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RESUMO 

 

 

A estimativa de recursos minerais é uma parte fundamental de um projeto de pesquisa 

mineral, dado que os resultados desse cálculo vão definir a viabilidade econômica do 

depósito. Os métodos geoestatísticos são as principais técnicas utilizadas durante a 

estimativa dos recursos minerais, e garantem uma assertividade superior quando 

comparado a métodos não geoestatísticas. Dessa forma, o objetivo desse estudo é realizar 

a estimativa de um depósito de ouro por krigagem lognormal e comparar seus resultados 

com o método mais aplicado nas estimativas, a krigagem ordinária.  A krigagem lognormal 

é um método geoestatístico não linear, que consiste na transformação de uma distribuição 

assimétrica positiva - onde há um predomínio de amostras de baixo teor e poucas de alto 

teor - a partir da aplicação do logaritmo. Esse novo arranjo tende a apresentar um 

comportamento simétrico, de maneira que a estimativa se correlacione melhor com os 

dados amostrais. Neste trabalho foram realizados todos os passos iniciais para aplicação 

da krigagem ordinária para um depósito de ouro, como a validação e regularização da base 

de dados, a modelagem geológica e análise exploratória de dados. Em seguida, essas 

informações foram transformadas pela aplicação do logaritmo e o comportamento 

geoestatístico da variável original e da variável que foi alterada foi analisado. Após a 

realização das estimativas, os resultados da krigagem lognormal passam por uma mudança 

reversa, e são feitas análises estatísticas e gráficas a fim de comparar os produtos de cada 

técnica. Na análise comparativa entre os resultados das estimativas por krigagem ordinária 

e krigagem lognormal, o primeiro apresentou uma assertividade superior, suavizando 

menos e preservando de melhor forma a cauda superior da distribuição. As variáveis em 

estudo apresentam 30% dos valores equivalentes a 0,005 ppm, fazendo com que não se 

classificassem tão bem como lognormais, prejudicando a metodologia pesquisada.  

 

 

 

 

 

 

 

 

 

 



 

 

ABSTRACT 

 

 

The estimation of mineral resources is a fundamental part of a mineral research project, as 

the results of this estimation will determine the economic feasibility of the deposit. 

Geostatistical methods are the main techniques used for mineral resource estimation and 

ensure higher accuracy compared to non-geostatistical methods. The objective of this study 

is to estimate a gold deposit using lognormal kriging and compare its results with the most 

commonly applied method, ordinary kriging. Lognormal kriging is a non-linear geostatistical 

method that involves transforming a positively skewed distribution, characterized by a 

predominance of low-grade samples and few high-grade samples, through the application 

of a logarithm. This new distribution tends to exhibit a symmetrical behavior, allowing for a 

better correlation with the sampling data. In this study, all preliminary steps for the 

application of ordinary kriging for a gold deposit were followed, such as data validation and 

regularization, geological modeling, and exploratory data analysis. Then, the data were 

transformed using the logarithm, and the geostatistical behavior of the original and 

transformed variables was analyzed. After performing the estimations, the results from the 

lognormal kriging were back-transformed, and statistical and graphical analyses were 

conducted to compare the outputs of each technique. In the comparative analysis between 

the results from ordinary kriging and lognormal kriging, the former showed higher accuracy, 

with less smoothing and better preservation of the upper tail of the distribution. The studied 

variables presented 30% of the values equivalent to 0.005 ppm, which hindered their 

classification as lognormal, affecting the methodology under study. 
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1. INTRODUÇÃO 

 

Todo projeto de pesquisa mineral deve fazer um processo de avaliação de recursos e 

reservas do depósito que exploram, realizando a quantificação de teores e volumes envolvidos 

nas operações do empreendimento. Atualmente, o procedimento deve seguir os princípios da 

transparência, da materialidade e da competência (CBRR, 2022). Dessa maneira, é possível 

decifrar informações relacionadas à quantidade de minério disponível no depósito, e qual o nível 

de confiabilidade dos dados envolvidos nessa quantificação. A partir dos recursos e reservas 

minerais quantificados, é possível prever a vida útil da mina, a quantidade de minério que pode 

ser explotado do depósito, o faturamento que se pode gerar, e atrair stakeholders para toda a 

operação, que financiam o desenvolvimento de todo o empreendimento. 

Para garantir que os resultados da estimativa de teores dos minérios sejam precisos e 

acurados, diversos métodos geoestatísticos podem ser usados e têm sido aprimorados nos 

últimos anos. Dentre eles, é possível destacar a krigagem lognormal, que parte da transformação 

logarítmica de dados com distribuição lognormal. Esse processo pode ser realizado através do 

cálculo do logaritmo com qualquer base adicionando ou não uma constante.  

Neste projeto, serão testados diferentes valores de logaritmos na transformação dos 

dados de um bem mineral que apresente distribuição lognormal, e serão comparados os 

resultados obtidos nesses cenários, a partir de métodos de validação da estimativa, como 

validação cruzada e comparação estatística dos domínios. 

 

2. OBJETIVOS E METAS 

 

É muito comum que a distribuição estatística de determinadas variáveis dados 

amostrados em depósitos minerais apresentem distribuição lognormal. Nesta divisão, a presença 

de valores elevados aumenta a variância dos dados, dificultando a assertividade do cálculo do 

variograma e da realização da krigagem ordinária, dado que os variogramas são muito sensíveis 

a altos anômalos, e, portanto, podem ser considerados pouco úteis em sua presença (Journel, 

1983).  

Para contornar essa situação, Journel (1983) propôs duas soluções. A primeira delas seria 

realizar o capping - técnica que reduz valores superiores a um dado limite - desses números 

elevados. Por exemplo, se o limite definido for 5%, todos os valores superiores a ele serão 

igualados a 5%. A segunda solução seria transformar os dados usando a função logaritmo 

natural. Realizando a alteração logarítmica dos dados, é obtida uma distribuição simétrica, que 

facilita a interpretação e modelagem da função variograma. Ela também melhora a estimativa por 

krigagem ordinária, uma vez que a influência dos valores anômalos é minimizada pela 
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transformação. Após a realização da estimativa, os dados alterados são retornados a sua escala 

original, ou seja, é aplicada uma função exponencial para a reversão do logaritmo.  

O principal objetivo deste trabalho é aplicar a krigagem lognormal em um depósito de ouro, 

através de diversas transformações logarítmicas de uma variável com distribuição assimétrica 

positiva, para comparar as diferenças obtidas para cada transformação. Essa análise de 

resultados se baseará principalmente na validação da estimativa, através de métodos como a 

validação cruzada e análise da distribuição estatística dos resultados. Dessa maneira, acredita-

se que será possível calcular, de forma estimada, o minério de ouro presente no depósito da 

maneira mais precisa e acurada possível com o objetivo de otimizar a avaliação de recursos 

minerais da jazida. 

 

3. REVISÃO BIBLIOGRÁFICA 

 

3.1. Distribuição Normal x Lognormal 

 

A representação gráfica da distribuição de frequência permite a visualização dos valores 

de um banco de dados por meio de uma descrição matemática simples. Essas distribuições 

podem ser classificadas como simétricas ou assimétricas - com a cauda de distribuição para 

direita ou esquerda - e podem ser descritas como um único pico ou diversos picos. Dentre 

diferentes tipos delas, podemos dar destaque para normal e a lognormal. 

A distribuição normal, também conhecida como distribuição gaussiana, é uma das mais 

importantes na estatística e na teoria das probabilidades. Ela está presente em alguns processos 

físicos e ocorrências geológicas, e tem uma forma caracterizada como simétrica de pico único. 

Além disso, a maioria dos valores estão concentrados próximos à média e a probabilidade de 

valores extremos diminui conforme os eles se afastam da média. Segundo Krishnamoorthy 

(2016), a distribuição normal é mais utilizada para modelar dados de uma população ou de um 

experimento. 

Além disso, a distribuição normal é muito conveniente pois que suas propriedades são 

matematicamente conhecidas, dado que é definida apenas pela média (𝜇) e desvio padrão (𝜎) 

dos valores. A função densidade de probabilidade da distribuição normal é dada pela Equação 1 

(Kreyszig, 1968):  

𝑦 =
1

𝜎√2𝜋
∙ 𝑒

−
1
2

(
𝑥−𝜇

𝜎
)

2

 

Equação 1: Função densidade de probabilidade de uma distribuição normal (Kreyszig, 1968). 

 

(1) 
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A distribuição lognormal, por sua vez, descreve variáveis cujo logaritmo segue uma 

distribuição normal, ou seja, se uma variável Y é lognormal, então log(Y) apresenta distribuição 

normal. Ela ocorre em diversos fenômenos geológicos como, por exemplo, em mineralizações de 

metais raros como o ouro, prata e cobre. Essa distribuição é caracterizada por variáveis não 

negativas com assimetria positiva (Rossi e Deutsch, 2014), com a cauda da distribuição para a 

direita, e que representa uma grande quantidade de valores baixos e uma pequena quantidade 

para valores altos. A função densidade de probabilidade de uma distribuição lognormal é dada 

pela Equação 2 (Abgterberg, 1974): 

𝑦 =
1

𝑥𝜎√2𝜋
∙ 𝑒

[
1
2

(
𝑙𝑛 𝑥−𝜇

𝜎
)

2

]
 

Equação 2: Função densidade de probabilidade de uma distribuição lognormal (Agterberg, 1974). 

 

Além de facilitar a análise, a transformação logarítmica também possui implicações 

interpretativas. Ao alterar os dados, as interpretações dos parâmetros da distribuição original 

(como a média e a variância) mudam, mas tornam-se mais intuitivas no contexto da modelagem. 

Por exemplo, a média da variável transformada se relaciona com a mediana da variável original, 

uma vez que a distribuição lognormal não é simétrica.  

 

 

Figura 1: Transferência de uma distribuição assimétrica positiva para uma distribuição normal através da 

transformação dos valores em logaritmos. Fonte: (Koch e Link, 1970). 

(2) 
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3.2. Geoestatística 

 

No início da década de 1960, devido a inabilidade da estatística clássica em considerar o 

aspecto espacial de um fenômeno, Matheron (1962) definiu o termo Variável Regionalizada. Esse 

conceito alude a uma função no espaço cujo valor varia de um ponto a outro com alguma 

continuidade aparente, mas sem representação por uma lei matemática extrapolável possível. As 

variáveis regionalizadas são aleatórias e possuem localização definida no espaço. Elas requerem 

o conhecimento do campo geométrico, correspondente a área em que ocorre a variável, podendo 

ser o depósito ou uma parte dele, e do suporte geométrico, que se refere ao volume (tamanho, 

forma e orientação) no qual a variável está definida. 

Matheron (1971) definiu a geoestatística como aplicação da Teoria das Variáveis 

Regionalizadas para a estimativa de depósitos minerais. Dessa maneira, elas passaram a 

representar o elemento básico da geoestatística, que começou a atuar na mineração na década 

de 1970. Um conceito básico dessa teoria é a chamada hipótese intrínseca, a qual implica que 

uma função, conhecida como semivariograma, descreve o comportamento espacial da variável 

regionalizada dentro do espaço, e que essa função é intrínseca a regionalização (Yamamoto, 

2001). Dessa maneira, a geoestatística assume que a variância espacial entre dois pontos 

amostrais é a mesma para todo o domínio, dependendo apenas da distância e orientação entre 

eles.  

A função variograma descreve o comportamento da variância espacial da variável pela 

distância entre pares de pontos. Segundo Caers (2011), os fenômenos espaciais tendem a 

apresentar orientação preferencial, e, portanto, o variograma deve refletir as características 

espaciais do domínio. Em casos geológicos, essa orientação preferencial está relacionada a 

orientação geológica regional ou local, que fornecesse as principais direções para o cálculo dos 

variogramas experimentais. A expressão para o cálculo da função variograma é a seguinte 

(Yamamoto, 2020): 

 

𝛾(ℎ) =
1

2𝑛
∑[𝑍(𝑥𝑖 + ℎ) − 𝑍(𝑥𝑖)]2

𝑛

𝑖=1

 

Equação 3: Equação Variograma (Matheron, 1962). 

 

Na Equação 3, 𝛾(ℎ) é a função variograma e o valor da variância espacial, 𝑍(𝑥𝑖) 

representa uma variável aleatória conforme o vetor de coordenadas (𝑥), ℎ é a distância de 

separação entre dois pontos e o n é o número de pares de pontos separados por h. Após o cálculo 

do variograma experimental, é necessário realizar o ajuste do modelo teórico, que descreve a 

(3) 
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correlação espacial em uma função contínua, de maneira que há valores de variância espacial 

para qualquer distância no domínio. 

O variograma é representado em um gráfico cartesiano, no qual a distância h é plotada 

no eixo das abscissas e a variância espacial 𝛾(ℎ) no eixo das ordenadas, e sempre apresentam 

as mesmas características, independente da variável. Os valores de variância espacial ficam 

menores em pequenas distâncias e à medida que as distâncias aumentam, a variância também. 

 Considerando a Figura 2 e as propriedades do variograma (Yamamoto & Landim, 2013), 

o Efeito Pepita (C0) representa uma continuidade próxima a origem, e é o valor de variância 

espacial para distâncias que tendem a zero; a Variância Espacial (C) é uma medida de 

dissimilaridade de dois pontos no espaço dada uma distância em determinada direção; o Patamar 

(C0+C) corresponde ao valor máximo de variância espacial que os dados apresentam. Já na 

abscissa, a Amplitude (a) equivale a distância máxima onde se consegue estabelecer uma 

dependência espacial entre pares de pontos, e marca a saída do campo estruturado e entrada 

no campo aleatório; o Campo Estruturado é a região com distâncias menores que a amplitude, 

onde há dependência espacial entre pares de pontos, enquanto o Campo Aleatório representa 

distâncias maiores que a amplitude, onde não há mais dependência e a variância espacial é 

máxima. 

 

 

Figura 2: Variograma teórico com propriedades. Fonte: Yamamoto (2001). 

 

A função do ajuste do modelo teórico do variograma é utilizado em técnicas de estimativa 

de uma variável, onde destaca-se a krigagem. Burrough e McDonnell (1998) descreveram a 

krigagem como um processo de interpolação de vários estágios que se baseia no cálculo e 

modelagem do variograma experimental, e segundo Deutsch e Journel (1997), a krigagem é 

BLUE (Best Linear Unbiased Estimator), ou seja, é o melhor estimador linear não enviesado no 

sentido que minimiza a variância da estimativa. Há diversas variantes de krigagem, a depender 
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de como os pesos são obtidos, e dentre as principais técnicas pode-se citar ordinária, a mais 

difundida e utilizada, simples, lognormal, e de variáveis indicadoras. 

A krigagem ordinária consiste em um método de estimativa linear, que é baseado na 

ponderação de amostras no entorno do ponto a ser estimado, e os ponderadores são 

dependentes da variância espacial que o domínio apresenta (Yamamoto, 2001). A estimativa 

resulta da Equação 4, e há uma condição de restrição no qual a soma dos pesos deve ser igual 

a 1, conforme a Equação 5. 

 

𝑍∗(𝑥0) = ∑ 𝜆𝑖𝑍(𝑥𝑖)

𝑛

𝑖=1

 

Equação 4: Cálculo da Krigagem Ordinária. 

 

∑ 𝜆𝑖 = 1

𝑛

𝑖=1

 

Equação 5: Condição de restrição no qual a soma dos pesos deve ser igual a 1. 

 

Considerando as Equações 4 e 5, respectivamente, temos que o 𝑍∗ foi emprestado da 

estatística clássica para representar um estimador, de maneira que 𝑍∗(𝑥0) corresponde ao valor 

da variável estimada no ponto 𝑥0; 𝑍(𝑥𝑖) equivale ao valor que a variável assume na i-ésima 

amostra da vizinhança; e finalmente o 𝜆𝑖 é o ponderador que cada amostra 𝑍(𝑥𝑖) recebe. Os 

valores de 𝜆𝑖  são obtidos a partir da resolução de um sistema de equações lineares conhecido 

por sistema de krigagem. 

Entretanto, dados com variância elevada dificultam o cálculo da função variograma e a 

estimativa por krigagem ordinária, dado que os variogramas experimentais são muito sensíveis a 

valores atípicos, conhecido como outliers, e desse modo, podem ser pouco efetivos e assertivos 

(Journel, 1983). Tratando-se de dados de mineração, é muito comum a ocorrência de variáveis 

com distribuição lognormal, caracterizada pela presença de valores elevados em baixa 

frequência, como ouro, cobre, e outros metais raros, que possuem maior variância. Portanto, é 

necessário um tratamento desses dados, para adequar a variável a fim de realizar variografia e 

estimativa por krigagem. 

Journel (1983) sugeriu a transformação dos dados com distribuição lognormal a partir da 

aplicação do logaritmo natural, resultando em uma distribuição simétrica, que apresenta valores 

mais baixos de variância, contribuindo para a modelagem do variograma e melhorando a 

estimativa por krigagem ordinária. A transformação dos dados para logaritmos é dada pela 

Equação 6: 

(4) 

(5) 



 

15 
 

𝑌(𝑥) = 𝐿𝑜𝑔(𝑍(𝑥)) 

Equação 6: Transformação logarítmica do domínio. 

 

Por definição, se a variável Z(x) apresenta uma distribuição lognormal, a variável Y(x) irá 

ter uma distribuição normal. Após a transformação, é realizado o cálculo do variograma 

experimental e seu ajuste de modelo teórico, e em seguida, a estimativa por krigagem ordinária. 

As amostras estimadas estão no domínio logarítmico, portanto é necessário transformar de volta 

a escala original, a partir da Equação 7 (Journel, 1980): 

 

𝑍𝑂𝐿𝐾
∗ (𝑥0) = 𝑒𝑥𝑝 (𝑌𝑂𝐾

∗ (𝑥0) +
𝜎𝑂𝐾

2

2
− 𝜇) 

Equação 7: Transformação reversa para domínio original (Journel, 1980). 

 

Onde, 𝑍𝑂𝐿𝐾
∗ (𝑥0) refere-se aos valores estimados transformados de volta para escala 

original; 𝑌𝑂𝐾
∗ (𝑥0) são os resultados da krigagem ordinária, ainda em logaritmo; 𝜎𝑂𝐾

2  é a variância 

da krigagem ordinária e 𝜇 equivale ao multiplicador de Lagrange. A expressão 
𝜎𝑂𝐾

2

2
− 𝜇 é um termo 

de não viés para a krigagem ordinária. 

Entretanto, a Equação 7 é muito sensível a modelagem do variograma, de modo que o 

resultado da estimativa é enviesado quando comparado aos dados originais (Journel & 

Huijbregts, 1978) (Saito & Goovaerts, 2000). Isso ocorre devido ao efeito de suavização da 

krigagem, na qual valores mais baixos são superestimados, e valores elevados são 

subestimados, perdendo as caudas inferiores e superiores durante o processo de estimativa. 

Uma nova abordagem foi sugerida por Yamamoto (2007), na qual a transformação para o domínio 

original ocorre após a correção da suavização da krigagem, como visto na Equação 8:  

 

𝑍𝑂𝐿𝐾
∗ (𝑥0) = 𝑒𝑥𝑝 (𝑌𝑂𝐾

∗ (𝑥0) + 𝑌𝑁𝑆0

∗ (𝑥0)) ∗ 𝑀𝑒𝑑𝑖𝑎𝑛𝑎  

Equação 8: Transformação reversa (Yamamoto, 2007). 

 

Onde, 𝑌𝑁𝑆0

∗ (𝑥0) representa o erro de suavização, que é negativo quando os valores são 

superestimados, e positivo quando subestimados. Dessa maneira, o domínio estimado pode ser 

transformado de volta para a escala original da variável. 

 

 

 

 

(6) 

(7) 

(8) 
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4. MATERIAIS E MÉTODOS 

 

Como esse trabalho visa a aplicação de um método para modelagem geoestatística de 

um depósito mineral, é necessário aplicar diversas etapas de tratamento e análise exploratória 

de dados antes de começar a mexer com a variografia e os métodos geoestatísticos em si. Na 

Figura 3 é apresentado com as etapas realizadas até o momento.  

Os dados foram revisados e tratados antes de começarem as análises preliminares. Após 

esse primeiro passo, foi realizada a análise exploratória dos dados e a modelagem geológica do 

depósito. Após esses estudos, foi feita a krigagem lognormal testando diversos valores de 

constante, e os resultados obtidos foram avaliados, como já citado, por técnicas de validação, 

como a validação cruzada e a avaliação visual pela elaboração de gráficos como o swath-plot e 

QQ-plot. 

Todas as etapas até o momento foram realizadas em softwares de planilhas eletrônicas, 

como o Excel, além de softwares de modelagem geológica e geoestatística como o Isatis.neo®, 

Datamine Studio RM® e Supervisor®. Além disso, é importante citar que essas soluções foram 

disponibilizadas pela Datamine Software para fins acadêmicos ao Instituto de Geociências da 

Universidade de São Paulo. 

 

 
Figura 3: Fluxograma do trabalho realizado. 
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Em relação ao material utilizado no trabalho, foi fornecida uma base de dados de 

sondagens de um depósito de ouro, com coordenadas X, Y e Z alteradas, intervalos de 

amostragem com valores da variável de ouro, comprimento total do furo, bem como a sua 

orientação e mergulho. Esses dados foram disponibilizados em formato .csv, contendo 74 

sondagens e 3479 amostras de ouro analisadas. A metragem total das sondagens é de 45.856,68 

metros, enquanto a metragem analisada equivale a 2.697,14 metros. 

 

 

Figura 4: Malha de sondagem com destaque em azul para as coordenadas da embocadura dos furos de sondagem. 

 

5. RESULTADOS OBTIDOS E INTERPRETAÇÕES PRELIMINARES 

 

5.1. Análise Exploratória de Dados 

 

Inicialmente, foi feita a análise da tabela de dados no Excel e correção de pequenas 

inconsistências, e logo em seguida foi realizada a análise das estatísticas descritivas da variável 

de ouro no depósito em estudo. A amostragem do ouro ocorre na forma de duas lentes, uma 

superior e outra inferior, de maneira que foi possível dividir o depósito em dois domínios 

principais: lente superior e lente inferior. As amostras referentes a cada uma das lentes podem 

ser visualizadas na Figura 5.  

Diversas amostras não foram selecionadas para os domínios uma vez que não foram 

interpretadas como continuação da lente e/ou seu valor não contribuía para o propósito do 

trabalho, como teores inferiores a 0,01 ppm. Essas amostras estão destacadas pela cor azul na 

Figura 5. 
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Figura 5: Seleção das amostras de ouro em lente superior (verde), lente inferior (vermelha) e amostras não 

selecionadas (azul). 

 

Em geral, as duas lentes possuem distribuições e estatísticas bem semelhantes. 

Analisando as estatísticas descritivas de cada lente na Tabela 1, é observado que a lente superior 

possui três vezes mais amostras que a lente inferior, e isso ocorre devido a diversas sondagens 

que finalizam na porção superior. Dessa maneira, o espaçamento médio amostral nessa porção 

é de 25 metros enquanto na porção inferior chega a 50 metros. Outra diferença é a média igual 

a 0,766 ppm no corpo superior, quase três vezes mais que o corpo inferior, cuja média é 0,225 

ppm. Essa diferença de média ocorre devido a presença de outliers, dado que os quartis (Q1, Q2 

e Q3) são todos bem semelhantes entre as duas lentes.  

 

Tabela 1: Estatísticas descritivas da variável de ouro. 

Variável Lente 
N° de 

valores 
Média Mínimo Q1 Q2 Q3 Máximo 

Desvio 

Padrão 
C.V. 

AU_PPM Superior 1529 0,766 0,005 0.005 0,025 0,080 178,5 6,491 8,474 

AU_PPM Inferior 591 0,225 0,005 0,005 0,025 0,060 24,5 1,529 6,784 
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Já em relação a distribuição de frequência em cada uma das lentes, é possível observar 

a assimetria positiva, com cauda de distribuição para a direita, muito caracterizada pela alta 

presença de valores muito baixos, e poucos valores altos. As distribuições podem ser analisadas 

individualmente para lente superior (Figura 6) e lente inferior (Figura 7). Além disso, cada domínio 

apresenta um Log Probability Plot, a fim de evidenciar os valores mais baixos de ouro. 

 

  

Figura 6: A) Histograma de distribuição do ouro na lente superior; B) Log Probability Plot do ouro na lente superior. 

 

  

Figura 7: A) Histograma de distribuição do ouro na lente inferior; B) Log Probability Plot do ouro na lente inferior. 

 

 

 

A) B) 

A) B) 
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5.2. Modelagem Geológica 

 

Com as amostras de cada lente selecionadas, foi realizada a modelagem delas por sólidos 

via algoritmos de modelagem implícita. Os algoritmos funcionam a partir da ideia de ligar contatos 

(topo e base) de cada lente, gerando um sólido fechado, comumente conhecido como wireframe. 

O modelo geológico das lentes pode ser observado na Figura 8, e ambas as lentes 

possuem características geológicas bastante próximas. São caracterizadas pelo mergulho de 30° 

para noroeste, e possuem espessura desde 2 metros até 30-40 metros em algumas regiões.  

 

 

Figura 8: Sólidos das lentes superior (verde) e inferior (vermelho). 

 

5.3. Modelo de Blocos 

 

O modelo de blocos é uma representação 3D do depósito mineral, dividido em blocos 

regulares, também chamados de células parentais, com tamanhos variados nos eixos X, Y e Z. 

Ele é fundamental para a estimativa uma vez que cada bloco representa um volume definido do 

depósito e apresenta diversos atributos como tamanho, domínio, densidade e teores. Além disso, 

a célula parental pode ser dividida em subcélulas, que seriam divisões em cada eixo do bloco, de 

modo a respeitar da melhor forma possível os limites definidos pelo sólido durante a modelagem.  

No caso da base de dados de estudo, a malha de sondagem da região principal, que seria 

a lente superior, é espaçada em aproximadamente 25 metros no plano XY. Dessa maneira, foi 
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estabelecido um tamanho de bloco de 10 metros nos eixos X e Y e 2 metros no eixo Z. Além 

disso, também foi configurado subcélulas a fim do modelo de blocos respeitar os limites dos 

sólidos. Nos eixos X e Y, o bloco pode ser dividido até 5 vezes, enquanto no eixo Z até 4 vezes. 

 

Tabela 2: Definição do tamanho da célula parental e subcélulas no modelo de blocos. 

Eixo X Y Z 

Célula Parental (m) 10 10 4 

N° de subcélulas 5 5 4 

 

5.4. Regularização das Amostras 

 

Em relação a regularização das amostras, foi utilizado um composite equivalente a um 

metro e os resíduos, amostras que não conseguiram entrar na composta, foram descartados. Na 

Tabela 3 é possível comparar os resultados pré e pós regularização, nos quais tanto a lente 

superior quanto a lente inferior apresentam mudanças bem parecidas.  

A principal diferença foi na média, uma queda de 16,67% na lente superior e 25,58% na 

lente inferior, justificado pela diluição dos outliers da distribuição com valores muito menores. De 

resto, as estatísticas descritivas de ambos os domínios se mantiveram muito semelhantes, 

apenas com uma pequena queda no desvio padrão e coeficiente de variação. 

 

Tabela 3: Estatísticas descritivas das amostras de ouro originais x composite. 

Variável Lente 
N° de 

valores 
Média 

%Dif 

Média 
Mínimo Q1 Q2 Q3 Máximo 

Desvio 

Padrão 
C.V. 

AU_PPM 

(original) 
Superior 1476 0,766 -16,67% 0,005 0.005 0,025 0,080 178,50 6,491 8,474 

AU_PPM 

(composta) 
Superior 1078 0,598  0,005 0,007 0,025 0,081 85,43 4,253 7,117 

AU_PPM 

(original) 
Inferior 559 0,225 

-25,58% 

0,005 0,005 0,025 0,060 24,50 1,529 6,784 

AU_PPM) 

(composta) 
Inferior 392 0,167 0,005 0,005 0,020 0,060 11,648 0,908 5,424 

 

5.5. Transformação dos dados  

 

Uma vez com os dados regularizados, foi realizada a transformação logarítmica dos dados 

da lente superior e inferior para os logaritmos natural, base 2 e base 10. A fim de evitar valores 

negativos, foi adicionado um valor de constante equivalente a 10 para todos os resultados 

logaritmos. As estatísticas das variáveis transformadas são apresentadas na Tabela 4. 

Inicialmente, foi feito um QQ-Plot a fim de comparar o resultado da transformação 

logarítmica (nesse caso do logaritmo natural somado a 10) com a distribuição gaussiana da 



 

22 
 

variável. A distribuição gaussiana equivale a uma distribuição normal e quanto mais a distribuição 

logarítmica se aproximar da gaussiana, maior a lognormalidade da variável em estudo.  

Na Figura 9, pode-se analisar que a maior parte dos pontos segue aproximadamente a 

linha pontilhada na porção central, sugerindo que a variável se aproxima de uma distribuição para 

valores intermediários. Entretanto, os valores se afastam da linha pontilhada na cauda inferior, 

indicando que a distribuição log-transformada tem repetição de valores mais baixos do que o 

esperado para uma distribuição normal, dado que ~30% das amostras estão carimbadas com a 

metade do limite inferior de detecção da análise química (0,005 ppm). Já na cauda superior 

também há um desvio significativo, indicando que há valores muito maiores do que o esperado 

em uma distribuição lognormal perfeita.  

 

 

Figura 9: QQ-Plot dos dados de ouro transformados pelo logaritmo natural + 10 x distribuição gaussiana em que A) 

representa a lente superior e B) representa a lente inferior. 

 

Tabela 4: Estatísticas descritivas das variáveis transformadas. 

Variável Lente 
N° de 

valores 
Média Mínimo Q1 Q2 Q3 Máximo 

Desvio 

Padrão 
C.V. 

AU_LN_10 Superior 1077 6,589 4,702 5,077 6,311 7,484 14,448 1,807 0,274 

AU_LOG2_10 Superior 1077 5,079 2,356 2,898 4,678 6,370 16,417 2,606 0,513 

AU_LOG10_10 Superior 1077 8,519 7,699 7,862 8,398 8,907 11,932 0,785 0,092 

AU_LN_10 Inferior 392 6,264 4,702 4,702 6,088 7,187 12,455 1,531 0,244 

AU_LOG2_10 Inferior 392 4,611 2,356 2,356 4,356 5,941 13,542 2,209 0,479 

AU_LOG10_10 Inferior 392 8,387 7,699 7,699 8,301 8,778 11,066 0,665 0,079 

A) B) 
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Figura 10: Histograma da variável de ouro transformada pelo logaritmo natural + 10.  

 

5.6. Cálculo do Variograma Experimental e Ajuste de Modelo Teórico 

 

Em seguida, foi realizada a análise espacial da variável original e da variável transformada 

para as lentes superior e inferior, através do cálculo do variograma experimental e ajuste do 

modelo teórico.  

 

5.6.1. Variografia da Lente Superior 

 
A lente superior é caracterizada por uma mineralização com 650 metros de comprimento, 

mergulhando aproximadamente 30° para NW e com espessura média equivalente a 10 metros, 

podendo chegar a mais de 50 metros em algumas regiões. Em relação a malha de sondagem, o 

espaçamento médio entre amostras no plano da mineralização é de 25 metros, justificando um 

tamanho de passo a ser utilizado na variografia entre 20 e 25 metros.  

 
5.6.1.1. Variável de ouro original 

 

Para o cálculo do variograma experimental da variável de ouro original, foi necessário 

simular um variograma omnidirecional, ou seja, um variograma com tolerância angular igual a 90° 

no plano da mineralização. Devido à alta variância do ouro, os variogramas direcionais, mesmo 

com alta tolerância angular, resultavam em efeito pepita puro, um comportamento onde não há 
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correlação espacial entre os pontos amostrais, independentemente da distância entre eles. Além 

disso, foi utilizado um tamanho de passo equivalente a 25 metros, com uma tolerância de passo 

de 50%. Os parâmetros para o cálculo do variograma experimental são apresentados na Tabela 

5. 

 
Tabela 5: Parâmetros do variograma experimental da variável original na lente superior. 

Direção (°) 
Tamanho do 

Passo (m) 

Tolerância do 

Passo (%) 

Tolerância angular (°) 

In-plane Off-plane 

Downhole 1 50 * * 

-30→320 25 50 90 80 

00→230 25 50 90 80 

060→320 25 50 90 * 

 

Em relação a modelagem do variograma, foi utilizado duas estruturas esféricas e um efeito 

pepita equivalente a 0,2 da variância do ouro. O patamar do variograma foi normalizado, adotando 

1 como variância espacial máxima. Na Figura 11 é apresentado os variogramas downhole, 

omnidirecional e vertical, e na Tabela 6 os parâmetros utilizados na modelagem. 

 
Tabela 6: Parâmetros para ajuste do modelo de variograma da variável original na lente superior. 

Estrutura Modelo Patamar Major Semi-Major Minor 

Nugget effect - 0,2 - - - 

Estrutura 1 Esférico 0,33 21 21 7 

Estrutura 2 Esférico 0,47 60 60 50 
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Figura 11: Variogramas downhole, D1, D2 e D3 da variável de ouro original na lente superior. 

 
5.6.1.2. Variáveis de ouro transformadas  

 

Já para o cálculo do variograma experimental das variáveis de ouro transformadas, foi 

possível utilizar variogramas direcionais com tolerâncias angulares menores. Devido a 

transformação logarítmica, a variância da distribuição diminui bastante, de modo que a diferença 

entre pares de pontos é mais sutil e o variograma não apresenta o comportamento de efeito 

pepita puro. Os parâmetros de tamanho e tolerância do passo foram mantidos bastante 

semelhantes, utilizando um passo de 20 metros. Os parâmetros para o cálculo do variograma 

experimental são apresentados na Tabela 7. 

 

Tabela 7: Parâmetros do variograma experimental das variáveis transformadas na lente superior. 

Direção (°) 
Tamanho do 

Passo (m) 

Tolerância do 

Passo (%) 

Tolerância angular (°) 

In-plane Off-plane 

Downhole 1 50 * * 

-28→343 20 50 10 2 

-10→247 20 50 45 1 

060→320 5 50 45 * 
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Em relação a modelagem do variograma, também foi utilizado duas estruturas esféricas e 

um efeito pepita equivalente a 0,2 da variância do ouro transformado. O mesmo esquema do 

patamar normalizado foi utilizado, e o variograma apresenta anisotropia geométrica, com 

variação dos alcances para diferentes direções, porém com o mesmo patamar. Na Figura 12 é 

apresentado os variogramas downhole, principal (D1), secundário (D2) e vertical (D3), e na 

Tabela 8 os parâmetros utilizados na modelagem. 

É possível reparar que como as direções são mais direcionadas e menos generalistas que 

no variograma omnidirecional, os alcances foram reduzidos em todas as direções (menos no 

variograma downhole). Enquanto a direção principal tem uma variância espacial bem estruturada, 

seu par ordenado apresenta poucos pares de pontos mesmo aplicando uma tolerância angular 

de 45°. 

 

Tabela 8: Parâmetros para ajuste do modelo de variograma das variáveis transformadas na lente superior. 

Estrutura Modelo Patamar Major Semi-Major Minor 

Nugget effect - 0,2 - - - 

Estrutura 1 Esférico 0,54 58 34 5 

Estrutura 2 Esférico 0,26 70 40 25 

 

 

Figura 12: Variogramas downhole, D1, D2 e D3 das variáveis de ouro transformadas na lente superior. 
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5.6.2. Variografia da Lente Inferior 

 
A lente inferior é caracterizada por uma mineralização com 850 metros de comprimento, 

mergulhando aproximadamente 30° para NW e com espessura média equivalente a 5 metros, 

podendo chegar a mais de 40 metros em algumas regiões. Em relação a malha de sondagem, 

quando comparada a lente superior, possui um espaçamento médio entre amostras bem maior, 

chegando a 50 metros no plano da mineralização.  

Essa diferença de espaçamento ocorre pois cerca de 50% das sondagens finalizam na 

lente superior, diminuindo a densidade amostral da lente inferior. Dessa maneira, foi utilizado um 

tamanho de passo na direção principal entre 50 e 60 metros. Outro ponto importante desse 

domínio é a presença de grandes áreas sem amostras, dado que a continuidade da lente foi 

inferida pela geologia local e continuidade de teores.  

 

5.6.2.1. Variável de ouro original 

 

Para o cálculo do variograma experimental da variável de ouro original, foi necessário 

simular um variograma omnidirecional no plano da mineralização assim como na lente superior, 

devido à alta variância que resultava em efeito pepita puro aos variogramas direcionais. Além 

disso, foi utilizado um tamanho de passo equivalente a 55 metros, com uma tolerância de passo 

de 50%. Os parâmetros para o cálculo do variograma experimental são apresentados na Tabela 

9. 

 
Tabela 9: Parâmetros do variograma experimental da variável original na lente inferior. 

Direção (°) 
Tamanho do 

Passo (m) 

Tolerância do 

Passo (%) 

Tolerância angular (°) 

In-plane Off-plane 

Downhole 2 50 * * 

-30→320 55 50 90 75 

00→230 55 50 90 75 

060→320 20 50 90 * 

 

Em relação a modelagem do variograma, também foi utilizado duas estruturas esféricas e 

um efeito pepita equivalente a 0,2 da variância do ouro. Quando comparado a lente superior, a 

lente inferior parece ser mais continua devido a alcances maiores, porém na direção vertical, 

parece ter pouca continuidade de teores. Na Figura 13 é apresentado os variogramas downhole, 

omnidirecional (D1 e D2) e vertical (D3), e na Tabela 10 os parâmetros utilizados na modelagem. 
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Tabela 10: Parâmetros para ajuste do modelo de variograma da variável original na lente inferior. 

Estrutura Modelo Patamar Major Semi-Major Minor 

Nugget effect - 0,2 - - - 

Estrutura 1 Esférico 0,47 129 129 7 

Estrutura 2 Esférico 0,33 130 130 10 

 

 

Figura 13: Variogramas downhole, D1, D2 e D3 da variável de ouro original na lente superior. 

 

5.6.2.2. Variáveis de ouro transformadas 

 

Já para o cálculo do variograma experimental das variáveis de ouro transformadas, foi 

possível utilizar variogramas direcionais com tolerâncias angulares menores, dado que a 

transformação logarítmica diminuiu o efeito dos outliers no cálculo do variograma experimental. 

O tamanho do passo na direção principal se manteve semelhante, utilizando um passo de 60 

metros, porém em seu par ordenado, como as amostras são mais próximas, foi utilizado um passo 

de 30 metros. Os parâmetros para o cálculo do variograma experimental são apresentados na 

Tabela 11. 
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Tabela 11: Parâmetros do variograma experimental das variáveis transformadas na lente inferior. 

Direção (°) 
Tamanho do 

Passo (m) 

Tolerância do 

Passo (%) 

Tolerância angular (°) 

In-plane Off-plane 

Downhole 1 50 * * 

-30→314 60 50 22.5 5 

02→226 30 50 45 15 

060→320 5 50 22.5 * 

 

Finalmente, para a modelagem do último variograma, também foi utilizado duas estruturas 

esféricas e um efeito pepita equivalente a 0,2 da variância do ouro transformado. A principal 

diferença em relação ao domínio original foi o alcance na direção secundária, que diminuiu para 

30 metros, evidenciando uma forte anisotropia geométrica a lente inferior. Na Figura 14 é 

apresentado os variogramas e na Tabela 12 os parâmetros utilizados na modelagem. 

 

Tabela 12: Parâmetros para ajuste do modelo de variograma das variáveis transformadas na lente inferior. 

Estrutura Modelo Patamar Major Semi-Major Minor 

Nugget effect - 0,2 - - - 

Estrutura 1 Esférico 0,25 27 14 3 

Estrutura 2 Esférico 0,55 100 30 13 

 

 
Figura 14: Variogramas downhole, D1, D2 e D3 das variáveis de ouro transformadas na lente inferior. 
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5.7. Definição dos Parâmetros de Vizinhança 

 

Uma vez com os variograma definidos, é possível estabelecer os parâmetros de 

vizinhança a serem utilizados durante a estimativa. A vizinhança em uma krigagem define como 

os pontos amostrados próximos a um bloco a ser estimado são selecionados para fazer parte 

dessa estimativa. Esses parâmetros são essenciais para a garantir que a estimativa seja feira de 

forma eficiente, considerando um número adequado de amostras e levando em conta a estrutura 

espacial dos dados, como direção e continuidade espacial da mineralização, além da densidade 

amostral. 

Em seguida, para validação dos parâmetros de estimativa, foi realizada a validação 

cruzada para cada variável em ambas as lentes. É uma técnica que consiste na remoção de uma 

amostra e na estimativa desse mesmo ponto retirado utilizando os mesmos parâmetros de 

estimativa, vizinhança e de modelo de variograma. Dessa maneira, é possível comparar o valor 

real versus o valor estimado de diversos pontos do depósito. Além disso, é possível calcular 

métricas de desempenho, como o erro médio e o coeficiente de correlação do estimado x real. 

 
5.7.1. Vizinhança na Lente Superior 

 

Na lente superior, os parâmetros de vizinhança foram baseados no variograma da variável 

de ouro transformada, dado que foi utilizado uma direção preferencial de mineralização ao 

contrário de um variograma omnidirecional. Além disso, foram utilizadas três passadas a fim de 

estimar todos os blocos da lente, sendo a primeira passada equivalente à metade dos alcances 

do variograma, e colocado também um número máximo de amostras por furo para evitar que o 

bloco seja enviesado pelo furo mais próximo. Como foi aplicado um limite de amostras por furo, 

não foi feito o uso de octantes. Os parâmetros de vizinhança utilizados na estimativa da lente 

superior estão apresentados na Tabela 13. 

 
Tabela 13: Parâmetros de vizinhança para estimativa na lente superior. 

Variável Passo 
Distância de Busca (m) N° de Amostras N° máx. de 

amostras 

por furo Máx. Interm. Mín. Min. Máx 

AU_PPM 

AU_LN_10 

AU_LOG2_10 

AU_LOG10_10 

1 35 20 12 6 12 2 

2 70 40 24 4 12 2 

3 105 60 36 2 12 2 

Orientação do elipsoide: Dip Azimuth = 320°; Dip = 30°. 
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5.7.1.1. Validação Cruzada dos dados originais 

 

Inicialmente, foi realizada a validação cruzada da variável de ouro original, que obteve um 

coeficiente de correlação de Pearson equivalente a 0,49. Na Figura 15 é apresentado o gráfico 

de dispersão dos valores reais versus estimados, onde é observado diversos valores reais 

próximos a zero sendo estimados com altos valores, além de alguns valores estimados como 

negativos. Em geral, o coeficiente de correlação é enviesado pelos outliers da variável AU_PPM 

e não representa de maneira efetiva a validação cruzada realizada. 

 

 

Figura 15: Validação cruzada para variável de ouro original na lente superior, onde a bissetriz é representada pela 

linha pontilhada e a regressão linear pela reta vermelha. 

 

5.7.1.2. Validação Cruzada dos dados transformados 

 

Já para os dados transformados, a situação já é diferente. Na Figura 16, é apresentado o 

gráfico de dispersão para os valores transformados reais versus estimados, no qual há um grande 

aumento no coeficiente de correlação, que subiu para a 0,74. Ainda há o mesmo problema de 

valores repetidos próximos a zero, iguais a 0,005 ppm ou 0,025 ppm, sendo superestimados, 

porém a influência de outliers é bem reduzida. Além disso, a validação cruzada para todas as 

variáveis transformadas, utilizando logaritmo natural, de base 2 e base 10, tiveram o mesmo 

resultado. 
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Figura 16: Validação cruzada para as variáveis de ouro transformadas na lente superior, onde a bissetriz é 

representada pela linha pontilhada e a regressão linear pela reta vermelha. 

 

5.7.2. Vizinhança na Lente Inferior 

 

Já na lente inferior, após diversos testes de vizinhança, os parâmetros foram baseados 

no variograma omnidirecional da variável de ouro original. Dado a baixa densidade amostral da 

lente, os eixos do elipsoide foram equivalentes ao alcance do variograma na primeira passada e 

duas vezes esse valor na segunda passada, sem necessidade de utilizar uma terceira passada. 

Assim como na lente superior, foi utilizado um máximo de duas amostras por furo. Os parâmetros 

de vizinhança da lente inferior são apresentados na Tabela 14. 

 
Tabela 14: Parâmetros de vizinhança para estimativa na lente inferior. 

Variável Passo 
Distância de Busca (m) N° de Amostras N° máx. de 

amostras 

por furo Máx. Interm. Mín. Min. Máx 

AU_PPM 

AU_LN_10 

AU_LOG2_10 

AU_LOG10_10 

1 130 130 10 6 12 2 

2 260 260 20 4 12 2 

Orientação do elipsóide: Dip Azimuth = 320°; Dip = 30°; Pitch = 85° 
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5.7.2.1. Validação Cruzada dos dados originais 

 

Em relação a validação cruzada para os dados originais da lente inferior, os valores de 

ouro originais reais versus estimados apresentam um coeficiente de correlação de Pearson igual 

a 0,15, de maneira que não há correlação entre os domínios. Novamente a regressão linear foi 

bastante enviesada por outliers, além de que diversos valores próximos a zero foram 

superestimados ou até estimados como valores negativos. Na Figura 17 é apresentado o gráfico 

de dispersão dos valores de ouro reais versus estimados na lente inferior. 

 

 

Figura 17: Validação cruzada para a variável de ouro original na lente inferior, onde a bissetriz é representada pela 

linha pontilhada e a regressão linear pela reta vermelha. 

 

5.7.2.2. Validação Cruzada dos dados transformados 

 

Já para os dados transformados, houve um grande aumento do coeficiente de correlação 

que equivale a 0,68. Desta vez, não há mais a influência de outliers nem a presença de valores 

estimados negativos, porém continua com a superestimativa daqueles valores transformados 

iguais a 2,356 ppm (originalmente igual a 0,005 ppm). Novamente, os resultados da validação 

cruzada para todas as variáveis transformadas, utilizando logaritmo natural, de base 2 e base 10, 

somados a uma constante igual a 10, foram os mesmos. 
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Figura 18: Validação cruzada para as variáveis de ouro transformadas na lente inferior, onde a bissetriz é 

representada pela linha pontilhada e a regressão linear pela reta vermelha. 

 

5.8. Estimativa por Krigagem Ordinária e Krigagem Lognormal 

 

Uma vez com os modelos de variograma e parâmetros de vizinhança definidos, é possível 

realizar as estimativas por krigagem ordinária das variáveis originais e transformadas. Em relação 

aos parâmetros utilizados na estimativa, foi utilizado o modelo de blocos apresentado na Tabela 

2, com discretização do bloco por 3x3x3 nos eixos XYZ, e a estimativa realizada nas células 

parentais. Além disso, na krigagem dos dados originais houve valores negativos devido a diversas 

amostras estarem próximas de 0,005 ppm, mas foram tratados posteriormente e tiveram seu novo 

valor equivalente a zero.  

 

5.8.1. Estimativas na Lente Superior 

 

5.8.1.1. Krigagem Ordinária – variável de ouro original 

 

A krigagem ordinária foi realizada segundo os parâmetros descritos acima para a variável 

regularizada de ouro. Os parâmetros de vizinhança para os dados não transformados da lente 

superior foram apresentados na Tabela 13, e o modelo de variograma utilizado se encontra na 

Tabela 6. As estatísticas descritivas da estimativa dos dados originais estão apresentadas abaixo, 

na Tabela 15, acompanhadas da Figura 19, que ilustra o modelo estimado. 



 

35 
 

Tabela 15: Estatísticas descritivas da variável original estimada na lente superior. 

Variável Lente 
N° de 

blocos 
Média Mínimo Q1 Q2 Q3 Máximo 

Desvio 

Padrão 
C.V. 

AU_PPM_OK Superior 38000 0,284 0,005 0,008 0,023 0,159 56,551 1,303 4,581 

 

 

Figura 19: Modelo estimado por krigagem ordinária dos dados originais na lente superior. 

 

5.8.1.2. Krigagem Lognormal – variáveis de ouro transformadas 

 

Já para as variáveis de ouro transformadas pela aplicação do logaritmo natural, de base 

2 e base 10 somados a uma constante igual a 10, foi realizada a krigagem ordinária seguida da 

transformação reversa dos valores estimados. Essa transformação reversa foi realizada de duas 

maneiras: a primeira pela aplicação do expoente nos resultados transformados subtraindo a 

constante; e a segunda pela aplicação da Equação 7, que retira o expoente dos resultados 

transformados menos a constante, somado a um termo de não viés, calculado através da 

variância da krigagem e multiplicador de Lagrange. 

 

𝑍𝑂𝐿𝐾
∗ (𝑥0) = 𝑒𝑥𝑝 (𝑌𝑂𝐾

∗ (𝑥0) +
𝜎𝑂𝐾

2

2
− 𝜇) 

Equação 9: Transformação reversa para domínio original (Journel, 1980). 
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Para a krigagem lognormal na lente superior, os parâmetros de vizinhança utilizados foram 

apresentados na Tabela 13, e o modelo de variograma utilizado se encontra na Tabela 8. As 

estatísticas descritivas dos resultados retro transformados pela aplicação do expoente estão na 

Tabela 16 e seu respectivo modelo tridimensional pode ser visualizado na Figura 20.  

 
Tabela 16: Estatísticas descritivas das variáveis transformadas estimadas na lente superior, retro transformadas pela 

aplicação do expoente de cada logaritmo. 

Variável Lente 
N° de 

blocos 
Média Mínimo Q1 Q2 Q3 Máximo 

Desvio 

Padrão 
C.V. 

AU_LN_10_LK Superior 38000 0,055 0,005 0,013 0,026 0,059 9,381 0,125 2,296 

AU_LOG2_10_LK Superior 38000 0,055 0,005 0,013 0,026 0,059 9,381 0,125 2,296 

AU_LOG10_10_LK Superior 38000 0,055 0,005 0,013 0,026 0,059 9,381 0,125 2,296 

 

 
Figura 20: Modelo estimado por krigagem lognormal com transformação reversa pela aplicação do expoente. 

 
Em relação as estatísticas descritivas da krigagem lognormal que teve a transformação 

reversa realizada pela aplicação da Equação 7, estão apresentadas na Tabela 17. O modelo 

estimado encontra-se na Figura 21. 

 
Tabela 17: Estatísticas descritivas das variáveis estimadas na lente superior retro transformadas pela Equação 7. 

Variável Lente 
N° de 

blocos 
Média Mínimo Q1 Q2 Q3 Máximo 

Desvio 

Padrão 
C.V. 

AU_LN_10_LK2  Superior 38000 0,266 0,008 0,050 0,099 0,245 21,816 0,700 2,631 
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Figura 21: Modelo estimado por krigagem lognormal com transformação reversa pela Equação 7 na lente superior. 

 

5.8.2. Estimativas na Lente Inferior 

 

5.8.2.1. Krigagem Ordinária – variável de ouro original 

 

Já na lente inferior, para a krigagem ordinária dos dados de ouro originais, os parâmetros 

de vizinhança utilizados são aqueles apresentados na Tabela 14, e o modelo de variograma 

utilizado se encontra na Tabela 10. As estatísticas descritivas da estimativa dos dados originais 

estão apresentadas abaixo, na Tabela 18, acompanhadas da Figura 22, que ilustra o modelo 

estimado. 

 
Tabela 18: Estatísticas descritivas da variável original estimada na lente inferior. 

Variável Lente 
N° de 

blocos 
Média Mínimo Q1 Q2 Q3 Máximo 

Desvio 

Padrão 
C.V. 

AU_PPM_OK Inferior 36819 0,198 0 0,031 0,067 0,186 5,437 0,414 2,091 
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Figura 22: Modelo estimado por krigagem ordinária dos dados originais na lente inferior. 

 

5.8.2.2. Krigagem Lognormal – variáveis de ouro transformadas 

 

Finalmente, em relação a krigagem lognormal das variáveis transformadas na lente 

inferior, foi feita a mesma metodologia de transformação reversa dos dados da lente superior, um 

método pela aplicação do expoente e outro pela aplicação da Equação 7. 

Para a krigagem lognormal na lente inferior, os parâmetros de vizinhança foram 

apresentados na Tabela 14, e o modelo de variograma utilizado se encontra na Tabela 12. As 

estatísticas descritivas dos resultados retro transformados pela aplicação do expoente estão na 

Tabela 19 e seu respectivo modelo tridimensional pode ser visualizado na Figura 23. 

 

Tabela 19: Estatísticas descritivas das variáveis transformadas estimadas na lente inferior, retro transformadas pela 

aplicação do expoente de cada logaritmo. 

Variável Lente 
N° de 

blocos 
Média Mínimo Q1 Q2 Q3 Máximo 

Desvio 

Padrão 
C.V. 

AU_LN_10_LK Inferior 36819 0,041 0,005 0,016 0,026 0,048 1,256 0,051 1,244 

AU_LOG2_10_LK Inferior 36819 0,041 0,005 0,016 0,026 0,048 1,257 0,051 1,244 

AU_LOG10_10_LK Inferior 36819 0,041 0,005 0,016 0,026 0,048 1,256 0,051 1,244 
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Figura 23: Modelo estimado por krigagem lognormal dos dados transformados na lente inferior. 

 

Em relação as estatísticas descritivas da krigagem lognormal que teve a transformação 

reversa realizada pela aplicação da Equação 7, estão apresentadas na Tabela 20. O modelo 

estimado encontra-se na Figura 24. 

 
Tabela 20: Estatísticas descritivas das variáveis estimadas na lente inferior retro transformadas pela Equação 7. 

Variável Lente 
N° de 

blocos 
Média Mínimo Q1 Q2 Q3 Máximo 

Desvio 

Padrão 
C.V. 

AU_LN_10_LK2 Inferior 36819 0,116 0,008 0,040 0,073 0,128 2,697 0,154 1,326 

 

 

Figura 24: Modelo estimado por krigagem lognormal com transformação reversa pela Equação 7 na lente inferior. 

 

 



 

40 
 

6. DISCUSSÃO E INTERPRETAÇÃO DE RESULTADOS 

 

Em relação a interpretação e comparação dos resultados obtidos pela krigagem ordinária 

e krigagem lognormal, a análise comparativa será feita a partir das estatísticas descritivas dos 

domínios, Log Probability Plots, QQ-Plots e histogramas. 

 

6.1. Resultados na Lente Superior 

 

Na Tabela 21 estão apresentadas todas as estimativas realizadas na lente superior. A 

variável AU_PPM representa os dados amostrais, AU_PPM_OK representa o modelo estimado 

por krigagem ordinária e AU_LN_10_OK, AU_LOG2_10_LK, AU_LOG10_10_LK representam as 

variáveis transformadas pela aplicação do logaritmo natural, de base 2 e de base 10, 

respectivamente, somadas a uma constante 10, estimadas por krigagem ordinária e retro 

transformadas pela aplicação do expoente. Finalmente, AU_LN_10_LK2 representa a variável 

transformada pelo logaritmo natural com sua transformação reversa realizada pela Equação 7. 

De início, é possível observar que todas as estimativas subestimaram os dados amostrais, 

uma vez que ocorreu a diluição das amostras high-grade quando foram estimadas no volume de 

bloco. Além disso, como esperado, as transformações logarítmicas tiveram o mesmo resultado 

independente da base utilizada. Os quartis 1, 2 e 3 se mantiveram constantes na maioria dos 

resultados, tirando o domínio AU_LN_10_LK2, que superestimou todos, e mesmo assim obteve 

uma média menor que AU_PPM_OK. 

 
Tabela 21: Estatísticas descritivas dos dados amostrais e de todas as variáveis estimadas na lente superior. 

Variável Lente 
N° de 

amostras 
Média Mínimo Q1 Q2 Q3 Máximo 

Desvio 

Padrão 
C.V. 

AU_PPM Superior 1078 0,598 0,005 0,007 0,025 0,081 85,43 4,253 7,117 

AU_PPM_OK Superior 38000 0,284 0,005 0,008 0,023 0,159 56,551 1,303 4,581 

AU_LN_10_LK Superior 38000 0,055 0,005 0,013 0,026 0,059 9,381 0,125 2,296 

AU_LOG2_10_LK Superior 38000 0,055 0,005 0,013 0,026 0,059 9,381 0,125 2,296 

AU_LOG10_10_LK Superior 38000 0,055 0,005 0,013 0,026 0,059 9,381 0,125 2,296 

AU_LN_10_LK2 Superior 38000 0,266 0,008 0,050 0,099 0,245 21,816 0,700 2,631 

 

Nas Figuras 25, 26 e 27 estão apresentados o Log Probability Plot, QQ-Plot (até 2 ppm) 

e histograma (até 2 ppm), respectivamente, dos dados amostrais e domínios estimados por 

krigagem ordinária e lognormal. A partir desses gráficos, é possível visualizar que todas as 

estimativas sofrem bastante com o efeito de suavização da krigagem, no qual os valores mais 

baixos sofrem com superestimativa e aqueles valores maiores sofrem com subestimativa, 
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diminuindo a variabilidade do depósito. Além disso, é apresentado que AU_PPM_OK e 

AU_LN_10_LK2 apresentam distribuições bastante semelhantes, porém a krigagem ordinária se 

mostrou mais próxima dos dados amostrais. Já nos resultados de AU_LN_10_LK, pela análise 

do QQ-Plot, sua distribuição se aproxima dos valores reais apenas próximo a origem, a partir de 

0,1 ppm, por exemplo, já tem resultados bastante subestimados, sem representar os teores altos 

de maneira efetiva.  

 

 
Figura 25: Log Probability Plot dos dados amostrais e das estimativas na lente superior. 

 

 
Figura 26: Histograma dos dados amostrais e das estimativas (até 2 ppm) na lente superior. 
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Figura 27: QQ-Plot dos dos dados amostrais e das estimativas (até 2 ppm) na lente superior. 

 

Por outro lado, através da análise dos Swath Plots da Figura 28, os valores de 

AU_PPM_OK e AU_LN_10_LK2, que em suas distribuições pareciam muito semelhantes, se 

destoam bastante. A variável da krigagem lognormal parece sofrer com o efeito de borda e não 

acompanha os intervalos de alto teor assim como a krigagem ordinária. 

 

  
Figura 28: Swath Plot A) Intervalos de 50 metros na direção Y; B) Intervalos de 20 metros na direção X dos dados 

amostrais e das estimativas na lente superior. 

 

Portanto, em relação a comparação dos métodos de krigagem ordinária e krigagem 

lognormal na lente superior, a krigagem ordinária se manteve uma técnica mais assertiva e 

confiável. Uma vez que na distribuição original o valor 0,005 ppm representava aproximadamente 

30% dos valores, a variável não se comportou bem no teste de lognormalidade, ou seja, não se 

classifica como uma variável lognormal, mesmo possuindo assimetria positiva. Dessa maneira, 

mesmo transformando os dados para logaritmo, sua distribuição continuava sendo assimétrica 

positiva e a metodologia foi comprometida. 

A) B) 
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6.2. Resultados na Lente Inferior 

 

Já na lente inferior, a comparação é semelhante, porém com algumas pequenas 

diferenças. Na Tabela 22, estão apresentadas as estatísticas descritivas dos dados amostrais e 

dos domínios estimados por krigagem ordinária e krigagem lognormal, com as mesmas 

abreviações explicadas anteriormente. Dessa vez a krigagem ordinária foi superestimada e teve 

seus quartis 1, 2 e 3 próximos da variável AU_LN_10_LK2, enquanto as estimativas das variáveis 

AU_LN_10_LK foram novamente bastante subestimadas. 

 

Tabela 22: Estatísticas descritivas dos dados amostrais e de todas as variáveis estimadas na lente superior. 

Variável Lente 
N° de 

amostras 
Média Mínimo Q1 Q2 Q3 Máximo 

Desvio 

Padrão 
C.V. 

AU_PPM Inferior 392 0,167 0,005 0,005 0,020 0,060 11,648 0,908 5,424 

AU_PPM_OK Inferior 36819 0,198 0 0,031 0,067 0,186 5,437 0,414 2,091 

AU_LN_10_LK Inferior 36819 0,041 0,005 0,016 0,026 0,048 1,256 0,051 1,244 

AU_LOG2_10_LK Inferior 36819 0,041 0,005 0,016 0,026 0,048 1,257 0,051 1,244 

AU_LOG10_10_LK Inferior 36819 0,041 0,005 0,016 0,026 0,048 1,256 0,051 1,244 

AU_LN_10_LK2 Inferior 36819 0,116 0,008 0,040 0,073 0,128 2,697 0,154 1,326 

 

Nas Figuras 29, 30 e 31 estão apresentados o Log Probability Plot, QQ-Plot (até 2 ppm) 

e histograma (até 2 ppm), respectivamente, dos dados amostrais e domínios estimados por 

krigagem ordinária e lognormal na lente inferior. A principal diferença quando comparamos com 

a lente superior é que a variável AU_LN_10_LK2 parece ser um meio termo entre AU_LN_10_LK, 

que continua bastante subestimada, e AU_PPM_OK, superestimada. De qualquer maneira, a 

krigagem ordinária ainda se assemelha de melhor maneira aos dados amostrais. 

 



 

44 
 

 

Figura 29: Log Probability Plot dos dados amostrais e das estimativas na lente inferior. 

 

Figura 30: Histograma dos dados amostrais e das estimativas (até 2 ppm) na lente inferior. 
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Figura 31: QQ-Plot dos dos dados amostrais e das estimativas (até 2 ppm) na lente inferior. 

 
Além disso, através da análise de Swath Plots na lente inferior (Figura 32), não parece 

ocorrer efeito de borda pela variável AU_LN_10_LK2, que acompanha os altos teores de maneira 

mais eficiente quando comparada com a situação da lente superior. A krigagem ordinária ainda 

se mantém mais assertiva acompanhando as regiões de alto teor com uma leve suavizada. 

 

 

Figura 32: Swath Plot A) Intervalos de 50 metros na direção Y; B) Intervalos de 25 metros na direção X dos dados 

amostrais e das estimativas na lente superior. 

 

Portanto, assim como na lente superior, a krigagem ordinária mostrou-se uma técnica 

mais adequada para o depósito em estudo. Os valores equivalentes a 0,005 ppm também se 

repetem na lente inferior, representando cerca de 30% do total de amostras, de modo que o 

problema é o mesmo em ambas as lentes. 
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7. CONCLUSÕES 

 

No projeto realizado, a análise comparativa mostrou que a estimativa por krigagem 

ordinária se mostrou um método mais assertivo que a krigagem lognormal, com a transformação 

reversa realizada de duas maneiras diferentes, para o depósito de ouro em estudo. A principal 

problemática foi a distribuição da variável de ouro, com aproximadamente 30% de seus valores 

equivalentes a 0,005 ppm, de modo que a variável não se comportava como lognormal. Dessa 

maneira, mesmo aplicando a transformação logarítmica, a assimetria positiva continuava. 

Mesmo com a seleção de amostras de ambas as lentes sendo feitas de forma cautelosa, 

a fim de trabalhar apenas com dados de interesse econômico, a intercalação abrupta de teores 

fez com que esses valores do limite de detecção representassem ainda uma grande classe do 

depósito. O ideal seria realizar uma seleção ainda mais restrita, de modo a trabalhar com uma 

distribuição próxima a lognormal, porém correndo o risco de diminuir o número de amostras de 

maneira excessiva. 

Ainda assim, a transformação logarítmica se mostrou bastante efetiva no cálculo do 

variograma experimental e ajuste de modelo teórico, dado que para os dados originais só foi 

possível calcular variogramas omnidirecionais, enquanto as variáveis transformadas 

conseguiram identificar uma direção preferencial da mineralização. Além disso, esse estudo é um 

bom exemplo de que a krigagem lognormal não representa sempre uma estimativa mais assertiva 

dos outliers para depósitos minerais com distribuições assimétricas positivas. 
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