

self.vessel.data_panel[5] = KeyValue("Angular Position Theta", str(round(state.position.theta, 2)) + " rad (from east counterclockwise )")

self.vessel.data_panel[6] = KeyValue("Linear Velocity U", str(round(state.velocity.u, 2)) + " m/s")

self.vessel.data_panel[7] = KeyValue("Linear Velocity V", str(round(state.velocity.v, 2)) + " m/s")

self.vessel.data_panel[8] = KeyValue("Angular Velocity R", str(round(state.velocity.r, 4)) + " rad/s (counterclockwise)")

self.vessel.data_panel[9] = KeyValue("Time", str(round(state.time, 2)) + " s")

self.vessel.data_panel[10] = KeyValue("Rudder angle", str(round(self.vessel.rudders[0].angle, 2)) + " deg (from south clockwise)")

self.vessel.data_panel[11] = KeyValue("Propeller rotation", str(round(self.propeller_rotation, 2)) + " Hz")

def callback_rudder_angle(self, msg):

self.get_logger().info('listened rudder angle: %f' % msg.data)

# measured from south clockwise (normal convention )

self.vessel.rudders[0].angle = math.degrees(msg.data)

def callback_propeller_rotation(self, msg):

self.get_logger().info('listened propeller rotation: %f' % msg.data)

self.propeller_rotation = msg.data

def callback_waypoints(self, msg):

# initial x,y,u

msg.position.x.insert(0, 0)

msg.position.y.insert(0, 0)

msg.velocity.insert(0, 0) # FILLER (just to maintain same lenght of the lists)

self.waypoints = msg # {position: {x: [...], y: [...]} velocity: [...]}

num_waypoints = len(msg.position.x)

self.get_logger().info('initial waypoint + listened %d waypoints' % (num_waypoints-1))

# Draw in the map

# lists inside: [object, GeoPos]

# GeoPos is only here because there was a problem using

# the object's position to crate/update lines (need to investigate)
self.beacons = []

self.lines = []

for i in range(num_waypoints):



212 APPENDIX E. path_following code

wx, wy, wv = msg.position.x[i], msg.position.y[i], msg.velocity[i]

self.get_logger().info('listened waypoint %d: %f %f %f' % (i, wx, wy, wv))

if i == 0:

background_color = "green"

beacon_data_panel = [KeyValue("Initial Position", "")]

draggable = False

else:

background_color = "red"

beacon_data_panel = [

KeyValue("Waypoint", ""),

KeyValue("Position X", str(wx)),

KeyValue("Position Y", str(wy)),

KeyValue("Velocity U", str(wv))

]

draggable = True

beacon = Beacon(

position=self.initial_position.relative(wx, wy),

visual_options={

"background-color": background_color,

"border-radius": "50%"

},

data_panel=beacon_data_panel,

draggable=draggable

)

self.viewer.add(beacon)

# read below commented section tounderstand why i am doing this

self.beacons.append([beacon, self.initial_position.relative(wx, wy)])

######### <passing beacon position inside points does not work, dont know why> ######

# for j in range(num_waypoints):

# if j != num_waypoints-1:

# print(self.beacons[j][0].position.latitude)

#

# line = Line(

# points=[self.beacons[j][0].position, self.beacons[j+1][0].position],

# visual_options={"color": "yellow", "weight": 5}

# )

# self.viewer.add(line)

# self.lines.append(line)

######### <passing beacon position inside points does not work, dont know why/> ######

if i != num_waypoints-1:

wx_next, wy_next = msg.position.x[i+1], msg.position.y[i+1]

line = Line(

points=[self.initial_position.relative(wx, wy), self.initial_position.relative(wx_next, wy_next)],

visual_options={"color": "yellow", "weight": 5}

)

self.viewer.add(line)

self.lines.append(line)

def on_object_drag_end(self, obj, new_position):

num_beacons = len(self.beacons)

beacons_objects = [el[0] for el in self.beacons]

beacon_idx = beacons_objects.index(obj)

if 0 < beacon_idx < num_beacons-1:



E.6. venus.py 213

line_before = self.lines[beacon_idx-1]

line_after = self.lines[beacon_idx]

new_line_before = Line(

points=[self.beacons[beacon_idx-1][1], new_position],

visual_options={"color": "yellow", "weight": 5},

draggable=False

)

new_line_after = Line(

points=[new_position, self.beacons[beacon_idx+1][1]],

visual_options={"color": "yellow", "weight": 5},

draggable=False

)

self.viewer.remove(line_before)

self.viewer.remove(line_after)

self.viewer.add(new_line_before)

self.viewer.add(new_line_after)

self.lines[beacon_idx-1] = new_line_before

self.lines[beacon_idx] = new_line_after

elif beacon_idx == 0:

line_after = self.lines[beacon_idx]

new_line_after = Line(

points=[new_position, self.beacons[beacon_idx+1][1]],

visual_options={"color": "yellow", "weight": 5},

draggable=False

)

self.viewer.remove(line_after)

self.viewer.add(new_line_after)

self.lines[beacon_idx] = new_line_after

else:

line_before = self.lines[beacon_idx-1]

new_line_before = Line(

points=[self.beacons[beacon_idx-1][1], new_position],

visual_options={"color": "yellow", "weight": 5},

draggable=False

)

self.viewer.remove(line_before)

self.viewer.add(new_line_before)

self.lines[beacon_idx-1] = new_line_before

self.beacons[beacon_idx][0].position = new_position

self.beacons[beacon_idx][1] = new_position # just to pass inside lines

# FILLERS: str(1) -> need to get relative coordinates back

self.beacons[beacon_idx][0].data_panel[1] = KeyValue("Position X", str(1))

self.beacons[beacon_idx][0].data_panel[2] = KeyValue("Position Y", str(1))

def main(args=None):

try:

rclpy.init(args=args)



214 APPENDIX E. path_following code

venus_node = Venus() # port 6150

rclpy.spin(venus_node)

except KeyboardInterrupt:

print('Stopped with user interrupt')

except SystemExit:

pass

except:

print(traceback.format_exc())

finally:

venus_node.viewer.stop()

venus_node.destroy_node()

rclpy.shutdown()

if __name__ == '__main__':

main()

E.7 wave_filter.py
import sys

import os

import glob

import traceback

import matplotlib.pyplot as plt

import numpy as np

from scipy import signal

from scipy.signal import sosfreqz

import rclpy

from rclpy.node import Node

from std_msgs.msg import Bool

# custom interface

from path_following_interfaces.msg import State

class WaveFilter(Node):

def __init__(self):

super().__init__('wave_filter_node')

self.TIME_STEP = 0.1

self.declare_parameter('plots_dir', './')

self.plots_dir = self.get_parameter('plots_dir').get_parameter_value().string_value

self.filtered_state_history = [[],[],[],[],[],[]]

self.simulated_state_history = [[],[],[],[],[],[]]

#considering wn = [0.4, 0.63, 1]

#self.num = np.array([1, 2.842, 4.07, 3.277, 1.623, 0.4523, 0.0635])

#self.den = np.array([1, 4.06, 6.685, 5.709, 2.667, 0.6461, 0.0635])

# wave is at 0.083 Hz or 0.52124 rad/s which is inside the band, but in the edge

# exact fossens frequencies

#considering wn = [0.52124 - 0.23, 0.52124, 0.52124 + 0.37]



E.7. wave_filter.py 215

# self.num = np.array([1, 2.385, 2.868, 1.892, 0.758, 0.1659, 0.0183])

# self.den = np.array([1, 3.407, 4.655, 3.255, 1.228, 0.237, 0.0183])

# Fossen notch

num = np.array([1, 2.385, 2.868, 1.892, 0.758, 0.1659, 0.0183])

den = np.array([1, 3.407, 4.655, 3.255, 1.228, 0.237, 0.0183])

z_s, p_s, k_s = signal.tf2zpk(num, den)

z_z, p_z, k_z = signal.bilinear_zpk(z_s, p_s, k_s, 10)

self.sos_notch_fossen = signal.zpk2sos(z_z, p_z, k_z)

self.zi_notch_fossen = signal.sosfilt_zi(self.sos_notch_fossen)

self.sos_notch_butter = signal.butter(6, [0.046352285679, 0.14184525164], 'bandstop', fs=10, output='sos')

self.zi_notch_butter = signal.sosfilt_zi(self.sos_notch_butter)

# systems pole = 1/time constant is proxy for systems bandwith

# systems pole is 0.0001592 Hz (based on my papaer, 63% of step response)

# pole (resultant) of butterworth filter must be >> 0.0001592

self.sos_lowpass_butter = signal.butter(6, 0.10625, fs=10, output='sos')

self.zi_lowpass_butter = signal.sosfilt_zi(self.sos_lowpass_butter)

self.xf_msg = State()

self.subscription_shutdown = self.create_subscription(

Bool,

'/shutdown',

self.callback_shutdown,

1)

self.subscription_simulated_state = self.create_subscription(

State,

'/simulated_state',

self.callback_simulated_state,

1)

self.publisher_filtered_state = self.create_publisher(

State,

'/filtered_state',

1)

def callback_shutdown(self, _):

sys.exit()

def callback_simulated_state(self, msg):

self.log_state(msg, 'subscriber')

self.simulated_state_history[0].append(msg.position.x)

self.simulated_state_history[1].append(msg.position.y)

self.simulated_state_history[2].append(msg.position.theta)

self.simulated_state_history[3].append(msg.velocity.u)

self.simulated_state_history[4].append(msg.velocity.v)

self.simulated_state_history[5].append(msg.velocity.r)

filtered_state_msg = self.state_filter(msg.time)

self.publisher_filtered_state.publish(filtered_state_msg)

self.log_state(filtered_state_msg, 'publisher')

def state_filter(self, t):



216 APPENDIX E. path_following code

# filters entire state

# Wave filters

# Butterworth notch filter

state_history_filtered = map(lambda sig: signal.sosfilt(self.sos_notch_butter, sig, zi=sig[0]*self.zi_notch_butter)[0], self.simulated_state_history)

# Fossen noth filter

# state_history_filtered = map(lambda sig: signal.sosfilt(self.sos_notch_fossen, sig, zi=sig[0]*self.zi_notch_fossen)[0], self.simulated_state_history)

# Noise filter (low pass): remove high freq noise from white noise added by gps_imu_simul

# comment line below when gps_imu_simul is not activated

state_history_filtered = map(lambda sig: signal.sosfilt(self.sos_lowpass_butter, sig, zi=sig[0]*self.zi_lowpass_butter)[0], state_history_filtered)

state_current_filtered = [sig[-1] for sig in state_history_filtered]

self.xf_msg.position.x = state_current_filtered[0]

self.xf_msg.position.y = state_current_filtered[1]

self.xf_msg.position.theta = state_current_filtered[2]

self.xf_msg.velocity.u = state_current_filtered[3]

self.xf_msg.velocity.v = state_current_filtered[4]

self.xf_msg.velocity.r = state_current_filtered[5]

self.xf_msg.time = t

self.filtered_state_history[0].append(self.xf_msg.position.x)

self.filtered_state_history[1].append(self.xf_msg.position.y)

self.filtered_state_history[2].append(self.xf_msg.position.theta)

self.filtered_state_history[3].append(self.xf_msg.velocity.u)

self.filtered_state_history[4].append(self.xf_msg.velocity.v)

self.filtered_state_history[5].append(self.xf_msg.velocity.r)

return self.xf_msg

def log_state(self, state, communicator):

log_str = 'listened simulated' if communicator == 'subscriber' else 'published filtered'

self.get_logger().info(

'%s state: {position: {x: %f, y: %f, theta: %f}, velocity: {u: %f, v: %f, r: %f}, time: %f}'

% (

log_str,

state.position.x,

state.position.y,

state.position.theta, # yaw angle

state.velocity.u,

state.velocity.v,

state.velocity.r,

state.time

)

)

def generate_plots(self):

#clean before

files = glob.glob(os.path.join(self.plots_dir, 'simulatedState', '*.png'))

for f in files:

os.remove(f)

params = {'mathtext.default': 'regular'}

plt.rcParams.update(params)



E.7. wave_filter.py 217

t = self.TIME_STEP*np.array(range(len(self.filtered_state_history[0])))

fs_dir = "filteredState"

filtered_state_props = [

{

"title": "Filtered Linear Position X",

"ylabel": "x [m]",

"file": "filteredLinearPositionX.png"

},

{

"title": "Filtered Linear Position Y",

"ylabel": "y [m]",

"file": "filteredLinearPositionY.png"

},

{

"title": "Filtered Angular Position Theta",

"ylabel": r"$\theta\;[rad\;(from\;east\;counterclockwise)]$",

"file": "filteredAngularPositionTheta.png"

},

{

"title": "Filtered Linear Velocity U",

"ylabel": "u [m/s]",

"file": "filteredLinearVelocityU.png"

},

{

"title": "Filtered Linear Velocity V",

"ylabel": "v [m/s (port)]",

"file": "filteredLinearVelocityV.png"

},

{

"title": "Filtered Angular Velocity R",

"ylabel": "r [rad/s (counterclockwise)]",

"file": "filteredAngularVelocityR.png"

},

]

for i in range(len(self.filtered_state_history)):

fig, ax = plt.subplots(1)

ax.set_title(filtered_state_props[i]["title"])

ax.plot(t, self.filtered_state_history[i])

ax.set_xlabel(r"$t\;[s]$")

ax.set_ylabel(filtered_state_props[i]["ylabel"])

# ax.set_ylim([min(self.filtered_state_history[i]), max(self.filtered_state_history[i])])

fig.savefig(os.path.join(self.plots_dir, fs_dir, filtered_state_props[i]["file"]))

bode_dir = "bodePlots"

filters = [

{

'dtf': self.sos_notch_fossen,

'title': 'Wave filter - Frequency response',

'file': 'notchFilterFossenBodePlot.png'

},

{

'dtf': self.sos_lowpass_butter,

'title': 'Sensor noise filter - Frequency response',

'file': 'lowPassFilterBodePlot.png'

},



218 APPENDIX E. path_following code

{

'dtf': self.sos_notch_butter,

'title': 'Wave filter - Frequency response',

'file': 'NotchFilterButterBodePlot.png'

}

]

#clean before

files = glob.glob(os.path.join(self.plots_dir, bode_dir, '*.png'))

for f in files:

os.remove(f)

for filter in filters:

# Bode plot

fig, ax = plt.subplots(2)

fig.suptitle(filter['title'], fontsize=16)

w, h = sosfreqz(filter['dtf'], worN=8000, fs=10)

## Gain

axGain = ax[0]

db = 20*np.log10(np.maximum(np.abs(h), 1e-5))

axGain.semilogx(w, db)

axGain.set_title('Gain')

# axGain.set_ylim(min(db), max(db))

axGain.axes.get_xaxis().set_visible(False)

axGain.set_ylabel("Gain [dB]")

## Phase

axPhase = ax[1]

negative_phase = [(-phase - 180) if phase > 0 else phase for phase in np.rad2deg(np.angle(h))]

axPhase.semilogx(w, negative_phase)

axPhase.set_title('Phase')

# axPhase.set_ylim(min(negative_phase), 0)

axPhase.set_xlabel("Frequency [Hz]")

axPhase.set_ylabel("Phase [deg]")

fig.savefig(os.path.join(self.plots_dir, bode_dir, filter['file']))

############## report plots

files = glob.glob(os.path.join(self.plots_dir, "reportPlots", "waveFilter", '*.png'))

for f in files:

os.remove(f)

# u simulated and u filtered together

fig, ax = plt.subplots(1)

ax.set_title("Linear Velocity U")

ax.plot(t, self.simulated_state_history[3])

ax.plot(t, self.filtered_state_history[3])

ax.set_xlabel(r"$t\;[s]$")

ax.set_ylabel("u [m/s]")

ax.legend([r"$u$ from sensor", r"$u$ filtered (notch and low-pass)"])

fig.savefig(os.path.join(self.plots_dir, "reportPlots", "waveFilter", "surgeSimulated&Filtered.png"))

# theta simulated and theta filtered together

fig, ax = plt.subplots(1)

ax.set_title(r"Angular Position $\theta$")

ax.plot(t, self.simulated_state_history[2])



E.8. yaw_controller.py 219

ax.plot(t, self.filtered_state_history[2])

ax.set_xlabel("t [s]")

ax.set_ylabel(r"$\theta\;[rad]$")

ax.legend([r"$\theta$ from sensor", r"$\theta$ filtered (notch and low-pass)"])

fig.savefig(os.path.join(self.plots_dir, "reportPlots", "waveFilter", "yawSimulated&Filtered.png"))

def main(args=None):

try:

rclpy.init(args=args)

wave_filter_node = WaveFilter()

rclpy.spin(wave_filter_node)

except KeyboardInterrupt:

print('Stopped with user interrupt')

wave_filter_node.get_logger().info('Stopped with user interrupt')

except SystemExit:

pass

except:

print(traceback.format_exc())

finally:

wave_filter_node.generate_plots()

wave_filter_node.destroy_node()

rclpy.shutdown()

if __name__ == '__main__':

main()

E.8 yaw_controller.py
import sys

import os

import glob

import traceback

import numpy as np

import matplotlib.pyplot as plt

import rclpy

from rclpy.node import Node

from std_msgs.msg import Float32

from std_msgs.msg import Bool

# custom interface

from path_following_interfaces.msg import Control, State

from path_following_interfaces.srv import InitValues

class YawController(Node):

def __init__(self):

super().__init__('yaw_controller_node')

self.declare_parameter('plots_dir', './')

self.plots_dir = self.get_parameter('plots_dir').get_parameter_value().string_value

self.RUDDER_SAT = 0.610865 # 35 degrees



220 APPENDIX E. path_following code

self.TIME_STEP = 0.1

self.rudder_angle_history = []

self.last_rudder_angle = 0

self.Kp = 1.6 # best: 1.6

self.Kd = 65 # best: 65

self.Ki = 0.00075 # best: 0.00075 # what i used when tuning surge controller: 0.000075 (antiwindup way), 0.00583 (old way)

self.t_current_desired_yaw_angle = 0.1

self.t_last_desired_yaw_angle = 0

# for the integral action (acumulates error)

self.theta_bar_int = 0

self.integration_range = 0.1

self.server_init_control = self.create_service(

InitValues, '/init_yaw_control', self.callback_init_control

)

self.subscription_shutdown = self.create_subscription(

Bool,

'/shutdown',

self.callback_shutdown,

1)

self.subscription_filtered_state = self.create_subscription(

State,

'/filtered_state',

self.callback_filtered_state,

1)

self.subscription_desired_yaw_angle = self.create_subscription(

Control,

'/desired_yaw_angle',

self.callback_desired_yaw_angle,

1)

self.publisher_rudder_angle = self.create_publisher(

Float32,

'/rudder_angle',

1)

self.rudder_msg = Float32()

def callback_shutdown(self, _):

sys.exit()

def callback_init_control(self, req, res):

self.waypoints = req.waypoints

# format waypoints

self.waypoints.position.x.insert(0, req.initial_state.position.x)

self.waypoints.position.y.insert(0, req.initial_state.position.y)

self.waypoints.velocity.insert(0, req.initial_state.velocity.u)

self.desired_yaw_angle = req.yaw



E.8. yaw_controller.py 221

self.desired_yaw_angle_old = req.initial_state.position.theta

rudder_msg = self.yaw_control(req.initial_state.position.theta, req.initial_state.velocity.r)

res.yaw = rudder_msg.data

self.last_rudder_angle = rudder_msg.data

return res

def callback_filtered_state(self, msg):

self.get_logger().info('listened filtered yaw angle: %f' % msg.position.theta)

self.publisher_rudder_angle.publish(self.rudder_msg)

self.rudder_angle_history.append(self.rudder_msg.data)

self.t = msg.time

self.get_logger().info('time: %f' % msg.time)

self.yaw_control(msg.position.theta, msg.velocity.r)

self.get_logger().info('published rudder angle: %f' % self.rudder_msg.data)

def callback_desired_yaw_angle(self, msg):

self.get_logger().info('listened desired yaw angle: %f' % msg.desired_value)

self.t_last_desired_yaw_angle = self.t_current_desired_yaw_angle

self.t_current_desired_yaw_angle = self.t

# fixes async issues

# sometimes receives 2 desired yaw angles in sequence, without receiving filtered yaw angle

if self.t_last_desired_yaw_angle == self.t_current_desired_yaw_angle:

self.t_current_desired_yaw_angle += self.TIME_STEP

if self.desired_yaw_angle != msg.desired_value:

self.desired_yaw_angle_old = self.desired_yaw_angle

self.desired_yaw_angle = msg.desired_value

def pid(self, theta_bar, theta_bar_dot, integrator=True):

if integrator:

self.get_logger().info('self.theta_bar_int: %f' % self.theta_bar_int)

rudder_angle = -self.Kp*theta_bar - self.Kd*theta_bar_dot - self.Ki*self.theta_bar_int

else:

rudder_angle = -self.Kp*theta_bar - self.Kd*theta_bar_dot

self.theta_bar_int = self.theta_bar_int + theta_bar*self.TIME_STEP

return rudder_angle

def yaw_control(self, theta, r):

# desired theta

theta_des = self.desired_yaw_angle

# last desired theta

theta_des_old = self.desired_yaw_angle_old

# error

theta_bar = theta - theta_des

if theta_bar > np.pi:

theta_bar = -(np.pi - (theta%np.pi-theta_des%np.pi))

elif theta_bar < - np.pi:

theta_bar = np.pi + (theta%np.pi-theta_des%np.pi)

theta_bar_dot = r - (theta_des - theta_des_old)/ \

(self.t_current_desired_yaw_angle - self.t_last_desired_yaw_angle)

self.get_logger().info('theta_bar_dot: %f' % theta_bar_dot)

# antiwindup stategy 1



222 APPENDIX E. path_following code

if abs(theta_bar) > self.integration_range:

self.get_logger().info('### not using integrator because of integration range')

rudder_angle = self.pid(theta_bar, theta_bar_dot, integrator=False)

else:

self.get_logger().info('### normal pid using integrator')

rudder_angle = self.pid(theta_bar, theta_bar_dot)

# rudder saturation (with 1% safety margin)

# real sat is 35 degress

rudder_angle = max(-self.RUDDER_SAT*0.99, min(rudder_angle, self.RUDDER_SAT*0.99))

self.rudder_msg.data = rudder_angle

self.last_rudder_angle = rudder_angle

return self.rudder_msg

def generate_plots(self):

#clean before

files = glob.glob(os.path.join(self.plots_dir, 'rudderAngle*.png'))

for f in files:

os.remove(f)

params = {'mathtext.default': 'regular'}

plt.rcParams.update(params)

t = self.TIME_STEP*np.array(range(len(self.rudder_angle_history)))

fig, ax = plt.subplots(1)

ax.set_title("Rudder angle")

ax.plot(t, self.rudder_angle_history)

ax.set_xlabel("t [s]")

ax.set_ylabel(r"$\delta\;[rad\;(from south clockwise)]$")

# ax.set_ylim(min(self.rudder_angle_history), max(self.rudder_angle_history))

fig.savefig(os.path.join(self.plots_dir, "rudderAngle.png"))

def main(args=None):

try:

rclpy.init(args=args)

yaw_controller_node = YawController()

rclpy.spin(yaw_controller_node)

except KeyboardInterrupt:

print('Stopped with user interrupt')

yaw_controller_node.get_logger().info('Stopped with user interrupt')

except SystemExit:

pass

except:

print(traceback.format_exc())

finally:

yaw_controller_node.generate_plots()

yaw_controller_node.destroy_node()

rclpy.shutdown()

if __name__ == '__main__':

main()

# GRAVEYARD:

# - for antiwindup strategy 2 (may be used in ther scenario)

# [useful snippet in other situation] for antiwindup strategy 2 only:



E.8. yaw_controller.py 223

# # cumulative of the error (integral action)

# theta_bar_int = self.theta_bar_int + theta_bar*self.TIME_STEP

# # self.theta_bar_int = max(-self.ANTIWINDUP, min(self.theta_bar_int,self.ANTIWINDUP))

# self.get_logger().info('self.theta_bar_int: %f' % theta_bar_int)
# # control action

# rudder_angle = -self.Kp*self.K_tuning_factor*theta_bar - self.Kd*theta_bar_dot - self.Ki *theta_bar_int

# return rudder_angle, theta_bar*self.TIME_STEP

# [useful snippet in other situation] antiwindup stategy 2 -> wasnt very succesfull in this case, but is generally good

# if ( # saturated

# self.last_rudder_angle > self.RUDDER_SAT*0.99 or self.last_rudder_angle < -self.RUDDER_SAT*0.99

# ):

# # verify if the current control would increase the abs(self.theta_bar_int)

# self.get_logger().info('### doing antiwindup experiment with integrator')
# if self.last_rudder_angle*self.pid_using_integrator(theta_bar, theta_bar_dot, experiment=True)[1] > 0:

# # dont consider integral action

# self.get_logger().info('### not using antiwindup because would "saturate more"')
# rudder_angle = self.pid_not_using_integrator(theta_bar, theta_bar_dot)

# else:

# self.get_logger().info('### normal pid using integrator')
# rudder_angle = self.pid_using_integrator(theta_bar, theta_bar_dot)[0]

# else:

# self.get_logger().info('### normal pid using integrator')
# rudder_angle = self.pid_using_integrator(theta_bar, theta_bar_dot)[0]

# - autotune controller

# def tune_controller(self, waypoints, initial_state):

# cases = []

# self.desired_steady_state_yaw_angles = []

# for i in range(1, len(waypoints.velocity)):

# print(waypoints.position.x[i])

# print(waypoints.position.y[i])

# print(waypoints.position.x[i-1])

# print(waypoints.position.y[i-1])

# distance = (

# (waypoints.position.x[i] - waypoints.position.x[i-1])**2 +

# (waypoints.position.y[i] - waypoints.position.y[i-1])**2

# )**0.5

# desired_steady_state_yaw_angle = math.atan2(

# waypoints.position.y[i]-waypoints.position.y[i-1],

# waypoints.position.x[i]-waypoints.position.x[i-1]

# )

# self.desired_steady_state_yaw_angles.append(desired_steady_state_yaw_angle)

# if i != 1:

# self.get_logger().info(' i != 1:')
# last_desired_steady_state_yaw_angle = math.atan2(

# waypoints.position.y[i-1]-waypoints.position.y[i-2],

# waypoints.position.x[i-1]-waypoints.position.x[i-2]

# )

# else:

# self.get_logger().info('i == 1:')
# last_desired_steady_state_yaw_angle = initial_state.position.theta

# delta_yaw_angle = (

# abs(desired_steady_state_yaw_angle - last_desired_steady_state_yaw_angle)

# )



224 APPENDIX E. path_following code

# try:

# case = delta_yaw_angle/distance

# except ZeroDivisionError:

# case = delta_yaw_angle

# cases.append(case)

# worst_case = max(cases)

# # 0.0011107205 = math.radians(90 - 45)/sqrt(500^2 + 500^2)

# auto_tuning_factor = worst_case/0.0011107205

# self.get_logger().info('yaw controller autotuning factor: %f' % auto_tuning_factor)
# self.K_tuning_factor = self.K_tuning_factor*auto_tuning_factor

E.9 setup.py

import os

from glob import glob

from setuptools import setup

from glob import glob

package_name = 'path_following'

setup(

name=package_name,

version='0.0.0',

packages=[package_name],

data_files=[

('share/ament_index/resource_index/packages',

['resource/' + package_name]),

('share/' + package_name, ['package.xml']),

(os.path.join('share', package_name, 'logs', 'mylogs'), []),

(os.path.join('share', package_name, 'logs', 'pydynalogs'), []),

(os.path.join('share', package_name, 'logs', 'roslogs'), []),

(os.path.join('share', package_name, 'db', 'rosbags'), []),

(os.path.join('share', package_name, 'db', 'waypoints'), []),

(os.path.join('share', package_name, 'plots', 'state'), []),

(os.path.join('share', package_name, 'plots', 'simulatedState'), []),

(os.path.join('share', package_name, 'plots', 'filteredState'), []),

(os.path.join('share', package_name, 'plots', 'setpoints'), []),

(os.path.join('share', package_name, 'plots', 'bodePlots'), []),

(os.path.join('share', package_name, 'plots', 'errors'), []),

(os.path.join('share', package_name, 'plots', 'reportPlots'), []),

(os.path.join('share', package_name, 'plots', 'reportPlots', 'waveFilter'), []),

(os.path.join('share', package_name, 'plots', 'reportPlots', 'gpsImuSimul'), []),

(os.path.join('share', package_name, 'plots', 'reportPlots', 'losGuidance'), []),

(os.path.join('share', package_name), glob('launch/*.launch.py'))

],

install_requires=['setuptools'],

zip_safe=True,

maintainer='bruno',

maintainer_email='bruno.c.scaglione@gmail.com',

description='Path-Following Ship',

license='Apache License 2.0',

tests_require=['pytest'],

entry_points={

'console_scripts': [

'yaw_controller = path_following.yaw_controller:main',



E.10. package.xml 225

'surge_controller = path_following.surge_controller:main',

'backend = path_following.backend:main',

'control_allocation = path_following.control_allocation:main',

'gps_imu_simul = path_following.gps_imu_simul:main',

'venus = path_following.venus:main',

'wave_filter = path_following.wave_filter:main',

'los_guidance = path_following.los_guidance:main',

'kalman_filter = path_following.kalman_filter:main',

],

},

)

E.10 package.xml

<?xml version="1.0"?>

<?xml-model href="http://download.ros.org/schema/package_format3.xsd" schematypens="http://www.w3.org/2001/XMLSchema"?>

<package format="3">

<name>path_following</name>

<version>0.0.0</version>

<description>Path-Following Ship</description>

<maintainer email="bruno.c.scaglione@gmail.com">bruno</maintainer>

<license>Apache License 2.0</license>

<exec_depend>os</exec_depend>

<exec_depend>glob</exec_depend>

<exec_depend>sys</exec_depend>

<exec_depend>traceback</exec_depend>

<exec_depend>datetime</exec_depend>

<exec_depend>std_msgs</exec_depend>

<exec_depend>flask</exec_depend>

<exec_depend>json</exec_depend>

<exec_depend>numpy</exec_depend>

<exec_depend>sympy</exec_depend>

<exec_depend>scipy</exec_depend>

<exec_depend>venus</exec_depend>

<depend>path_following_interfaces</depend>

<depend>rclpy</depend>

<test_depend>ament_copyright</test_depend>

<test_depend>ament_flake8</test_depend>

<test_depend>ament_pep257</test_depend>

<test_depend>python3-pytest</test_depend>

<export>

<build_type>ament_python</build_type>

</export>

</package>

\clearpage



226 APPENDIX E. path_following code

E.11 path_following.launch.py

import os

from ament_index_python.packages import get_package_share_directory, get_package_prefix

from launch import LaunchDescription

from launch.actions import ExecuteProcess

from launch_ros.actions import Node

# obs: not exaclty shure where generate_launch_description is invoked

# however absolute paths should do, with get_package_share_directory

def generate_launch_description():

P3D_FILES = [

'TankerL186B32_T085.p3d',

'NoWaves_TankerL186B32_T085.p3d',

'NoCurrent&Wind_TankerL186B32_T085.p3d',

'NoWaves&Current&Wind_TankerL186B32_T085.p3d'

]

pkg_share_dir = get_package_share_directory('path_following')

pkg_install_dir = get_package_prefix('path_following')

pkg_dir = os.path.join(pkg_install_dir, 'lib', 'pydyna_simple')

logs_dir = os.path.join(pkg_share_dir, 'logs')

plots_dir = os.path.join(pkg_share_dir, 'plots')

p3d_file = P3D_FILES[0] # change p3d here

db_dir = os.path.join(pkg_share_dir, 'db')

os.environ['ROS_LOG_DIR'] = os.path.join(logs_dir, 'roslogs')

# Set LOG format

os.environ['RCUTILS_CONSOLE_OUTPUT_FORMAT'] = '[{severity} {time}] [{name}]: {message} ({function_name}() at {file_name}:{line_number})'

ld = LaunchDescription()

rosbag_record_all = ExecuteProcess(

cmd=['ros2', 'bag', 'record', '/state'], # use '-a' if want to record all
output='screen'

)

start_pydyna_simple_node = Node(

package='pydyna_simple',

executable='simul',

name='pydyna_simple_node',

output='screen',

parameters=[

{'pkg_share_dir': pkg_share_dir},

{'pkg_dir': pkg_dir},

{'p3d_file': p3d_file}

]

)

start_los_guidance_node = Node(

package='path_following',

executable='los_guidance',

name='los_guidance_node',

output='screen',

parameters=[



E.11. path_following.launch.py 227

{'plots_dir': plots_dir}

]

)

start_surge_controller_node = Node(

package='path_following',

executable='surge_controller',

name='surge_controller_node',

output='screen',

parameters=[

{'plots_dir': plots_dir}

]

)

start_yaw_controller_node = Node(

package='path_following',

executable='yaw_controller',

name='yaw_controller_node',

output='screen',

parameters=[

{'plots_dir': plots_dir}

]

)

start_control_allocation_node = Node(

package='path_following',

executable='control_allocation',

name='control_allocation_node',

output='screen',

parameters=[

{'plots_dir': plots_dir}

]

)

start_gps_imu_simul_node = Node(

package='path_following',

executable='gps_imu_simul',

name='gps_imu_simul_node',

output='screen',

parameters=[

{'plots_dir': plots_dir}

]

)

start_wave_filter_node = Node(

package='path_following',

executable='wave_filter',

name='wave_filter_node',

output='screen',

parameters=[

{'plots_dir': plots_dir}

]

)

start_venus_node = Node(

package='path_following',

executable='venus',



228 APPENDIX E. path_following code

name='venus_node',

output='screen'

)

start_backend_node = Node(

package='path_following',

executable='backend',

name='backend_node',

output='screen',

parameters=[

{'db_dir': db_dir}

]

)

ld.add_action(rosbag_record_all)

ld.add_action(start_pydyna_simple_node)

ld.add_action(start_los_guidance_node)

ld.add_action(start_surge_controller_node)

ld.add_action(start_yaw_controller_node)

ld.add_action(start_control_allocation_node)

ld.add_action(start_gps_imu_simul_node)

ld.add_action(start_wave_filter_node)

ld.add_action(start_venus_node)

ld.add_action(start_backend_node)

return ld

E.12 setup.cfg

[develop]

script_dir=$base/lib/path_following

[install]

install_scripts=$base/lib/path_following



229

APPENDIX

F
PATH_FOLLOWING_INTERFACES CODE

The files that compose the path_following_interfaces package can be found below.

F.1 Control.msg

float32 desired_value 0.0

float32 distance_waypoints 707.0

int32 current_waypoint 1

F.2 Position.msg

# positions (earth-fixed reference frame)

float32 x 0.0

float32 y 0.0

# 1.57079632679 radians = 90 degrees

float32 theta 1.57079632679

F.3 PositionsXY.msg

float32[] x [500.0, 1000.0, 1500.0, 2000.0, 2500.0]

float32[] y [500.0, 1000.0, 1500.0, 2000.0, 2500.0]

F.4 State.msg

# 3DOF state of the craft

Position position

Velocity velocity

float32 time 0.0



230 APPENDIX F. path_following_interfaces code

F.5 Velocity.msg

# velocities (craft-fixed reference frame)

float32 u 1.0

float32 v 0.0

float32 r 0.0

F.6 Waypoints.msg

PositionsXY position

float32[] velocity [3.0, 3.5, 4.0, 4.5, 5.0]

F.7 InitValues.srv

#request

State initial_state

Waypoints waypoints

float32 surge 0.0

float32 yaw 0.0

---

#response

float32 surge 0.0

float32 yaw 0.0

F.8 package.xml

<?xml version="1.0"?>

<?xml-model href="http://download.ros.org/schema/package_format3.xsd"

schematypens="http://www.w3.org/2001/XMLSchema"?>

<package format="3">

<name>path_following_interfaces</name>

<version>0.0.0</version>

<description>Interfaces for the path-following ship system</description>

<maintainer email="bruno.c.scaglione@gmail.com">Bruno</maintainer>

<license>Apache License 2.0</license>

<buildtool_depend>ament_cmake</buildtool_depend>

<build_depend>rosidl_default_generators</build_depend>

<exec_depend>rosidl_default_runtime</exec_depend>

<member_of_group>rosidl_interface_packages</member_of_group>

<test_depend>ament_lint_auto</test_depend>

<test_depend>ament_lint_common</test_depend>

<export>

<build_type>ament_cmake</build_type>

</export>

</package>


	Title page
	Title page
	Acknowledgements
	Abstract
	Resumo
	List of Figures
	List of algorithms
	List of source codes
	List of Tables
	List of abbreviations and acronyms
	Contents
	Introduction
	Motivation
	Scope
	Methodology

	Theoretical Background
	Maneuvering model
	GNC systems
	Guidance
	Navigation
	Wave filter
	Noise filter
	Filters in cascade

	Control
	Dynamical system
	Surge model
	Yaw model

	Model Identification
	Controllers
	Yaw Controller
	Surge Controller

	Control allocation

	Summary

	Computational tools
	pydyna
	ROS
	Venus


	State of the Art
	Related Work
	Findings
	Discussion

	ROS Surface Vehicle packages
	Findings
	Discussion


	Problem Formalization
	Objectives
	Primary objectives
	Extensions

	Requirements
	Technical specifications

	Methods
	ROS2 terminology
	The pydyna_ros package
	Overview
	Requirements
	Features
	Getting Started

	Case study: path-following ship
	Evaluation
	Architecture
	Yaw control development architectures
	Surge control development architectures


	Sensor emulation
	The path_following package
	Overview
	Requirements
	Features
	Getting Started


	Results and Discussion
	Results
	Main environmental condition
	Case 1
	Case 2
	Case 3
	Case 4
	Case 5
	Case 6
	Case 7
	Case 8
	Case 9
	Case 10
	Case 11

	Discussion
	Path-following ability
	Ability to reach final waypoint
	Velocity-following ability
	Actuators behaviour
	Radius of acceptance influence
	Initial state influence
	Environmental condition influence
	Sensor noise emulation influence


	Contributions
	Conclusions and Future Work
	Conclusions
	Future work

	Bibliography
	Related Work
	ROS SV packages
	Python public libraries
	pydyna_ros code
	pydyna_simple.py
	setup.py
	package.xml
	pydyna_simple.launch.py
	setup.cfg

	path_following code
	backend.py
	control_allocation.py
	gps_imu_simul.py
	los_guidance.py
	surge_controller.py
	venus.py
	wave_filter.py
	yaw_controller.py
	setup.py
	package.xml
	path_following.launch.py
	setup.cfg

	path_following_interfaces code
	Control.msg
	Position.msg
	PositionsXY.msg
	State.msg
	Velocity.msg
	Waypoints.msg
	InitValues.srv
	package.xml


