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Resumo

Ciclos Cientificos: um Modelo Dindmico da Teoria de Kuhn

Objetivo: Entender como campos académicos se desenvolvem através de
mudangas de paradigmas, usando modelagem econdémica Método: O modelo
apresentado por (MATSUYAMA,1999) ¢é reinterpretado como um modelo de
desenvolvimento cientifico, que entdo é testado no Python, com seus parametros
modificados Resultados: Conhecimento parece se beneficiar de ciclos alternados
de producgéo cientifica dentro de um paradigma e fora.

Descritores: Modelo de Crescimento, Ciéncia, Paradigma Cientifico



ABSTRACT

CienTIFic CycLes: A Dynamic MobpeL oF KuHNIAN THEORY

Purpose: To understand how scientific fields develop through changes in paradigms,
using economic modelling. Method: Reinterperting the model proposed in
(MATSUYAMA, 1999), we derive a model of scientific development, that we then
estimate on Python, seeing the effects of altering parameters Results: Knowledge
seems to benefit from these alternating cycles of science production within a
paradigm and science production without a paradigm.

Key words: Growth model, Science, Scientific Paradigm
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1.1 INTRODUCTION

Throughout the 20th century philosophers studied how science was
produced and developed. With a significant development by (POPPER, 1935), and
his notion of falseability, with which he argued that science works by refuting theories
by objective testing. Once a theory is refuted, it must be abandoned.

Then, in response to Popper, (KUHN, 1970) argued that no scientific field
had such a linear development as was proposed, as scientists work within a
Paradigm, in which there are uncontestable truths. As a Paradigm begins to fail to
describe new aspects of reality, he remains in use until a new paradigm is developed,
enveloping all that is already known, and the scientific community adheres to it.

In Kuhn’s proposition, there are two alternating moments in a scientific field:
when the paradigm is working, and scientists produce within the paradigm, which is
called a moment of Normal Science; and when the paradigm fails, and researchs
must find solutions ouutside of the paradigm, in a moment that is called
Revolutionary Science.

Following this proposition, (MERTON,1973) then opens the doors for the
production of sociology of science, using methods of their field to understand the
behavior of academics.

Though there are a few attempts to bring an economics perspective to
analyse the scientific process, as seen in (BROCK, DURLAUF, 1998; PARTHA,
DAVID 1994; STEPHAN, 2010), it is still a sparse field, and with little dialogue with
the similar fields within philosophy and sociology.

More recently, (AKERLOF, MICHAILLAT, 2017) develops a model that tries to
represent a part of Kuhn’s argument, as academics responsible for hiring new
colleagues aim to hire young researchers that produce high quality research, while
having a bias towards academics that adhere to the same paradigm as the agent.
Although this brings great insight about the moment of adoption of new paradigms, it

avoids the question of which context leads to the rise of new paradigms.



1.2 OBJECTIVES

This work aims to:
1. Develop a model of the alternance between moments of normal and
revolutionary sciences;
2. Understand what promotes more frequent alterations to paradigms and
research programs;
3. See if this changes to paradigm are beneficial to the development of the
fields.



2 METHOD AND MODEL
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1 METHOD AND MODEL

1.3 METHOD

Using the model from (MATSUYAMA, 1999) as basis, we reinterpret the
variables as to describe the behavior of an academic field, renewing itself as their
models and technologies get saturated.

Then, we input the model in Python 3, and analyse its dynamics, given

diferent parameters.

1.4 THE MODEL

In this model, time, t, flows discretely, from 1 to infinity. The scientific
enterprise will be represented by an economy with single final good, Knowledge, that
can be consumed or used to encourage researchers into the next period. These

researchers will be called K.

Before the group of researchers produce more knowledge, they must
allocate themselves among a variety of research programs. These programs then

become the final good through a symmetric CES. The production function is:
Nt
A 1_i
1. Yt = A{{ [xt(z)] ° dz}
where xt(z) indicates how much of the program z is being used by researchers at

time t. The partial elasticity of direct substitution is o € (1, ), and [0, Nt] is the

interval of possible research programs at the moment t.

At moment t, the academy works on all programs in [0, Nt—l]’ with N0 > 0.
Alternatively, it may also be added programs z € [Nt_l, Nt], that exclusively produced

by their creator in time t. The marginal cost of developing new programs is F
researchers’ time. The cost of production of both old and new research varieties is a
units of researchers’ time.

The marginal cost of production is constant and equal to a. Old research

programs are produced competitively and, therefore, at their marginal cost:
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pt(z) = pc =aq, forall z € [0, NH]. All new research programs, if they exist, are sold

_ ac

for pt(z) =p = — Z € [Nt—l' Nt]. Since the agregate production function uses the

. . _c . m
programs simmetrically, xt(z) =X, for z € [O, Nt—l]’ and xt(z) =x, , forz € [Nt—l' Nt]

, satisfying the condition:

< e ] LTo
2. —=|—| =]1-—=

e
The monopoly of a period provided by the creation of a program encourages

innovation, and there aren’t any entry barriers to innovation. The profit of the

development of a new program, considering the fixed cost, is o= pmxzn - (axin + F)

. Therefore, the profit is negative if, and only if, ax;n < (o — 1)F . As there aren’t any
entry barriers
3. ax"< (o -~ DF, N 2N_, (axin — (o - 1)F)(Nt -N,_)=0

This means that when scientists don’t expect that the use of new research
programs will reach the break-even point (ax;" < (o0 — 1)F), there is no incentive to
the production of new programmes (Nt = Nt—1)' However, when there is innovation (
Nt > Nt—l)’ the innovators operate at break-even, and consequently have no profit.

The researchers’ time restriction at period t on the production of knowledge
may be expressed as

Cc m
K_, =N_ax +(N - Nt_l)(axt + F)

Using the equations 2 and 3, the restriction above can be rewritten as

—0 K
4, axi = a[l - %] xzn = min{ = GGF}

N )
t—1

and

_ K:—l
5. N=N__ + max{O,—GF - GNt_l]

1-o
Where 95[1 — %] , depends positively on o and its value goes from 1 to e, with o

going from 1 to co.

Using the equation 1, we have that the total scientific production equals
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c

A m\ 1~ (1/0)
Yt =4 Nt—l(xt + (Nt B Nt—l)(xt ) ’

Using the equations 3, 4, 5, we can rewrite the function as

1-(1/0)
[Kt 1] ’

)1—(1/0)

1/o

6. Y = {A[0cFN_] K_, <O0FN_ AK_, K_ = 60FN__

where

" 1/0
_ A a
A =T[90F] .

Equations 5 and 6 describe what happens on the the production side of academy at

period t.

K
Ith—’1 < O0F , then there is no innovation, as K— the researchers’ total time —

-1
is too small relative to the amount of research programmes, N. All programs produce
science competitively, and the reduced form of the aggregate production function has
all the usual proprieties of neoclassical growth theory, with decreasing returns on
inputs. The academy is considered in Solow State, that we will consider equivalent to
Kuhn’s Normal Science Period. Note that a higher cost to inovation elongates this
period. A higher substitution elasticity, o, has the same effect, as it diminishes the

gains of innovation.

K
If Nf—’l > 00F , the researchers have too much time for the number of programs, and

-1
new research programs arise. The reduced form of the aggregate model is linear in
researchers’ time in this interval, that may be called Revolutionary Science Program.

Now, to complete the model, it is necessary that we specify the the process by which
the researchers of the new period are determined from the Knowledge produced in
the previous period. We will simply assume that

7. Kt= uYt

That is, a constant fraction of what was produced serves as the basis of the next
period’s production. With that, the equations 5, 6 and 7 determine uniquely the

equilibrium path for any initial conditions K, and N, This dynamic system is linearly
homogeneous in K and N. Let us define

p— t
kt - NteoF
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such that the critical value of k, k°, that separates both regimen of scientific
production, be equal to 1. Our system may be then described as a one-dimension

transformation, &: R+ - R+,

_ _ 1-(1/0) Gk, )
8. kt - q)(kt—1)= {G(kt—l) ’ kt—1< 1 1+0((k,_)-1)’ kt—lzl

where G = pA. The equilibrium path for a initial condition k0 is given by {d)t(ko)}, que

d)t(k) is defined by induction, where ¢1(k) = ®(k) and CDt(k) = CD(cDH(k))'



3 OUTCOME AND DYNAMICS
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2 OUTCOME AND DYNAMICS

This dynamic system seen in equation 8 has a single steady state. If G < 1,
the steady state is in the Normal Science regimen, given by k. =k = G’ <k=1.

Without innovation, all research programs are provided competitively, and knowledge
stagnates.
If G > 1, the steady state is in the revolucionary science regimen, given by

kt -k =1 + (G —-1)/6 > k°= 1. In ths steady state, new progras are developed

constantly, and K and N grow at the same rhythm. This is the balanced growth path.

From equations 6 and 7, K = pY = pAK = GK__, and as such G is equal to the

gross growth rate. Note that ¢ = uA is the key parameter to determine the potential
development of knowledge. If the parameter is greater than 1, research develops. If it
is less than 1, knowledge stays stationary.

This is represented in image 1, as the steady states are represented as the
crossing points between the function ¢ and the identity function. In orange, we can
see G is 0.75, and the steady state is at the first part of the function ¢. In the other 2
examples, G is greater than 1, generating steady states at the ‘revolutionary’ part of
the function.

IMAGE 1 - STEADY STATE OF k
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Both ¢ and o are essential to determine the long-term behavior of the academic
field. When G < 1, the level of k stabilizes in a level lower than 1 as well, as can be
seen in image 2, independent of the elasticity of substitution o and ko.

IMAGE 2- Kk WHEN G = 0.75 AND 0 = 2
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However, given G > 1, the behavior of k will chance dependent on o. If

q)z(kc) <k< q)(kc), the equilibrium path will alternate between moments of Normal
science and moments of revolucionary Science. This interval is equivalent to
1 < G < 06-1, as shown here:

c|>2(kc)<kc< c|>(kc)<—>¢(c)< 1<G
PO =< 1
G'—1<0G-1)
G+1<0

As 0 is uniquely determined by the elasticity of substitution o, this alternating
path will appear when o is large enough, as seen in image 3. Otherwise, growth will
stabilize in the balanced growth path, in which both K and N are constantly growing,
at the same pace. That can be seen in image 4.

As shown, growth of K along the balanced growth path equals G, and from

equation 6, we know that growth of Y must follow the same rhythm. From equation 6,
we also know that Y does not grow in the normal science stationary path, as both K
and N also do not grow.

As can be seen in image 5, growth in the alternating path is greater than in

balanced growth path and, as such, greater than G.



IMAGE 3-kWHEN G = 1.5 AND 0 = 10.
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3 DISCUSSION

Most other research by economists on scientific, such as (AKERLOF,
MICHAILLAT, 2017; BROCK, DURLAUF, 1998), developed models that give an
understanding of paradigm choice and adherence at the “micro” level, looking at how
individuals optimize this choice.

Bringing an alternative view, we look at the aggregate effects of this choices,
and try to analyse the quality of the science produced given the general context of
the field. Looking at problem from this manner, we can ask questions about the
quality and quantity of research produced, and which caracteristics of the field might
incentivize such development.

A potential future study might be able to bring both perspectives together so

that we may have a clearer view of how all parts interact.



5 CONCcLUSION
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4 CONCLUSIoN

As was shown in the model, the most efficient way for Knowledge to develop
is in growth path that alternates between moments of Normal Science, in which
everyone works within a paradigm, and moments of Revolutionary Science, in which
part of the scientific community focus on developing new methods.

This alternance may incentivized by an increase in the elasticity of
substitution between different agendas, which may be interpreted as an easier
communication between these different research agendas, and therefore more
mixture between different fields. Another way to incentivize development of new
agendas may be to reduce the fixed costs associated with it, which is something that

universities already do, with tenure.
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