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RESUMO

Em dtica ndo linear, uma das grandezas mais relevantes ¢ o indice de refragdao nao linear ny,
fundamental em fendmenos como auto-focalizagdo e auto-defocalizagdo. A técnica mais amplamente
utilizada para medir no ¢ a Varredura-Z (Z-scan), introduzida em 1989 por M. Sheik-Bahae ¢
colaboradores. Neste trabalho, aplicamos o método da Integral de Difracdo de Fresnel-Kirchhoff
(IDFK) para derivar, de forma detalhada, a expressdo analitica da técnica Z-scan, investigando sua
dependéncia em relagdo ao fator de abertura (S) da iris posicionada a frente do detector. Apresentamos
resultados inéditos sobre essa expressdo e sobre as aproximacgdes frequentemente adotadas em

experimentos de Z-scan.
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1 INTRODUCAO

1.1 O indice de refracao nao linear

Em um primeiro estudo sobre as propriedades Oticas de materiais, podemos pensar que
grandezas como o indice de refragdo sdo independentes da magnitude dos campos eletromagnéticos
presentes no material, sendo essa hipdtese suportada por uma série de fendmenos 6ticos do cotidiano
como a dispersao oOtica, birrefringéncia e absor¢ao 6tica. Todos esses fendmenos fazem parte da otica
linear, onde as propriedades Oticas da matéria sdo consideradas inalteradas pela agdo de campos
eletromagnéticos externos. Essa aproximagdo ¢ correta apenas para campos de magnitudes baixas,
em geral menores que o campo atdmico (~ 10° V/em). Ao se atingir magnitudes da ordem do campo
atomico, os fendmenos gerados pela intera¢ao da luz com a matéria passam a fazer parte da otica nao

linear.

A partir do desenvolvimento do laser em 1960 por Maiman!, foi possivel observar pela
primeira vez que luz com altas intensidades poderia provocar mudangas nas propriedades oticas de
um meio, alterando por exemplo o seu indice de refracdo e coeficiente de absor¢ao. Com o surgimento
do laser, a possibilidade de se usar feixes monocromaticos e coerentes de altas intensidades fez o
campo da Otica ndo linear crescer rapidamente. Em 1961, Franken e seus colaboradores? incidiram
luz de um laser de rubi (694 nm) em um cristal de quartzo (Si02), e ao analisarem a radiagdo emergente
do cristal em um espectrometro, observaram a presen¢a de duas frequéncias, uma idéntica a
frequéncia do feixe incidente e a outra com o dobro da frequéncia do laser. Esse fendmeno ficou
conhecido como geracdo de segundo harmdnico e marcou o nascimento da 6tica ndo linear. Apos
esses resultados, uma série de outros fendmenos nao lineares foram observados em diversos materiais
como vidros®, semicondutores* e materiais organicos.

De maneira bem simples, para descrever quantitativamente esses fenomenos, podemos
descrever a susceptibilidade elétrica de um meio por uma série de poténcias do campo elétrico

aplicado no material:

x(E®) = x® + xy@E®) + yPE2(t) + - (1.1.1)

Sendo assim, a polarizagdo elétrica do meio pode ser escrita da seguinte forma:



P() = gox(E(©)).E(t) = 6e(x™® + xPE@) + xPE2() + ) E(t) (1.1.2)

O termo ! é a susceptibilidade linear e é muito maior que os termos de ordem mais alta, ele
representa as propriedades lineares do material como o indice de refragdo linear, absorcao e
birrefringéncia, como citado anteriormente. O termo ¥ ¢é responsavel por exemplo, pela geragdo de
segundo harmdnico (SHG) e para meios homogéneos e isotropicos possui valor nulo. Para verificar
esse resultado, basta observar que para esses meios, a polarizagdo deve inverter o sinal se a direg@o
do campo elétrico aplicado for invertida, sendo assim, todos os termos pares (x*”) devem se anular.
Para esses materiais, o termo de menor ordem da equagdo ¢ ¥, e sera o termo mais importante nesse

trabalho pois € responsavel pelo chamado indice de refracdo ndo linear (n2) do material.

Se considerarmos que E(t) = Eo cos(wt) e usarmos a Identidade de Euler, ¢ possivel mostrar

que:
1 3 1.1.3
POI(t) = goxPE3(t) = ¢ (Z)((”ES cos(3wt) + Z)((3)E§’ cos(wt)) (I.1.3)

O primeiro termo determina a geragdo de terceiro harménico, ou seja, uma resposta do sistema
na frequéncia 3. J& o segundo termo, que mantém a frequéncia da onda incidente, leva ao aumento

da susceptibilidade do material em ® dada por:

3 4® (1.1.4)

Usando que n? = 1 + %, um aumento Ay leva a um pequeno incremento no indice de refragio

An = Ay/2n:

3 ® (1.1.5)

Entdo a variag¢do do indice de refragdo ¢ fun¢do da intensidade da luz:

n= ng+n,l (1.1.6)



em que n € o chamado indice de refragdo ndo linear.

E importante notar que n ¢ um nimero complexo e a sua parte real corresponde a refragao,
enquanto a sua parte imaginaria esté relacionada ao coeficiente de absor¢dao do meio. Nao somente a
refracdo estd relacionada com a intensidade, mas também o coeficiente de absor¢ao do material, que

pode ser escrito da forma:

A=a+pl (1.1.7)

onde A ¢é coeficiente de absor¢ao do material, o o coeficiente de absorgao linear ¢ B o coeficiente de

absorcao nao linear.

Os mecanismos fisicos responsaveis pelo surgimento de n» sao os mais diversos, como efeitos
térmicos, eletronicos, nucleares etc. Cada efeito possui uma escala de tempo caracteristica que

permite a sua identificagdo e determina as aplicabilidades do material em dispositivos 6ticos.

1.2 Efeitos de lente

A variacdo do indice de refracdo em func¢do da intensidade da luz gera uma série de fenomenos
distintos, e dentre estes se encontram os efeitos de lente, que também sdo classificados como efeitos
de auto-modulagdo. Neles a presenca da luz laser cria um gradiente de indice de refragdo no material,
que promove uma mudanga no raio de curvatura da frente de onda do laser, gerando assim como uma

lente convencional, a convergéncia ou divergéncia do feixe que incide sob o material.

Para entender esse efeito, temos que primeiramente entender o funcionamento de uma lente
convencional. Esses elementos 6ticos sao feitos em geral de um mesmo material (vidro na maioria
das aplicagdes) que possui um indice de refracdo superior ao ar (~1.5). O formato da lente ¢é
especialmente importante para o seu funcionamento, sendo as lentes convergentes mais espessas no
centro que nas bordas, e o contrario para as lentes divergentes. Esse formato faz com que uma onda
eletromagnética ao atravessar o elemento, adquira uma fase dependente da distancia em relagao ao
seu eixo de propagagdo. Como o avango da onda ¢ feito pelo movimento continuo de suas frentes de
onda, a Ginica solu¢do para que tanto os pontos no centro, como os pontos na borda da lente continuem

fazendo parte da mesma frente de onda, ¢ que o raio de curvatura se altere.



Nas lentes convergentes, essa fase ¢ maior no centro do que nas bordas, aumentando a
curvatura da frente de onda. Para as lentes divergentes, a fase € menor no centro do que nas bordas
da lente, fazendo a onda divergir. O parametro relevante nesse fendmeno ¢ a fase adquirida pela onda,
que ¢ proporcional ao produto do indice de refracdo pela distancia de propagacdo da onda no meio
(caminho 6tico) e todos os pontos da frente de onda possuem a mesma diferenga de caminho o6tico.
Efeito idéntico pode ser alcangado em um material que possuem uma se¢do quadrada ou retangular,

mas que o seu indice de refracdo varia a medida que se desloca do centro para as bordas (Figura 1).

HEB«

Figura 1: Ilustracdo do efeito de lente induzido. A variag¢do do indice de refracdo ao longo da secdo transversal do
material produz efeito idéntico ao de uma lente convergente.

Fonte: Referéncial?.

A variacdo do indice de refracdo em relagdo a distancia do eixo de propagacdo do laser € a
responsavel pelo efeito de lente induzido, mas isso se deve ao perfil de intensidade do laser. A maioria
dos lasers feitos para uso cientifico possuem um perfil de intensidade gaussiano ao longo da sua se¢ao
transversal (Secao 2.2), portanto a dependéncia do indice de refragdo com a posicao surge
simplesmente da aproximagdo em que a variagdo de indice de refracao ¢ diretamente proporcional a

intensidade da luz.

Uma das principais técnicas para medir o indice de refragdo nao linear (parte real e imaginaria)
explora justamente esses efeitos de lente devido a interagdao nao linear com a luz, e sera discutido na

proxima segao.
1.3 Z-can (Varredura Z)

Dentre as varias técnicas em espectroscopia nao linear, a técnica de Z-scan se destaca por sua

montagem experimental simples e sua alta sensibilidade. Foi apresentada por Mansoor Sheik Bahae



et al® em 1989 e desde o comeco da década de 90, se tornou uma das principais técnicas utilizadas

em Otica nao linear.

A ideia principal da técnica ¢ correlacionar a intensidade da luz que incide sob uma amostra,
com a posi¢do em que ela se encontra em relagdo ao foco do laser. O esquema do procedimento esta
ilustrado na Figura 2, onde a luz laser que promove o efeito ndo linear incide sobre uma lente
convergente de distancia focal conhecida e atravessa a amostra a ser estudada, incidindo
posteriormente em um detector. A amostra ¢ colocada sobre uma plataforma que pode se deslocar ao
longo do eixo de propagacdo do laser (eixo z) e entdo o sinal do detector ¢ correlacionado com a
distancia em que a amostra se encontra do foco da lente. A movimentagao da amostra tem por objetivo
explorar o efeito de lente ndo linear, pois dependendo da posicdo da amostra o feixe pode ser

focalizado ou desfocalizado, alterando a intensidade medida no detector (Figura 2).
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Figura 2 :Esquema da montagem experimental de Z-scan (fenda fechada). A amostra se encontra a uma distancia z do
foco da lente convergente e a uma distancia d do detector, onde o campo elétrico ¢ E(r’).

Fonte: Elaborada pelo autor.

Em experimentos de Z-scan, a grandeza medida é a transmitancia normaliza T. E definida
como a razdo da intensidade no detector em t — oo pelo seu valor em t=0, ou seja, ¢ o valor de
intensidade no estado estacionario, quando o efeito ndo linear j4 ndo apresenta variagdo temporal,
dividido pelo valor da intensidade no instante inicial, quando ha somente efeitos lineares. Para realizar
as medidas de Z-scan, existem duas configuragdes distintas, as configuragdes de fenda aberta e fenda
fechada. A configuragdo de fenda fechada corresponde a fazer as medidas com uma abertura (iris)
posicionada a frente do detector e alinhada ao centro do laser, essa configuragdo ¢ sensivel tanto a

refracdo quanto a absorc¢do ndo lineares, ja a fenda aberta, corresponde a medidas sem a abertura e



produz um sinal que depende apenas da absor¢do nao linear. As curvas caracteristicas de Z-scan estao

demonstradas na figura abaixo.
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Figura 3: Curvas caracteristicas de Z-scan. O grafico a esquerda representa a configuragdo de fenda fechada para uma

ndo linearidade puramente refrativa, enquanto o grafico a direita representa a configuracio de fenda aberta.

Fonte: Elaborada pelo autor.

E importante notar que o pico e¢ o vale da configuracio de fenda fechada, correspondem
respectivamente aos momentos em que o feixe apresentou menor € maior divergéncia em relagdo ao
instante inicial. Para entender esse fenomeno, basta perceber que pelo fato de a poténcia do laser ser
constante, a medida que a area efetiva do feixe varia devido ao efeito de lente, a intensidade do feixe
deve contrabalancear o efeito para manter o produto P=I.A constante. Destacada na sec¢do anterior, a
grandeza mais importante nesses efeitos ¢ a fase adquirida pela onda ao atravessar a amostra, neste
caso, a luz laser adquire uma fase devido ao efeito ndo linear, que ¢ medida nos experimentos de Z-
scan através de um ajuste da curva teorica aos dados experimentais. Obtendo-se a fase nao linear ¢

possivel calcular o indice de refragdo n> do material.

Em seu artigo, Sheik-Bahae’ apresentou uma expressdo analitica para a transmitincia
normalizada considerando uma abertura (iris) infinitesimal e apenas efeitos refrativos nao lineares,

dada pela equagao abaixo:

4xAdy (1.3.1)
(14 x2)(9 + x2)

T(x) =1+

Os parametros zo e Agq sdo respectivamente o pardmetro confocal ou pardmetro de Rayleigh
do laser (Secao 2.2), e a fase ndo linear adquirida pelo laser no foco. A demonstracao dessa expressao

sera feita na se¢@o 3.1, mas podemos tirar resultados importantes da Eq.(1.3.1), como os pontos de



maximo ¢ minimo da fungdo. E possivel mostrar que as distancias no eixo y e x desses pontos

satisfazem as seguintes equagoes:

AT,_, = 0.406Ad, (1.3.2)
AZ,_, = 1.718 z, (1.3.3)

Essas expressdes sdo validas para aberturas infinitesimais, ou seja, muito menores que o
didmetro do laser, no entanto, em experimentos de Z-scan as aberturas possuem um tamanho
comparavel ao “spot” do laser e essas expressdes passam a ndo descrever corretamente os resultados
experimentais. Considerando essa situagdo, Sheik-Bahae et al’ propuseram a partir de dados

experimentais, uma expressdo que relaciona AT,_, com a fracdo da poténcia transmitida pela

abertura (S):

AT,_, = 0.406A¢,(1 — 5)°25 (13.4)

Este trabalho busca estudar como se da a variagdo do sinal de Z-scan em funcdo da abertura,

analisando por exemplo, a validade da expressao acima.

2 MATERIAIS E METODOS

2.1 Integral de Difracdo de Fresnel-Kirchhoff

A difragdo ¢ um fendmeno ondulatorio, no qual uma onda ao encontrar um determinado
obstaculo, ou seja, quando parte da frente de onda ¢ obstruida, apresenta padrdes especificos de
interferéncia, dando origem a faixas claras e escuras na chamada regido de sombra geométrica do
objeto. E através da difragio que descrevemos a propagagdo espacial de um feixe luminoso como o

laser e a propagac¢ao de uma onda por elementos 6pticos, como uma lente.

A principal ferramenta matematica para descrever a difracdo ¢ a chamada Integral de Difracao
de Fresnel-Kirchhoff (IDFK), onde cada ponto da abertura (fenda) ¢ considerado como uma fonte de
ondas esféricas secundarias e a superposi¢ao dessas diversas ondas gera a expressdao do campo no

ponto P de interesse (Eq.(2.1.1)). A Figura 4 ilustra esse processo, onde o plano (x,y) € o plano de



origem da onda ¢ queremos calcular o campo no plano (x',y"). Os calculos apresentados nessa se¢ao

serdo de extrema importancia para o tratamento teorico da técnica de Z-scan.

i ([ e ik dot 2.1.1)
E(xX,y") = i.U d—mEO(x, y)dxdy
S

Sabendo o campo da fonte Eo(x,y) , € possivel obter a expressdo do campo em um ponto P a
certa distdncia do elemento difrativo. No caso da técnica de Z-scan, estaremos interessados na
expressdo do campo apos ter percorrido a amostra em analise, o plano de origem serd a face de saida

da amostra, enquanto o plano de observagao sera o plano da abertura.

Plano de observagio
Y

\
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®
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Figura 4: Esquema dos eixos coordenados utilizados no célculo da integral de difragdo de Fresnel-Kirchhoff.

Fonte: Elaborada pelo autor.

2.2 Feixe gaussiano

Como descrito na secao 1.2, os efeitos de lente estudados em Z-scan sao consequéncia direta
da distribui¢ao de intensidade do laser. Em geral, o feixe emitido nas saidas dos lasers comerciais ¢
gaussiano no modo TEMoyo (transversal elétrico e magnético), esse ¢ o modo mais simples de
oscilagdo da luz em uma cavidade ressonante, ¢ uma das solu¢des da equacdo de onda do campo
eletromagnético para um feixe com simetria radial, satisfazendo condi¢des de contorno perioddicas na
cavidade oOptica onde a radiacao laser ¢ produzida. Considerando um feixe gaussiano de ordem zero

(TEMoo) se propagando na diregdo z, o perfil radial do campo elétrico e da intensidade sdo dados por:

10



W, r2 _ er? 2.2.1)
E(r,z) = E, mexp {WZ(Z)} exp {—l [kz + R arctan(z/zo)l}

~ 2P Wy \2 —2r2 (222
I(r,z) = |[E(r,2)|* = n—wg(m) exp <w2—(z)>

2 2
onde R(z) =z(1+ (Zi) ), € o raio de curvatura da frente de onda, w(z) = wy /1 + (Zi) o raio do
0 0

feixe (medido do centro r = 0 ao ponto onde a intensidade é 1/e? de seu valor maximo), wo é o raio
do feixe ( ou cintura) no ponto z de maxima intensidade axial e zo ¢ o chamado parametro confocal
do feixe, que representa a distancia que o feixe percorre até que sua area transversal dobre a partir da

cintura.

Aplicando a IDFK para o feixe gaussiano em coordenadas cilindricas!! chegamos na seguinte

expressao:

—i (2.2.3)

, kr'2] [ _
Eq(r') = A"exp l >d l J exp [-p*(1 + iv)] Jo(Yp)pdp
0

kw? o . . . . . . ~
Onde p = % ev = ‘: G + %) sdo quantidades adimensionais convenientes, /; ¢ a funcao
ik . _ ~
de Bessel de ordem zero e A" = %Eowow(x) exp [—l (kd + tan™?! (Zi)] . Esses resultados serdo
0

extremamente importantes para o tratamento teorico da técnica de Z-scan.

3 RESULTADOS

3.1 Z-scan

Ao atravessar o meio (amostra), o feixe gaussiano sofre os efeitos da refragdo e absor¢do nao
lineares. Para encontrar a expressdo do campo na saida da amostra, devemos calcular a fase ndo linear
adquirida pelo feixe e a amplitude do campo. Usando que o coeficiente de absor¢do do meio A(I) =

a + B, temos que a varia¢do de intensidade da luz em fungdo da posigdo é dada pela equagdo:

11



dl (3.1.1)
- - 2
e (al +p17)

Resolvendo a equagdo diferencial e assumindo que a espessura da amostra ¢ bem menor que
o parametro confocal zo do laser (aproximacao de amostra fina), obtemos a amplitude do campo na

saida da amostra:

I(r,z) e™* (3.1.2)
1+ ﬁI(T,Z) Leff

I(r,z) =

1-— e—aZ

com Leff = a

Usando a expressao acima conseguimos obter o campo elétrico na saida da amostra:

E(r,z)e ®/2gitd(r2) (3.1.3)
1+ L, (1,2

E(r,z)

Para obtermos a fase ndo linear, basta resolver a equagdo abaixo considerando a aproximacao

de amostra fina;:

L
Ap(r,2) = k f An(r,7)dz = %lnn ()] (3.1.4)
0

com q(r,z) = BLesrI (1, 2).

Combinando os resultados obtidos anteriormente e considerando que a fase nao linear

A¢ << 1, obtemos o campo elétrico E¢(r, z):

1 1.
E(r,z) = E(r,z)e %/? [1 —3 q(r,z) + iknyI(r,z)Les 3-1.5
Podemos reescrever a expressao acima definindo alguns parametros importantes:
2P (3.1.6)

A(nbO = knzLeffW
0

12



2P 3.1.7)

Qo = IBLeffn__Wg

Com essas novas definigdes podemos reescrever o campo elétrico da seguinte forma:

qo (3.1.8)

2(1+ x?)

exp(—=2p?) + i A% exp(—sz)]

E(rz) = E(r,z)e-L/2 [1 - 2

Z
onde x = —.
Zo

A amplitude do campo elétrico E,(r") no plano da abertura (plano de detec¢do) pode ser
calculada tanto pelo método de decomposi¢do gaussiana’ quanto pela integral de difragdo de Fresnel-
Kirchhoff®. Utilizando os resultados da se¢do passada para a propaga¢io de um feixe gaussiano, basta
substituir a expressdo do campo elétrico na integral de difracdo. Podemos notar que o campo no plano
de observagdo sera obtido pela superposi¢do de trés termos E,(r') = &,(r") + 6¢&,”(r") +

85¢,%P5(r"). O primeiro termo corresponde ao feixe gaussiano inalterado pelo efeito ndo linear e que

foi obtido na sec¢do passada:

, , —ikr'?] 5 , (3.1.9)
fal) = A exp | =5 | e =g+ )] Jopdpdp
0
Cuja solugdo da integral resulta em:
) = A P2 ikr'? (3.1.10)
)= d v i) P\ T a0+ i) T 2d
O segundo termo da Eq.(3.1.8) ¢ o campo devido a refracdao nao linear:
, CAgy —ikr'?] , (3.1.11)
8" (r') = Ty 24 e l >d UO exp [-p*(3 + iv)] Jo(Yp)pdp =
[ —p*  ikr'?
_ Ao CXPlIG+iv) ~ 2d
T 142 2(3 +iv)

O ultimo termo ¢ devido a absor¢ao nao linear:

13



| . , Cikrr2] oo ' (3.1.12)
82, (r) = _2(1—J2xZ)A P [ 2d Uo exp [-p* (3 + iv)] Jo(Yp)pdp =
[ -2 ikr'?
_ 9 PG+~ 2d
- 2(1 + x?) 23 +1iv)

A superposi¢ao ou interferéncia dos trés campos leva a expressao caracteristica de Z-scan.

3.1.1 Transmitiancia normalizada

A transmitancia normalizada ¢ definida como a razdo entre a poténcia transmitida pela
abertura com os efeitos ndo lineares, pela poténcia linear transmitida. Levando em conta que a
intensidade do campo ¢ proporcional a sua magnitude ao quadrado e esse valor deve ser integrado

sobre a abertura, temos a seguinte expressao para a transmitancia normalizada T:

[ 1ea(r) + 8,7 (r") + 82,252 2m . dr’ (3.1.13)

B fora lea(r)|2.2mr'.dr’

onde 1, € o raio da abertura (iris).

!

. . .y T , . . ~
Substituindo a variavel r’ por p’ = oo onde w, ¢ o raio do feixe no plano de detec¢do, e
a

desprezando termos de segunda ordem nas magnitudes dos campos |8g,”(r")| e |8£,°P5(r")| ,

podemos reescrever a transmitancia como:

po Tot 8T+ 8Tans _ 8T 8Tag (3.1.14)

Ty Ty T,

onde T, = fopa leg (P2 p".dp’ , 8T, = 2.Re{f0pa £a(p') 8e,"(r).p'.dp' } € 8Typs =
2. Re{fop“ £a(p")"8e,%P5(r").p".dp’ }.

Substituindo Egs.(3.1.10) até (3.1.12) em Eq.(3.1.14) obtemos expressdes para To e 8T, :

T, __MF paex (=2p"%).p".dp' = _ME
T+ vy), TP )P = e v

(1 —exp(=2p,?)) (3115

14



T 16(1+ 221+ 12 9+v 9 + v?

—14'12. A - 2y 2 —8ivp, 2 1.
6T, == |42 A, re {i (1_exp< 4(3+v2)pa )exp< 8iVp, >>} (3.1.16)

Similarmente, 6 Ta, resulta em:

ST = —14'1%. q, re M1 —4(3 + V¥)pg* —8ixp,* (3.1.17)
s = DA+ A)A+ VD) ¢ exp 9+12 )P\ 9112

Apo6s algumas manipulacdes algébricas, chegamos no valor da transmitancia normalizada

T(pa, V):

-4 +1vH)p,? ] [ (8vpa ) (8 Oa ) ] (3.1.18)
exp [—9 gy 2.sin g Agy + cos prpn qo qo

2(1 +x*)(1 — exp(—2p3))

T(pg,v) =1+

Vale notar que o pardmetro v assume uma forma bem diferente no regime do campo distante.
Para valores de d >> 7y, a IDFK se reduz a expressao de Franhouffer para a difragdo e entdo podemos
usar v = x . Com isso, analisando a Eq.(3.1.18) no campo distante para o caso em que pa << I,

xpa) _ 8xpd
+x2 9+x2

, exp(—2p2) ~ 1—2p2 e cos( xza) ~ 1. Tomando o

podemos aproximar sin (9 5

limite pa — 0 e desconsiderando a absor¢ao (qo = 0), obtemos a expressdo de Z-scan para uma abertura

infinitesimal obtida por Sheik-Bahae” (Eq.(1.3.1)).

Definindo a transmitancia linear S = 1 — exp(—2p?2) , podemos reescrever a Eq.(3.1.18)

na forma como foi obtida por Chapple et al®:

_ (1= $)*@(2.5in(p(S,v))Ad, + cos(0(S,v))q0 ) — qo (3.1.19)
TSv) =1+ 2.(1 + x9S
2(3 +v*
—4vIn(1-S
9(S,v) = v9 r-ll-(v2 )

E importante notar que se substituirmos S=1 na Eq.(3.1.19), recuperamos a expressdo tedrica

para o sinal da fenda aberta (sem abertura):
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Oa( ’ ) 2(1 I xz)

A Eq.(3.1.19) descreve o sinal de Z-scan para qualquer abertura e possui algumas

caracteristicas interessantes que serdo discutidas na proxima seg¢ao.
3.2 Efeito puramente refrativo

Inicialmente consideraremos o caso de ndo-linearidade puramente refrativa, ou seja, qo=0. A

Figura 5 representa a transmitancia normalizada dada pela Eq.(3.1.19) para (S=0,0.2,0.5,0.7,0.9).

T(S . x)
121

1] — $=0
$=02
10 5=0.5

\ — 5=0.7
L — 5=0.9

5

Figura 5: Grafico da transmitancia normalizada dada pela Eq.(3.1.19) para qo=0 ¢ S=0, 0.2, 0.5,0.7 ¢ 0.9.

Fonte: Elaborada pelo autor.

Pelo grafico € possivel notar que a variagdo de transmitincia entre o pico € o vale (AT,_,,) €

reduzida a medida que o fator de abertura S aumenta, esse comportamento foi observado

experimentalmente por Sheik-Bahae” e através da analise do seus dados propos a Eq.(1.3.4).

Pela Figura 5 percebemos que ndo somente AT,_,, varia com o pardmetro S, mas também a
distancia entre o pico € o vale AZ,_,,, algo que ainda ndo tinha sido reportado na literatura. Para

estudar essas variagdes em funcdo do parametro de abertura (S), determinei numericamente através
do software Mathematica®, os pontos de maximo e minimo de T(S,x) para diversos valores de S, € a

partir desses pontos os valores de AT,_, e AZ,_, foram determinados. Os resultados estdo
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representados na Figura 6, onde os pontos em vermelho representam os resultados obtidas por Sheik-

Bahae (Eq.(1.3.4)) e os pontos em preto, o resultado numérico.

-+— Resultado numérico - Rs::a\h;:h numérico
Sheik-Bahae s Shei Raliae
1.0 1.0
0.8 __ 084
= )
1 Il
) o)
%06 %06
3 Y
0 0.4 » 044
A =
Z
< o
0.2 024
99 0.0
: : : : : ' i i i i v '
e 2 ot 0.6 9.8 10 0.0 0.2 0.4 0.6 0.8 1.0
S S

Figura 6: Resultados numéricos para AT,,_,, € AZ,,_,, em fungdo do pardmetro S. As curvas em vermelho indicam as
expressdes obtidas por S.Bahae” enquanto os resultados numéricos da Eq.(3.1.19) estdo representados em preto.

Fonte: Elaborada pelo autor.

Podemos observar que as expressdes obtidas por Sheik-Bahae apresentam pouca divergéncia
com relacdo aos resultados numéricos para valores de S < 0.2, isso tinha sido reportado por Yao et
al'’, que concluiu que AZ,,_,, permanecia aproximadamente constante para valores de S <0.2. As
variagoes de AT,_,, e AZ,_, impactam diretamente a determinagdo do indice de refragdo no linear
(n2), pois n, o« AT,_, .AZ,_,. Desta maneira, o ajuste dos dados experimentais com a expressdo
para S=0 (Eq.(1.3.1)) resulta em um valor de n» menor que o “valor real”, ou seja, calculado com a
expressdo completa, Eq.(3.1.19) . Para ilustrar esse efeito, a Tabela 1 apresenta a diferenga em

porcentagem destes valores, dnz.

Tabela 1: Variagdo em porcentagem do indice de refracdo n:

S nz (%)
0 0
0.1 1.6
0.2 3.6
0.5 12.8
0.7 23.1
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Podemos perceber pela Tabela 1 que para S=0.5 , um valor muito utilizado em experimentos

de Z-scan, o valor de n2 ¢ 12.8% maior que o valor obtido pela Eq.(1.3.4).

3.2.1 Efeito absortivo

Um procedimento muito utilizado em medidas de Z-scan ¢ a divisao dos dados da fenda fechada
pelos dados da fenda aberta, essa metodologia foi introduzida por Sheik-Bahae et al” e tem por
objetivo obter dados sensiveis apenas a refracdo ndo linear. Usando as Eq.(3.1.19) e (3.1.20), ¢

possivel analisar esse efeito dividindo-se uma equagao pela outra:

TS (1 = SHF®][sin(p(S,x)) + cos(@(S,x)).e |—e.(1-5) (3.2.1)
Thor(S, %) = T.(x) 1+ A4, 1+ x2S
— 9
onde € = m .

Na Eq.(3.2.1) usamos a aproximagdo (1 —x)~1 = 1 + x, visto que o termo proporcional a
qo ¢ muito pequeno. Se observarmos atentamente a Eq.(3.2.1), podemos notar que esse termo foi
reduzido pelo fator (1-S) < 1, o que demostra que para valores de ¢ << 1, o procedimento de divisao
aproxima o resultados de uma medida puramente refrativa (qo = 0) . A Figura 7 representa o grafico
das Eq.(3.1.19) e (3.2.1) para S=0.4 ¢ ¢ = —0.36, podemos ver uma diferenca significativa entre a

fun¢do puramente refrativa (qo = 0) e a fun¢ao normalizada.

‘// 10 — Tl i
09 /— Tretr

Tca

-6 -4 -2 0.6 2 4 6

Figura 7: Grafico das Eq.(3.1.19) e (3.2.1) para S=0.4 ¢ ¢ = —0.36. A fun¢@o em verde representa a transmitancia
normalizada da fenda fechada, a fung@o em laranja representa a expressao puramente refrativa (qo = 0) e em azul o
resultado obtido pela divisao da fenda fechada pela fenda aberta.

Fonte: Elaborada pelo autor.

18



A Figura 8 mostra os resultados numéricos do produto AT,,_,, . AZ,,_,, em fung¢éo de ¢, dividido

pelo mesmo produto obtido com a fun¢do puramente refrativa.

—5=0.1

1.20

1.18 4

1.16 4

1.14

1124

N3 razao

1.10 4

1.08 4

1.06 4

1.04 4

1.02 4

1.00 T T T T T 1
0.00 0.05 0.10 0.15 0.20 0.25 0.30

&

Figura 8: Resultados numéricos para o produto AT,,_,, . AZ,,_,, em fungdo de ¢, dividido pelo valor obtido com a
fun¢do puramente refrativa.

Fonte: Elaborada pelo autor.

Podemos observar pela Figura 8 que para ¢ < 0.15 a diferenga nos valores de n2 é menor que
10% para todos os valores de S. Podemos concluir que o procedimento de divisdo ¢ adequado para
valores de € < 0.02 , onde o procedimento reproduz resultados praticamente idénticos aos obtidos
pela expressdo de Z-scan puramente refrativa e para absorgdes maiores, o ajuste dos dados

experimentais deve ser feito com a expressdao completa (Eq.(3.1.19)).

4 CONCLUSOES E CONSIDERACOES FINAIS

Neste trabalho busquei apresentar de forma detalhada a demonstracdo da expressdo da
transmitancia normalizada de Z-scan em fung¢do da abertura do detector, e explorei alguns aspectos
da fun¢do que ndo tinham sido apresentados até o momento na literatura, como a variacao da distancia
entre o pico ¢ o vale AZ,,_,, em fungdo do parametro S. Espero que o uso da Eq.(3.1.19) para o ajuste
dos dados experimentais possa trazer uma menor divergéncia entre os valores de n obtidos por Z-
scan e esclarecido os limites de validade do procedimento de divisao dos dados da fenda fechada pela

fenda aberta.
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