

FELIPE CAMPOS DE FREITAS

CONFIGURAÇÃO E
GERENCIAMENTO DO KIT

EKI LM3S8962 PARA
ACIONAMENTO E CONTROLE DE

MÁQUINAS ELÉTRICAS

São Carlos
2012

FELIPE CAMPOS DE FREITAS

CONFIGURAÇÃO E
GERENCIAMENTO DO KIT

EKI LM3S8962 PARA
ACIONAMENTO E CONTROLE DE

MÁQUINAS ELÉTRICAS

Trabalho de Conclusão de Curso
apresentado à Escola de Engenharia de São

Carlos, da Universidade de São Paulo

Curso de Engenharia Elétrica com
ênfase em eletrônica

ORIENTADOR: Manoel Luís Aguiar

São Carlos
2012

Dedicatória:

Aos meus pais pelo apoio

incondicional e em especial ao meu

avô, o Professor Milton de Freitas

pelo incentivo a esta carreira.

Agradecimentos
Aos meus pais, Amauri e Mônica por deixar alguns sonhos de lado em prol da

minha formação.

À minha irmã Juliana pelo apoio nos momentos difíceis.

Ao professor Manoel Aguiar pelo conhecimento a mim transmitido e pela

paciência e tempo gasto na execução do presente trabalho.

Aos amigos Pedro e Ricardo pela amizade e pela força durante o ano

executando este trabalho.

I

Sumário

1. Introdução .. 1

2. Acionamentos de motores elétricos em velocidade variável 3

2.1. Acionamento de motores CC ... 3

2.1.1. Resistor ou reostato de partida ... 4

2.1.2. Controle a partir de retificadores .. 4

2.1.3. Choppers .. 4

2.2. Acionamento de motores CA ... 6

2.2.1. Modulação por largura de pulso ... 8

3. Descrição do kit de desenvolvimento .. 11

3.1. Modulo display OLED ... 12

3.2. Modulo timer ... 13

3.3. Módulo conversor analógico digital (CAD) ... 13

3.4. Módulo de Portas I/O ... 14

3.5. Módulo PWM .. 14

3.6. Módulo encoder QEI .. 15

3.7. Módulo de comunicação serial ... 15

3.8. Configuração do hyperterminal .. 16

4. Programação do kit de desenvolvimento EKI LM3S8962 19

4.1. Inicialização .. 19

4.2. Configuração dos recursos utilizados .. 21

4.2.1. Configuração do clock do utilizado ... 21

4.2.2. Configuração do OLED display .. 21

4.2.3. Configuração dos timers ... 22

4.2.4. Configuração do conversor analógico digital (CAD) 24

4.2.5. Configuração de portas I/O ... 26

4.2.6. Configuração do PWM (Modulação largura de pulso) 27

4.2.7. Encoder .. 28

4.2.8. Configuração da UART (Transmissão/Recepção Universal Assíncrona) .. 31

4.3. Loop ... 32

4.4. Comunicação serial .. 32

5. Matériais e métodos utilizados ... 35

5.1. Materiais utilizados ... 35

II

5.2. Circuito de proteção ... 36

5.3. Circuito chopper utilizado ... 38

5.4. Circuitos de medição .. 39

5.4.1. Medição de corrente ... 39

5.4.2. Medição de velocidade ... 40

6. Testes e ensaios realizados .. 43

6.1. Testes no kit de desenvolvimento EKI LM3S8962 ... 43

6.1.1. Teste display OLED .. 43

6.1.2. Teste no módulo CAD .. 43

6.1.3. Ensaios com a porta serial ... 45

6.1.4. Teste da porta serial com envio amostras do CAD 45

6.1.5. Ensaios do módulo PWM ... 46

6.1.6. Teste da interface de encoder .. 47

6.1.7. Ensaio da constante do tacogerador .. 48

6.1.8. Tempo gasto pelas funções de aquisição de dados 49

6.1.9. Número máximo de amostras ... 51

6.2. Ensaios nos motores em estudo .. 52

6.2.1. Ensaio no motor de corrente contínua .. 52

6.2.1.1. Acionamento do motor CC diretamente a uma bateria 53

6.2.1.2. Acionamento do motor CC utilizando PWM .. 54

6.2.2. Ensaio no motor de indução trifásico .. 55

6.2.2.1. Partida direta ... 56

6.2.2.2. Acionamento através do kit no modo 6-pulsos 58

6.2.2.2.1. Acionamento no modo 2 a 2 ... 59

6.2.2.2.2. Acionamento no modo 3 a 3 ... 61

7. Conclusões .. 65

III

Lista de Figuras

Figura 1 - Chopper de 1º quadrante ... 5

Figura 2 - Chaveamento do chopper [10] ... 5

Figura 3 - Sinal PWM - Referência contínua [13] ... 6

Figura 4 - Inversor de tensão [14] ... 7

Figura 5 - Pulsos no modo 2 a 2 [14] .. 8

Figura 6 - Pulsos no modo 3 a 3 [14] .. 8

Figura 7 – Tensão teórica no modo 2 a 2 [14] .. 8

Figura 8 – Tensão teórica no modo 3 a 3 [14] .. 8

Figura 9 - Modulação por largura de pulso senoidal [15] ... 9

Figura 10 - Kit de desenvolvimento EKI LM3S8962 [1] .. 11

Figura 11 - Hyperterminal – Inicialização ... 16

Figura 12 - Hyperterminal - Configuração da porta .. 17

Figura 13 - Hyperterminal - Configuração da transmissão ... 17

Figura 14 - Hyperterminal - Salvar dados ... 18

Figura 15 - Diagrama do código ... 19

Figura 16 - Eixo do display OLED .. 22

Figura 17 - Bancada de testes .. 35

Figura 18 - Esquemático do componente 6N137 [23] .. 36

Figura 19 - Circuito opto-acoplador utilizado .. 37

Figura 20 - Circuito elevador de tensão .. 37

Figura 21 - Circuito de acionamento das chaves de potência 38

Figura 22 - Circuito utilizado – Chopper ... 38

Figura 23 - Comportamento do sensor de corrente do tipo Hall [27] 39

Figura 24 - Circuito auxiliar do sensor hall ... 40

Figura 25 - Divisor de tensão resistivo ... 40

Figura 26 - Circuito abaixador de tensão para o encoder .. 41

Figura 27 - Teste no display OLED .. 43

Figura 28 - Teste do CAD ... 44

IV

Figura 29 - Teste serial ... 45

Figura 30 - Resultado do teste CAD ... 46

Figura 31 - Perfil para o PWM .. 47

Figura 32 - Encoder utilizado acoplado ao motor de indução 48

Figura 33 - Teste da taxa máxima de aquisição – Display ... 50

Figura 34 - Taxa máxima de aquisição - CAD e QEI .. 50

Figura 35 - Taxa máxima de aquisição – CAD ... 51

Figura 36 - Motor utilizado .. 53

Figura 37 - Motor CC - Partida direta – Velocidade .. 53

Figura 38 - Motor CC - Partida direta – Corrente ... 54

Figura 39 - Motor CC - Partida PWM – Velocidade .. 54

Figura 40 - Motor CC - Partida PWM – Corrente .. 55

Figura 41 - Inversor trifásico utilizado ... 55

Figura 42 - Motor de indução - Partida direta – Corrente ... 56

Figura 43 - Motor de indução - Parida direta – Corrente .. 57

Figura 44 - Motor CA - Comportamento da corrente .. 57

Figura 45 - Motor CA - Parida direta – Velocidade ... 58

Figura 46 - Modo 2 a 2 – 0,33Hz – Corrente do motor de indução 60

Figura 47 - Modo 2 a 2 – 0,33Hz - Tensão aplicada ao motor 60

Figura 48 - Modo 2 a 2 – 60Hz – Corrente no motor .. 61

Figura 49 - Modo 2 a 2 – 60Hz – Tensão aplicada ao motor 61

Figura 50 - Modo 3 a 3 – 0,33Hz – Corrente no motor ... 62

Figura 51 - Modo 3 a 3 – 0,33Hz – Tensão aplicada ao motor 62

Figura 52 - Modo 3 a 3 – 60Hz – Corrente no motor .. 63

Figura 53 - Modo 3 a 3 – 60Hz – Tensão aplicada ao motor 63

V

Lista de Tabelas

Tabela 1 - Sequências de amostragem .. 13

Tabela 2 - Função extra das portas PWM .. 14

Tabela 3 - Função extra das portas do encoder ... 15

Tabela 4 - Comando de configuração dos timers ... 23

Tabela 5 - Comando de configuração dos timers 16 bits ... 23

Tabela 6 - Configuração da sequência do CAD ... 25

Tabela 7 - Configuração dos passos da sequência .. 25

Tabela 8 - Configuração da geração do PWM ... 27

Tabela 9 - Configuração do sincronismo do PWM ... 27

Tabela 10 - Habilitação do PWM .. 28

Tabela 11 - Configuração da captura do encoder .. 29

Tabela 12 - Configuração do reset de contagem do encoder 29

Tabela 13 - Configuração do calculo de direção do encoder 30

Tabela 14 - Configuração do calculo de direção do encoder 30

Tabela 15 – Pré-divisores ... 30

Tabela 16 - Resultado do teste CAD .. 44

Tabela 17 - Teste QEI .. 48

Tabela 18 - Cálculo da constante K do tacogerador .. 49

Tabela 19 - Teste do número máximo de amostras ... 52

Tabela 20 - Modo 2 a 2 - Palavras geradas ... 59

Tabela 21 - Modo 3 a 3 - Palavras geradas ... 61

VI

VII

Resumo

O presente trabalho estuda a utilização do kit de desenvolvimento EKI

LM3S8962 da Texas Instruments, para acionamento e controle de máquinas elétricas.

Este kit de desenvolvimento possui recursos que, configurados corretamente, podem

ser utilizados para este objetivo. Estes recursos, tais como geração de PWM, leitura

de encoders, conversores analógicos digitais, serão explicados, configurados e

testados no decorrer deste trabalho.

Serão apresentados circuitos auxiliares com o objetivo de acoplar o kit de

acionamento aos circuitos de potência além de circuitos para o tratamento dos sinais

de medição.

Testes acionando um motor de corrente contínua e um motor de indução trifásico

foram realizados com o objetivo de validação do kit de desenvolvimento EKI

LM3S8962 para esta aplicação.

Palavras chave: Máquinas elétricas; EKI LM3S8962; ARM Cortex-M3;

Acionamento de motores; Aquisição de dados;

VIII

IX

Abstract.

This work study the usage of the development kit EKI LM3S8962 form Texas

instruments, to drive and control of electrical machines. This development kit has some

features which, proper configuration, could be used to this purpose. This features, like

PWM generations, encoder reading, and analogic to digital converter, will be explained,

configured and tested during this work.

Will be discussed auxiliary circuits which connect the development kit to the

power circuits beyond circuits for the measurement signal processing.

Several tests a driving direct current and an alternating current were performed

for the validation of the development kit EKI LM3S8962 to this application.

Key words: Electrical machines; EKI LM3S8962 ARM Cortex-M3; Drive motors;

Data acquisition;

X

1

1. Introdução

As máquinas motrizes em geral são muito importantes na sociedade atual desde

a revolução industrial, onde o surgimento (principalmente com a energia a vapor) dos

processos industriais modificou a sociedade. Com o advento da eletricidade as

máquinas elétricas assumiram um papel de protagonista na indústria.

O acionamento destas máquinas pode ser realizado com velocidade variável

desde que seja utilizado um circuito e uma lógica de acionamento adequada. Este

acionamento com velocidade variável é utilizado tanto para operações que necessitem

esta característica quanto para aumentar a eficiência dos motores, reduzindo assim o

consumo de energia elétrica. Diversas técnicas ou métodos, cada qual com suas

vantagens e desvantagens, podem ser utilizados para acionamento, e controle, de

velocidade de um motor elétrico (corrente alternada ou corrente contínua).

O objetivo do trabalho consiste em estudar o kit de desenvolvimento EKI

LM3S8962 [1], analisando sua utilização para a geração de sinais de acionamento de

motores elétricos de corrente contínua e de corrente alternada utilizando,

respectivamente, os circuitos chopper e inversor de tensão trifásico.

A base do kit de desenvolvimento EKI LM3S8962 é o micro controlador Stellaris

ARM Cortex-M3 [2], que possui uma boa capacidade de processamento mesmo sendo

de baixo custo [3]. O controlador, em conjunto com os outros recursos do kit de

desenvolvimento, como conversores analógicos digitais, acionamento via modulação

largura de pulso (PWM) e leitores para encoders, reúne funções úteis para o

acionamento e controle de máquinas elétricas. Outro recurso importante é a

possibilidade de comunicação entre o kit de desenvolvimento e um host, para

armazenamento de informações e impressão de resultados.

 O presente trabalho explora as características do kit de desenvolvimento e

seus recursos, realizando ensaios em cada um dos possíveis recursos a serem

utilizados para este objetivo, encontrando as características de operação do kit

desenvolvimento de modo a permitir a utilização do mesmo para controle de máquinas

elétricas.

Usualmente as lógicas de controle são realizadas com uma frequência de

operação de 1kHz ou 2kHz, ou seja, a cada 1ms ou 500µs. Neste aspecto, visa-se

portanto investigar o desempenho do kit em realizar tarefas de aquisição, supervisão,

atuação e mais os algoritmos de controle dentro destes intervalos.

2

A validação do trabalho foi realizada acionando os motores de corrente contínua

de imã permanente e de corrente alternada de indução trifásica. Para estes ensaios

foram utilizados circuitos auxiliares, de proteção e medição de grandezas físicas, como

por exemplo corrente e velocidade de rotação do eixo do motor, para que seja possível

o acionamento e a correta análise dos dados. Estes ensaios podem ser expandidos

para uma análise sobre a utilização do referente kit de desenvolvimento para

realização de lógicas de controle para os determinados motores.

A estrutura escrita deste trabalho possui a seguinte organização.

 Capítulo 1 - Introdução: É uma breve introdução ao assunto de

acionamento de máquinas elétricas além de apresentar a motivação do

presente trabalho.

 Capítulo 2 – Acionamento de motores elétricos em velocidade variável:

Serão abordados os diversos métodos de acionamento dos motores com

foco nos utilizados durante o presente trabalho.

 Capítulo 3 – Descrição do kit de desenvolvimento EKI LM3S8962:

Descreve os recursos disponíveis no kit de desenvolvimento focando nos

recursos candidatos a serem utilizados para o acionamento das

máquinas elétricas em questão.

 Capítulo 4 – Programação do kit de desenvolvimento EKI LM3S8962: É

abordada a configuração dos recursos utilizados do kit de

desenvolvimento.

 Capítulo 5 – Materiais e métodos utilizados: Aborda a fase prática do

trabalho, explicando os circuitos e os materiais utilizados.

 Capítulo 6 – Testes e ensaios realizados: Serão mostrados os resultados

obtidos experimentalmente, permitindo a validação do kit de

desenvolvimento para a aplicação proposta.

 Capítulo 7 – Conclusão: É analisada a proposta de utilização do kit de

desenvolvimento para o acionamento de máquinas elétricas.

3

2. Acionamentos de motores elétricos em velocidade variável

Os motores elétricos são dispositivos capazes de transformar energia elétrica em

energia mecânica. Os diferentes tipos de motores elétricos são classificados de acordo

com a forma de alimentação, às características construtivas e formas de operação [4].

Quando alimentados com tensões nominais, estes motores operam com velocidade

constante. Para obter velocidade variável é necessário atuar na forma de acionamento

que permite impor torque variável, seja por meio da tensão, da corrente ou frequência

de alimentação. O acionamento e controle da velocidade destas máquinas dependem

do motor a ser acionado [5] [6].

Neste capítulo serão abordados os circuitos comumente utilizados para o

acionamento dos motores de corrente contínua e de motores indução trifásico. Estes

dois tipos de acionamento configuram a motivação principal deste trabalho. Neste

capítulo serão também esclarecidas as necessidades de recursos para a realização

destes acionamentos de forma digital.

Como resultados deste trabalho, pretende-se desenvolver protótipos de kits de

demonstração destes acionamentos em disciplinas da graduação e futuramente

configurar um experimento de uma possível disciplina de laboratório.

2.1. Acionamento de motores CC

Os diferentes tipos de motores de corrente contínua se diferem basicamente

pela forma de excitação. Existem as máquinas de corrente contínua com excitação

independente, em série, composta e motores de imã permanente. Em todos os casos

a velocidade de rotação do motor é proporcional ao torque, que por sua vez, é

proporcional à corrente, e consequentemente à tensão, aplicada ao motor. Os

acionamentos mais comuns se baseiam no princípio de controle da tensão média

aplicada ao motor [7].

A Equação 1 representa o torque de um motor de corrente contínua.

ܶ ൌ ௧ܭ ∗ ௙ܫ ∗ ௔ܫ

(1)

Onde:

 ܶ = Torque desenvolvido pelo motor

 ܭ௧ = Constante de torque

4

 ܫ௙ = Corrente no circuito de campo

 ܫ௔ = Corrente no circuito de armadura

Para o caso dos motores de corrente contínua de imã permanente não existe a

da corrente de campo (I୤), o controle de velocidade é realizado por meio da corrente

de armadura ܫ௔, a qual pode ser imposta diretamente por uma fonte de corrente

controlada ou indiretamente por meio do uma fonte de tensão controlada.

Os métodos mais comuns de atuação nos motores de corrente contínua com

velocidade variável são por meio de resistor série no circuito de armadura, que atua na

corrente efetiva no motor, por meio de retificadores ou choppers que podem ser

configurados como fontes de tensão ou de corrente controlada [6].

2.1.1. Resistor ou reostato de partida

Tradicionalmente em sistemas de tração antigos (trólebus) [8] eram utilizados

resistores para o acionamento de motores de corrente contínua de forma a controlar a

corrente aplicada ao motor. Estes resistores eram retirados de acordo com o ganho de

velocidade do motor. O fato de o resistor dissipar uma potência relativamente grande

torna o sistema ineficiente em relação aos sistemas utilizados atualmente, por esse

motivo não é muito usual [6].

2.1.2. Controle a partir de retificadores

Caso a alimentação disponível para o motor de corrente contínua seja uma fonte

de corrente alternada, monofásica ou trifásica, é necessária a retificação desta fonte

para alimentar o motor de corrente contínua. É possível então controlar a tensão

média aplicada ao motor a partir de retificadores controlados, pois utilizando estes

circuitos é possível regular o nível médio da tensão retificada [9].

Retificadores são construídos principalmente com tiristores que recebem um

devido sinal de disparo no terminal de gate. A vantagem desse tipo de acionamento é

a utilização em alta potência, no entanto o alto tempo de chaveamento dos tiristores

limita a frequência de operação dos mesmos [10].

2.1.3. Choppers

Os circuitos choppers são utilizados para obter tensões variáveis a partir de uma

fonte de tensão de corrente contínua. A Figura 1 ilustra o circuito de um chopper de

primeiro quadrante [10].

5

Figura 1 - Chopper de 1º quadrante

Controlando a posição da chave é possível controlar a tensão média aplicada à

carga. Sendo ௢ܶ௡, o tempo em que a chave fica na posição fechada e ܶ o período do

sinal de controle, pode-se extrair da Figura 2 a Equação 2 que fornece a tensão média

aplicada à carga.

Figura 2 - Chaveamento do chopper [10]

௢ܸ ൌ
௢ܶ௡

ܶ
∗ ௜ܸ

(2)

Com a possibilidade de variação da tensão média, atua-se na corrente média e,

portanto, no torque eletromagnético variável conforme a Equação 1.

Dois recursos para o acionamento da chave são: a modulação largura de pulso

(PWM – Pulse Width Modulation) e a modulação por frequência de pulso (PFM – Pulse

Frequency Modulation). A utilização do PWM é a mais usual [10] [11].

O conceito de PWM consiste em aplicar um sinal de frequência constante e

variar o tempo em que a chave fica na posição fechada, ou seja, de acordo com a

Figura 2, o ௢ܶ௡ é variado e o período ܶ é mantido constante.

௢ܶ௡

ܶ
௢ܶ௙௙

6

Aplicando a Equação 1 é possível controlar a tensão média de um circuito

chopper por este tipo de sinal.

A geração do sinal de modulação PWM é obtida pela comparação entre dois

sinais, a portadora, geralmente uma onda triangular de frequência mais elevada e um

sinal de referência. A alteração do sinal de referência modifica o tempo em que a

chave fica fechada [12]. A Figura 3 é o sinal gerado a partir de um sinal de referência

contínuo.

Figura 3 - Sinal PWM - Referência contínua [13]

Existem ainda outros circuitos choppers que operam em 2 ou 4 quadrantes, ou

seja, permitem acionar o motor em dois sentidos de rotação e regeneração. [9]

Os choppers permitem operar com elevadas frequências de chaveamento,

enquanto os retificadores exibem frequências de operação em 120 ou 360 Hz. Com

elevadas frequências de chaveamento pode-se atingir melhor desempenho dinâmico

do motor de corrente contínua [10].

2.2. Acionamento de motores CA

Nesta seção será abordado o acionamento para o motor de indução trifásico,

que será realizado no decorrer do presente trabalho.

Motores de corrente alternada possuem velocidade diretamente relacionada à

frequência da tensão de alimentação. A Equação 3a corresponde ao torque e a

Equação 3b à velocidade dos motores de indução.

ܶ ൌ 3 ∗ ܲ ∗
ܴ

ݏ ∗ ߱ଵ
∗ ௥௠௦ܫ

ଶ (3a)

௢ܸ

7

߱௠ ൌ 	
2 ∗ ߱ଵ
ܲ

∗ ሺݏ െ 1ሻ

(3b)

Onde:

 ܶ = Torque

 ܲ = Número de pares de polos do motor

 ܴ= Resistência do rotor

 ߱ଵ = Frequência da tensão de alimentação

 ݏ = Escorregamento do motor

 ߱௠ = Velocidade do motor

A atuação na frequência da tensão de alimentação é o mais usual e o método

mais utilizado para uma excitação com frequência variável é por meio de um inversor

de frequência mostrado na Figura 4. As chaves indicadas na Figura 4 podem ser

implementadas com transistores bipolares, tipo MOSFET ou IGBT.

Figura 4 - Inversor de tensão [14]

Este circuito inversor de tensão trifásico opera a partir de um barramento de

corrente contínua e alimenta o motor de acordo com a posição das chaves. O controle

das chaves pode ser realizado utilizando os métodos de modulação PWM e PFM,

além de poder ser acionado utilizando o modo 6-pulsos. No acionamento tipo 6-pulsos

o motor é alimentado com forma de ondas pulsadas e periódicas, cuja componente

fundamental determina a velocidade do motor [14].

O modo 6-pulsos possui dois modos de operação, o modo 2 a 2, onde apenas 2

chaves estão acionadas, simultaneamente, a cada um sexto do período da frequência

desejada e o modo 3 a 3, em que 3 chaves são acionadas ao mesmo tempo. A

sequência de acionamento das chaves da Figura 4 é mostrada na Figura 5 para o

modo 2 a 2 e na Figura 6 para o modo 3 a 3 [14].

8

Figura 5 - Pulsos no modo 2 a 2 [14]

Figura 6 - Pulsos no modo 3 a 3 [14]

Aplicando estes pulsos é gerada uma forma de tensão teórica, entre a fase e o

neutro, conforme a Figura 7 para o modo 2 a 2 e a Figura 8 para o modo 3 a 3.

Figura 7 – Tensão teórica no modo 2 a 2 [14]

 Figura 8 – Tensão teórica no modo 3 a 3 [14]

As equações 4 e 5 representam o valor RMS da tensão fundamental das formas

de onda da Figura 7 e da Figura 8 respectivamente.

ோܸெௌ ൌ
√3
ߨ ௖ܸ௖

(4)

ோܸெௌ ൌ
2
ߨ ௖ܸ௖

(5)

2.2.1. Modulação por largura de pulso

A modulação por largura de pulso também pode ser utilizada para motores de

corrente alternada no acionamento utilizando inversores de tal forma que o sinal

modulante seja uma senoide de frequência desejada para a velocidade do motor.

Numa versão digital deste procedimento, utiliza-se de um timer programável, o

qual é programado para contar repetidamente até um determinado valor e, em função

9

da frequência de clock escolhido do valor de contagem obtém-se a respectiva

portadora. O efeito PWM é obtido por comparação entre o valor da contagem do timer

com um valor representando o sinal modulante.

Com referência à Figura 3, do princípio da modulação largura de pulso,

aplicando-se um sinal de referência senoidal é possível obter a chamada modulação

por largura de pulso senoidal (SPWM – Sinusidal Pulse Width Modulation). A Figura 9

ilustra este procedimento.

Figura 9 - Modulação por largura de pulso senoidal [15]

Para o caso do motor de indução trifásico é utilizada uma mesma portadora com

três sinais modulantes senoidais defasados de 120 graus elétricos para compor uma

alimentação equilibrada nos terminais do motor de indução.

Para execução do SPWM digitalmente são necessários 3 módulos de

comparação para produzir os sinais de comando das chaves da ponte trifásica.

10

11

3. Descrição do kit de desenvolvimento

O kit de desenvolvimento EKI LM3S8962, mostrado na Figura 10, é uma

ferramenta muito importante neste projeto já que é responsável pelos sinais de

acionamento dos motores, leitura dos valores dos transdutores utilizados (através do

conversor analógico digital e do encoder) além de transmitir estes valores via serial.

Por meio do kit de desenvolvimento é possível também implementar o controle das

máquinas.

Figura 10 - Kit de desenvolvimento EKI LM3S8962 [1]

O kit de desenvolvimento é uma plataforma baseada no micro controlador

Stellaris LM3S8962 ARM® Cortex™-M3 [2] e possui diversos recursos como:

 Comunicação ethernet

 Entrada USB (utilizada para alimentação e comunicação serial)

12

 Display gráfico

 Entrada para cartão de memória MicroSD

 Interface JTAG

 Comunicação serial (síncrona e assíncrona)

 Quatro conversores analógicos digitais

 Comparador analógico

 Protocolo de comunicação I²C

 Módulos geradores de PWM

 Interface para encoder

 Até 42 portas I/O

O kit de desenvolvimento possui também um CD para instalação do programa

IAR Embedded Workbench [16] utilizado para compilar e descarregar os programas na

memória do microprocessador. O programa possui ainda uma ferramenta de

depuração (Debug). O código da programação pode ser escrito na linguagem

assembler, em C ou em C++.

O código é baseado em uma biblioteca de drivers periféricos (Stellaris Peripheral

Driver Library) [17] esta biblioteca possui funções já específicas para os drives

utilizados, facilitando a programação e, principalmente, o entendimento do código, já

que estas funções possuem uma linha de raciocínio lógica.

Os principais módulos constituintes do kit de desenvolvimento são descritos nes

capítulo. No capítulo 4 serão esclarecidos como tais módulos são configurados dentro

da estrutura de um programa para acionamento dos motores descritos no capítulo 2.

3.1. Modulo display OLED

O kit de desenvolvimento possui um display OLED (diodo orgânico emissor de

luz) de resolução de 128 x 96 pixels, de alto contraste (500:1) e de brilho 120cd/m².

O display OLED se baseia no princípio conhecido como eletroluminescência,

“[...] compostos orgânicos interagem de várias maneiras com fontes de energia

diversas, e neste caso em particular, a interação ocorre quando a passagem da

corrente elétrica provoca a emissão de luz pela substância. [...]“ [18].

13

 O display pode ser utilizado para informar o status do programa além de permitir

imprimir os valores amostrados, indicar possíveis falhas, e solicitar decisão do usuário.

Este recurso, no entanto, não deve ser utilizado em loop quando se desejam elevadas

taxas de aquisição e/ou controle, pois a impressão dos valores no display é uma

operação lenta.

3.2. Modulo timer

Timers são funções baseadas na frequência de operação do processador que

funcionam como um relógio (temporizador) e a cada período específico de tempo gera

uma informação ou dispara uma interrupção dependo da configuração utilizada

O kit de desenvolvimento possui 4 módulos de timers independentes que podem

ser utilizados também como contadores. Cada módulo pode ser configurado como 2

timers de 16 bits independentes ou como 1 timer de 32 bits.

3.3. Módulo conversor analógico digital (CAD)

Um conversor analógico digital (CAD) tem como função transformar um sinal

analógico (contínuo) em uma representação digital (binária), ou seja, o CAD

transforma um nível de tensão analógica em uma sequência de dígitos (0 ou 1).

O kit de desenvolvimento EKI LM3S8962 possui um periférico, com 4 entradas

analógicas, que converte um sinal analógico, de 0V a 3V, em uma representação

digital de 10 bits, ou seja, uma resolução de, aproximadamente, 0,003V. Sendo assim

um sinal de 3V na entrada do conversor irá fornecer um resultado de 1023

(convertendo os 10 bits para o sistema decimal) e uma entrada de 0V fornece um

resultado de 0.

O controle de amostragem é realizado utilizando um sequenciador de amostras,

este recurso permite a aquisição de múltiplas entradas analógicas. A configuração do

conversor analógico digital e a aquisição de dados ocorrem em cada sequência.

Existem 4 sequências diferentes, cada uma com seu tamanho de acordo com a Tabela

1.

Tabela 1 - Sequências de amostragem

Sequência Número de amostras
SS3 1
SS2 4
SS1 4
SS0 8

14

3.4. Módulo de Portas I/O

Portas I/O (Input/Output) são pinos que trocam informação entre o micro

controlador e o meio externo, podendo ser tanto entrada (Input) como saída (Output),

dependendo da configuração.

O kit de desenvolvimento possui um número variável de portas I/O já que muitas

delas têm dupla função (por exemplo, PWM), o número máximo é de 42.

3.5. Módulo PWM

O kit de desenvolvimento EKI LM3S8962 possui 3 módulos geradores de PWM

onde cada módulo possui 2 saídas que podem ser utilizadas independentes ou como

pares. Cada bloco gerador possui configuração independente.

No caso de operação em pares, o módulo produz o sinal de acionamento de um

dos braços da ponte completa da Figura 4. A saída aos pares é produzida de maneira

complementar, possibilitando ligar a chave superior e desligar a inferior de um mesmo

braço. Como forma de segurança e proteção das chaves é possível estipular um valor

Dead-band que atrasa um destes sinais evitando colocar o barramento de corrente

contínua em curto-circuito.

Não existem saídas específicas para os PWMs, ou seja, a mesma porta PWM

pode ser configurada como porta I/O ou até mesmo outra função. A Tabela 2 lista as

funções destas portas.

Tabela 2 - Função extra das portas PWM

PWM Porta Função extra
0 Porta F Pino 0 User LED
1 Porta G Pino 1 Som
2 Porta B Pino 0
3 Porta B Pino 1
4 Porta E Pino 0 Tecla acima
5 Porta E Pino 1 Tecla abaixo

Para a utilização de todos os PWMs foi desabilitada a função de som do kit de

desenvolvimento, sendo que para isto foi cortada conexão entre eles. É possível

reabilitar esta função utilizando um conector (jump) na posição localizada logo abaixo

às chaves de navegação.

15

3.6. Módulo encoder QEI

O encoder é a designação de um dispositivo mecânico utilizado para realizar

medidas de posição e velocidade de mecanismos rotativos. Seu funcionamento

consiste em acoplar um disco perfurado ao eixo do motor, utilizando um emissor e um

receptor de luz em cada lado do disco perfurado.

O movimento do eixo e consequentemente do disco perfurado faz com que o

detector de luz receba pulsos que, através de sua contagem, fornece a posição do

eixo do motor. O tamanho do pulso e sua frequência variam de acordo com a

velocidade de rotação do eixo do motor e do número perfurações no disco. Desta

forma é possível extrair a informação da velocidade e de posição de rotação do motor.

O kit de desenvolvimento EKI LM3S8962 possui dois módulos (Quadrature

Encoder Interface - QEI), que faz o cálculo necessário para determinar a posição,

velocidade e sentido de rotação do motor. Os pulsos devem ser de 3V para o sinal alto

e 0V para o sinal baixo e são lidos pelas portas PhA0 e PhB0 (QEI módulo 0) e PhA1

e PhB1 (QEI módulo 1).

De modo semelhante às portas PWM, as portas utilizadas pelos encoders

também possuem mais que uma função, a Tabela 3 lista estas portas.

Tabela 3 - Função extra das portas do encoder

Encoder Porta
PhA0 Porta C Pino 4
PhB0 Porta C Pino 6
PhA1 Porta E Pino 2
PhB1 Porta E Pino 3

3.7. Módulo de comunicação serial

A comunicação serial é aquela feita bit por bit em sequência por uma única linha.

Existem dois diferentes tipos de comunicação serial, a síncrona e assíncrona.

Na transmissão assíncrona o envio da palavra é inicializado por um bit de partida

e finalizado por um bit de parada (stop bit), de forma que o receptor possa identificar a

palavra enviada. A transmissão síncrona não possui os bits de inicialização nem o de

parada já que o sincronismo é feito por caracteres de sincronismo [19]. A que será

utilizada é a assíncrona.

16

O kit de desenvolvimento EKI-LM3S8962 possui um módulo de comunicação

serial que trabalha em conjunto com o componente FT232R [20] da FTDI e permite a

comunicação serial via USB. Dessa forma a comunicação entre o kit de

desenvolvimento é feito pelo mesmo cabo da alimentação.

Para a leitura dos dados (realizada pelo computador) foi utilizado o programa

Hyperterminal [21], onde é possível ler os dados que estão sendo recebidos e

armazená-los.

3.8. Configuração do hyperterminal

O programa Hyperterminal era muito utilizado na época da internet discada para

comunicação entre computadores, por isso a primeira tela de configuração, mostrada

na Figura 11 é referente à rede, como não será utilizado podem-se cancelar estas

informações.

Figura 11 - Hyperterminal – Inicialização

Em seguida, é necessário configurar, conforme a Figura 12, o hyperterminal para

utilizar a porta de comunicação a ser utilizada (no caso COM5).

17

Figura 12 - Hyperterminal - Configuração da porta

O próximo passo consiste na configuração da porta, conforme a Figura 13. Estes

dados devem ser configurados de acordo com as informações definidas pelo emissor.

Os dados necessários para configuração são:

 Velocidade de transmissão (bits por segundo)

 Número de bits de dados

 Bit de paridade

 Bit de parada

 Controle de fluxo

Figura 13 - Hyperterminal - Configuração da transmissão

Neste ponto a comunicação já estará ocorrendo e os dados, assim que

recebidos, serão impressos na tela. É possível ainda armazenar esses dados em um

arquivo de texto como mostra a Figura 14.

18

Figura 14 - Hyperterminal - Salvar dados

19

4. Programação do kit de desenvolvimento EKI LM3S8962

O código global de programação foi dividido em 4 partes, a inicialização,

configuração dos recursos utilizados, um bloco de loop infinito e a parte de

comunicação serial. O diagrama da Figura 15 exemplifica a estrutura.

Figura 15 - Diagrama do código

Em todos os testes do kit em si e também nas etapas de acionamento, o código

desenvolvido, em linguagem C, promove a inicialização das bibliotecas utilizadas e

das variáveis globais. Em seguida, procede-se a configuração dos recursos utilizados.

O próximo passo ocorre a leitura dos dados e da rotina de acionamento dos motores.

Por fim ocorre a comunicação serial, onde as amostras são enviadas a um host. O

anexo I apresenta o código implementado completo.

4.1. Inicialização

O bloco de inicialização compreende a inclusão das bibliotecas utilizadas além da

inicialização das variáveis globais. Estas bibliotecas possuem basicamente a definição

20

de diretivas que permitirão a devida configuração dos vários módulos que se pretende

utilizar.

 As bibliotecas utilizadas e os comandos utilizados para incluí-las são listados no

bloco de programa a seguir:

o #include "inc/hw_memmap.h"
o #include "inc/hw_types.h"
o #include "inc/hw_ints.h"
o #include "inc/hw_qei.h"
o #include "inc/lm3s8962.h"
o #include "inc/hw_ssi.h"
o #include "driverlib/debug.h"
o #include "driverlib/gpio.h"
o #include "driverlib/pwm.h"
o #include "driverlib/sysctl.h"
o #include "driverlib/adc.h"
o #include "drivers/rit128x96x4.h"
o #include "driverlib/interrupt.h"
o #include "driverlib/sysctl.h"
o #include "driverlib/timer.h"
o #include "driverlib/qei.h"
o #include "driverlib/uart.h"
o #include <stdio.h>

Caso as bibliotecas adicionadas não sejam encontradas durante a programação,

uma mensagem de erro é chamada. Esta verificação é feita utilizando a seguinte

função.

#ifdef DEBUG
void
__error__(char *pcFilename, unsigned long ulLine)
{
}

As variáveis globais utilizadas são as variáveis utilizadas durante as

interrupções, além das variáveis que definem informações necessárias para a

execução do programa, essas informações são o tempo de interrupção dos timers,

número de amostras e algumas informações referentes à configuração do PWM.

Ilustra-se a seguir um bloco de inicialização.

o unsigned long q=0;
o unsigned long ulPeriod;
o volatile unsigned long ulLoop;
o unsigned long ulValue;
o char buf[40];
o int e0;
o int count=0;
o float tatual = 0;
o int p=0;
o int portae=0;

21

o int flagv=0;
o int l=0;
o float aux;

Também neste ponto são definidos os tamanhos dos vetores utilizados para o

armazenamento das amostras.

o unsigned long cad[2000];
o int vel[2000];
o int pos[2000];
o int velt[2000] = NULL;

Um exemplo de inicialização de constantes, definindo a quantidade de amostras,

frequência de amostragem e frequência da portadora dos PWM a serem utilizados é:

o int amostras=7500;
o float TA=0.001;
o int fpwm = 2000;

A variável amostras representa a quantidade total de aquisições que será realizada. A

variável TA é o tempo, em segundos, do ciclo de amostras, ou seja, é o inverso da

frequência de aquisição. A variável fpwm é a frequência de operação do PWM

utilizados e as outras 3 amostras são recursos utilizados

4.2. Configuração dos recursos utilizados

O bloco de configuração dos recursos como nome diz é onde são configurados

os recursos como timers, módulo serial, encoder, portas I/O, display, entre outros.

4.2.1. Configuração do clock do utilizado

A definição do clock consiste em escolher a base de tempo de operação do

processador, ou seja, quanto tempo será gasto por cada operação do processador.

Existem diversas configurações diferentes, podendo ser baseado no cristal presente

no kit de desenvolvimento EKI LM3S8962 ou baseado em um oscilador externo. Existe

ainda a possibilidade de variar a frequência através de divisores. Uma configuração

que pode ser utilizada é:

o SysCtlClockSet(SYSCTL_SYSDIV_1 | SYSCTL_USE_OSC |
SYSCTL_OSC_MAIN | SYSCTL_XTAL_8MHZ);

o SysCtlPWMClockSet(SYSCTL_PWMDIV_1);

Onde é selecionado 8 MHz de frequência de operação, proveniente do cristal.

4.2.2. Configuração do OLED display

A configuração do display OLED consiste em 3 comandos, o de inicialização, o

de escrita e o de limpeza da tela. Os comandos, respectivamente, são:

o RIT128x96x4Init(1000000);

22

o RIT128x96x4StringDraw("Amostrando", 20, 20, 15);
o RIT128x96x4Clear();

Onde o primeiro campo da função de escrita é a palavra a ser escrita, sendo uma

variável do tipo char, o segundo e o terceiro campo são a posição onde será escrita a

palavra no eixo imaginário abaixo. O último campo é a intensidade do brilho dos

caracteres impressos. A Figura 16 representa o eixo das posições do display.

Figura 16 - Eixo do display OLED

Uma função auxiliar converte um número em uma variável do tipo char para que

a função de escrita possa enviar números:

o sprintf(buf, "%d", vel[count])

Onde buf é a variável do tipo char onde será armazenado o resultado da operação, %d

é operador necessário para indicar a conversão de uma variável do tipo int para o tipo

char e vel[count] é o valor inteiro a ser convertido. Desta maneira basta utilizar o

comando de escrita da seguinte maneira:

o RIT128x96x4StringDraw(buf, 20, 20, 15);

4.2.3. Configuração dos timers

Os timers foram utilizados como interrupção de forma a garantir que as

operações aconteçam sempre em um período cíclico. O timer 0 foi utilizado para

amostragem dos sinais, ou seja, leitura dos conversores analógicos digitais e dos

encoders e o timer 1 como geração dos sinais de acionamento, seja o acionamento via

PWM ou pelas portas I/O.

A configuração dos timers é realizada da seguinte maneira.

Primeiramente, é habilitada a função do timer:

o SysCtlPeripheralEnable(SYSCTL_PERIPH_TIMER0);

Onde o objeto SYSCTL_PERIPH_TIMER0, representa a posição de memória

referente ao timer 0, no caso de utilização de outros timer (1, 2 ou 3), deve-se utilizar a

posição específica.

 Em seguida é configurado o timer em si. Em praticamente todas as funções é

utilizado o comando TIMERX_BASE, onde X representa o timer utilizado. A primeira

função é referente á configuração do timer.

23

o TimerConfigure(TIMER0_BASE, TIMER_CFG_32_BIT_PER);

A Tabela 4 representa as possibilidades de configuração do segundo campo da

função.

Tabela 4 - Comando de configuração dos timers

Comando Função
TIMER_CFG_32_BIT_OS Timer de 32 bits com disparo único
TIMER_CFG_32_BIT_PER Timer de 32 bits com periódico
TIMER_CFG_32_RTC Timer de 32 bits com clock em tempo real
TIMER_CFG_16_BIT_PAIR Utilização de dois timers de 16 bits independente

No caso de utilização do timer de 16 bits independente deve ser adicionada uma

outra configuração utilizando uma operação ou entre a configuração mostrada na

Tabela 4 com a Tabela 5. No caso é utilizado a configuração do timer A.

Tabela 5 - Comando de configuração dos timers 16 bits

Comando Função
TIMER_CFG_A_ONE_SHOT Timer de 16 bits com disparo único
TIMER_CFG_A_PERIODIC Timer de 16 bits com periódico
TIMER_CFG_A_CAP_COUNT Contador de 16 bits
TIMER_CFG_A_CAP_TIME Timer de 16 bits utilizando sinal externo
TIMER_CFG_A_PWM Timer de 16 bits em modo PWM

Um exemplo de configuração de um timer de 16 bits, e disparo único seria:

o TimerConfigure(TIMER0_BASE, TIMER_CFG_16_BIT_PAIR |
TIMER_CFG_A_ONE_SHOT);

O comando responsável pela configuração do valor que o timer deve contar é:

o TimerLoadSet(TIMER0_BASE, TIMER_A, SysCtlClockGet()*TA);

Onde o primeiro valor é o timer em questão. O segundo valor depende da

configuração utilizada (16 ou 32 bits), caso seja de 32 bits, deve ser utilizado o valor

TIMER_A, no caso utilizar o de 16 bits deve-se utilizar o timer em questão (A ou B). O

terceiro valor é a quantidade de pulsos do clock que se quer contar até que o timer

dispare. Neste ponto é utilizada uma função auxiliar que retorna o valor do clock

utilizado em HZ, ou seja, representa a quantidade de pulsos do clock durante 1

segundo. Dessa forma utilizando esta função no 3º campo da função e multiplicando a

função por uma variável TA é possível controlar o tempo de disparo adicionando o

valor desejado, em segundos, à variável.

24

Em seguida é necessário habilitar a interrupção do timer em questão além de

configurar para que a interrupção seja executada quando o contador chegue ao valor

adicionado na função anterior.

o IntEnable(INT_TIMER0A);
o TimerIntEnable(TIMER0_BASE, TIMER_TIMA_TIMEOUT);

Por fim a contagem é iniciada.

o TimerEnable(TIMER0_BASE, TIMER_A);

Após a interrupção ser chamada é necessário limpar a flag de interrupção com o

comando abaixo, dessa forma a contagem é reiniciada.

o TimerIntClear(TIMER1_BASE, TIMER_TIMA_TIMEOUT);

4.2.4. Configuração do conversor analógico digital (CAD)

O programa foi estruturado de tal forma que, quando há uma interrupção de

tempo, o valor do CAD é lido e armazenado em um vetor, no entanto a configuração

deste recurso e programada em conjunto com os outros recursos.

O primeiro passo é habilitar o periférico do conversor analógico digital:

o SysCtlPeripheralEnable(SYSCTL_PERIPH_ADC);

Em seguida é configurada a sequência de amostras do conversor analógico digital:

o ADCSequenceConfigure(ADC_BASE, 0, DC_TRIGGER_PROCESSOR,
1);

O valor ADC_BASE representa a posição de memória correspondente aos

conversores analógicos digitais. O segundo comando representa qual a sequência a

ser configurada, 0 a 3. O terceiro valor representa quando será armazenado o valor

obtido pelo conversor analógico digital. Os valores possíveis são mostrados na Tabela

6. O último valor é a prioridade do conversor analógico digital utilizado em relação aos

outros conversores.

É importante ressaltar que caso seja configurado para realizar a leitura sempre,

o processador perde desempenho, além de não haver a possibilidade de utilizar 2

conversores com essa configuração ao mesmo tempo.

Em seguida é realizada a configuração de cada passo da sequência:

o ADCSequenceStepConfigure(ADC_BASE, 3, 0, ADC_CTL_CH0 |
ADC_CTL_END);

O valor ADC_BASE representa a posição de memória correspondente aos

conversores analógicos digitais. O segundo valor representa qual sequência se deseja

configurar. O terceiro valor representa qual passo da sequência será configurado. O

25

último valor é a configuração desejada e que é resultado de uma operação ou entre

um ou mais comandos da Tabela 7.

Tabela 6 - Configuração da sequência do CAD

Comando Função

ADC_TRIGGER_PROCESSOR
O disparo é realizado utilizando a função
ADCProcessorTrigger()

ADC_TRIGGER_COMP0
O disparo é feito com base no comparador
analógico configurado com a função
ComparatorConfigure().

ADC_TRIGGER_COMP1
O disparo é feito com base no comparador
analógico configurado com a função
ComparatorConfigure().

ADC_TRIGGER_COMP2
O disparo é feito com base no comparador
analógico configurado com a função
ComparatorConfigure().

ADC_TRIGGER_EXTERNAL
O disparo é feito com base por um comando externo
pela porta B4

ADC_TRIGGER_TIMER
O disparo é feito por um timer configurado com a
função TimerControlTrigger().

ADC_TRIGGER_PWM0
O disparo é feito com base no PWM configurado
com a função PWMGenIntTrigEnable().

ADC_TRIGGER_PWM1
O disparo é feito com base no PWM configurado
com a função PWMGenIntTrigEnable().

ADC_TRIGGER_PWM2
O disparo é feito com base no PWM configurado
com a função PWMGenIntTrigEnable().

ADC_TRIGGER_ALWAYS A leitura é realizada sempre.

Tabela 7 - Configuração dos passos da sequência

Comando Função

ADC_CTL_CHX
Configura qual porta deve ser amostrada, onde X
pode ser 0,1, 2 ou 3.

ADC_CTL_END
Configura que o determinado passo é o último da
sequência

ADC_CTL_IE
Configura que o determinado passo dispara a
interrupção

Por fim é inicializada a sequência:

o ADCSequenceEnable(ADC_BASE, 0);

Onde a sequência habilitada é selecionada no segundo campo da função.

A leitura é realizada dentro da interrupção do timer, o disparo da leitura é

realizado pelo comando:

o ADCProcessorTrigger(ADC_BASE, 0);

26

Onde o segundo valor representa a sequência que deve ser utilizada.

Para leitura e armazenagem da sequência o comando indicado na biblioteca é:

o ADCSequenceDataGet(ADC_BASE, 0, *cad);

Onde o segundo valor representa a sequência ser lida e o último valor representa o

endereço onde será armazenado este valor. Durante a realização da programação

percebeu-se o não funcionamento conforme descrito na biblioteca, do comando. Foi

utilizado um recurso lendo diretamente o valor da posição de memória da sequência,

no caso é armazenado o último passo da sequência.

o cad[count] = ADC_SSFIFO0_R;

Esta leitura direta da ultima posição de memória da sequência implica na necessidade

de repetição do comando pelo número de passos da sequência em questão, conforme

a Tabela 1, já que o armazenamento dos valores na sequência tem o conceito FIFO

(First In First Off). O valor lido representa o valor da sequência 0, o valor de outras

sequências pode ser obtido utilizando o valor ADC_SSFIFOX_R, trocando X pela

sequência em questão.

4.2.5. Configuração de portas I/O

As portas I/O são configuradas independentemente, no entanto é possível ler e

escrever valores nelas na forma de byte. A configuração consiste em configurar a

porta como I/O e configurar a direção (Entrada ou saída de dados):

o GPIOPinTypeGPIOOutput(GPIO_PORTX_BASE, GPIO_PIN_Y);

o GPIODirModeSet(GPIO_PORTX_BASE, GPIO_PIN_Y ,

GPIO_DIR_MODE_OUT);

Onde os primeiros comandos de cada função são as portas utilizadas, trocando X pela

porta desejada (A a F). Já os segundos valores das funções representam quais pinos

da determinada porta serão configurados, trocando Y pelo pino (0 a 7).

Os comandos de escrita e leitura são:

o GPIOPinWrite(GPIO_PORTA_BASE, (GPIO_PIN_2 | GPIO_PIN_3 |

GPIO_PIN_4 | GPIO_PIN_5 | GPIO_PIN_6 | GPIO_PIN_7), 12);

o portae = GPIOPinRead(GPIO_PORTE_BASE,(GPIO_PIN_2 |

GPIO_PIN_1 | GPIO_PIN_0);

27

Onde no de escrita são configurados a porta em que deverá ser escrito o valor, os

pinos da determinada porta e o valor (byte) que deverá ser escrito. O comando de

escrita armazena os valores da determinada porta e seus pinos em uma variável.

4.2.6. Configuração do PWM (Modulação largura de pulso)

O primeiro passo para configuração do PWM é habilitar o periférico e a porta I/O

que possui a dupla função de PWM.

o SysCtlPeripheralEnable(SYSCTL_PERIPH_PWM);

o SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOF);

Em seguida é necessário configurar os pinos das portas I/O (no exemplo é

utilizado o pino da porta F) que tem dupla função (de PWM) para que operem neste

modo:

o GPIOPinTypePWM(GPIO_PORTF_BASE, GPIO_PIN_0);

Onde o primeiro valor indica qual a porta e o segundo, qual pino da determinada porta.

 A configuração do PWM é realizada em dois passos. Primeiramente é realizada

a configuração da geração do sinal.

o PWMGenConfigure(PWM_BASE, PWM_GEN_0,

PWM_GEN_MODE_UP_DOWN | PWM_GEN_MODE_NO_SYNC);

Onde o valor PWM_BASE se repete em todas as possíveis configurações, o segundo

indica qual módulo gerador de PWM será utilizado (0, 1 ou 2). O terceiro valor é obtido

realizando uma função ou entre os valores mostrados na Tabela 8 e na Tabela 9.

Tabela 8 - Configuração da geração do PWM

Comando Função

PWM_GEN_MODE_UP_DOWN
PWM gerado a partir de uma onda portadora
triangular

PWM_GEN_MODE_DOWN
PWM gerado a partir de uma onda portadora do
tipo dente de serra decrescente

Tabela 9 - Configuração do sincronismo do PWM

Comando Função
PWM_GEN_MODE_SYNC Habilita o modo de sincronização
PWM_GEN_MODE_NO_SYNC Desabilita o modo de sincronização

28

O período do pulso que deve ser gerado pelo PWM é o próximo passo da

programação. Para facilitar a programação é utilizado o mesmo recurso na

configuração dos timers, ao invés de programar quantos ciclos de clock deve durar.

o ulPeriod = SysCtlClockGet() / fpwm

Onde fpwm representa a frequência desejada para o PWM, e ulPeriod a quantidade de

ciclos necessários para a frequência desejada. O comando de configuração é:

o PWMGenPeriodSet(PWM_BASE, PWM_GEN_0, ulPeriod);

onde o primeiro valor representa a configuração de um PWM, o segundo é variado de

acordo com o PWM que se deseja programar e o terceiro é o resultado do recurso

utilizado.

 O recurso também é utilizado para configurar o tempo em que o pulso deve

ficar em nível logico alto.

o PWMPulseWidthSet(PWM_BASE, PWM_OUT_0, ulPeriod*inipwm/100);

Onde o segundo valor da função representa qual PWM (do bloco gerador de PWM, 0

ou 1) será utilizado. Utilizando o recurso anterior é possível definir a porcentagem do

pulso em nível alto em comparação ao período, este valor é alocado na variável

inipwm.

Por fim a saída é habilitada:

o PWMOutputState(PWM_BASE, PWM_OUT_0_BIT , true);

Onde o segundo comando representa qual PWM deve ser habilitado, este valor varia

de acordo com a Tabela 10. O último valor habilita ou não o PWM em questão

Tabela 10 - Habilitação do PWM

Comando Função
PWM_OUT_0_BIT PWM 0 do bloco gerador 0
PWM_OUT_1_BIT PWM 1 do bloco gerador 0
PWM_OUT_2_BIT PWM 0 do bloco gerador 1
PWM_OUT_3_BIT PWM 1 do bloco gerador 1
PWM_OUT_4_BIT PWM 0 do bloco gerador 2
PWM_OUT_5_BIT PWM 1 do bloco gerador 3

4.2.7. Encoder

Do mesmo modo que o CAD, o programa foi estruturado de forma a ler o valor

do módulo QEI (Quadrature Encoder Interface) e extrair as informações desejadas a

cada intervalo de tempo pré-definido. Os valores são armazenados em um vetor e

posteriormente enviados via serial.

29

O primeiro comando é inicialização do periférico do encoder e as portas que

possuem a dupla função (de encoder), além de configurar o pino da determinada porta

com dupla função para operar no modo de encoder.

o SysCtlPeripheralEnable(SYSCTL_PERIPH_QEI);

o SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOC);

o GPIOPinTypeQEI(GPIO_PORTC_BASE, GPIO_PIN_4);

Em seguida é indicado desabilitar o encoder durante a configuração. O mesmo

vale para a configuração da medição de velocidade.

o QEIDisable(QEI0_BASE);

o QEIVelocityDisable(QEI0_BASE);

O próximo passo é configurar a porta I/O como encoder.

o GPIOPinTypeQEI(GPIO_PORTC_BASE, GPIO_PIN_4);

Onde o primeiro valor representa a porta e o segundo valor, o pino da referente porta.

 A configuração do módulo em si é realizada da seguinte maneira:

o QEIConfigure(QEI_BASE,QEI_CONFIG_CAPTURE_A |

QEI_CONFIG_NO_RESET | QEI_CONFIG_QUADRATURE |

QEI_CONFIG_NO_SWAP, 2999);

Onde o primeiro valor representa a configuração do encoder e é sempre este valor

(QEI_BASE). O segundo valor é o resultado da função lógica ou dos valores

mostrados na Tabela 11, Tabela 12, Tabela 13 e Tabela 14. No último valor da função

deve ser colocado o número de pulsos do encoder (físico) subtraindo 1.

Tabela 11 - Configuração da captura do encoder

Comando Função

QEI_CONFIG_CAPTURE_A
Específica se as bordas (tanto de subida quanto
de descida) dos pulsos devem ser contadas
apenas a partir da fase A

QEI_CONFIG_CAPTURE_A_B
Específica se as bordas (tanto de subida quanto
de descida) dos pulsos devem ser contadas a
partir da fase A e da fase B

Tabela 12 - Configuração do reset de contagem do encoder

Comando Função
QEI_CONFIG_NO_RESET Específica que a contagem não deve ser zerada

QEI_CONFIG_RESET_IDX
Específica se a contagem deve ser zerada caso o
sinal de index (de posição 0) seja lido

30

Tabela 13 - Configuração do calculo de direção do encoder

Comando Função

QEI_CONFIG_QUADRATURE Específica se o sinal de direção é proveniente da
comparação entre as duas fases.

QEI_CONFIG_CLOCK_DIR Específica se o sinal de direção é proveniente de
um sinal externo

Tabela 14 - Configuração do calculo de direção do encoder

Comando Função

QEI_CONFIG_NO_SWAP
Específica que os sinais não devem ser
permutados

QEI_CONFIG_SWAP Específica que os sinais devem ser permutados

Em seguida é necessário configurar o cálculo da velocidade:

o QEIVelocityConfigure(QEI_BASE, QEI_VELDIV_1, 100000);

O primeiro valor da função é o valor base para encoder. O segundo é um pré-divisor

que pode ser utilizado em caso de uma contagem muito alta de pulsos, os valores

possíveis estão na Tabela 15. O terceiro campo é o número de ciclos que o encoder

deve esperar para realizar o cálculo da velocidade (já que o cálculo depende do

tempo).

Tabela 15 – Pré-divisores

Comando
QEI_VELDIV_1
QEI_VELDIV_2
QEI_VELDIV_4
QEI_VELDIV_8,
QEI_VELDIV_16
QEI_VELDIV_32
QEI_VELDIV_64
QEI_VELDIV_128

Em seguida são habilitados os módulos de velocidade e o do encoder.

o QEIVelocityEnable(QEI0_BASE);

o QEIEnable(QEI0_BASE);

A leitura dos valores é feita com os seguintes comandos:

o dir[count] = QEIDirectionGet(QEI0_BASE);

o vel[count]= XX*QEIVelocityGet(QEI0_BASE);

o pos[count] = QEIPositionGet(QEI0_BASE);

O valor XX que multiplica a função que extrai a velocidade é o resultado da

Equação 4, que diferencia o encoder utilizado, e a configuração utilizada.

31

ܯܴܲ ൌ
݇ܿ݋݈ܥ ∗ 2௏௘௟஽௜௩ ∗ ݁݀ܽ݀݅ܿ݋݈ܸ݁ ∗ 60

݀ܽ݋ܮ ∗ ܴܲܲ ∗ ݁݃݀ܧ

(4)

Onde:

 ܴܲܯ = É o resultado da operação na unidade de rotações por minuto

 ݇ܿ݋݈ܥ = Taxa de operação do microprocessador, no caso 8MHz

 ܸ݈݁ݒ݅ܦ = É o prédivisor, os valores possíveis estão na Tabela 15

 ܸ݈݁݁݀ܽ݀݅ܿ݋ = Valor fornecido pela função QEIVelocityGet

 ݀ܽ݋ܮ = É a quantidade de pulsos do clock utilizado para o cálculo da velocidade

 ܴܲܲ = Pulsos por volta do encoder (Físico)

 ݁݃݀ܧ = Depende da quantidade de bordas contadas por pulso, ou seja, se for

utilizada apenas as bordas da fase A, o valor utilizado é 2, no caso de contar

as bordas das duas fases, o valor é 4.

4.2.8. Configuração da UART (Transmissão/Recepção
Universal Assíncrona)

A comunicação serial é o último passo do programa, no entanto a configuração

desta comunicação é realizada nesta fase.

Como os outros recursos, é necessário configurar o periférico de transmissão e a

porta que possui dupla função, além de configurar o pino da determinada porta de

dupla função para a função de comunicação.

o SysCtlPeripheralEnable(SYSCTL_PERIPH_UART0);

o SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOA);

o GPIOPinTypeUART(GPIO_PORTA_BASE, GPIO_PIN_0 |

GPIO_PIN_1);

Na configuração é necessário informar as características da comunicação. Estas

informações devem ser de acordo com o host (Receptor).

o UARTConfigSetExpClk(UART0_BASE, SysCtlClockGet(), 115200,

(UART_CONFIG_WLEN_8 | UART_CONFIG_STOP_ONE |

UART_CONFIG_PAR_NONE));

Onde o primeiro campo indica qual dos dois blocos de comunicação será

utilizado, o segundo é a frequência do clock que a comunicação deve se basear (pode

ser a mesma que a frequência de operação). O terceiro campo é a velocidade de

32

transmissão desejada, esses valores devem seguir o padrão de comunicação

assíncrona [22].

Por fim é habilitada a interrupção necessária para o envio das informações.

o IntEnable(INT_UART0);

o UARTIntEnable(UART0_BASE, UART_INT_RX | UART_INT_RT);

Onde o campo da primeira função e o primeiro campo da segunda representam

a interrupção do transmissor 0. O segundo campo da função indica quais parâmetros

que disparam a interrupção, para o caso de emissão os necessários são os indicados.

O envio das informações é realizado no bloco de comunicação serial, Seção

4.1.4.

4.3. Loop

Durante a fase de loop o programa fica parado, esperando o disparo das

interrupções dos timers, onde o timer 0 é utilizado para leitura das informações

(conversor analógico digital e do encoder) e o timer 1 é utilizado para geração dos

sinais de acionamento (PWM e portas I/O). Os timers podem, e geralmente são,

configurados com tempos diferentes. Estas interrupções ocorrem ciclicamente de

acordo com a configuração dos timers.

A declaração das interrupções é realizada da seguinte maneira.

void
Timer0IntHandler(void)
{
//Leitura ou geração dos sinais
}

É importante relembrar que a flag de interrupção dos timers da Seção 4.1.2.3

devem ser zerados.

Os valores amostrados são armazenados em vetores para serem enviados após

o fim da amostragem. O programa permanece no bloco de Loop até atingir o número

de amostras predefinido no bloco de inicialização.

4.4. Comunicação serial

O bloco de comunicação serial foi utilizado para reduzir o tempo das medidas

(conversor analógico digital e encoder), pois caso fosse enviado cada um desses

valores a cada amostra, a taxa de aquisição seria afetada drasticamente já que a

comunicação consome tempo de processamento, assim os valores são alocados em

33

um vetor e após todas as medidas terem sido realizadas é transmitido um pacote com

as informações.

O comando de envio utilizado é:

o UARTSend(buf, 1);

Onde buf é a variável char onde a informação está armazenada. Como é necessário

informar a quantidade caracteres enviados e o tamanho da informação é variável é

realizada uma lógica de verificação da palavra enviada, ou seja, se a informação é

menor que 10, a palavra enviada é de tamanho 1, se entre 10 e 99, o tamanho é 2, e

assim por diante.

 A comunicação em si é realizada por uma interrupção. Onde o programa fica

em loop até que todos os caracteres tenham sido enviados. A única variável do

comando é a mudança do bloco utilizado para comunicação (0 ou 1).

void
UARTSend(const unsigned char *pucBuffer, unsigned long ulCount)
{
 while(ulCount--)
 {
 UARTCharPut(UART0_BASE, *pucBuffer++);
 }
}

34

35

5. Matériais e métodos utilizados

A fase prática deste trabalho foi dividida em duas etapas, os testes do kit de

desenvolvimento EKI LM3S8962, onde serão testados os periféricos necessários para

o acionamento dos motores em questão e ensaios para validação do kit de

desenvolvimento para a aplicação desejada, realizando testes de acionamento em um

motor de corrente contínua de imã permanente e em um motor de indução.

A bancada ilustrando os recursos utilizados para o acionamento do motor de

indução é mostrada na 17.

Figura 17 - Bancada de testes

5.1. Materiais utilizados

Os recursos utilizados foram:

 Kit de desenvolvimento EKI LM3S8962

 Motor de corrente contínua de imã permanente com tacogerador

acoplado

 Motor de indução trifásico de 1CV com encoder acoplado

 Inversor de tensão trifásico da SEMIKRON

 Protoboard

 Computador

 Bateria de 12V

 Multímetro digital

36

 Tacômetro ótico

Alguns circuitos auxiliares foram utilizados na validação do kit de

desenvolvimento realizada acionando os motores de corrente contínua e o de corrente

alternada de indução. A utilidade destes circuitos foi proteção dos equipamentos (opto-

acopladores), de acionamento (Chopper) e circuitos de medição de corrente e de

velocidade.

5.2. Circuito de proteção

Visando proteção dos circuitos, principalmente do kit de desenvolvimento EKI

LM3S8962, são utilizados circuitos opto-acopladores, que transmitem a informação via

luz (LEDs), garantindo isolamento total entre os circuitos de potência e de

acionamento.

Estes circuitos consistem em um emissor de luz e um receptor, a informação

proveniente dos sinais do kit (PWM ou portas I/O) aciona o emissor de luz, esta luz é

recebida pelo receptor, transmitindo assim a informação para o circuito de potência.

O opto-acoplador utilizado foi o 6N137 [23] da Figura 18 na configuração

mostrada na Figura 19.

Figura 18 - Esquemático do componente 6N137 [23]

37

Figura 19 - Circuito opto-acoplador utilizado

O circuito da Figura 19 sofre inversão lógica, ou seja, quando o sinal da

entrada está em nível lógico alto, a saída está em nível lógico baixo. No entanto esta

inversão é corrigida no circuito emissor comum mostrado na Figura 20 que além de

corrigir a inversão do sinal de acionamento, aumenta o nível de tensão de 5V para

15V. Este nível de tensão (15V) é necessário para operar os circuitos de potência,

tanto o MOSFET IRF540N [24] utilizado no circuito chopper quanto as chaves do

inversor de tensão trifásico utilizado precisam ser operados com 15V.

Figura 20 - Circuito elevador de tensão

Dessa forma, o circuito auxiliar para acionamento dos motores (tanto para o

motor de corrente contínua quanto para o de corrente alternada) é representado pela

Figura 21 e foi implementado em um protoboard para a realização dos testes. Onde no

caso do motor de corrente contínua, Vout alimenta o MOSFET da Figura 22, e no caso

do acionamento do motor de indução, Vout alimenta as chaves do inversor da Figura

4.

38

Figura 21 - Circuito de acionamento das chaves de potência

5.3. Circuito chopper utilizado

O circuito chopper utilizado é mostrado na Figura 22 e consiste em uma bateria

automotiva de 12V, alimentando o motor através de um MOSFET de potência

IRF540N, e um diodo de potência rápido MUR1520 [25] que serve de proteção à

chave semicondutora e possui um tempo de recuperação de no máximo 60 ɳs. O

MOSFET permite alimentação de até 33ª e 100V, entre o terminal de dreno(drain) e o

de fonte (source). Já o diodo rápido tem um limite de alimentação de até 600V e 15A,

e a escolha deles foi para validar o acionamento de motores de corrente contínua que

operam em níveis de tensão e de corrente mais elevados do que o motor utilizado.

A alimentação da chave semicondutora, o terminal In(15V) da Figura 22, é

controlado pelo circuito de acionamento da Figura 21.

Figura 22 - Circuito utilizado – Chopper

39

5.4. Circuitos de medição

A realização de medições durante o acionamento fornece informações

importantes além de possibilitar a implementação de uma lógica de controle. Para o

caso das máquinas elétricas duas informações são extremamente importantes, a

corrente que flui pelo motor e a velocidade de rotação do eixo do motor.

5.4.1. Medição de corrente

No caso da corrente foi utilizado um sensor de corrente do tipo Hall, sensor que

é baseado no efeito Hall [26] e fornece um valor em tensão proporcionalmente à

corrente que flui por ele.

O sensor de corrente do tipo Hall utilizado foi o sensor ACS712 [27] de 5

Amperes, que fornece uma tensão conforme a Figura 23, sendo 2.5V para 0A e

variando 0,185V por Ampere.

Figura 23 - Comportamento do sensor de corrente do tipo Hall [27]

É necessário um circuito que reduza essa faixa de operação para que seja

compatível com o conversor analógico digital do kit de desenvolvimento EKI

LM3S8962 que é de 0 a 3V. Sendo assim é possível reduzir esta faixa com a utilização

de amplificadores operacionais, no caso LM324 [28], na configuração inversora. A

Figura 24 ilustra a configuração utilizada. Onde Vin é o sinal do sensor de corrente do

tipo Hall e Vout é conectado ao CAD do kit de desenvolvimento. Dessa forma a faixa

de tensão varia de 0 a 3V, sendo 1,5V para 0A.

40

Figura 24 - Circuito auxiliar do sensor hall

5.4.2. Medição de velocidade

As medições de velocidade do eixo do motor foram realizadas de duas maneiras

distintas. No caso do motor de corrente contínua foi utilizado um tacogerador, já no

caso do motor de corrente alternada foi utilizado um encoder óptico. Essas diferentes

soluções ocorreram pelo fato dos motores utilizados possuírem estes transdutores já

acoplados aos seus eixos.

Medição via tacogerador

O tacogerador é um gerador CC de ímã permanente acoplado mecanicamente

ao eixo de um motor que se deseja mediar velocidade, já que é gerada uma tensão na

saída do tacogerador em função da velocidade de rotação do motor.

O tacogerador utilizado opera até 50V, ou seja, com 12V na entrada do motor é

gerado um sinal (em corrente contínua) de 50V. Desse modo, foi utilizado um divisor

resistivo de tensão para reduzir a faixa de tensão para 0 a 3V, realizando assim a

leitura por uma entrada do conversor analógico digital. A Figura 25 representa o divisor

utilizado.

Figura 25 - Divisor de tensão resistivo

41

Medição via encoder

O encoder utilizado gera os pulsos com um valor de nível lógico alto em 15V não

sendo compatível com o módulo QEI (Quadrature Encoder Interface) presente no kit

de desenvolvimento EKI M3S8962, que é de 0 a 5V, dessa forma foi projetado um

circuito utilizando opto acopladores para reduzir os sinais de entrada no kit de

desenvolvimento. Foi utilizado o opto-acoplador 6N137 da Figura 18 na configuração

da Figura 26.

Figura 26 - Circuito abaixador de tensão para o encoder

42

43

6. Testes e ensaios realizados

Os testes foram realizados em duas etapas. A primeira foi a realização dos

testes nos componentes do kit de desenvolvimento EKI LM3S8962. A segunda fase foi

a validação do kit de desenvolvimento para o acionamento do motor de corrente

contínua de imã permanente e o de corrente alternada de indução trifásica.

6.1. Testes no kit de desenvolvimento EKI LM3S8962

Os ensaios realizados no kit de desenvolvimento tem o objetivo de compreender

os comandos utilizados e encontrar os limites de operação de cada periférico. São

testados os periféricos utilizados no acionamento dos motores estudados, módulo

PWM e portas I/O, os periféricos utilizados para aquisição de dados, CAD e módulo do

encoder, além de recursos auxiliares, display OLED e módulo serial, que auxiliam o

usuário do kit de desenvolvimento.

6.1.1. Teste display OLED

O primeiro teste realizado foi o teste do display OLED, baseado no exemplo

presente no programa IAR Embedded Workbench, com o objetivo de compreender a

configuração do mesmo.

O teste consiste em programar uma mensagem (“TESTE”) para aparecer na tela

do display. A Figura 27 apresenta o resultado obtido.

Figura 27 - Teste no display OLED

6.1.2. Teste no módulo CAD

O teste no módulo CAD tem como objetivo verificar o comportamento do

conversor e encontrar a precisão do sistema de aquisição. Utilizando o circuito da

Figura 28 foram aplicados diferentes níveis de tensão na entrada do CAD através de

44

um potenciômetro, comparando o valor amostrado pelo CAD, e impresso no display,

com o valor medido por um voltímetro. O resistor em questão utilizado foi um

potenciômetro de 1kΩ.

Figura 28 - Teste do CAD

A Tabela 16 apresenta os resultados obtidos. A primeira coluna representa a

tensão obtida pelo multímetro, a segunda coluna representa o número decimal

fornecido pelo CAD e impresso no display OLED. A terceira coluna é o resultado da

conversão dos valores da coluna anterior utilizando a Equação 5. Por fim, a quarta

coluna representa o erro comparativo entre a primeira e terceira colunas.

Tabela 16 - Resultado do teste CAD

Tensão (multímetro) Valor ADC (0 a 1024) Conversão (V) Erro (%)

0,00 2 0,01 -

0,25 86 0,25 0,00

0,50 172 0,50 0,00

0,75 257 0,75 0,00

1,00 338 0,99 0,01

1,25 425 1,25 0,00

1,50 510 1,49 0,01

1,75 592 1,73 0,01

2,00 675 1,98 0,01

2,25 764 2,24 0,00

2,50 846 2,48 0,01

2,75 933 2,73 0,01

3,00 1022 2,99 0,00

ܸ ൌ ௠ܸ௔௫

2௡
∗ ஺஽஼ݎ݋݈ܸܽ (5)

Onde:

 ௠ܸ௔௫ = Tensão máxima de entrada = 3V

 ݊ = Número de bits do conversor = 10

 ܸ݈ܽݎ݋஺஽஼= Valor que o conversor fornece.

45

A precisão do CAD é satisfatória visto a pequena porcentagem de erro mostrada

na última coluna da Tabela 16.

6.1.3. Ensaios com a porta serial

Com o objetivo de testar a comunicação serial, o envio de informações para o

computador, foi realizado um ensaio com o envio de uma mensagem “TESTE” via

serial e receber a informação salvando-a em um arquivo de texto.

O arquivo recebido pelo computador (host) via porta USB é mostrado na Figura

29.

Figura 29 - Teste serial

6.1.4. Teste da porta serial com envio amostras do CAD

O primeiro teste envolvendo dois periféricos em conjunto foi a utilização da

comunicação serial para o envio das informações lidas e armazenadas pelo conversor

analógico digital (CAD). O código foi estruturado de forma a ler a informação a cada

interrupção do timer, a cada 0.5 segundos, armazenar esta informação em um vetor e

ao fim do programa, que termina após um número de amostras pré-determinado (10

amostras), enviando as amostras via serial.

Os sinais utilizados para realizar a conversão são os sinais de 3,3V e 0V

provenientes da própria placa de desenvolvimento EKI LM3S862.

Utilizando o programa computacional Matlab é possível gerar o gráfico a partir

das amostras recebidas e armazenadas em um arquivo de texto. A Figura 30

compreende o resultado deste gráfico.

46

Figura 30 - Resultado do teste CAD

6.1.5. Ensaios do módulo PWM

Com o objetivo de compreender a programação do periférico PWM do kit de

desenvolvimento EKI LM3S8962, foram realizados ensaios a partir do exemplo do

programa IAR Embedded Workbench, onde é configurado um pulso de tamanho fixo.

 A princípio foi gerado este pulso fixo, mas como o objetivo é criar um

acionamento para motores, foi gerado um perfil como da Figura 31, onde o tamanho

do pulso aumenta ou diminui de acordo com o tempo. O eixo “perfil (%)” representa a

porcentagem do pulso em nível lógico alto.

O perfil da Figura 31 foi gerado e observado por um osciloscópio. O resultado

obtido foi satisfatório, sendo observado o perfil proposto, a largura do pulso crescendo,

se mantendo em 100% e diminuindo novamente.

47

Figura 31 - Perfil para o PWM

6.1.6. Teste da interface de encoder

Os ensaios no encoder têm como objetivo analisar o comportamento da

ferramenta QEI (Quadrature Encoder Interface) do kit de desenvolvimento EKI

LM3S8962. Para isto se deve acionar o motor de indução trifásico que possui encoder

acoplado a ele, através de um variac ajustado com 80Vpp, e comparar o valor

amostrado pelo QEI, impresso no display OLED, comparando ao valor obtido por um

tacômetro ótico.

O teste na interface do encoder foi realizado utilizando o encoder da Figura 32

acoplado ao eixo motor e o circuito auxiliar da Figura 26 para conectar o sinal às

entradas QEI do kit de desenvolvimento afim de comparar o valor lido pelo módulo QEI

com o valor medido utilizando um tacômetro ótico. Para o cálculo da velocidade em

rotações por minuto foi utilizada a Equação 4, que para o caso utilizado resulta no

valor de 1,6. A Tabela 17 é o resultado do teste, onde a primeira coluna representa o

valor lido pelo tacômetro, a segunda coluna mostra o valor obtido pelo módulo QEI já

aplicando o fator de 1,6 e a última coluna representa o erro percentual comparando as

duas medições.

48

Figura 32 - Encoder utilizado acoplado ao motor de indução

Tabela 17 - Teste QEI

Valor Tacômetro (RPM) Valor QEI (RPM) Erro (%)
3581 3577,60 0,1%

6.1.7. Ensaio da constante do tacogerador

Os ensaios envolvendo o tacogerador foram realizados durante os testes de

acionamento do motor corrente contínua. O objetivo dos testes é encontrar a

constante linear do tacogerador que, multiplicado pelo valor lido no CAD, fornece a

velocidade real do motor.

Para encontrar o coeficiente linear deste tacogerador foi realizado um ensaio

acionando o motor com diferentes velocidades, a partir do acionamento via PWM,

utilizando o circuito da Figura 21 para proteção do kit de desenvolvimento e o circuito,

de potência da Figura 22, realizar medições com um tacômetro óptico e compará-los

com os valores obtidos no CAD impressos no display.

A constante K pode ser obtida pela divisão do valor medido no tacômetro ótico

pelo valor amostrado pelo conversor analógico digital. Com a realização de 5 medidas

com velocidades diferentes é possível encontrar o valor da constante K médio.

A Tabela 18 é o resultado deste ensaio com as velocidades referentes à largura

de pulso do PWM referenciadas na primeira coluna, como porcentagem do pulso em

nível lógico alto, estas medições foram realizadas a partir de 60% pois abaixo desta

porcentagem, a medição pelo tacômetro se tornou imprecisa, já que os valores

indicados não eram constantes. A segunda coluna representa a velocidade obtida

49

pelo tacômetro ótico. A terceira representa o valor amostrado pelo CAD e a quarta

coluna o resultado da divisão da segunda coluna pela terceira. Realizando a média

dos valores obtidos para constante K, foi obtido o valor K médio de 3,37, utilizado

como constante para obter a quinta coluna da Tabela 18. A última coluna mostra o

erro percentual do valor utilizando a constante K encontrada em comparação às

medições realizadas com o tacômetro ótico.

Tabela 18 - Cálculo da constante K do tacogerador

Medição Tacômetro (RPM) CAD K Convertido (RPM)
Erro
(%)

60% 571 171 3,34 577,04 1,05

70% 1200 354 3,39 1194,58 0,45

80% 1627 477 3,42 1609,64 1,08

90% 1992 593 3,36 2001,09 0,45

100% 2493 739 3,37 2493,77 0,03

6.1.8. Tempo gasto pelas funções de aquisição de dados

Todas as operações em um microprocessador gastam um determinado tempo

que varia com a complexidade da operação e com a frequência de trabalho, por

exemplo, uma multiplicação de um número real demora mais tempo que a soma de

um número inteiro. Deste modo é realizado um ensaio com o objetivo de encontrar o

tempo gasto pelas funções de aquisição e armazenagem dos dados. Com esta

informação é possível escolher uma taxa adequada para uma possível lógica de

controle.

O ensaio é realizado com base na estrutura em que o código foi montado. Como

o programa foi estruturado de forma a realizar as aquisições dentro da interrupção de

um timer, é possível medir o tempo gasto dentro do timer acionando uma saída

apenas durante o período da interrupção. Utilizando um osciloscópio é possível medir

o tempo em que a saída permanece em nível lógico alto.

Os testes consistem em encontrar o tempo gasto em 3 casos. O primeiro

amostrando os valores de um CAD e do encoder, imprimindo estes valores no display

OLED. Em seguida foi realizado o teste apenas amostrando os valores do CAD e do

encoder. Por fim é realizado o ensaio para descobrir o tempo gasto apenas da função

de aquisição do CAD.

50

O primeiro teste foi realizado com as informações do CAD e do encoder e

imprimindo estas informações no display OLED. A Figura 33 mostra o valor medido

pelo osciloscópio.

Figura 33 - Teste da taxa máxima de aquisição – Display

Como era de se esperar o tempo gasto, 2,150ms é muito alto já que as funções

do display OLED são lentas. Por este motivo, para frequências de aquisições altas, a

função de impressão no display não deve ser utilizada.

O segundo ensaio foi realizado utilizando o CAD em conjunto com o encoder

obtendo o resultado mostrado na Figura 34.

Figura 34 - Taxa máxima de aquisição - CAD e QEI

 O tempo gasto para estas duas funções é de 30,5µs.

51

Por fim, utilizando apenas o conversor analógico digital (CAD) obtém-se a Figura

35.

Figura 35 - Taxa máxima de aquisição – CAD

Como era de se esperar o tempo gasto, 16,52 µs, por esta função é menor do

que nos outros ensaios.

É possível ainda extrair o tempo da função de aquisição de dados do encoder

comparando os resultados dos ensaios realizados. Realizando a subtração do tempo

gasto pela função do conversor analógico digital em conjunto com o encoder, pelo

tempo obtido no ensaio utilizando apenas o CAD, é obtido o tempo gasto apenas pelo

encoder, que é 13,89 µs.

6.1.9. Número máximo de amostras

A comunicação do kit de desenvolvimento é realizada via porta serial, no

entanto, para não diminuir a taxa de amostragem, a transmissão serial inicia após

todas as leituras, deste modo as leituras são armazenadas na memória do kit de

desenvolvimento. O objetivo deste ensaio é encontrar o valor máximo disponível para

armazenamento das amostrar.

O ensaio visa encontrar o máximo valor possível para o tamanho dos vetores

utilizados para o armazenamento. Na fase de compilação do programa é possível

variar o tamanho destes vetores. Caso o vetor seja maior que a memória disponível,

ocorre uma mensagem de erro. O ensaio consiste em encontrar o maior número

possível deste vetor.

52

A Tabela 19 apresenta os resultados obtidos. A primeira coluna representa os

valores testados para um vetor e a coluna de resultados indica se o ensaio foi

satisfatório ou não, o resultado OK representa que o programa compilou corretamente,

já a palavra Erro representa uma falha neste ponto do programa por causa do estouro

da memória disponível.

Observando a Tabela 19 é possível considerar um número máximo de 16000

amostras, ou seja, é possível armazenar 16000 amostras de um vetor (CAD, encoder,

etc.), caso sejam 4 amostras o número cai para 4000 amostras.

Tabela 19 - Teste do número máximo de amostras

Tamanho do Vetor Resultado
3000 OK

10000 OK
15000 OK
20000 Erro
17500 Erro
16000 Ok
17000 Erro
16500 Erro

6.2. Ensaios nos motores em estudo

Após os testes realizados no kit de desenvolvimento EKILM3S8962 é possível

integrá-los com o objetivo de acionar os motores, realizar medições, comunicar com o

computador e plotar estas medidas. São realizados ensaios com o motor de corrente

contínua com imã permanente e com um motor de indução

6.2.1. Ensaio no motor de corrente contínua

O motor de corrente contínua de imã permanente da Figura 36 é acionado de

duas maneiras. Diretamente de uma bateria automotiva de 12V e utilizando o chopper

da Figura 22 em conjunto com circuito o da Figura 21, aplicando o perfil do PWM da

Figura 31. Para validar os conversores analógicos digitais são amostrados os valores

da corrente, gerada pelo sensor de corrente do tipo Hall condicionado utilizando o

circuito da Figura 24, e de velocidade, gerado pelo tacogerador acoplado ao motor de

corrente contínua com o tratamento mostrado na Figura 25. Estes valores são

enviados via serial para serem impressos via Matlab.

53

Figura 36 - Motor utilizado

6.2.1.1. Acionamento do motor CC diretamente a uma bateria

A conexão direta da bateria automotiva de 12V ao motor fornece os resultados

da velocidade por meio do tacogerador acoplado ao motor, Figura 37, e da corrente,

Figura 38, utilizando o sensor de corrente do tipo Hall.

Figura 37 - Motor CC - Partida direta – Velocidade

54

Figura 38 - Motor CC - Partida direta – Corrente

A conexão do motor à bateria e o acionamento do kit de desenvolvimento par

realização das medições foram realizadas manualmente. O tempo de 2 segundos

compreende o tempo gasto entre as duas operações manuais.

6.2.1.2. Acionamento do motor CC utilizando PWM

Utilizando o circuito de acionamento para o motor de corrente contínua (Figura

21 e Figura 22), foi aplicado um sinal PWM com o perfil da Figura 31. O resultado

obtido para velocidade na Figura 39. O resultado da corrente é observado na Figura

40.

Figura 39 - Motor CC - Partida PWM – Velocidade

55

Figura 40 - Motor CC - Partida PWM – Corrente

6.2.2. Ensaio no motor de indução trifásico

 De modo semelhante ao motor de corrente contínua foram realizados dois

diferentes acionamentos no motor de indução. A partida diretamente da rede trifásica

por meio de um variac ajustado para 80V de pico a pico, e a partida utilizando o modo

6-pulsos (modos 2 a 2 e 3 a 3). O valor de corrente de uma das fases do motor deve

ser amostrado pelo CAD, por meio do sensor de corrente do tipo Hall, transmitido via

serial e impressos via Matlab.

A partida utilizando o modo 6-pulsos aciona o inversor da Figura 41 utilizando as

sequências da Figura 5, para o modo 2 a 2, e da Figura 6, para o modo 3 a 3, com

frequências de rotação de 0,33Hz e 60Hz.

Figura 41 - Inversor trifásico utilizado

56

O inversor utilizado é um inversor da SEMIKRON constituído de um circuito

retificador de tensão SKD51/52 [29] e um filtro para alimentação do barramento de

corrente contínua, de semicondutores IGBTs SKM40GDL123D [30] e módulos de

acionamentos para o Gate dos IGBTs SKIH22 [31], que tem como objetivo tratar o

sinal para o acionamento e prover proteção aos semicondutores. O filtro é formado por

um banco de capacitores que juntos possuem o valor de 8,16mF e suportam até 400V

de alimentação.

6.2.2.1. Partida direta

Conectando o motor de indução, por meio de um disjuntor trifásico, a um variac

ajustado para 80Vpp foram realizadas medições de corrente em uma das fases

utilizando um sensor de corrente do tipo Hall e de velocidade de rotação do eixo do

motor. O valor lido pelo sensor de corrente do tipo Hall foi amostrado com o

osciloscópio. A Figura 42 mostra a o valor da corrente em uma das fases do motor de

indução obtidos com um osciloscópio. Estes valores de corrente foram amostrados

pelo CAD e transmitidos via comunicação serial. Utilizando o software Matlab para

plotar estes dados em um gráfico foi gerada a Figura 43.

Figura 42 - Motor de indução - Partida direta – Corrente

57

Figura 43 - Motor de indução - Parida direta – Corrente

Na Figura 43 foi aplicado um zoom do entre o 1º e 2º segundo para verificar se o

comportamento está dentro do esperado (senoidal). A Figura 44 mostra que o

resultado é satisfatório.

Figura 44 - Motor CA - Comportamento da corrente

O valor amostrado correspondente à velocidade é exposto na Figura 45.

58

Figura 45 - Motor CA - Parida direta – Velocidade

Os disparos, tanto do programa quanto dos motores, foram realizados

manualmente. O tempo de 0 a 1s representam este tempo gasto até o acionamento do

motor de indução.

6.2.2.2. Acionamento através do kit no modo 6-pulsos

A segunda etapa de teste no motor de indução foi o acionamento do mesmo

utilizando o inversor da Figura 41 no modo 6-pulsos, tanto nos modos 2 a 2 quanto

nos modos 3 a 3.

 O chaveamento do inversor trifásico deve ser realizado em todas as chaves

simultaneamente, de modo a garantir que as chaves de um mesmo braço não

conduzam ao mesmo tempo. Desta forma o programa utilizado no microprocessador

ARM Cortex-M3 gera os sinais ao mesmo tempo, utilizando a porta A do kit de

desenvolvimento EKI LM3S8962 para gerar uma palavra de 8 bits onde 2 não são

utilizados.

Visando a proteção do inversor, a tensão de alimentação do inversor utilizada

não foi a tensão nominal no motor, visando manter a corrente do motor dentro dos

valores nominais dele. Foi utilizado 50V para baixas frequências (0,33Hz) e 115V para

as altas (60Hz).

59

6.2.2.2.1. Acionamento no modo 2 a 2

Seguindo a lógica de acionamento da Figura 5 foi gerada a Tabela 20 para a

geração da palavra a ser gerada. Os bits menos significativos não são utilizados para

o acionamento. A primeira coluna representa os 6 pulsos possíveis. A segunda

representa quais chaves, da Figura 4, devem estar acionadas, no respectivo pulso. A

terceira coluna representa como os pinos da porta A devem estar configurados para

acionar as determinadas chaves. Por fim a ultima coluna representa o valor decimal

que se deve escrever à porta.

Tabela 20 - Modo 2 a 2 - Palavras geradas

Pulso Saídas Binário Decimal

0 1,2 10000100 132

1 2,3 10001000 136

2 3,4 00101000 40

3 4,5 00110000 48

4 5,6 01010000 80

5 6,1 01000100 68

Deste modo, a cada intervalo de tempo os valores na saída da porta A variam de

acordo com a Tabela 20, acionando 2 chaves. Os tempos de acionamentos para cada

pulso foram 0,5s e 1/360s, que representam 0,33 e 60Hz, respectivamente, de rotação

do eixo do motor de indução.

As grandezas amostradas foram a corrente que passa por uma das fases do

motor de indução e a tensão fase-neutro que alimenta o motor. Os valores foram

amostrados pelo osciloscópio.

Frequência do motor em 0,33Hz

A Figura 46 mostra o valor amostrado pelo sensor de corrente do tipo Hall

correspondente a corrente de uma fase do motor.

60

Figura 46 - Modo 2 a 2 – 0,33Hz – Corrente do motor de indução

A Figura 47 mostra o valor de tensão aplicada aos terminais do motor. No caso a

tensão que alimenta o motor foi de aproximadamente 50V.

Figura 47 - Modo 2 a 2 – 0,33Hz - Tensão aplicada ao motor

Frequência do motor em 60Hz

Aumentando a frequência de rotação do motor para 60Hz são obtidos os

resultados amostrados na Figura 48 para a corrente de uma das fases do motor e na

Figura 49 para a tensão de alimentação do motor de indução. No caso foi utilizado

aproximadamente 115V.

61

Figura 48 - Modo 2 a 2 – 60Hz – Corrente no motor

Figura 49 - Modo 2 a 2 – 60Hz – Tensão aplicada ao motor

6.2.2.2.2. Acionamento no modo 3 a 3

Analogamente ao modo 2 a 2, foi gerada a Tabela 21 com os valores das

palavras utilizadas conforme a Figura 6.

Tabela 21 - Modo 3 a 3 - Palavras geradas

Pulso Saídas Binário Decimal

0 4,5,6 01110000 112

1 5,6,1 01010100 84

2 6,1,2 11000100 196

3 1,2,3 10001100 140

4 2,3,4 10101000 168

5 3,4,5 00111000 56

62

O acionamento foi realizado para as mesmas frequências de acionamento do

modo 2 a 2, 0,33Hz e 60Hz.

Frequência do motor em 0,33Hz

Utilizando 0,5 segundos de duração em cada pulso é obtida a frequência de

rotação do eixo do motor de 0,33Hz. A Figura 50 apresenta a corrente em uma das

fases do motor e a Figura 51 a tensão fase-neutro aplicada aos terminais do motor, no

caso foi utilizado aproximadamente 50V.

Figura 50 - Modo 3 a 3 – 0,33Hz – Corrente no motor

Figura 51 - Modo 3 a 3 – 0,33Hz – Tensão aplicada ao motor

63

Frequência do motor em 60Hz

Utilizando 2,77ms de duração dos pulsos é obtida a frequência de 60Hz de

rotação do eixo do motor de indução. A Figura 52 apresenta a corrente de um das

fases do motor e a Figura 53 mostra a tensão fase-neutro aplicada aos terminais do

motor, que foi de aproximadamente 115V.

Figura 52 - Modo 3 a 3 – 60Hz – Corrente no motor

Figura 53 - Modo 3 a 3 – 60Hz – Tensão aplicada ao motor

64

65

7. Conclusões

O trabalho em questão analisou a utilização do kit desenvolvimento EKI

LM3S8962 da Texas Instruments para o acionamento, e um possível controle, de

máquinas elétricas de correntes contínua (imã permanente) e de corrente alternada

(motor de indução trifásico). O kit em questão possui recursos, como módulo gerador

de PWM, leitura de encoder, entre outros, que podem ser úteis para esta aplicação. A

utilização deste kit específico se deu pela integração destes diversos recursos em uma

única plataforma, aumentando a eficácia e reduzindo o custo em comparação a estes

recursos implementados separadamente.

O foco do trabalho foi detalhar o kit de desenvolvimento, formas de operação e

de configuração, para o acionamento das máquinas elétricas por meio de 2 circuitos

de acionamento. O circuito chopper para o acionamento com velocidade variável do

motor de corrente contínua por meio do controle do nível de tensão média aplicada ao

circuito de campo do motor e o circuito inversor de tensão trifásicos para o

acionamento do motor de corrente alternada controlando a frequência da tensão de

alimentação do determinado motor.

A estrutura escrita deste trabalho foi realizada para prover informações sobre o

kit de desenvolvimento EKI LM3S8962, em seguida foi abordada a configuração dos

recursos presentes no kit. Foram realizado testes no kit de desenvolvimento e por fim

foi realizada a validação do kit para o objetivo proposto acionando dois motores com

velocidade variável, um motor de corrente contínua de imã permanente e um motor de

corrente alternada de indução trifásica. Para esta validação foram implementados os

circuitos de potência (Chopper) para o acionamento do motor de corrente contínua,

circuitos de acionamento, para o chopper e para o inversor de tensão trifásico, e

circuitos auxiliares, para medição de grandezas físicas como velocidade e corrente, e

circuitos de proteção.

Os ensaios realizados no kit de desenvolvimento foram satisfatórios vistos que

os recursos disponíveis são suficientes para os acionamentos propostos e ainda

possibilitam outras abordagens, como controle das referidas máquinas elétricas ou

acionamento do inversor utilizando modulação vetorial, já que utilizando os 6 PWMs

presentes no kit de desenvolvimento é possível gerar esta modulação, conhecida

como SPVM (Space Vector Modulation).

Foi levantado também o tempo gasto para as funções de aquisição do kit de

desenvolvimento, onde foi encontrado um valor satisfatório, já que utilizando um

66

conversor analógico digital para a medição da corrente de um determinado motor CC

por exemplo, em conjunto com a medição da velocidade e da posição do motor

utilizando um encoder é gasto o tempo de 30,5µs. Considerando um controle digital

com uma frequência de 1kHz, tem-se uma janela de tempo de 969,5µs para

realização das operações de controle, tempo suficiente visto a velocidade das

operações do microprocessador. Para o caso de um motor de indução trifásico (3

medições de corrente e aquisição do encoder) gasta-se 63,54µs, e portanto, numa

taxa de amostragem de 1kHz restam 936µs para as tarefas de controle e supervisão.

O número máximo de amostras obtido, 16000 amostras, é suficiente para a

utilização didática proposta. Uma ampliação deste ambiente pode resultar na

necessidade de aumentar este número de amostras, outra abordagem, como

utilização de uma memória externa, pode ser utilizada.

A validação do kit de desenvolvimento para esta aplicação foi realizada

implementando os circuitos propostos e obtendo resultado satisfatório para o

acionamento de motores de corrente contínua de imã permanente e de corrente

alternada de indução trifásica. Os resultados destes ensaios podem ser expandidos

para outros tipos de motores que utilizem o princípio de controle da tensão média

através de um chopper para os motores de corrente contínua e os que utilizem o

acionamento variável da velocidade através de inversores de tensão.

O anexo II é mostrado um esquemático reunindo todos os circuitos proposto com

o objetivo de criação de um protótipo para, possivelmente, ser utilizado em uma

matéria de graduação da Escola de Engenharia de São Carlos de acionamento de

máquinas elétricas, servindo de base para um possível laboratório desta disciplina.

67

Anexos I – Código implementado

//###
//
// INCLUSÃO DE BIBLIOTECAS
//
//###

#include "inc/hw_memmap.h"
#include "inc/hw_types.h"
#include "driverlib/debug.h"
#include "driverlib/gpio.h"
#include "driverlib/pwm.h"
#include "driverlib/sysctl.h"
#include "inc/hw_ints.h"
#include "inc/hw_qei.h"
#include "inc/hw_ssi.h"
#include "driverlib/adc.h"
#include "drivers/rit128x96x4.h"
#include "inc/lm3s8962.h"
#include "driverlib/interrupt.h"
#include "driverlib/sysctl.h"
#include "driverlib/timer.h"
#include "driverlib/qei.h"
#include "driverlib/uart.h"
#include <stdio.h>

//###
//
// ROTINA DE ERRO
//
//###

#ifdef DEBUG
void
__error__(char *pcFilename, unsigned long ulLine)
{
}
#endif

 //###
//
// DECLARAÃO DE VARIAVEIS
//
//###

unsigned long q=0;
unsigned long ulPeriod; //tempo
volatile unsigned long ulLoop;
 unsigned long ulValue;
char buf[40];
int e0;
int count=0; //Variavel utilizada para contagem de amostras
unsigned long cad[8100]; //vetor contendo informações do Conversor Analogico Digital
//int dir[4000]; //Vetor contendo informações da Direção do Motor
//int vel[8100]; //Vetor contendo informações da Velocidade de rotação do motor
//int pos[4000]; //Vetor contendo informações da Posição do eixo do motor
int velt[8100] = NULL;
int difPWM2 = 5;
float tatual = 0;
int p=0;
 int portae=0;
 int flagv=0;
 int l=0;
 float aux;
//###
//
// RDEFINIÇÕES DO USUÁRIO
//
//###

//O máximo de amostras é de cerca de 15000 amostras no total, ou seja, 15000 de apenas uma informação
//ou 3000 caso seja necessárias 5 informações. Para isso deve ser ajustado o tamanho dos vetores acima.

68

int amostras=7500; //Definir quantidade de amostras
float TA=0.001; //taxa de amostragem em segundos, minima de 100us

float TPWM = 0.02; //tempo de variação do PWM (0.02) ou pulsos
int inipwm = 1; //Porcentagem inicial do PWM
int fpwm = 2000;
int difPWM = 1;

//###
//
// SERIAL - Rotina para enviar strings via serial - Caracter por caracter
//
//###

void
UARTSend(const unsigned char *pucBuffer, unsigned long ulCount)
{
 //
 // Loop enquanto existem caracteres sendo enviados
 //
 while(ulCount--)
 {
 UARTCharPut(UART0_BASE, *pucBuffer++); // Escreve o próximo caracter na seroal
 }
}

//###
//
// Interrupção por tempo - AQUISIÇÃO
//
//###
void
Timer0IntHandler(void)
{
TimerIntClear(TIMER0_BASE, TIMER_TIMA_TIMEOUT); //limpa a flag de interrupção por tempo
ADC_ISC_R = 0x0000000000000000000000000000ffff;
//RIT128x96x4Clear();

//Caso a taxa de amostragem seja pequena, é possivel imprimir os valores no Display,
//para isso basta descomentar os comandos abaixo referentes ao display

//########################CAD##
ADCProcessorTrigger(ADC_BASE, 0);
cad[count] = ADC_SSFIFO0_R; //le o valor do conversor e coloca no vetor
cad[count] = ADC_SSFIFO0_R; //le o valor do conversor e coloca no vetor
cad[count] = ADC_SSFIFO0_R; //le o valor do conversor e coloca no vetor
cad[count] = ADC_SSFIFO0_R; //le o valor do conversor e coloca no vetor
cad[count] = ADC_SSFIFO0_R; //le o valor do conversor e coloca no vetor
cad[count] = ADC_SSFIFO0_R; //le o valor do conversor e coloca no vetor
cad[count] = ADC_SSFIFO0_R; //le o valor do conversor e coloca no vetor
cad[count] = ADC_SSFIFO0_R; //le o valor do conversor e coloca no vetor
cad[count] = ADC_SSFIFO0_R; //le o valor do conversor e coloca no vetor

//sprintf(buf, "%d", cad[count]); //transforma em char
//RIT128x96x4StringDraw(buf, 20, 20, 15);

//##################ENCODER#########################
//dir[count] = QEIDirectionGet(QEI0_BASE); //Direção
////sprintf(buf, "%d", dir[count]); //transforma em char
////RIT128x96x4StringDraw(buf, 20, 50, 15); //Coloca no display
//
//pos[count] = QEIPositionGet(QEI0_BASE); //Posição
////sprintf(buf, "%d", pos[count]); //transofrma em char
////RIT128x96x4StringDraw(buf, 20, 80, 15); //Coloca no display
////
//velocidade
//vel[count]= 1.6*QEIVelocityGet(QEI0_BASE);//Velocidade
//sprintf(buf, "%d", vel[count]); //transorma em char
//RIT128x96x4StringDraw(buf, 80, 80, 15); //Coloca no display

//adc- 2 tacogerador
ADCProcessorTrigger(ADC_BASE, 1);

69

velt[count] = ADC_SSFIFO1_R;
velt[count] = ADC_SSFIFO1_R;
velt[count] = ADC_SSFIFO1_R;
velt[count] = ADC_SSFIFO1_R;
velt[count] = ADC_SSFIFO1_R;
velt[count] = ADC_SSFIFO1_R;
velt[count] = ADC_SSFIFO1_R;
velt[count] = ADC_SSFIFO1_R;
velt[count] = ADC_SSFIFO1_R;
sprintf(buf, "%d", velt[count]); //transorma em char
//RIT128x96x4StringDraw(buf, 80, 80, 15); //Coloca no display
//##################Verificação de erro de leitura do encoder###################
//Comentado pois serve apenas para testes

//*erro0= QEIErrorGet(QEI0_BASE); //bit de erro de leitura
//if (erro0==1)
//{
// e0++;
// erro0 = 0;
//}
//sprintf(buf, "%d", e0);
//RIT128x96x4StringDraw(buf, 80, 50, 15);

count++; //Incrementa a contagem e a posição dos vetores
}

//###
//
// Interrupção por tempo - ACIONAMENTO
//
//###

void
Timer1IntHandler(void)
{

// // ########################PWM Acionamento de motor DC######################
 TimerIntClear(TIMER1_BASE, TIMER_TIMA_TIMEOUT); //limpa a flag de interrupção por tempo
 tatual = TPWM + tatual;

 if (tatual < 1.88)
 {
 PWMPulseWidthSet(PWM_BASE, PWM_OUT_0, ulPeriod*(inipwm+difPWM2)/100);
 PWMPulseWidthSet(PWM_BASE, PWM_OUT_1, ulPeriod*(inipwm+difPWM2)/100);
 difPWM2=difPWM+difPWM2;
 }
 else if (tatual <5)
 {
 }
 else if (tatual <6.98)
 {
 PWMPulseWidthSet(PWM_BASE, PWM_OUT_0, ulPeriod*(difPWM2)/100);
 PWMPulseWidthSet(PWM_BASE, PWM_OUT_1, ulPeriod*(difPWM2)/100);
 difPWM2=difPWM2-difPWM;
 }
 //##

 //################## MODO 6 PULSOS ######################
// if (p==0)
// {
// GPIOPinWrite(GPIO_PORTA_BASE, (GPIO_PIN_2 | GPIO_PIN_3 | GPIO_PIN_4 | GPIO_PIN_5 | GPIO_PIN_6 |
GPIO_PIN_7), 132);
// p++;
//// for(l=0;l<=(80000); l++)
//// {
//// aux=aux*0;
//// }
//// GPIOPinWrite(GPIO_PORTA_BASE, (GPIO_PIN_2 | GPIO_PIN_3 | GPIO_PIN_4 | GPIO_PIN_5 | GPIO_PIN_6 |
GPIO_PIN_7), 0);
// }
// else if (p==1)
// {
// GPIOPinWrite(GPIO_PORTA_BASE, (GPIO_PIN_2 | GPIO_PIN_3 | GPIO_PIN_4 | GPIO_PIN_5 | GPIO_PIN_6 |
GPIO_PIN_7), 136);
// p++;

70

//// for(l=0;l<=(80000); l++)
//// {
//// aux=aux*0;
//// }
//// GPIOPinWrite(GPIO_PORTA_BASE, (GPIO_PIN_2 | GPIO_PIN_3 | GPIO_PIN_4 | GPIO_PIN_5 | GPIO_PIN_6 |
GPIO_PIN_7), 0);
// }
// else if (p==2)
// {
// GPIOPinWrite(GPIO_PORTA_BASE, (GPIO_PIN_2 | GPIO_PIN_3 | GPIO_PIN_4 | GPIO_PIN_5 | GPIO_PIN_6 |
GPIO_PIN_7), 40);
// p++;
//// for(l=0;l<=(80000); l++)
//// {
//// aux=aux*0;
//// }
//// GPIOPinWrite(GPIO_PORTA_BASE, (GPIO_PIN_2 | GPIO_PIN_3 | GPIO_PIN_4 | GPIO_PIN_5 | GPIO_PIN_6 |
GPIO_PIN_7), 0);
// }
// else if (p==3)
// {
// GPIOPinWrite(GPIO_PORTA_BASE, (GPIO_PIN_2 | GPIO_PIN_3 | GPIO_PIN_4 | GPIO_PIN_5 | GPIO_PIN_6 |
GPIO_PIN_7), 48);
// p++;
//// for(l=0;l<=(80000); l++)
//// {
//// aux=aux*0;
//// }
//// GPIOPinWrite(GPIO_PORTA_BASE, (GPIO_PIN_2 | GPIO_PIN_3 | GPIO_PIN_4 | GPIO_PIN_5 | GPIO_PIN_6 |
GPIO_PIN_7), 0);
// }
// else if (p==4)
// {
// GPIOPinWrite(GPIO_PORTA_BASE, (GPIO_PIN_2 | GPIO_PIN_3 | GPIO_PIN_4 | GPIO_PIN_5 | GPIO_PIN_6 |
GPIO_PIN_7), 80);
// p++;
//// for(l=0;l<=(80000); l++)
//// {
//// aux=aux*0;
//// }
//// GPIOPinWrite(GPIO_PORTA_BASE, (GPIO_PIN_2 | GPIO_PIN_3 | GPIO_PIN_4 | GPIO_PIN_5 | GPIO_PIN_6 |
GPIO_PIN_7), 0);
// }
// else if (p==5)
// {
// GPIOPinWrite(GPIO_PORTA_BASE, (GPIO_PIN_2 | GPIO_PIN_3 | GPIO_PIN_4 | GPIO_PIN_5 | GPIO_PIN_6 |
GPIO_PIN_7), 68);
// p=0;
// for(l=0;l<=(80000); l++)
// {
// aux=aux*0;
// }
// GPIOPinWrite(GPIO_PORTA_BASE, (GPIO_PIN_2 | GPIO_PIN_3 | GPIO_PIN_4 | GPIO_PIN_5 | GPIO_PIN_6 |
GPIO_PIN_7), 0);
 }

// RIT128x96x4Clear(); //Limpa o display
//RIT128x96x4StringDraw("timer 1", 80, 50, 15);
//}

//###
//
// CONFIGURAÇÃO DOS RECURSOS
//
//###
int
main(void)
{
 volatile unsigned long ulLoop;
 int i;

//LED

71

SYSCTL_RCGC2_R = SYSCTL_RCGC2_GPIOF;
ulLoop = SYSCTL_RCGC2_R;
GPIO_PORTF_DIR_R = 0x01;
GPIO_PORTF_DEN_R = 0x01;

RIT128x96x4Init(1000000);

 //
 // Ajustar o clock a partir do cristal
 //
 SysCtlClockSet(SYSCTL_SYSDIV_1 | SYSCTL_USE_OSC | SYSCTL_OSC_MAIN |
 SYSCTL_XTAL_8MHZ);
 SysCtlPWMClockSet(SYSCTL_PWMDIV_1);

 //
 // Bail out if there is not a PWM peripheral on this part.
 //
 if(!SysCtlPeripheralPresent(SYSCTL_PERIPH_PWM))
 {
 while(1);
 }

 //
 // Enable the peripherals used by this example.
 //
 SysCtlPeripheralEnable(SYSCTL_PERIPH_PWM);
 SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOF);
 SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOG);
 SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOB); //utilizar saída B
 SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOE); //utilizar saída E

 //
 // Set GPIO F0 and G1 as PWM pins. They are used to output the PWM0 and
 // PWM1 signals.
 //
 GPIOPinTypePWM(GPIO_PORTF_BASE, GPIO_PIN_0);
 GPIOPinTypePWM(GPIO_PORTG_BASE, GPIO_PIN_1);
 GPIOPinTypePWM(GPIO_PORTB_BASE, GPIO_PIN_0); //Pino 0 da porta B como PWM (PWM 2)
 GPIOPinTypePWM(GPIO_PORTB_BASE, GPIO_PIN_1); //Pino 1 da porta B como PWM (PWM 3)
 GPIOPinTypePWM(GPIO_PORTE_BASE, GPIO_PIN_0); //Pino 0 da porta E como PWM (PWM 4)
 GPIOPinTypePWM(GPIO_PORTE_BASE, GPIO_PIN_1); //Pino 1 da porta E como PWM (PWM 5)

 //
 // Compute the PWM period based on the system clock.
 //
// ulPeriod = SysCtlClockGet() / 440;
 ulPeriod = SysCtlClockGet() / fpwm;

 //
 // Set the PWM period to 440 (A) Hz.
 //
 PWMGenConfigure(PWM_BASE, PWM_GEN_0,
 PWM_GEN_MODE_UP_DOWN | PWM_GEN_MODE_NO_SYNC);
 PWMGenPeriodSet(PWM_BASE, PWM_GEN_0, ulPeriod);
 PWMGenConfigure(PWM_BASE, PWM_GEN_1,
 PWM_GEN_MODE_UP_DOWN | PWM_GEN_MODE_NO_SYNC);
 PWMGenPeriodSet(PWM_BASE, PWM_GEN_1, ulPeriod);
 PWMGenConfigure(PWM_BASE, PWM_GEN_2,
 PWM_GEN_MODE_UP_DOWN | PWM_GEN_MODE_NO_SYNC);
 PWMGenPeriodSet(PWM_BASE, PWM_GEN_2, ulPeriod);

 //
 // Set PWM0 to a duty cycle of 25% and PWM1 to a duty cycle of 75%.
 //
 PWMPulseWidthSet(PWM_BASE, PWM_OUT_0, ulPeriod*inipwm/100);
 PWMPulseWidthSet(PWM_BASE, PWM_OUT_1, ulPeriod*inipwm/100);
 PWMPulseWidthSet(PWM_BASE, PWM_OUT_2, ulPeriod*inipwm/100);
 PWMPulseWidthSet(PWM_BASE, PWM_OUT_3, ulPeriod*inipwm/100);
 PWMPulseWidthSet(PWM_BASE, PWM_OUT_4, ulPeriod*inipwm/100);
 PWMPulseWidthSet(PWM_BASE, PWM_OUT_5, ulPeriod*inipwm/100);

 //
 // Enable the PWM0 and PWM1 output signals.
 //

72

 PWMOutputState(PWM_BASE, PWM_OUT_0_BIT | PWM_OUT_1_BIT | PWM_OUT_2_BIT | PWM_OUT_3_BIT |
 PWM_OUT_4_BIT | PWM_OUT_5_BIT , true);

 //
 // Enable the PWM generator.
 //
 PWMGenEnable(PWM_BASE, PWM_GEN_0);
 PWMGenEnable(PWM_BASE, PWM_GEN_1);
 PWMGenEnable(PWM_BASE, PWM_GEN_2);

//############## CAD ##

SysCtlPeripheralEnable(SYSCTL_PERIPH_ADC);
ADCSequenceConfigure(ADC_BASE, 0, ADC_TRIGGER_PROCESSOR, 1);
ADCSequenceStepConfigure(ADC_BASE, 3, 0, ADC_CTL_CH0 | ADC_CTL_END);
ADCProcessorTrigger(ADC_BASE, 0);

ADCSequenceConfigure(ADC_BASE, 1, ADC_TRIGGER_PROCESSOR, 0);
ADCProcessorTrigger(ADC_BASE, 1);
ADCSequenceStepConfigure(ADC_BASE, 1, 0, ADC_CTL_CH1);
ADCSequenceStepConfigure(ADC_BASE, 1, 1, ADC_CTL_CH1);
ADCSequenceStepConfigure(ADC_BASE, 1, 2, ADC_CTL_CH1);
ADCSequenceStepConfigure(ADC_BASE, 1, 3, ADC_CTL_CH1);
ADCSequenceStepConfigure(ADC_BASE, 1, 4, ADC_CTL_CH1);
ADCSequenceStepConfigure(ADC_BASE, 1, 5, ADC_CTL_CH1);
ADCSequenceStepConfigure(ADC_BASE, 1, 6, ADC_CTL_CH1);
ADCSequenceStepConfigure(ADC_BASE, 1, 7, ADC_CTL_CH1);
ADCSequenceStepConfigure(ADC_BASE, 1, 8, ADC_CTL_CH1 | ADC_CTL_END);

ADCSequenceEnable(ADC_BASE, 0);
ADCSequenceEnable(ADC_BASE, 1);

//################timer - interrupção #####################
SysCtlPeripheralEnable(SYSCTL_PERIPH_TIMER0); //habilita o timer 0
SysCtlPeripheralEnable(SYSCTL_PERIPH_TIMER1); //habilita o timer 1

IntMasterEnable();
//timer 0
TimerConfigure(TIMER0_BASE, TIMER_CFG_32_BIT_PER); //Configura o timer 0
TimerLoadSet(TIMER0_BASE, TIMER_A, SysCtlClockGet()*TA); //Ajuste de tempo,
//para variar o tempo de interrução deve mudar o valor de TA, onde a interrupçaõ ocorrerá a cada TA segundos
IntEnable(INT_TIMER0A); //habilita a interução do timer
TimerIntEnable(TIMER0_BASE, TIMER_TIMA_TIMEOUT); //habilita interrupção do timer0
TimerEnable(TIMER0_BASE, TIMER_A); //iniicializa o timer 0
//timer 1

TimerConfigure(TIMER1_BASE, TIMER_CFG_32_BIT_PER); //Configura o timer 1
TimerLoadSet(TIMER1_BASE, TIMER_A, SysCtlClockGet()*TPWM); //Ajuste de tempo, para variar o tempo de
interrução deve mudar o valor de TPWM, onde a

interrupçaõ ocorrerá a cada TPWM segundos
//IntEnable(INT_TIMER1A); //habilita a interução do timer1, no caso está comentado pois só sera inicializado
no loop infinito, quando p botão for

acionado
TimerIntEnable(TIMER1_BASE, TIMER_TIMA_TIMEOUT); //habilita interrupção do timer0
TimerEnable(TIMER1_BASE, TIMER_A); //iniicializa o timer 1
IntEnable(INT_TIMER1A);
//################encoder#####################################

//QEIEnable(QEI_BASE);
SysCtlPeripheralEnable(SYSCTL_PERIPH_QEI); //utilizar encoder
SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOC); //utilizar porta C
QEIDisable(QEI0_BASE); //desabilitar encoder 0
QEIVelocityDisable(QEI0_BASE); //desabilitar velocidade
GPIOPinTypeQEI(GPIO_PORTC_BASE, GPIO_PIN_4); //Pino 4 da porta C como encoder
GPIOPinTypeQEI(GPIO_PORTC_BASE, GPIO_PIN_6); //Pino 6 da porta C como encoder
QEIConfigure(QEI_BASE,QEI_CONFIG_CAPTURE_A | //configuração
 QEI_CONFIG_NO_RESET |
 QEI_CONFIG_QUADRATURE |
 QEI_CONFIG_NO_SWAP, 2999);
QEIVelocityConfigure(QEI_BASE, QEI_VELDIV_1, 100000);
QEIVelocityEnable(QEI0_BASE); //habilita velocidade

QEIEnable(QEI0_BASE); //habilita encoder

73

//#########################serial################################
SysCtlPeripheralEnable(SYSCTL_PERIPH_UART0); //habilita serial
SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOA); //habilita porta A
GPIOPinTypeUART(GPIO_PORTA_BASE, GPIO_PIN_0 | GPIO_PIN_1); //Pinos 0 e 1 da porta A como serial
UARTConfigSetExpClk(UART0_BASE, SysCtlClockGet(), 115200, //configuração
 (UART_CONFIG_WLEN_8 | UART_CONFIG_STOP_ONE |
 UART_CONFIG_PAR_NONE));
IntEnable(INT_UART0); //Habilita serial
UARTIntEnable(UART0_BASE, UART_INT_RX | UART_INT_RT);
//UARTSend((unsigned char *)"Enter text: ", 12); //Chama rotina para enviar o texto "Enter text"

RIT128x96x4StringDraw("Amostrando", 20, 20, 15);

//teste tempo
//GPIOPinTypeGPIOOutput(GPIO_PORTC_BASE, (GPIO_PIN_4));
//GPIODirModeSet(GPIO_PORTC_BASE, (GPIO_PIN_4), GPIO_DIR_MODE_OUT);

//Modo 6 pulsos
//GPIOPinTypeGPIOOutput(GPIO_PORTA_BASE, (GPIO_PIN_2));
//GPIOPinTypeGPIOOutput(GPIO_PORTA_BASE, (GPIO_PIN_3));
//GPIOPinTypeGPIOOutput(GPIO_PORTA_BASE, (GPIO_PIN_4));
//GPIOPinTypeGPIOOutput(GPIO_PORTA_BASE, (GPIO_PIN_5));
//GPIOPinTypeGPIOOutput(GPIO_PORTA_BASE, (GPIO_PIN_6));
//GPIOPinTypeGPIOOutput(GPIO_PORTA_BASE, (GPIO_PIN_7));
//GPIODirModeSet(GPIO_PORTA_BASE, (GPIO_PIN_2) , GPIO_DIR_MODE_OUT);
//GPIODirModeSet(GPIO_PORTA_BASE, (GPIO_PIN_3) , GPIO_DIR_MODE_OUT);
//GPIODirModeSet(GPIO_PORTA_BASE, (GPIO_PIN_4) , GPIO_DIR_MODE_OUT);
//GPIODirModeSet(GPIO_PORTA_BASE, (GPIO_PIN_5) , GPIO_DIR_MODE_OUT);
//GPIODirModeSet(GPIO_PORTA_BASE, (GPIO_PIN_6) , GPIO_DIR_MODE_OUT);
//GPIODirModeSet(GPIO_PORTA_BASE, (GPIO_PIN_7) , GPIO_DIR_MODE_OUT);

//Chave
//

//###
//
// LOOP
//
//###
 while(1)
 {

// portae=0;
// portae = GPIOPinRead(GPIO_PORTE_BASE,(GPIO_PIN_2 | GPIO_PIN_1 | GPIO_PIN_0));
// if (portae==1)
// {
// IntEnable(INT_TIMER1A);
//
// }
// if (portae==4)
// {
// IntDisable(INT_TIMER1A); //Desabilita a interrupção 0 (amostras)
// GPIOPinWrite(GPIO_PORTA_BASE, (GPIO_PIN_2 | GPIO_PIN_3 | GPIO_PIN_4 | GPIO_PIN_5 | GPIO_PIN_6
| GPIO_PIN_7), 0);
//
// }
// if (portae==2)
// {
// TPWM = 0.1;
// TimerLoadSet(TIMER1_BASE, TIMER_A, SysCtlClockGet()*TPWM); //Ajuste de tempo
// flagv++;
// if (flagv==1)
// {
// TPWM = 0.5;
// }
// if (flagv==2)
// {
// TPWM = 0.1;
// }
// if (flagv==3)
// {
// TPWM = 1/360;
// }

74

// }
 if (count > amostras-1)
{

RIT128x96x4Clear();
IntDisable(INT_TIMER0A); //Desabilita a interrupção 0 (amostras)
IntDisable(INT_TIMER1A); //Desabilita a interrupção 1 (PWM)
RIT128x96x4StringDraw("enviando via serial", 20, 20, 15);

//###
//
// COMUNICAÇÃO SERIAL
//
//###
UARTSend("CAD:",5);
 for(i=0;i<=(amostras-1); i++)
 {
 sprintf(buf, "%i", cad[i]);
 UARTSend(" ", 1); // manda espaço para separar
 if (cad[i] <= 9)
 {
 UARTSend(buf, 1);
 }
 else if (cad[i] <= 99)
 {
 UARTSend(buf, 2);
 }
 else if (cad[i] <= 999)
 {
 UARTSend(buf, 3);
 }
 else
 {
 UARTSend(buf, 4);
 }
 }
//////################## Posição ################
//UARTSend(" POS=",5);
//for(i=0;i<=(amostras-1); i++)
//{
//sprintf(buf, "%d", pos[i]);
//UARTSend(" ", 1); // manda espaço para separar
// if (pos[i] <= 9)
// {
// UARTSend(buf, 1);
// }
// else if (pos[i] <= 99)
// {
// UARTSend(buf, 2);
// }
// else if (pos[i] <= 999)
// {
// UARTSend(buf, 3);
// }
// else
// {
// UARTSend(buf, 4);
// }
//}
//##
 UARTSend(" VELT =",7);
for(i=0;i<=(amostras-1); i++)
{
sprintf(buf, "%d", velt[i]);
UARTSend(" ", 1); // manda espaço para separar
 if (velt[i] <= 9)
 {
 UARTSend(buf, 1);
 }
 else if (velt[i] <= 99)
 {
 UARTSend(buf, 2);
 }
 else if (velt[i] <= 999)
 {
 UARTSend(buf, 3);

75

 }
 else
 {
 UARTSend(buf, 4);
 }
}

//##################
//UARTSend(" VEL=",5);
//for(i=0;i<=(amostras-1); i++)
//{
//sprintf(buf, "%d", vel[i]);
//UARTSend(" ", 1); // manda espaço para separar
// if (vel[i] <= 9)
// {
// UARTSend(buf, 1);
// }
// else if (vel[i] <= 99)
// {
// UARTSend(buf, 2);
// }
// else if (vel[i] <= 999)
// {
// UARTSend(buf, 3);
// }
// else
// {
// UARTSend(buf, 4);
// }
//}
//##################
//UARTSend(" DIR=",5);
//for(i=0;i<=(amostras-1); i++)
//{
//sprintf(buf, "%d", dir[i]);
//UARTSend(" ", 1); // manda espaço para separar
// if (dir[i] <= 9)
// {
// UARTSend(buf, 1);
// }
// else if (dir[i] <= 99)
// {
// UARTSend(buf, 2);
// }
// else if (dir[i] <= 999)
// {
// UARTSend(buf, 3);
// }
// else
// {
// UARTSend(buf, 4);
// }
//}
RIT128x96x4Clear();
RIT128x96x4StringDraw("FIM", 20, 20, 15);
//sprintf(buf, "%d", count);
//RIT128x96x4StringDraw(buf, 20, 40, 15);
RIT128x96x4Clear();
RIT128x96x4StringDraw("FIM", 20, 20, 15);
count=0;
}
//if (difPWM2>=99)
//{
// IntDisable(INT_TIMER1A); //Desabilita a interrupção 1 (PWM)
//}
 }
}

76

77

Anexos II - Esquemático

78

79

Bibliografia

1. TEXAS INSTRUMENTS. Manual do usuário: Stellaris LM3S8962 Evaluation

Board. Austin. 2009.
2. TEXAS INSTRUMENTS. Data Sheet: Stellaris® LM3S8962 Evaluation Board.

Austin. 2009.
3. YIU, J. The Definitive guide to the ARM CORTEX-M3. Oxford: Elsevier, 2007.
4. VIEIRA, L. Motores elétricos - Princípios e fundamentos. Disponivel em:

<http://www.dea.uem.br/disciplinas/eletrotecnica/motoreseletricos.pdf>. Acesso em:
03 Outubro 2012.

5. KRISHNAN, R. R. Electric motor drives modeling, analysis, and control. Upper
Saddle River: N.J. Prentice Hall, 2001.

6. LANDER, C. Eletrônica Industrial Teoria e Aplicações. Tradução de Maurício
Eduardo Bernardino Ribeiro. 2ª. ed. São Paulo: Makron books, 1996.

7. RASHID, M. H. Eletrônica de Potência: Circuitos, dispositivos e aplicações.
Tradução de Carlos Alberto Favato. São Paulo: Makron books, 1999.

8. MELO, G. A. et al. Sistema de tração elétrica flexível baseada em veículos trólebus
para alimentação com redes cc ou ca. Revista Controle & Automação , Ilha
Solteira, v. 23, n. 5, Setembro e Outubro 2012.

9. ALMEIDA, J. L. A. Eletrônica de potência. 2ª. ed. São Paulo: Érica, 1986.
10
.

AHMED, A. Eletrônica de Potência. Tradução de Eduardo Vernes Mack. São
Paulo: Prentice Hall, 2000.

11
.

KAZIMIERCZUK, M. K. Pulse-width Modulated DC–DC. Wright State University.
Dayton. 2008.

12
.

NEACSU, D. O. Power Switching Converters: Medium and high power. Boca
Raton: Taylor & Francis, 2006.

13
.

MEZAROBA, M. Material didático: Modulação PWM. Disponivel em:
<http://www.joinville.udesc.br/portal/professores/mezaroba/materiais/Modulacao_P
WM.pdf>. Acesso em: 01 Novembro 2012.

14
.

AGUIAR, M. L. Material didático: Acionamento e controle de máquinas elétricas.
Disponivel em:
<http://www.sel.eesc.usp.br:8085/Disciplinas/disciplinas/disc_login.jsp?id=24>.
Acesso em: 2012 Outubro 29.

15
.

JÚNIOR, W. D. S. ASIC para geração de senpide com frequência variável
baseada em PWM. UNICAMP. Campinas. 2002.

16
.

IAR SYSTEM AB. Manual do usuário: IAR Embedded Workbench IDE. Uppsala.
2009.

17
.

LUMINARY MICRO, INC. Manual do usuário: Stellaris Peripheral Driver
Library. Austin. 2007.

18
.

ELIAS, P. R. OLED: O futuro vem aí. Disponivel em:
<http://webinsider.uol.com.br/2012/06/03/oled-o-futuro-vem-por-ai/>. Acesso em:
03 Outubro 2012.

19
.

GONZAGA, A.; RODRIGUES, E. L. L.; PAIVA, M. S. V. D. Aplicação de
microprocessadores II. Disponivel em:
<http://iris.sel.eesc.sc.usp.br/sel337/serial.pdf>. Acesso em: 29 outubro 2012.

20
.

FTDI. Datasheet: FT232R USB UART IC. Glasgow. 2012.

21 HILGRAEVE. Hyperterminal. Disponivel em:

80

. <http://www.hilgraeve.com/hyperterminal/>. Acesso em: 01 Dezembro 2012.
22
.

NETO, C. C.; THOMÉ, A. G. Material didático: Comunicação de dados, 2000.
Disponivel em: <http://equipe.nce.ufrj.br/thome/comdados/comdad.htm>. Acesso
em: 31 Novembro 2012.

23
.

FAIRCHILD. Datasheet: 6N137. San Jose. 2011.

24
.

INTERNATIONAL RECTIFIER. Datasheet: IRF540N. Kansas. 2001.

25
.

ON SEMICONDUCTOR. Datasheet: MUR1520. [S.l.].

26
.

NIST. Physical Measurement Laboratory. Disponivel em:
<http://www.nist.gov/pml/div683/hall_effect.cfm>. Acesso em: 01 Dezembro 2012.

27
.

ALLEGRO. Datasheet: ACS712. Worcester. 2011.

28
.

INTERSIL. Datasheet: LM324. Palm Bay. 2001.

29
.

SEMIKRON. Datashet: SKD51/12. Nürnberg. 2007.

30
.

SEMIKRON. Datasheet: SKM40GDL123D. Nürnberg. 2009.

31
.

SEMIKRON. Datasheet: SKHI22. Nürnberg. 2008.

	1_3
	ficha catalografica
	Folha de aprovação
	5_100

