
MIGUEL DE ARAUJO CINTRA SALLUM

SCIENTIFIC CYCLES: A DYNAMIC MODEL OF KUHNIAN THEORY

Dissertação apresentada à Faculdade de
Economia, Administração, Contabilidade e
Atuária da Universidade de São Paulo, como
requisito parcial para a obtenção do título de
Bacharel em Economia.

Orientador: Prof. Dr. Felipe Leon Peres
Camargo Shalders

SÃO PAULO
2022

MIGUEL DE ARAUJO CINTRA SALLUM



FICHA CATALOGRÁFICA



AGRADECIMENTOS

A Amanda, por me aguentar e apoiar em todos os momentos, me garantindo

um norte.

Ao Prof. Dr. Felipe Shalders, que me ensinou e me apoiou muito, e se dispôs

ainda mais.

Aos meus colegas do Not-GEEP, que compartilharam ideias e conhecimento

ao longo desses anos, servindo de grande incentivo.





SUMÁRIO

RESUMO V

ABSTRACT VI

1 INTRODUCTION 8
1.1 INTRODUCTION 8

1.2 OBJECTIVES 9

2 METHOD AND MODEL 11
2.1 METHOD 11

2.2 MODEL 11

3 OUTCOME AND DYNAMICS 16
4 DISCUSSION 15
5 CONCLUSION 21
REFERENCES 22



RESUMO

Ciclos Científicos: um Modelo Dinâmico da Teoria de Kuhn

Objetivo: Entender como campos acadêmicos se desenvolvem através de
mudanças de paradigmas, usando modelagem econômica Método: O modelo
apresentado por (MATSUYAMA,1999) é reinterpretado como um modelo de
desenvolvimento científico, que então é testado no Python, com seus parâmetros
modificados Resultados: Conhecimento parece se beneficiar de ciclos alternados
de produção científica dentro de um paradigma e fora.

Descritores: Modelo de Crescimento, Ciência, Paradigma Científico



ABSTRACT

CIENTIFIC CYCLES: A DYNAMIC MODEL OF KUHNIAN THEORY

Purpose: To understand how scientific fields develop through changes in paradigms,
using economic modelling. Method: Reinterperting the model proposed in
(MATSUYAMA, 1999), we derive a model of scientific development, that we then
estimate on Python, seeing the effects of altering parameters Results: Knowledge
seems to benefit from these alternating cycles of science production within a
paradigm and science production without a paradigm.

Key words: Growth model, Science, Scientific Paradigm



1 INTRODUCTION



8

INTRODUCTION

1 INTRODUCTION

1.1 INTRODUCTION

Throughout the 20th century philosophers studied how science was

produced and developed. With a significant development by (POPPER, 1935), and

his notion of falseability, with which he argued that science works by refuting theories

by objective testing. Once a theory is refuted, it must be abandoned.

Then, in response to Popper, (KUHN, 1970) argued that no scientific field

had such a linear development as was proposed, as scientists work within a

Paradigm, in which there are uncontestable truths. As a Paradigm begins to fail to

describe new aspects of reality, he remains in use until a new paradigm is developed,

enveloping all that is already known, and the scientific community adheres to it.

In Kuhn’s proposition, there are two alternating moments in a scientific field:

when the paradigm is working, and scientists produce within the paradigm, which is

called a moment of Normal Science; and when the paradigm fails, and researchs

must find solutions ouutside of the paradigm, in a moment that is called

Revolutionary Science.

Following this proposition, (MERTON,1973) then opens the doors for the

production of sociology of science, using methods of their field to understand the

behavior of academics.

Though there are a few attempts to bring an economics perspective to

analyse the scientific process, as seen in (BROCK, DURLAUF, 1998; PARTHA,

DAVID 1994; STEPHAN, 2010), it is still a sparse field, and with little dialogue with

the similar fields within philosophy and sociology.

More recently, (AKERLOF, MICHAILLAT, 2017) develops a model that tries to

represent a part of Kuhn’s argument, as academics responsible for hiring new

colleagues aim to hire young researchers that produce high quality research, while

having a bias towards academics that adhere to the same paradigm as the agent.

Although this brings great insight about the moment of adoption of new paradigms, it

avoids the question of which context leads to the rise of new paradigms.
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1.2 OBJECTIVES

This work aims to:

1. Develop a model of the alternance between moments of normal and

revolutionary sciences;

2. Understand what promotes more frequent alterations to paradigms and

research programs;

3. See if this changes to paradigm are beneficial to the development of the

fields.



2 METHOD AND MODEL
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1 METHOD AND MODEL

1.3 METHOD

Using the model from (MATSUYAMA, 1999) as basis, we reinterpret the

variables as to describe the behavior of an academic field, renewing itself as their

models and technologies get saturated.

Then, we input the model in Python 3, and analyse its dynamics, given

diferent parameters.

1.4 THE MODEL

In this model, time, t, flows discretely, from 1 to infinity. The scientific

enterprise will be represented by an economy with single final good, Knowledge, that

can be consumed or used to encourage researchers into the next period. These

researchers will be called .𝐾
𝑡−1

Before the group of researchers produce more knowledge, they must

allocate themselves among a variety of research programs. These programs then

become the final good through a symmetric CES. The production function is:

1. 𝑌
𝑡

= 𝐴
^

0

𝑁
𝑡

∫ 𝑥
𝑡

𝑧( )[ ]1− 1
σ  𝑑𝑧

⎰
⎱

⎱
⎰

where indicates how much of the program is being used by researchers at𝑥
𝑡

𝑧( ) 𝑧

time t. The partial elasticity of direct substitution is , and is theσ ∈ 1, ∞( ) 0, 𝑁
𝑡[ ]

interval of possible research programs at the moment .𝑡

At moment , the academy works on all programs in , with .𝑡 0, 𝑁
𝑡−1[ ] 𝑁

0
> 0

Alternatively, it may also be added programs , that exclusively produced𝑧 ∈ 𝑁
𝑡−1

, 𝑁
𝑡[ ]

by their creator in time . The marginal cost of developing new programs is𝑡 𝐹

researchers’ time. The cost of production of both old and new research varieties is 𝑎

units of researchers’ time.

The marginal cost of production is constant and equal to . Old research𝑎

programs are produced competitively and, therefore, at their marginal cost:
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, for all . All new research programs, if they exist, are sold𝑝
𝑡

𝑧( ) ≡ 𝑝𝑐 = 𝑎 𝑧 ∈ 0, 𝑁
𝑡−1[ ]

for , . Since the agregate production function uses the𝑝
𝑡

𝑧( ) ≡ 𝑝𝑚 = 𝑎σ
σ−1 𝑧 ∈ 𝑁

𝑡−1
, 𝑁

𝑡[ ]
programs simmetrically, , for , and , for𝑥

𝑡
𝑧( ) ≡ 𝑥

𝑡
𝑐 𝑧 ∈ 0, 𝑁

𝑡−1[ ] 𝑥
𝑡

𝑧( ) ≡ 𝑥
𝑡
𝑚 𝑧 ∈ 𝑁

𝑡−1
, 𝑁

𝑡[ ]
, satisfying the condition:

2.
𝑥

𝑡
𝑐

𝑥
𝑡
𝑚 =

𝑝
𝑡
𝑐

𝑝
𝑡
𝑚

⎡⎢⎢⎣

⎤⎥⎥⎦

−σ

= 1 − 1
σ⎡⎣ ⎤⎦

−σ

The monopoly of a period provided by the creation of a program encourages

innovation, and there aren’t any entry barriers to innovation. The profit of the

development of a new program, considering the fixed cost, is π
𝑡

= 𝑝𝑚𝑥
𝑡
𝑚 − 𝑎𝑥

𝑡
𝑚 + 𝐹( )

. Therefore, the profit is negative if, and only if, . As there aren’t any𝑎𝑥
𝑡
𝑚 < σ − 1( )𝐹

entry barriers

3. 𝑎𝑥
𝑡
𝑚 ≤ σ − 1( )𝐹,  𝑁

𝑡
≥ 𝑁

𝑡−1
,   𝑎𝑥

𝑡
𝑚 − σ − 1( )𝐹( ) 𝑁

𝑡
− 𝑁

𝑡−1( ) = 0

This means that when scientists don’t expect that the use of new research

programs will reach the break-even point ( ), there is no incentive to𝑎𝑥
𝑡
𝑚 < σ − 1( )𝐹

the production of new programmes ( ). However, when there is innovation (𝑁
𝑡

= 𝑁
𝑡−1

), the innovators operate at break-even, and consequently have no profit.𝑁
𝑡

> 𝑁
𝑡−1

The researchers’ time restriction at period t on the production of knowledge

may be expressed as

𝐾
𝑡−1

= 𝑁
𝑡−1

𝑎𝑥
𝑡
𝑐 + 𝑁

𝑡
− 𝑁

𝑡−1( ) 𝑎𝑥
𝑡
𝑚 + 𝐹( )

Using the equations 2 and 3, the restriction above can be rewritten as

4. 𝑎𝑥
𝑡
𝑐 = 𝑎 1 − 1

σ⎡⎣ ⎤⎦
−σ

𝑥
𝑡
𝑚 = 𝑚𝑖𝑛

𝐾
𝑡−1

𝑁
𝑡−1

, θσ𝐹
⎰
⎱

⎱
⎰

and

5. 𝑁
𝑡

= 𝑁
𝑡−1

+ 𝑚𝑎𝑥 0,
𝐾

𝑡−1

σ𝐹 − θ𝑁
𝑡−1{ }

Where depends positively on and its value goes from 1 to , withθ≡ 1 − 1
σ⎡⎣ ⎤⎦

1−σ
,  σ 𝑒 σ

going from 1 to .∞

Using the equation 1, we have that the total scientific production equals
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𝑌
𝑡

= 𝐴
^

𝑁
𝑡−1

𝑥
𝑡
𝑐( )1− 1/σ( )

+ 𝑁
𝑡

− 𝑁
𝑡−1( ) 𝑥

𝑡
𝑚( )1− 1/σ( )⎡

⎢
⎣

⎤
⎥
⎦
.

Using the equations 3, 4, 5, we can rewrite the function as

6. 𝑌
𝑡

= {𝐴[θσ𝐹𝑁
𝑡−1

]1/σ[𝐾
𝑡−1

]1−(1/σ),   𝐾
𝑡−1

< θσ𝐹𝑁
𝑡−1

 𝐴𝐾
𝑡−1

,   𝐾
𝑡−1

≥ θσ𝐹𝑁
𝑡−1

 

where

.𝐴 ≡ 𝐴
^

𝑎
𝑎

θσ𝐹⎡⎣ ⎤⎦
1/σ

Equations 5 and 6 describe what happens on the the production side of academy at

period t.

If , then there is no innovation, as – the researchers’ total time –
𝐾

𝑡−1

𝑁
𝑡−1

≤ θσ𝐹 𝐾

is too small relative to the amount of research programmes, . All programs produce𝑁

science competitively, and the reduced form of the aggregate production function has

all the usual proprieties of neoclassical growth theory, with decreasing returns on

inputs. The academy is considered in Solow State, that we will consider equivalent to

Kuhn’s Normal Science Period. Note that a higher cost to inovation elongates this

period. A higher substitution elasticity, , has the same effect, as it diminishes theσ

gains of innovation.

If , the researchers have too much time for the number of programs, and
𝐾

𝑡−1

𝑁
𝑡−1

> θσ𝐹

new research programs arise. The reduced form of the aggregate model is linear in

researchers’ time in this interval, that may be called Revolutionary Science Program.

Now, to complete the model, it is necessary that we specify the the process by which

the researchers of the new period are determined from the Knowledge produced in

the previous period. We will simply assume that

7. 𝐾
𝑡

= µ𝑌
𝑡

That is, a constant fraction of what was produced serves as the basis of the next

period’s production. With that, the equations 5, 6 and 7 determine uniquely the

equilibrium path for any initial conditions and . This dynamic system is linearly𝐾
0

𝑁
0

homogeneous in and . Let us define𝐾 𝑁

𝑘
𝑡

≡
𝐾

𝑡

𝑁
𝑡
θσ𝐹
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such that the critical value of , , that separates both regimen of scientific𝑘 𝑘𝑐

production, be equal to 1. Our system may be then described as a one-dimension

transformation, ,Φ: 𝑅
+

→ 𝑅
+

8. 𝑘
𝑡
  =  Φ 𝑘

𝑡−1( ) ≡ {𝐺(𝑘
𝑡−1

)1−(1/σ),    𝑘
𝑡−1

< 1 
𝐺(𝑘

𝑡−1
)

1+θ((𝑘
𝑡−1

)−1) ,    𝑘
𝑡−1

≥1 

where . The equilibrium path for a initial condition is given by , que𝐺 ≡ μ𝐴 𝑘
0

{Φ
𝑡

𝑘
0( )}

is defined by induction, where andΦ
𝑡

𝑘( ) Φ
1

𝑘( ) =  Φ(𝑘) Φ
𝑡

𝑘( ) = Φ(Φ
𝑡−1

𝑘( )).
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2 OUTCOME AND DYNAMICS

This dynamic system seen in equation 8 has a single steady state. If ,𝐺 ≤ 1
the steady state is in the Normal Science regimen, given by .𝑘

𝑡
= 𝑘* ≡ 𝐺σ ≤ 𝑘𝑐 = 1

Without innovation, all research programs are provided competitively, and knowledge
stagnates.

If , the steady state is in the revolucionary science regimen, given by𝐺 > 1
. In ths steady state, new progras are developed𝑘

𝑡
= 𝑘** ≡ 1 + 𝐺 − 1( )/θ > 𝑘𝑐 = 1

constantly, and and grow at the same rhythm. This is the balanced growth path.𝐾 𝑁
From equations 6 and 7, , and as such is equal to the𝐾

𝑡
= µ 𝑌

𝑡
= µ𝐴𝐾

𝑡−1
= 𝐺𝐾

𝑡−1
𝐺

gross growth rate. Note that is the key parameter to determine the potential𝐺 =  µ𝐴
development of knowledge. If the parameter is greater than 1, research develops. If it
is less than 1, knowledge stays stationary.

This is represented in image 1, as the steady states are represented as the
crossing points between the function and the identity function. In orange, we canϕ
see G is 0.75, and the steady state is at the first part of the function . In the other 2ϕ
examples, G is greater than 1, generating steady states at the ‘revolutionary’ part of
the function.

IMAGE 1 - STEADY STATE OF 𝑘
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Both and are essential to determine the long-term behavior of the academic𝐺 σ
field. When , the level of stabilizes in a level lower than 1 as well, as can be𝐺 < 1 𝑘
seen in image 2, independent of the elasticity of substitution and .σ 𝑘

0

IMAGE 2- WHEN AND𝑘 𝐺 = 0. 75 σ = 2

However, given , the behavior of will chance dependent on . If𝐺 > 1 𝑘 σ
, the equilibrium path will alternate between moments of Normalϕ2 𝑘𝑐( ) < 𝑘𝑐 < ϕ 𝑘𝑐( )

science and moments of revolucionary Science. This interval is equivalent to
, as shown here:1 < 𝐺 < θ – 1

ϕ2 𝑘𝑐( ) < 𝑘𝑐 < ϕ 𝑘𝑐( ) ↔ ϕ 𝐺( ) < 1 < 𝐺

ϕ 𝐺( ) = 𝐺2

1−θ 𝐺−1( ) < 1

𝐺2 − 1 < θ 𝐺 − 1( )

𝐺 + 1 < θ

As is uniquely determined by the elasticity of substitution , this alternatingθ σ
path will appear when is large enough, as seen in image 3. Otherwise, growth willσ
stabilize in the balanced growth path, in which both and are constantly growing,𝐾 𝑁
at the same pace. That can be seen in image 4.

As shown, growth of along the balanced growth path equals , and from𝐾 𝐺

equation 6, we know that growth of must follow the same rhythm. From equation 6,𝑌

we also know that does not grow in the normal science stationary path, as both𝑌 𝐾

and also do not grow.𝑁

As can be seen in image 5, growth in the alternating path is greater than in

balanced growth path and, as such, greater than G.
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IMAGE 3 - WHEN AND .𝑘 𝐺 = 1. 5 σ = 10

IMAGE 4 - WHEN AND .𝑘 𝐺 = 1. 5 σ = 2

IMAGE 5 – COMPARING GROWTH PATH.
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3 DISCUSSION

Most other research by economists on scientific, such as (AKERLOF,

MICHAILLAT, 2017; BROCK, DURLAUF, 1998), developed models that give an

understanding of paradigm choice and adherence at the “micro” level, looking at how

individuals optimize this choice.

Bringing an alternative view, we look at the aggregate effects of this choices,

and try to analyse the quality of the science produced given the general context of

the field. Looking at problem from this manner, we can ask questions about the

quality and quantity of research produced, and which caracteristics of the field might

incentivize such development.

A potential future study might be able to bring both perspectives together so

that we may have a clearer view of how all parts interact.



5 CONCLUSION
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4 CONCLUSION

As was shown in the model, the most efficient way for Knowledge to develop

is in growth path that alternates between moments of Normal Science, in which

everyone works within a paradigm, and moments of Revolutionary Science, in which

part of the scientific community focus on developing new methods.

This alternance may incentivized by an increase in the elasticity of

substitution between different agendas, which may be interpreted as an easier

communication between these different research agendas, and therefore more

mixture between different fields. Another way to incentivize development of new

agendas may be to reduce the fixed costs associated with it, which is something that

universities already do, with tenure.
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