DANILO LOPES LUVIZOTO

ESTUDO DE IMPLEMENTACOES DE
PILHAS TCP/IP PARA
MICROCONTROLADORES

Trabalho de Conclusao de Curso
apresentado a Escola de Engenharia de
Sao Carlos, da Universidade de Sao Paulo

Curso de Engenharia Elétrica com énfase
em Eletrénica

ORIENTADOR: Prof. Dr. Evandro Luis Linhari Rodrigaie

Sao Carlos
2010

Dedicatéria

Dedico este trabalho aos meus pais que tanto lutaram para eu poder ser o que
sou e pelo amor que sempre tiveram por mim. Também a minha querida namorada
gue me apoiou em todos os momentos de minha graduacdo. Além, é claro, de todos

0S amigos, que juntos batalhamos e vencemos mais uma vez.

Agradecimentos

Agradeco primeiramente a Deus por me iluminar nos caminhos mais dificeis,
ao Professor Evandro pela orientacdo e incentivo deste trabalho e a todos outros

professores e colegas que me ajudaram em tudo que sei hoje.

Resumo

Este trabalho apresenta um comparativo entre duas implementacdes de pilhas
TCP/IP para sistemas embarcados baseados em microcontrolador. O trabalho foi
desenvolvido utilizando um microcontrolador MSP430 da Texas Instruments,
embarcado em uma placa de desenvolvimento da Olimex. O trabalho consistiu em
duas tarefas: a primeira foi 0 estudo de cada pilha e a segunda foi uma comparacao e
desenvolver uma aplicacdo. O objetivo foi enfatizar algumas das principais diferencas
entre as pilhas sugerindo algumas aplicacdes.

Palavras chave: Sistemas Embarcados, Protocolo TCP/IP, Comunicacdo Internet,
MSP430

Abstract

This paper shows a comparison between two TCP / IP stacks for embedded
systems implemented based on microcontrollers. The study was conducted using a
MSP430 microcontroller from Texas Instruments, included in the development kit from
Olimex. The work consisted of two tasks: the first one was the study of each stack and
second was a comparison and develop an application. The objective was to emphasize

some differences between the stacks and suggest some applications.

Keywords: Embedded systems, TCP/IP protocol, Internet communication, MSP430

10

Sumario

(D= [ToF= 1 (o] 4= TSP PP PP TPPPPP 3
F o | r= To (=T ox 0 0= o) (o S 5
RESUMO...... oo e 7
ADSITACT.t 9
IS = W [N T T = 13
Lista de TaDEIASvviiiiiiiiii e 15
LiSta de ADIeVIATUIASuueiiiiiiiiiiii e 16
1. T 0] (oo 11 o= To 1T 17
O R |V o (V= Vo= Lo TSP 17
I © o 1= 1Y/ o1 T 18
1.3 Organizaclo dO tEXI0......ccuuuuuii i e e 18
2. T Lo [0 To=To TN =0 [19
2.1 Redes de COMPULAOIES.ccceiiiieiiiiie e e e s 19
2.2 Protocolos € hIErarqUIBSccciveeiiiiiiiii e 21
2.3 ProtoCOIO TCP/IPueieiiiiiiiieieieee e nnnesenennnes 22
3. MateriaiS € METOUOSuuviiiieiiiiiiie et 31
3.1 KILEASYWED 2 .. e 31
3.2 MSP 430 e 32
3.3 CSBO00 ..ttt e e naneas 35
3.4 Comparacgdo entre as pilhas TCP/IP ... 37

11

3.5 Pilha de Andreas DannNeNbergoooeeiieeiiiiiiiie e 38

3.6 Pilha ulP (Adam DUNKEIS).......c.cuuuuiiiiieiiiieeee e 41
4, ReSUItAd0 € TISCUSSEOccoe e 45
5. CONCIUSBIO ...ttt e e e e e 52
Referencia BiblIOGrAfiCauuuuuuiiiiiiiiiiiiiiiiiiii e seeeeeeeeeeeeeeesnnnes 53

12

Lista de Figuras

Figura 1 - Calculadora (Model K) [1] ..cceeeuoiiieeeieeeeie e e e eeeees 20
Figura 2 - Camadas, Niveis € ProtoColoS [1].......ccuuuuiiiiiieiiieiiiiiei e e eeans 22
Figura 3 - Camadas ProtoCoI0 TCP/IP ..o 23
Figura 4 - Modelo OSI - TCP/IP ... e e e aeeans 24
Figura 5 - Cabegalno TCP [2]cooo i e e e e eeans 25
Figura 6 - Estabelecimento de conex&80 TCPo.uuuiiiiiiiiiiee e 26
Figura 7 - Transmissao de dados TCPcooooiiiiiiiiiie e 27
Figura 8 - Finalizac8o da coneX80 TCPccooiiiiiiii e 27
Figura 9 - Cabegalno [P [2]uuei i 28
Figura 10 - Encapsulamento TCP/IP.........coi i 29
Figura 11 - Fragmentagao de PacotesS 1Pcoooiiiiiiiiiii e 30
Figura 12 - Kit OlimeX EAQSYWeED 2 [3]uuuiiiii i eeens 32
Figura 13 - Esquema Pin0S MSP430F149 [4]oooeiiiiiiiieee e 34
Figura 14 - Arquitetura interna do MSPA430 [4]...cceurumiiiieieiieeee e 35
Figura 15 - Diagrama do controlador CS8900 [6].......cevveieiiiriiiiiiiiiieeee e eeeeeens 36
Figura 16 - Fluxograma da fung&o DONetworkStuff()ccoooeeeiiiiiiii 40
Figura 17 - Fluxograma basico do protoColo UIP...........cccooiiiiiiiiiiiii e 44
Figura 18 - Resposta da pilha de Andreas Dannenberg ao comando ping.................. 49
Figura 19 - Resposta da pilha ulP ao comando PiNg........cccoeeeviuiiiiieeeiiieiiieee e 49
Figura 20 - Teste multiplas conexdes da pilha de Andreas Dannenberg..................... 50

13

Figura 21 - Teste multiplas conexdes da pilha ulP

14

Lista de Tabelas

Tabela 1 - Tamanho de PACOLEScccoiiiiiiiiiii e 30
Tabela 2 - Caracteristicas Elétricas do MSPA430 [4]vuuvurrrereririiierieiieeiieeeeeeeeneeenennnnes 35
Tabela 3 - Comparacao entre as duas pilnas............cccceeeiiii e, 47
Tabela 4 - Tamanho de cOdigo das Pilnasccoovvveiiiiiiieee e 47
Tabela 5 - Uso de MemMOria RAM........cooiiiiiiiiiii et 48

15

Lista de Abreviaturas

IP - Internet Protocol

RISC - Reduced Instruction Set Computer
TCP - Transmission Control Protocol
UDP - User Datagram Protocol

SMTP - Simple Mail Transfer Protocol
ICMP - Internet Control Message Protocol
HTTP - HyperText Transfer Protocol
ARPA - Advanced Research Projects Agency
ACK - Acknowledgement

SACK - Selective ACK

MTU - Maximum Transfer Unit

FDDI - Fiber Distributed Data Interface
CRC - Cyclical Redundancy Check

QFP - Quad Flat Pack

LAN - Local Area Network

IETF - Internet Engineering Task Force
NAS - Network Attachment Storage

FTP - File Transfer Protocol

16

1. Introducao

Sistema embarcado é um sistema microprocessado no qual o hardware é
dedicado ao sistema que ele controla, diferente de computadores que executam varias
tarefas ao mesmo tempo com propésitos diferentes. Um sistema embarcado realiza
um conjunto de tarefas predefinidas, geralmente com requisitos especificos. Ja que o
sistema é dedicado a tarefas especificas, pode-se aperfeicoar o projeto reduzindo
tamanho, recursos computacionais e custo do produto de acordo com a aplicacéo.
Diante diss,0 estdo cada vez mais presentes em nosso cotidiano, controlando,
monitorando e comunicando e entre diversas outras opera¢des encontramos sistemas
embarcados. O surgimento de novas aplicacdes é impulsionado pelo crescimento do

mercado e um melhor conhecimento das necessidades.

E nesse contexto tém cada vez mais necessidades de comunicacédo, devido a
controle, monitoragdo e seguranca. Com isso a internet é uma alternativa viavel e
muitas vezes de custo reduzido. E neste contexto gue este trabalho se encaixa,
fazendo a integracdo da aplicacdo com o equipamento, onde cada equipamento pode
ser monitorado com sensores. E com a utilizagdo da internet pode-se controla-lo e
monitora-lo remotamente, tendo como Unico pré-requisito uma conexao ativa com a

internet.

As duas pilhas TCP/IP que iremos estudar sdo duas implementacfes reduzidas
da pilha que é implementada para computadores. A maior restricdo de ambas
implementacdes é o hardware com menor capacidade de processamento e menor
tamanho de memodria RAM. Mas, mesmo diante das limitagfes, as duas pilhas tém
gue ser totalmente compativeis com as pilhas implementadas para computadores, pois

deverdo se comunicar sem perdas.
1.1 Motivacgao

A motivacao deste trabalho partiu das limitagdes encontradas na pilha TCP/IP
de Andreas Dannenberg diante de varias aplicacfes. Assim, sabendo da existéncia da
pilha de Adam Dunkels, aqui referida somente como ulP, teve-se a oportunidade de
verificar as diferengas e conseqientemente uma melhora nas possiveis aplicacdes

com o kit de desenvolvimento Olimex EasyWeb2.

17

1.2 Objetivos

z

O objetivo deste trabalho é comparar de forma qualitativa duas pilhas de
protocolos TCP/IP implementadas para sistemas embarcados com microcontroladores
MSP430 da Texas Instruments, e por fim exemplificar com uma aplicacdo que

demonstre as diferencas entre as duas implementacdes.

1.3 Organizacao do texto

Este trabalho esta dividido em seis capitulos, sendo que o primeiro capitulo é

somente uma apresentacao do tema proposto e 0s objetivos a serem alcancados.

O segundo capitulo faz uma introducdo a todos 0s conceitos necessarios para
0 entendimento, tanto do trabalho. Introduzindo conceitos de redes e protocolos, além

contexto em que se enquadram.

No terceiro capitulo, é o foco do trabalho, onde séo feitas as explicacbes das
duas pilhas, além dos matérias e métodos utilizados para a comparacao e logo apos

um comparativo de todas as diferencas que sdo importantes.

No quarto capitulo foi mostrado todos os resultados obtidos através do estudo
das duas pilhas.

O quinto capitulo conclui o trabalho, analisando o0s resultados e testes

realizados e também propdes novas implementacdes e solugdes.

E no ultimo capitulo tém-se as referéncias bibliograficas que foram utilizadas

para a composicao deste trabalho.

18

2. Introducéo Teorica

Cada um dos trés séculos anteriores foi dominado por uma Unica tecnologia. O
século XVIII foi a época dos grandes sistemas mecanicos que acompanharam a
Revolucéo Industrial. O século XIX foi a era das maquinas a vapor e no século XX as
principais conquistas tecnolégicas deram-se no campo da aquisicdo, do

processamento e da distribuicdo de informacdes [1].

Neste Ultimo século, com a invencdo do transistor teve-se a revolucdo
eletrbnica, o que possibilitou véarias inovacdes. Com isso, 0os processadores puderam
evoluir tanto que quase todos os controles eletrbnicos atualmente sé&o
microprocessados. Essa evolugdo foi acompanhada, nos Uultimos anos, pelo
crescimento dos sistemas de comunicacdo e em especial pelas redes de

computadores.
2.1Redes de computadores

Antes do advento de computadores dotados com algum tipo de sistema de
telecomunicacdo, a comunicacdo entre maquinas calculadoras e computadores

antigos era realizada por usuarios através do carregamento de instrucfes entre eles.

Em 1940, George Stibitz utilizou uma maquina de teletipo® para enviar
instrugcdes com um conjunto de problemas a partir de sua calculadora Model K (Figura
1) na Faculdade de Dartmouth em Nova Hampshire para a sua calculadora em Nova

lorque e recebeu os resultados de volta pelo mesmo meio.

! Equipamento eletromecénico de transmissédo de dados

19

Figura 1 - Calculadora (Model K) [1]

Conectar sistemas de saida, como teletipos a computadores, era um interesse
na ARPA (Advanced Research Projects Agency) quando, em 1962, J. C. R. Licklider
foi contratado e desenvolveu um grupo de trabalho o qual ele chamou de a "Rede

Intergalactica”, um precursor da ARPANET.

Durante a década de 1960, Leonard Kleinrock, Paul Baran e Donald Davies, de
maneira independente, conceituaram e desenvolveram sistemas de redes, 0s quais
usavam datagramas ou pacotes, que podiam ser usados em uma rede de comutacdo

de pacotes entre sistemas de computadores.

Em 1969, a Universidade da Califérnia em Los Angeles, SRI (em Stanford), a
Universidade da California em Santa Barbara e a Universidade de Utah foram
conectadas com o inicio da rede ARPANET usando circuitos com capacidade de
transmiss@o de 50 kbits/s. Essa rede denominada de ARPANET era uma rede que
interligava bases militares e departamentos de pesquisa do governo americano. Ela
utilizava um backbone que passava por baixo da terra, sem ter um centro ou caminho
definido. Essa técnica conferia ao sistema um seguranca, pois nao tinha um elemento

principal, que se fosse destruido impactava no sistema.

Redes de computadores e as tecnologias necessérias para conexao e
comunicacao, através e entre elas, continuam a comandar as industrias de hardware
de computador, software e periféricos. Essa expansao é espelhada pelo crescimento
nos ndmeros e tipos de usudrios de redes, desde o pesquisador até o usuario
doméstico.

20

Atualmente, redes de computadores sdo o ndcleo da comunicagdo moderna. O
escopo da comunicagdo cresceu significativamente na década de 1990 e essa
explosdo nas comunicacdes ndo teria sido possivel sem o avango progressivo das

redes de computadores.

As redes em si ndo sdo somente os meios fisicos de transmissdo, mas um
conjunto de software e hardware que comanda e controla as conexdes. Por isso as
regras das comunicacbes devem ser claras para todos os elementos envolvidos em
uma conexdo, com isso todos os sistemas de comunicacdo tém protocolos, que
gerenciam toda a comunicacdo, desde a inicializacdo até o término da conexao,
fazendo o gerenciamento de perdas, tempos e limites, tentando sempre maximizar a

transferéncia e o uso do hardware e minimizar os problemas.

2.2 Protocolos e hierarquias

Para reduzir a complexidade do projeto, a maioria das redes é organizada
como uma pilha de niveis ou camadas, colocadas umas sobre as outras. O nimero de
camadas, o nome, o conteltdo e a funcdo de cada camada diferem de uma rede para
outra. No entanto, em todas as redes o0 objetivo de cada camada é oferecer
determinados servigos as camadas superiores, isolando essas camadas dos detalhes
de implementacdo desses recursos. De certa forma, cada camada € uma espécie de

maquina virtual, oferecendo determinados servicos a camada situada acima dela.

Na realidade, esse conceito & familiar e é utilizado em toda a ciéncia da
computacdo, na qual é conhecido por nomes diferentes, como ocultacdo de
informac®es, tipos de dados abstratos, encapsulamento de dados e programacao
orientada a objetos. A idéia fundamental € que um determinado item de software (ou
hardware) fornece um servigco a seus usuarios, mas mantém ocultos os detalhes de

seu estado interno e de seus algoritmos.

A camada n de uma maquina se comunica com a camada n de outra maquina.
Coletivamente, as regras e convencdes usadas nesse didlogo sdo conhecidas como o
protocolo da camada n. Basicamente, um protocolo é um acordo entre as partes que
se comunicam, estabelecendo como se dara a comunicacado. A violagdo do protocolo
dificultard a comunicacdo, se ndo a tornar completamente impossivel. A Figura 2
ilustra uma rede de cinco camadas. As entidades que ocupam as camadas

correspondentes em diferentes maquinas sdo chamadas pares (peers). Os pares

21

podem ser processos, dispositivos de hardware ou mesmo seres humanos. Em outras

palavras, sdo 0s pares que se comunicam utilizando o protocolo [1].

Host 1 Host 2
Layer S protocol
Layer§5 [@-------=-------------u Layer5
i
Layer 4/5 interface '
—] Layer 4 protocol
LIYET 4 fa v v ammn e s e = Layer4

Layar 3/4 interface

Layer 3 protocol T B
- - =~ Layer3

'Y
Layer 2/3 inlerlace i
Layer 2 protocol
Layer 2 |= - --=------o| Layer2
Layer 1/2 intenace :
i Layer 1 protocol
T B e -+ Layer 1

Physical medium

Figura 2 - Camadas, Niveis e Protocolos [1]

2.3 Protocolo TCP/IP

Com o sucesso da Internet, 0 modelo de protocolos TCP/IP se tornou o padrdo
internacional de comunicacdo. E o protocolo utilizado para transferéncia de web
pages, transmissfes de email, transferéncia de arquivos através da Internet. Sistemas
embarcados que possuem o protocolo implementado serdo elementos importantes,
que podem se comunicar tanto via Internet quanto dentro de uma Intranet, que é uma

versao privada da Internet.

O TCP/IP é um conjunto de protocolos de comunicacdo entre computadores
em rede. Seu nome vem de dois protocolos: o TCP - Protocolo de Controle de
Transmisséo e o IP - Protocolo de Interconexdo. O protocolo é estruturado em um
modelo de camadas, onde cada camada € responsavel por algumas tarefas,
fornecendo um conjunto de servigos definidos para o protocolo da camada superior.
As camadas mais altas estdo logicamente mais préximas do usuéario. O modelo é

estruturado de acordo com a Figura 3.
22

Figura 3 - Camadas Protocolo TCP/IP

Este modelo de camadas é uma idéia que surgiu com o modelo OSI (Open
Systems Interconnection), que € um modelo onde se tem sete camadas estruturadas
de forma semelhante ao que se tem no modelo TCP\IP. Este modelo é o precursor de
guase todos os modelos de comunicagdo que se tem hoje. As cinco camadas do
modelo TCP/IP s&o relacionadas com as camadas do modelo OSI de acordo com a
Figura 4.

23

Application Layer “

Presentation Layer N

Application Layer

Session Layer e

Transport Layer

Transport Layer e
- Internet Layer

Metwork Layer -
- Metwork Layer

Diata Link Layer

Physical Layer s

Figura 4 - Modelo OSI - TCP/IP

Os protocolos TCP\IP possuem cinco camadas, mas as pilhas implementadas
estdo focadas nas camadas de transporte e de rede. Todas as outras camadas abaixo
serdo associadas como “dispositivos de redes” e a camada acima simplesmente como

camada de aplicacéo.

O protocolo TCP especifica trés fases durante a conexdo: primeiro o

estabelecimento da conexao, depois a transmissao e por Ultimo o término da conexao.

O cabecalho do protocolo TCP pode ser visto na Figura 5. Ele € composto
basicamente da porta de origem e de destino, além do numero de sequéncia que
identifica a posi¢cdo deste pacote diante de um fluxo de pacotes, por um nimero que
confirma o recebimento do pacote e por alguns bits de controle, além do tamanho do
cabecalho. Possui também um campo de verificagdo de erros do cabecalho e um
campo em que a origem determina para indicar onde esta algum dado urgente dentro
do pacote. E, por ultimo, temos os dados que sdo basicamente o pacote do protocolo

gue é utilizado pela aplicacao.

24

+ Bits0-3 4-9 [10-15 16 -

0 Porta na crigem Porta no destino
32 Mumero de sequéncia
bd Mimero de confirmacdo (ACHK)

Janela

96 Orffset Reservados | Flags
Window

128 Chedsum Ponteirc de urgéncia
160 Opodes (opoicnal)

Faddirg (até 32)
224 Dados

Detalhe do campo Flage

+ | 10 M 12 13 | 14 |15
96 | UrgPtr| ACK | Push | RST SYM | FIM

Figura 5 - Cabecalho TCP [2]

O estabelecimento da ligacdo ocorre de forma ordenada, onde o cliente envia
um pacote em que ele pede uma conexdao com o servidor. Assim que o servidor
recebe o pacote, ele devolve um pacote de confirmacéo (ACK - Acknowledgement)
juntamente com um pacote informando a aceitacdo da conexdo, mas, caso o servidor
néo receba o pacote, o cliente espera um tempo (Timeout) e reenvia o pacote. E, para
finalizar o processo de estabelecimento de conexao, o servidor devolve um pacote de

confirmacao (ACK) conforme Figura 6.

25

Cliente 1 Servidor

(Backiog
gchem
Iniciar !
ligacao SYN
3
I __:Ea-:kfpg -1
Timeout I Esauta
¥ Sy : passiva
N :
CK ;Ear_'kfmg
5¥M+E‘f—~ cheio
Ll
- ACK

Figura 6 - Estabelecimento de conexdo TCP

Depois de estabelecida a conexdo comeca o processo de transferéncia de
dados, conforme Figura 7, em que o servidor envia os dados conforme solicitado pelo
cliente. Esse envio ocorre de forma ordenada, e assim que o cliente recebe os dados
ele devolve um pacote de confirmagéo contendo o niumero do pacote recebido para se
manter uma alta confiabilidade. Uma grande vantagem do TCP, é que ele pode
confirmar pacotes que chegam fora da ordem previamente estabelecida através de um
pacote de confirmacdo (SACK - Selective ACK). O cabecalho do protocolo TCP
contém um campo de verificacdo de erros (Checksum), o que permite assegurar a

integridade do pacote recebido.

26

Cliente 1 Servidor

Transforéncial Transferéncia
de dados de dados

: Win = 1024
Cliente toma ﬁgﬁfﬁ_

conhecimento " _
da janela do “‘“—Eﬁfﬂﬂ@s

servidor (1024} —

2:407 b tes

Wir = 640

Win = 238

3:204 bytes
Em cspera Al Win = 34

de ACK -
Remogao e

l ACK-_} processamento
. [do pacote 1:
Cliente toma ///t da pilha TCP

cenhecimento 1

da jgnel{eﬂg} 2! 380 bytae Win = 413
servidor “*———_____'_ .
Win = 38
Em ospora §
di ACK T

Figura 7 - Transmisséo de dados TCP

Para finalizar a aplicacdo, qualquer uma das partes manda um pacote de
finalizacdo, e a outra parte devolve um pacote de confirmacéo e logo depois manda
também um pacote de finalizacdo conforme Figura 8. E por fim a primeira parte

devolve um pacote de confirmacéo.

Cliente 1 Servidor

Trarstord r?sn'aé CTranalerencid
de dados e dados

Ter”nir*arg
CONEXIO [————0 FIN

o
Conexdo Lg—

farminada [T—— ACK

K“-——h Conexda

terminada

Figura 8 - Finalizacdo da conexdo TCP

O protocolo TCP introduz um conceito de porta, que esta associado a um
servico da camada de aplicacdo. Assim cada conexdo utiliza uma porta especifica

para o tipo de aplicacdo. O protocolo TCP usa o pacote IP para entrega dos

27

datagramas a rede. J4 o pacote IP trata os pacotes TCP como dados e néo interpreta

qualquer conteuado das mensagens TCP.

Representando o cabecalho de um pacote IP temos a Figura 9. Neste
cabecalho temos basicamente, o tamanho do cabecalho, como o tamanho do pacote
inteiro. Temos também o tempo de vida antes que o0 pacote ndo seja mais
retransmitido, possui também os enderecos de origem e destino, além de um
verificador de erros do cabecalho e alguns bits para controle. E ocupando a maior
parte do pacote temos a area de dados, que € onde sera transportado o pacote TCP
que vai ser transmitido.

+ 0-3 4.7 8-15 16 -18 |19 -1
Tamanho do | Tipo de Senigo (ToS) Comprimento
0 |versdc
cabecalhe | {agora DiffSery & ECHN) {pacote)

32 Identificador Flsgs Ciffzet
bd | Tempo de Wids (TTL) Frotooolo Checkzum
96 Enderecgo origem
128 Enderego destine
160 Opgdes
192 Dados

Figura 9 - Cabecalho IP [2]

O protocolo IP é usado para encaminhamento de dados. O IP oferece um
servico de datagramas nao confivel, ou seja, 0 pacote chega sem garantias, mas isso
€ resolvido pelo protocolo da camada de transporte, como explicado no protocolo TCP,
que faz toda a verificagdo de erros (Checksum). Vamos supor que tenham muitas
redes interconectadas por gateways, mas sO tenham dois hosts em cada extremo da
interconexdo das redes, quando um host quer enviar ao outro, ele encapsula o
datagrama e o envia ao gateway mais proximo. Uma vez que o quadro chega ao

gateway, o software de IP extrai o datagrama encapsulado, e as rotinas de

28

roteamento IP selecionam o proximo gateway que formara parte do caminho que

levara o datagrama ao host destino, conforme representado na Figura 10.

g T

2
De: 2.2.2.2
Para: 1.1.1.1 ("%
Aplicacao Aplicacao
cliente cliente
End: 1.1.1.1 End: 2.2.2.2

Figura 10 - Encapsulamento TCP/IP

Um problema que as pilhas TCP/IP tém que solucionar, é a fragmentagéo de
pacotes. Por passarem por varias redes distintas, com tecnologias diferentes, muitas
vezes as redes ndo tém capacidade de enviar pacotes IP no tamanho original que eles
foram recebidos. Com isso tem-se uma fragmentagéo de pacotes, que normalmente é
feito em switches que interligam duas redes diferentes conforme Figura 11. O switch
vai dividir os pacotes e reencapsuléd-los, de maneira que o receptor final consiga
remonta-los. Na Tabela 1 temos os tamanhos de pacotes em diferentes tipos de redes:
uma rede Ethernet padrdo, uma rede ARPANET, e uma rede FDDI (Fiber Distributed
Data Interface) que é uma tecnologia de transmissédo de dados que utiliza o protocolo
de transmissdo Token Ring e possui capacidade de transmissdo muito elevadas, da
ordem de Gigabits\s. O Token Ring funciona de forma circular, e quem quer transmitir
tem que possuir o Token.

29

Tabela 1 - Tamanho de pacotes

Tipo de rede MTU (em bytes)

Ethernet 1500
ARPANET 1000
FDDI 4470
Rede FDDI Rede Ethernet
|——> Switch ----->
MTU =4470 MTU = 1500

Figura 11 - Fragmentacéo de pacotes IP

30

3. Materiais e métodos

3.1 Kit EasyWeb 2

Para a realizacdo deste trabalho foi utilizado o kit de desenvolvimento Olimex
EasyWeb2 mostrado na Figura 12. A utilizacdo foi devido a disponibilidade do mesmo
nos laboratérios da Engenharia Elétrica (LAB-SEL) da Escola de Engenharia de S&o
Carlos (EESC) da Universidade de Sao Paulo (USP).

O kit de desenvolvimento possui um microcontrolador da Texas Instruments, o
MSP430, juntamente com uma memoria EEPROM 24LC515 de 64 Kbytes, que se
comunica com o microcontrolador pelo padréo 12C. O padrdo 12C é um tipo de
comunicacao serial que se opera com dois canais, sendo um de dados e outro de

clock para sincronismo. O kit € composto dos seguintes componentes:

« MSP430F149 rodando pilha TCP/IP de Andreas Dannenberg*
« Controlador LAN CS8900 + Transformador + Conector RJ45
« Trés Leds de status da LAN

« Dois relés 10A/240VAC

» Quatro entradas foto acopladas

« Quatro chaves Push Button

« Comunicacao Serial RS232

+ Buzzer

« Display LCD 16x2

+ Memoria EEPROM 64k - 24L.C515

« Cristal oscilador de 8Mhz

« Conector JTAG

! Cadigo-livre a todos desde que citem a referéncia.

31

Figura 12 - Kit Olimex EasyWeb 2 [3]

3.2 MSP 430

O microcontrolador utilizado no kit de desenvolvimento é o MSP430F149
fabricado pela Texas Instruments, baseados em arquitetura RISC de 16 bits. E
voltado para aplicacdes de baixo consumo, para aplicacbes embarcadas e portateis.
Possui memaria de flash 60 Kbytes e 2 Kbytes de memoria RAM.

Por ser de baixo consumo apresenta baixa tensdo de operagéo, variando de
1,8 V a 3,6 V. Trabalha tipicamente com uma corrente de 280 pA a 1 MHz e 2,2V de
Vce. E bastante econdmico em modo stand-by, consumindo aproximadamente 1,6
HA, podendo operar em modo de retengdo de memoria RAM, com apenas 0,1 pA de
corrente. Para reduzir consumo de energia, o MSP430 apresenta cinco modos de

consumo de energia. Possui um tempo de wake-up de 6 ps.

O MSP430 néo é tolerante a entradas em nivel TTL, ou seja, 5 V. Logo néo é
possivel que dispositivos TTL transmitam informacdes diretamente ao
microcontrolador, mas o contrario é possivel, pois os padrdes TTL aceitam o nivel de
tensdo que o MSP430 suporta, ou seja, 3,6 V.

32

Possui conversor A/D de 12 bits com referéncia interna, timers de 16 bits.
Possui um sistema flexivel de clocks, que pode ser mudado durante a execucao de
programas. Tem geradores de clock internos de 12 KHz, 32,768 KHz e de 16 MHz,

além do clock externo.

Para programacédo tem uma lista contendo 51 instru¢des com trés formatos e
com sete modos de endereco. Os formatos podem ser de trés tipos: Dual-operand:
dois operandos - fonte e destino; Single-operand: apenas um operando, que pode ser
uma fonte ou um destino; Jump: instrucdes de salto no programa. Para programacao
tem uma lista contendo 51 instrucbes com trés formatos e com sete modos de
endereco. Os formatos podem ser de trés tipos: Dual-operand que séo dois
operandos - fonte e destino; Single-operand que tem apenas um operando, que pode
ser uma fonte ou um destino; e Jump em que possui instrucdes de salto no programa.
Os modos de enderecamento sdo 0s seguintes: Modo imediato; Modo registrador;
Modo indexado; Modo simbodlico; Modo absoluto; Modo indireto; e Modo indireto com

auto incremento.

Possui comparador interno no proprio chip, ndo necessitando de uso de
comparadores externos. Possui cinquenta I/Os (entrada/saida), e sessenta e quatro

pinos em um chip formato QFP conforme Figura 13.

A programacao pode ser realizada on-board, por comunicacao serial, € possui
um moédulo JTAG para emulacdo. O microprocessador apresenta dois modulos
USART, que podem ser operados como UART assincrona, ou como interface SPI

sincrona.

33

Bk

- o= = o b 8 ég

o pS<<Z PEz3dkE <

B U -~crxwEoRRR on

ZB:PLERPEPPRKELS
| S) SN) S | N) S) S) S | SN]S)N) SN) NN) SN NN

O'64 63 6261 60 59 58 57 56 55 54 53 52 51 50 49
DVeofl 1 48]
P6.3AS]] 2 47[]
PE.4iA4[] 3 46[]
P6.5iA5] 4 as[]
P5.6A6[] 5 4[]
ps.7iAT[] 6 43[]
Veep+ U T 42(]
xIN[] & 4[]
xouTf] o 0[]
Vepers U 10 39[]
VRer-Merer-H 11 as[]
P1.OTACLK [] 12 a7[]
p1maod 13 3600
P12mat] 14 5[]
pr.amaz s 34[]
P1ASMCLK I8, 10 19 20 2122 2324 25 262728 29 3031 3233[

2=
55
oo

P1.7TA2
P2.0ACLK

P2 A/TAINCLK
P22/CAOUT/TAD
P2.3/CAQTAT
F24/CA1TA2

PZ5/Rosc

P2.7TAD

P3.0/STED
P3.1/SIM

P2&ADCI2CLEK

00

P3.2/S0OMID

P3.3/UCLKOD
P3.4/UTXDO

Figura 13 - Esquema Pinos MSP430F149 [4]

P5.4/MCLK
P5.3/UCLK1
P5.2/S0MI1
P3.1/5IMOQ1
P5.0/ISTET
P4 7/TBCLK
P4.6/TBE
P4.5/TB5
P4.4/TB4
P4.3/TB3
P4.2TB2
P4.1/TB1
P4.0/TBO
P3.7/URXD1
P3.6/UTXD
P3.5/URXDO

Temos na Figura 14 o diagrama que mostra a arquitetura interna do chip em

bloco, mostrando de forma sintetizada a forma de comunicagéo interna.

Rosc
XT2IN
XT20UT

™S
TCK

TOUTCLE
TOOITDI

XN XOuT DVge Dvss AVce AVss TST/NMI P1 P2 P3 P4 PS5 FE
L — L —
F Y ¥ ¥ L 4 A J ¥ L 4
¥] 8 3 H g b=
#— Oscilator [ACLK | &0KB Flash| | 2KE RAM ADC12 1o Port 1/2| |10 Port 364 | | 1O Port 516
16 0, 16 UCs 18 ¥Os
Sg'f;:k"“ [SMCLK | 4pkB Flash| | 2x8 Ram 12-Bit wih || 1
4 Channels In termupt
32KB Flash 1KB RAM | [=10ps Conv Capability [i
—
MCLK e ™
L
MAB,
] = MAB. 1651 >& >
ITAG AN
o : AN P ves
Incl. 16 Regl | _ I
| | &2
] §§ P | S| SN N S N
E= MDEB, 16-Bit CI:Sus MDE, & Bit y
—1 \ onv| / /
—Ll T
4 ' S NS
H 1 1 1 | | ||
J 1| Mitoher Watchog ') Timer &7 [Timer_A2 POR Comparstor [USARTD [USARTI
- 7CCReg || 3CC Reg UART Mode| JUART Mode
m;-,{;‘:g; 15/16-Bit Sh;:ém 5Pl Mode | | 5FI Mode

34

Figura 14 - Arquitetura interna do MSP430 [4]

Ja na Tabela 2 tem-se as caracteristicas elétricas do MSP430, como tensao de
operagdo, consumo em determinadas frequéncias, corrente de entrada e saidas

suportadas, e também de condi¢des de operacao.

PARAMETER TEST CONDITIONS MIN NOM MaX UNIT
Active mode, (see Note 1) Veo=22V 280 150
) fiMCLK) = fisMCLK) = 1 MHz, = —d40° ®
r'\AM} r(ACLKj = 32,768 Hz Ta= ~40°Clo 85°C v =3V 420 560 uA
XTS=0, SELM=(0,1) cc= .
Active mode, (see MNote 1) | _
; vV =22V 2.5 7
fiMCLK) = flSMCLK) = 4 098 Hz. cc
|'|'\A|'\\,.'|} f(ACLK.J = 4,096 Hz Ta = -40°C to 85°C uA
XTS=0, SELM=(0,1) Veg=3V 9 20
XTS=0, SELM=3
Low-power mode, (LPMO) . . Vee=22V 32 45
(LPMD) (see Note 1) Ta= ~40°Clo85°C 1T "3 g5 70| H°
Low-power mode, (LPM2Z), Veg=22V 11 14
ILpm2) FIMCLK) = f (SMCLK) = 0 MHz, Ta= -40°C to 85°C A
" f{ACLK)= 32.768 Hz, SCG0=0 Vee=3V 17 22
Ta= -40°C 0.8 1.5
Tp = 25°C V=22V 0.9 1.5 TN
Low-power mode, (LPM3) Ta = 85°C 1.6 28
iLemay fimeok)y = fismeLk) = 0 MHz, .
\) LIS ! = —d[F
f(ACLK) = 32.768 Hz, SCGO = 1 (see Note 2) Ta= ~40°C 8 22
' Ta = 25°C Vegg=3V 1.6 1.9 pA
Tp = B5°C 2.3 3.9
Ta = -40°C 0.1 0.5
Tp = 25°C Veo=22V 0.1 0.5 TP
Low-power mode, (LPM4) Ta = 85°C 0.8 25
iLPm4) FmeLK) =0 MHz. fismeLk) = 0 MHz, - =
L)\ ! 1) ! = —d(F
flacLk)=0Hz, SCGO=1 Ta=-40°C o 0.5
' Ta = 25°C Veg=3V 0.1 05| uA
Ta = 85°C 0.8 2.5

Tabela 2 - Caracteristicas Elétricas do MSP430 [4]

3.3 CS8900

CS8900 é um controlador LAN Ethernet de baixo custo, para aplicacdes
embarcadas. Nao necessita de outros controles adicionais, sendo tudo incorporado no
préprio chip. O CS8900 tem incluso RAM, transmissor e receptor (10Base-T) que é
uma implementacdo da Ethernet que suporta transmissdes a taxa de 10 Mbits\s e
interface via barramento ISA para comunicacdo com 0 microcontrolador, que € um
barramento paralelo de 8 bits. O esquema do diagrama interno do controlador pode

ser observado na Figura 15.

35

O controlador além da alta integracdo e pequeno tamanho oferece ampla gama
de recursos de desempenho e opc¢des de configuracdo. Sua arquitetura adapta-se aos
padrdes de trafego da rede e dos recursos disponiveis. O resultado € uma maior

eficiéncia do sistema como um todo [5].

- |EEE 802.3 Ethernet

+ Modo de operacao Full-duplex

» Portas e Filtros 10Base-T (polarizacdo e deteccéo/correcao)
+ Retransmissao automatica quando ocorre colisdo

» Rejeicdo automatica de pacotes com erros

» Suporte 8 EEPROM com jumper

« LED de link status e atividade da LAN

« Stand-by e modos de baixo consumo de energia

e Operacom3VoubV

« Consumo méximo em 5V =120 mA; e tipico em 5V = 90 mA
« 100 pinos TQFP

EEPROM 20 MHz

XTAL
: L i
/\ CS8900A ISA Ethernet Controller
/ Y,
C;Et[r’m | Clock 10BASE-T =
Control RAM 3 Receiver
RJ-45 | 10BASE-T
¥ 10BASE-T -
» TX Filters & :'|> '_::>
I ISA Encoder/ Transmitter §_§:
sK= Decoder e
A Bus &
Logic PLL — >
AUl A N e®
Transmitter %‘é— :: Attachment
7y)
8023 | AUl @ unit
Memary MAC | Collision “A:?é‘g — :0 Interface
Manager - Boundary 9 (AU
Engine S Power ®
N o/ AN | \Manager AU C:%‘g(}: ®
A4 Test Logic d Receiver Yo
W .

Figura 15 - Diagrama do controlador CS8900 [6]

36

3.4Comparacdao entre as pilhas TCP/IP

O foco principal deste trabalho é a comparagédo das duas pilhas de protocolos
TCP/IP que serdo discutidas a seguir. E importante para compararmos as pilhas,
entendermos cada uma individualmente. Assim, neste trabalho € realizada uma
descricdo de cada uma das pilhas citando cada uma de suas principais funcdes, e a

partir desta descricdo teremos o0 comparativo.

As implementacdes das duas pilhas analisadas neste trabalho utilizam pilhas
simplificadas, pois a pilha de protocolo padrdo de TCP/IP requer uma grande
guantidade de memdria, tanto de memoria para o codigo quanto de memodria RAM
para abrigar suas varidveis. Como nao ha grande disponibilidade de memdéria as duas
pilhas ndo abrangem toda complexidade do protocolo. Sendo assim as duas pilhas
sédo desenvolvidas tendo o minimo necessario para o protocolo funcionar, mas néo

deixando de ser compativel com todos os sistemas existentes.

A pilha completa TCP/IP consiste em inUmeros protocolos, que vdo desde
protocolo ARP que traduz endereco IP para enderecos MAC, protocolos de aplicagéo,
como SMTP (Simple Mail Transfer Protocol) que é utilizado para transferir texto de

email. As duas pilhas séo voltadas para os protocolos TCP e IP.

Basicamente o protocolo TCP fornece um fluxo confidvel de bytes para os
protocolos da camada superior. Ele divide o fluxo em segmentos de tamanhos
adequados e cada segmento é enviado em seu préprio pacote IP. Os pacotes IP, sdo
por sua vez enviados pelo controlado de rede. Caso 0 destino ndo esteja conectado
fisicamente ao emissor, este envia o pacote a um roteador, que envia ao destino. Caso
0 tamanho maximo de pacotes aceito pela outra rede seja menor do que o tamanho do
pacote enviado, o roteador fragmenta o pacote em pacotes com tamanho menor, com

iSso € necessario que o receptor consiga remontar o pacote.

As pilhas sédo implementadas respeitando os requisitos da RFC1122. As RFCs,
sdo Request For Coments, que sdo documentos que descrevem os padrdes de cada
protocolo de comunicagdo da Internet. Qualquer pessoa pode gerar uma RFC, que vai
ser aprovada, ou ndo pelo IETF (Internet Engineering Task Force), e posteriormente

publicada apos revisdo como uma RFC.

37

3.5Pilha de Andreas Dannenberg

O cdbdigo desenvolvido por Andreas Dannenberg segue uma estrutura mais
enxuta, mas nao deixando de ser eficiente. Tem-se suporte somente a aplicacdo de
um servidor web, suportando somente IPv4 e ndo possui suporte ao IPv6. O IPv6,
surgiu diante das limitacbes de endereco que o IPv4 veio a apresentar. Como a
Internet quando foi criada ndo tinha fins comerciais, 0 endereco com quatro octetos
(IPv4) foi suficiente até os dias atuais, mas esta com previsdo de esgotamento para
meados de 2011, entdo esta sendo implantado o endereco com oito octetos (IPv6), em
paralelo ao IPv4. Diante disso, € uma falta que podera ter um impacto maior quando

todos os enderecos de internet forem migrados para o IPv6.

A pilha é desenvolvida com base na RFC793, e com isso € totalmente
compativel com qualquer sistema de rede com suporte a TCP/IP, algumas
funcionalidades que néao séo essenciais ao funcionamento da pilha TCP/IP ndo foram
implementadas, pois é totalmente voltado pra microcontroladores de 8 bits, com baixo
consumo de RAM e de memdéria de programa, apesar de alguns modulos ndo serem

implementados, ndo € complexo o estudo para posterior implementagdes.

Basicamente o programa comeca inicializando o microcontrolador, suas portas,
além de clocks e as comunicag¢des externas, como a serial. Depois se inicializa o
controlador de rede. Logo apods toda parte de inicializacdo concluida, entra em

funcionamento a pilha.

Em funcionamento a pilha fica esperando algum chamado de conexao vindo de
um cliente. Quando acontece algum evento, € feita uma verificacdo para saber se é
um chamado para conexao. Caso seja, a pilha entra em modo de estabelecimento de
conexao. Logo apos a conexdo estabelecida comeca o envio dos pacotes contendo
uma pagina web (essa pagina web foi previamente colocada na memoéria do

microcontrolador no momento da programacéo), por fim finalizando a conex&o.

Algumas funcgbes e parametros sdo muito importantes para o entendimento da
pilha, pois além do entendimento do protocolo TCP/IP, é importante saber como é
tratado o dado pela pilha. A seguir sdo descritas as principais fun¢cdées que compdem a

pilha elaborada por Andreas Dannenberg.

38

void TCPLowLevellnit(void)

Essa fungdo faz a inicializacdo do controlador de rede e de varias variaveis,
além de configurar as portas e o Timer_A do MSP430. Ela deve ser chamada antes de

transmitir qualquer dado por TCP/IP.

void Init8900(void)

Configuras as portas do CS8900 - controlador de rede - que se comunica com

0 microcontrolador, e faz toda configuracdo do controlador.

void TCPPassiveOpen(void)

Essa funcdo coloca o controlador no modo servidor, esperando por uma
conexao. O flag SOCK_ACTIVE muda para o estado ocupado. Antes de chamar a
funcdo deve-se configurar a porta através da variavel global TCPLocalPort. O IP do

servidor é configurado nas quatro constantes, MYIP_1 a MYIP_4, no arquivo tcpip.h.

void TCPActiveOpen(void)

Com essa funcdo é possivel se conectar a um servidor remoto. O flag
SOCK_ACTIVE muda para o estado ocupado. Antes de se utilizar a funcéo, o IP do
servidor remoto e as portas local e remota devem ser configuradas, respectivamente,

através das variaveis RemotelP, TCPLocalPort e TCPRemotePort.

void TCPClose(void)

Essa fungdo fecha uma conexdo aberta. Se algum pacote estiver no buffer de
saida, ele sera enviado antes da conexdo ser fechada. Uma nova conexao pode ser

aberta ap0s o uso desta fungao.

void TCPReleaseRxBuffer(void)

Essa funcdo apaga o buffer de entrada. Deve ser utilizada apés a leitura dos
dados para que novos dados possam ser recebidos. Ela limpa o flag
SOCK_TX BUF_RELEASED, que indica a presenca de dados novos. Para se realizar
a leitura do buffer de entrada, deve-se ler a area de memoria apontada pelo ponteiro
TCP_RX BUF. O numero de bytes recebidos ¢é indicado pela variavel
TCPRxDataCount.

39

void TCPTranmitTxBuffer(void)

Essa fungéo envia dados sobre uma conexdo previamente aberta. Antes de se
utilizar a fungéo, a aplicacdo do usuario deve checar se o buffer de saida est4 vazio,
através do flag SOCK _TX_BUF_RELEASED do registro Socketstatus. Se estiver,
deve-se escrever os dados a serem enviados na area de memoéria apontada por
TCP_TX_BUF e o numero de bytes dos dados na variavel TCPTxDataCount. O
namero maximo de bytes que podem ser transmitidos esta indicado na constante
MAX_TCP_TX_DATA_SIZE.

void DoNetworkStuff(void)

Funcdo mais importante, que faz toda a comunicacdo, e segue 0 esquema
apresentado pelo fluxograma da Figura 16. Essa funcdo deve ser chamada
periodicamente pela aplicacdo, pois acessa varias flags no controlador de rede e no
microcontrolador. Logo, quanto mais essa funcéo for chamada frequentemente, melhor
serd o desempenho da pilha TCP/IP.

Espera de chamada de conexao

Recebe chamado

Verificando estouro de Timeout

Envia dados

Fecha conexao

Figura 16 - Fluxograma da funcdo DoNetworkStuff()

Esta pilha possui varias limitagbes. Uma delas e muito importante, é o nédo
suporte a multiplas conexdes. Outras limitagdes sao, a ndo verificagdo de erros, a falta

de um suporte a remontagem de pacotes, que sdo fragmentados. Basicamente é uma

40

pilha para redes locais, onde a quantidade de erros é bem baixa e que a fragmentacéo

de pacotes ndo acontece.

3.6 Pilha ulP (Adam Dunkels)

A pilha ulP foi elaborada por Adam Dunkels com foco em microcontroladores
de 8 bits, e por isso é adaptavel a praticamente qualquer microcontrolador encontrado
no mercado. A pilha vem recebendo atualizacdo constante, entdo sempre é possivel

verificar novas aplica¢cfes, e ou melhorias na pilha.

A implantacéo da pilha para o kit de desenvolvimento EasyWeb?2 foi realizada
por Paul Curtis, que utilizou o software CrossStudio. Curtis também adaptou a pilha
ulP para outro kit com ARM. Atualmente existem diversas implementacdes dessa pilha

para os mais diversos microcontroladores existentes atualmente.

Na arquitetura do ulP, o recurso mais escasso é a RAM. Com apenas algumas
centenas de Bytes alguns mecanismos tradicionais ndo sdo aplicados. No ulP né&o se
usa alocacdo dindmica de memoéria e sim um Unico buffer global quem recebe e
transmite os pacotes. O tamanho deste buffer € maximizado para suportar 0 maximo
tamanho de pacotes. O buffer é utilizado pelo protocolo, tanto para receber quanto
para enviar pacote IP ao controlador de rede que no caso é o CS8900. Outra
informacgé&o importante € quanto a estrutura do codigo, que é distribuido em médulos
fazendo que a implementacéo para diversos tipos de hardware seja feita de forma
facil e agil, uma vez que pode ser parametrizado para funcionar com hardwares com

pouco mais de 200 bytes de memdria RAM.

O funcionamento da pilha inicializa-se com a configuracéo das portas e timers
do microcontrolador, depois passando a configurar o controlador de rede. Quando um
pacote chega, o controlador de rede coloca o pacote no buffer e aciona a pilha de
protocolo. Caso o pacote tenha dados o microcontrolador ir4 notificar a aplicacao
correspondente. Como o buffer é Unico, logo que um pacote é recebido, ele tem que
ser processado, ou entdo armazenado em um segundo buffer. Os pacotes n&o serdo
sobrescritos pelo préximo pacote que chegar. Caso chegue um pacote enquanto a
aplicacdo estd processando, este entrara em fila de espera. O controlador CS8900
tem um buffer que pode armazenar até quatro pacotes, criando uma fila de espera,

para posteriormente envia-lo ao microcontrolador.

41

Algumas func¢des importantes para o funcionamento da pilha serédo descritos a

seqguir.
void ulP_appcall(void)

Esta € a funcdo principal, que sempre gque um dado é recebido, essa funcao é
chamada. Ela define qual aplicacéo esta sendo solicitada e automaticamente solicita a
funcao da aplicagcdo que trate os dados recebidos. A fungéo identifica qual a aplicacéo,

lendo o cabecalho do frame e posteriormente chama a aplicagéo correspondente.
void ulP_newdata(void)

Esta funcdo é que avisa a aplicacdo quando um novo dado é recebido, e

sinaliza-se na variavel global uip_conn que tem um dado no buffer.
void ulP_send(void)

Esta funcéo é chamada para a transmissao de dados que estdo no buffer.
void ulP_rexmit(void)

Esta é a funcdo que € responsavel pela retransmissdo de pacotes, que ocorre
guando néo é recebido o ACK, ou quando acontecer um erro com o pacote enviado.
Apesar de que o controlador de rede do kit EasyWeb2 ter suporte a isso € importante

ter isso implementado quando néo temos um controlador que tenha esse suporte.
void ulP_close(void)

E a funcdo que fecha um conexo, depois que a aplicacio foi executada com
sucesso, e hdo ha mais o que ser transmitido ou recebido. Ja a funcdo void
ulP_abort(void) , tem a funcéo de fechar a conexdo imediatamente caso ocorra um
erro fatal. Isso pode ocorrer de duas formas; primeiro quando houver estouro de
timeout, ou seja, quando ja houve o nimero de tentativas de retransmissao que foi
estipulado na varidvel de controle, e segundo se a conexao foi fechada pelo cliente

sem o término da transmissdo dos dados.

void ulP_listen(void)

42

E a funcdo que faz a manutencio das portas TCP abertas. Caso uma porta

esteja fechada, ndo tera como se comunicar com a pilha de protocolos TCP/IP.
void ulP_connect(void)

E a funcdo que abre as portas de conexdes, configurando a variavel global
ulP_conn com o status da conexdo, além da porta conectada. Isso € muito importante

para o controle de todas as conexdes ativas.
void ulP_tcpchksum(void)

Esta é a funcdo que faz a verificacdo de erros no cabecalho da pilha TCP, caso
haja algum erro ela automaticamente chama uma funcdo para que se tenha a

retransmisséo do pacote com erro.
void uip_ipchksum(void)

Esta funcdo faz a verificacdo de erros no cabecalho da pilha IP, e caso haja
erro ela automaticamente chama uma fungcédo para que se tenha a retransmissao do

pacote com erro.
uip_conn

E a variavel que controla toda conex&o, controlando quais portas estdo abertas,
além de todo as conter todas as flags de controle. E basicamente onde esta

armazenado todas as informagdes referentes as conexoes.

O esquema de funcionamento béasico da pilha ulP pode ser observado na
Figura 17. E importante entender que as funcdes bésicas de transmissio,
retransmisséo, abertura de portas e as demais que fazem o controle e o
estabelecimento de conexdes estdo sempre implementadas para que se possa colocar
em funcionamento a pilha de protocolos TCP/IP, mas é importante observar que
outras fungdes de suporte, como as de verificagdo de erros das pilhas TCP e IP nem

sempre estdo implementadas, uma vez que a necessidade é definida pela

conveniéncia do programador e limitadas por seu hardware.

43

Espera de chamada de conexao

Recebe chamado

Chama aplicacao

Aplicagao comanda a conexao

Envia dados

Fecha conexao

Figura 17 - Fluxograma basico do protocolo ulP

44

4. Resultado e discussao

Muitas diferencas de cddigo podem ser observadas, mas o foco do trabalho é
uma analise qualitativa, especificando os principais pontos de diferencas entre as duas
pilhas. E por fim uma andalise sobre os impactos dessas diferencas para outras

aplicacdes.

Y

A primeira diferenca é referente a estrutura do cédigo, em que a pilha de
Andreas Dannenberg tem um codigo unificado, possuindo poucas fungdes, e as
funcbes ndo possuem muitas parametrizacbes como se poderia de ter, dando ao
coédigo maior maleabilidade. J& a pilha ulP possui o cddigo distribuido em maodulos,
aos quais podem ser implementados de acordo com a necessidade, e muitas
parametrizacbes que contribuem para que a pilha possa ser implementada para

hardware com pouquissima quantidade de RAM (200 bytes).

A pilha ulP tem implementa o suporte ao IPv6, o que faz ela poder ser utilizada
com essa hova versao do protocolo IP. Este protocolo ja esta sendo implantado e por
enquanto esta funcionando lado a lado com o Ipv4. O principal motivo para a
implantacdo do IPv6 na Internet é a necessidade de mais enderec¢os, porque 0s

enderecos livres IPv4 estdo se esgotando.

Problemas com conexdes multiplas foram implementadas pelo ulP. O protocolo
de Dannenberg tem suporte somente a uma Unica conexao com o servidor web por
vez. Isso é bastante restrito, uma vez que hoje varias pessoas ao redor do mundo
acessam a mesma pagina ao mesmo tempo. Considere uma industria como exemplo,
que o servidor web € a base de dados para varias maquinas funcionarem, com isso
elas precisam ficar verificando o site sempre. Caso ndo houvesse suporte a multiplas
conexdes as maquinas nao conseguiriam acessar o site, € com isso nao teriam acesso
a base de dados, gerando uma pane que talvez pudesse resultar na parada da

producéo.

Um ponto de bastante atencéo é a verificagdo de erros (checksum) no ulP. A
pilha de Dannenberg ndo realiza verificagdo de erros. Isso para uma rede bem
estruturada pode ndo ser relevante, mas quando se pensa que Varias pessoas ao
redor do mundo acessa o0 website tem-se de levar em conta os erros durante a
transmisséo e recepcédo dos pacotes IP. Ja o ulP faz essa verificagcdo com um cédigo

bem simples.

45

Apesar de ndo ser necessariamente uma diferenca e sim uma nova
implementacéo, o ulP tem suporte a UDP, o que pode ser favoravel quando se pensa
em transmissdo de dados sem verificacdo, mas com maior agilidade e velocidade.
Também tem suporte a HTTP, Telnet Server e Client, SMTP, além de suporte a um

sistema de arquivos.

A pilha de Dannenberg possui um ponto critico que € a falta de um sistema de
remontagem de pacotes. Isso € de extrema importancia, pois pacotes que passam por
redes diferentes ao longo do caminho podem passar por alguns pontos onde se
fragmenta o pacote para se adequar a rede daquele local. Isso faz com que o servidor
tenha que remonta-lo para poder entender 0 pacote e com isso retransmitir o que foi

solicitado.

A documentacdo de ambos os projetos sdo bem elaboradas. O projeto de
Andreas, ndo se tem documentacdo, mas possui um cédigo bem comentado, mas
nada além disso. Ja o cddigo ulP, tem-se uma documentagéo extensa, com isso torna-
se facil, o entendimento da pilha. Isso contribui para que qualquer pessoa que esteja

interessada em utilizar a pilha ulP possa fazé-lo sem problemas de entendimento.

A pilha ulP por ter sido desenvolvida sem especificacdo de microcontroladores
pode ser implementa para varios microcontroladores diferentes. Apresenta uma
documentacdo especifica para implementacdo em qualquer microcontrolador. Outra
diferenca, esta na arquitetura do cédigo, em que o protocolo ulP é mais distribuido,
onde cada aplicagdo tem vérias fungdes, ja no caso da pilha de Dannenberg, a pilha

tem poucas funcgodes.

As duas pilhas sdo de codigo livre, o que é citado por ambos os
desenvolvedores. Com isso qualquer pessoa pode utilizar os codigos para
implementarem seus projetos. As principais diferencas foram compiladas e mostradas

na Tabela 3 para uma melhor visualizacéo.

46

Tabela 3 - Comparacéo entre as duas pilhas

_“

Multiplas Conexdes

Verificacdo de CheckSum
Suporte UDP

Remontagem de Pacotes
Suporte a Sistemas de Arquives
Suporte HTTP

Codigo Livre

CAUX XX X X
VIS

Tamanho de codigo é algo que se deve levar bastante em consideracgéo,
devido as limitagcBes dos microcontroladores. Apesar de serem pilhas de tamanho
reduzido, sdo bastante consideraveis se comparadas com o tamanho total de memoria
de programa disponivel. Além disso, um cddigo da pilha TCP/IP muito grande, limitaria
a aplicacao ao qual o projeto sera destinado. Os tamanhos de codigos das duas pilhas

podem ser observados na Tabela 4 para efeito comparativo.

Tabela 4 - Tamanho de cédigo das pilhas

Tamanho Usado da memoria

Em Bytes do MSP430
ulP 11 096 18,05%
Pilha de Andreas 8 906 13,14%

Pode se ver que a pilha ulP ocupa um espaco de cédigo maior, e isso é
totalmente explicado pelas muitas funcionalidades a mais, que ja foram discutidas, que
ele possui. Mas mesmo assim o codigo € bem compacto quando comparado com

pilhas TCP/IP para computadores do tipo PC.

47

Agora analisando o uso de memodria RAM das duas pilhas, temos um cenario
bem parecido, devido as duas possuir um unico buffer local, com isso deve ser

armazenado todo o pacote TCP/IP que esta sendo recebido.

Um teste realizado foi o de colocar duas paginas com tamanhos diferentes,
tentando forcar diferentes tamanhos de pacotes TCP/IP transportados. Por exemplo
usando uma pagina com apenas 528 bytes e outra com 2567 bytes de tamanho
efetivo, temos o0s resultados expressos abaixo na Tabela 5. Essas medidas foram
feitas utilizando a funcdo de DEBUG que os compiladores possuem. No caso o
software principal que chama a funcédo foi desprezado para ndo comprometer as
medidas.

Tabela 5 - Uso de memoéria RAM

Uso de memoéria RAM (em bytes)

Tamanhos de paginas Andreas
WebPage | (528 bytes) 442 439
WebPage Il (2567 bytes) 1328 1327

Um teste que visa mostrar a conectividade com o dispositivo, foi o0 comando
ping. Este comando utiliza o protocolo ICMP para testar a conectividade entre
equipamentos. Seu funcionamento consiste no envio de pacotes para o equipamento e
de destino e na escuta das respostas. Utilizando o comando ping para testar as
conectividades entre o computador e o dispositivo depois de implementas ambas as
pilhas obteve-se os resultados das Figura 18 para a pilha de Andreas Dannenberg e a
Figura 19 para a pilha ulP.

48

C:\>ping -t 143.107.235.180

Disparando contra 143.107.235.180 com 32 bytes de dados:

Resposta de 143.107.235.180:
Resposta de 143.107.235.180:
Resposta de 143.107.235.180:
Resposta de 143.107.235.180:
Resposta de 143.107.235.180:
Resposta de 143.107.235.180:
Resposta de 143.107.235.180:
Resposta de 143.107.235.180:
Resposta de 143.107.235.180:
Resposta de 143.107.235.180:
Resposta de 143.107.235.180:
Resposta de 143.107.235.180:
Resposta de 143.107.235.180:

bytes=32 tempo=404ms TTL=50
bytes=32 tempo=374ms TTL=50
bytes=32 tempo=361ms TTL=50
bytes=32 tempo=372ms TTL=50
bytes=32 tempo=389ms TTL=50
bytes=32 tempo=387ms TTL=50
bytes=32 tempo=376ms TTL=50
bytes=32 tempo=374ms TTL=50
bytes=32 tempo=383ms TTL=50
bytes=32 tempo=381ms TTL=50
bytes=32 tempo=390ms TTL=50
bytes=32 tempo=388ms TTL=50
bytes=32 tempo=500ms TTL=50

Estatisticas do Ping para 143.107.235.180:

Pacotes: Enviados = 13, Recebidos = 13, Perdidos = 0 (0% de perda),

Aproximar um numero redondo de vezes em milissegundos:

Minimo = 361ms, Maximo =

500ms, Média = 390ms

Figura 18 - Resposta da pilha de Andreas Dannenberg

C:\>ping -t 143.107.235.180

Disparando contra 143.107.235.180 com 32 bytes de dados:

Resposta de 143.107.235.180:
Resposta de 143.107.235.180:
Resposta de 143.107.235.180:
Resposta de 143.107.235.180:
Resposta de 143.107.235.180:
Resposta de 143.107.235.180:
Resposta de 143.107.235.180:
Resposta de 143.107.235.180:
Resposta de 143.107.235.180:
Resposta de 143.107.235.180:
Resposta de 143.107.235.180:
Resposta de 143.107.235.180:

bytes=32 tempo=350ms TTL=50
bytes=32 tempo=359ms TTL=50
bytes=32 tempo=348ms TTL=50
bytes=32 tempo=377ms TTL=50
bytes=32 tempo=435ms TTL=50
bytes=32 tempo=366ms TTL=50
bytes=32 tempo=354ms TTL=50
bytes=32 tempo=364ms TTL=50
bytes=32 tempo=373ms TTL=50
bytes=32 tempo=382ms TTL=50
bytes=32 tempo=331ms TTL=50
bytes=32 tempo=360ms TTL=50

Estatisticas do Ping para 143.107.235.180:

ao comando ping

. Pacotes: Enviados = 12, Recebidos = 12, Perdidos = 0 (0% de perda),
+ Aproximar um nimero redondo de vezes em milissegundos:
* Minimo = 331ms, Méaximo = 435ms, Média = 366ms

Figura 19 - Resposta da pilha ulP ao comando ping

Para verificar multiplas conexdes, foi utilizada uma técnica simples, que
consiste em colocar uma pagina com um tempo de atualizacdo na faixa de um a dois
segundos, para ficar atualizando constantemente. Este tempo foi estimado utilizando
um software (Firebug v.1.4.5), instalado juntamente com o navegador de internet
Mozilla Firefox, mede o tempo de abertura de uma pagina, desde a solicitacdo até o
carregamento completo. Efetuando o teste algumas vezes a média de tempo de

abertura foi de 2,03 s. Logo se utilizou tempo de atualizacéo de dois segundos.

49

Abrindo a pagina em um computador, a mesma ficou atualizando a cada dois
segundos. Ao mesmo tempo em outro computador foi solicitada a pagina e verificada
se a mesma foi recebida. Além de tentar abrir a pagina, foi utilizando o comando ping
para verificar a conectividade entre o computador e o dispositivo. Para a pilha de
Andreas Dannenberg a péagina solicitada no segundo computador ndo obteve
resposta, e o comando ping teve como resposta a Figura 20. Ja a pilha ulP obteve

resposta ao comando ping conforme Figura 21.

C:\>ping -t 143.107.235.180
Disparando contra 143.107.235.180 com 32 bytes de dados:
Resposta de 143.107.235.180: Host de destino inacessivel.
Resposta de 143.107.235.180: Host de destino inacessivel.
Resposta de 143.107.235.180: Host de destino inacessivel.
Resposta de 143.107.235.180: Host de destino inacessivel.
Resposta de 143.107.235.180: Host de destino inacessivel.
Resposta de 143.107.235.180: Host de destino inacessivel.
Estatisticas do Ping para 143.107.235.180:
Pacotes: Enviados = 6, Recebidos = 6, Perdidos =0 (0% de perda),
Aproximar um numero redondo de vezes em milissegundos:
Minimo = 0ms, Maximo = 0ms, Média = O0ms

Figura 20 — Teste mdltiplas conexdes da pilha de An dreas Dannenberg

C:\>ping -t 143.107.235.180
Disparando contra 143.107.235.180 com 32 bytes de dados:

Resposta de 143.107.235.180 :
Resposta de 143.107.235.180 :
Resposta de 143.107.235.180 :
Resposta de 143.107.235.180 :
Resposta de 143.107.235.180 :
Resposta de 143.107.235.180 :
Resposta de 143.107.235.180 :
Resposta de 143.107.235.180:
Resposta de 143.107.235.180:
Resposta de 143.107.235.180:
Resposta de 143.107.235.180:
Resposta de 143.107.235.180:
Resposta de 143.107.235.180:
Resposta de 143.107.235.180:

bytes=32 tempo=401ms TTL=50
bytes=32 tempo=458ms TTL=50
bytes=32 tempo=376ms TTL=50
bytes=32 tempo=364ms TTL=50
bytes=32 tempo=443ms TTL=50
bytes=32 tempo=360ms TTL=50
bytes=32 tempo=369ms TTL=50
bytes=32 tempo=431ms TTL=50
bytes=32 tempo=368ms TTL=50
bytes=32 tempo=377ms TTL=50
bytes=32 tempo=445ms TTL=50
bytes=32 tempo=364ms TTL=50
bytes=32 tempo=363ms TTL=50
bytes=32 tempo=492ms TTL=50

Estatisticas do Ping para 143.107.235.180:

Pacotes: Enviados = 14, Recebidos = 14, Perdidos = 0 (0% de perda),

Aproximar um numero redondo de vezes em milissegundos:

Minimo = 360ms, Maximo =

492ms, Média = 400ms

Figura 21 — Teste mdltipl

as conexdes da pilha ulP

50

Uma aplicacdo bastante interessante e que foi estruturada para podermos
exemplificar foi a implementagédo de um cliente SMTP utilizando a pilha ulP. O SMTP é
um protocolo padréo para envio de emails através da internet. E relativamente simples
de ser implementado, e tem como referéncias a RFC282, na qual toda a descri¢do &
detalhada.

O protocolo é baseado em comandos enviados pelo cliente e respostas dadas
pelo servidor. Sempre se espera a resposta de um comando antes de mandar um
novo comando. Os comandos e resposta sdo sempre terminados pelo caractere
“Carriage Return” (CR). Todas as respostas do servidor possuem duas partes: o
cbdigo de retorno e a mensagem "Human Readable" (legivel por humanos) sendo
que o codigo é usado para identificar o tipo de mensagem por programas. Coédigos
comecados com 2 indicam sucesso, 3 indicam sucesso, mas deve-se enviar mais

dados para finalizar a operagéo, e 4 ou 5 séo erros.

51

5. Conclusao

O objetivo principal deste trabalho foi a comparacdo das duas pilhas de
protocolos TCP/IP.

Para tanto foi importante o estudo individual de ambas as pilhas de protocolos.
Com isso conclui-se que diante de inUmeros fatos citados no capitulo trés, a pilha ulP
€ mais robusta, uma vez também que é uma pilha melhorada em relagdo a primeira.
Outros fatores sdo as mais diversas aplicagfes que sdo suportadas em seu codigo

nativo.

Nao se pode dizer sobre melhor ou pior. Pois depende necessariamente da
aplicacdo foco de qualquer projeto, para se definir a melhor pilha. Uma vez que a
aplicacdo seja somente um servidor web local, a pilha de Andreas Dannenberg
suporta com tranquilidade, pois ndo necessita de remontagem de pacote e a
gquantidade de erros € bem pequena, mas se for um servidor que sera acessado de
qualquer parte do mundo, prefere-se a pilha ulP, por conter remontagem de pacotes e

verificacdo de erros.

Utilizando as pilhas, tanto de Andreas quanto a ulP pode se implementar varias
aplicacdes desde um simples servidor web até projetos de armazenamento em
massa. Desde que precise se conectar com a internet, qualquer aplicacao é possivel,

mas sempre considerando algumas limitacdes.

Hoje em dia a mobilidade tornou-se algo do nosso dia-a-dia, mas as vezes
estamos distraidos e nos perdemos diante de tanta mobilidade. Este é o caso de
documentos importantes, que as vezes trabalhamos em varios lugares e nem sempre
na mesma maquina. Com isso uma aplicacdo interessante a ser desenvolvida, é um
servidor FTP, ou mesmo um NAS (Network-attached storage), onde se conecta
diretamente na rede uma unidade de armazenamento (HD). Com um microcontrolador
isso seria possivel utilizando memarias flash. Hoje existem no mercado controladores
para memorias flash que se adaptam a qualquer microcontrolador possibilitando leitura
e escrita de dados. Para isso utiliza-se uma aplicagdo ja disponivel na pilha ulP para

implantacao de um servidor FTP.

52

Referencia Bibliogréafica

1. Tanenbaum, Andrew S. Computer Networks. s.l. : Prentice Hall, 2002.

2. IETF. IETF. IETF Web Site. [Online] [Citado em: 02 de 11 de 2009.]
http://tools.ietf.org.

3. Olimex. Olimex. Olimex Web Site. [Online] [Citado em: 02 de 11 de 2009.]

http://www.olimex.com/dev/msp-easyweb2.html.

4. Instruments, Texas. Texas Instruments. Texas Instruments Web Site. [Onling]
[Citado em: 02 de 11 de 2009.] http://focus.ti.com/lit/ds/symlink/msp430f149.pdf.

5. Logic’s, Cirrus. Cirrus Logic’s. Cirrus Logic’s Web Site. [Online] [Citado em: 02 de
11 de 2009.] http://cirrus.com/en/products/pro/detail/P46.html.

6. Logic's, Cirrus. Cirrus Logic's. Cirrus Logic's Web Site. [Onling]
http://cirrus.com/en/pubs/proDatasheet/CS8900A_F4.pdf.

7. IANA. IANA. IANA Web Site. [Online] [Citado em: 02 de 11 de 2009.]

http://www.iana.org/protocols/.

53

