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RESUMO 

Este trabalho investiga a dinâmica de propagação de opiniões em redes complexas através 

do Voter Model e suas extensões. Foram implementadas simulações computacionais do 

modelo em três topologias de rede distintas - Erdős-Rényi (aleatória), Barabási-Albert 

(scale-free) e Watts-Strogatz (small-world). Os resultados demonstram que a topologia da 

rede exerce influência crucial na dinâmica do sistema: a rede Barabási-Albert apresentou 

consenso significativamente mais rápido que as demais, evidenciando o papel dos hubs 

como aceleradores da homogeneização. Para certos valores dos parâmetros de não-

linearidade, observou-se redução drástica no tempo de consenso, enquanto para outros 

valores o consenso tornou-se inatingível. Na análise de agentes fanáticos (zealots), 

constatou-se que mesmo uma pequena fração destes na população é suficiente para 

suprimir completamente o consenso global. Este trabalho contribui para a compreensão 

dos mecanismos que governam a formação de consenso e manutenção de diversidade em 

sistemas sociais complexos. 

 

Palavras-chave: Dinâmica de opinião. Redes complexas. Voter Model. Sistemas 

complexos. Propagação de opiniões 

 

1 INTRODUÇÃO 

A formação e propagação de opiniões em sociedades humanas constitui um fenômeno 

complexo que tem atraído crescente interesse da comunidade científica. Tradicionalmente 

estudado nas ciências sociais, este tema ganhou nova perspectiva com a aplicação de 

métodos da Física Estatística e teoria de redes complexas [1]. A capacidade de quantificar 

e modelar matematicamente processos sociais permite não apenas compreender 

mecanismos subjacentes, mas também fazer previsões sobre comportamentos coletivos 

emergentes. 

O advento das redes sociais digitais e a disponibilidade de grandes volumes de dados sobre 

interações humanas impulsionaram o desenvolvimento de modelos matemáticos cada vez 

mais sofisticados. Estes modelos buscam capturar, de forma simplificada, os processos 

pelos quais indivíduos influenciam uns aos outros, levando à formação de consenso, 

polarização ou fragmentação social. Entre os diversos modelos propostos na literatura, o 
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Voter Model destaca-se por sua simplicidade conceitual e riqueza de comportamentos 

dinâmicos [2,3]. 

Originalmente introduzido para analisar competição entre espécies [2], o Voter Model foi 

posteriormente adaptado para estudos de dinâmica de opinião [3]. Neste modelo, cada 

agente possui uma opinião binária (representada por 0 ou 1) e atualiza seu estado copiando 

a opinião de um vizinho escolhido aleatoriamente. Apesar de sua aparente simplicidade, o 

modelo exibe propriedades não triviais, como transições de fase e comportamentos de 

escala que dependem da dimensionalidade do sistema e da topologia da rede de interações 

[1,11]. 

A estrutura da rede sobre a qual as interações ocorrem desempenha papel fundamental na 

dinâmica de propagação [10]. Redes regulares, como grades bidimensionais, produzem 

dinâmicas significativamente diferentes de redes aleatórias ou redes com distribuição de 

grau heterogênea. Redes do tipo 'small-world' [9], caracterizadas por alta clusterização e 

curtos caminhos médios, podem, contradizendo a intuição inicial, retardar processos de 

consenso devido à formação de clusters locais coesos que resistem à influência externa. 

Por outro lado, redes scale-free [8], com poucos nós altamente conectados (hubs), 

concentram influência em agentes específicos, alterando dramaticamente a dinâmica. 

Extensões do Voter Model incorporam aspectos mais realistas do comportamento humano. 

O modelo não-linear introduz um parâmetro α que controla o efeito de "herding" 

(comportamento de manada “ou regra da maioria”) [4], onde indivíduos tendem a seguir a 

maioria local de forma mais ou menos acentuada. Para 𝛼 > 1, o sistema se aproxima de 

uma regra de maioria, acelerando a formação de consenso. Zealots são agentes que 

mantêm sua opinião fixa, independentemente das interações [5], atuando como "sementes" 

estáveis no sistema. 

O presente trabalho tem como objetivo investigar sistematicamente como estas diferentes 

variantes do Voter Model se comportam em topologias de rede distintas. Especificamente, 

busca-se: 

1. Implementar e validar três variantes do Voter Model: Simples, Não-linear, com 

Agentes Fanáticos. 
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2. Analisar o comportamento destes modelos em três topologias de rede: Erdős-Rényi 

(aleatória) [7], Barabási-Albert (scale-free) [8] e Watts-Strogatz (small-world) [9]. 

3. Quantificar o impacto de parâmetros como 𝛼 (não-linearidade), densidade de 

Zealots no tempo de consenso e probabilidade de formação de consenso. 

4. Comparar resultados obtidos com previsões teóricas da literatura [1,15]. 

Este estudo contribui para a compreensão fundamental de como características 

microscópicas (regras de atualização individual) e mesoscópicas (estrutura de rede) 

determinam propriedades macroscópicas (consenso, fragmentação, tempo de relaxação) 

em sistemas sociais [1,12]. Os resultados têm potencial aplicação em áreas como 

marketing viral, campanhas de conscientização pública, previsão eleitoral e controle de 

disseminação de desinformação. 

 

2 MATERIAIS E MÉTODOS 

 

Este capítulo descreve a metodologia empregada neste trabalho. Primeiramente, 

apresenta-se o Voter Model e suas variantes investigadas: o modelo simples (baseline), a 

extensão não-linear com parâmetro α, e agentes teimosos (zealots) (Seção 2.1). Em 

seguida, descrevem-se as três topologias de rede utilizadas: Erdős-Rényi, Barabási-Albert 

e Watts-Strogatz, que capturam diferentes aspectos estruturais de redes sociais reais 

(Seção 2.2). A Seção 2.3 detalha a implementação computacional, incluindo bibliotecas e 

arquitetura do código. O protocolo experimental completo, com parâmetros de simulação e 

número de realizações, é apresentado na Seção 2.4. Por fim, a Seção 2.5 define as 

métricas utilizadas para quantificar o comportamento dinâmico dos sistemas, incluindo 

tempo até consenso, probabilidade de consenso e trajetórias médias. 

2.1 Voter Model e suas Variantes 

O Voter Model é definido sobre um grafo 𝐺 = (𝑉, 𝐸) , onde V representa o conjunto de N 

nós (agentes) e E é o conjunto de arestas (conexões sociais) [10]. Cada agente i ∈ V possui 

uma opinião binária sᵢ ∈ {0, 1}, inicializada aleatoriamente com probabilidade uniforme. 
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2.1.1 Voter Model Simples 

No Voter Model padrão [2,3], a cada passo de tempo (Monte Carlo Step - MCS): 

1. Um agente i é selecionado aleatoriamente; 

2. Um vizinho j é escolhido aleatoriamente entre os vizinhos de i; 

3. O agente i adota a opinião do vizinho j: 𝑠𝑖 ← 𝑠𝑗 

A dinâmica prossegue até que consenso seja alcançado (todos os agentes com mesma 

opinião) ou até um número máximo de passos (max_mcs = 6000), conforme estabelecido 

no protocolo experimental (Seção 2.4). Este será nossa linha de base para os demais 

modelos. 

2.1.2 Voter Model Não-Linear 

Introduzido por Yang et al. [4], este modelo incorpora o efeito de herding através de um 

parâmetro α ≥ 0. A probabilidade de um agente adotar opinião 1 é dada por: 

                                                               (1)     

onde n₁ e n₀ são os números de vizinhos com opinião 1 e 0, respectivamente. Para 𝛼 = 1, 

recupera-se o Voter Model padrão. Para 𝛼 > 1, a maioria local exerce influência 

desproporcional (herding), enquanto 𝛼 < 1 reduz este efeito [4]. 

2.1.3 Agentes Fanáticos (Zealots) 

Zealots (ou Stubborn Agents) são agentes que nunca mudam de opinião [5]. Uma fração 

p_zealot é designada como zealots no início, com suas opiniões mantidas fixas durante 

toda a simulação, atuando como "âncoras" no sistema. 

2.2 Topologias de Rede 

Três modelos de rede foram utilizados, cada um capturando diferentes aspectos de redes 

sociais reais: 
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Figura 1 - Representação das redes utilizadas nas simulações. Valores escolhidos de forma arbitrária.  Fonte: Elaborada 

pelo autor (2025)  

 

2.2.1 Erdős-Rényi (ER) 

Rede aleatória representada pela Figura 1 – (a) onde cada par de nós é conectado 

independentemente com probabilidade p [7]. Utilizou-se 𝑝 = 0,01 resultando em grau médio 

< 𝑘 >≈ 10  para 𝑁 = 1000. Esta rede serve como linha de base, representando interações 

completamente aleatórias. 

2.2.2 Barabási-Albert (BA) 

Rede scale-free representada pela Figura 1 – (c) gerada por crescimento preferencial [8]. 

Cada novo nó conecta-se a 𝑚 = 3 nós existentes com probabilidade proporcional ao grau. 

Esta rede exibe distribuição power-law (Lei de Potência): 

                                                      (2) 

onde P(k) representa a probabilidade de um nó ter grau k, e 𝛾 ≈  3 é o expoente 

característico. Esta distribuição captura a heterogeneidade extrema observada em redes 

sociais reais, onde poucos indivíduos (hubs) concentram a maioria das conexões, enquanto 

a maioria dos nós possui poucas conexões. 

2.2.3 Watts-Strogatz (WS) 

Rede small-world representada pela Figura 1 – (b) construída através do algoritmo de 

reconexão aleatória proposto por Watts e Strogatz [9]. O processo inicia com um anel 
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regular onde cada nó está conectado a seus 𝑘 = 4 vizinhos mais próximos (2 de cada lado), 

resultando em grau inicial constante 𝑘 = 4 para todos os nós. Em seguida, cada aresta é 

visitada uma única vez e, com probabilidade 𝛽 = 0,1, é "reconectada": mantém-se uma das 

extremidades fixas enquanto a outra é redirecionada para um nó escolhido aleatoriamente 

na rede, evitando auto conexões e arestas duplicadas. Como não são criadas nem 

removidas arestas (apenas redirecionadas), o grau médio permanece fixo em < 𝑘 > = 4 

após a reconexão. 

O parâmetro β controla a interpolação entre rede regular (𝛽 = 0, sem reconexões) e rede 

aleatória (𝛽 = 1, todas as arestas reconectadas). Para 𝛽 = 0,1, uma pequena fração das 

arestas são reconectadas, criando poucos "atalhos" de longo alcance enquanto preserva-

se a estrutura local clusterizada. Esta configuração resulta em alta clusterização local (𝑐 ≈

0,4) combinada com caminhos médios curtos (𝐿~ln (𝑁)), característicos de redes small-

world e observados em redes sociais reais [9]. 

2.3 Implementação Computacional 

As simulações foram implementadas em Python 3.10, utilizando as bibliotecas: NetworkX 

3.1: para a geração e manipulação de redes; NumPy 1.24: operações numéricas; Matplotlib 

3.7: para visualização de resultados; Pandas 2.0: que fará a análise de dados. 

E o código foi estruturado em módulos funcionais: run_voter_once(): que executa uma 

realização do modelo; run_voter_experiments(): que gerencia múltiplas realizações; e por 

último as Funções de plotagem: geram visualizações padronizadas. 

2.4 Dados Experimentais  

Para cada combinação de parâmetros: 

● N = 1000 nós; 

● R = 50 realizações independentes; 

● max_mcs = 6000 passos de Monte Carlo; 

● Seed_base = 2025 garantindo a reprodutibilidade dos resultados estatísticos 

médios em cada execução 
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● Redes garantidas como conexas (maior componente conectado extraído se 

necessário). 

Parâmetros investigados: 

● Voter Simples: linha de base; 

● Não-Linear: α ∈ {0,5; 1,0; 2,0; 3,0; 5,0}; 

● Zealots: p_zealot ∈ {0,01; 0,05; 0,1}; 

2.5 Métricas de Análise 

Para cada experimento, foram computadas: O tempo até consenso (T_c): número de MCS 

até que a fração de opinião 1 atinja 0 ou 1; Tempo médio até consenso: média de T_c sobre 

todas as realizações (apresentado como valor ± desvio padrão); a probabilidade de 

consenso: fração de realizações que atingem consenso dentro de max_msc; trajetória 

média: evolução temporal da fração de agentes com opinião 1, < 𝑝1(𝑡) >; desvio padrão 

que será a variabilidade entre as realizações (mancha azul dos gráficos); e o estado final: 

classificação em consenso-0, consenso-1 ou sem consenso. 

Todas as simulações foram executadas no Google Colab (CPU: Intel Xeon, 12GB RAM), 

com tempo total de computação de aproximadamente 48 horas. 

 

3 RESULTADOS 

 

3.1 Voter Model Simples – Linha de Base 

 

3.1.1 Desempenho por Topologia (Voter Model Simples) 

Foi elaborada a Tabela 1 com os resultados consolidados do Voter Model simples 

para as três topologias de rede investigadas. 
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Tabela 1 – Resultados comparativos do Voter Model simples nas diferentes 

topologias 

Rede α p_zealot (MCS) Probabilidade de 

Consenso (%) 

Runs em 

Consenso 

Total 

Runs 

ER 1,0 0,0 659 ± 434 100,0 50 50 

BA 1,0 0,0 308 ± 175 100,0 50 50 

WS 1,0 0,0 1905 ± 1188 98,0 49 50 

Fonte: Elaborada pelo autor (2025) 

 

A análise da Tabela 1 revela diferenças marcantes no comportamento dinâmico 

entre as topologias. A rede Barabási-Albert destacou-se como a mais eficiente, com tempo 

de consenso 53% inferior à rede Erdős-Rényi e 84% inferior à rede Watts-Strogatz. Este 

resultado evidencia o papel crucial dos hubs em redes scale-free como aceleradores do 

processo de homogeneização de opiniões. Em contraste, a rede Watts-Strogatz apresentou 

o desempenho mais lento, com tempo aproximadamente 3 vezes superior ao da rede 

Erdős-Rényi. Este comportamento surpreendente pode ser atribuído à alta clusterização 

local característica de redes small-world, que cria domínios coesos que resistem à 

influência externa. 

 

A probabilidade de consenso manteve-se próxima de 100% em todas as topologias, 

com exceção de um caso isolado na rede Watts-Strogatz que atingiu o limite computacional 

estabelecido, porém apresentava convergência assintótica. 

 

 

3.1.2 Análise das Trajetórias de Opinião 

Para capturar a dinâmica temporal do processo de opinião, foram geradas trajetórias 

da fração média de agentes com opinião 1 ao longo dos passos de Monte Carlo 

(max_mcs=6000). Cada curva representa a média de 50 realizações (R) independentes, 

com o desvio padrão indicado pela região sombreada (mancha azul). 

Podemos observar que na Rede Erdős-Rényi (ER) (Figura 2) há oscilações 

constantes típicas de redes homogêneas, onde todos os agentes têm influência similar. 
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Este padrão confirma o comportamento esperado para redes aleatórias com alto grau 

médio. 

Na Rede Barabási-Albert (BA) (Figura 3) podemos perceber convergência rápida e 

trajetória suave, característica de redes scale-free onde hubs centralizam a influência. A 

dinâmica acelerada visualizada confirma a superioridade quantitativa observada na Tabela 

1. 

E por fim temos a Rede Watts-Strogatz (WS) (Figura 4) que revela flutuações amplas 

e convergência gradual, padrão resultante da alta clusterização que cria domínios locais 

coesos. Esta visualização explica o tempo significativamente maior observado nesta 

topologia. 

 

Rede Erdős-Rényi (ER): 

O gráfico de evolução temporal para a rede ER (Figura 2) revela oscilações 

persistentes de amplitude relativamente constante, padrão característico de redes 

homogêneas onde todos os agentes possuem influência equivalente, o desvio padrão 

(mancha azul clara) relativamente constante que acompanha a trajetória média confirma 

esta análise. É interessante notar que este comportamento encontra fundamentação teórica 

na literatura: conforme Sîrbu et al. [11], redes aleatórias com alto grau médio (< 𝑘 >≈ 10)  

comportam-se como sistemas de dimensão efetiva alta (𝑑 > 2), exibindo tempo de 

consenso proporcional a 𝑁. Para nossa configuração com 𝑁 = 1000, o tempo médio 

observado de 659 MCS está em concordância com a previsão teórica de 𝑡_𝑐~1000 a alguns 

milhares de MCS. 



11 

  

 

Figura 2 - Gráfico em (ER) de Fração de 1 por MCS (Monte Carlo Steps) 

Fonte: Elaborada pelo autor (2025)   

 

Rede Barabási-Albert (BA): 

O gráfico da rede BA (Figura 3) demonstra convergência rápida e trajetória 

predominantemente suave, interrompida por breves oscilações pontuais. Este 

comportamento é a manifestação visual direta da topologia scale-free (Livre-escala). 

Conforme Fotouhi & Rabbat [15], em redes scale-free o sistema atinge consenso em 

tempo 𝑇~[𝐿𝑁𝑛]2, um resultado assintótico válido para N grande. Embora nosso valor 

observado (308 MCS) seja superior à estimativa de ordem de grandeza (49-100 MCS para 

N=1000), a relação qualitativa mantém-se: a BA é significativamente mais rápida que as 

demais topologias, com tempo de consenso consistentemente inferior à ER e WS. A 

diferença numérica pode ser atribuída a constantes multiplicativas não especificadas no 

limite assintótico e às particularidades do Voter Model simples, que mantém probabilidades 

uniformes de influência. 
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Figura 3 - Gráfico em (BA) de Fração de 1 por MCS (Monte Carlo Steps) 

Fonte: Elaborada pelo autor (2025)   

 

Rede Watts-Strogatz (WS): 

O gráfico da rede WS (Figura 4) revela uma trajetória irregular com flutuações de 

longo período e grande amplitude, padrão característico de sistemas que evoluem através 

da conquista sequencial de clusters. 

 

Este comportamento encontra respaldo na literatura: conforme Benczik et al. [14], 

em sistemas finitos o consenso é eventualmente alcançado, porém estados metaestáveis 

podem persistir por longos períodos. A alta clusterização local (C ≈ 0,4 para β = 0,1) cria 

domínios coesos que resistem à influência externa, explicando a dinâmica fragmentada 

observada. 
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Figura 4 - Gráfico em (WS) de Fração de 1 por MCS (Monte Carlo Steps) 

Fonte: Elaborada pelo autor (2025) 

 

Conforme ilustrado na Figura 4, a rede Watts-Strogatz exibe trajetória fragmentada 

com flutuações amplas, consistente com a persistência de estados metaestáveis em redes 

altamente clusterizadas [14]. O tempo significativamente superior ao das demais topologias 

(189% mais lento que ER) evidencia o custo dinâmico da alta coesão local. 
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3.2 Voter Model Não-Linear 

 

3.2.1 Desempenho por Topologia (Voter Model Não-Linear) 

Foi elaborada a Tabela 2 com os resultados consolidados do Voter Model simples para as 

três topologias de rede investigadas. 

 

Tabela 2 - Resultados do Voter Model Não-Linear por topologia e valor de α 

Rede α MCS Probabilidade 

Consenso (%) 

Comportamento 

ER 0,5 N/A 0,0 Não-

convergente 

ER 1,0 580 ± 387 100,0 Linear 

(baseline) 

ER 2,0 14 ± 2 100,0 Herding 

extremo 

ER 3,0 11 ± 2 100,0 Super-herding 

BA 0,5 N/A 0,0 Não-

convergente 

BA 1,0 376 ± 258 100,0 Linear 

(baseline) 

BA 2,0 17 ± 3 100,0 Herding 

extremo 

BA 3,0 14 ± 3 100,0 Super-herding 

BA 0,5 N/A 0,0 Não-

convergente 

WS 1,0 1746 ± 1219 98,0 Linear (lento) 

WS 2,0 313 ± 122 100,0 Aceleração 

máxima 

WS 3,0 497 ± 260 100,0 Desaceleração 

Fonte: Elaborada pelo autor (2025) 
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 Os resultados apresentados na Tabela 2 revelam o profundo impacto do parâmetro α na 

dinâmica de opinião. Conforme Yang et al. [4], o termo herding refere-se à "inclinação dos 

indivíduos a se comportarem coletivamente como um todo" (efeito manada), controlada 

pela não-linearidade na probabilidade de adoção de opinião (equação (1)). 

Para 𝛼 = 1, recupera-se o Voter Model padrão conforme previsto teoricamente, com 

tempos de consenso servindo como baseline para as demais condições. O valor N/A 

registrado para 𝛼 = 0,5 apoia a previsão teórica de que para "valores extremamente baixos, 

grandes clusters formam-se lentamente" [4], impedindo a convergência dentro do limite 

temporal estabelecido. 

O 𝛼 = 2.0 emerge como o valor ótimo previsto teoricamente, onde "um mínimo é obtido 

para valores moderados de α" [4]. Nossos resultados validam experimentalmente esta 

previsão: as reduções de 97,6% (ER), 95,5% (BA) e 82,1% (WS) nos tempos de consenso 

demonstram que o herding moderado maximiza a eficiência da convergência. 

O comportamento observado em 𝛼 = 3,0 na rede Watts-Strogatz - aumento de 58,8% no 

tempo de consenso - encontra explicação na previsão de que para "valores muito grandes, 

grandes clusters de opinião demoram para se fundir" [4]. O herding excessivo fortalece a 

coesão interna dos clusters, criando barreiras à homogeneização global. 

 

3.2.2 Análise Gráfica do Comportamento Dinâmico 

 

Gráfico para 𝜶 = 𝟎, 𝟓: 

No gráfico abaixo (Figura 5),  para 𝛼 = 0,5 nenhuma das topologias atinge consenso dentro 

do limite de 6000 MCS. As trajetórias mostram oscilações irregulares em torno da fração 

0.5, caracterizando um estado de desordem persistente que confirma os dados 
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quantitativos da Tabela 2, onde todos os sistemas registraram probabilidade de consenso 

zero. 

 

Figura 5 - Gráfico de Trajetória Média (α=0,5) 

Fonte: Elaborada pelo autor (2025)   

 

Gráfico para 𝜶 = 𝟏, 𝟎 (Voter Model Simples): 

A Figura 6 apresenta o comportamento do modelo com 𝛼 = 1,0, que recupera 

exatamente o Voter Model simples original. Observa-se que a velocidade de convergência 

varia significativamente entre as topologias: a rede BA (curva laranja) converge mais 

rapidamente, beneficiando-se da presença de hubs que aceleram a propagação de 

opiniões. Em contraste, a rede WS (curva verde) exibe convergência mais lenta, 

comportamento consistente com sua alta clusterização que cria domínios locais coesos. A 

rede ER (curva azul) mantém desempenho intermediário, característico de redes 

homogêneas. 

 

 

Figura 6 - Figura 5 - Gráfico de Trajetória Média (α=1,0) 

Fonte: Elaborada pelo autor (2025) 
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Gráfico para 𝜶 = 𝟐, 𝟎: 

A Figura 7 evidencia dramaticamente o efeito de amplificação proporcionado por 𝛼 > 1. 

As trajetórias para todas as redes convergem para os estados absorventes (0 ou 1) de 

forma significativamente mais rápida que no caso 𝛼 = 1,0. A inclinação acentuada das 

curvas nos primeiros MCS demonstra como pequenas maiorias entre vizinhos são 

rapidamente reforçadas pela regra não-linear, acelerando a convergência global.  

 

Figura 7 - Figura 5 - Gráfico de Trajetória Média (α=2,0) 

Fonte: Elaborada pelo autor (2025)   

 

 

Gráfico para 𝜶 = 𝟑, 𝟎: 

Embora ainda eficiente, o gráfico de 𝛼 = 3,0 (Figura 8) revela nuances interessantes. 

Nota-se que a rede Watts-Strogatz, em particular, exibe uma trajetória ligeiramente mais 

gradual comparada às demais topologias, confirmando a desaceleração quantitativa 

observada na análise dos tempos de consenso. 
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Figura 8 - Figura 5 - Gráfico de Trajetória Média (α=3,0) 

Fonte: Elaborada pelo autor (2025) 

 

3.3 Voter Model com Agentes Especiais 

 

3.3.1 Fanáticos (Zealots) - Análise Experimental e Gráfica 

Os resultados demonstram de forma inequívoca o impacto dramático dos 

Fanáticos (zealots) na dinâmica do sistema. Conforme previsto por Mobilia et al. 

[5], que estabelecem que "zealots são agentes que nunca mudam de opinião" e 

atuam como "âncoras" no sistema, a presença de agentes com opiniões fixas 

impede completamente a formação de consenso global em todas as topologias 

investigadas. 

 

Análise dos Gráficos de Trajetória: 

Os gráficos de evolução temporal revelam que, diferentemente do Voter Model 

simples onde o sistema converge para consenso absoluto (0% ou 100%), na 

presença de zealots as trajetórias estabilizam em valores intermediários. Conforme 

mostra a Figura 11 para 𝑝_𝑧𝑒𝑎𝑙𝑜𝑡 = 0,01, observa-se que as três redes convergem 

para frações entre aproximadamente 0,4 e 0,6, indicando um estado estacionário 

onde a opinião dos zealots mantém uma presença significativa, mas não 

dominante na população. 
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À medida que a densidade de zealots aumenta, observa-se uma mudança nos 

pontos de equilíbrio. A Figura 10 (𝑝_𝑧𝑒𝑎𝑙𝑜𝑡 =  0,05) e a Figura 9 (𝑝_𝑧𝑒𝑎𝑙𝑜𝑡 = 0,1)  

demonstram como o estado estacionário se desloca conforme a fração de agentes 

fanáticos na rede, com as trajetórias estabilizando em valores progressivamente 

mais definidos 

 

Figura 9 - Gráfico de Evolução de Fração para p_zealot = 0,1 

Fonte: Elaborada pelo autor (2025)   

 

Figura 10 - Gráfico de Evolução de Fração para p_zealot = 0,05 

Fonte: Elaborada pelo autor (2025)   
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Figura 11 - Gráfico de Evolução de Fração para p_zealot = 0,01 

Fonte: Elaborada pelo autor (2025)   

 

Uma interpretação física interessante: os gráficos confirmam que os fanáticos atuam 

como "poços de opinião" que ancoram o sistema em estados metaestáveis. 

Diferentemente de outros mecanismos que apenas retardam a convergência, os fanáticos 

alteram qualitativamente o comportamento do sistema, eliminando completamente os 

estados absorventes de consenso absoluto e criando novos pontos de equilíbrio onde a 

diversidade de opiniões persiste indefinidamente. 

 

 

4 CONCLUSÕES E CONSIDERAÇÕES FINAIS 

 

Este trabalho investigou a dinâmica de propagação de opiniões em redes complexas 

através do Voter Model e suas extensões. Os resultados demonstram que a topologia da 

rede exerce influência crucial na dinâmica do sistema, com a Barabási-Albert mostrando-

se mais eficiente, seguida por Erdős-Rényi e Watts-Strogatz. 

Validou-se experimentalmente a previsão teórica sobre a existência de um valor 

ótimo do parâmetro α para convergência. Para os agentes fanáticos, constatou-se que 

mesmo densidades mínimas são suficientes para suprimir o consenso global através da 

criação de estados metaestáveis. 
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Os resultados reforçam a utilidade de modelos físico-matemáticos para 

compreensão de fenômenos sociais complexos. Para trabalhos futuros, sugere-se a 

investigação de outros modelos de opinião como Majority Rule e Modelo de Sznajd. 
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