

DANILO LOPES LUVIZOTO

ESTUDO DE IMPLEMENTAÇÕES DE
PILHAS TCP/IP PARA

MICROCONTROLADORES

Trabalho de Conclusão de Curso
apresentado à Escola de Engenharia de

São Carlos, da Universidade de São Paulo

Curso de Engenharia Elétrica com ênfase
em Eletrônica

ORIENTADOR: Prof. Dr. Evandro Luís Linhari Rodrigues

São Carlos
2010

2

3

Dedicatória

Dedico este trabalho aos meus pais que tanto lutaram para eu poder ser o que

sou e pelo amor que sempre tiveram por mim. Também a minha querida namorada

que me apoiou em todos os momentos de minha graduação. Além, é claro, de todos

os amigos, que juntos batalhamos e vencemos mais uma vez.

4

5

Agradecimentos

Agradeço primeiramente a Deus por me iluminar nos caminhos mais difíceis,

ao Professor Evandro pela orientação e incentivo deste trabalho e a todos outros

professores e colegas que me ajudaram em tudo que sei hoje.

6

7

Resumo

Este trabalho apresenta um comparativo entre duas implementações de pilhas

TCP/IP para sistemas embarcados baseados em microcontrolador. O trabalho foi

desenvolvido utilizando um microcontrolador MSP430 da Texas Instruments,

embarcado em uma placa de desenvolvimento da Olimex. O trabalho consistiu em

duas tarefas: a primeira foi o estudo de cada pilha e a segunda foi uma comparação e

desenvolver uma aplicação. O objetivo foi enfatizar algumas das principais diferenças

entre as pilhas sugerindo algumas aplicações.

Palavras chave: Sistemas Embarcados, Protocolo TCP/IP, Comunicação Internet,

MSP430

8

9

Abstract

This paper shows a comparison between two TCP / IP stacks for embedded

systems implemented based on microcontrollers. The study was conducted using a

MSP430 microcontroller from Texas Instruments, included in the development kit from

Olimex. The work consisted of two tasks: the first one was the study of each stack and

second was a comparison and develop an application. The objective was to emphasize

some differences between the stacks and suggest some applications.

Keywords: Embedded systems, TCP/IP protocol, Internet communication, MSP430

10

11

Sumário

Dedicatória ... 3

Agradecimentos .. 5

Resumo...... .. 7

Abstract……… .. 9

Lista de Figuras .. 13

Lista de Tabelas ... 15

Lista de Abreviaturas .. 16

1. Introdução .. 17

1.1 Motivação ... 17

1.2 Objetivos .. 18

1.3 Organização do texto .. 18

2. Introdução Teórica ... 19

2.1 Redes de computadores ... 19

2.2 Protocolos e hierarquias ... 21

2.3 Protocolo TCP/IP .. 22

3. Materiais e métodos ... 31

3.1 Kit EasyWeb 2 .. 31

3.2 MSP 430 ... 32

3.3 CS8900 .. 35

 3.4 Comparação entre as pilhas TCP/IP ... 37

12

3.5 Pilha de Andreas Dannenberg .. 38

3.6 Pilha uIP (Adam Dunkels) ... 41

4. Resultado e discussão ... 45

5. Conclusão .. 52

Referencia Bibliográfica .. 53

13

Lista de Figuras

Figura 1 - Calculadora (Model K) [1] ... 20

Figura 2 - Camadas, Níveis e Protocolos [1] ... 22

Figura 3 - Camadas Protocolo TCP/IP .. 23

Figura 4 - Modelo OSI - TCP/IP .. 24

Figura 5 - Cabeçalho TCP [2] ... 25

Figura 6 - Estabelecimento de conexão TCP .. 26

Figura 7 - Transmissão de dados TCP ... 27

Figura 8 - Finalização da conexão TCP .. 27

Figura 9 - Cabeçalho IP [2] ... 28

Figura 10 - Encapsulamento TCP/IP ... 29

Figura 11 - Fragmentação de pacotes IP .. 30

Figura 12 - Kit Olimex EasyWeb 2 [3] ... 32

Figura 13 - Esquema Pinos MSP430F149 [4] ... 34

Figura 14 - Arquitetura interna do MSP430 [4] .. 35

Figura 15 - Diagrama do controlador CS8900 [6] .. 36

Figura 16 - Fluxograma da função DoNetworkStuff() .. 40

Figura 17 - Fluxograma básico do protocolo uIP ... 44

Figura 18 - Resposta da pilha de Andreas Dannenberg ao comando ping 49

Figura 19 - Resposta da pilha uIP ao comando ping ... 49

Figura 20 - Teste múltiplas conexões da pilha de Andreas Dannenberg 50

14

Figura 21 - Teste múltiplas conexões da pilha uIP .. 50

15

Lista de Tabelas

Tabela 1 - Tamanho de pacotes ... 30

Tabela 2 - Características Elétricas do MSP430 [4] .. 35

Tabela 3 - Comparação entre as duas pilhas .. 47

Tabela 4 - Tamanho de código das pilhas .. 47

Tabela 5 - Uso de memória RAM .. 48

16

Lista de Abreviaturas

IP - Internet Protocol

RISC - Reduced Instruction Set Computer

TCP - Transmission Control Protocol

UDP - User Datagram Protocol

SMTP - Simple Mail Transfer Protocol

ICMP - Internet Control Message Protocol

HTTP - HyperText Transfer Protocol

ARPA - Advanced Research Projects Agency

ACK - Acknowledgement

SACK - Selective ACK

MTU - Maximum Transfer Unit

FDDI - Fiber Distributed Data Interface

CRC - Cyclical Redundancy Check

QFP - Quad Flat Pack

LAN - Local Area Network

IETF - Internet Engineering Task Force

NAS - Network Attachment Storage

FTP - File Transfer Protocol

17

1. Introdução

 Sistema embarcado é um sistema microprocessado no qual o hardware é

dedicado ao sistema que ele controla, diferente de computadores que executam várias

tarefas ao mesmo tempo com propósitos diferentes. Um sistema embarcado realiza

um conjunto de tarefas predefinidas, geralmente com requisitos específicos. Já que o

sistema é dedicado a tarefas específicas, pode-se aperfeiçoar o projeto reduzindo

tamanho, recursos computacionais e custo do produto de acordo com a aplicação.

Diante diss,o estão cada vez mais presentes em nosso cotidiano, controlando,

monitorando e comunicando e entre diversas outras operações encontramos sistemas

embarcados. O surgimento de novas aplicações é impulsionado pelo crescimento do

mercado e um melhor conhecimento das necessidades.

E nesse contexto têm cada vez mais necessidades de comunicação, devido a

controle, monitoração e segurança. Com isso a internet é uma alternativa viável e

muitas vezes de custo reduzido. É neste contexto que este trabalho se encaixa,

fazendo a integração da aplicação com o equipamento, onde cada equipamento pode

ser monitorado com sensores. E com a utilização da internet pode-se controlá-lo e

monitorá-lo remotamente, tendo como único pré-requisito uma conexão ativa com a

internet.

 As duas pilhas TCP/IP que iremos estudar são duas implementações reduzidas

da pilha que é implementada para computadores. A maior restrição de ambas

implementações é o hardware com menor capacidade de processamento e menor

tamanho de memória RAM. Mas, mesmo diante das limitações, as duas pilhas têm

que ser totalmente compatíveis com as pilhas implementadas para computadores, pois

deverão se comunicar sem perdas.

1.1 Motivação

A motivação deste trabalho partiu das limitações encontradas na pilha TCP/IP

de Andreas Dannenberg diante de várias aplicações. Assim, sabendo da existência da

pilha de Adam Dunkels, aqui referida somente como uIP, teve-se a oportunidade de

verificar as diferenças e conseqüentemente uma melhora nas possíveis aplicações

com o kit de desenvolvimento Olimex EasyWeb2.

18

1.2 Objetivos

O objetivo deste trabalho é comparar de forma qualitativa duas pilhas de

protocolos TCP/IP implementadas para sistemas embarcados com microcontroladores

MSP430 da Texas Instruments, e por fim exemplificar com uma aplicação que

demonstre as diferenças entre as duas implementações.

1.3 Organização do texto

Este trabalho está dividido em seis capítulos, sendo que o primeiro capítulo é

somente uma apresentação do tema proposto e os objetivos a serem alcançados.

O segundo capítulo faz uma introdução a todos os conceitos necessários para

o entendimento, tanto do trabalho. Introduzindo conceitos de redes e protocolos, além

contexto em que se enquadram.

No terceiro capítulo, é o foco do trabalho, onde são feitas as explicações das

duas pilhas, além dos matérias e métodos utilizados para a comparação e logo após

um comparativo de todas as diferenças que são importantes.

No quarto capítulo foi mostrado todos os resultados obtidos através do estudo

das duas pilhas.

O quinto capítulo conclui o trabalho, analisando os resultados e testes

realizados e também propões novas implementações e soluções.

E no último capítulo têm-se as referências bibliográficas que foram utilizadas

para a composição deste trabalho.

19

2. Introdução Teórica

Cada um dos três séculos anteriores foi dominado por uma única tecnologia. O

século XVIII foi a época dos grandes sistemas mecânicos que acompanharam a

Revolução Industrial. O século XIX foi a era das máquinas a vapor e no século XX as

principais conquistas tecnológicas deram-se no campo da aquisição, do

processamento e da distribuição de informações [1].

Neste último século, com a invenção do transistor teve-se a revolução

eletrônica, o que possibilitou várias inovações. Com isso, os processadores puderam

evoluir tanto que quase todos os controles eletrônicos atualmente são

microprocessados. Essa evolução foi acompanhada, nos últimos anos, pelo

crescimento dos sistemas de comunicação e em especial pelas redes de

computadores.

2.1 Redes de computadores

Antes do advento de computadores dotados com algum tipo de sistema de

telecomunicação, a comunicação entre máquinas calculadoras e computadores

antigos era realizada por usuários através do carregamento de instruções entre eles.

Em 1940, George Stibitz utilizou uma máquina de teletipo1 para enviar

instruções com um conjunto de problemas a partir de sua calculadora Model K (Figura

1) na Faculdade de Dartmouth em Nova Hampshire para a sua calculadora em Nova

Iorque e recebeu os resultados de volta pelo mesmo meio.

1 Equipamento eletromecânico de transmissão de dados

20

Figura 1 - Calculadora (Model K) [1]

Conectar sistemas de saída, como teletipos a computadores, era um interesse

na ARPA (Advanced Research Projects Agency) quando, em 1962, J. C. R. Licklider

foi contratado e desenvolveu um grupo de trabalho o qual ele chamou de a "Rede

Intergaláctica", um precursor da ARPANET.

Durante a década de 1960, Leonard Kleinrock, Paul Baran e Donald Davies, de

maneira independente, conceituaram e desenvolveram sistemas de redes, os quais

usavam datagramas ou pacotes, que podiam ser usados em uma rede de comutação

de pacotes entre sistemas de computadores.

Em 1969, a Universidade da Califórnia em Los Angeles, SRI (em Stanford), a

Universidade da Califórnia em Santa Bárbara e a Universidade de Utah foram

conectadas com o início da rede ARPANET usando circuitos com capacidade de

transmissão de 50 kbits/s. Essa rede denominada de ARPANET era uma rede que

interligava bases militares e departamentos de pesquisa do governo americano. Ela

utilizava um backbone que passava por baixo da terra, sem ter um centro ou caminho

definido. Essa técnica conferia ao sistema um segurança, pois não tinha um elemento

principal, que se fosse destruído impactava no sistema.

Redes de computadores e as tecnologias necessárias para conexão e

comunicação, através e entre elas, continuam a comandar as indústrias de hardware

de computador, software e periféricos. Essa expansão é espelhada pelo crescimento

nos números e tipos de usuários de redes, desde o pesquisador até o usuário

doméstico.

21

 Atualmente, redes de computadores são o núcleo da comunicação moderna. O

escopo da comunicação cresceu significativamente na década de 1990 e essa

explosão nas comunicações não teria sido possível sem o avanço progressivo das

redes de computadores.

As redes em si não são somente os meios físicos de transmissão, mas um

conjunto de software e hardware que comanda e controla as conexões. Por isso as

regras das comunicações devem ser claras para todos os elementos envolvidos em

uma conexão, com isso todos os sistemas de comunicação têm protocolos, que

gerenciam toda a comunicação, desde a inicialização até o término da conexão,

fazendo o gerenciamento de perdas, tempos e limites, tentando sempre maximizar a

transferência e o uso do hardware e minimizar os problemas.

2.2 Protocolos e hierarquias

 Para reduzir a complexidade do projeto, a maioria das redes é organizada

como uma pilha de níveis ou camadas, colocadas umas sobre as outras. O número de

camadas, o nome, o conteúdo e a função de cada camada diferem de uma rede para

outra. No entanto, em todas as redes o objetivo de cada camada é oferecer

determinados serviços às camadas superiores, isolando essas camadas dos detalhes

de implementação desses recursos. De certa forma, cada camada é uma espécie de

máquina virtual, oferecendo determinados serviços à camada situada acima dela.

Na realidade, esse conceito é familiar e é utilizado em toda a ciência da

computação, na qual é conhecido por nomes diferentes, como ocultação de

informações, tipos de dados abstratos, encapsulamento de dados e programação

orientada a objetos. A idéia fundamental é que um determinado item de software (ou

hardware) fornece um serviço a seus usuários, mas mantém ocultos os detalhes de

seu estado interno e de seus algoritmos.

A camada n de uma máquina se comunica com a camada n de outra máquina.

Coletivamente, as regras e convenções usadas nesse diálogo são conhecidas como o

protocolo da camada n. Basicamente, um protocolo é um acordo entre as partes que

se comunicam, estabelecendo como se dará a comunicação. A violação do protocolo

dificultará a comunicação, se não a tornar completamente impossível. A Figura 2

ilustra uma rede de cinco camadas. As entidades que ocupam as camadas

correspondentes em diferentes máquinas são chamadas pares (peers). Os pares

22

podem ser processos, dispositivos de hardware ou mesmo seres humanos. Em outras

palavras, são os pares que se comunicam utilizando o protocolo [1].

Figura 2 - Camadas, Níveis e Protocolos [1]

2.3 Protocolo TCP/IP

 Com o sucesso da Internet, o modelo de protocolos TCP/IP se tornou o padrão

internacional de comunicação. É o protocolo utilizado para transferência de web

pages, transmissões de email, transferência de arquivos através da Internet. Sistemas

embarcados que possuem o protocolo implementado serão elementos importantes,

que podem se comunicar tanto via Internet quanto dentro de uma Intranet, que é uma

versão privada da Internet.

 O TCP/IP é um conjunto de protocolos de comunicação entre computadores

em rede. Seu nome vem de dois protocolos: o TCP - Protocolo de Controle de

Transmissão e o IP - Protocolo de Interconexão. O protocolo é estruturado em um

modelo de camadas, onde cada camada é responsável por algumas tarefas,

fornecendo um conjunto de serviços definidos para o protocolo da camada superior.

As camadas mais altas estão logicamente mais próximas do usuário. O modelo é

estruturado de acordo com a Figura 3.

23

Figura 3 - Camadas Protocolo TCP/IP

Este modelo de camadas é uma idéia que surgiu com o modelo OSI (Open

Systems Interconnection), que é um modelo onde se tem sete camadas estruturadas

de forma semelhante ao que se tem no modelo TCP\IP. Este modelo é o precursor de

quase todos os modelos de comunicação que se tem hoje. As cinco camadas do

modelo TCP/IP são relacionadas com as camadas do modelo OSI de acordo com a

Figura 4.

24

Figura 4 - Modelo OSI - TCP/IP

 Os protocolos TCP\IP possuem cinco camadas, mas as pilhas implementadas

estão focadas nas camadas de transporte e de rede. Todas as outras camadas abaixo

serão associadas como “dispositivos de redes” e a camada acima simplesmente como

camada de aplicação.

 O protocolo TCP especifica três fases durante a conexão: primeiro o

estabelecimento da conexão, depois a transmissão e por último o término da conexão.

O cabeçalho do protocolo TCP pode ser visto na Figura 5. Ele é composto

basicamente da porta de origem e de destino, além do número de sequência que

identifica a posição deste pacote diante de um fluxo de pacotes, por um número que

confirma o recebimento do pacote e por alguns bits de controle, além do tamanho do

cabeçalho. Possui também um campo de verificação de erros do cabeçalho e um

campo em que a origem determina para indicar onde está algum dado urgente dentro

do pacote. E, por último, temos os dados que são basicamente o pacote do protocolo

que é utilizado pela aplicação.

25

Figura 5 - Cabeçalho TCP [2]

 O estabelecimento da ligação ocorre de forma ordenada, onde o cliente envia

um pacote em que ele pede uma conexão com o servidor. Assim que o servidor

recebe o pacote, ele devolve um pacote de confirmação (ACK - Acknowledgement)

juntamente com um pacote informando a aceitação da conexão, mas, caso o servidor

não receba o pacote, o cliente espera um tempo (Timeout) e reenvia o pacote. E, para

finalizar o processo de estabelecimento de conexão, o servidor devolve um pacote de

confirmação (ACK) conforme Figura 6.

Figura

 Depois de estabelecida a conexão

dados, conforme Figura 7, em que o servidor envia os dados conforme solicitado pelo

cliente. Esse envio ocorre de forma ordenada, e assim que o cliente recebe os dados

ele devolve um pacote de confirmação contendo o número do pacote recebido para se

manter uma alta confiabilidade. Uma grande vantagem do TCP, é que ele pode

confirmar pacotes que chegam fora da ordem previamente estabelecida através de um

pacote de confirmação (SACK

contém um campo de verificação de erros (

integridade do pacote recebido.

26

Figura 6 - Estabelecimento de conexão TCP

pois de estabelecida a conexão começa o processo de transferência de

, em que o servidor envia os dados conforme solicitado pelo

cliente. Esse envio ocorre de forma ordenada, e assim que o cliente recebe os dados

confirmação contendo o número do pacote recebido para se

manter uma alta confiabilidade. Uma grande vantagem do TCP, é que ele pode

confirmar pacotes que chegam fora da ordem previamente estabelecida através de um

pacote de confirmação (SACK - Selective ACK). O cabeçalho do protocolo TCP

contém um campo de verificação de erros (Checksum), o que permite assegurar a

integridade do pacote recebido.

começa o processo de transferência de

, em que o servidor envia os dados conforme solicitado pelo

cliente. Esse envio ocorre de forma ordenada, e assim que o cliente recebe os dados

confirmação contendo o número do pacote recebido para se

manter uma alta confiabilidade. Uma grande vantagem do TCP, é que ele pode

confirmar pacotes que chegam fora da ordem previamente estabelecida através de um

). O cabeçalho do protocolo TCP

), o que permite assegurar a

Figura

 Para finalizar a aplicação, qualquer uma das p

finalização, e a outra parte devolve um pacote de confirmação e logo depois manda

também um pacote de finalização

devolve um pacote de confirmação.

Figura

 O protocolo TCP introduz um conceito de porta, que está associado a um

serviço da camada de aplicação. Assim cada conexão utiliza uma porta específica

para o tipo de aplicação. O protocolo TCP usa o p

27

Figura 7 - Transmissão de dados TCP

Para finalizar a aplicação, qualquer uma das partes manda um pacote de

finalização, e a outra parte devolve um pacote de confirmação e logo depois manda

também um pacote de finalização conforme Figura 8. E por fim a primeira parte

devolve um pacote de confirmação.

Figura 8 - Finalização da conexão TCP

O protocolo TCP introduz um conceito de porta, que está associado a um

serviço da camada de aplicação. Assim cada conexão utiliza uma porta específica

para o tipo de aplicação. O protocolo TCP usa o pacote IP para entrega dos

artes manda um pacote de

finalização, e a outra parte devolve um pacote de confirmação e logo depois manda

. E por fim a primeira parte

O protocolo TCP introduz um conceito de porta, que está associado a um

serviço da camada de aplicação. Assim cada conexão utiliza uma porta específica

acote IP para entrega dos

28

datagramas à rede. Já o pacote IP trata os pacotes TCP como dados e não interpreta

qualquer conteúdo das mensagens TCP.

Representando o cabeçalho de um pacote IP temos a Figura 9. Neste

cabeçalho temos basicamente, o tamanho do cabeçalho, como o tamanho do pacote

inteiro. Temos também o tempo de vida antes que o pacote não seja mais

retransmitido, possui também os endereços de origem e destino, além de um

verificador de erros do cabeçalho e alguns bits para controle. E ocupando a maior

parte do pacote temos a área de dados, que é onde será transportado o pacote TCP

que vai ser transmitido.

Figura 9 - Cabeçalho IP [2]

 O protocolo IP é usado para encaminhamento de dados. O IP oferece um

serviço de datagramas não confiável, ou seja, o pacote chega sem garantias, mas isso

é resolvido pelo protocolo da camada de transporte, como explicado no protocolo TCP,

que faz toda a verificação de erros (Checksum). Vamos supor que tenham muitas

redes interconectadas por gateways, mas só tenham dois hosts em cada extremo da

interconexão das redes, quando um host quer enviar ao outro, ele encapsula o

datagrama e o envia ao gateway mais próximo. Uma vez que o quadro chega ao

gateway, o software de IP extrai o datagrama encapsulado, e as rotinas de

roteamento IP selecionam o próximo

levará o datagrama ao host

Figura

 Um problema que as pilhas TCP/IP têm que solucionar, é a fragmentação

pacotes. Por passarem por vá

vezes as redes não têm capacidade de enviar pacotes IP no tamanho

foram recebidos. Com isso tem

feito em switches que interligam duas redes diferentes conforme

vai dividir os pacotes e reencap

remontá-los. Na Tabela 1 temos os tamanhos de pacot

uma rede Ethernet padrão, uma rede ARPANET, e uma rede FDDI (

Data Interface) que é uma tecnologia de transmissão de dados que utiliza o protocolo

de transmissão Token Ring

ordem de Gigabits\s. O Token

tem que possuir o Token.

29

roteamento IP selecionam o próximo gateway que formará parte do caminho que

host destino, conforme representado na Figura

Figura 10 - Encapsulamento TCP/IP

Um problema que as pilhas TCP/IP têm que solucionar, é a fragmentação

pacotes. Por passarem por várias redes distintas, com tecnologias diferentes, muitas

vezes as redes não têm capacidade de enviar pacotes IP no tamanho original que eles

foram recebidos. Com isso tem-se uma fragmentação de pacotes, que normalmente é

que interligam duas redes diferentes conforme Figura

vai dividir os pacotes e reencapsulá-los, de maneira que o receptor final consiga

temos os tamanhos de pacotes em diferentes tipos de redes:

padrão, uma rede ARPANET, e uma rede FDDI (Fiber Distributed

ue é uma tecnologia de transmissão de dados que utiliza o protocolo

Token Ring e possui capacidade de transmissão muito elevadas, da

Token Ring funciona de forma circular, e quem quer transmitir

que formará parte do caminho que

Figura 10.

Um problema que as pilhas TCP/IP têm que solucionar, é a fragmentação de

rias redes distintas, com tecnologias diferentes, muitas

original que eles

se uma fragmentação de pacotes, que normalmente é

Figura 11. O switch

los, de maneira que o receptor final consiga

es em diferentes tipos de redes:

Fiber Distributed

ue é uma tecnologia de transmissão de dados que utiliza o protocolo

e possui capacidade de transmissão muito elevadas, da

funciona de forma circular, e quem quer transmitir

30

Tabela 1 - Tamanho de pacotes

Tipo de rede MTU (em bytes)

Ethernet 1500

ARPANET 1000

FDDI 4470

Figura 11 - Fragmentação de pacotes IP

31

3. Materiais e métodos

3.1 Kit EasyWeb 2

 Para a realização deste trabalho foi utilizado o kit de desenvolvimento Olimex

EasyWeb2 mostrado na Figura 12. A utilização foi devido à disponibilidade do mesmo

nos laboratórios da Engenharia Elétrica (LAB-SEL) da Escola de Engenharia de São

Carlos (EESC) da Universidade de São Paulo (USP).

O kit de desenvolvimento possui um microcontrolador da Texas Instruments, o

MSP430, juntamente com uma memória EEPROM 24LC515 de 64 Kbytes, que se

comunica com o microcontrolador pelo padrão I²C. O padrão I²C é um tipo de

comunicação serial que se opera com dois canais, sendo um de dados e outro de

clock para sincronismo. O kit é composto dos seguintes componentes:

• MSP430F149 rodando pilha TCP/IP de Andreas Dannenberg1

• Controlador LAN CS8900 + Transformador + Conector RJ45

• Três Leds de status da LAN

• Dois relês 10A/240VAC

• Quatro entradas foto acopladas

• Quatro chaves Push Button

• Comunicação Serial RS232

• Buzzer

• Display LCD 16x2

• Memória EEPROM 64k - 24LC515

• Cristal oscilador de 8Mhz

• Conector JTAG

1 Código-livre a todos desde que citem a referência.

32

Figura 12 - Kit Olimex EasyWeb 2 [3]

3.2 MSP 430

 O microcontrolador utilizado no kit de desenvolvimento é o MSP430F149

fabricado pela Texas Instruments, baseados em arquitetura RISC de 16 bits. É

voltado para aplicações de baixo consumo, para aplicações embarcadas e portáteis.

Possuí memória de flash 60 Kbytes e 2 Kbytes de memória RAM.

Por ser de baixo consumo apresenta baixa tensão de operação, variando de

1,8 V à 3,6 V. Trabalha tipicamente com uma corrente de 280 µA à 1 MHz e 2,2V de

Vcc. É bastante econômico em modo stand-by, consumindo aproximadamente 1,6

µA, podendo operar em modo de retenção de memória RAM, com apenas 0,1 µA de

corrente. Para reduzir consumo de energia, o MSP430 apresenta cinco modos de

consumo de energia. Possuí um tempo de wake-up de 6 µs.

O MSP430 não é tolerante a entradas em nível TTL, ou seja, 5 V. Logo não é

possível que dispositivos TTL transmitam informações diretamente ao

microcontrolador, mas o contrario é possível, pois os padrões TTL aceitam o nível de

tensão que o MSP430 suporta, ou seja, 3,6 V.

33

Possui conversor A/D de 12 bits com referência interna, timers de 16 bits.

Possui um sistema flexível de clocks, que pode ser mudado durante a execução de

programas. Tem geradores de clock internos de 12 KHz, 32,768 KHz e de 16 MHz,

além do clock externo.

Para programação tem uma lista contendo 51 instruções com três formatos e

com sete modos de endereço. Os formatos podem ser de três tipos: Dual-operand:

dois operandos - fonte e destino; Single-operand: apenas um operando, que pode ser

uma fonte ou um destino; Jump: instruções de salto no programa. Para programação

tem uma lista contendo 51 instruções com três formatos e com sete modos de

endereço. Os formatos podem ser de três tipos: Dual-operand que são dois

operandos - fonte e destino; Single-operand que tem apenas um operando, que pode

ser uma fonte ou um destino; e Jump em que possui instruções de salto no programa.

Os modos de endereçamento são os seguintes: Modo imediato; Modo registrador;

Modo indexado; Modo simbólico; Modo absoluto; Modo indireto; e Modo indireto com

auto incremento.

Possui comparador interno no próprio chip, não necessitando de uso de

comparadores externos. Possui cinqüenta I/Os (entrada/saída), e sessenta e quatro

pinos em um chip formato QFP conforme Figura 13.

A programação pode ser realizada on-board, por comunicação serial, e possui

um módulo JTAG para emulação. O microprocessador apresenta dois módulos

USART, que podem ser operados como UART assíncrona, ou como interface SPI

síncrona.

34

Figura 13 - Esquema Pinos MSP430F149 [4]

Temos na Figura 14 o diagrama que mostra a arquitetura interna do chip em

bloco, mostrando de forma sintetizada a forma de comunicação interna.

35

Figura 14 - Arquitetura interna do MSP430 [4]

Já na Tabela 2 tem-se as características elétricas do MSP430, como tensão de

operação, consumo em determinadas freqüências, corrente de entrada e saídas

suportadas, e também de condições de operação.

Tabela 2 - Características Elétricas do MSP430 [4]

3.3 CS8900

 CS8900 é um controlador LAN Ethernet de baixo custo, para aplicações

embarcadas. Não necessita de outros controles adicionais, sendo tudo incorporado no

próprio chip. O CS8900 tem incluso RAM, transmissor e receptor (10Base-T) que é

uma implementação da Ethernet que suporta transmissões à taxa de 10 Mbits\s e

interface via barramento ISA para comunicação com o microcontrolador, que é um

barramento paralelo de 8 bits. O esquema do diagrama interno do controlador pode

ser observado na Figura 15.

36

 O controlador além da alta integração e pequeno tamanho oferece ampla gama

de recursos de desempenho e opções de configuração. Sua arquitetura adapta-se aos

padrões de tráfego da rede e dos recursos disponíveis. O resultado é uma maior

eficiência do sistema como um todo [5].

• IEEE 802.3 Ethernet

• Modo de operação Full-duplex

• Portas e Filtros 10Base-T (polarização e detecção/correção)

• Retransmissão automática quando ocorre colisão

• Rejeição automática de pacotes com erros

• Suporte à EEPROM com jumper

• LED de link status e atividade da LAN

• Stand-by e modos de baixo consumo de energia

• Opera com 3 V ou 5 V

• Consumo máximo em 5 V = 120 mA; e típico em 5 V = 90 mA

• 100 pinos TQFP

Figura 15 - Diagrama do controlador CS8900 [6]

37

3.4 Comparação entre as pilhas TCP/IP

 O foco principal deste trabalho é a comparação das duas pilhas de protocolos

TCP/IP que serão discutidas a seguir. É importante para compararmos as pilhas,

entendermos cada uma individualmente. Assim, neste trabalho é realizada uma

descrição de cada uma das pilhas citando cada uma de suas principais funções, e a

partir desta descrição teremos o comparativo.

As implementações das duas pilhas analisadas neste trabalho utilizam pilhas

simplificadas, pois a pilha de protocolo padrão de TCP/IP requer uma grande

quantidade de memória, tanto de memória para o código quanto de memória RAM

para abrigar suas variáveis. Como não há grande disponibilidade de memória as duas

pilhas não abrangem toda complexidade do protocolo. Sendo assim as duas pilhas

são desenvolvidas tendo o mínimo necessário para o protocolo funcionar, mas não

deixando de ser compatível com todos os sistemas existentes.

 A pilha completa TCP/IP consiste em inúmeros protocolos, que vão desde

protocolo ARP que traduz endereço IP para endereços MAC, protocolos de aplicação,

como SMTP (Simple Mail Transfer Protocol) que é utilizado para transferir texto de

email. As duas pilhas são voltadas para os protocolos TCP e IP.

Basicamente o protocolo TCP fornece um fluxo confiável de bytes para os

protocolos da camada superior. Ele divide o fluxo em segmentos de tamanhos

adequados e cada segmento é enviado em seu próprio pacote IP. Os pacotes IP, são

por sua vez enviados pelo controlado de rede. Caso o destino não esteja conectado

fisicamente ao emissor, este envia o pacote a um roteador, que envia ao destino. Caso

o tamanho máximo de pacotes aceito pela outra rede seja menor do que o tamanho do

pacote enviado, o roteador fragmenta o pacote em pacotes com tamanho menor, com

isso é necessário que o receptor consiga remontar o pacote.

As pilhas são implementadas respeitando os requisitos da RFC1122. As RFCs,

são Request For Coments, que são documentos que descrevem os padrões de cada

protocolo de comunicação da Internet. Qualquer pessoa pode gerar uma RFC, que vai

ser aprovada, ou não pelo IETF (Internet Engineering Task Force), e posteriormente

publicada após revisão como uma RFC.

38

3.5 Pilha de Andreas Dannenberg

 O código desenvolvido por Andreas Dannenberg segue uma estrutura mais

enxuta, mas não deixando de ser eficiente. Tem-se suporte somente a aplicação de

um servidor web, suportando somente IPv4 e não possui suporte ao IPv6. O IPv6,

surgiu diante das limitações de endereço que o IPv4 veio a apresentar. Como a

Internet quando foi criada não tinha fins comerciais, o endereço com quatro octetos

(IPv4) foi suficiente até os dias atuais, mas está com previsão de esgotamento para

meados de 2011, então está sendo implantado o endereço com oito octetos (IPv6), em

paralelo ao IPv4. Diante disso, é uma falta que poderá ter um impacto maior quando

todos os endereços de internet forem migrados para o IPv6.

A pilha é desenvolvida com base na RFC793, e com isso é totalmente

compatível com qualquer sistema de rede com suporte a TCP/IP, algumas

funcionalidades que não são essenciais ao funcionamento da pilha TCP/IP não foram

implementadas, pois é totalmente voltado pra microcontroladores de 8 bits, com baixo

consumo de RAM e de memória de programa, apesar de alguns módulos não serem

implementados, não é complexo o estudo para posterior implementações.

Basicamente o programa começa inicializando o microcontrolador, suas portas,

além de clocks e as comunicações externas, como a serial. Depois se inicializa o

controlador de rede. Logo após toda parte de inicialização concluída, entra em

funcionamento a pilha.

Em funcionamento a pilha fica esperando algum chamado de conexão vindo de

um cliente. Quando acontece algum evento, é feita uma verificação para saber se é

um chamado para conexão. Caso seja, a pilha entra em modo de estabelecimento de

conexão. Logo após a conexão estabelecida começa o envio dos pacotes contendo

uma página web (essa página web foi previamente colocada na memória do

microcontrolador no momento da programação), por fim finalizando a conexão.

Algumas funções e parâmetros são muito importantes para o entendimento da

pilha, pois além do entendimento do protocolo TCP/IP, é importante saber como é

tratado o dado pela pilha. A seguir são descritas as principais funções que compõem a

pilha elaborada por Andreas Dannenberg.

39

void TCPLowLevelInit(void)

Essa função faz a inicialização do controlador de rede e de várias variáveis,

além de configurar as portas e o Timer_A do MSP430. Ela deve ser chamada antes de

transmitir qualquer dado por TCP/IP.

void Init8900(void)

Configuras as portas do CS8900 - controlador de rede - que se comunica com

o microcontrolador, e faz toda configuração do controlador.

void TCPPassiveOpen(void)

Essa função coloca o controlador no modo servidor, esperando por uma

conexão. O flag SOCK_ACTIVE muda para o estado ocupado. Antes de chamar a

função deve-se configurar a porta através da variável global TCPLocalPort. O IP do

servidor é configurado nas quatro constantes, MYIP_1 a MYIP_4, no arquivo tcpip.h.

void TCPActiveOpen(void)

Com essa função é possível se conectar a um servidor remoto. O flag

SOCK_ACTIVE muda para o estado ocupado. Antes de se utilizar a função, o IP do

servidor remoto e as portas local e remota devem ser configuradas, respectivamente,

através das variáveis RemoteIP, TCPLocalPort e TCPRemotePort.

void TCPClose(void)

Essa função fecha uma conexão aberta. Se algum pacote estiver no buffer de

saída, ele será enviado antes da conexão ser fechada. Uma nova conexão pode ser

aberta após o uso desta função.

void TCPReleaseRxBuffer(void)

Essa função apaga o buffer de entrada. Deve ser utilizada após a leitura dos

dados para que novos dados possam ser recebidos. Ela limpa o flag

SOCK_TX_BUF_RELEASED, que indica a presença de dados novos. Para se realizar

a leitura do buffer de entrada, deve-se ler a área de memória apontada pelo ponteiro

TCP_RX_BUF. O número de bytes recebidos é indicado pela variável

TCPRxDataCount.

40

void TCPTranmitTxBuffer(void)

Essa função envia dados sobre uma conexão previamente aberta. Antes de se

utilizar a função, a aplicação do usuário deve checar se o buffer de saída está vazio,

através do flag SOCK_TX_BUF_RELEASED do registro Socketstatus. Se estiver,

deve-se escrever os dados a serem enviados na área de memória apontada por

TCP_TX_BUF e o número de bytes dos dados na variável TCPTxDataCount. O

número máximo de bytes que podem ser transmitidos está indicado na constante

MAX_TCP_TX_DATA_SIZE.

void DoNetworkStuff(void)

Função mais importante, que faz toda a comunicação, e segue o esquema

apresentado pelo fluxograma da Figura 16. Essa função deve ser chamada

periodicamente pela aplicação, pois acessa várias flags no controlador de rede e no

microcontrolador. Logo, quanto mais essa função for chamada freqüentemente, melhor

será o desempenho da pilha TCP/IP.

Figura 16 - Fluxograma da função DoNetworkStuff()

Esta pilha possui várias limitações. Uma delas e muito importante, é o não

suporte a múltiplas conexões. Outras limitações são, a não verificação de erros, a falta

de um suporte a remontagem de pacotes, que são fragmentados. Basicamente é uma

41

pilha para redes locais, onde a quantidade de erros é bem baixa e que a fragmentação

de pacotes não acontece.

3.6 Pilha uIP (Adam Dunkels)

 A pilha uIP foi elaborada por Adam Dunkels com foco em microcontroladores

de 8 bits, e por isso é adaptável a praticamente qualquer microcontrolador encontrado

no mercado. A pilha vem recebendo atualização constante, então sempre é possível

verificar novas aplicações, e ou melhorias na pilha.

 A implantação da pilha para o kit de desenvolvimento EasyWeb2 foi realizada

por Paul Curtis, que utilizou o software CrossStudio. Curtis também adaptou a pilha

uIP para outro kit com ARM. Atualmente existem diversas implementações dessa pilha

para os mais diversos microcontroladores existentes atualmente.

 Na arquitetura do uIP, o recurso mais escasso é a RAM. Com apenas algumas

centenas de Bytes alguns mecanismos tradicionais não são aplicados. No uIP não se

usa alocação dinâmica de memória e sim um único buffer global quem recebe e

transmite os pacotes. O tamanho deste buffer é maximizado para suportar o máximo

tamanho de pacotes. O buffer é utilizado pelo protocolo, tanto para receber quanto

para enviar pacote IP ao controlador de rede que no caso é o CS8900. Outra

informação importante é quanto a estrutura do código, que é distribuído em módulos

fazendo que a implementação para diversos tipos de hardware seja feita de forma

fácil e ágil, uma vez que pode ser parametrizado para funcionar com hardwares com

pouco mais de 200 bytes de memória RAM.

 O funcionamento da pilha inicializa-se com a configuração das portas e timers

do microcontrolador, depois passando a configurar o controlador de rede. Quando um

pacote chega, o controlador de rede coloca o pacote no buffer e aciona a pilha de

protocolo. Caso o pacote tenha dados o microcontrolador irá notificar a aplicação

correspondente. Como o buffer é único, logo que um pacote é recebido, ele tem que

ser processado, ou então armazenado em um segundo buffer. Os pacotes não serão

sobrescritos pelo próximo pacote que chegar. Caso chegue um pacote enquanto a

aplicação está processando, este entrará em fila de espera. O controlador CS8900

tem um buffer que pode armazenar até quatro pacotes, criando uma fila de espera,

para posteriormente enviá-lo ao microcontrolador.

42

 Algumas funções importantes para o funcionamento da pilha serão descritos a

seguir.

void uIP_appcall(void)

Esta é a função principal, que sempre que um dado é recebido, essa função é

chamada. Ela define qual aplicação está sendo solicitada e automaticamente solicita a

função da aplicação que trate os dados recebidos. A função identifica qual a aplicação,

lendo o cabeçalho do frame e posteriormente chama a aplicação correspondente.

void uIP_newdata(void)

Esta função é que avisa a aplicação quando um novo dado é recebido, e

sinaliza-se na variável global uip_conn que tem um dado no buffer.

void uIP_send(void)

Esta função é chamada para a transmissão de dados que estão no buffer.

void uIP_rexmit(void)

Esta é a função que é responsável pela retransmissão de pacotes, que ocorre

quando não é recebido o ACK, ou quando acontecer um erro com o pacote enviado.

Apesar de que o controlador de rede do kit EasyWeb2 ter suporte a isso é importante

ter isso implementado quando não temos um controlador que tenha esse suporte.

void uIP_close(void)

É a função que fecha um conexão, depois que a aplicação foi executada com

sucesso, e não há mais o que ser transmitido ou recebido. Já a função void

uIP_abort(void) , tem a função de fechar a conexão imediatamente caso ocorra um

erro fatal. Isso pode ocorrer de duas formas; primeiro quando houver estouro de

timeout, ou seja, quando já houve o número de tentativas de retransmissão que foi

estipulado na variável de controle, e segundo se a conexão foi fechada pelo cliente

sem o término da transmissão dos dados.

void uIP_listen(void)

43

É a função que faz a manutenção das portas TCP abertas. Caso uma porta

esteja fechada, não terá como se comunicar com a pilha de protocolos TCP/IP.

void uIP_connect(void)

É a função que abre as portas de conexões, configurando a variável global

uIP_conn com o status da conexão, além da porta conectada. Isso é muito importante

para o controle de todas as conexões ativas.

void uIP_tcpchksum(void)

Esta é a função que faz a verificação de erros no cabeçalho da pilha TCP, caso

haja algum erro ela automaticamente chama uma função para que se tenha a

retransmissão do pacote com erro.

void uip_ipchksum(void)

Esta função faz a verificação de erros no cabeçalho da pilha IP, e caso haja

erro ela automaticamente chama uma função para que se tenha a retransmissão do

pacote com erro.

uip_conn

É a variável que controla toda conexão, controlando quais portas estão abertas,

além de todo as conter todas as flags de controle. É basicamente onde está

armazenado todas as informações referentes as conexões.

O esquema de funcionamento básico da pilha uIP pode ser observado na

Figura 17. É importante entender que as funções básicas de transmissão,

retransmissão, abertura de portas e as demais que fazem o controle e o

estabelecimento de conexões estão sempre implementadas para que se possa colocar

em funcionamento a pilha de protocolos TCP/IP, mas é importante observar que

outras funções de suporte, como as de verificação de erros das pilhas TCP e IP nem

sempre estão implementadas, uma vez que a necessidade é definida pela

conveniência do programador e limitadas por seu hardware.

44

Figura 17 - Fluxograma básico do protocolo uIP

45

4. Resultado e discussão

 Muitas diferenças de código podem ser observadas, mas o foco do trabalho é

uma análise qualitativa, especificando os principais pontos de diferenças entre as duas

pilhas. E por fim uma análise sobre os impactos dessas diferenças para outras

aplicações.

A primeira diferença é referente à estrutura do código, em que a pilha de

Andreas Dannenberg tem um código unificado, possuindo poucas funções, e as

funções não possuem muitas parametrizações como se poderia de ter, dando ao

código maior maleabilidade. Já a pilha uIP possui o código distribuído em módulos,

aos quais podem ser implementados de acordo com a necessidade, e muitas

parametrizações que contribuem para que a pilha possa ser implementada para

hardware com pouquíssima quantidade de RAM (200 bytes).

A pilha uIP tem implementa o suporte ao IPv6, o que faz ela poder ser utilizada

com essa nova versão do protocolo IP. Este protocolo já está sendo implantado e por

enquanto está funcionando lado a lado com o Ipv4. O principal motivo para a

implantação do IPv6 na Internet é a necessidade de mais endereços, porque os

endereços livres IPv4 estão se esgotando.

Problemas com conexões múltiplas foram implementadas pelo uIP. O protocolo

de Dannenberg tem suporte somente a uma única conexão com o servidor web por

vez. Isso é bastante restrito, uma vez que hoje várias pessoas ao redor do mundo

acessam a mesma página ao mesmo tempo. Considere uma indústria como exemplo,

que o servidor web é a base de dados para várias máquinas funcionarem, com isso

elas precisam ficar verificando o site sempre. Caso não houvesse suporte a múltiplas

conexões as máquinas não conseguiriam acessar o site, e com isso não teriam acesso

à base de dados, gerando uma pane que talvez pudesse resultar na parada da

produção.

Um ponto de bastante atenção é a verificação de erros (checksum) no uIP. A

pilha de Dannenberg não realiza verificação de erros. Isso para uma rede bem

estruturada pode não ser relevante, mas quando se pensa que várias pessoas ao

redor do mundo acessa o website tem-se de levar em conta os erros durante a

transmissão e recepção dos pacotes IP. Já o uIP faz essa verificação com um código

bem simples.

46

Apesar de não ser necessariamente uma diferença e sim uma nova

implementação, o uIP tem suporte a UDP, o que pode ser favorável quando se pensa

em transmissão de dados sem verificação, mas com maior agilidade e velocidade.

Também tem suporte a HTTP, Telnet Server e Client, SMTP, além de suporte a um

sistema de arquivos.

A pilha de Dannenberg possui um ponto crítico que é a falta de um sistema de

remontagem de pacotes. Isso é de extrema importância, pois pacotes que passam por

redes diferentes ao longo do caminho podem passar por alguns pontos onde se

fragmenta o pacote para se adequar a rede daquele local. Isso faz com que o servidor

tenha que remontá-lo para poder entender o pacote e com isso retransmitir o que foi

solicitado.

A documentação de ambos os projetos são bem elaboradas. O projeto de

Andreas, não se tem documentação, mas possui um código bem comentado, mas

nada além disso. Já o código uIP, tem-se uma documentação extensa, com isso torna-

se fácil, o entendimento da pilha. Isso contribui para que qualquer pessoa que esteja

interessada em utilizar a pilha uIP possa fazê-lo sem problemas de entendimento.

A pilha uIP por ter sido desenvolvida sem especificação de microcontroladores

pode ser implementa para vários microcontroladores diferentes. Apresenta uma

documentação especifica para implementação em qualquer microcontrolador. Outra

diferença, está na arquitetura do código, em que o protocolo uIP é mais distribuído,

onde cada aplicação tem várias funções, já no caso da pilha de Dannenberg, a pilha

tem poucas funções.

As duas pilhas são de código livre, o que é citado por ambos os

desenvolvedores. Com isso qualquer pessoa pode utilizar os códigos para

implementarem seus projetos. As principais diferenças foram compiladas e mostradas

na Tabela 3 para uma melhor visualização.

47

Tabela 3 - Comparação entre as duas pilhas

Tamanho de código é algo que se deve levar bastante em consideração,

devido às limitações dos microcontroladores. Apesar de serem pilhas de tamanho

reduzido, são bastante consideráveis se comparadas com o tamanho total de memória

de programa disponível. Além disso, um código da pilha TCP/IP muito grande, limitaria

a aplicação ao qual o projeto será destinado. Os tamanhos de códigos das duas pilhas

podem ser observados na Tabela 4 para efeito comparativo.

Tabela 4 - Tamanho de código das pilhas

Pilhas
Tamanho

Em Bytes

Usado da memória

do MSP430

uIP 11 096 18,05%

Pilha de Andreas 8 906 13,14%

Pode se ver que a pilha uIP ocupa um espaço de código maior, e isso é

totalmente explicado pelas muitas funcionalidades a mais, que já foram discutidas, que

ele possui. Mas mesmo assim o código é bem compacto quando comparado com

pilhas TCP/IP para computadores do tipo PC.

48

Agora analisando o uso de memória RAM das duas pilhas, temos um cenário

bem parecido, devido as duas possuir um único buffer local, com isso deve ser

armazenado todo o pacote TCP/IP que está sendo recebido.

Um teste realizado foi o de colocar duas páginas com tamanhos diferentes,

tentando forçar diferentes tamanhos de pacotes TCP/IP transportados. Por exemplo

usando uma página com apenas 528 bytes e outra com 2567 bytes de tamanho

efetivo, temos os resultados expressos abaixo na Tabela 5. Essas medidas foram

feitas utilizando a função de DEBUG que os compiladores possuem. No caso o

software principal que chama a função foi desprezado para não comprometer as

medidas.

Tabela 5 - Uso de memória RAM

Uso de memória RAM (em bytes)

Tamanhos de páginas Andreas uIP

WebPage I (528 bytes) 442 439

WebPage II (2567 bytes) 1328 1327

Um teste que visa mostrar a conectividade com o dispositivo, foi o comando

ping. Este comando utiliza o protocolo ICMP para testar a conectividade entre

equipamentos. Seu funcionamento consiste no envio de pacotes para o equipamento e

de destino e na escuta das respostas. Utilizando o comando ping para testar as

conectividades entre o computador e o dispositivo depois de implementas ambas as

pilhas obteve-se os resultados das Figura 18 para a pilha de Andreas Dannenberg e a

Figura 19 para a pilha uIP.

49

Figura 18 - Resposta da pilha de Andreas Dannenberg ao comando ping

Figura 19 - Resposta da pilha uIP ao comando ping

Para verificar múltiplas conexões, foi utilizada uma técnica simples, que

consiste em colocar uma página com um tempo de atualização na faixa de um à dois

segundos, para ficar atualizando constantemente. Este tempo foi estimado utilizando

um software (Firebug v.1.4.5), instalado juntamente com o navegador de internet

Mozilla Firefox, mede o tempo de abertura de uma página, desde a solicitação até o

carregamento completo. Efetuando o teste algumas vezes a média de tempo de

abertura foi de 2,03 s. Logo se utilizou tempo de atualização de dois segundos.

50

Abrindo a página em um computador, a mesma ficou atualizando a cada dois

segundos. Ao mesmo tempo em outro computador foi solicitada a página e verificada

se a mesma foi recebida. Além de tentar abrir a página, foi utilizando o comando ping

para verificar a conectividade entre o computador e o dispositivo. Para a pilha de

Andreas Dannenberg a página solicitada no segundo computador não obteve

resposta, e o comando ping teve como resposta a Figura 20. Já a pilha uIP obteve

resposta ao comando ping conforme Figura 21.

Figura 20 – Teste múltiplas conexões da pilha de An dreas Dannenberg

Figura 21 – Teste múltiplas conexões da pilha uIP

51

Uma aplicação bastante interessante e que foi estruturada para podermos

exemplificar foi a implementação de um cliente SMTP utilizando a pilha uIP. O SMTP é

um protocolo padrão para envio de emails através da internet. É relativamente simples

de ser implementado, e tem como referências a RFC282, na qual toda a descrição é

detalhada.

O protocolo é baseado em comandos enviados pelo cliente e respostas dadas

pelo servidor. Sempre se espera a resposta de um comando antes de mandar um

novo comando. Os comandos e resposta são sempre terminados pelo caractere

“Carriage Return” (CR). Todas as respostas do servidor possuem duas partes: o

código de retorno e a mensagem "Human Readable" (legível por humanos) sendo

que o código é usado para identificar o tipo de mensagem por programas. Códigos

começados com 2 indicam sucesso, 3 indicam sucesso, mas deve-se enviar mais

dados para finalizar a operação, e 4 ou 5 são erros.

52

5. Conclusão

O objetivo principal deste trabalho foi a comparação das duas pilhas de

protocolos TCP/IP.

Para tanto foi importante o estudo individual de ambas as pilhas de protocolos.

Com isso conclui-se que diante de inúmeros fatos citados no capitulo três, a pilha uIP

é mais robusta, uma vez também que é uma pilha melhorada em relação à primeira.

Outros fatores são as mais diversas aplicações que são suportadas em seu código

nativo.

Não se pode dizer sobre melhor ou pior. Pois depende necessariamente da

aplicação foco de qualquer projeto, para se definir a melhor pilha. Uma vez que a

aplicação seja somente um servidor web local, a pilha de Andreas Dannenberg

suporta com tranqüilidade, pois não necessita de remontagem de pacote e a

quantidade de erros é bem pequena, mas se for um servidor que será acessado de

qualquer parte do mundo, prefere-se a pilha uIP, por conter remontagem de pacotes e

verificação de erros.

 Utilizando as pilhas, tanto de Andreas quanto a uIP pode se implementar várias

aplicações desde um simples servidor web até projetos de armazenamento em

massa. Desde que precise se conectar com a internet, qualquer aplicação é possível,

mas sempre considerando algumas limitações.

 Hoje em dia a mobilidade tornou-se algo do nosso dia-a-dia, mas as vezes

estamos distraídos e nos perdemos diante de tanta mobilidade. Este é o caso de

documentos importantes, que as vezes trabalhamos em vários lugares e nem sempre

na mesma máquina. Com isso uma aplicação interessante a ser desenvolvida, é um

servidor FTP, ou mesmo um NAS (Network-attached storage), onde se conecta

diretamente na rede uma unidade de armazenamento (HD). Com um microcontrolador

isso seria possível utilizando memórias flash. Hoje existem no mercado controladores

para memórias flash que se adaptam a qualquer microcontrolador possibilitando leitura

e escrita de dados. Para isso utiliza-se uma aplicação já disponível na pilha uIP para

implantação de um servidor FTP.

53

Referencia Bibliográfica

1. Tanenbaum, Andrew S. Computer Networks. s.l. : Prentice Hall, 2002.

2. IETF. IETF. IETF Web Site. [Online] [Citado em: 02 de 11 de 2009.]

http://tools.ietf.org.

3. Olimex. Olimex. Olimex Web Site. [Online] [Citado em: 02 de 11 de 2009.]

http://www.olimex.com/dev/msp-easyweb2.html.

4. Instruments, Texas. Texas Instruments. Texas Instruments Web Site. [Online]

[Citado em: 02 de 11 de 2009.] http://focus.ti.com/lit/ds/symlink/msp430f149.pdf.

5. Logic’s, Cirrus. Cirrus Logic’s. Cirrus Logic’s Web Site. [Online] [Citado em: 02 de

11 de 2009.] http://cirrus.com/en/products/pro/detail/P46.html.

6. Logic's, Cirrus. Cirrus Logic's. Cirrus Logic's Web Site. [Online]

http://cirrus.com/en/pubs/proDatasheet/CS8900A_F4.pdf.

7. IANA. IANA. IANA Web Site. [Online] [Citado em: 02 de 11 de 2009.]

http://www.iana.org/protocols/.

