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RESUMO 

 

Em ótica não linear, uma das grandezas mais relevantes é o índice de refração não linear n2, 

fundamental em fenômenos como auto-focalização e auto-defocalização. A técnica mais amplamente 

utilizada para medir n2 é a Varredura-Z (Z-scan), introduzida em 1989 por M. Sheik-Bahae e 

colaboradores. Neste trabalho, aplicamos o método da Integral de Difração de Fresnel-Kirchhoff 

(IDFK) para derivar, de forma detalhada, a expressão analítica da técnica Z-scan, investigando sua 

dependência em relação ao fator de abertura (S) da íris posicionada à frente do detector. Apresentamos 

resultados inéditos sobre essa expressão e sobre as aproximações frequentemente adotadas em 

experimentos de Z-scan. 

 

 

Palavras-chave: Ótica não linear. Z-scan. Medidas de n2. 
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1 INTRODUÇÃO 

 

1.1 O índice de refração não linear 

Em um primeiro estudo sobre as propriedades óticas de materiais, podemos pensar que 

grandezas como o índice de refração são independentes da magnitude dos campos eletromagnéticos 

presentes no material, sendo essa hipótese suportada por uma série de fenômenos óticos do cotidiano 

como a dispersão ótica, birrefringência e absorção ótica. Todos esses fenômenos fazem parte da ótica 

linear, onde as propriedades óticas da matéria são consideradas inalteradas pela ação de campos 

eletromagnéticos externos. Essa aproximação é correta apenas para campos de magnitudes baixas, 

em geral menores que o campo atômico (~ 109 V/cm). Ao se atingir magnitudes da ordem do campo 

atômico, os fenômenos gerados pela interação da luz com a matéria passam a fazer parte da ótica não 

linear. 

A partir do desenvolvimento do laser em 1960 por Maiman1, foi possível observar pela 

primeira vez que luz com altas intensidades poderia provocar mudanças nas propriedades óticas de 

um meio, alterando por exemplo o seu índice de refração e coeficiente de absorção. Com o surgimento 

do laser, a possibilidade de se usar feixes monocromáticos e coerentes de altas intensidades fez o 

campo da ótica não linear crescer rapidamente. Em 1961, Franken e seus colaboradores2 incidiram 

luz de um laser de rubi (694 nm) em um cristal de quartzo (Si02), e ao analisarem a radiação emergente 

do cristal em um espectrômetro, observaram a presença de duas frequências, uma idêntica à 

frequência do feixe incidente e a outra com o dobro da frequência do laser. Esse fenômeno ficou 

conhecido como geração de segundo harmônico e marcou o nascimento da ótica não linear. Após 

esses resultados, uma série de outros fenômenos não lineares foram observados em diversos materiais 

como vidros3, semicondutores4 e materiais orgânicos5. 

De maneira bem simples, para descrever quantitativamente esses fenômenos, podemos 

descrever a susceptibilidade elétrica de um meio por uma série de potências do campo elétrico 

aplicado no material: 

 (1.1.1) 

  

 Sendo assim, a polarização elétrica do meio pode ser escrita da seguinte forma: 
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 (1.1.2) 

 

(1) é a susceptibilidade linear e é muito maior que os termos de ordem mais alta, ele 

representa as propriedades lineares do material como o índice de refração linear, absorção e 

birrefringência, como citado (2) é responsável por exemplo, pela geração de 

segundo harmônico (SHG) e para meios homogêneos e isotrópicos possui valor nulo. Para verificar 

esse resultado, basta observar que para esses meios, a polarização deve inverter o sinal se a direção 

do campo elétrico aplicado for invertida, sendo assim, todos os termos pares ( (2n)) devem se anular. 

Para esses materiais, o termo de menor ordem da equação é (3), e será o termo mais importante nesse 

trabalho pois é responsável pelo chamado índice de refração não linear (n2) do material. 

Se considerarmos que E(t) = E0 mos a Identidade de Euler, é possível mostrar 

que: 

 
(1.1.3) 

 

O primeiro termo determina a geração de terceiro harmônico, ou seja, uma resposta do sistema 

 

 
(1.1.4) 

 

Usando que n2 

 

 
(1.1.5) 

  

 Então a variação do índice de refração é função da intensidade da luz: 

 (1.1.6) 
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em que n2 é o chamado índice de refração não linear.  

É importante notar que n2 é um número complexo e a sua parte real corresponde à refração, 

enquanto a sua parte imaginária está relacionada ao coeficiente de absorção do meio. Não somente a 

refração está relacionada com a intensidade, mas também o coeficiente de absorção do material, que 

pode ser escrito da forma: 

 (1.1.7) 

 

onde A é coeficiente de absorção do material,  o coeficiente de absorção linear e  o coeficiente de 

absorção não linear.  

Os mecanismos físicos responsáveis pelo surgimento de n2 são os mais diversos, como efeitos 

térmicos, eletrônicos, nucleares etc. Cada efeito possui uma escala de tempo característica que 

permite a sua identificação e determina as aplicabilidades do material em dispositivos óticos. 

 

1.2 Efeitos de lente  

A variação do índice de refração em função da intensidade da luz gera uma série de fenômenos 

distintos, e dentre estes se encontram os efeitos de lente, que também são classificados como efeitos 

de auto-modulação. Neles a presença da luz laser cria um gradiente de índice de refração no material, 

que promove uma mudança no raio de curvatura da frente de onda do laser, gerando assim como uma 

lente convencional, a convergência ou divergência do feixe que incide sob o material. 

Para entender esse efeito, temos que primeiramente entender o funcionamento de uma lente 

convencional. Esses elementos óticos são feitos em geral de um mesmo material (vidro na maioria 

das aplicações) que possui um índice de refração superior ao ar (~1.5). O formato da lente é 

especialmente importante para o seu funcionamento, sendo as lentes convergentes mais espessas no 

centro que nas bordas, e o contrário para as lentes divergentes. Esse formato faz com que uma onda 

eletromagnética ao atravessar o elemento, adquira uma fase dependente da distância em relação ao 

seu eixo de propagação. Como o avanço da onda é feito pelo movimento contínuo de suas frentes de 

onda, a única solução para que tanto os pontos no centro, como os pontos na borda da lente continuem 

fazendo parte da mesma frente de onda, é que o raio de curvatura se altere. 
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Nas lentes convergentes, essa fase é maior no centro do que nas bordas, aumentando a 

curvatura da frente de onda. Para as lentes divergentes, a fase é menor no centro do que nas bordas 

da lente, fazendo a onda divergir. O parâmetro relevante nesse fenômeno é a fase adquirida pela onda, 

que é proporcional ao produto do índice de refração pela distância de propagação da onda no meio 

(caminho ótico) e todos os pontos da frente de onda possuem a mesma diferença de caminho ótico. 

Efeito idêntico pode ser alcançado em um material que possuem uma seção quadrada ou retangular, 

mas que o seu índice de refração varia à medida que se desloca do centro para as bordas (Figura 1). 

 

Figura 1: Ilustração do efeito de lente induzido. A variação do índice de refração ao longo da seção transversal do 
material produz efeito idêntico ao de uma lente convergente. 

Fonte: Referência12. 

 

A variação do índice de refração em relação à distância do eixo de propagação do laser é a 

responsável pelo efeito de lente induzido, mas isso se deve ao perfil de intensidade do laser. A maioria 

dos lasers feitos para uso científico possuem um perfil de intensidade gaussiano ao longo da sua seção 

transversal (Seção 2.2), portanto a dependência do índice de refração com a posição surge 

simplesmente da aproximação em que a variação de índice de refração é diretamente proporcional à 

intensidade da luz. 

Uma das principais técnicas para medir o índice de refração não linear (parte real e imaginária) 

explora justamente esses efeitos de lente devido à interação não linear com a luz, e será discutido na 

próxima seção. 

1.3 Z-can (Varredura Z) 

Dentre as várias técnicas em espectroscopia não linear, a técnica de Z-scan se destaca por sua 

montagem experimental simples e sua alta sensibilidade. Foi apresentada por Mansoor Sheik Bahae 
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et al6 em 1989 e desde o começo da década de 90, se tornou uma das principais técnicas utilizadas 

em ótica não linear. 

A ideia principal da técnica é correlacionar a intensidade da luz que incide sob uma amostra, 

com a posição em que ela se encontra em relação ao foco do laser. O esquema do procedimento está 

ilustrado na Figura 2, onde a luz laser que promove o efeito não linear incide sobre uma lente 

convergente de distância focal conhecida e atravessa a amostra a ser estudada, incidindo 

posteriormente em um detector. A amostra é colocada sobre uma plataforma que pode se deslocar ao 

longo do eixo de propagação do laser (eixo z) e então o sinal do detector é correlacionado com a 

distância em que a amostra se encontra do foco da lente. A movimentação da amostra tem por objetivo 

explorar o efeito de lente não linear, pois dependendo da posição da amostra o feixe pode ser 

focalizado ou desfocalizado, alterando a intensidade medida no detector (Figura 2). 

 

Figura 2 :Esquema da montagem experimental de Z-scan (fenda fechada). A amostra se encontra a uma distância z do 
foco da lente convergente e a uma distância d do detector, onde o campo elétrico é E(r ). 

Fonte: Elaborada pelo autor. 

 

Em experimentos de Z-scan, a grandeza medida é a transmitância normaliza T. É definida 

como a razão da intensidade no detector em  pelo seu valor em t=0, ou seja, é o valor de 

intensidade no estado estacionário, quando o efeito não linear já não apresenta variação temporal, 

dividido pelo valor da intensidade no instante inicial, quando há somente efeitos lineares. Para realizar 

as medidas de Z-scan, existem duas configurações distintas, as configurações de fenda aberta e fenda 

fechada. A configuração de fenda fechada corresponde a fazer as medidas com uma abertura (íris) 

posicionada à frente do detector e alinhada ao centro do laser, essa configuração é sensível tanto à 

refração quanto à absorção não lineares, já a fenda aberta, corresponde a medidas sem a abertura e 
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produz um sinal que depende apenas da absorção não linear. As curvas características de Z-scan estão 

demonstradas na figura abaixo. 

 

 

 

Figura 3: Curvas características de Z-scan. O gráfico à esquerda representa a configuração de fenda fechada para uma 
não linearidade puramente refrativa, enquanto o gráfico à direita representa a configuração de fenda aberta. 

Fonte: Elaborada pelo autor. 

 

 É importante notar que o pico e o vale da configuração de fenda fechada, correspondem 

respectivamente aos momentos em que o feixe apresentou menor e maior divergência em relação ao 

instante inicial. Para entender esse fenômeno, basta perceber que pelo fato de a potência do laser ser 

constante, à medida que a área efetiva do feixe varia devido ao efeito de lente, a intensidade do feixe 

deve contrabalancear o efeito para manter o produto P=I.A constante. Destacada na seção anterior, a 

grandeza mais importante nesses efeitos é a fase adquirida pela onda ao atravessar a amostra, neste 

caso, a luz laser adquire uma fase devido ao efeito não linear, que é medida nos experimentos de Z-

scan através de um ajuste da curva teórica aos dados experimentais. Obtendo-se a fase não linear é 

possível calcular o índice de refração n2 do material. 

Em seu artigo, Sheik-Bahae7 apresentou uma expressão analítica para a transmitância 

normalizada considerando uma abertura (íris) infinitesimal e apenas efeitos refrativos não lineares, 

dada pela equação abaixo: 

 
(1.3.1) 

  

Os parâmetros z0 e  são respectivamente o parâmetro confocal ou parâmetro de Rayleigh 

do laser (Seção 2.2), e a fase não linear adquirida pelo laser no foco. A demonstração dessa expressão 

será feita na seção 3.1, mas podemos tirar resultados importantes da Eq.(1.3.1), como os pontos de 
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máximo e mínimo da função. É possível mostrar que as distâncias no eixo y e x desses pontos 

satisfazem as seguintes equações: 

 (1.3.2) 

  

 (1.3.3) 

  

Essas expressões são válidas para aberturas infinitesimais, ou seja, muito menores que o 

diâmetro do laser, no entanto, em experimentos de Z-scan as aberturas possuem um tamanho 

essas expressões passam a não descrever corretamente os resultados 

experimentais. Considerando essa situação, Sheik-Bahae et al7 propuseram à partir de dados 

experimentais, uma expressão que relaciona  com a fração da potência transmitida pela 

abertura (S):  

 (1.3.4) 

  

Este trabalho busca estudar como se dá a variação do sinal de Z-scan em função da abertura, 

analisando por exemplo, a validade da expressão acima.  

 

2 MATERIAIS E MÉTODOS 

 

2.1 Integral de Difração de Fresnel-Kirchhoff 

A difração é um fenômeno ondulatório, no qual uma onda ao encontrar um determinado 

obstáculo, ou seja, quando parte da frente de onda é obstruída, apresenta padrões específicos de 

interferência, dando origem a faixas claras e escuras na chamada região de sombra geométrica do 

objeto. É através da difração que descrevemos a propagação espacial de um feixe luminoso como o 

laser e a propagação de uma onda por elementos ópticos, como uma lente. 

A principal ferramenta matemática para descrever a difração é a chamada Integral de Difração 

de Fresnel-Kirchhoff (IDFK), onde cada ponto da abertura (fenda) é considerado como uma fonte de 

ondas esféricas secundárias e a superposição dessas diversas ondas gera a expressão do campo no 

ponto P de interesse (Eq.(2.1.1)). A Figura 4 ilustra esse processo, onde o plano (x,y) é o plano de 
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origem da onda e queremos calcular o campo no plano . Os cálculos apresentados nessa seção 

serão de extrema importância para o tratamento teórico da técnica de Z-scan. 

 
(2.1.1) 

 

Sabendo o campo da fonte E0(x,y) , é possível obter a expressão do campo em um ponto P a 

certa distância do elemento difrativo. No caso da técnica de Z-scan, estaremos interessados na 

expressão do campo após ter percorrido a amostra em análise, o plano de origem será a face de saída 

da amostra, enquanto o plano de observação será o plano da abertura. 

 

Figura 4: Esquema dos eixos coordenados utilizados no cálculo da integral de difração de Fresnel-Kirchhoff. 

Fonte: Elaborada pelo autor. 

  

2.2 Feixe gaussiano 

Como descrito na seção 1.2, os efeitos de lente estudados em Z-scan são consequência direta 

da distribuição de intensidade do laser. Em geral, o feixe emitido nas saídas dos lasers comerciais é 

gaussiano no modo TEM00 (transversal elétrico e magnético), esse é o modo mais simples de 

oscilação da luz em uma cavidade ressonante, é uma das soluções da equação de onda do campo 

eletromagnético para um feixe com simetria radial, satisfazendo condições de contorno periódicas na 

cavidade óptica onde a radiação laser é produzida. Considerando um feixe gaussiano de ordem zero 

(TEM00) se propagando na direção z, o perfil radial do campo elétrico e da intensidade são dados por: 
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(2.2.1) 

  

 
(2.2.2) 

  

onde , é o raio de curvatura da frente de onda, o raio do 

feixe (medido do centro r = 0 ao ponto onde a intensidade é 1/e2 de seu valor máximo), w0 é o raio 

do feixe ( ou cintura) no ponto z de máxima intensidade axial e z0 é o chamado parâmetro confocal 

do feixe, que representa a distância que o feixe percorre até que sua área transversal dobre à partir da 

cintura. 

  Aplicando a IDFK para o feixe gaussiano em coordenadas cilíndricas11 chegamos na seguinte 

expressão: 

 
(2.2.3) 

  

Onde   e são quantidades adimensionais convenientes,  é a função 

de Bessel de ordem zero e . Esses resultados serão 

extremamente importantes para o tratamento teórico da técnica de Z-scan. 

 

3 RESULTADOS 

 

3.1 Z-scan  

 Ao atravessar o meio (amostra), o feixe gaussiano sofre os efeitos da refração e absorção não 

lineares. Para encontrar a expressão do campo na saída da amostra, devemos calcular a fase não linear 

adquirida pelo feixe e a amplitude do campo. Usando que o coeficiente de absorção do meio A(I) = 

e a variação de intensidade da luz em função da posição é dada pela equação: 
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(3.1.1) 

 

 Resolvendo a equação diferencial e assumindo que a espessura da amostra é bem menor que 

o parâmetro confocal z0 do laser (aproximação de amostra fina), obtemos a amplitude do campo na 

saída da amostra: 

 
(3.1.2) 

 com  . 

 Usando a expressão acima conseguimos obter o campo elétrico na saída da amostra: 

 
(3.1.3) 

  

 Para obtermos a fase não linear, basta resolver a equação abaixo considerando a aproximação 

de amostra fina: 

 
(3.1.4) 

 

com  . 

 Combinando os resultados obtidos anteriormente e considerando que a fase não linear        

, obtemos o campo elétrico : 

 
(3.1.5) 

  

Podemos reescrever a expressão acima definindo alguns parâmetros importantes: 

 
(3.1.6) 
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(3.1.7) 

  

 Com essas novas definições podemos reescrever o campo elétrico da seguinte forma: 

 
(3.1.8) 

  

onde . 

A amplitude do campo elétrico  no plano da abertura (plano de detecção) pode ser 

calculada tanto pelo método de decomposição gaussiana7 quanto pela integral de difração de Fresnel-

Kirchhoff8. Utilizando os resultados da seção passada para a propagação de um feixe gaussiano, basta 

substituir a expressão do campo elétrico na integral de difração. Podemos notar que o campo no plano 

de observação será obtido pela superposição de três termos 

. O primeiro termo corresponde ao feixe gaussiano inalterado pelo efeito não linear e que 

foi obtido na seção passada: 

 
(3.1.9) 

  

Cuja solução da integral resulta em: 

 
(3.1.10) 

  

 O segundo termo da Eq.(3.1.8) é o campo devido à refração não linear: 

 
(3.1.11) 

 

 O último termo é devido à absorção não linear: 
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(3.1.12) 

 

  A superposição ou interferência dos três campos leva à expressão característica de Z-scan. 

 

3.1.1 Transmitância normalizada 
 

A transmitância normalizada é definida como a razão entre a potência transmitida pela 

abertura com os efeitos não lineares, pela potência linear transmitida. Levando em conta que a 

intensidade do campo é proporcional a sua magnitude ao quadrado e esse valor deve ser integrado 

sobre a abertura, temos a seguinte expressão para a transmitância normalizada T: 

 
(3.1.13) 

  

onde ra é o raio da abertura (íris). 

 Substituindo a variável  por  , onde  é o raio do feixe no plano de detecção, e 

desprezando termos de segunda ordem nas magnitudes dos campos   e  , 

podemos reescrever a transmitância como: 

 
(3.1.14) 

  

onde  ,  e 

. 

Substituindo Eqs.(3.1.10) até (3.1.12) em Eq.(3.1.14) obtemos expressões para  T0 e  : 

 (3.1.15) 

  



15 
 

 
(3.1.16) 

 

Similarmente, Tan resulta em: 

 
(3.1.17) 

  

 Após algumas manipulações algébricas, chegamos no valor da transmitância normalizada 

a, ): 

 

(3.1.18) 

  

 Vale notar que o parâmetro  assume uma forma bem diferente no regime do campo distante. 

Para valores de d  >> z0, a IDFK se reduz à expressão de Franhouffer para a difração e então podemos 

usar . Com isso, analisando a Eq.(3.1.18) no campo distante para o caso em que a << 1, 

podemos aproximar  ,  e Tomando o 

limite a  e desconsiderando a absorção (q0 = 0), obtemos a expressão de Z-scan para uma abertura 

infinitesimal obtida por Sheik-Bahae7 (Eq.(1.3.1)).  

 Definindo a transmitância linear  , podemos reescrever a Eq.(3.1.18) 

na forma como foi obtida por Chapple et al8:  

 
(3.1.19) 

 

 

 É importante notar que se substituirmos S=1 na Eq.(3.1.19), recuperamos a expressão teórica 

para o sinal da fenda aberta (sem abertura): 
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 (3.1.20) 

  

 A Eq.(3.1.19) descreve o sinal de Z-scan para qualquer abertura e possui algumas 

características interessantes que serão discutidas na próxima seção. 

 

3.2 Efeito puramente refrativo 

 

Inicialmente consideraremos o caso de não-linearidade puramente refrativa, ou seja, q0 = 0.  A  

Figura 5 representa a transmitância normalizada dada pela Eq.(3.1.19) para (S=0,0.2,0.5,0.7,0.9). 

 

Figura 5: Gráfico da transmitância normalizada dada pela Eq.(3.1.19) para q0 = 0 e S=0, 0.2, 0.5, 0.7 e 0.9. 

Fonte: Elaborada pelo autor. 

 

Pelo gráfico é possível notar que a variação de transmitância entre o pico e o vale ( ) é 

reduzida à medida que o fator de abertura S aumenta, esse comportamento foi observado 

experimentalmente por Sheik-Bahae7 e através da análise do seus dados propôs a  Eq.(1.3.4).  

Pela Figura 5 percebemos que não somente  varia com o parâmetro S, mas também a 

distância entre o pico e o vale , algo que ainda não tinha sido reportado na literatura. Para 

estudar essas variações em função do parâmetro de abertura (S), determinei numericamente através 

do software Mathematica9, os pontos de máximo e mínimo de T(S,x) para diversos valores de S, e à 

partir desses pontos os valores de  e  foram determinados. Os resultados estão 
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representados na Figura 6, onde os pontos em vermelho representam os resultados obtidas por Sheik-

Bahae (Eq.(1.3.4)) e os pontos em preto, o resultado numérico. 

 

Figura 6: Resultados numéricos para  e  em função do parâmetro S. As curvas em vermelho indicam as 
expressões obtidas por S.Bahae7

 enquanto os resultados numéricos da Eq.(3.1.19) estão representados em preto. 

Fonte: Elaborada pelo autor. 

 

 Podemos observar que as expressões obtidas por Sheik-Bahae apresentam pouca divergência 

com relação aos resultados numéricos para valores de S < 0.2, isso tinha sido reportado por Yao et 

al10, que concluiu que  permanecia aproximadamente constante para valores de S < 0.2. As 

variações de  e impactam diretamente a determinação do índice de refração não linear 

(n2), pois . Desta maneira, o ajuste dos dados experimentais com a expressão 

para S=0 (Eq.(1.3.1)) resulta em um valor de n2 menor que o valor real

expressão completa, Eq.(3.1.19) . Para ilustrar esse efeito, a Tabela 1 apresenta a diferença em 

porcentagem destes valores, n2 . 

Tabela 1: Variação em porcentagem do índice de refração n2 

 

 

  

 

 

S n2 (%) 

0 0 

0.1 1.6 

0.2 3.6 

0.5 12.8 

0.7 23.1 
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Podemos perceber pela Tabela 1 que para S=0.5 , um valor muito utilizado em experimentos 

de Z-scan, o valor de n2 é 12.8% maior que o valor obtido pela Eq.(1.3.4). 

 

3.2.1 Efeito absortivo 
 

Um procedimento muito utilizado em medidas de Z-scan é a divisão dos dados da fenda fechada 

pelos dados da fenda aberta, essa metodologia foi introduzida por Sheik-Bahae et al7 e tem por 

objetivo obter dados sensíveis apenas à refração não linear. Usando as Eq.(3.1.19) e (3.1.20), é 

possível analisar esse efeito dividindo-se uma equação pela outra: 

 
(3.2.1) 

onde  .  

 Na Eq.(3.2.1) usamos a aproximação , visto que o termo proporcional a 

q0 é muito pequeno. Se observarmos atentamente a Eq.(3.2.1), podemos notar que esse termo foi 

reduzido pelo fator (1-S) < 1, o que demostra que para valores de , o procedimento de divisão 

aproxima o resultados de uma medida puramente refrativa (q0 = 0) . A Figura 7 representa o gráfico 

das Eq.(3.1.19) e (3.2.1) para S=0.4 e , podemos ver uma diferença significativa entre a 

função puramente refrativa (q0 = 0) e a função normalizada.  

 

Figura 7: Gráfico das Eq.(3.1.19) e (3.2.1) para S=0.4 e . A função em verde representa a transmitância 
normalizada da fenda fechada, a função em laranja representa a expressão puramente refrativa (q0 = 0) e em azul o 

resultado obtido pela divisão da fenda fechada pela fenda aberta. 

Fonte: Elaborada pelo autor. 
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A Figura 8 mostra os resultados numéricos do produto  em função de , dividido 

pelo mesmo produto obtido com a função puramente refrativa. 

 

Figura 8: Resultados numéricos para o produto  em função de , dividido pelo valor obtido com a 
função puramente refrativa. 

Fonte: Elaborada pelo autor. 

 

Podemos observar pela Figura 8 que para a diferença nos valores de n2 é menor que 

10% para todos os valores de S. Podemos concluir que o procedimento de divisão é adequado para 

valores de  , onde o procedimento reproduz resultados praticamente idênticos aos obtidos 

pela expressão de Z-scan puramente refrativa e para absorções maiores, o ajuste dos dados 

experimentais deve ser feito com a expressão completa (Eq.(3.1.19)). 

 

4 CONCLUSÕES E CONSIDERAÇÕES FINAIS 

 

Neste trabalho busquei apresentar de forma detalhada a demonstração da expressão da 

transmitância normalizada de Z-scan em função da abertura do detector, e explorei alguns aspectos 

da função que não tinham sido apresentados até o momento na literatura, como a variação da distância 

entre o pico e o vale  em função do parâmetro S. Espero que o uso da Eq.(3.1.19) para o ajuste 

dos dados experimentais possa trazer uma menor divergência entre os valores de n2 obtidos por Z-

scan e esclarecido os limites de validade do procedimento de divisão dos dados da fenda fechada pela 

fenda aberta.  
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