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Resumo 

O presente trabalho estuda a utilização do kit de desenvolvimento EKI 

LM3S8962 da Texas Instruments, para acionamento e controle de máquinas elétricas. 

Este kit de desenvolvimento possui recursos que, configurados corretamente, podem 

ser utilizados para este objetivo. Estes recursos, tais como geração de PWM, leitura 

de encoders, conversores analógicos digitais, serão explicados, configurados e 

testados no decorrer deste trabalho. 

Serão apresentados circuitos auxiliares com o objetivo de acoplar o kit de 

acionamento aos circuitos de potência além de circuitos para o tratamento dos sinais 

de medição. 

Testes acionando um motor de corrente contínua e um motor de indução trifásico 

foram realizados com o objetivo de validação do kit de desenvolvimento EKI 

LM3S8962 para esta aplicação.  

 

Palavras chave: Máquinas elétricas; EKI LM3S8962; ARM Cortex-M3; 

Acionamento de motores; Aquisição de dados; 
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Abstract. 

This work study the usage of the development kit EKI LM3S8962 form Texas 

instruments, to drive and control of electrical machines. This development kit has some 

features which, proper configuration, could be used to this purpose. This features, like 

PWM generations, encoder reading, and analogic to digital converter, will be explained, 

configured and tested during this work. 

Will be discussed auxiliary circuits which connect the development kit to the 

power circuits beyond circuits for the measurement signal processing.  

Several tests a driving direct current and an alternating current were performed 

for the validation of the development kit EKI LM3S8962 to this application. 

 

Key words: Electrical machines; EKI LM3S8962 ARM Cortex-M3; Drive motors; 

Data acquisition; 
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1. Introdução 

As máquinas motrizes em geral são muito importantes na sociedade atual desde 

a revolução industrial, onde o surgimento (principalmente com a energia a vapor) dos 

processos industriais modificou a sociedade. Com o advento da eletricidade as 

máquinas elétricas assumiram um papel de protagonista na indústria.  

O acionamento destas máquinas pode ser realizado com velocidade variável 

desde que seja utilizado um circuito e uma lógica de acionamento adequada. Este 

acionamento com velocidade variável é utilizado tanto para operações que necessitem 

esta característica quanto para aumentar a eficiência dos motores, reduzindo assim o 

consumo de energia elétrica. Diversas técnicas ou métodos, cada qual com suas 

vantagens e desvantagens, podem ser utilizados para acionamento, e controle, de 

velocidade de um motor elétrico (corrente alternada ou corrente contínua).  

O objetivo do trabalho consiste em estudar o kit de desenvolvimento EKI 

LM3S8962 [1], analisando sua utilização para a geração de sinais de acionamento de 

motores elétricos de corrente contínua e de corrente alternada utilizando, 

respectivamente, os circuitos chopper e inversor de tensão trifásico.  

A base do kit de desenvolvimento EKI LM3S8962 é o micro controlador Stellaris 

ARM Cortex-M3 [2], que possui uma boa capacidade de processamento mesmo sendo 

de baixo custo [3]. O controlador, em conjunto com os outros recursos do kit de 

desenvolvimento, como conversores analógicos digitais, acionamento via modulação 

largura de pulso (PWM) e leitores para encoders, reúne funções úteis para o 

acionamento e controle de máquinas elétricas. Outro recurso importante é a 

possibilidade de comunicação entre o kit de desenvolvimento e um host, para 

armazenamento de informações e impressão de resultados. 

 O presente trabalho explora as características do kit de desenvolvimento e 

seus recursos, realizando ensaios em cada um dos possíveis recursos a serem 

utilizados para este objetivo, encontrando as características de operação do kit 

desenvolvimento de modo a permitir a utilização do mesmo para controle de máquinas 

elétricas.  

Usualmente as lógicas de controle são realizadas com uma frequência de 

operação de 1kHz ou 2kHz, ou seja, a cada 1ms ou 500µs. Neste aspecto, visa-se 

portanto investigar o desempenho do kit em realizar tarefas de aquisição, supervisão,  

atuação e mais os algoritmos de controle dentro destes intervalos. 
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A validação  do trabalho foi realizada acionando os motores de corrente contínua 

de imã permanente e de corrente alternada de indução trifásica. Para estes ensaios 

foram utilizados circuitos auxiliares, de proteção e medição de grandezas físicas, como 

por exemplo corrente e velocidade de rotação do eixo do motor, para que seja possível 

o acionamento e a correta análise dos dados. Estes ensaios podem ser expandidos 

para uma análise sobre a utilização do referente kit de desenvolvimento para 

realização de lógicas de controle para os determinados motores.  

A estrutura escrita deste trabalho possui a seguinte organização. 

 Capítulo 1 - Introdução: É uma breve introdução ao assunto de 

acionamento de máquinas elétricas além de apresentar a motivação do 

presente trabalho. 

 Capítulo 2 – Acionamento de motores elétricos em velocidade variável: 

Serão abordados os diversos métodos de acionamento dos motores com 

foco nos utilizados durante o presente trabalho. 

 Capítulo 3 – Descrição do kit de desenvolvimento EKI LM3S8962: 

Descreve os recursos disponíveis no kit de desenvolvimento focando nos 

recursos candidatos a serem utilizados para o acionamento das 

máquinas elétricas em questão. 

 Capítulo 4 – Programação do kit de desenvolvimento EKI LM3S8962: É 

abordada a configuração dos recursos utilizados do kit de 

desenvolvimento. 

 Capítulo 5 – Materiais e métodos utilizados: Aborda a fase prática do 

trabalho, explicando os circuitos e os materiais utilizados. 

 Capítulo 6 – Testes e ensaios realizados: Serão mostrados os resultados 

obtidos experimentalmente, permitindo a validação do kit de 

desenvolvimento para a aplicação proposta. 

 Capítulo 7 – Conclusão: É analisada a proposta de utilização do kit de 

desenvolvimento para o acionamento de máquinas elétricas. 
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2. Acionamentos de motores elétricos em velocidade variável 

Os motores elétricos são dispositivos capazes de transformar energia elétrica em 

energia mecânica. Os diferentes tipos de motores elétricos são classificados de acordo 

com a forma de alimentação, às características construtivas e formas de operação [4]. 

Quando alimentados com tensões nominais, estes motores operam com velocidade 

constante. Para obter velocidade variável é necessário atuar na forma de acionamento 

que permite impor torque variável, seja por meio da tensão, da corrente ou frequência 

de alimentação. O acionamento e controle da velocidade destas máquinas dependem 

do motor a ser acionado [5] [6]. 

Neste capítulo serão abordados os circuitos comumente utilizados para o 

acionamento dos motores de corrente contínua e de motores indução trifásico. Estes 

dois tipos de acionamento configuram a motivação principal deste trabalho.  Neste 

capítulo serão também esclarecidas as necessidades de recursos para a realização 

destes acionamentos de forma digital. 

Como resultados deste trabalho, pretende-se desenvolver protótipos de kits de 

demonstração destes acionamentos em disciplinas da graduação e futuramente 

configurar um experimento de uma possível disciplina de laboratório. 

2.1. Acionamento de motores CC 
 

Os diferentes tipos de motores de corrente contínua se diferem basicamente 

pela forma de excitação. Existem as máquinas de corrente contínua com excitação 

independente, em série, composta e motores de imã permanente. Em todos os casos 

a velocidade de rotação do motor é proporcional ao torque, que por sua vez, é 

proporcional à corrente, e consequentemente à tensão, aplicada ao motor. Os 

acionamentos mais comuns se baseiam no princípio de controle da tensão média 

aplicada ao motor [7].   

A Equação 1 representa o torque de um motor de corrente contínua. 

 

ܶ ൌ ௧ܭ ∗ ௙ܫ ∗  ௔ܫ
 

(1)

 

Onde: 

 ܶ = Torque desenvolvido pelo motor 

 ܭ௧ = Constante de torque 
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 ܫ௙ = Corrente no circuito de campo 

 ܫ௔ = Corrente no circuito de armadura 

Para o caso dos motores de corrente contínua de imã permanente não existe a 

da corrente de campo (I୤), o controle de velocidade é realizado por meio da corrente 

de armadura ܫ௔, a qual pode ser imposta diretamente por uma fonte de corrente 

controlada ou indiretamente por meio do uma fonte de tensão controlada. 

Os métodos mais comuns de atuação nos motores de corrente contínua com 

velocidade variável são por meio de resistor série no circuito de armadura, que atua na 

corrente efetiva no motor, por meio de retificadores ou choppers que podem ser 

configurados como fontes de tensão ou de corrente controlada [6]. 

 

2.1.1. Resistor ou reostato de partida 

Tradicionalmente em sistemas de tração antigos (trólebus) [8] eram utilizados 

resistores para o acionamento de motores de corrente contínua de forma a controlar a 

corrente aplicada ao motor. Estes resistores eram retirados de acordo com o ganho de 

velocidade do motor. O fato de o resistor dissipar uma potência relativamente grande 

torna o sistema ineficiente em relação aos sistemas utilizados atualmente, por esse 

motivo não é muito usual [6]. 

 

2.1.2. Controle a partir de retificadores 

Caso a alimentação disponível para o motor de corrente contínua seja uma fonte 

de corrente alternada, monofásica ou trifásica, é necessária a retificação desta fonte 

para alimentar o motor de corrente contínua. É possível então controlar a tensão 

média aplicada ao motor a partir de retificadores controlados, pois utilizando estes 

circuitos é possível regular o nível médio da tensão retificada [9].   

Retificadores são construídos principalmente com tiristores que recebem um 

devido sinal de disparo no terminal de gate. A vantagem desse tipo de acionamento é 

a utilização em alta potência, no entanto o alto tempo de chaveamento dos tiristores 

limita a frequência de operação dos mesmos [10].  

2.1.3. Choppers 

Os circuitos choppers são utilizados para obter tensões variáveis a partir de uma 

fonte de tensão de corrente contínua. A Figura 1 ilustra o circuito de um chopper de 

primeiro quadrante [10]. 
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Figura 1 - Chopper de 1º quadrante 

Controlando a posição da chave é possível controlar a tensão média aplicada à 

carga. Sendo ௢ܶ௡, o tempo em que a chave fica na posição fechada e ܶ o período do 

sinal de controle, pode-se extrair da Figura 2 a Equação 2 que fornece a tensão média 

aplicada à carga. 

 

 
Figura 2 - Chaveamento do chopper [10] 

 

௢ܸ ൌ
௢ܶ௡

ܶ
∗ ௜ܸ 

 
(2)

Com a possibilidade de variação da tensão média, atua-se na corrente média e, 

portanto, no torque eletromagnético variável conforme a Equação 1. 

Dois recursos para o acionamento da chave são: a modulação largura de pulso 

(PWM – Pulse Width Modulation) e a modulação por frequência de pulso (PFM – Pulse 

Frequency Modulation). A utilização do PWM é a mais usual [10] [11].  

O conceito de PWM consiste em aplicar um sinal de frequência constante e 

variar o tempo em que a chave fica na posição fechada, ou seja, de acordo com a 

Figura 2, o ௢ܶ௡ é variado e o período ܶ é mantido constante. 

௢ܶ௡ 

ܶ 
௢ܶ௙௙ 
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Aplicando a Equação 1 é possível controlar a tensão média de um circuito 

chopper por este tipo de sinal. 

A geração do sinal de modulação PWM é obtida pela comparação entre dois 

sinais, a portadora, geralmente uma onda triangular de frequência mais elevada e um 

sinal de referência. A alteração do sinal de referência modifica o tempo em que a 

chave fica fechada [12]. A Figura 3 é o sinal gerado a partir de um sinal de referência 

contínuo. 

 
Figura 3 - Sinal PWM - Referência contínua [13] 

Existem ainda outros circuitos choppers que operam em 2 ou 4 quadrantes, ou 

seja, permitem acionar o motor em dois sentidos de rotação e regeneração. [9] 

Os choppers permitem operar com elevadas frequências de chaveamento, 

enquanto os retificadores exibem frequências de operação em 120 ou 360 Hz. Com 

elevadas frequências de chaveamento pode-se atingir melhor desempenho dinâmico 

do motor de corrente contínua [10].  

  

2.2. Acionamento de motores CA 

Nesta seção será abordado o acionamento para o motor de indução trifásico, 

que será realizado no decorrer do presente trabalho. 

Motores de corrente alternada possuem velocidade diretamente relacionada à 

frequência da tensão de alimentação. A Equação 3a corresponde ao torque e a 

Equação 3b à velocidade dos motores de indução. 

ܶ ൌ 3 ∗ ܲ ∗
ܴ

ݏ ∗ ߱ଵ
∗ ௥௠௦ܫ

ଶ  (3a)

௢ܸ 



7 
 

߱௠ ൌ 	
2 ∗ ߱ଵ
ܲ

∗ ሺݏ െ 1ሻ 

 
(3b)

Onde: 

 ܶ = Torque 

 ܲ = Número de pares de polos do motor 

 ܴ= Resistência do rotor 

 ߱ଵ = Frequência da tensão de alimentação 

 ݏ = Escorregamento do motor 

 ߱௠ = Velocidade do motor 

 

A atuação na frequência da tensão de alimentação é o mais usual e o método 

mais utilizado para uma excitação com frequência variável é por meio de um inversor 

de frequência mostrado na Figura 4. As chaves indicadas na Figura 4 podem ser 

implementadas com transistores bipolares, tipo MOSFET ou IGBT. 

 

 
Figura 4 - Inversor de tensão [14] 

 

Este circuito inversor de tensão trifásico opera a partir de um barramento de 

corrente contínua e alimenta o motor de acordo com a posição das chaves. O controle 

das chaves pode ser realizado utilizando os métodos de modulação PWM e PFM, 

além de poder ser acionado utilizando o modo 6-pulsos. No acionamento tipo 6-pulsos 

o motor é alimentado com forma de ondas pulsadas e periódicas, cuja componente 

fundamental determina a velocidade do motor [14].  

O modo 6-pulsos possui dois modos de operação, o modo 2 a 2, onde apenas 2 

chaves estão acionadas, simultaneamente, a cada um sexto do período da frequência 

desejada e o modo 3 a 3, em que 3 chaves são acionadas ao mesmo tempo. A 

sequência de acionamento das chaves da Figura 4 é mostrada na Figura 5 para o 

modo 2 a 2 e na Figura 6 para o modo 3 a 3 [14].  
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Figura 5 - Pulsos no modo 2 a 2 [14] 

 

 
Figura 6 - Pulsos no modo 3 a 3 [14] 

Aplicando estes pulsos é gerada uma forma de tensão teórica, entre a fase e o 

neutro, conforme a Figura 7 para o modo 2 a 2 e a Figura 8 para o modo 3 a 3. 

 
Figura 7 – Tensão teórica no modo 2 a 2 [14] 

 

 
 Figura 8 – Tensão teórica no modo 3 a 3 [14]  

 

As equações 4 e 5 representam o valor RMS da tensão fundamental das formas 

de onda da Figura 7 e da Figura 8 respectivamente. 

 

ோܸெௌ ൌ
√3
ߨ ௖ܸ௖ 

 
(4)

ோܸெௌ ൌ
2
ߨ ௖ܸ௖  

 

(5)

2.2.1. Modulação por largura de pulso 

A modulação por largura de pulso também pode ser utilizada para motores de 

corrente alternada no acionamento utilizando inversores de tal forma que o sinal 

modulante seja uma senoide de frequência desejada para a velocidade do motor. 

Numa versão digital deste procedimento, utiliza-se de um timer programável, o 

qual é programado para contar repetidamente até um determinado valor e, em função 
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da frequência de clock escolhido do valor de contagem obtém-se a respectiva 

portadora. O efeito PWM é obtido por comparação entre o valor da contagem do timer 

com um valor representando o sinal modulante. 

Com referência à Figura 3, do princípio da modulação largura de pulso, 

aplicando-se um sinal de referência senoidal é possível obter a chamada modulação 

por largura de pulso senoidal (SPWM – Sinusidal Pulse Width Modulation). A Figura 9 

ilustra este procedimento. 

 
Figura 9 - Modulação por largura de pulso senoidal [15] 

Para o caso do motor de indução trifásico é utilizada uma mesma portadora com 

três sinais modulantes senoidais defasados de 120 graus elétricos para compor uma 

alimentação equilibrada nos terminais do motor de indução. 

Para execução do SPWM digitalmente são necessários 3 módulos de 

comparação para produzir os sinais de comando das chaves da ponte trifásica. 
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3. Descrição do kit de desenvolvimento 

O kit de desenvolvimento EKI LM3S8962, mostrado na Figura 10, é uma 

ferramenta muito importante neste projeto já que é responsável pelos sinais de 

acionamento dos motores, leitura dos valores dos transdutores utilizados (através do 

conversor analógico digital e do encoder) além de transmitir estes valores via serial. 

Por meio do kit de desenvolvimento é possível também implementar o controle das 

máquinas. 

 

Figura 10 - Kit de desenvolvimento EKI LM3S8962 [1] 

 

O kit de desenvolvimento é uma plataforma baseada no micro controlador 

Stellaris LM3S8962 ARM® Cortex™-M3 [2] e possui diversos recursos como:  

 Comunicação ethernet 

 Entrada USB (utilizada para alimentação e comunicação serial) 
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 Display gráfico 

 Entrada para cartão de memória MicroSD 

 Interface JTAG  

 Comunicação serial (síncrona e assíncrona) 

 Quatro conversores analógicos digitais 

 Comparador analógico 

 Protocolo de comunicação I²C 

 Módulos geradores de PWM 

 Interface para encoder 

 Até 42 portas I/O 

O kit de desenvolvimento possui também um CD para instalação do programa 

IAR Embedded Workbench [16] utilizado para compilar e descarregar os programas na 

memória do microprocessador. O programa possui ainda uma ferramenta de 

depuração (Debug). O código da programação pode ser escrito na linguagem 

assembler, em C ou em C++.  

O código é baseado em uma biblioteca de drivers periféricos (Stellaris Peripheral 

Driver Library) [17] esta biblioteca possui funções já específicas para os drives 

utilizados, facilitando a programação e, principalmente, o entendimento do código, já 

que estas funções possuem uma linha de raciocínio lógica. 

Os principais módulos constituintes do kit de desenvolvimento são descritos nes 

capítulo. No capítulo 4 serão esclarecidos como tais módulos são configurados dentro 

da estrutura de um programa para acionamento dos motores descritos no capítulo 2. 

 

3.1. Modulo display OLED 

O kit de desenvolvimento possui um display OLED (diodo orgânico emissor de 

luz) de resolução de 128 x 96 pixels, de alto contraste (500:1) e de brilho 120cd/m². 

O display OLED se baseia no princípio conhecido como eletroluminescência, 

“[...] compostos orgânicos interagem de várias maneiras com fontes de energia 

diversas, e neste caso em particular, a interação ocorre quando a passagem da 

corrente elétrica provoca a emissão de luz pela substância. [...]“ [18].  
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 O display pode ser utilizado para informar o status do programa além de permitir 

imprimir os valores amostrados, indicar possíveis falhas, e solicitar decisão do usuário. 

Este recurso, no entanto, não deve ser utilizado em loop quando se desejam elevadas 

taxas de aquisição e/ou controle, pois a impressão dos valores no display é uma 

operação lenta. 

 

3.2. Modulo timer 

Timers são funções baseadas na frequência de operação do processador que 

funcionam como um relógio (temporizador) e a cada período específico de tempo gera 

uma informação ou dispara uma interrupção dependo da configuração utilizada 

O kit de desenvolvimento possui 4 módulos de timers independentes que podem 

ser utilizados também como contadores. Cada módulo pode ser configurado como 2 

timers de 16 bits independentes ou como 1 timer de 32 bits. 

 

3.3. Módulo conversor analógico digital (CAD) 

Um conversor analógico digital (CAD) tem como função transformar um sinal 

analógico (contínuo) em uma representação digital (binária), ou seja, o CAD 

transforma um nível de tensão analógica em uma sequência de dígitos (0 ou 1).  

O kit de desenvolvimento EKI LM3S8962 possui um periférico, com 4 entradas 

analógicas, que converte um sinal analógico, de 0V a 3V, em uma representação 

digital de 10 bits, ou seja, uma resolução de, aproximadamente, 0,003V. Sendo assim 

um sinal de 3V na entrada do conversor irá fornecer um resultado de 1023 

(convertendo os 10 bits para o sistema decimal) e uma entrada de 0V fornece um 

resultado de 0. 

O controle de amostragem é realizado utilizando um sequenciador de amostras, 

este recurso permite a aquisição de múltiplas entradas analógicas. A configuração do 

conversor analógico digital e a aquisição de dados ocorrem em cada sequência. 

Existem 4 sequências diferentes, cada uma com seu tamanho de acordo com a Tabela 

1. 

Tabela 1 - Sequências de amostragem 

Sequência Número de amostras 
SS3 1 
SS2 4 
SS1 4 
SS0 8 
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3.4. Módulo de Portas I/O  

Portas I/O (Input/Output) são pinos que trocam informação entre o micro 

controlador e o meio externo, podendo ser tanto entrada (Input) como saída (Output), 

dependendo da configuração.  

O kit de desenvolvimento possui um número variável de portas I/O já que muitas 

delas têm dupla função (por exemplo, PWM), o número máximo é de 42. 

3.5. Módulo PWM 
 

O kit de desenvolvimento EKI LM3S8962 possui 3 módulos geradores de PWM 

onde cada módulo possui 2 saídas que podem ser utilizadas independentes ou como 

pares. Cada bloco gerador possui configuração independente. 

No caso de operação em pares, o módulo produz o sinal de acionamento de um 

dos braços da ponte completa da Figura 4. A saída aos pares é produzida de maneira 

complementar, possibilitando ligar a chave superior e desligar a inferior de um mesmo 

braço. Como forma de segurança e proteção das chaves é possível estipular um valor 

Dead-band que atrasa um destes sinais evitando colocar o barramento de corrente 

contínua em curto-circuito.  

Não existem saídas específicas para os PWMs, ou seja, a mesma porta PWM 

pode ser configurada como porta I/O ou até mesmo outra função. A Tabela 2 lista as 

funções destas portas. 

 

Tabela 2 - Função extra das portas PWM 

PWM Porta Função extra
0 Porta F Pino 0 User LED 
1 Porta G Pino 1 Som 
2 Porta B Pino 0  
3 Porta B Pino 1  
4 Porta E Pino 0 Tecla acima 
5 Porta E Pino 1 Tecla abaixo 

 
 

Para a utilização de todos os PWMs foi desabilitada a função de som do kit de 

desenvolvimento, sendo que para isto foi cortada conexão entre eles. É possível 

reabilitar esta função utilizando um conector (jump) na posição localizada logo abaixo 

às chaves de navegação. 
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3.6. Módulo encoder QEI 
 

O encoder é a designação de um dispositivo mecânico utilizado para realizar 

medidas de posição e velocidade de mecanismos rotativos. Seu funcionamento 

consiste em acoplar um disco perfurado ao eixo do motor, utilizando um emissor e um 

receptor de luz em cada lado do disco perfurado. 

O movimento do eixo e consequentemente do disco perfurado faz com que o 

detector de luz receba pulsos que, através de sua contagem, fornece a posição do 

eixo do motor. O tamanho do pulso e sua frequência variam de acordo com a 

velocidade de rotação do eixo do motor e do número perfurações no disco. Desta 

forma é possível extrair a informação da velocidade e de posição de rotação do motor. 

O kit de desenvolvimento EKI LM3S8962 possui dois módulos (Quadrature 

Encoder Interface - QEI), que faz o cálculo necessário para determinar a posição, 

velocidade e sentido de rotação do motor. Os pulsos devem ser de 3V para o sinal alto 

e 0V para o sinal baixo e são lidos pelas portas PhA0 e PhB0 (QEI módulo 0) e PhA1 

e PhB1 (QEI módulo 1). 

De modo semelhante às portas PWM, as portas utilizadas pelos encoders 

também possuem mais que uma função, a Tabela 3 lista estas portas. 

 

Tabela 3 - Função extra das portas do encoder 

Encoder Porta 
PhA0 Porta C Pino 4
PhB0 Porta C Pino 6
PhA1 Porta E Pino 2
PhB1 Porta E Pino 3

 

3.7. Módulo de comunicação serial 
 

A comunicação serial é aquela feita bit por bit em sequência por uma única linha. 

Existem dois diferentes tipos de comunicação serial, a síncrona e assíncrona. 

Na transmissão assíncrona o envio da palavra é inicializado por um bit de partida 

e finalizado por um bit de parada (stop bit), de forma que o receptor possa identificar a 

palavra enviada. A transmissão síncrona não possui os bits de inicialização nem o de 

parada já que o sincronismo é feito por caracteres de sincronismo [19]. A que será 

utilizada é a assíncrona.  
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O kit de desenvolvimento EKI-LM3S8962 possui um módulo de comunicação 

serial que trabalha em conjunto com o componente FT232R [20] da FTDI e permite a 

comunicação serial via USB. Dessa forma a comunicação entre o kit de 

desenvolvimento é feito pelo mesmo cabo da alimentação.  

Para a leitura dos dados (realizada pelo computador) foi utilizado o programa 

Hyperterminal [21], onde é possível ler os dados que estão sendo recebidos e 

armazená-los.  

 

3.8. Configuração do hyperterminal 
 

O programa Hyperterminal era muito utilizado na época da internet discada para 

comunicação entre computadores, por isso a primeira tela de configuração, mostrada 

na Figura 11 é referente à rede, como não será utilizado podem-se cancelar estas 

informações. 

 

 

Figura 11 - Hyperterminal – Inicialização 

 

Em seguida, é necessário configurar, conforme a Figura 12, o hyperterminal para 

utilizar a porta de comunicação a ser utilizada (no caso COM5). 
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Figura 12 - Hyperterminal - Configuração da porta 

 

O próximo passo consiste na configuração da porta, conforme a Figura 13. Estes 

dados devem ser configurados de acordo com as informações definidas pelo emissor. 

Os dados necessários para configuração são: 

 Velocidade de transmissão (bits por segundo) 

 Número de bits de dados 

 Bit de paridade 

 Bit de parada 

 Controle de fluxo 

 
 

 
Figura 13 - Hyperterminal - Configuração da transmissão 

 

Neste ponto a comunicação já estará ocorrendo e os dados, assim que 

recebidos, serão impressos na tela. É possível ainda armazenar esses dados em um 

arquivo de texto como mostra a Figura 14. 
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Figura 14 - Hyperterminal - Salvar dados 
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4. Programação do kit de desenvolvimento EKI LM3S8962 

O código global de programação foi dividido em 4 partes, a inicialização, 

configuração dos recursos utilizados, um bloco de loop infinito e a parte de 

comunicação serial. O diagrama da Figura 15 exemplifica a estrutura. 

 
Figura 15 - Diagrama do código 

Em todos os testes do kit em si e também nas etapas de acionamento, o código 

desenvolvido, em linguagem C, promove a inicialização das bibliotecas utilizadas e 

das variáveis globais. Em seguida, procede-se a configuração dos recursos utilizados. 

O próximo passo ocorre a leitura dos dados e da rotina de acionamento dos motores. 

Por fim ocorre a comunicação serial, onde as amostras são enviadas a um host. O 

anexo I apresenta o código implementado completo. 

 

4.1. Inicialização  

O bloco de inicialização compreende a inclusão das bibliotecas utilizadas além da 

inicialização das variáveis globais. Estas bibliotecas possuem basicamente a definição 
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de diretivas que permitirão a devida configuração dos vários módulos que se pretende 

utilizar. 

 As bibliotecas utilizadas e os comandos utilizados para incluí-las são listados no 

bloco de programa a seguir: 

o #include "inc/hw_memmap.h" 
o #include "inc/hw_types.h" 
o #include "inc/hw_ints.h" 
o #include "inc/hw_qei.h" 
o #include "inc/lm3s8962.h" 
o #include "inc/hw_ssi.h" 
o #include "driverlib/debug.h" 
o #include "driverlib/gpio.h" 
o #include "driverlib/pwm.h" 
o #include "driverlib/sysctl.h" 
o #include "driverlib/adc.h" 
o #include "drivers/rit128x96x4.h" 
o #include "driverlib/interrupt.h" 
o #include "driverlib/sysctl.h" 
o #include "driverlib/timer.h" 
o #include "driverlib/qei.h" 
o #include "driverlib/uart.h" 
o #include <stdio.h>  

 

Caso as bibliotecas adicionadas não sejam encontradas durante a programação, 

uma mensagem de erro é chamada. Esta verificação é feita utilizando a seguinte 

função. 

#ifdef DEBUG 
void 
__error__(char *pcFilename, unsigned long ulLine) 
{ 
} 

As variáveis globais utilizadas são as variáveis utilizadas durante as 

interrupções, além das variáveis que definem informações necessárias para a 

execução do programa, essas informações são o tempo de interrupção dos timers, 

número de amostras e algumas informações referentes à configuração do PWM. 

Ilustra-se a seguir um bloco de inicialização.  

o unsigned long q=0; 
o unsigned long ulPeriod; 
o volatile unsigned long ulLoop; 
o unsigned long ulValue; 
o char buf[40]; 
o int e0; 
o int count=0; 
o float tatual = 0; 
o int p=0; 
o int portae=0; 
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o int flagv=0; 
o int l=0; 
o float aux; 

Também neste ponto são definidos os tamanhos dos vetores utilizados para o 

armazenamento das amostras. 

o unsigned long cad[2000];                 
o int vel[2000];                 
o int pos[2000];                
o int velt[2000] = NULL; 

Um exemplo de inicialização de constantes, definindo a quantidade de amostras, 

frequência de amostragem e frequência da portadora dos PWM a serem utilizados é: 

o int amostras=7500;             
o float TA=0.001;  
o int fpwm = 2000;        

A variável amostras representa a quantidade total de aquisições que será realizada. A 

variável TA é o tempo, em segundos, do ciclo de amostras, ou seja, é o inverso da 

frequência de aquisição. A variável fpwm é a frequência de operação do PWM 

utilizados e as outras 3 amostras são recursos utilizados  

 

4.2. Configuração dos recursos utilizados 

O bloco de configuração dos recursos como nome diz é onde são configurados 

os recursos como timers, módulo serial, encoder, portas I/O, display, entre outros.  

4.2.1. Configuração do clock do utilizado 

A definição do clock consiste em escolher a base de tempo de operação do 

processador, ou seja, quanto tempo será gasto por cada operação do processador. 

Existem diversas configurações diferentes, podendo ser baseado no cristal presente 

no kit de desenvolvimento EKI LM3S8962 ou baseado em um oscilador externo. Existe 

ainda a possibilidade de variar a frequência através de divisores. Uma configuração 

que pode ser utilizada é: 

o     SysCtlClockSet(SYSCTL_SYSDIV_1 | SYSCTL_USE_OSC | 
SYSCTL_OSC_MAIN | SYSCTL_XTAL_8MHZ); 

o     SysCtlPWMClockSet(SYSCTL_PWMDIV_1); 

Onde é selecionado 8 MHz de frequência de operação, proveniente do cristal. 

4.2.2. Configuração do OLED display 

A configuração do display OLED consiste em 3 comandos, o de inicialização, o 

de escrita e o de limpeza da tela. Os comandos, respectivamente, são: 

o RIT128x96x4Init(1000000);  
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o RIT128x96x4StringDraw("Amostrando", 20, 20, 15); 
o RIT128x96x4Clear(); 

Onde o primeiro campo da função de escrita é a palavra a ser escrita, sendo uma 

variável do tipo char, o segundo e o terceiro campo são a posição onde será escrita a 

palavra no eixo imaginário abaixo. O último campo é a intensidade do brilho dos 

caracteres impressos. A Figura 16 representa o eixo das posições do display. 

 
Figura 16 - Eixo do display OLED 

Uma função auxiliar converte um número em uma variável do tipo char para que 

a função de escrita possa enviar números: 

o sprintf(buf, "%d", vel[count] ) 

Onde buf é a variável do tipo char onde será armazenado o resultado da operação, %d 

é operador necessário para indicar a conversão de uma variável do tipo int para o tipo 

char e vel[count] é o valor inteiro a ser convertido. Desta maneira basta utilizar o 

comando de escrita da seguinte maneira: 

o RIT128x96x4StringDraw(buf, 20, 20, 15); 
 

4.2.3. Configuração dos timers 

Os timers foram utilizados como interrupção de forma a garantir que as 

operações aconteçam sempre em um período cíclico. O timer 0 foi utilizado para 

amostragem dos sinais, ou seja, leitura dos conversores analógicos digitais e dos 

encoders e o timer 1 como geração dos sinais de acionamento, seja o acionamento via 

PWM ou pelas portas I/O. 

A configuração dos timers é realizada da seguinte maneira. 

Primeiramente, é habilitada a função do timer: 

o SysCtlPeripheralEnable(SYSCTL_PERIPH_TIMER0);  

Onde o objeto SYSCTL_PERIPH_TIMER0, representa a posição de memória 

referente ao timer 0, no caso de utilização de outros timer (1, 2 ou 3), deve-se utilizar a 

posição específica. 

 Em seguida é configurado o timer em si. Em praticamente todas as funções é 

utilizado o comando TIMERX_BASE, onde X representa o timer utilizado. A primeira 

função é referente á configuração do timer.  
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o TimerConfigure(TIMER0_BASE, TIMER_CFG_32_BIT_PER); 

A Tabela 4 representa as possibilidades de configuração do segundo campo da 

função. 

Tabela 4 - Comando de configuração dos timers 

Comando Função 
TIMER_CFG_32_BIT_OS Timer de 32 bits com disparo único 
TIMER_CFG_32_BIT_PER Timer de 32 bits com periódico 
TIMER_CFG_32_RTC Timer de 32 bits com clock em tempo real 
TIMER_CFG_16_BIT_PAIR Utilização de dois timers de 16 bits independente 

  

No caso de utilização do timer de 16 bits independente deve ser adicionada uma 

outra configuração utilizando uma operação ou entre a configuração mostrada na 

Tabela 4 com a Tabela 5. No caso é utilizado a configuração do timer A. 

 

Tabela 5 - Comando de configuração dos timers 16 bits 

Comando Função 
TIMER_CFG_A_ONE_SHOT Timer de 16 bits com disparo único 
TIMER_CFG_A_PERIODIC Timer de 16 bits com periódico 
TIMER_CFG_A_CAP_COUNT Contador de 16 bits  
TIMER_CFG_A_CAP_TIME Timer de 16 bits utilizando sinal externo 
TIMER_CFG_A_PWM Timer de 16 bits em modo PWM 

 

Um exemplo de configuração de um timer de 16 bits, e disparo único seria: 

o TimerConfigure(TIMER0_BASE, TIMER_CFG_16_BIT_PAIR | 
TIMER_CFG_A_ONE_SHOT); 

O comando responsável pela configuração do valor que o timer deve contar é: 

o TimerLoadSet(TIMER0_BASE, TIMER_A, SysCtlClockGet()*TA);  

Onde o primeiro valor é o timer em questão. O segundo valor depende da 

configuração utilizada (16 ou 32 bits), caso seja de 32 bits, deve ser utilizado o valor 

TIMER_A, no caso utilizar o de 16 bits deve-se utilizar o timer em questão (A ou B). O 

terceiro valor é a quantidade de pulsos do clock que se quer contar até que o timer 

dispare. Neste ponto é utilizada uma função auxiliar que retorna o valor do clock 

utilizado em HZ, ou seja, representa a quantidade de pulsos do clock durante 1 

segundo. Dessa forma utilizando esta função no 3º campo da função e multiplicando a 

função por uma variável TA é possível controlar o tempo de disparo adicionando o 

valor desejado, em segundos, à variável. 
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Em seguida é necessário habilitar a interrupção do timer em questão além de 

configurar para que a interrupção seja executada quando o contador chegue ao valor 

adicionado na função anterior. 

o IntEnable(INT_TIMER0A); 
o TimerIntEnable(TIMER0_BASE, TIMER_TIMA_TIMEOUT); 

Por fim a contagem é iniciada. 

o TimerEnable(TIMER0_BASE, TIMER_A); 

Após a interrupção ser chamada é necessário limpar a flag de interrupção com o 

comando abaixo, dessa forma a contagem é reiniciada. 

o TimerIntClear(TIMER1_BASE, TIMER_TIMA_TIMEOUT);  
 

4.2.4. Configuração do conversor analógico digital (CAD) 

O programa foi estruturado de tal forma que, quando há uma interrupção de 

tempo, o valor do CAD é lido e armazenado em um vetor, no entanto a configuração 

deste recurso e programada em conjunto com os outros recursos. 

O primeiro passo é habilitar o periférico do conversor analógico digital: 

o SysCtlPeripheralEnable(SYSCTL_PERIPH_ADC); 

Em seguida é configurada a sequência de amostras do conversor analógico digital: 

o ADCSequenceConfigure(ADC_BASE, 0, DC_TRIGGER_PROCESSOR, 
1); 

O valor ADC_BASE representa a posição de memória correspondente aos 

conversores analógicos digitais. O segundo comando representa qual a sequência a 

ser configurada, 0 a 3. O terceiro valor representa quando será armazenado o valor 

obtido pelo conversor analógico digital. Os valores possíveis são mostrados na Tabela 

6. O último valor é a prioridade do conversor analógico digital utilizado em relação aos 

outros conversores. 

É importante ressaltar que caso seja configurado para realizar a leitura sempre, 

o processador perde desempenho, além de não haver a possibilidade de utilizar 2 

conversores com essa configuração ao mesmo tempo. 

Em seguida é realizada a configuração de cada passo da sequência: 

o ADCSequenceStepConfigure(ADC_BASE, 3, 0, ADC_CTL_CH0 | 
ADC_CTL_END); 

O valor ADC_BASE representa a posição de memória correspondente aos 

conversores analógicos digitais. O segundo valor representa qual sequência se deseja 

configurar. O terceiro valor representa qual passo da sequência será configurado. O 
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último valor é a configuração desejada e que é resultado de uma operação ou entre 

um ou mais comandos da Tabela 7. 

 

Tabela 6 - Configuração da sequência do CAD 

Comando Função 

ADC_TRIGGER_PROCESSOR  
O disparo é realizado utilizando a função 
ADCProcessorTrigger() 

ADC_TRIGGER_COMP0 
O disparo é feito com base no comparador 
analógico configurado com a função 
ComparatorConfigure(). 

ADC_TRIGGER_COMP1 
O disparo é feito com base no comparador 
analógico configurado com a função 
ComparatorConfigure(). 

ADC_TRIGGER_COMP2 
O disparo é feito com base no comparador 
analógico configurado com a função 
ComparatorConfigure(). 

ADC_TRIGGER_EXTERNAL 
O disparo é feito com base por um comando externo 
pela porta B4 

ADC_TRIGGER_TIMER 
O disparo é feito por um timer configurado com a 
função TimerControlTrigger(). 

ADC_TRIGGER_PWM0  
O disparo é feito com base no PWM configurado 
com a função PWMGenIntTrigEnable(). 

ADC_TRIGGER_PWM1 
O disparo é feito com base no PWM configurado 
com a função PWMGenIntTrigEnable(). 

ADC_TRIGGER_PWM2 
O disparo é feito com base no PWM configurado 
com a função PWMGenIntTrigEnable(). 

ADC_TRIGGER_ALWAYS A leitura é realizada sempre. 

 

Tabela 7 - Configuração dos passos da sequência 

Comando Função 

ADC_CTL_CHX 
Configura qual porta deve ser amostrada, onde X 
pode ser 0,1, 2 ou 3. 

ADC_CTL_END 
Configura que o determinado passo é o último da 
sequência 

ADC_CTL_IE 
Configura que o determinado passo dispara a 
interrupção 

 

Por fim é inicializada a sequência: 

o ADCSequenceEnable(ADC_BASE, 0); 

Onde a sequência habilitada é selecionada no segundo campo da função. 

A leitura é realizada dentro da interrupção do timer, o disparo da leitura é 

realizado pelo comando: 

o ADCProcessorTrigger(ADC_BASE, 0); 
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Onde o segundo valor representa a sequência que deve ser utilizada. 

Para leitura e armazenagem da sequência o comando indicado na biblioteca é: 

o ADCSequenceDataGet(ADC_BASE, 0, *cad); 

Onde o segundo valor representa a sequência ser lida e o último valor representa o 

endereço onde será armazenado este valor. Durante a realização da programação 

percebeu-se o não funcionamento conforme descrito na biblioteca, do comando. Foi 

utilizado um recurso lendo diretamente o valor da posição de memória da sequência, 

no caso é armazenado o último passo da sequência.  

o cad[count] = ADC_SSFIFO0_R; 

Esta leitura direta da ultima posição de memória da sequência implica na necessidade 

de repetição do comando pelo número de passos da sequência em questão, conforme 

a Tabela 1, já que o armazenamento dos valores na sequência tem o conceito FIFO 

(First In First Off). O valor lido representa o valor da sequência 0, o valor de outras 

sequências pode ser obtido utilizando o valor ADC_SSFIFOX_R, trocando X pela 

sequência em questão. 

 

4.2.5. Configuração de portas I/O 

As portas I/O são configuradas independentemente, no entanto é possível ler e 

escrever valores nelas na forma de byte. A configuração consiste em configurar a 

porta como I/O e configurar a direção (Entrada ou saída de dados): 

o GPIOPinTypeGPIOOutput(GPIO_PORTX_BASE, GPIO_PIN_Y); 

o GPIODirModeSet(GPIO_PORTX_BASE, GPIO_PIN_Y , 

GPIO_DIR_MODE_OUT); 

Onde os primeiros comandos de cada função são as portas utilizadas, trocando X pela 

porta desejada (A a F). Já os segundos valores das funções representam quais pinos 

da determinada porta serão configurados, trocando Y pelo pino (0 a 7). 

Os comandos de escrita e leitura são: 

o GPIOPinWrite(GPIO_PORTA_BASE, (GPIO_PIN_2 | GPIO_PIN_3 | 

GPIO_PIN_4 | GPIO_PIN_5 | GPIO_PIN_6 | GPIO_PIN_7), 12); 

o portae = GPIOPinRead(GPIO_PORTE_BASE,(GPIO_PIN_2 | 

GPIO_PIN_1 | GPIO_PIN_0 ); 
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Onde no de escrita são configurados a porta em que deverá ser escrito o valor, os 

pinos da determinada porta e o valor (byte) que deverá ser escrito. O comando de 

escrita armazena os valores da determinada porta e seus pinos em uma variável. 

 

4.2.6. Configuração do PWM (Modulação largura de pulso) 

O primeiro passo para configuração do PWM é habilitar o periférico e a porta I/O 

que possui a dupla função de PWM. 

o SysCtlPeripheralEnable(SYSCTL_PERIPH_PWM); 

o SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOF); 

Em seguida é necessário configurar os pinos das portas I/O (no exemplo é 

utilizado o pino  da porta F) que tem dupla função (de PWM) para que operem neste 

modo: 

o GPIOPinTypePWM(GPIO_PORTF_BASE, GPIO_PIN_0); 

Onde o primeiro valor indica qual a porta e o segundo, qual pino da determinada porta. 

 A configuração do PWM é realizada em dois passos. Primeiramente é realizada 

a configuração da geração do sinal. 

o PWMGenConfigure(PWM_BASE, PWM_GEN_0, 

PWM_GEN_MODE_UP_DOWN | PWM_GEN_MODE_NO_SYNC); 

Onde o valor PWM_BASE se repete em todas as possíveis configurações, o segundo 

indica qual módulo gerador de PWM será utilizado (0, 1 ou 2). O terceiro valor é obtido 

realizando uma função ou entre os valores mostrados na Tabela 8 e na Tabela 9.  

 

Tabela 8 - Configuração da geração do PWM 

Comando Função 

PWM_GEN_MODE_UP_DOWN
PWM gerado a partir de uma onda portadora 
triangular 

PWM_GEN_MODE_DOWN 
PWM gerado a partir de uma onda portadora do 
tipo dente de serra decrescente 

 

Tabela 9 - Configuração do sincronismo do PWM 

Comando Função 
PWM_GEN_MODE_SYNC Habilita o modo de sincronização 
PWM_GEN_MODE_NO_SYNC Desabilita o modo de sincronização 
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O período do pulso que deve ser gerado pelo PWM é o próximo passo da 

programação. Para facilitar a programação é utilizado o mesmo recurso na 

configuração dos timers, ao invés de programar quantos ciclos de clock deve durar. 

o ulPeriod = SysCtlClockGet() / fpwm 

Onde fpwm representa a frequência desejada para o PWM, e ulPeriod a quantidade de 

ciclos necessários para a frequência desejada. O comando de configuração é: 

o PWMGenPeriodSet(PWM_BASE, PWM_GEN_0, ulPeriod); 

onde o primeiro valor representa a configuração de um PWM, o segundo é variado de 

acordo com o PWM que se deseja programar e o terceiro é o resultado do recurso 

utilizado. 

 O recurso também é utilizado para configurar o tempo em que o pulso deve 

ficar em nível logico alto.  

o PWMPulseWidthSet(PWM_BASE, PWM_OUT_0, ulPeriod*inipwm/100); 

Onde o segundo valor da função representa qual PWM (do bloco gerador de PWM, 0 

ou 1) será utilizado. Utilizando o recurso anterior é possível definir a porcentagem do 

pulso em nível alto em comparação ao período, este valor é alocado na variável 

inipwm. 

Por fim a saída é habilitada: 

o PWMOutputState(PWM_BASE, PWM_OUT_0_BIT , true); 

Onde o segundo comando representa qual PWM deve ser habilitado, este valor varia 

de acordo com a Tabela 10. O último valor habilita ou não o PWM em questão 

Tabela 10 - Habilitação do PWM 

Comando Função 
PWM_OUT_0_BIT PWM 0 do bloco gerador 0 
PWM_OUT_1_BIT PWM 1 do bloco gerador 0 
PWM_OUT_2_BIT PWM 0 do bloco gerador 1 
PWM_OUT_3_BIT PWM 1 do bloco gerador 1
PWM_OUT_4_BIT PWM 0 do bloco gerador 2 
PWM_OUT_5_BIT PWM 1 do bloco gerador 3 

 

4.2.7. Encoder 

Do mesmo modo que o CAD, o programa foi estruturado de forma a ler o valor 

do módulo QEI (Quadrature Encoder Interface) e extrair as informações desejadas a 

cada intervalo de tempo pré-definido. Os valores são armazenados em um vetor e 

posteriormente enviados via serial. 
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O primeiro comando é inicialização do periférico do encoder e as portas que 

possuem a dupla função (de encoder), além de configurar o pino da determinada porta 

com dupla função para operar no modo de encoder. 

o SysCtlPeripheralEnable(SYSCTL_PERIPH_QEI);  

o SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOC); 

o GPIOPinTypeQEI(GPIO_PORTC_BASE, GPIO_PIN_4); 

Em seguida é indicado desabilitar o encoder durante a configuração. O mesmo 

vale para a configuração da medição de velocidade. 

o QEIDisable(QEI0_BASE);                         

o QEIVelocityDisable(QEI0_BASE);          

O próximo passo é configurar a porta I/O como encoder. 

o GPIOPinTypeQEI(GPIO_PORTC_BASE, GPIO_PIN_4);   

Onde o primeiro valor representa a porta e o segundo valor, o pino da referente porta. 

 A configuração do módulo em si é realizada da seguinte maneira: 

o QEIConfigure(QEI_BASE,QEI_CONFIG_CAPTURE_A | 

QEI_CONFIG_NO_RESET | QEI_CONFIG_QUADRATURE |  

QEI_CONFIG_NO_SWAP, 2999); 

Onde o primeiro valor representa a configuração do encoder e é sempre este valor 

(QEI_BASE). O segundo valor é o resultado da função lógica ou dos valores 

mostrados na Tabela 11, Tabela 12, Tabela 13 e Tabela 14. No último valor da função 

deve ser colocado o número de pulsos do encoder (físico) subtraindo 1. 

 

Tabela 11 - Configuração da captura do encoder 

Comando Função 

QEI_CONFIG_CAPTURE_A 
Específica se as bordas (tanto de subida quanto 
de descida) dos pulsos devem ser contadas 
apenas a partir da fase A 

QEI_CONFIG_CAPTURE_A_B 
Específica se as bordas (tanto de subida quanto 
de descida) dos pulsos devem ser contadas a 
partir da fase A e da fase B 

 

Tabela 12 - Configuração do reset de contagem do encoder 

Comando Função 
QEI_CONFIG_NO_RESET  Específica que a contagem não deve ser zerada 

QEI_CONFIG_RESET_IDX 
Específica se a contagem deve ser zerada caso o 
sinal de index (de posição 0) seja lido 
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Tabela 13 - Configuração do calculo de direção do encoder 

Comando Função 

QEI_CONFIG_QUADRATURE Específica se o sinal de direção é proveniente da 
comparação entre as duas fases. 

QEI_CONFIG_CLOCK_DIR Específica se o sinal de direção é proveniente de 
um sinal externo 

Tabela 14 - Configuração do calculo de direção do encoder 

Comando Função 

QEI_CONFIG_NO_SWAP 
Específica que os sinais não devem ser 
permutados 

QEI_CONFIG_SWAP Específica que os sinais devem ser permutados 

 

Em seguida é necessário configurar o cálculo da velocidade: 

o QEIVelocityConfigure(QEI_BASE, QEI_VELDIV_1, 100000); 

O primeiro valor da função é o valor base para encoder. O segundo é um pré-divisor 

que pode ser utilizado em caso de uma contagem muito alta de pulsos, os valores 

possíveis estão na Tabela 15. O terceiro campo é o número de ciclos que o encoder 

deve esperar para realizar o cálculo da velocidade (já que o cálculo depende do 

tempo). 

Tabela 15 – Pré-divisores 

Comando 
QEI_VELDIV_1 
QEI_VELDIV_2 
QEI_VELDIV_4 
QEI_VELDIV_8,
QEI_VELDIV_16
QEI_VELDIV_32
QEI_VELDIV_64
QEI_VELDIV_128

 

Em seguida são habilitados os módulos de velocidade e o do encoder. 

o QEIVelocityEnable(QEI0_BASE);  

o QEIEnable(QEI0_BASE);      

A leitura dos valores é feita com os seguintes comandos: 

o dir[count] = QEIDirectionGet(QEI0_BASE); 

o vel[count]= XX*QEIVelocityGet(QEI0_BASE); 

o pos[count] = QEIPositionGet(QEI0_BASE); 

O valor XX que multiplica a função que extrai a velocidade é o resultado da 

Equação 4, que diferencia o encoder utilizado, e a configuração utilizada. 
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ܯܴܲ ൌ
݇ܿ݋݈ܥ ∗ 2௏௘௟஽௜௩ ∗ ݁݀ܽ݀݅ܿ݋݈ܸ݁ ∗ 60

݀ܽ݋ܮ ∗ ܴܲܲ ∗ ݁݃݀ܧ
 

 

(4)

 

Onde: 

 ܴܲܯ = É o resultado da operação na unidade de rotações por minuto 

 ݇ܿ݋݈ܥ = Taxa de operação do microprocessador, no caso 8MHz 

 ܸ݈݁ݒ݅ܦ = É o prédivisor, os valores possíveis estão na Tabela 15 

 ܸ݈݁݁݀ܽ݀݅ܿ݋ = Valor fornecido pela função QEIVelocityGet 

 ݀ܽ݋ܮ = É a quantidade de pulsos do clock utilizado para o cálculo da velocidade 

 ܴܲܲ = Pulsos por volta do encoder (Físico) 

 ݁݃݀ܧ = Depende da quantidade de bordas contadas por pulso, ou seja, se for 

utilizada apenas as bordas da fase A, o valor utilizado é 2, no caso de contar 

as bordas das duas fases, o valor é 4. 

 

4.2.8. Configuração da UART (Transmissão/Recepção 
Universal Assíncrona) 

A comunicação serial é o último passo do programa, no entanto a configuração 

desta comunicação é realizada nesta fase. 

Como os outros recursos, é necessário configurar o periférico de transmissão e a 

porta que possui dupla função, além de configurar o pino da determinada porta de 

dupla função para a função de comunicação. 

o SysCtlPeripheralEnable(SYSCTL_PERIPH_UART0);     

o SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOA);     

o GPIOPinTypeUART(GPIO_PORTA_BASE, GPIO_PIN_0 | 

GPIO_PIN_1);   

Na configuração é necessário informar as características da comunicação. Estas 

informações devem ser de acordo com o host (Receptor). 

o UARTConfigSetExpClk(UART0_BASE, SysCtlClockGet(), 115200, 

(UART_CONFIG_WLEN_8 | UART_CONFIG_STOP_ONE | 

UART_CONFIG_PAR_NONE)); 

Onde o primeiro campo indica qual dos dois blocos de comunicação será 

utilizado, o segundo é a frequência do clock que a comunicação deve se basear (pode 

ser a mesma que a frequência de operação). O terceiro campo é a velocidade de 
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transmissão desejada, esses valores devem seguir o padrão de comunicação 

assíncrona [22].  

Por fim é habilitada a interrupção necessária para o envio das informações. 

o IntEnable(INT_UART0);  

o UARTIntEnable(UART0_BASE, UART_INT_RX | UART_INT_RT); 

Onde o campo da primeira função e o primeiro campo da segunda representam 

a interrupção do transmissor 0. O segundo campo da função indica quais parâmetros 

que disparam a interrupção, para o caso de emissão os necessários são os indicados. 

O envio das informações é realizado no bloco de comunicação serial, Seção 

4.1.4. 

 

4.3. Loop 

Durante a fase de loop o programa fica parado, esperando o disparo das 

interrupções dos timers, onde o timer 0 é utilizado para leitura das informações 

(conversor analógico digital e do encoder) e o timer 1 é utilizado para geração dos 

sinais de acionamento (PWM e portas I/O). Os timers podem, e geralmente são, 

configurados com tempos diferentes. Estas interrupções ocorrem ciclicamente de 

acordo com a configuração dos timers.  

A declaração das interrupções é realizada da seguinte maneira. 

void 
Timer0IntHandler(void) 
{ 
//Leitura ou geração dos sinais 
} 

É importante relembrar que a flag de interrupção dos timers da Seção 4.1.2.3 

devem ser zerados. 

Os valores amostrados são armazenados em vetores para serem enviados após 

o fim da amostragem. O programa permanece no bloco de Loop até atingir o número 

de amostras predefinido no bloco de inicialização. 

4.4. Comunicação serial 

O bloco de comunicação serial foi utilizado para reduzir o tempo das medidas 

(conversor analógico digital e encoder), pois caso fosse enviado cada um desses 

valores a cada amostra, a taxa de aquisição seria afetada drasticamente já que a 

comunicação consome tempo de processamento, assim os valores são alocados em 



33 
 

um vetor e após todas as medidas terem sido realizadas é transmitido um pacote com 

as informações.  

O comando de envio utilizado é: 

o UARTSend(buf, 1); 

Onde buf é a variável char onde a informação está armazenada. Como é necessário 

informar a quantidade caracteres enviados e o tamanho da informação é variável é 

realizada uma lógica de verificação da palavra enviada, ou seja, se a informação é 

menor que 10, a palavra enviada é de tamanho 1, se entre 10 e 99, o tamanho é 2, e 

assim por diante. 

 A comunicação em si é realizada por uma interrupção. Onde o programa fica 

em loop até que todos os caracteres tenham sido enviados. A única variável do 

comando é a mudança do bloco utilizado para comunicação (0 ou 1). 

void 
UARTSend(const unsigned char *pucBuffer, unsigned long ulCount) 
{ 
    while(ulCount--) 
    { 
        UARTCharPut(UART0_BASE, *pucBuffer++);  
    } 
} 
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5. Matériais e métodos utilizados 

A fase prática deste trabalho foi dividida em duas etapas, os testes do kit de 

desenvolvimento EKI LM3S8962, onde serão testados os periféricos necessários para 

o acionamento dos motores em questão e ensaios para validação do kit de 

desenvolvimento para a aplicação desejada, realizando testes de acionamento em um 

motor de corrente contínua de imã permanente e em um motor de indução. 

A bancada ilustrando os recursos utilizados para o acionamento do motor de 

indução é mostrada na  17. 

 
Figura 17 - Bancada de testes 

 

5.1. Materiais utilizados 

Os recursos utilizados foram: 

 Kit de desenvolvimento EKI LM3S8962  

 Motor de corrente contínua de imã permanente com tacogerador 

acoplado 

 Motor de indução trifásico de 1CV com encoder acoplado 

 Inversor de tensão trifásico da SEMIKRON  

 Protoboard  

 Computador  

 Bateria de 12V 

 Multímetro digital 
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 Tacômetro ótico 

Alguns circuitos auxiliares foram utilizados na validação do kit de 

desenvolvimento realizada acionando os motores de corrente contínua e o de corrente 

alternada de indução. A utilidade destes circuitos foi proteção dos equipamentos (opto-

acopladores), de acionamento (Chopper) e circuitos de medição de corrente e de 

velocidade.  

 

5.2. Circuito de proteção 
 

Visando proteção dos circuitos, principalmente do kit de desenvolvimento EKI 

LM3S8962, são utilizados circuitos opto-acopladores, que transmitem a informação via 

luz (LEDs), garantindo isolamento total entre os circuitos de potência e de 

acionamento.  

Estes circuitos consistem em um emissor de luz e um receptor, a informação 

proveniente dos sinais do kit (PWM ou portas I/O) aciona o emissor de luz, esta luz é 

recebida pelo receptor, transmitindo assim a informação para o circuito de potência. 

O opto-acoplador utilizado foi o 6N137 [23] da Figura 18 na configuração 

mostrada na Figura 19. 

 

 

 
Figura 18 - Esquemático do componente 6N137 [23] 
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Figura 19 - Circuito opto-acoplador utilizado 

 

O circuito da Figura 19 sofre inversão lógica, ou seja, quando o sinal da 

entrada está em nível lógico alto, a saída está em nível lógico baixo. No entanto esta 

inversão é corrigida no circuito emissor comum mostrado na Figura 20 que além de 

corrigir a inversão do sinal de acionamento, aumenta o nível de tensão de 5V para 

15V. Este nível de tensão (15V) é necessário para operar os circuitos de potência, 

tanto o MOSFET IRF540N [24] utilizado no circuito chopper quanto as chaves do 

inversor de tensão trifásico utilizado precisam ser operados com 15V.  

 

 
Figura 20 - Circuito elevador de tensão 

 

Dessa forma, o circuito auxiliar para acionamento dos motores (tanto para o 

motor de corrente contínua quanto para o de corrente alternada) é representado pela 

Figura 21 e foi implementado em um protoboard para a realização dos testes. Onde no 

caso do motor de corrente contínua, Vout alimenta o MOSFET da Figura 22, e no caso 

do acionamento do motor de indução, Vout alimenta as chaves do inversor da Figura 

4. 
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Figura 21 - Circuito de acionamento das chaves de potência 

 
 

5.3. Circuito chopper utilizado 

O circuito chopper utilizado é mostrado na Figura 22 e consiste em uma bateria 

automotiva de 12V, alimentando o motor através de um MOSFET de potência 

IRF540N, e um diodo de potência rápido MUR1520 [25] que serve de proteção à 

chave semicondutora e possui um tempo de recuperação de no máximo 60 ɳs. O 

MOSFET permite alimentação de até 33ª e 100V, entre o terminal de dreno(drain) e o 

de fonte (source). Já o diodo rápido tem um limite de alimentação de até 600V e 15A, 

e a escolha deles foi para validar o acionamento de motores de corrente contínua que 

operam em níveis de tensão e de corrente mais elevados do que o motor utilizado. 

A alimentação da chave semicondutora, o terminal In(15V) da Figura 22, é 

controlado pelo circuito de acionamento da Figura 21. 

 

 

Figura 22 - Circuito utilizado – Chopper 
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5.4. Circuitos de medição 
 

A realização de medições durante o acionamento fornece informações 

importantes além de possibilitar a implementação de uma lógica de controle. Para o 

caso das máquinas elétricas duas informações são extremamente importantes, a 

corrente que flui pelo motor e a velocidade de rotação do eixo do motor. 

 

5.4.1. Medição de corrente 

No caso da corrente foi utilizado um sensor de corrente do tipo Hall, sensor que 

é baseado no efeito Hall [26] e fornece um valor em tensão proporcionalmente à 

corrente que flui por ele.  

O sensor de corrente do tipo Hall utilizado foi o sensor ACS712 [27] de 5 

Amperes, que fornece uma tensão conforme a Figura 23, sendo 2.5V para 0A e 

variando 0,185V por Ampere.  

 

Figura 23 - Comportamento do sensor de corrente do tipo Hall [27]  

 

É necessário um circuito que reduza essa faixa de operação para que seja 

compatível com o conversor analógico digital do kit de desenvolvimento EKI 

LM3S8962 que é de 0 a 3V. Sendo assim é possível reduzir esta faixa com a utilização 

de amplificadores operacionais, no caso LM324 [28], na configuração inversora. A 

Figura 24 ilustra a configuração utilizada. Onde Vin é o sinal do sensor de corrente do 

tipo Hall e Vout é conectado ao CAD do kit de desenvolvimento. Dessa forma a faixa 

de tensão varia de 0 a 3V, sendo 1,5V para 0A. 
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Figura 24 - Circuito auxiliar do sensor hall 

 

5.4.2. Medição de velocidade 
 

As medições de velocidade do eixo do motor foram realizadas de duas maneiras 

distintas. No caso do motor de corrente contínua foi utilizado um tacogerador, já no 

caso do motor de corrente alternada foi utilizado um encoder óptico. Essas diferentes 

soluções ocorreram pelo fato dos motores utilizados possuírem estes transdutores já 

acoplados aos seus eixos. 

Medição via tacogerador 

O tacogerador é um gerador CC de ímã permanente acoplado mecanicamente 

ao eixo de um motor que se deseja mediar velocidade, já que é gerada uma tensão na 

saída do tacogerador em função da velocidade de rotação do motor.  

O tacogerador utilizado opera até 50V, ou seja, com 12V na entrada do motor é 

gerado um sinal (em corrente contínua) de 50V. Desse modo, foi utilizado um divisor 

resistivo de tensão para reduzir a faixa de tensão para 0 a 3V, realizando assim a 

leitura por uma entrada do conversor analógico digital. A Figura 25 representa o divisor 

utilizado.  

 

 
Figura 25 - Divisor de tensão resistivo 
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Medição via encoder 

O encoder utilizado gera os pulsos com um valor de nível lógico alto em 15V não 

sendo compatível com o módulo QEI (Quadrature Encoder Interface) presente no kit 

de desenvolvimento EKI M3S8962, que é de 0 a 5V, dessa forma foi projetado um 

circuito utilizando opto acopladores para reduzir os sinais de entrada no kit de 

desenvolvimento. Foi utilizado o opto-acoplador 6N137 da Figura 18 na configuração 

da Figura 26. 

 
Figura 26 - Circuito abaixador de tensão para o encoder 
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6. Testes e ensaios realizados 

Os testes foram realizados em duas etapas. A primeira foi a realização dos 

testes nos componentes do kit de desenvolvimento EKI LM3S8962. A segunda fase foi 

a validação do kit de desenvolvimento para o acionamento do motor de corrente 

contínua de imã permanente e o de corrente alternada de indução trifásica. 

 

6.1. Testes no kit de desenvolvimento EKI LM3S8962 

Os ensaios realizados no kit de desenvolvimento tem o objetivo de compreender 

os comandos utilizados e encontrar os limites de operação de cada periférico. São 

testados os periféricos utilizados no acionamento dos motores estudados, módulo 

PWM e portas I/O, os periféricos utilizados para aquisição de dados, CAD e módulo do 

encoder, além de recursos auxiliares, display OLED e módulo serial, que auxiliam o 

usuário do kit de desenvolvimento. 

6.1.1. Teste display OLED 

O primeiro teste realizado foi o teste do display OLED, baseado no exemplo 

presente no programa IAR Embedded Workbench, com o objetivo de compreender a 

configuração do mesmo. 

O teste consiste em programar uma mensagem (“TESTE”) para aparecer na tela 

do display. A Figura 27 apresenta o resultado obtido. 

 

 
Figura 27 - Teste no display OLED 

6.1.2. Teste no módulo CAD 

O teste no módulo CAD tem como objetivo verificar o comportamento do 

conversor e encontrar a precisão do sistema de aquisição. Utilizando o circuito da 

Figura 28 foram aplicados diferentes níveis de tensão na entrada do CAD através de 



44 
 

um potenciômetro, comparando o valor amostrado pelo CAD, e impresso no display, 

com o valor medido por um voltímetro. O resistor em questão utilizado foi um 

potenciômetro de 1kΩ. 

 
Figura 28 - Teste do CAD 

A Tabela 16 apresenta os resultados obtidos. A primeira coluna representa a 

tensão obtida pelo multímetro, a segunda coluna representa o número decimal 

fornecido pelo CAD e impresso no display OLED. A terceira coluna é o resultado da 

conversão dos valores da coluna anterior utilizando a Equação 5. Por fim, a quarta 

coluna representa o erro comparativo entre a primeira e terceira colunas.  

Tabela 16 - Resultado do teste CAD 

Tensão (multímetro) Valor ADC (0 a 1024) Conversão (V) Erro (%) 

0,00 2 0,01 - 

0,25 86 0,25 0,00 

0,50 172 0,50 0,00 

0,75 257 0,75 0,00 

1,00 338 0,99 0,01 

1,25 425 1,25 0,00 

1,50 510 1,49 0,01 

1,75 592 1,73 0,01 

2,00 675 1,98 0,01 

2,25 764 2,24 0,00 

2,50 846 2,48 0,01 

2,75 933 2,73 0,01 

3,00 1022 2,99 0,00 

 

ܸ ൌ ௠ܸ௔௫

2௡
∗ ஺஽஼ݎ݋݈ܸܽ  (5)

 

Onde: 

 ௠ܸ௔௫ = Tensão máxima de entrada = 3V 

 ݊ = Número de bits do conversor = 10 

 ܸ݈ܽݎ݋஺஽஼= Valor que o conversor fornece. 
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A precisão do CAD é satisfatória visto a pequena porcentagem de erro mostrada 

na última coluna da Tabela 16. 

 

6.1.3. Ensaios com a porta serial 
 

Com o objetivo de testar a comunicação serial, o envio de informações para o 

computador, foi realizado um ensaio com o envio de uma mensagem “TESTE” via 

serial e receber a informação salvando-a em um arquivo de texto. 

O arquivo recebido pelo computador (host) via porta USB é mostrado na Figura 

29. 

 
Figura 29 - Teste serial 

 

 

6.1.4. Teste da porta serial com envio amostras do CAD 
 

O primeiro teste envolvendo dois periféricos em conjunto foi a utilização da 

comunicação serial para o envio das informações lidas e armazenadas pelo conversor 

analógico digital (CAD). O código foi estruturado de forma a ler a informação a cada 

interrupção do timer, a cada 0.5 segundos, armazenar esta informação em um vetor e 

ao fim do programa, que termina após um número de amostras pré-determinado (10 

amostras), enviando as amostras via serial. 

Os sinais utilizados para realizar a conversão são os sinais de 3,3V e 0V 

provenientes da própria placa de desenvolvimento EKI LM3S862.  

Utilizando o programa computacional Matlab é possível gerar o gráfico a partir 

das amostras recebidas e armazenadas em um arquivo de texto. A Figura 30 

compreende o resultado deste gráfico. 
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Figura 30 - Resultado do teste CAD 

 
 

6.1.5. Ensaios do módulo PWM 
 

Com o objetivo de compreender a programação do periférico PWM do kit de 

desenvolvimento EKI LM3S8962, foram realizados ensaios a partir do exemplo do 

programa IAR Embedded Workbench, onde é configurado um pulso de tamanho fixo. 

 A princípio foi gerado este pulso fixo, mas como o objetivo é criar um 

acionamento para motores, foi gerado um perfil como da Figura 31, onde o tamanho 

do pulso aumenta ou diminui de acordo com o tempo. O eixo “perfil (%)” representa a 

porcentagem do pulso em nível lógico alto. 

O perfil da Figura 31 foi gerado e observado por um osciloscópio. O resultado 

obtido foi satisfatório, sendo observado o perfil proposto, a largura do pulso crescendo, 

se mantendo em 100% e diminuindo novamente. 
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Figura 31 - Perfil para o PWM 

 
 

6.1.6. Teste da interface de encoder 
 

Os ensaios no encoder têm como objetivo analisar o comportamento da 

ferramenta QEI (Quadrature Encoder Interface) do kit de desenvolvimento EKI 

LM3S8962. Para isto se deve acionar o motor de indução trifásico que possui encoder 

acoplado a ele, através de um variac ajustado com 80Vpp, e comparar o valor 

amostrado pelo QEI, impresso no display OLED, comparando ao valor obtido por um 

tacômetro ótico. 

O teste na interface do encoder foi realizado utilizando o encoder da Figura 32 

acoplado ao eixo motor e o circuito auxiliar da Figura 26 para conectar o sinal às 

entradas QEI do kit de desenvolvimento afim de comparar o valor lido pelo módulo QEI  

com o valor medido utilizando um tacômetro ótico. Para o cálculo da velocidade em 

rotações por minuto foi utilizada a Equação 4, que para o caso utilizado resulta no 

valor de 1,6. A Tabela 17 é o resultado do teste, onde a primeira coluna representa o 

valor lido pelo tacômetro, a segunda coluna mostra o valor obtido pelo módulo QEI já 

aplicando o fator de 1,6 e a última coluna representa o erro percentual comparando as 

duas medições. 
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Figura 32 - Encoder utilizado acoplado ao motor de indução 

 

Tabela 17 - Teste QEI 

Valor Tacômetro (RPM) Valor QEI (RPM) Erro (%) 
3581 3577,60 0,1% 

 

6.1.7. Ensaio da constante do tacogerador 
 

Os ensaios envolvendo o tacogerador foram realizados durante os testes de 

acionamento do motor corrente contínua. O objetivo dos testes é encontrar a 

constante linear do tacogerador que, multiplicado pelo valor lido no CAD, fornece a 

velocidade real do motor. 

Para encontrar o coeficiente linear deste tacogerador foi realizado um ensaio 

acionando o motor com diferentes velocidades, a partir do acionamento via PWM, 

utilizando o circuito da Figura 21 para proteção do kit de desenvolvimento e o circuito, 

de potência da Figura 22, realizar medições com um tacômetro óptico e compará-los 

com os valores obtidos no CAD impressos no display.  

A constante K pode ser obtida pela divisão do valor medido no tacômetro ótico 

pelo valor amostrado pelo conversor analógico digital. Com a realização de 5 medidas 

com velocidades diferentes é possível encontrar o valor da constante K médio. 

A Tabela 18 é o resultado deste ensaio com as velocidades referentes à largura 

de pulso do PWM referenciadas na primeira coluna, como porcentagem do pulso em 

nível lógico alto, estas medições foram realizadas a partir de 60% pois abaixo desta 

porcentagem, a medição pelo tacômetro se tornou imprecisa, já que os valores 

indicados não eram constantes.  A segunda coluna representa a velocidade obtida 
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pelo tacômetro ótico. A terceira representa o valor amostrado pelo CAD e a quarta 

coluna o resultado da divisão da segunda coluna pela terceira. Realizando a média 

dos valores obtidos para constante K, foi obtido o valor K médio de 3,37, utilizado 

como constante para obter a quinta coluna da Tabela 18. A última coluna mostra o 

erro percentual do valor utilizando a constante K encontrada em comparação às 

medições realizadas com o tacômetro ótico. 

 

Tabela 18 - Cálculo da constante K do tacogerador 

Medição Tacômetro (RPM) CAD K Convertido (RPM) 
Erro 
(%) 

60% 571 171 3,34 577,04 1,05 

70% 1200 354 3,39 1194,58 0,45 

80% 1627 477 3,42 1609,64 1,08 

90% 1992 593 3,36 2001,09 0,45 

100% 2493 739 3,37 2493,77 0,03 

 

6.1.8. Tempo gasto pelas funções de aquisição de dados 
 

Todas as operações em um microprocessador gastam um determinado tempo 

que varia com a complexidade da operação e com a frequência de trabalho, por 

exemplo, uma multiplicação de um número real demora mais tempo que a soma de 

um número inteiro. Deste modo é realizado um ensaio com o objetivo de encontrar o 

tempo gasto pelas funções de aquisição e armazenagem dos dados. Com esta 

informação é possível escolher uma taxa adequada para uma possível lógica de 

controle. 

O ensaio é realizado com base na estrutura em que o código foi montado. Como 

o programa foi estruturado de forma a realizar as aquisições dentro da interrupção de 

um timer, é possível medir o tempo gasto dentro do timer acionando uma saída 

apenas durante o período da interrupção. Utilizando um osciloscópio é possível medir 

o tempo em que a saída permanece em nível lógico alto. 

Os testes consistem em encontrar o tempo gasto em 3 casos. O primeiro 

amostrando os valores de um CAD e do encoder, imprimindo estes valores no display 

OLED. Em seguida foi realizado o teste apenas amostrando os valores do CAD e do 

encoder. Por fim é realizado o ensaio para descobrir o tempo gasto apenas da função 

de aquisição do CAD. 
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O primeiro teste foi realizado com as informações do CAD e do encoder e 

imprimindo estas informações no display OLED. A Figura 33 mostra o valor medido 

pelo osciloscópio.  

 
Figura 33 - Teste da taxa máxima de aquisição – Display 

 

Como era de se esperar o tempo gasto, 2,150ms é muito alto já que as funções 

do display OLED são lentas. Por este motivo, para frequências de aquisições altas, a 

função de impressão no display não deve ser utilizada. 

O segundo ensaio foi realizado utilizando o CAD em conjunto com o encoder 

obtendo o resultado mostrado na Figura 34. 

 

 
Figura 34 - Taxa máxima de aquisição - CAD e QEI 

 

 O tempo gasto para estas duas funções é de 30,5µs. 
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Por fim, utilizando apenas o conversor analógico digital (CAD) obtém-se a Figura 

35. 

 
Figura 35 - Taxa máxima de aquisição – CAD 

 

Como era de se esperar o tempo gasto, 16,52 µs, por esta função é menor do 

que nos outros ensaios. 

É possível ainda extrair o tempo da função de aquisição de dados do encoder 

comparando os resultados dos ensaios realizados. Realizando a subtração do tempo 

gasto pela função do conversor analógico digital em conjunto com o encoder, pelo 

tempo obtido no ensaio utilizando apenas o CAD, é obtido o tempo gasto apenas pelo 

encoder, que é 13,89 µs. 

 

6.1.9. Número máximo de amostras 
 

A comunicação do kit de desenvolvimento é realizada via porta serial, no 

entanto, para não diminuir a taxa de amostragem, a transmissão serial inicia após 

todas as leituras, deste modo as leituras são armazenadas na memória do kit de 

desenvolvimento. O objetivo deste ensaio é encontrar o valor máximo disponível para 

armazenamento das amostrar.  

O ensaio visa encontrar o máximo valor possível para o tamanho dos vetores 

utilizados para o armazenamento. Na fase de compilação do programa é possível 

variar o tamanho destes vetores. Caso o vetor seja maior que a memória disponível, 

ocorre uma mensagem de erro. O ensaio consiste em encontrar o maior número 

possível deste vetor. 
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A Tabela 19 apresenta os resultados obtidos. A primeira coluna representa os 

valores testados para um vetor e a coluna de resultados indica se o ensaio foi 

satisfatório ou não, o resultado OK representa que o programa compilou corretamente, 

já a palavra Erro representa uma falha neste ponto do programa por causa do estouro 

da memória disponível. 

Observando a Tabela 19 é possível considerar um número máximo de 16000 

amostras, ou seja, é possível armazenar 16000 amostras de um vetor (CAD, encoder, 

etc.), caso sejam 4 amostras o número cai para 4000 amostras. 

Tabela 19 - Teste do número máximo de amostras 

Tamanho do Vetor Resultado
3000 OK 

10000 OK 
15000 OK 
20000 Erro 
17500 Erro 
16000 Ok 
17000 Erro 
16500 Erro 

 

6.2. Ensaios nos motores em estudo 
 

Após os testes realizados no kit de desenvolvimento EKILM3S8962 é possível 

integrá-los com o objetivo de acionar os motores, realizar medições, comunicar com o 

computador e plotar estas medidas. São realizados ensaios com o motor de corrente 

contínua com imã permanente e com um motor de indução 

6.2.1. Ensaio no motor de corrente contínua 
 

O motor de corrente contínua de imã permanente da Figura 36 é acionado de 

duas maneiras. Diretamente de uma bateria automotiva de 12V e utilizando o chopper 

da Figura 22 em conjunto com circuito o da Figura 21, aplicando o perfil do PWM da 

Figura 31. Para validar os conversores analógicos digitais são amostrados os valores 

da corrente, gerada pelo sensor de corrente do tipo Hall condicionado utilizando o 

circuito da Figura 24, e de velocidade, gerado pelo tacogerador acoplado ao motor de 

corrente contínua com o tratamento mostrado na Figura 25. Estes valores são 

enviados via serial para serem impressos via Matlab. 
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Figura 36 - Motor utilizado 

 
 

6.2.1.1. Acionamento do motor CC diretamente a uma bateria 
 

A conexão direta da bateria automotiva de 12V ao motor fornece os resultados 

da velocidade por meio do tacogerador acoplado ao motor, Figura 37, e da corrente, 

Figura 38, utilizando o sensor de corrente do tipo Hall. 

 

 
Figura 37 - Motor CC - Partida direta – Velocidade 
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Figura 38 - Motor CC - Partida direta – Corrente 

A conexão do motor à bateria e o acionamento do kit de desenvolvimento par 

realização das medições foram realizadas manualmente. O tempo de 2 segundos 

compreende o tempo gasto entre as duas operações manuais.  

 

6.2.1.2. Acionamento do motor CC utilizando PWM 
 

Utilizando o circuito de acionamento para o motor de corrente contínua (Figura 

21 e Figura 22), foi aplicado um sinal PWM com o perfil da Figura 31. O resultado 

obtido para velocidade na Figura 39. O resultado da corrente é observado na Figura 

40. 

 

 
Figura 39 - Motor CC - Partida PWM – Velocidade 



55 
 

 
Figura 40 - Motor CC - Partida PWM – Corrente 

 

6.2.2. Ensaio no motor de indução trifásico 

 De modo semelhante ao motor de corrente contínua foram realizados dois 

diferentes acionamentos no motor de indução. A partida diretamente da rede trifásica 

por meio de um variac ajustado para 80V de pico a pico, e a partida utilizando o modo 

6-pulsos (modos 2 a 2 e 3 a 3). O valor de corrente de uma das fases do motor deve 

ser amostrado pelo CAD, por meio do sensor de corrente do tipo Hall, transmitido via 

serial e impressos via Matlab.  

A partida utilizando o modo 6-pulsos aciona o inversor da Figura 41 utilizando as 

sequências da Figura 5, para o modo 2 a 2, e da Figura 6, para o modo 3 a 3, com 

frequências de rotação de 0,33Hz e 60Hz. 

 

 
Figura 41 - Inversor trifásico utilizado 
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O inversor utilizado é um inversor da SEMIKRON constituído de um circuito 

retificador de tensão SKD51/52 [29] e um filtro para alimentação do barramento de 

corrente contínua, de semicondutores IGBTs SKM40GDL123D [30] e módulos de 

acionamentos para o Gate dos IGBTs SKIH22 [31], que tem como objetivo tratar o 

sinal para o acionamento e prover proteção aos semicondutores. O filtro é formado por 

um banco de capacitores que juntos possuem o valor de 8,16mF e suportam até 400V 

de alimentação. 

 

6.2.2.1. Partida direta 
 

Conectando o motor de indução, por meio de um disjuntor trifásico, a um variac 

ajustado para 80Vpp foram realizadas medições de corrente em uma das fases 

utilizando um sensor de corrente do tipo Hall e de velocidade de rotação do eixo do 

motor. O valor lido pelo sensor de corrente do tipo Hall foi amostrado com o 

osciloscópio. A Figura 42 mostra a o valor da corrente em uma das fases do motor de 

indução obtidos com um osciloscópio. Estes valores de corrente foram amostrados 

pelo CAD e transmitidos via comunicação serial. Utilizando o software Matlab  para 

plotar estes dados em um gráfico foi gerada a Figura 43. 

 

 
Figura 42 - Motor de indução - Partida direta – Corrente 
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Figura 43 - Motor de indução - Parida direta – Corrente 

 

Na Figura 43 foi aplicado um zoom do entre o 1º e 2º segundo para verificar se o 

comportamento está dentro do esperado (senoidal). A Figura 44 mostra que o 

resultado é satisfatório. 

 

 
Figura 44 - Motor CA - Comportamento da corrente 

 

O valor amostrado correspondente à velocidade é exposto na Figura 45. 
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Figura 45 - Motor CA - Parida direta – Velocidade 

 

Os disparos, tanto do programa quanto dos motores, foram realizados 

manualmente. O tempo de 0 a 1s representam este tempo gasto até o acionamento do 

motor de indução. 

 

6.2.2.2. Acionamento através do kit no modo 6-pulsos 
 

A segunda etapa de teste no motor de indução foi o acionamento do mesmo 

utilizando o inversor da Figura 41 no modo 6-pulsos, tanto nos modos 2 a 2 quanto 

nos modos 3 a 3. 

 O chaveamento do inversor trifásico deve ser realizado em todas as chaves 

simultaneamente, de modo a garantir que as chaves de um mesmo braço não 

conduzam ao mesmo tempo. Desta forma o programa utilizado no microprocessador 

ARM Cortex-M3 gera os sinais ao mesmo tempo, utilizando a porta A do kit de 

desenvolvimento EKI LM3S8962 para gerar uma palavra de 8 bits onde 2 não são 

utilizados. 

Visando a proteção do inversor, a tensão de alimentação do inversor utilizada 

não foi a tensão nominal no motor, visando manter a corrente do motor dentro dos 

valores nominais dele. Foi utilizado 50V para baixas frequências (0,33Hz) e 115V para 

as altas (60Hz). 
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6.2.2.2.1. Acionamento no modo 2 a 2 

Seguindo a lógica de acionamento da Figura 5 foi gerada a Tabela 20 para a 

geração da palavra a ser gerada. Os bits menos significativos não são utilizados para 

o acionamento. A primeira coluna representa os 6 pulsos possíveis. A segunda 

representa quais chaves, da Figura 4, devem estar acionadas, no respectivo pulso. A 

terceira coluna representa como os pinos da porta A devem estar configurados para 

acionar as determinadas chaves. Por fim a ultima coluna representa o valor decimal 

que se deve escrever à porta. 

 

Tabela 20 - Modo 2 a 2 - Palavras geradas 

Pulso  Saídas Binário  Decimal

0  1,2  10000100 132 

1  2,3  10001000 136 

2  3,4  00101000 40 

3  4,5  00110000 48 

4  5,6  01010000 80 

5  6,1  01000100 68 

 

Deste modo, a cada intervalo de tempo os valores na saída da porta A variam de 

acordo com a Tabela 20, acionando 2 chaves. Os tempos de acionamentos para cada 

pulso foram 0,5s e 1/360s, que representam 0,33 e 60Hz, respectivamente, de rotação 

do eixo do motor de indução. 

As grandezas amostradas foram a corrente que passa por uma das fases do 

motor de indução e a tensão fase-neutro que alimenta o motor. Os valores foram 

amostrados pelo osciloscópio. 

 

Frequência do motor em 0,33Hz 
 

A Figura 46 mostra o valor amostrado pelo sensor de corrente do tipo Hall 

correspondente a corrente de uma fase do motor. 
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Figura 46 - Modo 2 a 2 – 0,33Hz – Corrente do motor de indução 

 

A Figura 47 mostra o valor de tensão aplicada aos terminais do motor. No caso a 

tensão que alimenta o motor foi de aproximadamente 50V. 

 

 
Figura 47 - Modo 2 a 2 – 0,33Hz - Tensão aplicada ao motor 

 
Frequência do motor em 60Hz 

Aumentando a frequência de rotação do motor para 60Hz são obtidos os 

resultados amostrados na Figura 48 para a corrente de uma das fases do motor e na 

Figura 49 para a tensão de alimentação do motor de indução. No caso foi utilizado 

aproximadamente 115V. 
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Figura 48 - Modo 2 a 2 – 60Hz – Corrente no motor 

 

 
Figura 49 - Modo 2 a 2 – 60Hz – Tensão aplicada ao motor 

 

6.2.2.2.2. Acionamento no modo 3 a 3 
 

Analogamente ao modo 2 a 2, foi gerada a Tabela 21 com os valores das 

palavras utilizadas conforme a Figura 6.  

Tabela 21 - Modo 3 a 3 - Palavras geradas 

 

 

Pulso Saídas Binário Decimal

0 4,5,6 01110000 112 

1 5,6,1 01010100 84 

2 6,1,2 11000100 196 

3 1,2,3 10001100 140 

4 2,3,4 10101000 168 

5 3,4,5 00111000 56 
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O acionamento foi realizado para as mesmas frequências de acionamento do 

modo 2 a 2, 0,33Hz e 60Hz. 

 

Frequência do motor em 0,33Hz  
 

Utilizando 0,5 segundos de duração em cada pulso é obtida a frequência de 

rotação do eixo do motor de 0,33Hz. A Figura 50 apresenta a corrente em uma das 

fases do motor e a Figura 51 a tensão fase-neutro aplicada aos terminais do motor, no 

caso foi utilizado aproximadamente 50V. 

 
Figura 50 - Modo 3 a 3 – 0,33Hz – Corrente no motor 

 

 
Figura 51 - Modo 3 a 3 – 0,33Hz – Tensão aplicada ao motor 
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Frequência do motor em 60Hz  

 

Utilizando 2,77ms de duração dos pulsos é obtida a frequência de 60Hz de 

rotação do eixo do motor de indução. A Figura 52 apresenta a corrente de um das 

fases do motor e a Figura 53 mostra a tensão fase-neutro aplicada aos terminais do 

motor, que foi de aproximadamente 115V. 

 

 
Figura 52 - Modo 3 a 3 – 60Hz – Corrente no motor 

 

 
Figura 53 - Modo 3 a 3 – 60Hz – Tensão aplicada ao motor 

  



64 
 

  



65 
 

7. Conclusões 

O trabalho em questão analisou a utilização do kit desenvolvimento EKI 

LM3S8962 da Texas Instruments para o acionamento, e um possível controle, de 

máquinas elétricas de correntes contínua (imã permanente) e de corrente alternada 

(motor de indução trifásico). O kit em questão possui recursos, como módulo gerador 

de PWM, leitura de encoder, entre outros, que podem ser úteis para esta aplicação. A 

utilização deste kit específico se deu pela integração destes diversos recursos em uma 

única plataforma, aumentando a eficácia e reduzindo o custo em comparação a estes 

recursos implementados separadamente. 

O foco do trabalho foi detalhar o kit de desenvolvimento, formas de operação e 

de configuração, para o acionamento das máquinas elétricas por meio de 2 circuitos 

de acionamento. O circuito chopper para o acionamento com velocidade variável do 

motor de corrente contínua por meio do controle do nível de tensão média aplicada ao 

circuito de campo do motor e o circuito inversor de tensão trifásicos para o 

acionamento do motor de corrente alternada controlando a frequência da tensão de 

alimentação do determinado motor. 

A estrutura escrita deste trabalho foi realizada para prover informações sobre o 

kit de desenvolvimento EKI LM3S8962, em seguida foi abordada a configuração dos 

recursos presentes no kit. Foram realizado testes no kit de desenvolvimento e por fim 

foi realizada a validação do kit para o objetivo proposto acionando dois motores com 

velocidade variável, um motor de corrente contínua de imã permanente e um motor de 

corrente alternada de indução trifásica. Para esta validação foram implementados os 

circuitos de potência (Chopper) para o acionamento do motor de corrente contínua, 

circuitos de acionamento, para o chopper e para o inversor de tensão trifásico, e 

circuitos auxiliares, para medição de grandezas físicas como velocidade e corrente, e 

circuitos de proteção.  

Os ensaios realizados no kit de desenvolvimento foram satisfatórios vistos que 

os recursos disponíveis são suficientes para os acionamentos propostos e ainda 

possibilitam outras abordagens, como controle das referidas máquinas elétricas ou 

acionamento do inversor utilizando modulação vetorial, já que utilizando os 6 PWMs 

presentes no kit de desenvolvimento é possível gerar esta modulação, conhecida 

como SPVM (Space Vector Modulation). 

Foi levantado também o tempo gasto para as funções de aquisição do kit de 

desenvolvimento, onde foi encontrado um valor satisfatório, já que utilizando um 
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conversor analógico digital para a medição da corrente de um determinado motor CC 

por exemplo, em conjunto com a medição da velocidade e da posição do motor 

utilizando um encoder é gasto o tempo de 30,5µs. Considerando um controle digital 

com uma frequência de 1kHz,  tem-se uma janela de tempo de 969,5µs para 

realização das operações de controle, tempo suficiente visto a velocidade das 

operações do microprocessador. Para o caso de um motor de indução trifásico (3 

medições de corrente e aquisição do encoder) gasta-se 63,54µs, e portanto, numa 

taxa de amostragem de 1kHz restam 936µs para as tarefas de controle e supervisão.   

O número máximo de amostras obtido, 16000 amostras, é suficiente para a 

utilização didática proposta. Uma ampliação deste ambiente pode resultar na 

necessidade de aumentar este número de amostras, outra abordagem, como 

utilização de uma memória externa, pode ser utilizada.  

A validação do kit de desenvolvimento para esta aplicação foi realizada 

implementando os circuitos propostos e obtendo resultado satisfatório para o 

acionamento de motores de corrente contínua de imã permanente e de corrente 

alternada de indução trifásica. Os resultados destes ensaios podem ser expandidos 

para outros tipos de motores que utilizem o princípio de controle da tensão média 

através de um chopper para os motores de corrente contínua e os que utilizem o 

acionamento variável da velocidade através de inversores de tensão. 

O anexo II é mostrado um esquemático reunindo todos os circuitos proposto com 

o objetivo de criação de um protótipo para, possivelmente, ser utilizado em uma 

matéria de graduação da Escola de Engenharia de São Carlos de acionamento de 

máquinas elétricas, servindo de base para um possível laboratório desta disciplina. 
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Anexos I – Código implementado 

//################################################### 
// 
// INCLUSÃO DE BIBLIOTECAS 
// 
//################################################### 
 
 
#include "inc/hw_memmap.h" 
#include "inc/hw_types.h" 
#include "driverlib/debug.h" 
#include "driverlib/gpio.h" 
#include "driverlib/pwm.h" 
#include "driverlib/sysctl.h" 
#include "inc/hw_ints.h" 
#include "inc/hw_qei.h" 
#include "inc/hw_ssi.h" 
#include "driverlib/adc.h" 
#include "drivers/rit128x96x4.h" 
#include "inc/lm3s8962.h" 
#include "driverlib/interrupt.h" 
#include "driverlib/sysctl.h" 
#include "driverlib/timer.h" 
#include "driverlib/qei.h" 
#include "driverlib/uart.h" 
#include <stdio.h>  
 
//################################################### 
// 
// ROTINA DE ERRO 
// 
//################################################### 
 
#ifdef DEBUG 
void 
__error__(char *pcFilename, unsigned long ulLine) 
{ 
} 
#endif 
 
 //################################################### 
// 
// DECLARAÃO DE VARIAVEIS 
// 
//################################################### 
 
unsigned long q=0; 
unsigned long ulPeriod;         //tempo 
volatile unsigned long ulLoop; 
    unsigned long ulValue; 
char buf[40]; 
int e0; 
int count=0;                  //Variavel utilizada para contagem de amostras 
unsigned long cad[8100];      //vetor contendo informações do Conversor Analogico Digital 
//int dir[4000];              //Vetor contendo informações da Direção do Motor 
//int vel[8100];              //Vetor contendo informações da Velocidade de rotação do motor 
//int pos[4000];              //Vetor contendo informações da Posição do eixo do motor 
int velt[8100] = NULL; 
int difPWM2 = 5; 
float tatual = 0; 
int p=0; 
    int portae=0; 
    int flagv=0; 
    int l=0; 
    float aux; 
//################################################### 
// 
// RDEFINIÇÕES DO USUÁRIO 
// 
//################################################### 
 
//O máximo de amostras é de cerca de 15000 amostras no total, ou seja, 15000 de apenas uma informação 
//ou 3000 caso seja necessárias 5 informações. Para isso deve ser ajustado o tamanho dos vetores acima. 
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int amostras=7500;            //Definir quantidade de amostras  
float TA=0.001;               //taxa de amostragem em segundos, minima de 100us 
 
float TPWM = 0.02;            //tempo de variação do PWM (0.02) ou pulsos 
int inipwm = 1;               //Porcentagem inicial do PWM 
int fpwm = 2000; 
int difPWM = 1; 
 
 
//################################################### 
// 
// SERIAL - Rotina para enviar strings via serial - Caracter por caracter 
// 
//################################################### 
 
 
void 
UARTSend(const unsigned char *pucBuffer, unsigned long ulCount) 
{ 
    // 
    // Loop enquanto existem caracteres sendo enviados 
    // 
    while(ulCount--) 
    { 
        UARTCharPut(UART0_BASE, *pucBuffer++); // Escreve o próximo caracter na seroal 
    } 
} 
 
 
//################################################### 
// 
// Interrupção por tempo - AQUISIÇÃO  
// 
//################################################### 
void 
Timer0IntHandler(void) 
{ 
TimerIntClear(TIMER0_BASE, TIMER_TIMA_TIMEOUT); //limpa a flag de interrupção por tempo 
ADC_ISC_R = 0x0000000000000000000000000000ffff; 
//RIT128x96x4Clear(); 
 
//Caso a taxa de amostragem seja pequena, é possivel imprimir os valores no Display,  
//para isso basta descomentar os comandos abaixo referentes ao display 
 
//########################CAD############################################## 
ADCProcessorTrigger(ADC_BASE, 0); 
cad[count] = ADC_SSFIFO0_R;                //le o valor do conversor e coloca no vetor 
cad[count] = ADC_SSFIFO0_R;                //le o valor do conversor e coloca no vetor 
cad[count] = ADC_SSFIFO0_R;                //le o valor do conversor e coloca no vetor 
cad[count] = ADC_SSFIFO0_R;                //le o valor do conversor e coloca no vetor 
cad[count] = ADC_SSFIFO0_R;                //le o valor do conversor e coloca no vetor 
cad[count] = ADC_SSFIFO0_R;                //le o valor do conversor e coloca no vetor 
cad[count] = ADC_SSFIFO0_R;                //le o valor do conversor e coloca no vetor 
cad[count] = ADC_SSFIFO0_R;                //le o valor do conversor e coloca no vetor 
cad[count] = ADC_SSFIFO0_R;                //le o valor do conversor e coloca no vetor 
 
//sprintf(buf, "%d", cad[count]);         //transforma em char 
//RIT128x96x4StringDraw(buf, 20, 20, 15); 
 
 
//##################ENCODER#########################     
//dir[count] = QEIDirectionGet(QEI0_BASE);  //Direção 
////sprintf(buf, "%d", dir[count] );              //transforma em char 
////RIT128x96x4StringDraw(buf, 20, 50, 15); //Coloca no display 
//     
//pos[count] = QEIPositionGet(QEI0_BASE);   //Posição 
////sprintf(buf, "%d", pos[count] );              //transofrma em char 
////RIT128x96x4StringDraw(buf, 20, 80, 15); //Coloca no display 
////   
//velocidade     
//vel[count]= 1.6*QEIVelocityGet(QEI0_BASE);//Velocidade 
//sprintf(buf, "%d", vel[count] );              //transorma em char 
//RIT128x96x4StringDraw(buf, 80, 80, 15); //Coloca no display 
 
//adc- 2 tacogerador 
ADCProcessorTrigger(ADC_BASE, 1);      
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velt[count] = ADC_SSFIFO1_R;  
velt[count] = ADC_SSFIFO1_R; 
velt[count] = ADC_SSFIFO1_R; 
velt[count] = ADC_SSFIFO1_R; 
velt[count] = ADC_SSFIFO1_R; 
velt[count] = ADC_SSFIFO1_R; 
velt[count] = ADC_SSFIFO1_R; 
velt[count] = ADC_SSFIFO1_R; 
velt[count] = ADC_SSFIFO1_R; 
sprintf(buf, "%d", velt[count] );              //transorma em char 
//RIT128x96x4StringDraw(buf, 80, 80, 15); //Coloca no display 
//##################Verificação de erro de leitura do encoder################### 
//Comentado pois serve apenas para testes 
 
//*erro0= QEIErrorGet(QEI0_BASE);        //bit de erro de leitura 
//if (erro0==1) 
//{ 
//  e0++; 
//  erro0 = 0; 
//} 
//sprintf(buf, "%d", e0 ); 
//RIT128x96x4StringDraw(buf, 80, 50, 15); 
 
 
count++;              //Incrementa a contagem e a posição dos vetores 
} 
 
//################################################### 
// 
// Interrupção por tempo - ACIONAMENTO 
// 
//################################################### 
 
void 
Timer1IntHandler(void) 
{ 
   
//  // ########################PWM Acionamento de motor DC###################### 
  TimerIntClear(TIMER1_BASE, TIMER_TIMA_TIMEOUT); //limpa a flag de interrupção por tempo 
  tatual = TPWM + tatual; 
   
  if (tatual < 1.88) 
  { 
  PWMPulseWidthSet(PWM_BASE, PWM_OUT_0, ulPeriod*(inipwm+difPWM2)/100); 
  PWMPulseWidthSet(PWM_BASE, PWM_OUT_1, ulPeriod*(inipwm+difPWM2)/100); 
  difPWM2=difPWM+difPWM2; 
  } 
  else if (tatual <5) 
  { 
  } 
  else if (tatual <6.98) 
  { 
  PWMPulseWidthSet(PWM_BASE, PWM_OUT_0, ulPeriod*(difPWM2)/100); 
  PWMPulseWidthSet(PWM_BASE, PWM_OUT_1, ulPeriod*(difPWM2)/100); 
  difPWM2=difPWM2-difPWM;  
  } 
  //################################################################## 
   
  //################## MODO 6 PULSOS ###################### 
//  if (p==0) 
//  { 
//    GPIOPinWrite(GPIO_PORTA_BASE, (GPIO_PIN_2 | GPIO_PIN_3 | GPIO_PIN_4 | GPIO_PIN_5 | GPIO_PIN_6 | 
GPIO_PIN_7), 132); 
//    p++; 
////    for(l=0;l<=(80000); l++) 
////    { 
////      aux=aux*0; 
////    } 
////    GPIOPinWrite(GPIO_PORTA_BASE, (GPIO_PIN_2 | GPIO_PIN_3 | GPIO_PIN_4 | GPIO_PIN_5 | GPIO_PIN_6 | 
GPIO_PIN_7), 0); 
//  } 
//  else if (p==1) 
//  { 
//    GPIOPinWrite(GPIO_PORTA_BASE, (GPIO_PIN_2 | GPIO_PIN_3 | GPIO_PIN_4 | GPIO_PIN_5 | GPIO_PIN_6 | 
GPIO_PIN_7), 136); 
//    p++; 
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////    for(l=0;l<=(80000); l++) 
////    { 
////      aux=aux*0; 
////    } 
////    GPIOPinWrite(GPIO_PORTA_BASE, (GPIO_PIN_2 | GPIO_PIN_3 | GPIO_PIN_4 | GPIO_PIN_5 | GPIO_PIN_6 | 
GPIO_PIN_7), 0); 
//  } 
//  else if (p==2) 
//  { 
//    GPIOPinWrite(GPIO_PORTA_BASE, (GPIO_PIN_2 | GPIO_PIN_3 | GPIO_PIN_4 | GPIO_PIN_5 | GPIO_PIN_6 | 
GPIO_PIN_7), 40); 
//    p++; 
////    for(l=0;l<=(80000); l++) 
////    { 
////      aux=aux*0; 
////    } 
////    GPIOPinWrite(GPIO_PORTA_BASE, (GPIO_PIN_2 | GPIO_PIN_3 | GPIO_PIN_4 | GPIO_PIN_5 | GPIO_PIN_6 | 
GPIO_PIN_7), 0); 
//  } 
//  else if (p==3) 
//  { 
//    GPIOPinWrite(GPIO_PORTA_BASE, (GPIO_PIN_2 | GPIO_PIN_3 | GPIO_PIN_4 | GPIO_PIN_5 | GPIO_PIN_6 | 
GPIO_PIN_7), 48); 
//    p++; 
////    for(l=0;l<=(80000); l++) 
////    { 
////      aux=aux*0; 
////    } 
////    GPIOPinWrite(GPIO_PORTA_BASE, (GPIO_PIN_2 | GPIO_PIN_3 | GPIO_PIN_4 | GPIO_PIN_5 | GPIO_PIN_6 | 
GPIO_PIN_7), 0); 
//  } 
//  else if (p==4) 
//  { 
//    GPIOPinWrite(GPIO_PORTA_BASE, (GPIO_PIN_2 | GPIO_PIN_3 | GPIO_PIN_4 | GPIO_PIN_5 | GPIO_PIN_6 | 
GPIO_PIN_7), 80); 
//    p++; 
////    for(l=0;l<=(80000); l++) 
////    { 
////      aux=aux*0; 
////    } 
////    GPIOPinWrite(GPIO_PORTA_BASE, (GPIO_PIN_2 | GPIO_PIN_3 | GPIO_PIN_4 | GPIO_PIN_5 | GPIO_PIN_6 | 
GPIO_PIN_7), 0); 
//  } 
//  else if (p==5) 
//  { 
//    GPIOPinWrite(GPIO_PORTA_BASE, (GPIO_PIN_2 | GPIO_PIN_3 | GPIO_PIN_4 | GPIO_PIN_5 | GPIO_PIN_6 | 
GPIO_PIN_7), 68); 
//    p=0; 
//    for(l=0;l<=(80000); l++) 
//    { 
//      aux=aux*0; 
//    } 
//    GPIOPinWrite(GPIO_PORTA_BASE, (GPIO_PIN_2 | GPIO_PIN_3 | GPIO_PIN_4 | GPIO_PIN_5 | GPIO_PIN_6 | 
GPIO_PIN_7), 0); 
  } 
 
 
   
   
 
//  RIT128x96x4Clear();          //Limpa o display 
//RIT128x96x4StringDraw("timer 1", 80, 50, 15); 
//}   
     
//################################################### 
// 
// CONFIGURAÇÃO DOS RECURSOS 
// 
//################################################### 
int 
main(void) 
{ 
    volatile unsigned long ulLoop; 
    int i; 
 
//LED 
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SYSCTL_RCGC2_R = SYSCTL_RCGC2_GPIOF; 
ulLoop = SYSCTL_RCGC2_R; 
GPIO_PORTF_DIR_R = 0x01; 
GPIO_PORTF_DEN_R = 0x01; 
     
RIT128x96x4Init(1000000); 
 
 
    // 
    // Ajustar o clock a partir do cristal 
    // 
    SysCtlClockSet(SYSCTL_SYSDIV_1 | SYSCTL_USE_OSC | SYSCTL_OSC_MAIN | 
                   SYSCTL_XTAL_8MHZ); 
    SysCtlPWMClockSet(SYSCTL_PWMDIV_1); 
     
    
    // 
    // Bail out if there is not a PWM peripheral on this part. 
    // 
    if(!SysCtlPeripheralPresent(SYSCTL_PERIPH_PWM)) 
    { 
        while(1); 
    } 
 
    // 
    // Enable the peripherals used by this example. 
    // 
    SysCtlPeripheralEnable(SYSCTL_PERIPH_PWM); 
    SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOF); 
    SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOG); 
    SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOB);    //utilizar saída B 
    SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOE);    //utilizar saída E 
 
    // 
    // Set GPIO F0 and G1 as PWM pins.  They are used to output the PWM0 and 
    // PWM1 signals. 
    // 
    GPIOPinTypePWM(GPIO_PORTF_BASE, GPIO_PIN_0); 
    GPIOPinTypePWM(GPIO_PORTG_BASE, GPIO_PIN_1); 
    GPIOPinTypePWM(GPIO_PORTB_BASE, GPIO_PIN_0);    //Pino 0 da porta B como PWM (PWM 2) 
    GPIOPinTypePWM(GPIO_PORTB_BASE, GPIO_PIN_1);    //Pino 1 da porta B como PWM (PWM 3) 
    GPIOPinTypePWM(GPIO_PORTE_BASE, GPIO_PIN_0);    //Pino 0 da porta E como PWM (PWM 4) 
    GPIOPinTypePWM(GPIO_PORTE_BASE, GPIO_PIN_1);    //Pino 1 da porta E como PWM (PWM 5) 
 
    // 
    // Compute the PWM period based on the system clock. 
    // 
//    ulPeriod = SysCtlClockGet() / 440; 
        ulPeriod = SysCtlClockGet() / fpwm; 
 
    // 
    // Set the PWM period to 440 (A) Hz. 
    // 
    PWMGenConfigure(PWM_BASE, PWM_GEN_0, 
                    PWM_GEN_MODE_UP_DOWN | PWM_GEN_MODE_NO_SYNC); 
    PWMGenPeriodSet(PWM_BASE, PWM_GEN_0, ulPeriod); 
    PWMGenConfigure(PWM_BASE, PWM_GEN_1, 
                    PWM_GEN_MODE_UP_DOWN | PWM_GEN_MODE_NO_SYNC); 
    PWMGenPeriodSet(PWM_BASE, PWM_GEN_1, ulPeriod); 
    PWMGenConfigure(PWM_BASE, PWM_GEN_2, 
                    PWM_GEN_MODE_UP_DOWN | PWM_GEN_MODE_NO_SYNC); 
    PWMGenPeriodSet(PWM_BASE, PWM_GEN_2, ulPeriod); 
 
    // 
    // Set PWM0 to a duty cycle of 25% and PWM1 to a duty cycle of 75%. 
    // 
    PWMPulseWidthSet(PWM_BASE, PWM_OUT_0, ulPeriod*inipwm/100); 
    PWMPulseWidthSet(PWM_BASE, PWM_OUT_1, ulPeriod*inipwm/100); 
    PWMPulseWidthSet(PWM_BASE, PWM_OUT_2, ulPeriod*inipwm/100); 
    PWMPulseWidthSet(PWM_BASE, PWM_OUT_3, ulPeriod*inipwm/100); 
    PWMPulseWidthSet(PWM_BASE, PWM_OUT_4, ulPeriod*inipwm/100); 
    PWMPulseWidthSet(PWM_BASE, PWM_OUT_5, ulPeriod*inipwm/100); 
 
    // 
    // Enable the PWM0 and PWM1 output signals. 
    // 



72 
 

    PWMOutputState(PWM_BASE, PWM_OUT_0_BIT | PWM_OUT_1_BIT | PWM_OUT_2_BIT | PWM_OUT_3_BIT | 
                   PWM_OUT_4_BIT | PWM_OUT_5_BIT , true); 
 
    // 
    // Enable the PWM generator. 
    // 
    PWMGenEnable(PWM_BASE, PWM_GEN_0); 
    PWMGenEnable(PWM_BASE, PWM_GEN_1); 
    PWMGenEnable(PWM_BASE, PWM_GEN_2); 
     
//##############    CAD      #################################################### 
   
  
SysCtlPeripheralEnable(SYSCTL_PERIPH_ADC); 
ADCSequenceConfigure(ADC_BASE, 0, ADC_TRIGGER_PROCESSOR, 1); 
ADCSequenceStepConfigure(ADC_BASE, 3, 0, ADC_CTL_CH0 | ADC_CTL_END); 
ADCProcessorTrigger(ADC_BASE, 0); 
 
ADCSequenceConfigure(ADC_BASE, 1, ADC_TRIGGER_PROCESSOR, 0); 
ADCProcessorTrigger(ADC_BASE, 1); 
ADCSequenceStepConfigure(ADC_BASE, 1, 0, ADC_CTL_CH1); 
ADCSequenceStepConfigure(ADC_BASE, 1, 1, ADC_CTL_CH1); 
ADCSequenceStepConfigure(ADC_BASE, 1, 2, ADC_CTL_CH1); 
ADCSequenceStepConfigure(ADC_BASE, 1, 3, ADC_CTL_CH1); 
ADCSequenceStepConfigure(ADC_BASE, 1, 4, ADC_CTL_CH1); 
ADCSequenceStepConfigure(ADC_BASE, 1, 5, ADC_CTL_CH1); 
ADCSequenceStepConfigure(ADC_BASE, 1, 6, ADC_CTL_CH1); 
ADCSequenceStepConfigure(ADC_BASE, 1, 7, ADC_CTL_CH1); 
ADCSequenceStepConfigure(ADC_BASE, 1, 8, ADC_CTL_CH1 | ADC_CTL_END); 
 
ADCSequenceEnable(ADC_BASE, 0); 
ADCSequenceEnable(ADC_BASE, 1); 
 
//################timer - interrupção  #####################   
SysCtlPeripheralEnable(SYSCTL_PERIPH_TIMER0);     //habilita o timer 0 
SysCtlPeripheralEnable(SYSCTL_PERIPH_TIMER1);     //habilita o timer 1 
 
IntMasterEnable(); 
//timer 0 
TimerConfigure(TIMER0_BASE, TIMER_CFG_32_BIT_PER);       //Configura o timer 0 
TimerLoadSet(TIMER0_BASE, TIMER_A, SysCtlClockGet()*TA); //Ajuste de tempo, 
//para variar o tempo de interrução deve mudar o valor de TA, onde a interrupçaõ ocorrerá a cada TA segundos 
IntEnable(INT_TIMER0A);                               //habilita a interução do timer  
TimerIntEnable(TIMER0_BASE, TIMER_TIMA_TIMEOUT);      //habilita interrupção do timer0 
TimerEnable(TIMER0_BASE, TIMER_A);                    //iniicializa o timer 0 
//timer 1 
 
TimerConfigure(TIMER1_BASE, TIMER_CFG_32_BIT_PER);    //Configura o timer 1 
TimerLoadSet(TIMER1_BASE, TIMER_A, SysCtlClockGet()*TPWM); //Ajuste de tempo, para variar o tempo de 
interrução deve mudar o valor de TPWM, onde a  
 
interrupçaõ ocorrerá a cada TPWM segundos 
//IntEnable(INT_TIMER1A);     //habilita a interução do timer1, no caso está comentado pois só sera inicializado 
no loop infinito, quando p botão for  
 
acionado 
TimerIntEnable(TIMER1_BASE, TIMER_TIMA_TIMEOUT);    //habilita interrupção do timer0 
TimerEnable(TIMER1_BASE, TIMER_A);    //iniicializa o timer 1 
IntEnable(INT_TIMER1A); 
//################encoder##################################### 
 
//QEIEnable(QEI_BASE);    
SysCtlPeripheralEnable(SYSCTL_PERIPH_QEI);    //utilizar encoder 
SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOC);  //utilizar porta C 
QEIDisable(QEI0_BASE);                        //desabilitar encoder 0 
QEIVelocityDisable(QEI0_BASE);                //desabilitar velocidade 
GPIOPinTypeQEI(GPIO_PORTC_BASE, GPIO_PIN_4);  //Pino 4 da porta C como encoder 
GPIOPinTypeQEI(GPIO_PORTC_BASE, GPIO_PIN_6);  //Pino 6 da porta C como encoder 
QEIConfigure(QEI_BASE,QEI_CONFIG_CAPTURE_A |   //configuração  
             QEI_CONFIG_NO_RESET | 
             QEI_CONFIG_QUADRATURE | 
             QEI_CONFIG_NO_SWAP, 2999); 
QEIVelocityConfigure(QEI_BASE, QEI_VELDIV_1, 100000); 
QEIVelocityEnable(QEI0_BASE);                 //habilita velocidade 
 
QEIEnable(QEI0_BASE);                         //habilita encoder 
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//#########################serial################################ 
SysCtlPeripheralEnable(SYSCTL_PERIPH_UART0);    //habilita serial 
SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOA);    //habilita porta A 
GPIOPinTypeUART(GPIO_PORTA_BASE, GPIO_PIN_0 | GPIO_PIN_1);  //Pinos 0 e 1 da porta A como serial 
UARTConfigSetExpClk(UART0_BASE, SysCtlClockGet(), 115200,     //configuração 
                        (UART_CONFIG_WLEN_8 | UART_CONFIG_STOP_ONE | 
                         UART_CONFIG_PAR_NONE)); 
IntEnable(INT_UART0);                                 //Habilita serial 
UARTIntEnable(UART0_BASE, UART_INT_RX | UART_INT_RT); 
//UARTSend((unsigned char *)"Enter text: ", 12);       //Chama rotina para enviar o texto "Enter text" 
 
 
RIT128x96x4StringDraw("Amostrando", 20, 20, 15); 
 
//teste tempo 
//GPIOPinTypeGPIOOutput(GPIO_PORTC_BASE, (GPIO_PIN_4)); 
//GPIODirModeSet(GPIO_PORTC_BASE, (GPIO_PIN_4), GPIO_DIR_MODE_OUT); 
 
//Modo 6 pulsos 
//GPIOPinTypeGPIOOutput(GPIO_PORTA_BASE, (GPIO_PIN_2 )); 
//GPIOPinTypeGPIOOutput(GPIO_PORTA_BASE, (GPIO_PIN_3 )); 
//GPIOPinTypeGPIOOutput(GPIO_PORTA_BASE, (GPIO_PIN_4 )); 
//GPIOPinTypeGPIOOutput(GPIO_PORTA_BASE, (GPIO_PIN_5 )); 
//GPIOPinTypeGPIOOutput(GPIO_PORTA_BASE, (GPIO_PIN_6 )); 
//GPIOPinTypeGPIOOutput(GPIO_PORTA_BASE, (GPIO_PIN_7 )); 
//GPIODirModeSet(GPIO_PORTA_BASE, (GPIO_PIN_2) , GPIO_DIR_MODE_OUT); 
//GPIODirModeSet(GPIO_PORTA_BASE, (GPIO_PIN_3) , GPIO_DIR_MODE_OUT); 
//GPIODirModeSet(GPIO_PORTA_BASE, (GPIO_PIN_4) , GPIO_DIR_MODE_OUT); 
//GPIODirModeSet(GPIO_PORTA_BASE, (GPIO_PIN_5) , GPIO_DIR_MODE_OUT); 
//GPIODirModeSet(GPIO_PORTA_BASE, (GPIO_PIN_6) , GPIO_DIR_MODE_OUT); 
//GPIODirModeSet(GPIO_PORTA_BASE, (GPIO_PIN_7) , GPIO_DIR_MODE_OUT); 
 
 
//Chave 
// 
 
//################################################### 
// 
// LOOP 
// 
//################################################### 
    while(1) 
    { 
  
//      portae=0; 
//      portae = GPIOPinRead(GPIO_PORTE_BASE,(GPIO_PIN_2 | GPIO_PIN_1 | GPIO_PIN_0 )); 
//      if (portae==1) 
//      { 
//        IntEnable(INT_TIMER1A); 
// 
//      } 
//      if (portae==4) 
//      { 
//        IntDisable(INT_TIMER1A);      //Desabilita a interrupção 0 (amostras) 
//        GPIOPinWrite(GPIO_PORTA_BASE, (GPIO_PIN_2 | GPIO_PIN_3 | GPIO_PIN_4 | GPIO_PIN_5 | GPIO_PIN_6 
| GPIO_PIN_7), 0); 
//         
//      } 
//      if (portae==2) 
//      { 
//        TPWM = 0.1; 
//        TimerLoadSet(TIMER1_BASE, TIMER_A, SysCtlClockGet()*TPWM); //Ajuste de tempo 
//        flagv++; 
//        if (flagv==1) 
//        { 
//          TPWM = 0.5; 
//        } 
//        if (flagv==2) 
//        { 
//          TPWM = 0.1; 
//        } 
//        if (flagv==3) 
//        { 
//          TPWM = 1/360; 
//        } 
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//      }  
      if (count > amostras-1) 
{ 
 
RIT128x96x4Clear(); 
IntDisable(INT_TIMER0A);      //Desabilita a interrupção 0 (amostras) 
IntDisable(INT_TIMER1A);    //Desabilita a interrupção 1 (PWM) 
RIT128x96x4StringDraw("enviando via serial", 20, 20, 15); 
 
//################################################### 
// 
// COMUNICAÇÃO SERIAL 
// 
//################################################### 
UARTSend("CAD:",5); 
              for(i=0;i<=(amostras-1); i++) 
              { 
                sprintf(buf, "%i", cad[i]); 
                UARTSend(" ", 1); // manda espaço para separar 
                    if (cad[i] <= 9) 
                    { 
                     UARTSend(buf, 1); 
                    } 
                    else if (cad[i] <= 99) 
                    { 
                    UARTSend(buf, 2); 
                    } 
                    else if  (cad[i] <= 999) 
                    { 
                    UARTSend(buf, 3); 
                    } 
                    else 
                    {  
                    UARTSend(buf, 4); 
                    } 
                } 
//////################## Posição ################ 
//UARTSend(" POS=",5); 
//for(i=0;i<=(amostras-1); i++) 
//{ 
//sprintf(buf, "%d", pos[i]); 
//UARTSend(" ", 1); // manda espaço para separar 
//  if (pos[i] <= 9) 
//  { 
//    UARTSend(buf, 1); 
//      } 
//  else if (pos[i] <= 99) 
//  { 
//    UARTSend(buf, 2); 
//  } 
//  else if  (pos[i] <= 999) 
//  { 
//    UARTSend(buf, 3); 
//  } 
//  else 
//  { 
//    UARTSend(buf, 4); 
//  } 
//} 
//########################################       
              UARTSend(" VELT =",7); 
for(i=0;i<=(amostras-1); i++) 
{ 
sprintf(buf, "%d", velt[i]); 
UARTSend(" ", 1); // manda espaço para separar 
  if (velt[i] <= 9) 
  { 
    UARTSend(buf, 1); 
  } 
  else if (velt[i] <= 99) 
  { 
    UARTSend(buf, 2); 
  } 
  else if  (velt[i] <= 999) 
  { 
    UARTSend(buf, 3); 
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  } 
  else 
  { 
    UARTSend(buf, 4); 
  } 
} 
 
//################## 
//UARTSend(" VEL=",5); 
//for(i=0;i<=(amostras-1); i++) 
//{ 
//sprintf(buf, "%d", vel[i]); 
//UARTSend(" ", 1); // manda espaço para separar 
//  if (vel[i] <= 9) 
//  { 
//    UARTSend(buf, 1); 
//  } 
//  else if (vel[i] <= 99) 
//  { 
//    UARTSend(buf, 2); 
//  } 
//  else if  (vel[i] <= 999) 
//  { 
//    UARTSend(buf, 3); 
//  } 
//  else 
//  { 
//    UARTSend(buf, 4); 
//  } 
//} 
//################## 
//UARTSend(" DIR=",5); 
//for(i=0;i<=(amostras-1); i++) 
//{ 
//sprintf(buf, "%d", dir[i]); 
//UARTSend(" ", 1); // manda espaço para separar 
//  if (dir[i] <= 9) 
//  { 
//    UARTSend(buf, 1); 
//  } 
//  else if (dir[i] <= 99) 
//  { 
//    UARTSend(buf, 2); 
//  } 
//  else if  (dir[i] <= 999) 
//  { 
//    UARTSend(buf, 3); 
//  } 
//  else 
//  { 
//    UARTSend(buf, 4); 
//  } 
//} 
RIT128x96x4Clear(); 
RIT128x96x4StringDraw("FIM", 20, 20, 15); 
//sprintf(buf, "%d", count ); 
//RIT128x96x4StringDraw(buf, 20, 40, 15); 
RIT128x96x4Clear(); 
RIT128x96x4StringDraw("FIM", 20, 20, 15); 
count=0; 
}       
//if (difPWM2>=99) 
//{ 
//  IntDisable(INT_TIMER1A);    //Desabilita a interrupção 1 (PWM) 
//} 
    } 
}  



76 
 

  



77 
 

Anexos II - Esquemático  
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