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RESUMO

A estimativa de recursos minerais é uma parte fundamental de um projeto de pesquisa
mineral, dado que os resultados desse calculo vao definir a viabilidade econémica do
depdsito. Os métodos geoestatisticos sado as principais técnicas utilizadas durante a
estimativa dos recursos minerais, e garantem uma assertividade superior quando
comparado a métodos ndo geoestatisticas. Dessa forma, o objetivo desse estudo é realizar
a estimativa de um depdsito de ouro por krigagem lognormal e comparar seus resultados
com o método mais aplicado nas estimativas, a krigagem ordinaria. A krigagem lognormal
€ um método geoestatistico ndo linear, que consiste na transformac¢ao de uma distribuigdo
assimétrica positiva - onde ha um predominio de amostras de baixo teor e poucas de alto
teor - a partir da aplicagdo do logaritmo. Esse novo arranjo tende a apresentar um
comportamento simétrico, de maneira que a estimativa se correlacione melhor com os
dados amostrais. Neste trabalho foram realizados todos os passos iniciais para aplicagao
da krigagem ordinaria para um depdsito de ouro, como a validagao e regularizacdo da base
de dados, a modelagem geoldgica e analise exploratoria de dados. Em seguida, essas
informacdes foram transformadas pela aplicagdo do logaritmo e o comportamento
geoestatistico da variavel original e da variavel que foi alterada foi analisado. Apds a
realizagao das estimativas, os resultados da krigagem lognormal passam por uma mudanca
reversa, e sao feitas analises estatisticas e graficas a fim de comparar os produtos de cada
técnica. Na andlise comparativa entre os resultados das estimativas por krigagem ordinaria
e krigagem lognormal, o primeiro apresentou uma assertividade superior, suavizando
menos e preservando de melhor forma a cauda superior da distribuicdo. As variaveis em
estudo apresentam 30% dos valores equivalentes a 0,005 ppm, fazendo com que nao se

classificassem tao bem como lognormais, prejudicando a metodologia pesquisada.



ABSTRACT

The estimation of mineral resources is a fundamental part of a mineral research project, as
the results of this estimation will determine the economic feasibility of the deposit.
Geostatistical methods are the main techniques used for mineral resource estimation and
ensure higher accuracy compared to non-geostatistical methods. The objective of this study
is to estimate a gold deposit using lognormal kriging and compare its results with the most
commonly applied method, ordinary kriging. Lognormal kriging is a non-linear geostatistical
method that involves transforming a positively skewed distribution, characterized by a
predominance of low-grade samples and few high-grade samples, through the application
of a logarithm. This new distribution tends to exhibit a symmetrical behavior, allowing for a
better correlation with the sampling data. In this study, all preliminary steps for the
application of ordinary kriging for a gold deposit were followed, such as data validation and
regularization, geological modeling, and exploratory data analysis. Then, the data were
transformed using the logarithm, and the geostatistical behavior of the original and
transformed variables was analyzed. After performing the estimations, the results from the
lognormal kriging were back-transformed, and statistical and graphical analyses were
conducted to compare the outputs of each technique. In the comparative analysis between
the results from ordinary kriging and lognormal kriging, the former showed higher accuracy,
with less smoothing and better preservation of the upper tail of the distribution. The studied
variables presented 30% of the values equivalent to 0.005 ppm, which hindered their

classification as lognormal, affecting the methodology under study.
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1. INTRODUGCAO

Todo projeto de pesquisa mineral deve fazer um processo de avaliagdo de recursos e
reservas do depésito que exploram, realizando a quantificacdo de teores e volumes envolvidos
nas operagdes do empreendimento. Atualmente, o procedimento deve seguir os principios da
transparéncia, da materialidade e da competéncia (CBRR, 2022). Dessa maneira, € possivel
decifrar informagdes relacionadas a quantidade de minério disponivel no depésito, e qual o nivel
de confiabilidade dos dados envolvidos nessa quantificagdo. A partir dos recursos e reservas
minerais quantificados, € possivel prever a vida util da mina, a quantidade de minério que pode
ser explotado do depdsito, o faturamento que se pode gerar, e atrair stakeholders para toda a
operacao, que financiam o desenvolvimento de todo o empreendimento.

Para garantir que os resultados da estimativa de teores dos minérios sejam precisos e
acurados, diversos métodos geoestatisticos podem ser usados e tém sido aprimorados nos
ultimos anos. Dentre eles, € possivel destacar a krigagem lognormal, que parte da transformacao
logaritmica de dados com distribuigdo lognormal. Esse processo pode ser realizado através do
célculo do logaritmo com qualquer base adicionando ou n&o uma constante.

Neste projeto, serdo testados diferentes valores de logaritmos na transformacéo dos
dados de um bem mineral que apresente distribuicdo lognormal, e serdo comparados os
resultados obtidos nesses cenarios, a partir de métodos de validagdo da estimativa, como

validagao cruzada e comparagao estatistica dos dominios.

2. OBJETIVOS E METAS

E muito comum que a distribuicdo estatistica de determinadas variaveis dados
amostrados em depdsitos minerais apresentem distribuicdo lognormal. Nesta divisdo, a presenca
de valores elevados aumenta a variancia dos dados, dificultando a assertividade do calculo do
variograma e da realizacdo da krigagem ordinaria, dado que os variogramas sao muito sensiveis
a altos anémalos, e, portanto, podem ser considerados pouco uteis em sua presenga (Journel,
1983).

Para contornar essa situacao, Journel (1983) propds duas solugdes. A primeira delas seria
realizar o capping - técnica que reduz valores superiores a um dado limite - desses numeros
elevados. Por exemplo, se o limite definido for 5%, todos os valores superiores a ele serao
igualados a 5%. A segunda solugao seria transformar os dados usando a fungao logaritmo
natural. Realizando a alteracao logaritmica dos dados, € obtida uma distribuigdo simétrica, que
facilita a interpretacdo e modelagem da fungéo variograma. Ela também melhora a estimativa por

krigagem ordindria, uma vez que a influéncia dos valores anémalos é minimizada pela
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transformagéao. Apos a realizagdo da estimativa, os dados alterados séo retornados a sua escala
original, ou seja, é aplicada uma funcao exponencial para a reversao do logaritmo.

O principal objetivo deste trabalho é aplicar a krigagem lognormal em um depésito de ouro,
através de diversas transformacdes logaritmicas de uma variavel com distribuicdo assimétrica
positiva, para comparar as diferencas obtidas para cada transformacdo. Essa analise de
resultados se baseara principalmente na validagdo da estimativa, através de métodos como a
validacao cruzada e analise da distribuicao estatistica dos resultados. Dessa maneira, acredita-
se que sera possivel calcular, de forma estimada, o minério de ouro presente no depésito da
maneira mais precisa e acurada possivel com o objetivo de otimizar a avaliacido de recursos

minerais da jazida.
3. REVISAO BIBLIOGRAFICA

3.1. Distribuicdo Normal x Lognormal

A representacao grafica da distribuicao de frequéncia permite a visualizagdo dos valores
de um banco de dados por meio de uma descricdo matematica simples. Essas distribuigcdes
podem ser classificadas como simétricas ou assimétricas - com a cauda de distribuicdo para
direita ou esquerda - e podem ser descritas como um unico pico ou diversos picos. Dentre
diferentes tipos delas, podemos dar destaque para normal e a lognormal.

A distribuicdo normal, também conhecida como distribuicdo gaussiana, € uma das mais
importantes na estatistica e na teoria das probabilidades. Ela esta presente em alguns processos
fisicos e ocorréncias geoldgicas, e tem uma forma caracterizada como simétrica de pico unico.
Além disso, a maioria dos valores estdo concentrados proximos a média e a probabilidade de
valores extremos diminui conforme os eles se afastam da média. Segundo Krishnamoorthy
(2016), a distribuicao normal € mais utilizada para modelar dados de uma populagdo ou de um
experimento.

Além disso, a distribuicdo normal é muito conveniente pois que suas propriedades séo
matematicamente conhecidas, dado que ¢é definida apenas pela média (1) e desvio padrao (o)
dos valores. A funcao densidade de probabilidade da distribuicdo normal é dada pela Equacao 1
(Kreyszig, 1968):

1 1(x—u)2

= e 2\ o

V21 ’ M

Equacgéo 1: Funcao densidade de probabilidade de uma distribuigdo normal (Kreyszig, 1968).
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A distribuicdo lognormal, por sua vez, descreve variaveis cujo logaritmo segue uma
distribuicdo normal, ou seja, se uma variavel Y é lognormal, entdo log(Y) apresenta distribuicdo
normal. Ela ocorre em diversos fendbmenos geoldgicos como, por exemplo, em mineralizagdes de
metais raros como o ouro, prata e cobre. Essa distribuicdo é caracterizada por variaveis nao
negativas com assimetria positiva (Rossi e Deutsch, 2014), com a cauda da distribuicao para a
direita, e que representa uma grande quantidade de valores baixos e uma pequena quantidade
para valores altos. A funcado densidade de probabilidade de uma distribuicdo lognormal é dada
pela Equacao 2 (Abgterberg, 1974):

1lnx—p 2
1 By o
y= e
xoV2m
Equacao 2: Funcéo densidade de probabilidade de uma distribuicdo lognormal (Agterberg, 1974).

Além de facilitar a andlise, a transformagéo logaritmica também possui implicagbes
interpretativas. Ao alterar os dados, as interpretagdes dos pardmetros da distribuicdo original
(como a média e a variancia) mudam, mas tornam-se mais intuitivas no contexto da modelagem.
Por exemplo, a média da variavel transformada se relaciona com a mediana da variavel original,

uma vez que a distribuigcdo lognormal ndo € simétrica.

Figura 1: Transferéncia de uma distribuicdo assimétrica positiva para uma distribuigdo normal através da

transformacao dos valores em logaritmos. Fonte: (Koch e Link, 1970).
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3.2. Geoestatistica

No inicio da década de 1960, devido a inabilidade da estatistica classica em considerar o
aspecto espacial de um fenébmeno, Matheron (1962) definiu o termo Variavel Regionalizada. Esse
conceito alude a uma fungdo no espago cujo valor varia de um ponto a outro com alguma
continuidade aparente, mas sem representacéo por uma lei matematica extrapolavel possivel. As
variaveis regionalizadas sao aleat6rias e possuem localizagéo definida no espacgo. Elas requerem
o conhecimento do campo geométrico, correspondente a area em que ocorre a variavel, podendo
ser o depdsito ou uma parte dele, e do suporte geométrico, que se refere ao volume (tamanho,
forma e orientagcéo) no qual a variavel esta definida.

Matheron (1971) definiu a geoestatistica como aplicacdo da Teoria das Variaveis
Regionalizadas para a estimativa de depdsitos minerais. Dessa maneira, elas passaram a
representar o elemento basico da geoestatistica, que comecou a atuar na mineragéo na década
de 1970. Um conceito basico dessa teoria € a chamada hipétese intrinseca, a qual implica que
uma funcgao, conhecida como semivariograma, descreve o comportamento espacial da variavel
regionalizada dentro do espaco, e que essa fungao é intrinseca a regionalizagdo (Yamamoto,
2001). Dessa maneira, a geoestatistica assume que a variancia espacial entre dois pontos
amostrais € a mesma para todo o dominio, dependendo apenas da distancia e orientagao entre
eles.

A funcdo variograma descreve o comportamento da variancia espacial da variavel pela
distancia entre pares de pontos. Segundo Caers (2011), os fenbmenos espaciais tendem a
apresentar orientagdo preferencial, e, portanto, o variograma deve refletir as caracteristicas
espaciais do dominio. Em casos geoldgicos, essa orientagao preferencial esta relacionada a
orientagdo geoldgica regional ou local, que fornecesse as principais dire¢gées para o calculo dos
variogramas experimentais. A expressao para o calculo da fungdo variograma € a seguinte
(Yamamoto, 2020):

1 n
YW =) 2+ =26 ()
i=1

Equacéo 3: Equacao Variograma (Matheron, 1962).

Na Equacdo 3, y(h) é a funcdo variograma e o valor da variancia espacial, Z(x;)
representa uma variavel aleatdria conforme o vetor de coordenadas (x), h é a distancia de
separagao entre dois pontos e 0 n€ o numero de pares de pontos separados por A. Apos o calculo

do variograma experimental, &€ necessario realizar o ajuste do modelo teorico, que descreve a
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correlagao espacial em uma fungdo continua, de maneira que ha valores de variancia espacial
para qualquer distancia no dominio.

O variograma é representado em um gréfico cartesiano, no qual a distancia A é plotada
no eixo das abscissas e a variancia espacial y(h) no eixo das ordenadas, e sempre apresentam
as mesmas caracteristicas, independente da variavel. Os valores de variancia espacial ficam
menores em pequenas distancias e a medida que as distancias aumentam, a variancia também.

Considerando a Figura 2 e as propriedades do variograma (Yamamoto & Landim, 2013),
o Efeito Pepita (Co) representa uma continuidade préxima a origem, e é o valor de varidncia
espacial para distancias que tendem a zero; a Variancia Espacial (C) é uma medida de
dissimilaridade de dois pontos no espaco dada uma distancia em determinada direcao; o Patamar
(Co+C) corresponde ao valor maximo de variancia espacial que os dados apresentam. Ja na
abscissa, a Amplitude (a) equivale a distdncia maxima onde se consegue estabelecer uma
dependéncia espacial entre pares de pontos, e marca a saida do campo estruturado e entrada
no campo aleatério; 0 Campo Estruturado é a regido com distancias menores que a amplitude,
onde ha dependéncia espacial entre pares de pontos, enquanto o Campo Aleatério representa
distancias maiores que a amplitude, onde ndo ha mais dependéncia e a variancia espacial é

maxima.

~
t <=
~
b=l

CAMPO 5 CAMPO
ESTRUTURADO i ALEATORIO

C0+C—< /- T PATAMAR

>

VARIANCIA :
ESPACIAL / ;

/

VARIANCIA 07 .
ALEATORIA H

1
a=AMPLITUDE h

Figura 2: Variograma teérico com propriedades. Fonte: Yamamoto (2001).

A fungao do ajuste do modelo teérico do variograma é utilizado em técnicas de estimativa
de uma variavel, onde destaca-se a krigagem. Burrough e McDonnell (1998) descreveram a
krigagem como um processo de interpolagdo de varios estagios que se baseia no célculo e
modelagem do variograma experimental, e segundo Deutsch e Journel (1997), a krigagem é
BLUE (Best Linear Unbiased Estimator), ou seja, € o melhor estimador linear nao enviesado no

sentido que minimiza a variancia da estimativa. Ha diversas variantes de krigagem, a depender
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de como os pesos sdo obtidos, e dentre as principais técnicas pode-se citar ordinaria, a mais
difundida e utilizada, simples, lognormal, e de variaveis indicadoras.

A krigagem ordinaria consiste em um método de estimativa linear, que é baseado na
ponderagdo de amostras no entorno do ponto a ser estimado, e os ponderadores sao
dependentes da variancia espacial que o dominio apresenta (Yamamoto, 2001). A estimativa
resulta da Equacéo 4, e ha uma condicao de restricdo no qual a soma dos pesos deve ser igual

a 1, conforme a Equacao 5.

700 = ) M2 (@)
i=1

Equagéo 4: Calculo da Krigagem Ordinaria.

iai =1 (5)

Equacgéo 5: Condicao de restricdo no qual a soma dos pesos deve ser igual a 1.

Considerando as Equacgobes 4 e 5, respectivamente, temos que o Z* foi emprestado da
estatistica classica para representar um estimador, de maneira que Z*(x,) corresponde ao valor
da variavel estimada no ponto x,; Z(x;) equivale ao valor que a variavel assume na i-ésima
amostra da vizinhanga; e finalmente o 4; € o ponderador que cada amostra Z(x;) recebe. Os
valores de 1; sao obtidos a partir da resolu¢cdo de um sistema de equacgdes lineares conhecido
por sistema de krigagem.

Entretanto, dados com variancia elevada dificultam o célculo da fungéo variograma e a
estimativa por krigagem ordinaria, dado que os variogramas experimentais sdo muito sensiveis a
valores atipicos, conhecido como outliers, e desse modo, podem ser pouco efetivos e assertivos
(Journel, 1983). Tratando-se de dados de mineragéo, € muito comum a ocorréncia de variaveis
com distribuicdo lognormal, caracterizada pela presenga de valores elevados em baixa
frequéncia, como ouro, cobre, e outros metais raros, que possuem maior variancia. Portanto, é
necessario um tratamento desses dados, para adequar a variavel a fim de realizar variografia e
estimativa por krigagem.

Journel (1983) sugeriu a transformacao dos dados com distribuicao lognormal a partir da
aplicagao do logaritmo natural, resultando em uma distribuigdo simétrica, que apresenta valores
mais baixos de variancia, contribuindo para a modelagem do variograma e melhorando a
estimativa por krigagem ordinaria. A transformacdo dos dados para logaritmos é dada pela

Equacéo 6:
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Y(x) = Log (Z(x)) (6)

Equacéo 6: Transformagéao logaritmica do dominio.

Por defini¢cdo, se a variavel Z(x) apresenta uma distribuicdo lognormal, a variavel Y(x) ira
ter uma distribuicdo normal. Apdés a transformacio, € realizado o calculo do variograma
experimental e seu ajuste de modelo tedrico, e em seguida, a estimativa por krigagem ordinaria.
As amostras estimadas estdo no dominio logaritmico, portanto € necessario transformar de volta

a escala original, a partir da Equacéao 7 (Journel, 1980):

o2
Zork (%) = exp (ng(xo) + % - H> (7)

Equacéo 7: Transformacgao reversa para dominio original (Journel, 1980).

Onde, Z;,x(x,) refere-se aos valores estimados transformados de volta para escala

original; Y} (x,) s&o os resultados da krigagem ordinaria, ainda em logaritmo; a3, € a variancia

2
da krigagem ordinaria e u equivale ao multiplicador de Lagrange. A expressao % — pu éumtermo

de ndo viés para a krigagem ordinaria.

Entretanto, a Equacéo 7 é muito sensivel a modelagem do variograma, de modo que o
resultado da estimativa é enviesado quando comparado aos dados originais (Journel &
Huijbregts, 1978) (Saito & Goovaerts, 2000). Isso ocorre devido ao efeito de suavizacéo da
krigagem, na qual valores mais baixos sdo superestimados, e valores elevados sao
subestimados, perdendo as caudas inferiores e superiores durante o processo de estimativa.
Uma nova abordagem foi sugerida por Yamamoto (2007), na qual a transformagao para o dominio

original ocorre apds a corregao da suavizagao da krigagem, como visto na Equagéao 8:

Zork (xg) = exp (ng(xo) + Yys, (xo)) * Mediana (8)

Equacao 8: Transformagao reversa (Yamamoto, 2007).

Onde, Yy, (x,) representa o erro de suavizagédo, que € negativo quando os valores s&o

superestimados, e positivo quando subestimados. Dessa maneira, o dominio estimado pode ser

transformado de volta para a escala original da variavel.
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4. MATERIAIS E METODOS

Como esse trabalho visa a aplicagcdo de um método para modelagem geoestatistica de
um depdsito mineral, é necessario aplicar diversas etapas de tratamento e analise exploratéria
de dados antes de comecgar a mexer com a variografia e os métodos geoestatisticos em si. Na
Figura 3 é apresentado com as etapas realizadas até o momento.

Os dados foram revisados e tratados antes de comecgarem as analises preliminares. Apos
esse primeiro passo, foi realizada a analise exploratéria dos dados e a modelagem geolégica do
depdsito. Apds esses estudos, foi feita a krigagem lognormal testando diversos valores de
constante, e os resultados obtidos foram avaliados, como ja citado, por técnicas de validagéo,
como a validagao cruzada e a avaliagdo visual pela elaboragéo de graficos como o swath-plot e
QQ-plot.

Todas as etapas até o momento foram realizadas em softwares de planilhas eletrénicas,
como o Excel, além de softwares de modelagem geoldgica e geoestatistica como o Isatis.neo®,
Datamine Studio RM® e Supervisor®. Além disso, é importante citar que essas solugdes foram
disponibilizadas pela Datamine Software para fins académicos ao Instituto de Geociéncias da

Universidade de Sao Paulo.

Validagio da Base de Dados

Andalise Exploratéria de Dados Seleg&o de Dominios

Regularizagio das Amostras Criagao de Modelo de Blocos Modelagem Geoldgica

Transformagdes Logaritmicas

Cdlculo do Variograma Calculo do Variograma
Experimental e Ajuste Experimental e Ajuste
de Modelo Tebrico de Modelo Tedrico

Definigdo da Vizinhanca Definigdo da Vizinhanca

Krigagem Lognormal Krigagem Ordinaria

Transformagéo Reversa

Comparacéo de Resultados

Figura 3: Fluxograma do trabalho realizado.
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Em relagdo ao material utilizado no trabalho, foi fornecida uma base de dados de
sondagens de um depésito de ouro, com coordenadas X, Y e Z alteradas, intervalos de
amostragem com valores da variavel de ouro, comprimento total do furo, bem como a sua
orientagdo e mergulho. Esses dados foram disponibilizados em formato .csv, contendo 74
sondagens e 3479 amostras de ouro analisadas. A metragem total das sondagens é de 45.856,68

metros, enquanto a metragem analisada equivale a 2.697,14 metros.

( O i 5
'—j(‘l — Collar com orientagdo

(e

A

Figura 4: Malha de sondagem com destaque em azul para as coordenadas da embocadura dos furos de sondagem.

5. RESULTADOS OBTIDOS E INTERPRETAGOES PRELIMINARES

5.1. Analise Exploratéria de Dados

Inicialmente, foi feita a analise da tabela de dados no Excel e correcdo de pequenas
inconsisténcias, e logo em seguida foi realizada a analise das estatisticas descritivas da variavel
de ouro no depdsito em estudo. A amostragem do ouro ocorre na forma de duas lentes, uma
superior e outra inferior, de maneira que foi possivel dividir o depdsito em dois dominios
principais: lente superior e lente inferior. As amostras referentes a cada uma das lentes podem
ser visualizadas na Figura 5.

Diversas amostras nao foram selecionadas para os dominios uma vez que nao foram
interpretadas como continuagdo da lente e/ou seu valor ndao contribuia para o propdsito do
trabalho, como teores inferiores a 0,01 ppm. Essas amostras estdo destacadas pela cor azul na

Figura 5.
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Figura 5: Selegao das amostras de ouro em lente superior (verde), lente inferior (vermelha) e amostras nao

selecionadas (azul).

Em geral, as duas lentes possuem distribuicbes e estatisticas bem semelhantes.
Analisando as estatisticas descritivas de cada lente na Tabela 1, é observado que a lente superior
possui trés vezes mais amostras que a lente inferior, e isso ocorre devido a diversas sondagens
que finalizam na porcao superior. Dessa maneira, o espagamento médio amostral nessa porcao
€ de 25 metros enquanto na porgao inferior chega a 50 metros. Outra diferenca é a média igual
a 0,766 ppm no corpo superior, quase trés vezes mais que o corpo inferior, cuja média é 0,225
ppm. Essa diferenga de média ocorre devido a presenga de outliers, dado que os quartis (Q1, Q2

e Q3) sao todos bem semelhantes entre as duas lentes.

Tabela 1: Estatisticas descritivas da variavel de ouro.

N° de Desvio

Variavel Lente Média Minimo Q1 Q2 Q3 Maximo ~ C.V.
valores Padrao

AU_PPM  Superior 1529 0,766 0,005 0.005 0,025 0,080 178,5 6,491 8,474

AU_PPM Inferior 591 0,225 0,005 0,005 0,025 0,060 24,5 1,529 6,784
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Ja em relagao a distribuicdo de frequéncia em cada uma das lentes, é possivel observar
a assimetria positiva, com cauda de distribuicdo para a direita, muito caracterizada pela alta
presencga de valores muito baixos, e poucos valores altos. As distribuicbes podem ser analisadas
individualmente para lente superior (Figura 6) e lente inferior (Figura 7). Além disso, cada dominio

apresenta um Log Probability Plot, a fim de evidenciar os valores mais baixos de ouro.

Nb samples = 1476
1A B

o7 %
P

o

g

Raw histogram [%]

[ T T T T 1 T T T T T
0 0 20 30 40 50 0.01 01 1 10 100
AU_PPM AU_PPM (Quanties)

Figura 6: A) Histograma de distribuigdo do ouro na lente superior; B) Log Probability Plot do ouro na lente superior.
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Figura 7: A) Histograma de distribuicao do ouro na lente inferior; B) Log Probability Plot do ouro na lente inferior.
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5.2. Modelagem Geolégica

Com as amostras de cada lente selecionadas, foi realizada a modelagem delas por sélidos
via algoritmos de modelagem implicita. Os algoritmos funcionam a partir da ideia de ligar contatos
(topo e base) de cada lente, gerando um sdlido fechado, comumente conhecido como wireframe.

O modelo geolégico das lentes pode ser observado na Figura 8, e ambas as lentes
possuem caracteristicas geoldgicas bastante proximas. Sdo caracterizadas pelo mergulho de 30°

para noroeste, e possuem espessura desde 2 metros até 30-40 metros em algumas regibes.

Legenda
l:‘ Lente Superior

. Lente Inferior

Figura 8: Sdlidos das lentes superior (verde) e inferior (vermelho).

5.3. Modelo de Blocos

O modelo de blocos é uma representacao 3D do depdsito mineral, dividido em blocos
regulares, também chamados de células parentais, com tamanhos variados nos eixos X, Y e Z.
Ele é fundamental para a estimativa uma vez que cada bloco representa um volume definido do
dep0sito e apresenta diversos atributos como tamanho, dominio, densidade e teores. Além disso,
a célula parental pode ser dividida em subcélulas, que seriam divisdes em cada eixo do bloco, de
modo a respeitar da melhor forma possivel os limites definidos pelo sélido durante a modelagem.

No caso da base de dados de estudo, a malha de sondagem da regi&o principal, que seria

a lente superior, € espagada em aproximadamente 25 metros no plano XY. Dessa maneira, foi
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estabelecido um tamanho de bloco de 10 metros nos eixos X e Y e 2 metros no eixo Z. Além
disso, também foi configurado subcélulas a fim do modelo de blocos respeitar os limites dos

soélidos. Nos eixos X e Y, o bloco pode ser dividido até 5 vezes, enquanto no eixo Z até 4 vezes.

Tabela 2: Definicdo do tamanho da célula parental e subcélulas no modelo de blocos.

Eixo X Y Z
Célula Parental (m) 10 10 4
N° de subcélulas 5 5 4

5.4. Regularizagdo das Amostras

Em relacéo a regularizacdo das amostras, foi utilizado um composite equivalente a um
metro e os residuos, amostras que ndo conseguiram entrar na composta, foram descartados. Na
Tabela 3 é possivel comparar os resultados pré e pos regularizagdo, nos quais tanto a lente
superior quanto a lente inferior apresentam mudancas bem parecidas.

A principal diferenca foi na média, uma queda de 16,67% na lente superior e 25,58% na
lente inferior, justificado pela diluicdo dos outliers da distribuicdo com valores muito menores. De
resto, as estatisticas descritivas de ambos os dominios se mantiveram muito semelhantes,

apenas com uma pequena queda no desvio padrao e coeficiente de variacao.

Tabela 3: Estatisticas descritivas das amostras de ouro originais x composite.

N° de %Dif Desvio

Variavel Lente valores Média Média Minimo Q1 Q2 Q3 Maximo Padrio C.V.
AU_PPM .
(original) Superior 1476 0,766 -16,67% 0,005 0.005 0,025 0,080 178,50 6,491 8,474
AU_PPM Superior 1078 0,598 0,005 0,007 0,025 0,081 85,43 4,253 7,117
(composta)
AU_PPM .

= Inferior 559 0,225 0,005 0,005 0,025 0,060 24,50 1,529 6,784
(original)
AU_PPM) -25,58%

- Inferior 392 0,167 0,005 0,005 0,020 0,060 11,648 0,908 5,424
(composta)

5.5. Transformacao dos dados

Uma vez com os dados regularizados, foi realizada a transformacéao logaritmica dos dados
da lente superior e inferior para os logaritmos natural, base 2 e base 10. A fim de evitar valores
negativos, foi adicionado um valor de constante equivalente a 10 para todos os resultados
logaritmos. As estatisticas das variaveis transformadas sao apresentadas na Tabela 4.

Inicialmente, foi feito um QQ-Plot a fim de comparar o resultado da transformagao

logaritmica (nesse caso do logaritmo natural somado a 10) com a distribuicdo gaussiana da
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variavel. A distribuicdo gaussiana equivale a uma distribuicdo normal e quanto mais a distribui¢cao
logaritmica se aproximar da gaussiana, maior a lognormalidade da variavel em estudo.

Na Figura 9, pode-se analisar que a maior parte dos pontos segue aproximadamente a
linha pontilhada na porgao central, sugerindo que a variavel se aproxima de uma distribui¢cao para
valores intermediarios. Entretanto, os valores se afastam da linha pontilhada na cauda inferior,
indicando que a distribuicao log-transformada tem repeticdo de valores mais baixos do que o
esperado para uma distribuicdo normal, dado que ~30% das amostras estdo carimbadas com a
metade do limite inferior de deteccao da andlise quimica (0,005 ppm). Ja na cauda superior
também ha um desvio significativo, indicando que ha valores muito maiores do que o esperado

em uma distribuicdo lognormal perfeita.

A) L

ey

+ R b b e

' 3
Gaussan{mesn=6,599, w1807 Gaussan{masn=6.264. =1 811

Figura 9: QQ-Plot dos dados de ouro transformados pelo logaritmo natural + 10 x distribuicdo gaussiana em que A)

representa a lente superior e B) representa a lente inferior.

Tabela 4: Estatisticas descritivas das variaveis transformadas.

N° de

Desvio

Variavel Lente valores Média  Minimo Q1 Q2 Q3  Maximo Padrio C.v.
AU_LN_10 Superior 1077 6,589 4,702 5,077 6,311 7,484 14,448 1,807 0,274
AU_LOG2_10  Superior 1077 5,079 2,356 2,898 4,678 6,370 16,417 2,606 0,513
AU_LOG10_10  Superior 1077 8,519 7,699 7,862 8,398 8,907 11,932 0,785 0,092
AU_LN_10 Inferior 392 6,264 4,702 4,702 6,088 7,187 12,455 1,531 0,244
AU_LOG2_10 Inferior 392 4,611 2,356 2,356 4,356 5,941 13,542 2,209 0,479
AU_LOG10_10 Inferior 392 8,387 7,699 7,699 8,301 8,778 11,066 0,665 0,079
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Figura 10: Histograma da variavel de ouro transformada pelo logaritmo natural + 10.

5.6. Calculo do Variograma Experimental e Ajuste de Modelo Teérico

Em seguida, foi realizada a analise espacial da variavel original e da variavel transformada
para as lentes superior e inferior, através do calculo do variograma experimental e ajuste do

modelo tedrico.

5.6.1. Variografia da Lente Superior

A lente superior é caracterizada por uma mineralizagdo com 650 metros de comprimento,
mergulhando aproximadamente 30° para NW e com espessura média equivalente a 10 metros,
podendo chegar a mais de 50 metros em algumas regides. Em relagdo a malha de sondagem, o
espagamento médio entre amostras no plano da mineralizagéo é de 25 metros, justificando um

tamanho de passo a ser utilizado na variografia entre 20 e 25 metros.
5.6.1.1. Variavel de ouro original

Para o calculo do variograma experimental da variavel de ouro original, foi necessario
simular um variograma omnidirecional, ou seja, um variograma com tolerancia angular igual a 90°
no plano da mineralizagdo. Devido a alta variancia do ouro, os variogramas direcionais, mesmo

com alta tolerancia angular, resultavam em efeito pepita puro, um comportamento onde ndo ha
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correlacéo espacial entre os pontos amostrais, independentemente da distancia entre eles. Além
disso, foi utilizado um tamanho de passo equivalente a 25 metros, com uma tolerancia de passo
de 50%. Os parametros para o calculo do variograma experimental sdo apresentados na Tabela

5.

Tabela 5: Parametros do variograma experimental da variavel original na lente superior.

Tamanho do Tolerancia do Tolerancia angular (°)

Diregéo () Passo (m) Passo (%) In-plane Off-plane
Downhole 1 50 i ’
-30>320 25 50 90 80
00230 25 50 90 80
060320 25 50 90 )

Em relagdo a modelagem do variograma, foi utilizado duas estruturas esféricas e um efeito
pepita equivalente a 0,2 da variancia do ouro. O patamar do variograma foi normalizado, adotando
1 como variancia espacial maxima. Na Figura 11 é apresentado os variogramas downhole,

omnidirecional e vertical, e na Tabela 6 os parametros utilizados na modelagem.

Tabela 6: Parametros para ajuste do modelo de variograma da variavel original na lente superior.

Estrutura Modelo Patamar Major Semi-Major Minor
Nugget effect - 0,2 - - -
Estrutura 1 Esférico 0,33 21 21 7
Estrutura 2 Esférico 0,47 60 60 50
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Figura 11: Variogramas downhole, D1, D2 e D3 da variavel de ouro original na lente superior.

5.6.1.2. Variaveis de ouro transformadas

Ja para o calculo do variograma experimental das variaveis de ouro transformadas, foi
possivel utilizar variogramas direcionais com tolerédncias angulares menores. Devido a
transformacéo logaritmica, a variancia da distribuicdo diminui bastante, de modo que a diferenca
entre pares de pontos é mais sutil e o variograma nao apresenta o comportamento de efeito
pepita puro. Os parametros de tamanho e tolerdncia do passo foram mantidos bastante
semelhantes, utilizando um passo de 20 metros. Os parametros para o calculo do variograma

experimental sdo apresentados na Tabela 7.

Tabela 7: Parametros do variograma experimental das variaveis transformadas na lente superior.

A . o
Tamanho do Tolerancia do Tolerancia angular (°)

Diregdo () Passo (m) Passo (%) In-plane Off-plane
Downhole 1 50 ’ )
-28->343 20 50 10 2
10>247 20 50 45 !
060320 5 50 45 )
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Em relagao a modelagem do variograma, também foi utilizado duas estruturas esféricas e
um efeito pepita equivalente a 0,2 da variancia do ouro transformado. O mesmo esquema do
patamar normalizado foi utilizado, € o variograma apresenta anisotropia geométrica, com
variacado dos alcances para diferentes diregdes, porém com o mesmo patamar. Na Figura 12 é
apresentado os variogramas downhole, principal (D1), secundario (D2) e vertical (D3), € na
Tabela 8 os parametros utilizados na modelagem.

E possivel reparar que como as diregdes sdo mais direcionadas e menos generalistas que
no variograma omnidirecional, os alcances foram reduzidos em todas as diregdes (menos no
variograma downhole). Enquanto a direc&o principal tem uma variancia espacial bem estruturada,
seu par ordenado apresenta poucos pares de pontos mesmo aplicando uma tolerancia angular
de 45°.

Tabela 8: Parametros para ajuste do modelo de variograma das variaveis transformadas na lente superior.

Estrutura Modelo Patamar Major Semi-Major Minor
Nugget effect - 0,2 - - -
Estrutura 1 Esférico 0,54 58 34 5
Estrutura 2 Esférico 0,26 70 40 25
Variogram for AU_LN Variogram for AU_LN
Downhole - 1 Direction 1:-28-->343 -1

Sph(0.38,10) 104— — — — — — —
15 4

) ph(0.26,70)
8857 293/./
3%
0.84
3 / +Sph( 0.54,58) 652
4

532

Gamma (3.263)
Gamma (3.263)

0'Z‘IFN( 0.2)
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Figura 12: Variogramas downhole, D1, D2 e D3 das variaveis de ouro transformadas na lente superior.
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5.6.2. Variografia da Lente Inferior

A lente inferior é caracterizada por uma mineralizacido com 850 metros de comprimento,
mergulhando aproximadamente 30° para NW e com espessura média equivalente a 5 metros,
podendo chegar a mais de 40 metros em algumas regidées. Em relagdo a malha de sondagem,
quando comparada a lente superior, possui um espagamento médio entre amostras bem maior,
chegando a 50 metros no plano da mineralizagéo.

Essa diferenca de espagamento ocorre pois cerca de 50% das sondagens finalizam na
lente superior, diminuindo a densidade amostral da lente inferior. Dessa maneira, foi utilizado um
tamanho de passo na diregdo principal entre 50 e 60 metros. Outro ponto importante desse
dominio é a presenca de grandes areas sem amostras, dado que a continuidade da lente foi
inferida pela geologia local e continuidade de teores.

5.6.2.1. Variavel de ouro original

Para o célculo do variograma experimental da variavel de ouro original, foi necessario
simular um variograma omnidirecional no plano da mineralizagado assim como na lente superior,
devido a alta variancia que resultava em efeito pepita puro aos variogramas direcionais. Além
disso, foi utilizado um tamanho de passo equivalente a 55 metros, com uma tolerancia de passo
de 50%. Os parametros para o calculo do variograma experimental sdo apresentados na Tabela
9.

Tabela 9: Parametros do variograma experimental da variavel original na lente inferior.

Tamanho do Tolerancia do Tolerancia angular (%)

Direg&o (°) Passo (m) Passo (%) In-plane Off-plane
Downhole 2 50 ’ )
-30>320 55 50 90 7
00230 55 50 90 7
060320 20 50 90 )

Em relacao a modelagem do variograma, também foi utilizado duas estruturas esféricas e
um efeito pepita equivalente a 0,2 da variancia do ouro. Quando comparado a lente superior, a
lente inferior parece ser mais continua devido a alcances maiores, porém na diregcéo vertical,
parece ter pouca continuidade de teores. Na Figura 13 é apresentado os variogramas downhole,

omnidirecional (D1 e D2) e vertical (D3), e na Tabela 10 os pardmetros utilizados na modelagem.
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Tabela 10: Parametros para ajuste do modelo de variograma da variavel original na lente inferior.

Estrutura Modelo Patamar Major Semi-Major Minor
Nugget effect - 0,2 - - -
Estrutura 1 Esférico 0,47 129 129 7
Estrutura 2 Esférico 0,33 130 130 10

Variogram for AU_PPM

Downhole - 2

Variogram for AU_PPM
Direction 1: -30-->320 - 2

200 Lag Lag
1.24 2 1.24 55
147
roLams b N
! ! Sph(0.33, 130)
189
o 08 o o
g g g
S 31 S 16335
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Figura 13: Variogramas downhole, D1, D2 e D3 da variavel de ouro original na lente superior.

5.6.2.2. Variaveis de ouro transformadas

Ja para o calculo do variograma experimental das variaveis de ouro transformadas, foi
possivel utilizar variogramas direcionais com tolerancias angulares menores, dado que a
transformacéo logaritmica diminuiu o efeito dos outliers no célculo do variograma experimental.
O tamanho do passo na diregao principal se manteve semelhante, utilizando um passo de 60
metros, porém em seu par ordenado, como as amostras sao mais proximas, foi utilizado um passo
de 30 metros. Os parametros para o calculo do variograma experimental sdo apresentados na
Tabela 11.
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Tabela 11: Pardmetros do variograma experimental das varidveis transformadas na lente inferior.

Tolerancia angular (°)

Dresao ) Tamete Toerinendo
In-plane Off-plane
Downhole 1 50 * *
-30>314 60 50 22.5 5
02->226 30 50 45 15
060->320 5 50 22.5 *

Finalmente, para a modelagem do ultimo variograma, também foi utilizado duas estruturas

esféricas e um efeito pepita equivalente a 0,2 da variancia do ouro transformado. A principal

diferenga em relagdo ao dominio original foi 0 alcance na dire¢do secundaria, que diminuiu para

30 metros, evidenciando uma forte anisotropia geométrica a lente inferior. Na Figura 14 é

apresentado os variogramas e na Tabela 12 os parametros utilizados na modelagem.

Tabela 12: Parametros para ajuste do modelo de variograma das variaveis transformadas na lente inferior.

Estrutura Modelo Patamar Major Semi-Major Minor
Nugget effect - 0,2 - - -
Estrutura 1 Esférico 0,25 27 14 3
Estrutura 2 Esférico 0,55 100 30 13
Variogram for AU_LN Variogram for AU_LN
Downhole - 2 Direction 1: -30-->314 - 2
121 4 1.24 }’*’L:i
) R %r*\wgy%
2038
g g 0.8 / /
2 2 o6 ‘
5 5
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Figura 14: Variogramas downhole, D1, D2 e D3 das variaveis de ouro transformadas na lente inferior.
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5.7. Definicdo dos Parametros de Vizinhanga

Uma vez com os variograma definidos, € possivel estabelecer os pardmetros de
vizinhanga a serem utilizados durante a estimativa. A vizinhanga em uma krigagem define como
0s pontos amostrados proximos a um bloco a ser estimado sédo selecionados para fazer parte
dessa estimativa. Esses pardmetros s&o essenciais para a garantir que a estimativa seja feira de
forma eficiente, considerando um numero adequado de amostras e levando em conta a estrutura
espacial dos dados, como direcao e continuidade espacial da mineralizagao, além da densidade
amostral.

Em seguida, para validacdao dos parametros de estimativa, foi realizada a validagao
cruzada para cada variavel em ambas as lentes. E uma técnica que consiste na remogado de uma
amostra e na estimativa desse mesmo ponto retirado utilizando os mesmos paréametros de
estimativa, vizinhanca e de modelo de variograma. Dessa maneira, € possivel comparar o valor
real versus o valor estimado de diversos pontos do depdsito. Além disso, € possivel calcular

métricas de desempenho, como o erro médio e o coeficiente de correlagao do estimado x real.

5.7.1. Vizinhanga na Lente Superior

Na lente superior, os parametros de vizinhanga foram baseados no variograma da variavel
de ouro transformada, dado que foi utilizado uma direcdo preferencial de mineralizacdo ao
contrario de um variograma omnidirecional. Além disso, foram utilizadas trés passadas a fim de
estimar todos os blocos da lente, sendo a primeira passada equivalente a metade dos alcances
do variograma, e colocado também um numero maximo de amostras por furo para evitar que o
bloco seja enviesado pelo furo mais proximo. Como foi aplicado um limite de amostras por furo,
nao foi feito o uso de octantes. Os parametros de vizinhancga utilizados na estimativa da lente

superior estdo apresentados na Tabela 13.

Tabela 13: Parametros de vizinhanga para estimativa na lente superior.

Distancia de Busca (m) N° de Amostras N° max. de
Variavel Passo amostras
Max. Interm. Min. Min. Max por furo
AU_PPM 1 35 20 12 6 12 2
AU_LN_10
AU_LOG2.10 2 70 40 24 4 12 2
AU_LOG10_10 3 105 60 36 2 12 2

Orientagao do elipsoide: Dip Azimuth = 320°; Dip = 30°.
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5.7.1.1. Validagao Cruzada dos dados originais

Inicialmente, foi realizada a validagéo cruzada da variavel de ouro original, que obteve um
coeficiente de correlacdo de Pearson equivalente a 0,49. Na Figura 15 é apresentado o gréfico
de dispersdo dos valores reais versus estimados, onde é observado diversos valores reais
préximos a zero sendo estimados com altos valores, além de alguns valores estimados como
negativos. Em geral, o coeficiente de correlacéo € enviesado pelos outliers da variavel AU_PPM

€ nao representa de maneira efetiva a validagao cruzada realizada.

50 -
p=045

AUL_PPM _Krig

T T T T T T
0 10 n ] %0 ]
AU_PPM

Figura 15: Validagao cruzada para variavel de ouro original na lente superior, onde a bissetriz é representada pela

linha pontilhada e a regresséao linear pela reta vermelha.

5.7.1.2. Validag¢ao Cruzada dos dados transformados

Ja para os dados transformados, a situagao ja é diferente. Na Figura 16, € apresentado o
grafico de dispersao para os valores transformados reais versus estimados, no qual ha um grande
aumento no coeficiente de correlagao, que subiu para a 0,74. Ainda ha o mesmo problema de
valores repetidos préximos a zero, iguais a 0,005 ppm ou 0,025 ppm, sendo superestimados,
porém a influéncia de outliers € bem reduzida. Além disso, a validagao cruzada para todas as
variaveis transformadas, utilizando logaritmo natural, de base 2 e base 10, tiveram o mesmo

resultado.
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AU_LN_10-Krig

AU_LH_10

10 2

Figura 16: Validagao cruzada para as variaveis de ouro transformadas na lente superior, onde a bissetriz &

5.7.2. Vizinhanga na Lente Inferior

representada pela linha pontilhada e a regressao linear pela reta vermelha.

Ja na lente inferior, apés diversos testes de vizinhanca, os parametros foram baseados

no variograma omnidirecional da variavel de ouro original. Dado a baixa densidade amostral da

lente, os eixos do elipsoide foram equivalentes ao alcance do variograma na primeira passada e

duas vezes esse valor na segunda passada, sem necessidade de utilizar uma terceira passada.

Assim como na lente superior, foi utilizado um maximo de duas amostras por furo. Os parametros

de vizinhanca da lente inferior sao apresentados na Tabela 14.

Tabela 14: Parametros de vizinhanga para estimativa na lente inferior.

Distancia de Busca (m) N° de Amostras N° max. de
Variavel Passo amostras
Max. Interm. Min. Min. Max por furo
AU_PPM
AU_LN_10 1 130 130 10 6 12 2
AU_LOG2_10
AU_LOG10_10 2 260 260 20 4 12 2

Orientagao do elipsoéide: Dip Azimuth = 320°; Dip = 30°; Pitch = 85°
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5.7.2.1. Validagao Cruzada dos dados originais

Em relacdo a validagdo cruzada para os dados originais da lente inferior, os valores de
ouro originais reais versus estimados apresentam um coeficiente de correlagdo de Pearson igual
a 0,15, de maneira que ndo ha correlacdo entre os dominios. Novamente a regressao linear foi
bastante enviesada por outliers, além de que diversos valores proximos a zero foram
superestimados ou até estimados como valores negativos. Na Figura 17 é apresentado o grafico

de dispersao dos valores de ouro reais versus estimados na lente inferior.

p=0.15

AU_PPM_2-Krig

AU_PPM

Figura 17: Validagao cruzada para a variavel de ouro original na lente inferior, onde a bissetriz é representada pela

linha pontilhada e a regressao linear pela reta vermelha.
5.7.2.2. Validag¢ao Cruzada dos dados transformados

Ja para os dados transformados, houve um grande aumento do coeficiente de correlagao
que equivale a 0,68. Desta vez, nao ha mais a influéncia de outliers nem a presencga de valores
estimados negativos, porém continua com a superestimativa daqueles valores transformados
iguais a 2,356 ppm (originalmente igual a 0,005 ppm). Novamente, os resultados da validagao
cruzada para todas as variaveis transformadas, utilizando logaritmo natural, de base 2 e base 10,

somados a uma constante igual a 10, foram os mesmos.
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Figura 18: Validagao cruzada para as variaveis de ouro transformadas na lente inferior, onde a bissetriz &

representada pela linha pontilhada e a regressao linear pela reta vermelha.

5.8. Estimativa por Krigagem Ordinaria e Krigagem Lognormal

Uma vez com os modelos de variograma e parametros de vizinhanga definidos, é possivel
realizar as estimativas por krigagem ordinaria das variaveis originais e transformadas. Em relacao
aos parametros utilizados na estimativa, foi utilizado o modelo de blocos apresentado na Tabela
2, com discretizacdo do bloco por 3x3x3 nos eixos XYZ, e a estimativa realizada nas células
parentais. Além disso, na krigagem dos dados originais houve valores negativos devido a diversas
amostras estarem proximas de 0,005 ppm, mas foram tratados posteriormente e tiveram seu novo

valor equivalente a zero.

5.8.1. Estimativas na Lente Superior

5.8.1.1. Krigagem Ordinaria — variavel de ouro original

A krigagem ordinaria foi realizada segundo os parametros descritos acima para a variavel
regularizada de ouro. Os parametros de vizinhanga para os dados nao transformados da lente
superior foram apresentados na Tabela 13, e 0 modelo de variograma utilizado se encontra na
Tabela 6. As estatisticas descritivas da estimativa dos dados originais estdo apresentadas abaixo,

na Tabela 15, acompanhadas da Figura 19, que ilustra o0 modelo estimado.
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Tabela 15: Estatisticas descritivas da variavel original estimada na lente superior.

.. N° de o - o Desvio
Variavel Lente blocos Média Minimo Q1 Q2 Q3 Maximo Padrio C.v.

AU_PPM_OK Superior 38000 0,284 0,005 0,008 0,023 0,159 56,551 1,303 4,581

Teor de Ouro (ppm)

W o-oo0
0,02-0,04
0,04-0,06
0,06-0,11
0,11-0,29

B 029-56,55

Figura 19: Modelo estimado por krigagem ordinaria dos dados originais na lente superior.

5.8.1.2. Krigagem Lognormal — variaveis de ouro transformadas

Ja para as variaveis de ouro transformadas pela aplicagdo do logaritmo natural, de base
2 e base 10 somados a uma constante igual a 10, foi realizada a krigagem ordinaria seguida da
transformacao reversa dos valores estimados. Essa transformacao reversa foi realizada de duas
maneiras: a primeira pela aplicagdo do expoente nos resultados transformados subtraindo a
constante; e a segunda pela aplicagdo da Equacdo 7, que retira o expoente dos resultados
transformados menos a constante, somado a um termo de nao viés, calculado através da

variancia da krigagem e multiplicador de Lagrange.

X X TGk
Zork(xo) = exp | Yog(x) + -

Equacao 9: Transformacgao reversa para dominio original (Journel, 1980).
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Para a krigagem lognormal na lente superior, os parametros de vizinhanga utilizados foram
apresentados na Tabela 13, e o modelo de variograma utilizado se encontra na Tabela 8. As
estatisticas descritivas dos resultados retro transformados pela aplicagao do expoente estao na

Tabela 16 e seu respectivo modelo tridimensional pode ser visualizado na Figura 20.

Tabela 16: Estatisticas descritivas das variaveis transformadas estimadas na lente superior, retro transformadas pela

aplicagéo do expoente de cada logaritmo.

.. N° de - . o Desvio
Variavel Lente blocos Média Minimo Q1 Q2 Q3 Maximo Padrio C.V.
AU_LN_10_LK Superior 38000 0,055 0,005 0,013 0,026 0,059 9,381 0,125 2,296
AU_LOG2_10_LK Superior 38000 0,055 0,005 0,013 0,026 0,059 9,381 0,125 2,296
AU_LOG10_10_LK Superior 38000 0,055 0,005 0,013 0,026 0,059 9,381 0,125 2,296
e

Teor de Ouro (ppm)

oo
0,02-0,04
0,04-0,06
0,06-0,11
0,11-0,29

Bl 029-5655

N

Figura 20: Modelo estimado por krigagem lognormal com transformagao reversa pela aplicagdo do expoente.

Em relagao as estatisticas descritivas da krigagem lognormal que teve a transformagao
reversa realizada pela aplicagdo da Equacgao 7, estdo apresentadas na Tabela 17. O modelo

estimado encontra-se na Figura 21.

Tabela 17: Estatisticas descritivas das variaveis estimadas na lente superior retro transformadas pela Equagéo 7.

- N° de - - . Desvio
Variavel Lente blocos Média Minimo Q1 Q2 Q3 Maximo Padrio C.V.

AU_LN_10_LK2  Superior ~ 38000 0,266 0,008 0,050 0,099 0,245 21,816 0,700 2,631
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Teor de Ouro (ppm)

o002

0,02-0,04 - -
0,04 - 0,06

0,06-0,11 "‘i‘a‘ *
s =

0,11-0,29

)
B 0.29-5655 @

\-
T~

N

Figura 21: Modelo estimado por krigagem lognormal com transformacéo reversa pela Equagéo 7 na lente superior.

5.8.2. Estimativas na Lente Inferior

5.8.2.1. Krigagem Ordinaria — variavel de ouro original

Ja na lente inferior, para a krigagem ordinaria dos dados de ouro originais, os parametros
de vizinhanga utilizados s&o aqueles apresentados na Tabela 14, e o0 modelo de variograma
utilizado se encontra na Tabela 10. As estatisticas descritivas da estimativa dos dados originais
estdo apresentadas abaixo, na Tabela 18, acompanhadas da Figura 22, que ilustra o modelo

estimado.

Tabela 18: Estatisticas descritivas da variavel original estimada na lente inferior.

Variavel Lente N'de  \gdia  Minimo Q1 Q2 Q3 Maximo DoV oy
blocos Padrao
AU_PPM OK  Inferior 36819 0,198 0 0031 0067 018 5437 0414 2,091
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Teor de Ouro (ppm)

W o-o002

B 0,02-0,04
0,04 - 0,06
0,06-0,11
0,11-0,29

W 0.29-5655

\N

Figura 22: Modelo estimado por krigagem ordinaria dos dados originais na lente inferior.

5.8.2.2. Krigagem Lognormal — variaveis de ouro transformadas

Finalmente, em relacdo a krigagem lognormal das variaveis transformadas na lente
inferior, foi feita a mesma metodologia de transformacéo reversa dos dados da lente superior, um
método pela aplicagdo do expoente e outro pela aplicagdo da Equagao 7.

Para a krigagem lognormal na lente inferior, os parametros de vizinhanca foram
apresentados na Tabela 14, e o modelo de variograma utilizado se encontra na Tabela 12. As
estatisticas descritivas dos resultados retro transformados pela aplicagao do expoente estdo na

Tabela 19 e seu respectivo modelo tridimensional pode ser visualizado na Figura 23.

Tabela 19: Estatisticas descritivas das variaveis transformadas estimadas na lente inferior, retro transformadas pela

aplicagdo do expoente de cada logaritmo.

.. N° de . . L. Desvio
Variavel Lente blocos Média Minimo Q1 Q2 Q3 Maximo Padrio C.V.
AU_LN_10_LK Inferior 36819 0,041 0,005 0,016 0,026 0,048 1,256 0,051 1,244
AU_LOG2_10_LK Inferior 36819 0,041 0,005 0,016 0,026 0,048 1,257 0,051 1,244
AU_LOG10_10_LK Inferior 36819 0,041 0,005 0,016 0,026 0,048 1,256 0,051 1,244
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Figura 23: Modelo estimado por krigagem lognormal dos dados transformados na lente inferior.

Em relacdo as estatisticas descritivas da krigagem lognormal que teve a transformagao

reversa realizada pela aplicagdo da Equacao 7, estdo apresentadas na Tabela 20. O modelo

estimado encontra-se na Figura 24.

Tabela 20: Estatisticas descritivas das variaveis estimadas na lente inferior retro transformadas pela Equagao 7.

. N° de - - . Desvio
Variavel Lente blocos Média Minimo Q1 Q2 Q3 Maximo Padrio C.V.

AU_LN_10_LK2 Inferior 36819 0,116 0,008 0,040 0,073 0,128 2,697 0,154 1,326
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Figura 24: Modelo estimado por krigagem lognormal com transformacao reversa pela Equagao 7 na lente inferior.
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6. DISCUSSAO E INTERPRETAGAO DE RESULTADOS

Em relacdo a interpretacdo e comparagao dos resultados obtidos pela krigagem ordinaria
e krigagem lognormal, a analise comparativa sera feita a partir das estatisticas descritivas dos
dominios, Log Probability Plots, QQ-Plots e histogramas.

6.1. Resultados na Lente Superior

Na Tabela 21 estdo apresentadas todas as estimativas realizadas na lente superior. A
variavel AU_PPM representa os dados amostrais, AU_PPM_OK representa o modelo estimado
por krigagem ordinariae AU_LN 10 OK, AU LOG2 10 LK, AU LOG10_10_LK representam as
variaveis transformadas pela aplicacdo do logaritmo natural, de base 2 e de base 10,
respectivamente, somadas a uma constante 10, estimadas por krigagem ordinaria e retro
transformadas pela aplicagdo do expoente. Finalmente, AU LN 10 LK2 representa a variavel
transformada pelo logaritmo natural com sua transformacao reversa realizada pela Equacao 7.

De inicio, é possivel observar que todas as estimativas subestimaram os dados amostrais,
uma vez que ocorreu a diluicdo das amostras high-grade quando foram estimadas no volume de
bloco. Além disso, como esperado, as transformacgdes logaritmicas tiveram o mesmo resultado
independente da base utilizada. Os quartis 1, 2 e 3 se mantiveram constantes na maioria dos
resultados, tirando o dominio AU _LN 10 _LK2, que superestimou todos, e mesmo assim obteve
uma média menor que AU_PPM_OK.

Tabela 21: Estatisticas descritivas dos dados amostrais e de todas as variaveis estimadas na lente superior.

Variavel Lente N° de Média Minimo Q1 Q2 Q3 Méximo 28VO oy
amostras Padrao

AU_PPM Superior 1078 0,598 0,005 0,007 0,025 0,081 85,43 4,253 7,117

AU_PPM_OK Superior 38000 0,284 0,005 0,008 0,023 0,159 56,551 1,303 4,581

AU_LN_10_LK Superior 38000 0,055 0,005 0,013 0,026 0,059 9,381 0,125 2,296
AU_LOG2_10_LK  Superior 38000 0,055 0,005 0,013 0,026 0,059 9,381 0,125 2,296
AU_LOG10_10_LK  Superior 38000 0,055 0,005 0,013 0,026 0,059 9,381 0,125 2,296

AU_LN_10_LK2 Superior 38000 0,266 0,008 0,050 0,099 0,245 21,816 0,700 2,631

Nas Figuras 25, 26 e 27 estao apresentados o Log Probability Plot, QQ-Plot (até 2 ppm)
e histograma (até 2 ppm), respectivamente, dos dados amostrais e dominios estimados por
krigagem ordinaria e lognormal. A partir desses graficos, é possivel visualizar que todas as
estimativas sofrem bastante com o efeito de suavizagdo da krigagem, no qual os valores mais

baixos sofrem com superestimativa e aqueles valores maiores sofrem com subestimativa,
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diminuindo a variabilidade do depdsito. Além disso, é apresentado que AU PPM OK e
AU_LN 10 _LK2 apresentam distribuicdes bastante semelhantes, porém a krigagem ordinaria se
mostrou mais préxima dos dados amostrais. Ja nos resultados de AU_LN _10_LK, pela analise
do QQ-Plot, sua distribuicdo se aproxima dos valores reais apenas proximo a origem, a partir de
0,1 ppm, por exemplo, ja tem resultados bastante subestimados, sem representar os teores altos
de maneira efetiva.
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Figura 25: Log Probability Plot dos dados amostrais e das estimativas na lente superior.
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Figura 26: Histograma dos dados amostrais e das estimativas (até 2 ppm) na lente superior.
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QQ Plot for AU_PPM
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Figura 27: QQ-Plot dos dos dados amostrais e das estimativas (até 2 ppm) na lente superior.

Por outro lado, através da analise dos Swath Plots da Figura 28, os valores de
AU_PPM_OK e AU_LN_10_LK2, que em suas distribuicbes pareciam muito semelhantes, se
destoam bastante. A variavel da krigagem lognormal parece sofrer com o efeito de borda e nao

acompanha os intervalos de alto teor assim como a krigagem ordinaria.
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Figura 28: Swath Plot A) Intervalos de 50 metros na diregao Y; B) Intervalos de 20 metros na dire¢cdo X dos dados

amostrais e das estimativas na lente superior.

Portanto, em relagdo a comparagdo dos métodos de krigagem ordinaria e krigagem
lognormal na lente superior, a krigagem ordinaria se manteve uma técnica mais assertiva e
confiavel. Uma vez que na distribuigao original o valor 0,005 ppm representava aproximadamente
30% dos valores, a variavel nao se comportou bem no teste de lognormalidade, ou seja, ndo se
classifica como uma variavel lognormal, mesmo possuindo assimetria positiva. Dessa maneira,
mesmo transformando os dados para logaritmo, sua distribuicdo continuava sendo assimétrica

positiva e a metodologia foi comprometida.
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6.2. Resultados na Lente Inferior

Ja na lente inferior, a comparacdo & semelhante, porém com algumas pequenas

diferengas. Na Tabela 22, estdo apresentadas as estatisticas descritivas dos dados amostrais e

dos dominios estimados por krigagem ordinaria e krigagem lognormal, com as mesmas

abreviacoes explicadas anteriormente. Dessa vez a krigagem ordinaria foi superestimada e teve

seus quartis 1, 2 e 3 proximos da variavel AU_LN_10_LK2, enquanto as estimativas das variaveis

AU _LN 10 LK foram novamente bastante subestimadas.

Tabela 22: Estatisticas descritivas dos dados amostrais e de todas as variaveis estimadas na lente superior.

N° de

Desvio

Variavel Lente amostras Média  Minimo Q1 Q2 Q3 Maximo Padrio C.V.
AU_PPM Inferior 392 0,167 0,005 0,005 0,020 0,060 11,648 0,908 5,424
AU_PPM_OK Inferior 36819 0,198 0 0,031 0,067 0,186 5,437 0,414 2,091
AU_LN_10_LK Inferior 36819 0,041 0,005 0,016 0,026 0,048 1,256 0,051 1,244
AU_LOG2_10_LK Inferior 36819 0,041 0,005 0,016 0,026 0,048 1,257 0,051 1,244
AU_LOG10_10_LK Inferior 36819 0,041 0,005 0,016 0,026 0,048 1,256 0,051 1,244
AU_LN_10_LK2 Inferior 36819 0,116 0,008 0,040 0,073 0,128 2,697 0,154 1,326

Nas Figuras 29, 30 e 31 estao apresentados o Log Probability Plot, QQ-Plot (até 2 ppm)

e histograma (até 2 ppm), respectivamente, dos dados amostrais e dominios estimados por

krigagem ordinaria e lognormal na lente inferior. A principal diferenga quando comparamos com

a lente superior é que a variavel AU_LN_10_LK2 parece ser um meio termo entre AU_LN_10 LK,

que continua bastante subestimada, e AU_PPM_OK, superestimada. De qualquer maneira, a

krigagem ordinaria ainda se assemelha de melhor maneira aos dados amostrais.
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QQ Plot for AU_PPM
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Figura 31: QQ-Plot dos dos dados amostrais e das estimativas (até 2 ppm) na lente inferior.

Além disso, através da analise de Swath Plots na lente inferior (Figura 32), ndo parece

ocorrer efeito de borda pela variavel AU _LN 10 _LK2, que acompanha os altos teores de maneira

mais eficiente quando comparada com a situagéo da lente superior. A krigagem ordinaria ainda

se mantém mais assertiva acompanhando as regides de alto teor com uma leve suavizada.
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Figura 32: Swath Plot A) Intervalos de 50 metros na dire¢ao Y; B) Intervalos de 25 metros na dire¢do X dos dados

amostrais e das estimativas na lente superior.

Portanto, assim como na lente superior, a krigagem ordinaria mostrou-se uma técnica

mais adequada para o depdsito em estudo. Os valores equivalentes a 0,005 ppm também se

repetem na lente inferior, representando cerca de 30% do total de amostras, de modo que o

problema € o mesmo em ambas as lentes.
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7. CONCLUSOES

No projeto realizado, a analise comparativa mostrou que a estimativa por krigagem
ordinaria se mostrou um método mais assertivo que a krigagem lognormal, com a transformacéao
reversa realizada de duas maneiras diferentes, para o depdsito de ouro em estudo. A principal
problematica foi a distribuicdo da variavel de ouro, com aproximadamente 30% de seus valores
equivalentes a 0,005 ppm, de modo que a variavel ndo se comportava como lognormal. Dessa
maneira, mesmo aplicando a transformacao logaritmica, a assimetria positiva continuava.

Mesmo com a selegao de amostras de ambas as lentes sendo feitas de forma cautelosa,
a fim de trabalhar apenas com dados de interesse econémico, a intercalagao abrupta de teores
fez com que esses valores do limite de detecgdo representassem ainda uma grande classe do
deposito. O ideal seria realizar uma selecdo ainda mais restrita, de modo a trabalhar com uma
distribuicdo proxima a lognormal, porém correndo o risco de diminuir o numero de amostras de
maneira excessiva.

Ainda assim, a transformacdo logaritmica se mostrou bastante efetiva no célculo do
variograma experimental e ajuste de modelo tedrico, dado que para os dados originais sé foi
possivel calcular variogramas omnidirecionais, enquanto as variaveis transformadas
conseguiram identificar uma direcao preferencial da mineralizagédo. Além disso, esse estudo é um
bom exemplo de que a krigagem lognormal ndo representa sempre uma estimativa mais assertiva

dos outliers para depositos minerais com distribuicdes assimétricas positivas.
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