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RESUMO

Este trabalho investiga a dinamica de propagacéao de opinides em redes complexas atraves
do Voter Model e suas extensdes. Foram implementadas simulagbes computacionais do
modelo em trés topologias de rede distintas - Erdds-Rényi (aleatéria), Barabasi-Albert
(scale-free) e Watts-Strogatz (small-world). Os resultados demonstram que a topologia da
rede exerce influéncia crucial na dindmica do sistema: a rede Barabasi-Albert apresentou
consenso significativamente mais rapido que as demais, evidenciando o papel dos hubs
como aceleradores da homogeneizacdo. Para certos valores dos parametros de nao-
linearidade, observou-se reducao drastica no tempo de consenso, enquanto para outros
valores 0 consenso tornou-se inatingivel. Na analise de agentes fanaticos (zealots),
constatou-se que mesmo uma pequena fracdo destes na populacdo é suficiente para
suprimir completamente o consenso global. Este trabalho contribui para a compreensao
dos mecanismos que governam a formacéo de consenso e manutencéo de diversidade em

sistemas sociais complexos.

Palavras-chave: Dinamica de opinido. Redes complexas. Voter Model. Sistemas

complexos. Propagacao de opinides

1 INTRODUCAO

A formacgdo e propagacéo de opinides em sociedades humanas constitui um fenémeno
complexo que tem atraido crescente interesse da comunidade cientifica. Tradicionalmente
estudado nas ciéncias sociais, este tema ganhou nova perspectiva com a aplicacao de
meétodos da Fisica Estatistica e teoria de redes complexas [1]. A capacidade de quantificar
e modelar matematicamente processos sociais permite ndo apenas compreender
mecanismos subjacentes, mas também fazer previsdes sobre comportamentos coletivos

emergentes.

O advento das redes sociais digitais e a disponibilidade de grandes volumes de dados sobre
interacdes humanas impulsionaram o desenvolvimento de modelos matematicos cada vez
mais sofisticados. Estes modelos buscam capturar, de forma simplificada, os processos
pelos quais individuos influenciam uns aos outros, levando a formacdo de consenso,

polarizagédo ou fragmentacao social. Entre os diversos modelos propostos na literatura, o



Voter Model destaca-se por sua simplicidade conceitual e riqueza de comportamentos

dinamicos [2,3].

Originalmente introduzido para analisar competicdo entre espécies [2], o Voter Model foi
posteriormente adaptado para estudos de dinamica de opinido [3]. Neste modelo, cada
agente possui uma opinido binaria (representada por 0 ou 1) e atualiza seu estado copiando
a opinido de um vizinho escolhido aleatoriamente. Apesar de sua aparente simplicidade, o
modelo exibe propriedades nao triviais, como transicdes de fase e comportamentos de
escala que dependem da dimensionalidade do sistema e da topologia da rede de interagoes
[1,11].

A estrutura da rede sobre a qual as interacdes ocorrem desempenha papel fundamental na
dindmica de propagacao [10]. Redes regulares, como grades bidimensionais, produzem
dindmicas significativamente diferentes de redes aleatdrias ou redes com distribuicdo de
grau heterogénea. Redes do tipo 'small-world' [9], caracterizadas por alta clusterizacao e
curtos caminhos médios, podem, contradizendo a intui¢do inicial, retardar processos de
consenso devido a formacao de clusters locais coesos que resistem a influéncia externa.
Por outro lado, redes scale-free [8], com poucos ndés altamente conectados (hubs),

concentram influéncia em agentes especificos, alterando dramaticamente a dinamica.

Extensdes do Voter Model incorporam aspectos mais realistas do comportamento humano.
O modelo néo-linear introduz um parametro a que controla o efeito de "herding"
(comportamento de manada “ou regra da maioria”) [4], onde individuos tendem a seguir a
maioria local de forma mais ou menos acentuada. Para a« > 1, o sistema se aproxima de
uma regra de maioria, acelerando a formacdo de consenso. Zealots sdo agentes que
mantém sua opinido fixa, independentemente das interacdes [5], atuando como "sementes"

estaveis no sistema.

O presente trabalho tem como objetivo investigar sistematicamente como estas diferentes
variantes do Voter Model se comportam em topologias de rede distintas. Especificamente,

busca-se:

1. Implementar e validar trés variantes do Voter Model: Simples, Nao-linear, com

Agentes Fanaticos.



2. Analisar o comportamento destes modelos em trés topologias de rede: Erdds-Rényi
(aleatdria) [7], Barabasi-Albert (scale-free) [8] e Watts-Strogatz (small-world) [9].

3. Quantificar o impacto de parametros como a (néo-linearidade), densidade de
Zealots no tempo de consenso e probabilidade de formacé&o de consenso.

4. Comparar resultados obtidos com previsdes tedricas da literatura [1,15].

Este estudo contribui para a compreensdo fundamental de como caracteristicas
microscopicas (regras de atualizacdo individual) e mesoscopicas (estrutura de rede)
determinam propriedades macroscoépicas (consenso, fragmentacao, tempo de relaxagéo)
em sistemas sociais [1,12]. Os resultados tém potencial aplicacdo em areas como
marketing viral, campanhas de conscientizacdo publica, previsédo eleitoral e controle de

disseminacéao de desinformacéao.

2 MATERIAIS E METODOS

Este capitulo descreve a metodologia empregada neste trabalho. Primeiramente,
apresenta-se o Voter Model e suas variantes investigadas: o modelo simples (baseline), a
extensdo nao-linear com parametro a, e agentes teimosos (zealots) (Sec¢ao 2.1). Em
seguida, descrevem-se as trés topologias de rede utilizadas: Erdds-Rényi, Barabasi-Albert
e Watts-Strogatz, que capturam diferentes aspectos estruturais de redes sociais reais
(Secédo 2.2). A Secdao 2.3 detalha a implementacdo computacional, incluindo bibliotecas e
arquitetura do cédigo. O protocolo experimental completo, com parametros de simulacéo e
namero de realizagcles, € apresentado na Secdo 2.4. Por fim, a Secdo 2.5 define as
métricas utilizadas para quantificar o comportamento dindmico dos sistemas, incluindo

tempo até consenso, probabilidade de consenso e trajetérias médias.
2.1 Voter Model e suas Variantes

O Voter Model é definido sobre um grafo ¢ = (V,E) , onde V representa o conjunto de N
nos (agentes) e E € o conjunto de arestas (conexdes sociais) [10]. Cada agente i € V possui

uma opinido binaria s; € {0, 1}, inicializada aleatoriamente com probabilidade uniforme.



2.1.1 Voter Model Simples
No Voter Model padréo [2,3], a cada passo de tempo (Monte Carlo Step - MCS):

1. Um agente i é selecionado aleatoriamente;
2. Um vizinho j é escolhido aleatoriamente entre os vizinhos de i;

3. O agente i adota a opinido do vizinho j: s; < s;

A dinamica prossegue até que consenso seja alcancado (todos os agentes com mesma
opinido) ou até um namero maximo de passos (max_mcs = 6000), conforme estabelecido
no protocolo experimental (Secdo 2.4). Este sera nossa linha de base para os demais

modelos.
2.1.2 Voter Model Nao-Linear

Introduzido por Yang et al. [4], este modelo incorpora o efeito de herding através de um
parametro a = 0. A probabilidade de um agente adotar opinido 1 é dada por:
«
n
P(si=1) = —1—
(0% (0%

onde n; e n, sdo os numeros de vizinhos com opinido 1 e 0, respectivamente. Para a = 1,
recupera-se o Voter Model padrédo. Para a > 71, a maioria local exerce influéncia

desproporcional (herding), enquanto a < 71 reduz este efeito [4].
2.1.3 Agentes Fanaticos (Zealots)

Zealots (ou Stubborn Agents) sdo agentes que nunca mudam de opinido [5]. Uma fracéo
p_zealot é designada como zealots no inicio, com suas opinides mantidas fixas durante

na

toda a simulagéo, atuando como "ancoras" no sistema.
2.2 Topologias de Rede

Trés modelos de rede foram utilizados, cada um capturando diferentes aspectos de redes

socialis reais:



Estruturas topoldgicas das redes complexas estudadas

(a) Erdds-Rényi (ER) (b) Watts-Strogatz (WS) (c) Barabéasi-Albert (BA)
(30 nos, 38 arestas) (30 nos, 90 arestas) (30 nos, 56 arestas)
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Figura 1 - Representacao das redes utilizadas nas simulagdes. Valores escolhidos de forma arbitraria. Fonte: Elaborada
pelo autor (2025)

2.2.1 Erd6s-Rényi (ER)

Rede aleatoria representada pela Figura 1 — (a) onde cada par de nos € conectado
independentemente com probabilidade p [7]. Utilizou-se p = 0,07 resultando em grau médio
< k >=~ 10 para N = 1000. Esta rede serve como linha de base, representando interacdes

completamente aleatérias.
2.2.2 Barabasi-Albert (BA)

Rede scale-free representada pela Figura 1 — (c) gerada por crescimento preferencial [8].
Cada novo né conecta-se a m = 3 n@s existentes com probabilidade proporcional ao grau.

Esta rede exibe distribuicdo power-law (Lei de Poténcia):

onde P(k) representa a probabilidade de um né ter grau k, e y = 3 é 0 expoente
caracteristico. Esta distribuicdo captura a heterogeneidade extrema observada em redes
sociais reais, onde poucos individuos (hubs) concentram a maioria das conexdes, enquanto

a maioria dos nds possui poucas conexoes.
2.2.3 Watts-Strogatz (WS)

Rede small-world representada pela Figura 1 — (b) construida através do algoritmo de

reconexao aleatéria proposto por Watts e Strogatz [9]. O processo inicia com um anel



regular onde cada né esta conectado a seus k = 4 vizinhos mais proximos (2 de cada lado),
resultando em grau inicial constante k = 4 para todos os nés. Em seguida, cada aresta é
visitada uma unica vez e, com probabilidade g = 0,1, é "reconectada": mantém-se uma das
extremidades fixas enquanto a outra € redirecionada para um n6 escolhido aleatoriamente
na rede, evitando auto conexdes e arestas duplicadas. Como ndo sdo criadas nem
removidas arestas (apenas redirecionadas), o grau médio permanece fixo em <k > =4

apos a reconexao.

O parametro 3 controla a interpolacéo entre rede regular (8 = 0, sem reconexdes) e rede
aleatoria (B = 1, todas as arestas reconectadas). Para g = 0,1, uma pequena fracdo das
arestas sao reconectadas, criando poucos "atalhos" de longo alcance enquanto preserva-
se a estrutura local clusterizada. Esta configuracdo resulta em alta clusterizacao local (¢ =
0,4) combinada com caminhos médios curtos (L~In (N)), caracteristicos de redes small-

world e observados em redes sociais reais [9].
2.3 Implementacdo Computacional

As simulacdes foram implementadas em Python 3.10, utilizando as bibliotecas: NetworkX
3.1: para a geracédo e manipulacdo de redes; NumPy 1.24: operacBes numéricas; Matplotlib

3.7: para visualizacdo de resultados; Pandas 2.0: que fara a andlise de dados.

E o cddigo foi estruturado em mddulos funcionais: run_voter_once(): que executa uma
realizacdo do modelo; run_voter_experiments(): que gerencia multiplas realizacdes; e por

ultimo as Funcdes de plotagem: geram visualizacGes padronizadas.
2.4 Dados Experimentais
Para cada combinacdo de parametros:

e N =1000 noés;

e R =50 realiza¢des independentes;

e max_mcs = 6000 passos de Monte Carlo;

e Seed base = 2025 garantindo a reprodutibilidade dos resultados estatisticos

meédios em cada execucéo



e Redes garantidas como conexas (maior componente conectado extraido se

necessario).
Parametros investigados:

e Voter Simples: linha de base;
e Nao-Linear: a € {0,5; 1,0; 2,0; 3,0; 5,0},
e Zealots: p_zealot € {0,01; 0,05; 0,1},

2.5 Métricas de Anélise

Para cada experimento, foram computadas: O tempo até consenso (T_c): niumero de MCS
até que a fracéo de opinido 1 atinja 0 ou 1; Tempo médio até consenso: média de T_c sobre
todas as realizagbes (apresentado como valor = desvio padrdo); a probabilidade de
consenso: fracdo de realizagbes que atingem consenso dentro de max_msc; trajetéria
média: evolucdo temporal da fracdo de agentes com opinido 1, < p4(t) >; desvio padréo
gue sera a variabilidade entre as realizacdes (mancha azul dos gréficos); e o estado final:

classificacdo em consenso-0, consenso-1 ou sem consenso.

Todas as simulagbes foram executadas no Google Colab (CPU: Intel Xeon, 12GB RAM),
com tempo total de computacdo de aproximadamente 48 horas.

3 RESULTADOS

3.1 Voter Model Simples — Linha de Base

3.1.1 Desempenho por Topologia (Voter Model Simples)
Foi elaborada a Tabela 1 com os resultados consolidados do Voter Model simples

para as trés topologias de rede investigadas.



Tabela 1 — Resultados comparativos do Voter Model simples nas diferentes

topologias
Rede a p_zealot (MCS) Probabilidade de Runs em Total
Consenso (%) Consenso Runs
ER 1,0 0,0 659 + 434 100,0 50 50
BA 1,0 0,0 308 + 175 100,0 50 50
WS 1,0 0,0 1905 + 1188 98,0 49 50

Fonte: Elaborada pelo autor (2025)

A andlise da Tabela 1 revela diferencas marcantes no comportamento dinamico
entre as topologias. A rede Barabasi-Albert destacou-se como a mais eficiente, com tempo
de consenso 53% inferior a rede Erd6s-Rényi e 84% inferior a rede Watts-Strogatz. Este
resultado evidencia o papel crucial dos hubs em redes scale-free como aceleradores do
processo de homogeneizacao de opinides. Em contraste, a rede Watts-Strogatz apresentou
o desempenho mais lento, com tempo aproximadamente 3 vezes superior ao da rede
Erdés-Rényi. Este comportamento surpreendente pode ser atribuido a alta clusterizacéo
local caracteristica de redes small-world, que cria dominios coesos que resistem a

influéncia externa.

A probabilidade de consenso manteve-se proxima de 100% em todas as topologias,
com excec¢ao de um caso isolado na rede Watts-Strogatz que atingiu o limite computacional

estabelecido, porém apresentava convergéncia assintotica.

3.1.2 Analise das Trajetérias de Opiniao

Para capturar a dinamica temporal do processo de opinido, foram geradas trajetérias
da fracdo média de agentes com opinido 1 ao longo dos passos de Monte Carlo
(max_mcs=6000). Cada curva representa a média de 50 realizacdes (R) independentes,
com o desvio padrédo indicado pela regidao sombreada (mancha azul).

Podemos observar que na Rede Erdés-Rényi (ER) (Figura 2) ha oscilacoes

constantes tipicas de redes homogéneas, onde todos os agentes tém influéncia similar.




Este padrdo confirma o comportamento esperado para redes aleatérias com alto grau
médio.

Na Rede Barabasi-Albert (BA) (Figura 3) podemos perceber convergéncia rapida e
trajetéria suave, caracteristica de redes scale-free onde hubs centralizam a influéncia. A
dindmica acelerada visualizada confirma a superioridade quantitativa observada na Tabela
1.

E por fim temos a Rede Watts-Strogatz (WS) (Figura 4) que revela flutuagbes amplas
e convergéncia gradual, padrdo resultante da alta clusterizacdo que cria dominios locais
coesos. Esta visualizacdo explica o tempo significativamente maior observado nesta

topologia.

Rede Erdés-Rényi (ER):

O grafico de evolucdo temporal para a rede ER (Figura 2) revela oscilacbes
persistentes de amplitude relativamente constante, padrdo caracteristico de redes
homogéneas onde todos os agentes possuem influéncia equivalente, o desvio padrao
(mancha azul clara) relativamente constante que acompanha a trajetéria média confirma
esta andlise. E interessante notar que este comportamento encontra fundamentacao tedrica
na literatura: conforme Sirbu et al. [11], redes aleatdrias com alto grau médio (< k >= 10)
comportam-se como sistemas de dimenséao efetiva alta (d > 2), exibindo tempo de
consenso proporcional a N. Para nossa configuracdo com N = 1000, o tempo médio
observado de 659 MCS esta em concordancia com a previsao teorica de t_c~1000 a alguns
milhares de MCS.

10
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Figura 2 - Gréafico em (ER) de Fracao de 1 por MCS (Monte Carlo Steps)

Fonte: Elaborada pelo autor (2025)

Rede Barabasi-Albert (BA):

O gréfico da rede BA (Figura 3) demonstra convergéncia rapida e trajetéria
predominantemente suave, interrompida por breves oscilacbes pontuais. Este
comportamento é a manifestacao visual direta da topologia scale-free (Livre-escala).

Conforme Fotouhi & Rabbat [15], em redes scale-free 0 sistema atinge consenso em
tempo T~[LNn]?, um resultado assintético valido para N grande. Embora nosso valor
observado (308 MCS) seja superior a estimativa de ordem de grandeza (49-100 MCS para
N=1000), a relagédo qualitativa mantém-se: a BA € significativamente mais rapida que as
demais topologias, com tempo de consenso consistentemente inferior a ER e WS. A
diferenca numérica pode ser atribuida a constantes multiplicativas ndo especificadas no
limite assintético e as particularidades do Voter Model simples, que mantém probabilidades

uniformes de influéncia.

11
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Figura 3 - Gréafico em (BA) de Fragdo de 1 por MCS (Monte Carlo Steps)

Fonte: Elaborada pelo autor (2025)

Rede Watts-Strogatz (WS):
O grafico da rede WS (Figura 4) revela uma trajetoria irregular com flutuagdes de

longo periodo e grande amplitude, padréo caracteristico de sistemas que evoluem através
da conquista sequencial de clusters.

Este comportamento encontra respaldo na literatura: conforme Benczik et al. [14],
em sistemas finitos o consenso é eventualmente alcancado, porém estados metaestaveis
podem persistir por longos periodos. A alta clusterizacéo local (C = 0,4 para 3 = 0,1) cria
dominios coesos que resistem a influéncia externa, explicando a dinamica fragmentada
observada.

12
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Figura 4 - Gréafico em (WS) de Fragéo de 1 por MCS (Monte Carlo Steps)

Fonte: Elaborada pelo autor (2025)

Conforme ilustrado na Figura 4, a rede Watts-Strogatz exibe trajetoria fragmentada
com flutuacBes amplas, consistente com a persisténcia de estados metaestaveis em redes
altamente clusterizadas [14]. O tempo significativamente superior ao das demais topologias

(189% mais lento que ER) evidencia o custo dinamico da alta coesao local.
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3.2 Voter Model Nao-Linear
3.2.1 Desempenho por Topologia (Voter Model N&o-Linear)
Foi elaborada a Tabela 2 com os resultados consolidados do Voter Model simples para as

trés topologias de rede investigadas.

Tabela 2 - Resultados do Voter Model Nao-Linear por topologia e valor de a

Rede a MCS Probabilidade | Comportamento
Consenso (%)
ER 0,5 N/A 0,0 Nao-
convergente
ER 1,0 580 + 387 100,0 Linear
(baseline)
ER 2,0 14+ 2 100,0 Herding
extremo
ER 3,0 11+2 100,0 Super-herding
BA 0,5 N/A 0,0 Nao-
convergente
BA 1,0 376 + 258 100,0 Linear
(baseline)
BA 2,0 1743 100,0 Herding
extremo
BA 3,0 14 +3 100,0 Super-herding
BA 0,5 N/A 0,0 Nao-
convergente
WS 1,0 1746 + 1219 98,0 Linear (lento)
WS 2,0 313 £ 122 100,0 Aceleracéo
maxima
WS 3,0 497 + 260 100,0 Desaceleracéo

Fonte: Elaborada pelo autor (2025)
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Os resultados apresentados na Tabela 2 revelam o profundo impacto do parametro a na
dindmica de opinido. Conforme Yang et al. [4], o termo herding refere-se a "inclinacao dos
individuos a se comportarem coletivamente como um todo" (efeito manada), controlada
pela ndo-linearidade na probabilidade de adocéo de opinido (equacéo (1)).

Para a =1, recupera-se o Voter Model padrdo conforme previsto teoricamente, com
tempos de consenso servindo como baseline para as demais condicfes. O valor N/A
registrado para a = 0,5 apoia a previsao tedrica de que para "valores extremamente baixos,
grandes clusters formam-se lentamente” [4], impedindo a convergéncia dentro do limite
temporal estabelecido.

O a = 2.0 emerge como o valor 6timo previsto teoricamente, onde "um minimo é obtido
para valores moderados de a" [4]. Nossos resultados validam experimentalmente esta
previsao: as reducdes de 97,6% (ER), 95,5% (BA) e 82,1% (WS) nos tempos de consenso
demonstram que o herding moderado maximiza a eficiéncia da convergéncia.

O comportamento observado em a = 3,0 na rede Watts-Strogatz - aumento de 58,8% no
tempo de consenso - encontra explicacéo na previsao de que para "valores muito grandes,
grandes clusters de opinido demoram para se fundir" [4]. O herding excessivo fortalece a
coesdo interna dos clusters, criando barreiras & homogeneizacéo global.

3.2.2 Andlise Grafica do Comportamento Dinamico
Gréfico paraa =0,5:
No gréafico abaixo (Figura 5), para a = 0,5 nenhuma das topologias atinge consenso dentro

do limite de 6000 MCS. As trajetrias mostram oscilacdes irregulares em torno da fracao

0.5, caracterizando um estado de desordem persistente que confirma os dados

15



guantitativos da Tabela 2, onde todos os sistemas registraram probabilidade de consenso
zero.

Evolugao Temporal Média (Alpha = 0.5)
10

—— Erdos-Renyi
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Figura 5 - Gréfico de Trajetéria Média (a=0,5)

Fonte: Elaborada pelo autor (2025)

Grafico para a = 1,0 (Voter Model Simples):

A Figura 6 apresenta o comportamento do modelo com a = 1,0, que recupera
exatamente o Voter Model simples original. Observa-se que a velocidade de convergéncia
varia significativamente entre as topologias: a rede BA (curva laranja) converge mais
rapidamente, beneficiando-se da presenca de hubs que aceleram a propagacéo de
opinides. Em contraste, a rede WS (curva verde) exibe convergéncia mais lenta,
comportamento consistente com sua alta clusterizacéo que cria dominios locais coesos. A

rede ER (curva azul) mantém desempenho intermediario, caracteristico de redes
homogéneas.

o Evolugdo Temporal Média (Alpha = 1.0)
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Figura 6 - Figura 5 - Grafico de Trajetéria Média (a=1,0)

Fonte: Elaborada pelo autor (2025)
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Gréfico paraa = 2,0:

A Figura 7 evidencia dramaticamente o efeito de amplificacdo proporcionado por a > 1.
As trajetdrias para todas as redes convergem para os estados absorventes (0 ou 1) de
forma significativamente mais rapida que no caso a = 1,0. A inclinacdo acentuada das
curvas nos primeiros MCS demonstra como pequenas maiorias entre vizinhos sao
rapidamente reforcadas pela regra ndo-linear, acelerando a convergéncia global.

o Evolugdo Temporal Média (Alpha = 2.0)
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Figura 7 - Figura 5 - Grafico de Trajetéria Média (a=2,0)

Fonte: Elaborada pelo autor (2025)

Gréfico paraa = 3,0:

Embora ainda eficiente, o grafico de a = 3,0 (Figura 8) revela nuances interessantes.
Nota-se que a rede Watts-Strogatz, em particular, exibe uma trajetoria ligeiramente mais

gradual comparada as demais topologias, confirmando a desaceleracédo quantitativa
observada na analise dos tempos de consenso.
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Figura 8 - Figura 5 - Grafico de Trajetéria Média (a=3,0)

Fonte: Elaborada pelo autor (2025)

3.3

3.3.1

Voter Model com Agentes Especiais

Fanaticos (Zealots) - Andalise Experimental e Gréfica

Os resultados demonstram de forma inequivoca o impacto dramatico dos
Fanaticos (zealots) na dinamica do sistema. Conforme previsto por Mobilia et al.
[5], que estabelecem que "zealots sdo agentes que nunca mudam de opinido” e
atuam como "ancoras" no sistema, a presenca de agentes com opinides fixas
impede completamente a formagcdo de consenso global em todas as topologias

investigadas.

Andlise dos Graficos de Trajetoria:

Os gréficos de evolugcdo temporal revelam que, diferentemente do Voter Model
simples onde o sistema converge para consenso absoluto (0% ou 100%), na
presenca de zealots as trajetorias estabilizam em valores intermediarios. Conforme
mostra a Figura 11 para p_zealot = 0,01, observa-se que as trés redes convergem
para fragdes entre aproximadamente 0,4 e 0,6, indicando um estado estacionario
onde a opinido dos zealots mantém uma presenca significativa, mas nao

dominante na populagéo.
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A medida que a densidade de zealots aumenta, observa-se uma mudanca nos
pontos de equilibrio. A Figura 10 (p_zealot = 0,05) e a Figura 9 (p_zealot = 0,1)
demonstram como o estado estacionario se desloca conforme a fracdo de agentes

fanaticos na rede, com as trajetdrias estabilizando em valores progressivamente
mais definidos

Evolugdo da Fragdo de 1 (p_zealot = 0.1) - Comparativo Redes
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0.0

T T T T T
[ 1000 2000 3000 4000 5000
Passos de Monte Carlo (MCS)

Figura 9 - Gréfico de Evolugdo de Fracgao para p_zealot = 0,1

Fonte: Elaborada pelo autor (2025)

Lo Evolucao da Fracao de 1 (p_zealot = 0.05) - Comparativo Redes
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Figura 10 - Gréfico de Evolucéo de Fracéo para p_zealot = 0,05

Fonte: Elaborada pelo autor (2025)
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5 Evolugao da Fragao de 1 (p_zealot = 0.01) - Comparativo Redes
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Figura 11 - Gréfico de Evolucéo de Fracéo para p_zealot = 0,01

Fonte: Elaborada pelo autor (2025)

Uma interpretacgéo fisica interessante: os graficos confirmam que os fanéaticos atuam
como "pocos de opinido" que ancoram o sistema em estados metaestaveis.
Diferentemente de outros mecanismos que apenas retardam a convergéncia, os fanaticos
alteram qualitativamente o comportamento do sistema, eliminando completamente os
estados absorventes de consenso absoluto e criando novos pontos de equilibrio onde a
diversidade de opinides persiste indefinidamente.

4 CONCLUSOES E CONSIDERACOES FINAIS

Este trabalho investigou a dindmica de propagacao de opinides em redes complexas
através do Voter Model e suas extensfes. Os resultados demonstram que a topologia da
rede exerce influéncia crucial na dindmica do sistema, com a Barabasi-Albert mostrando-
se mais eficiente, seguida por Erdés-Rényi e Watts-Strogatz.

Validou-se experimentalmente a previsdo tedrica sobre a existéncia de um valor
o6timo do parametro a para convergéncia. Para os agentes fanaticos, constatou-se que
mesmo densidades minimas sao suficientes para suprimir o consenso global através da

criacao de estados metaestaveis.
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Os resultados reforcam a utilidade de modelos fisico-matematicos para
compreensao de fenbmenos sociais complexos. Para trabalhos futuros, sugere-se a

investigacéo de outros modelos de opinido como Majority Rule e Modelo de Sznajd.
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