FLAVIO YUITI NAKASHIMA

APLICACAO DO KANBAN E METODOLOGIAS AGEIS NO
DESENVOLVIMENTO DE SOFTWARE

SAO PAULO
2010

FLAVIO YUITI NAKASHIMA

APLICACAO DO KANBAN E METODOLOGIAS AGEIS NO
DESENVOLVIMENTO DE SOFTWARE

Monografia apresentada ao Programa
de Educacao Continuada (PECE) da
Escola Politécnica da Universidade de
Sao Paulo para obtencao do titulo de
MBA em Tecnologia da Informacao.

SAO PAULO
2010

FLAVIO YUITI NAKASHIMA

APLICACAO DO KANBAN E METODOLOGIAS AGEIS NO
DESENVOLVIMENTO DE SOFTWARE

Monografia apresentada ao Programa
de Educacao Continuada (PECE) da
Escola Politécnica da Universidade de
Sao Paulo para obtencao do titulo de
MBA em Tecnologia da Informacao.

Area de concentracio:
Engenharia de Software.

Orientador:
Prof. Dr. Jorge Luis Risco Becerra.

SAO PAULO
2010

FICHA CATALOGRAFICA

Nakashima, Flavio Yuiti
Aplicacao do Kanban e metodologias ageis no desenvolvi-
mento de software / F.Y. Nakashima. -- Sdo Paulo, 2010.

p-

Monografia (MBA em Tecnologia da Informacao) - Escola
Politécnica da Universidade de Sao Paulo. Programa de Educa-
¢ao Continuada em Engenharia.

1. Engenharia de software 2. Processo de software 3. Méto-
dos ageis I. Universidade de Sao Paulo. Escola Politécnica.
Programa de Educacao Continuada em Engenharia Il. t.

DEDICATORIA

Dedico este trabalho a minha mae Alice Katsuko Nakashima.

AGRADECIMENTOS

Ao Prof. Dr. Jorge Luis Risco Becerra, pela orientacdo, ensinamentos e estimulo a
reflexdo para a elaboracao deste trabalho.

Aos meus familiares, amigos e colegas de trabalho que incentivaram e colaboraram
para a realizacdo deste trabalho.

O nosso neg6cio nao € determinado pelo
produtor, mas pelo cliente. Nao é definido pelo
nome da empresa, seus estatutos ou requisitos,
mas pelo desejo que o cliente satisfaz quando
compra um produto ou servico. Trata-se, pois, de
uma questdo que sb se resolve olhando para o
negocio do lado de fora, do ponto de vista do
cliente.

(Peter F. Drucker)

RESUMO

Este trabalho analisa o tema do Desenvolvimento Enxuto de Software e das
Metodologias Ageis para dar base a um modelo de gerenciamento de
desenvolvimento de software.

Esta abordagem utiliza o sistema Kanban, que tem sua origem na producao
enxuta, como elemento central para fazer fluir todo o trabalho necessario para
atender uma demanda da lista de desejos do cliente, transformando-o em software
funcional. O foco do modelo é a entrega de software Just-in-time. Isso significa
essencialmente entregar o software certo na hora certa e fazer isso repetidamente
com o objetivo de diminuir ao maximo o tempo entre a demanda e a entrega, por
meio da detecgao e eliminacao das perdas que ocorrem nesse intervalo.

Este modelo propde o uso do sistema Kanban como elemento chave de
gestao para incrementar um desenvolvimento de software baseado na metodologia

agil Extreme Programming (XP).

Palavras-Chave: Desenvolvimento Enxuto de Software. Metodologias Ageis.

ABSTRACT

This paper analyzes the topic of Lean Software Development and Agile
Methodologies to base a management model of software development.

This approach uses the Kanban system, which has its origin in lean production
as a key element to flow all the work necessary to meet the demands of the wish list
of the customer, turning it into working software. The focus of the model is to deliver
software just-in-time. This essentially means delivering the right software on time and
do it repeatedly in order to reduce the maximum time between demand and supply,
through the detection and elimination of wastes that occur in that range.

This model proposes the use of Kanban system as a key element
management to enhance a software development based on agile methodology
Extreme Programming (XP).

Keywords: Lean Software Development. Agile Methodologies.

LISTA DE ILUSTRACOES

Figura 1 — Perdas em um sistema de valor (Liker, 2005)..........cuuuueiirmmmmimmeeenniiiininnnns 21
Figura 2 — O Sistema Toyota de Produgao (Liker, 2005).cceveeeriiiiiiiiiiiiieeeeeeeenns 23
Figura 3 — Exemplo de processamento de lotes (Liker, 2005).ccccuviieeieeerrnnnnnes 25
Figura 4 — Exemplo de fluxo continuo (Liker, 2005).cccuuueiiiiiiiiiiiiieeeeeee e 25
Figura 5 — Gréfico de equilibrio de operacao para comparar tempos de ciclo (Liker,

P2 00 PR 27
Figura 6 - BPMN de um proCesS0 CaSCata.ueeeiiiiriiiiiiiiiiieieee e 43
Figura 7 — BPMN para a implantacdo do Sistema Kanban.cccccceveeeeeeeeeennnns 44
Figura 8 — BPMN do Extreme Programming.ueueeeeeiiiiiiieiiiiiiiiiiiiiieeeseeeeeennneens 45
Figura 9 — Quadro Kanban.eeiiiiiiiiiieeeee e e e e e e 46
Figura 10 — Quadro Kanban com os limites de trabalhos em processo definidos.....47
Figura 11 — Grafico de BUrNAOWN. ... 51
Figura 12 — Grafico CFD (Cumulative Flow Diagram).ccccccuuaiiveeeeeaaeeennnnns 52
Figura 13 - BPMN dO planejamentoeueueeeiiiiiiiiiiiiiiiiiiiiiiieeiaiessesseesesseessesssnnnnnees 53
Figura 14 - BPMN da priorizacao das estOrias........ccoouvuiiiiiiiiiiiiieiiiieeeeee e 54

Figura 15 - BPMN do desenvoIVIMENTO..........uuuiiiiiiiiieeeeeieeee e 55

LISTA DE ABREVIATURAS E SIGLAS

BPMN — Business Process Management Notation
CASE - Computer-Aided System Engineering
CFD — Cumulative Flow Diagram

DSDM — Dynamic Systems Development Method
FDD — Feature Driven Development

JIT — Just-In-Time

XP — Extreme Programming

WIP — Work-In-Process

SUMARIO

I N 2 (0] 0 1171 13
LIPS R O o)1= 111/ 1= PP 13
1.2 JUSHFICALIVA .. 14
1.3 Metodologia ... 15
1.4 Estrutura do Trabalno ... 15

2 Desenvolvimento Enxuto de SOftwarecoooouiiiiiiiie i 17
2.1 A Mentalidade ENXULAeeuuiiiiiiiiiiiiiiiiiiiiiiieiiieeiieeeeeeeeeaaeeeeeeeenseaeesssnnnnnne 17
2.2 A ProduGao ENXutacceeeeiiiiiiiie e 19

2.2.1 As Bases do Sistema Toyota de Produgao..........ccccvvveeeeeeeeeeeiiciiineen. 21
2.2.2 O Fluxo de Processo ContiNUOuuueiiieeeeieiiiiiiiieeee e 24
2.2.3 Takt-time: Definindo @ CadéncCia.........cceuveeeeeiiiiiiiiiiieeeee e 26
2.2.4 Sistemas PUXadoS (PUM)ccuueeeiiiiiieiieee et 27
2.2.5 SiStEMA KANDAN..........uueeeeeiieieiieieieieeeeieeaeeeaeaeaeeeaeeaeaaasaennnnssennsssnnnnnnnnne 28
2.2.6 Produgdo Nivelada (Hejunka) ... 29
2.3 Os Principios Enxutos Aplicados ao Desenvolvimento de Software........... 31
2.3.1 O Mapeamento dos PrincCipios ENXULOSccoooiiiiiiiiiii e 31
2.3.2 A Escola do Fluxo de Trabalno.............uueeiiiiiiiiiiiiiiiiiiiiiiiiieiiieiiiiines 35
2.4 Metodologias AQEIS.........c.oveveeieeeeeeeeeeeeeeeee e 35
241 Extreme Programming ... 38

3 O Extreme Programming e o Kanban no Desenvolvimento de Software........... 43

3.1 Combinando o Extreme Programming com o Sistema Kanban.................. 44
3.1.1 Mapear 0 FIUXO de ValOr.........uuuiiiiiiiiiiiiiiiiiiiiiiieieiiieeeeeaveeeeeseeeeneeeeeneeees 45
3.1.2 Definir os Limites dos Trabalhos em Processo......ccccccveevveeeeeiieeeeeeenn. 47
3.1.3 Definir a Cadéncia de Entrega........ccuueeeeeeiiiiiiiiiiiiiieeeeee e 48
K I S /1= 1 o= 1 PR 49
3.1.5 A GeStA0 ViSUAI ..o 50
3.1.6 Operagao do Sistema Kanban...........ccccceeeieiiiiiiiiiiiieee e 52

N o o1 [V Yo 1= PR 56

REFERENCIAS ..o e e e, 57

13

1 INTRODUCAO

Os negdcios atualmente operam em um ambiente global sujeito a rapidas
mudancas. Eles tém de responder a novas oportunidades e mercados, mudancas de
condicbes econbmicas e ao surgimento de produtos e servicos concorrentes. O
software é parte de quase todas as operacdes de negdbcios e, assim, é essencial que
um novo software seja desenvolvido rapidamente para aproveitar as novas
oportunidades e responder as pressées competitivas. Desenvolvimento e entrega
rapidas sao, portanto, muitas vezes o requisito mais critico para sistemas de
software (SOMMERVILLE, 2007).

Os processos de desenvolvimento de software baseados em especificacoes
completas de requisitos, projeto, construcdo e teste de sistema, tal como um
processo em cascata convencional, ndo sdo adequados para este ambiente de
negécios de rapidas mudancas.

Neste contexto onde os requisitos do sistema mudam rapidamente durante o
processo de desenvolvimento, surgiram metodologias que contam com uma
abordagem iterativa para especificagdo, desenvolvimento e entrega de software.
Sao baseadas na nocdo de desenvolvimento e entregas incrementais onde um
software de trabalho é entregue rapidamente aos clientes, que podem entdo propor
novos requisitos e alteragdes a serem incluidos nas iteracbes posteriores do
sistema. Estas metodologias sdo conhecidas como métodos ageis. Dentre as mais
conhecidas podemos citar o Extreme Programming (XP) e o Scrum.

Dentro da comunidade que desenvolve e dissemina os métodos ageis ha uma
nova abordagem chamada de Lean Software Development, ou Desenvolvimento
Enxuto de Software. Esta abordagem esta baseada na aplicacao e interpretacao dos

principios e valores enxutos ao processo de desenvolvimento de software.

1.1 Objetivos

O principal objetivo deste trabalho é a proposicdo de um modelo de

gerenciamento de desenvolvimento de software baseado em um sistema Kanban,

14

que implementa um sistema baseado no fluxo de valor, fluxo unitario e um
paradigma de cadéncia de entrega, que € muito diferente do paradigma tradicional
de projeto com gestdo de escopo, cronograma, dedicado conjunto de recursos, e
data de entrega.

Neste trabalho é apresentado como montar e operar um quadro Kanban, que
€ a ferramenta central do Sistema Kanban aplicado ao desenvolvimento de software,
implantando um sistema puxado com os limites de trabalhos em processo definidos,
para expor 0s gargalos do processo e que em um processo de melhoria continua
para eliminar os desperdicios pode-se reduzir 0 tempo entre a demanda e a entrega
de software funcional para os clientes.

Neste caso o Sistema Kanban é aplicado para incrementar o desenvolvimento
de software baseado em Extreme Programming.

Outro objetivo deste trabalho é mostrar como a implantacdo de um sistema
Kanban pode orientar uma organizacéo para adocédo do desenvolvimento enxuto de

software.

1.2 Justificativa

Kanban tem provado ser uma ferramenta Gtil para a evolucao cultural e
gestdo da mudanca. Kanban expbe o mecanismo do fluxo de valor para o
desenvolvimento. Isso permite a identificagdo de gargalos e uma melhor
compreensdo dos entraves ao bom fluxo. O resultado é uma abordagem gradual e
incremental de mudanca que se habilita para todos na equipe. Kanban reduz as
barreiras a adocao de métodos ageis. Ele permite que se comece com 0 processo
existente, mesmo que seja um processo cascata. Kanban abraga a especializacdo
da forca de trabalho, enquanto expde os efeitos que muitos especialistas
apresentam como gargalos, filas entre transferéncias, e conseqlientemente WIP
maior (ANDERSON, 2009).

Kanban permite uma abordagem evolutiva para uma transicao agil. Ela
proporciona evolucao baseada em principios enxutos em vez de revolucdo com
base no Manifesto Agil. Ele provou ser facil de adotar e reduz a resisténcia a
mudanca. Kanban elimina os custos dos desperdicios de coordenagdo sem

15

sacrificar a satisfagcdo do cliente. Muitos procedimentos e artefatos da gestao de
projeto que muitas vezes sado permitidos, realmente deveriam ser vistos como
desperdicio em termos enxutos. Kanban reduz ou elimina os desperdicios de
sobrecarga de coordenacdo que os métodos de gestdo de projetos tipicos
introduzem (ANDERSON, 2009).

1.3 Metodologia

A metodologia aplicada para se atingir o objetivo deste trabalho sao:

Pesquisa Bibliografica: Estudo das referéncias de sustentacdo dos
conceitos, principios e valores da producdo enxuta que sao base para a definicado do
Desenvolvimento Enxuto de Software e do Sistema Kanban aplicado ao
gerenciamento de desenvolvimento de software. E como os principios da

Mentalidade Enxuta se relacionam com os principios das Metodologias Ageis.
Proposicao do Meétodo: Nesta fase serdo organizados os conceitos
estudados para compor um método de gerenciamento de desenvolvimento de

software baseado em um sistema Kanban combinado com o Extreme Programming.

Conclusao: Nesta ultima fase sao apresentadas as conclusées sobre o
método proposto.

1.4 Estrutura do Trabalho

A apresentacao deste trabalho segue a seguinte seqiiéncia de capitulos:

Capitulo 1: introducdo ao trabalho, seus objetivos, as motivacdes e
justificativas que levaram ao desenvolvimento desta dissertacdo, assim como a

abrangéncia e a metodologia utilizada.

16

Capitulo 2: descreve sobre os principios e valores da Mentalidade Enxuta.
Sua origem na producdo enxuta e como estes conceitos sdo levados para o
desenvolvimento de software. E a sua relagdo com os principios e valores das

Metodologias Ageis.
Capitulo 3: descreve sobre o modelo proposto para gerenciamento do
desenvolvimento de software aplicando o sistema Kanban combinado com o

Extreme Programming.

Capitulo 4: conclusdes.

17

2 Desenvolvimento Enxuto de Software

O Desenvolvimento Enxuto de Software esta relacionado a interpretacéao e
aplicacdo dos principios enxutos para o processo de desenvolvimento de software.
O termo enxuto foi popularizado pelo trabalho desenvolvido por James Womack,
Daniel Jones e Daniel Roos (1990), com o livro A Maquina que Mudou o Mundo.
Este trabalho apresentou inUmeros dados de benchmarking mostrando que ha uma
forma melhor de organizar e gerenciar os relacionamentos com clientes, cadeia de
fornecedores, desenvolvimento de produto em contraponto aos métodos e praticas
gerenciais desenvolvidas pelas industrias voltadas a produgdo em massa. Tratava-
se de uma forma de se fazer mais com cada vez menos. Apds a Segunda Guerra
Mundial, a Toyota foi pioneira em utilizar esta abordagem, desenvolvendo o Sistema
Toyota de Producao (STP) que é a base para o que se chama de producao enxuta.

No outono de 1973 houve a primeira crise do petrdleo, gerentes japoneses
acostumados a inflacao e as altas taxas de crescimento, se viram confrontados com
crescimento zero e forcados a lidar com a queda de producado. Pela primeira vez foi
notado os resultados que a Toyota estava conseguindo com a sua perseguicao a
eliminacao do desperdicio.

2.1 A Mentalidade Enxuta

A mentalidade enxuta ou pensamento enxuto (lean thinking) € um termo
cunhado por Womack e Jones(2004) que determina uma filosofia de negbcios
baseada no modelo de gestao que a Toyota desenvolveu, que vai além da producao
enxuta, envolvendo a organizacdo como um todo.

Taiichi Ohno (1997) definiu 0 modelo Toyota da seguinte forma:

“O que estamos fazendo é observar a linha de tempo desde 0 momento e que o cliente nos faz
um pedido até o ponto em que recebemos o pagamento. E estamos reduzindo essa linha de

tempo, removendo as perdas que ndo agregam valor.”

18

Womack e Jones (2004) definiram cinco principios que determinam o

pensamento enxuto:

1.

Determinar precisamente o valor por produto especifico. O ponto de
partida essencial para o pensamento enxuto € o valor. O valor s6 pode
ser definido pelo cliente final. E s6 é significativo quando expresso em
termos de um produto especifico (um bem ou um servico e, muitas
vezes, ambos simultaneamente) que atenda as necessidades do

cliente a um preco especifico em momento especifico.

Identificar o fluxo de valor para cada produto. O fluxo de valor é o
conjunto de todas as acdes especificas para se levar um produto
especifico a passar pelas trés tarefas gerenciais criticas em qualquer
negécio: a tarefa de solucao de problemas que vai da concepcéao até o
langcamento do produto, passando pelo projeto detalhado e pela
engenharia, a tarefa de gerenciamento da informagdo, que vai do
recebimento do pedido até a entrega, seguindo um detalhado
cronograma, e a tarefa de transformacéo fisica, que vai da matéria-
prima ao produto acabado nas mé&os do cliente. ldentificando os
processos que efetivamente geram valor, aqueles que nédo geram
valor, mas sdo importantes para a manutencdo dos processos € da
qualidade e, por fim, aqueles que ndo agregam valor, devendo ser

eliminados imediatamente.

Fazer o valor fluir sem interrupgées. Criar o fluxo continuo com os
processos e atividades que restaram apés a identificacdo do fluxo de
valor. Isso exige uma mudanca na mentalidade das pessoas, porque
precisam deixar de lado a idéia que tém de produgcdao por

departamentos como a melhor alternativa.

Deixar que o cliente puxe valor do produtor. Significa inverter o fluxo
produtivo, onde as empresas ndo mais empurram o0s produtos para o
consumidor através de descontos e promocoées. O consumidor passa a
puxar o fluxo de valor, reduzindo a necessidade de estoques e

19

valorizando o produto. Sempre que ndo se consegue estabelecer o
fluxo continuo, conectam-se 0s processos através de sistemas

puxados.

5. Buscar a perfeicdo. A busca do aperfeicoamento continuo em direcao
a um estado ideal deve nortear todos os esforcos da empresa, em
processos transparentes onde todos o0s membros da cadeia
(montadoras, fabricantes de diversos niveis, distribuidores e
revendedores) tenham conhecimento profundo do processo como um
todo, podendo dialogar e buscar continuamente melhores formas de

criar valor.

O pensamento enxuto envolve uma estratégia de negocios para aumentar a
satisfacdo dos clientes através da melhor utilizacdo dos recursos, fornecendo
consistentemente valor aos clientes com custos mais baixos, através da melhoria

continua dos processos e pela compreensao das pessoas e da motivacdo humana.

2.2 A Producao Enxuta

A histéria da producdo enxuta tem suas raizes no Japdo com a familia
Toyoda que antes de entrar para o ramo automobilistico, comeg¢ou com o ramo da
tecelagem produzindo teares.

Em 1926, Sakichi Toyoda inaugurou a Toyoda Automatic Loom Works,
empresa-mae do Grupo Toyota e ainda hoje um participante importante no
conglomerado Toyota. Em seu interminavel trabalho como funileiro e inventor,
Sakichi criou sofisticados teares automaticos. Entre suas invengdes, havia um
mecanismo especial para interromper o funcionamento de um tear toda vez que um
fio se partisse. Esta invencao evoluiu para um sistema mais amplo que se tornou um
dos pilares do Sistema Toyota de Producdo, chamado autonomacédo (automacao
com um toque humano). Essencialmente, autonomagao significa acréscimo de
qualidade enquanto se produz o material indicando que ha um problema. Refere-se
também a criacdo de operacbes e de equipamento para que os funcionarios nao

20

figuem amarrados as maquinas, e sim livres para desempenhar tarefas que agregam
valor ao produto.

Sakichi Toyoda sabia que o mundo estava mudando e que os teares
automaticos se tornariam tecnologia do passado enquanto os automoéveis eram a
tecnologia do futuro. Em funcdo disso Sakichi deu a seu filho Kiichiro Toyoda a
tarefa de construir uma empresa de automoveis.

A Toyota Motor Company comecou produzindo caminhdes simples e nos
primeiros anos os veiculos eram de baixa qualidade, produzidos com tecnologia
primitiva e desta forma ndo obteve muito sucesso. Nos anos 30, os lideres da
Toyota visitaram a Ford e a GM para estudar suas linhas de montagem e leram
atentamente o livro de Henry Ford, Today and Tomorrow (1926).

A Toyota percebeu que o mercado japonés era muito reduzido a que a
demanda era muito fragmentada para suportar os grandes volumes de produc¢ao nos
Estados Unidos. Os administradores da Toyota sabiam que, para sobreviver em
longo prazo, teriam que adaptar a abordagem de producdo em massa ao mercado
japonés. O desafio era aperfeicoar o processo de producao da Toyota de modo que
se igualasse a produtividade da Ford. Este foi o desafio proposto a Taiichi Ohno,
entdo administrador da empresa, por Eiji Toyoda, sobrinho de Sakichi Toyoda, que
assumiu a presidéncia da Toyota Motor Company apds Kiichiro Toyoda perdir
demissao da presidéncia, em funcédo da crise vivida na empresa no inicio do pés-
guerra.

Ohno diante do desafio recebido de Eiji Toyoda de “igualar-se a Ford em
produtividade”, também observou a concorréncia em visitas posteriores aos Estados
Unidos. Um dos principais componentes que Ohno acreditava que a Toyota
precisava dominar era o fluxo continuo e o melhor exemplo disso na época era a
linha de montagem da Ford em operacéo.

Apesar de em seu livro, Ford pregar a importancia de criar um fluxo continuo
de material no decorrer do processo de producdo, padronizar oS processos €
eliminar as perdas, nem sempre isso era praticado em sua empresa. A Toyota viu
métodos esbanjadores de producgéo por lotes que formavam grandes depdésitos de
estoque em processo na cadeia de valor, empurrando o produto para o préximo
passo da producdo, e entendeu isso como uma falha inerente ao sistema de
producdo em massa da Ford.

21

A Toyota acreditou que poderia usar a idéia original de Ford, do fluxo continuo
de material, para desenvolver um sistema de fluxo unitdrio de pecas que
flexivelmente mudasse de acordo com a demanda dos clientes e que ao mesmo
tempo fosse eficiente. A flexibilidade exigia que a engenhosidade dos funcionarios

fosse direcionada para que melhorassem continuamente o processo.

2.2.1 As Bases do Sistema Toyota de Producao

As bases do Sistema Toyota de Producao foram desenvolvidas ap6s anos e
décadas de prética. Evoluiu para atender os desafios especificos que a Toyota
enfrentava a medida que crescia como empresa. Evoluiu a medida que Taiichi Ohno,
seus engenheiros, administradores e operarios aplicaram o0s principios de
autonomacao e de fluxo unitario de pecgas durante anos de tentativa e erro.

A base do Sistema Toyota de Producdo é a absoluta eliminacdo do
desperdicio. Ohno passava boa parte de seu tempo na fabrica, aprendendo a
mapear as atividades que agregavam valor ao produto e livrando-se das atividades
que nao agregavam valor.

Processamento

" Espera mecéanico Montagem
empo Fundicao =
1
\ Transporte / e / Ins/pe(;ao/ E/spera
v v | v 4
Matéria-prima Tempo Pecas acabadas

Tempo com agregagao
de valor

Tempo sem agregacao
de valor (perda)

* O tempo com agregacao de valor é somente
uma pequena porcentagem do tempo total.

® A tradicional economia de custos concentra-se
apenas nos itens que agregam valor.

* O pensamento enxuto concentra-se no fluxo de
valor para eliminar itens que nao agregam valor.

Figura 1 — Perdas em um sistema de valor (Liker, 2005)

A Toyota identificou sete grandes tipos de perdas sem agregacao de valor em
processos administrativos ou de produgcédo que devem ser identificados como passo

22

preliminar para a aplicacao do Sistema Toyota de Producao. Abaixo estd uma tabela

com as descricdes dos desperdicios feitas por Liker (2005):

Desperdicio

Descricao

Superproducéao

Producéo de itens para os quais nao ha demanda, o que gera perda
com excesso de pessoal e de estoque e com custos de transporte

devido ao estoque excessivo.

Espera (tempo sem
trabalho)

Funciondrios que servem apenas para vigiar uma maquina automatica
ou que ficam esperando pelo préximo passo no processamento,
ferramenta, suprimento, peg¢a, etc., ou que simplesmente ndo tém
trabalho para fazer devido a uma falta de estoque, atrasos no
processamento, interrupcdo do funcionamento de equipamentos e

gargalos de capacidade.

Transporte ou
movimentacao

desnecessario

Movimento de estoque em processo por longas distancias, criagcdo de
transporte ineficiente ou movimentagcdo de materiais, pecas ou produtos
acabados para dentro ou fora do estoque ou entre processos.

Superprocessamento ou

processamento incorreto

Passos desnecessdarios para processar as pecgas. Processamento
ineficiente devido a uma ferramenta ou ao projeto de baixa qualidade do
produto, causando movimento desnecesséario e produzindo defeitos.
Geram-se perdas quando se oferecem produtos com qualidade superior

a que é necessaria.

Excesso de estoque

Excesso de matéria-prima, de estoque em processo ou de produtos
acabados, causando /ead times mais longos, obsolescéncia, produtos
danificados, custos de transporte e de armazenagem e atrasos. Além
disso, o0 estoque extra oculta problemas, como desbalanceamento de
producdo, entregas atrasadas dos fornecedores, defeitos, equipamentos

em conserto e longo tempo de setup (preparagao).

Movimento Qualquer movimento inutil que os funciondrios tém que fazer durante o

desnecessdrio trabalho, tais como procurar, pegar ou empilhar pegas, ferramentas, etc.
Caminhar também é perda.

Defeitos Producéo de pecas defeituosas ou corregao. Consertar ou re-trabalhar,

descartar ou substituir a producdo e inspecionar significam perdas de

manuseio, tempo e esforgo.

Liker(2005) acrescentou mais um tipo de desperdicio em sua anélise:

23

» Desperdicio da criatividade dos funcionarios. Perda de tempo, idéias,
habilidades, melhorias e oportunidades de aprendizagem por nao

envolver ou ouvir seus funcionarios.

Durante décadas o Sistema Toyota de Producdo foi desenvolvido e
aperfeicoado, mas sem que a teoria fosse documentada. Isso teve inicio com Fujio
Cho, discipulo de Taiichi Onho, que desenvolveu uma representacao simples para o

STP, uma casa.

Melhor qualidade — Menor custo — Menor /ead time —
Mais seguranc¢a — Moral alto

através da redugao do fluxo de producao pela eliminagao das perdas

Just-in-time Autonomacao

Peca certa, quantidade

Pessoas e equipe de trabalho
= Selecédo = Ringi de

(Qualidade no setor)

certa, tempo certo decisao Tornar os problemas
" Metas = Treinamento visiveis

® Planejamento comuns ® Paradas automaticas
takt time * Andon

® Fluxo continuo -

¢ Sistema puxado Melhoria continua pegsoa?méquina

® Troca rapida * Verificagio de erro

® Logistica
integrada Reducéo das perdas ¢ Controle de

qualidade no setor

® Genchi " Viséo de * Solugdo na origem

genbutsu perdas dos problemas
® 5 porqués = Solugéo de (5 porqués)
problema

Produgao nivelada (heijunka)

Processos estaveis e padronizados

Gerenciamento visual

Filosofia do Modelo Toyota

Figura 2 — O Sistema Toyota de Producio (Liker, 2005).

A representagao utilizando uma casa transmite a idéia de que o sistema €
baseado em uma estrutura e ndo apenas em um conjunto de técnicas. A casa sé é
forte se o telhado, as colunas e as fundagdes sao fortes. Uma conexao fraca fragiliza
todo o sistema.

O telhado representa as metas de melhor qualidade, menor custo e menor
lead time. Nos pilares de sustentacédo estdo o Just-In-Time (JIT) e a autonomacao.
Nos alicerces ha varios processos e 0 nivelamento da producgéo, que significa nivelar
a programacao de producao tanto em volume quanto em variedade, para manter a
estabilidade do sistema e permitir um minimo de estoque. No centro do sistema

24

estdo as pessoas, para que com a melhoria continua atinjam a estabilidade
necessaria da operacdo. E as pessoas devem ser treinadas para encontrar 0s
desperdicios e eliminar os problemas pela raiz.

Just-In-Time significa que, em um processo de fluxo, as partes corretas
necessarias a montagem alcancam a linha de montagem no momento em que séo
necessarios e somente na quantidade necessaria. Uma empresa que estabeleca
esse fluxo integralmente pode chegar ao estoque zero (Ohno, 1997).

Com a autonomagédo nao é necessario um operador enquanto a maquina
estiver funcionando normalmente, apenas quando ha uma situacdo anormal. Desta
forma um operador pode atender diversas maquinas, tornando possivel reduzir o
namero de operadores e aumentar a eficiéncia da producédo. A parada da maquina
forca a parada da linha e mostra o sentido de urgéncia para resolver o problema.
Quando o problema é compreendido, a melhoria é possivel.

2.2.2 O Fluxo de Processo Continuo

No modo tradicional da producdo em massa, maquinas semelhantes e
pessoas com habilidades semelhantes sdo agrupados em departamentos. O
pensamento enxuto observa nesse modo de organizar a produ¢do, uma empresa
produzindo um grande estoque de trabalho em processo (work-in-process — WIP).

Para eliminar desperdicios, a producao enxuta organiza o trabalho de modo a
criar um fluxo continuo em busca de um fluxo unitario de pecas. Os processos sédo
alinhados fisicamente na sequéncia que produzira o que foi solicitado pelo cliente no
menor periodo de tempo. O resultado disso é o aumento da eficiéncia da producao,
porque o0s produtos se movem continuamente no processamento com um tempo
minimo de espera entre as etapas e a menor distancia de deslocamento. O tempo
de producao seréa reduzido, diminuindo o custo do ciclo.

Liker (2005) utiliza o exemplo abaixo para mostrar as diferencas entre um

processamento em lote e um fluxo continuo:

= A figura 3 ilustra uma visdo simplificada de um fabricante de computadores
organizado em trés departamentos. Um departamento fabrica as bases dos
computadores, 0 segundo produz 0s monitores e 0s conecta e o terceiro testa o

25

equipamento. Nesse modelo, o departamento de movimentagdo de material decidiu
movimentar um lote de 10 unidades por vez. Cada departamento precisa de um
minuto por unidade para fazer seu trabalho, de maneira que sao necessarios 10
minutos para que um lote de computadores passe de um departamento para outro.
Mesmo sem considerar o tempo de movimentacdo de material entre departamentos,
levaria 30 minutos para fabricar e testar o primeiro lote de 10 computadores a ser
enviado para o cliente. E levaria 21 minutos para obter o primeiro computador pronto
para ser embarcado, embora somente trés minutos de trabalho com agregacéao de

valor sejam necessarios para produzir aquele computador.

Departamento de bases de computadores

= =] L él—l in| E_lﬁl in| él—-l] =T E=C0 E=h] EE=CI) E_Ig[ol [==T

Departamento de monitores de computadores

LIL Iy I I TN IR IR TN IR0]

-|..l o =T E—-I in| él-.l o = = = =

Departamento de teste de computadores

OXDODDOO

= EI—-I in| EI—.I inj

l-I..I o =N = = = E=n

e Primeiro lote de 10 unidades processados em 30 minutos
e Primeiro computador pronto em 21 minutos (mais o tempo de transporte)
e Existem pelo menos 21 unidades submontadas em processo por vez

Figura 3 — Exemplo de processamento de lotes (Liker, 2005).

A figura 4 apresenta uma perspectiva do mesmo processo de fabricagdo de
computadores visto acima, organizado em uma célula de trabalho de fluxo unitario de
pecas. O funcionario responsavel pela producao da base nao faria outra base antes
de o encarregado dos monitores terminar de preparar um monitor e monta-lo na
ultima base. Em outras palavras, ninguém construiria mais do que fosse
imediatamente necessério. O resultado € que os operadores na célula levariam 12
minutos para fazer 10 computadores, enquanto que o processo de fluxo de lotes leva
30. E o processo enxuto precisa de apenas trés minutos em vez de 21 para produzir
o primeiro computador pronto para ser embarcado. De fato, os trés minutos significam
somente tempo que agrega valor. O que o fluxo faz é eliminar a superprodugao e o

estoque.

Produto exige trés processos que levam um minuto cada um
== (célula de producao de fluxo unitario de pegas)

® Primeira parte pronta em 3 minutos
- ® 10 finalizadas em 12 minutos

= Somente 2 unidades submontadas no processo por vez

Sy R n -

Figura 4 — Exemplo de fluxo continuo (Liker, 2005).

26

» E comum achar que o aumento da velocidade de um processo implica
comprometimento da qualidade, que mais rapido quer dizer mais desleixado. Mas o
fluxo proporciona justamente o oposto — geralmente aumenta a qualidade. Nas
figuras 3 e 4, ha um computador com defeito, marcado com um X no monitor. Essa
unidade nao pdde ser ligada no estagio de teste. Na abordagem de grandes lotes
apresentada na figura 3, quando o problema é descoberto, ha pelo menos 21
unidades em processo que também poderdo apresentar esse problema. E, se o
defeito ocorresse no departamento de bases, 21 minutos poderiam ser necessarios
para descobri-lo no departamento de testes. Na figura 4, por outro lado, quando se
descobre um defeito, pode haver somente outros dois computadores em processo
que também apresentem o problema, e o tempo maximo necessario para encontrar o
problema é de dois minutos depois de o computador ter sido feito. A realidade é que,
em uma operacao de grandes lotes, provavelmente decorrem semanas de estoque
em processo entre operagdes e pode levar semanas ou mesmo meses desde o
momento em que um defeito foi causado até que seja descoberto. Nesse instante, o
mapeamento de causa e efeito fica confuso, tornando quase impossivel rastrear e

identificar o que causou o problema.

O exemplo acima mostra um processo de fluxo continuo ideal, mas sabe-se
que estabelecer um fluxo unitario de pecas € extremamente dificil e exige um
processo altamente elaborado e condigcdes muito especificas. Esse nivel de precisao
seria excepcionalmente dificil e somente possivel em casos em que o equilibrio do
tempo de ciclo fosse perfeito.

Na maioria das operagbes de fabricagdo que utilizam o fluxo unitario de
pecas, uma Unica peca é colocada entre as estacdes de trabalho, permitindo uma
pequena variagdo no tempo de ciclo de cada funcionario sem causar tempo de
espera. Mesmo nesse nivel o equilibrio do tempo de ciclo entre as operacdes

precisa ser excepcionalmente alto.

2.2.3 Takt-time: Definindo a Cadéncia

Takt € uma palavra alema para ritmo ou compasso. O takt-time € um conceito
usado para projetar o trabalho e mede o ritmo da demanda do cliente. E o tempo
disponivel para produzir pecas em um intervalo especifico de tempo dividido pelo
nuamero de pecas demandadas naquele intervalo.

27

Por exemplo, se o tempo disponivel de operacdo para um turno for de 400
minutos e a demanda do produto é de 400 por turno, o tempo de dedicado por peca
(takt-time) é um minuto. O tempo de ciclo de cada operacdo precisa ser um minuto
ou menos em média para atender a demanda. Se o tempo de ciclo (tempo real para
completar as tarefas em um Unico trabalho) for maior do que o takt, a operacao sera
um gargalo e sera necessario um tempo adicional para acompanhar a programacao
da producao, e se for mais rapido havera superprodugao.

O takt-time é a referéncia para se estabelecer com qual velocidade a célula
de trabalho deve funcionar, qual a capacidade necessaria de cada equipamento, e

guantas pessoas serao necessarias para operar a célula.

120 - Tempos de ciclo da linha 1

Takt-time = 90 segundos

100
80
60
40

Figura 5 — Grafico de equilibrio de operacio para comparar tempos de ciclo (Liker, 2007).

2.2.4 Sistemas Puxados (Pull)

Na producdo enxuta, puxar significa o estado ideal da fabricacao just-in-time,
ou seja, dar ao cliente (que pode ser o préximo passo no processo de produgao) o
que ele quer, quando ele quer e na quantidade que deseja. O sistema puxado indica
quando o material € movimentado e quem (o cliente) determina esse movimento. Ao
contrario da producao em massa, onde o sistema é empurrado, baseado pela
demanda do cliente projetada.

Taiichi Ohno desenvolveu o sistema puxado a partir do conceito de
funcionamento de um supermercado. Ohno pegou do supermercado a idéia de
visualizar o processo inicial numa linha de producdo como um tipo de loja. O
processo final (cliente) vai até o processo inicial (supermercado) para adquirir as

28

pecas necessarias (géneros) no momento e na quantidade que precisa. O processo
inicial imediatamente produz a quantidade recém retirada (reabastecimento das
prateleiras).

Ohno, desde o inicio, tinha reconhecido que estabelecer o fluxo unitario de
pecas ideal seria muito dificil, em funcdo das variacées dos tempos de ciclo de cada
operacao, e desta forma viu que seria necessario um estoque entre as operagdes de
producdo para se conseguir o fluxo continuo. Esses estoques sdo conhecidos como
estoques amortecedores (buffers), pequenos “armazéns” de pecas entre as
operacdes. Nestes “armazéns” sé ha reposicao dos itens retirados, desta forma néo
havera uma superprodug¢dao maior do que a pequena quantidade da prateleira.

2.2.5 Sistema Kanban

Kanban é uma palavra japonesa que significa sinal, letreiro, placa, poster,
anuncio, cartdo, mas é entendido de maneira geral como algum tipo de sinal.

Um verdadeiro sistema de fluxo unitario de pecas seria de estoque zero, em
que os produtos aparecem exatamente quando se tornam necessarios para o cliente
(just-in-time). O sistema mais préximo disso desenvolvido pela Toyota para alcancar
esse objetivo é a célula de fluxo unitario de pecas, que fabrica por pedido somente
no exato momento em que surge a necessidade do produto. Mas quando o fluxo
puro ndo é possivel porque os processos estdo muito distantes ou porque os tempos
de ciclo para desempenhar as operagdes variam muito, a proxima escolha €
freqientemente o Sistema Kanban.

Carrinhos vazios, ou latas vazias enviadas ao processo anterior para sinalizar
que a linha de montagem tinha utilizado as pecas e precisava de mais, sdo kanbans.
A forma mais freqlentemente usada é um pedaco de papel dentro de um envelope
de vinil retangular. Neste pedaco de papel a informacao pode ser dividida em trés
categorias: (1) informacdo de coleta, (2) informacdo de transferéncia, e (3)
informacao de produgédo. O kanban carrega a informagéo vertical e lateralmente
dentro da propria Toyota e entre a Toyota e as empresas colaboradoras.

O Sistema Kanban é o método para operar o Sistema Toyota de Producéo,
deixando claro o que deve ser feito por gerentes, supervisores e operadores. Sua

29

utilizacdo mostra imediatamente o que € desperdicio, permitindo um estudo criativo

e propostas de melhorias. E uma forca poderosa para reduzir mao-de-obra e

estoques, eliminar produtos defeituosos, e impedir a recorréncia de panes.

Regras para a utilizacdo do Sistema Kanban:

Funcées do Kanban

Regras para Utilizacdo

1. Fornecer informacdo sobre apanhar ou

transportar.

1. O processo subsequiente apanha o nimero de
itens indicados pelo kanban no processo

precedente.

2. Fornecer informagéao sobre a producao.

2. O processo inicial produz itens na quantidade

e seqliéncia indicadas pelo kanban.

3. Impedir a superproducdo e o transporte

excessivo.

3. Nenhum item é produzido ou transportado sem

um kanban.

4. Servir como uma ordem de fabricagdo afixada

as mercadorias.

4. Serve para afixar um kanban as mercadorias.

5. Impedir produtos defeituosos pela identificagdo

do processo que os produz.

5. Produtos defeituosos ndo séo enviados para o

processo seguinte. O resultado é mercadorias

100% livres de defeitos.

6. Revelar problemas existentes e mantém o | 6. Reduzir o nimero de kanbans aumenta sua

controle de estoques. sensibilidade aos problemas.

2.2.6 Producao Nivelada (Heijunka)

Uma abordagem comum em um processo de implementacédo de ferramentas
enxutas é o foco apenas em eliminacao de desperdicios, ou seja, os estoques nos
sistemas sao reduzidos, organiza-se melhor o local de trabalho para a eliminacao de
movimentos inuteis, verifica-se o nivel de trabalho e se reduz o nimero de pessoas
no sistema. Utilizando-se apenas desta abordagem em um plano de producédo que
flutue muito, a conclusao serd que a producéo enxuta ndo funciona para este caso,
porque a oscilagdo da demanda do cliente fara com que pessoas e equipamentos
trabalhem sobrecarregados, reduzindo a qualidade do produto, maior parada para
manutencao de equipamentos e falta de pecas.

O foco apenas em eliminacdo de desperdicios € comum, porque €& facil

identificar e eliminar perdas, mas o que muitas empresas ndao conseguem € 0

30

processo mais dificil de estabilizar o sistema e criar um verdadeiro fluxo de trabalho
enxuto e equilibrado.

Os administradores e funcionarios da Toyota usam o termo japonés muda
quando falam sobre desperdicios, mas ha outros dois termos importantes que sao
utilizados para se atingir um trabalho enxuto. A Toyota refere-se a isso como a
“eliminacao de Muda, Murie Mura’. Os significados destes termos sao:

» Muda - nenhuma agregacdo de valor. Trata-se de atividades
supérfluas que aumentam os lead times, causam movimentos extras
para obter pegas ou ferramentas, criam excesso de estoque ou
resultam em alguma forma de espera.

» Muri — sobrecarga de pessoas ou de equipamentos. Significa colocar
uma maquina ou uma pessoa além de seus limites naturais. A
sobrecarga de pessoas resulta em problemas de seguranca e
qualidade. A sobrecarga do equipamento causa interrupgdes e
defeitos.

» Mura — desnivelamento. Em sistemas de producao normais, as vezes
ha mais trabalho do que as pessoas podem realizar e outras vezes ha
falta de trabalho. O desnivelamento resulta de um programa de
produgéo irregular ou de volumes de produgéo flutuantes devido a
problemas internos, como paralisacdes, falta de pecas ou defeitos.
Muda é resultado de Mura.

Atingir o nivelamento da producéo € fundamental para a eliminacdo de mura,
que, por sua vez, € fundamental para a eliminagdo de muri e de muda.

Heijunka significa nivelar a combinacdo de produtos durante um periodo
especifico de tempo com o objetivo de produzir todas as pecas todos os dias (ou
mesmo dentro de algumas horas). Este conceito reforca a necessidade de manter os
lotes pequenos e produzir o que o cliente (interno ou externo) deseja. E também a
necessidade de um processo com um alto nivel de flexibilidade e capacidade de
resposta as mudancas na demanda do cliente.

O trabalho de acordo com um plano nivelado aplica-se a todas as areas da
Toyota, incluindo as vendas. Todos na organizacao trabalham juntos para realiza-lo.

31

2.3 Os Principios Enxutos Aplicados ao Desenvolvimento de Software

A aplicacdo dos principios enxutos no processo de desenvolvimento de
software requer interpretacdo, e ha mais de uma escola de pensamento sobre a
melhor interpretagdo do Desenvolvimento Enxuto de Software. Alguns se
concentram nos principios enxutos aplicados as praticas comuns de
desenvolvimento, alguns se concentram no gerenciamento do fluxo de trabalho, e
outros se concentram nos processos complementares do desenvolvimento de

produtos utilizados pela Toyota e outras empresas enxutas (LADAS, 2009).

2.3.1 O Mapeamento dos Principios Enxutos

O primeiro mapeamento dos principios enxutos para o desenvolvimento de
software foi proposto por Mary e Tom Poppendieck (2003). Pode-se considerar a
primeira escola de pensamento do desenvolvimento enxuto de software, onde os
principios enxutos sdo interpretados em termos de metodologia de desenvolvimento
de software nativo.

Segundo Ladas (2009), esta abordagem de desenvolvimento enxuto de
software tem sido atraente para alguns que acreditam que o software é
fundamentalmente uma disciplina artesanal. O movimento de softwares ageis tém
sido os defensores mais visiveis da filosofia artesanal nos ultimos anos. A parte da
comunidade que adotou o Pensamento Enxuto (Lean Thinking) normalmente chama
esta abordagem de Lean/Agile Development. Proponentes de Lean/Agile
tipicamente descrevem praticas de métodos Scrum ou Extreme Programming em
termos de principios enxutos.

Os sete principios identificados por Mary e Tom Poppendieck (2003) sao:

= Eliminar o desperdicio;

= Construir com qualidade;
= Criar conhecimento;

= Adiar compromisso;

= Entregue rapido;

32

= Respeito as pessoas;
= Aperfeigoar o todo.

2.3.1.1 Eliminar o Desperdicio

Tudo que nao agrega valor na perspectiva do cliente é desperdicio e deve ser
eliminado. Os sete tipos de desperdicios no desenvolvimento de software sédo:

Defeitos Defeitos que ndo séo rapidamente identificados nos testes.

Funcionalidades extras Funcionalidades que ndo serao utilizadas pelos usuarios.

Transferéncia Conhecimento tacito que sdo perdidos durante a transferéncia de
trabalho.

Atrasos Esperas por informagéo, documentacao.

Trabalho parcialmente | Trabalhos iniciados, mas nao finalizados. “Inventario” no processo

finalizado de desenvolvimento.

Chaveamento de tarefa Interrupcbes e chaveamento de tarefas causam perda de
produtividade.

Processos desnecessdrios Documentos que ndo sdo lidos. Tarefas manuais que poderiam ser
automatizadas.

2.3.1.2 Construir com Qualidade

Na producdo enxuta cada etapa do processo deve ser a prova de erros e
auto-inspecionado. Quando um problema é detectado, a linha de montagem é
interrompida até que a causa raiz do problema seja encontrado e corrigido, para que
nao haja a repeticao do problema.

No desenvolvimento de software, o cédigo deve ser a prova de erros
utilizando-se uma abordagem orientada a testes. Testes unitarios, testes de
integracao, testar frequentemente utilizando-se de testes automatizados para
prevenir mudancgas de codigos por erros nao detectados.

33

2.3.1.3 Criar Conhecimento

Nao esquecer as licbes aprendidas. Encontrar meios de registrar o
conhecimento da equipe que permita uma facil localizagcdo na préxima vez que seja
necessaria.

Por exemplo, se uma nova funcionalidade implementada exigiu a leitura de
todo cddigo para entender como o subsistema funciona. O que foi aprendido deveria
ser registrado em algum lugar. Isso poderia ser adicionado em documento detalhado
do sistema, mas seria mais eficiente se fosse registrado como um comentario no
codigo.

Quando se esta criando uma arquitetura, um projeto, ou um codigo,
constantemente sera necessario considerar alternativas para a tomada de decisao.
A escolha por uma alternativa ou outra deveria ser registrada, porque este
conhecimento podera poupar muito tempo no futuro, mas outras vezes sera um
exagero. Deve-se criar um balanco do que € necessario registrar, aprendendo

constantemente a fazer este julgamento.

2.3.1.4 Adiar Compromisso

As melhores decisbes sdo feitas quando se tem mais informacdes
disponiveis. Desta forma é melhor esperar o Ultimo momento responsavel para fazer
uma decisao irreversivel.

Por exemplo, quando se precisa escolher a arquitetura para um sistema,
primeiro determina-se quando € o ultimo momento responsével para fazer esta
decisdo. Utiliza-se este tempo para acumular conhecimento sobre as reais
necessidades de outros componentes do sistema, e explorar as caracteristicas das
alternativas de escolha.

34

2.3.1.5 Entregue Rapido

Entregue rapido significa desenvolver funcionalidades em lotes pequenos que
sdo entregues rapidamente, em iteracdes pequenas. Estas funcionalidades pode ser
implementadas e entregues antes que requisitos associados possam mudar. Isto
significa que o cliente tem a oportunidade de usar estas funcionalidades e dar o
feedback que possa mudar outro requisito antes que sejam implementadas.

A conclusao de cada pequena iteracao prové a oportunidade de mudar e re-
priorizar 0s requisitos baseado no uso e no feedback real. O resultado final € um
produto que se encontra mais estreitamente com as reais necessidades do cliente,

enqguanto elimina os desperdicios e retrabalhos de requisitos volateis.

2.3.1.6 Respeito as Pessoas

Respeito as pessoas significa confiar que eles conhecem a melhor maneira
de fazer o seu trabalho, engajando-os a expor falhas no processo atual, e
encorajando-os a encontrar formas de melhorar seus trabalhos e 0s processos.
Respeito as pessoas significa reconhecé-los por suas realizagcbes e ativamente
solicitando os seus conselhos.

2.3.1.7 Aperfeicoar o Todo

Muitas teorias de como gerenciar um projeto de software sdo baseadas na
teoria da desagregacao: quebre o conjunto em partes individuais e otimize cada um.
O pensamento enxuto sugere que otimizagdes individuais sempre levam para a sub-
otimizag&o do sistema como um todo.

A melhor maneira de evitar a sub-otimizacdo e incentivar a colaboragéao é
fazer as pessoas responsaveis por aquilo que pode influenciar, ndo apenas o que
eles podem controlar. Isso significa medir o desempenho de um nivel superior ao

que se espera. Medir a equipe por contagem de defeitos, ndo a dos individuos. Para

35

alguns, parece injusto manter uma equipe responsavel por cada desempenho, mas
as organizacdes enxutas descobriram que os individuos sao raramente capazes de
mudar o sistema que influenciam o desempenho deles. No entanto, uma equipe,
trabalhando em conjunto e responsavel por seus proprios processos, pode e vai

fazer melhorias consistentes.

2.3.2 A Escola do Fluxo de Trabalho

A escola do fluxo de trabalho é outra escola de pensamento enxuto no
desenvolvimento de software. O foco desta escola descreve a maioria dos
processos de desenvolvimento de software em termos de fluxo de trabalho e
qualquer desses processos do fluxo de trabalho esta sujeito aos cincos principios do
Pensamento Enxuto, sem a necessidade de se abstrair os detalhes.

Uma das metodologias derivadas desta escola € a que utiliza o Sistema
Kanban para gestao do fluxo de trabalho, popularizada por David Anderson (2009).
Da mesma forma que na producao enxuta, o Sistema Kanban € o elemento principal
para a operacao e controle de um fluxo continuo e de um sistema puxado, mas
neste caso aplicado a gestdo do desenvolvimento de software.

Este trabalho explora a utilizacdo do Sistema Kanban para a gestao do
desenvolvimento de software combinado com as praticas de desenvolvimento do
Extreme Programming para definir uma metodologia de software que estabelega o

Desenvolvimento Enxuto de Software.

2.4 Metodologias Ageis

As metodologias ageis surgiram ao final da década de 90, por
desenvolvedores que estavam insatisfeitos com as abordagens pesadas que
predominavam no cenario do desenvolvimento de software.

As abordagens pesadas de desenvolvimento eram apoiadas por uma visao
geral que a melhor maneira de obter o melhor software era por meio de um
cuidadoso planejamento de projeto, garantia de qualidade formalizada, uso de

36

métodos de andlise e projeto apoiados por ferramentas CASE e controlados por um
rigoroso processo de desenvolvimento de software. Essa visdo esteve ligada aos
softwares grandes e de vida longa, desenvolvidos por equipes grandes e por longos
periodos de tempo.

Essa abordagem pesada de desenvolvimento aplicada a desenvolvimentos de
sistemas de pequenas e médias empresas mostraram-se inviaveis porque muitas
vezes 0 tempo gasto para se determinar como o sistema deveria ser desenvolvido
era maior do que o empregado no desenvolvimento do programa e em testes. E a
medida que o0s requisitos de sistema mudavam, o retrabalho era essencial e a
especificacao e o projeto tinham que mudar com o programa.

Ao final da década de 90 alguns desenvolvedores comegaram a propor novos
métodos ageis de desenvolvimento de software para se adaptar a nova realidade de
mercado, um ambiente de negdcios de rapidas mudancas. Estes métodos permitiam
qgue a equipe de desenvolvimento se concentrasse mais no software do que em seu
projeto e documentacao, utilizando uma abordagem iterativa para especificacao,
desenvolvimento e entrega de software.

O método agil mais conhecido é o Extreme Programming, ou simplesmente
XP, proposto por Kent Beck. Outros métodos ageis incluem o Scrum, Crystal,
Adaptive Software Development, Dynamic Systems Development Method (DSDM) e
Feature Driven Development (FDD).

Apesar de todos esses métodos possuirem processos diferentes, todos séao
baseados na nocao de desenvolvimento e entrega incrementais e compartilham um
conjunto de principios conhecidos por Manifesto Agil.

O Manifesto Agil, ou formalmente, Manifesto para o Desenvolvimento Agil de
Software foi definido por 17 lideres de desenvolvimento de software que decidiram
se reunir em uma estacdo de esqui em Utah, nos Estados Unidos, para discutir
formas de melhorar o desempenho de seus projetos. Desta reunido eles

encontraram uma série de principios comuns descrito a seguir:

“Estamos descobrindo maneiras melhores de desenvolver software fazendo-o nés mesmos e

ajudando outros a fazé-lo. Através desse trabalho, passamos a valorizar:

= Individuos e interagdo entre eles mais que processos e ferramentas;
= Software em funcionamento mais que documentagdo abrangente;

= Colaboragdo com o cliente mais que negociagdo de contratos;

37

= Responder a mudangas mais que seguir um plano.

Ou seja, mesmo havendo valor nos itens a direita, valorizamos mais os itens a esquerda.”

Além do Manifesto Agil, foram decididos nesta reunido o uso do termo “Agil” e
a criacao do Agile Alliance, uma organizacao sem fins lucrativos para promover o
desenvolvimento e a disseminagéo de informagao sobre os processos “Ageis”.

Os quatro principios originais do Manifesto Agil foram refinados por seus
autores gerando doze principios:

= Nossa maior prioridade é satisfazer o cliente, através da entrega adiantada e
continua de software de valor.

= Aceitar mudangas de requisitos, mesmo no fim do desenvolvimento. Processos dgeis
se adéquam a mudancas, para que o cliente possa tirar vantagens competitivas.

= Entregar software funcionando com freqliéncia, na escala de semanas até meses,
com preferéncia aos periodos mais curtos.

= Pessoas relacionadas a negdcios e desenvolvedores devem trabalhar em conjunto e
diariamente, durante todo o curso do projeto.

= Construir projetos ao redor de individuos motivados. Dando a eles o ambiente e
suporte necessario, e confiar que fardo seu trabalho.

= O Meétodo mais eficiente e eficaz de transmitir informacdes para, e por dentro de um
time de desenvolvimento, é através de uma conversa cara a cara.

= Software funcional é a medida primaria de progresso.

* Processos 4&geis promovem um ambiente sustentavel. Os patrocinadores,
desenvolvedores e usuarios, devem ser capazes de manter indefinidamente, passos
constantes.

= Continua atengéo a exceléncia técnica e bom design aumentam a agilidade.

= Simplicidade: a arte de maximizar a quantidade de trabalho que ndo precisou ser
feito.

= As melhores arquiteturas, requisitos e projetos emergem de times auto-organizaveis.

= Em intervalos regulares, o time reflete em como ficar mais efetivo, entéo, se ajustam

e otimizam seu comportamento de acordo.

38

2.4.1 Extreme Programming

O Extreme Programming (XP) é uma das metodologias ageis mais

conhecidas. O XP define a codificacdo como a principal atividade de um projeto de

software, utilizando uma abordagem de desenvolvimento que combina principios e

praticas usadas por muitos desenvolvedores, mas levadas a niveis extremos.

Kent Beck (2004) justifica o termo “Extreme” da seguinte forma:

Se revisar o codigo € bom, revisaremos codigo o tempo inteiro (programagdo em
pares);

Se testar é bom, todos vao testar o tempo inteiro (testes de unidade), até mesmo os
clientes (testes funcionais);

Se o projeto é bom, ele fara parte das fungbes didrias de todos (refatoragéo);

Se simplicidade é bom, sempre deixaremos o sistema com o projeto mais simples
que suporte a funcionalidade atual (a coisa mais simples que possa funcionar);

Se arquitetura é importante, todos trabalhardo para definir e refinar a arquitetura o
tempo inteiro (metafora);

Se testes de integragcdo sdo importantes, entdo vamos integrar e testar varias vezes
ao dia (integragdo continua);

Se iteragbes curtas sdo boas, faremos iteragées muito, muito pequenas — segundos,

minutos e horas, ndo semanas, meses e anos (o Jogo do Planejamento).

O XP é uma metodologia que esta organizada em torno de valores e praticas

que atuam de forma harmoénica e coesa para assegurar que o cliente sempre receba

o maximo de valor de cada dia de trabalho da equipe de desenvolvimento de

software.

2.4.1.1 Os Valores do XP

Os quatro valores fundamentais do XP sao:

Comunicacao. Muitos problemas nos projetos estdo ligados a falhas
na comunicacao entre a equipe de desenvolvimento e também da

equipe com o cliente. Mudancas no projeto ndo sdo comunicadas entre

39

os membros da equipe, ou uma pergunta essencial ndo feita para o
cliente acaba prejudicando uma decisdo importante. O XP procura
manter a comunicacao fluindo através de praticas que nao podem ser
feitas sem comunicacdo, como o teste de unidade, programacdo em
pares e a estimativa de tarefas. O efeito de testar, programar em pares
e estimar € a comunicacao entre programadores, clientes e gerentes.
Simplicidade. O XP aposta que € melhor fazer uma coisa simples hoje
e pagar um pouco mais amanha para fazer alguma modificacdo nela se
for necessario do que fazer uma coisa mais complicada hoje que talvez
nunca sera usada.

Feedback. O feedback, ou realimentacédo, acontece constantemente
no desenvolvimento XP, para que os problemas sejam evidenciados e
rapidamente corrigidos para serem incorporados ao sistema. Seja
através de testes unitarios, avaliagdes dos programadores das estorias
escritas pelos clientes, testes de funcionalidade, integracao continua e
de colocar o sistema em produgao assim que for possivel.

Coragem. E necessario coragem para apontar uma falha na
arquitetura essencial de um sistema, solicitar ajuda quando necessario,
simplificar um codigo ja esteja funcionando, negociar o escopo do

projeto para atender o prazo.

2.4.1.2 As Praticas do XP

O XP reune doze préticas para o desenvolvimento de software que se apdiam

umas as outras:

O Jogo do Planejamento. O projeto em XP é dividido em releases e
iteracoes.Releases sdo modulos do sistema que geram um valor bem
definido para o cliente. lteracées sao ciclos de poucas semanas, em
que a equipe implementa um conjunto de funcionalidades acordado
pelo cliente. No inicio de cada release e iteragdo ocorre o Jogo do

Planejamento, que € uma reunido onde o cliente avalia as

40

funcionalidades que devem ser implementadas e prioriza aquelas que
fardo parte do préximo release ou da préxima iteracao.

Entregas Freqlientes. A equipe produz um conjunto minimo de
funcionalidades e as coloca em producédo rapidamente para que o
cliente j& utilize o software beneficiando-se dele. Releases do sistema
sdo freqlentes e adicionam mais funcionalidades, agregando mais
valor ao sistema.

Metafora. Cada projeto em XP é guiado por uma uUnica metafora
abrangente, ajudando a transmitir idéias complexas de forma simples,
através de uma linguagem comum que é estabelecida entre a equipe
de desenvolvimento e o cliente.

Projeto Simples. O projeto é realizado para atender os requisitos
atuais do sistema. Nao sao criadas generalizagdes dentro do codigo,
de modo a prepara-lo para possiveis necessidades futuras. Os
desenvolvedores se baseiam na premissa que serdo capazes de
incorporar qualquer necessidade futura quando e se ela surgir.

Testes. O XP utiliza a técnica de desenvolvimento guiado pelos testes.
Os desenvolvedores escrevem teste de unidade para que sua
confianca na operacgéao do sistema possa se tornar parte do sistema em
si. Os clientes escrevem testes de funcionalidade para que sua
confiangca na operacao do sistema possa também se tornar parte do
sistema. O resultado é um sistema que se torna cada vez mais
confidvel com o tempo, capaz de aceitar modificacées € ndo menos.
Refatoracdo. A refatoragdo é a melhoria do cddigo sem afetar a
funcionalidade que ele implementa, retirando duplicacées de co6digo,
simplificando a implementacgéao.

Programacao em Pares. Dois desenvolvedores trabalham juntos no
mesmo cbdigo e no mesmo computador. Desta forma o cédigo é
revisado permanentemente, enquanto é construido. Os
desenvolvedores se complementam gerando um codigo mais simples e
eficaz.

Propriedade Coletiva. A qualquer momento, qualquer um que perceba
uma oportunidade de acrescentar valor a alguma parte do cédigo é
obrigado a fazé-lo. No XP todos sdo responsaveis pelo sistema inteiro,

41

gerando maior agilidade ao processo € cria mais um mecanismo de
revisao e verificacdo do cédigo.

» Integracdo Continua. Uma nova funcionalidade incorporada ao
sistema pode afetar as outras que ja estavam funcionando. Desta
forma os pares integram seus cddigos com o sistema, varias vezes ao
dia, executando os testes para garantir que a integracao ocorreu sem
problemas.

» Semana de 40 Horas. A semana de 40 horas € uma referéncia para
indicar sintomas de problemas dentro do projeto. A regra do XP é nao
trabalhe uma segunda semana com horas extras. Dificiimente as
pessoas continuardo dispostas, criativas, cuidadosas e confiantes em
seguidas semanas de horas extras. Isto afetara a qualidade do
desenvolvimento.

= Cliente Presente. No XP o cliente participa ativamente do processo de
desenvolvimento, ficando disponivel para responder questdes, resolver
disputas e definir prioridades, conduzindo o desenvolvimento a partir
do feedback que recebe do sistema.

= Padroes de Codificacdo. Com a programagdo em pares e o cédigo
coletivo € essencial que a equipe possua padrdes de codificacdo para
que o sistema se torne mais homogéneo e permita que qualquer
manutencgao futura seja efetuada mais rapidamente.

2.4.1.3 O Processo XP

No processo XP os clientes participam ativamente do desenvolvimento,
especificando e priorizando os requisitos do sistema. Todos os requisitos séo
expressos como cenarios, ou estérias de usuario, que sao discutidos com os
membros da equipe.

O cliente e a equipe de desenvolvimento desenvolvem “cartdes de estérias”
que englobam as necessidades do cliente. A equipe de desenvolvimento dividira
cada estoria em tarefas e estimard o esforco e 0s recursos necessarios para a

implementagéo. O cliente prioriza as estérias para implementag¢édo, escolhendo as

42

que podem ser usadas imediatamente para proporcionar maior valor ao negdcio. Se
0s requisitos mudam, as estérias que nao foram implementadas mudam ou séo
descartadas. Se forem necessarias mudancas em um sistema que ja foi entregue,
novos cartdes de estérias sdo desenvolvidos e, novamente, o cliente decide se
essas mudancas devem ter prioridade sobre a nova funcionalidade.

Novas versdes do sistema podem ser compiladas e integradas varias vezes
ao dia e os incrementos sdo entregues para os clientes aproximadamente a cada
duas semanas (iteracbes). Uma iteracao do sistema sé sera aceita se todos os

testes forem executados com sucesso.

43

3 O Extreme Programming e o Kanban no Desenvolvimento de
Software

A producdo enxuta surgiu com métodos mais eficazes de manufatura em
contraponto a produgdo em massa baseada em processamento de grandes lotes.
Da mesma forma metodologias ageis surgiram com métodos mais eficazes de
desenvolvimento de software para atender um mercado de rapidas mudancas, que

métodos tradicionais, como o processo cascata, ndo se adequavam.

f\/‘—{ s H Analise H Frojeto J—)[n:plen'.emagiuH Teste H Implantagio J—)O

Equipe de Desenvolvimento

Figura 6 - BPMN de um processo cascata.

O processo cascata possui uma semelhanga com a producdo em massa,
onde o fluxo de trabalho é organizado em etapas bem definidas onde as atividades
sao realizadas em seqiiéncia. Todos os passos de uma etapa sao concluidos para
gue o proximo inicie, ou seja, como na producdo em massa os itens de trabalho séo
processados em lotes.

Ja metodologias ageis como o Extreme Programming, que usam uma
abordagem iterativa e incremental de desenvolvimento se assemelham a uma célula
de trabalho de fluxo unitario da producao enxuta. Cada estéria é desenvolvida por
um par efetuando as atividades de analise, projeto, implementacéao e testes.

Como o Extreme Programming define a codificacdo como principal atividade
de um projeto de software, a maioria de suas praticas tem o foco no
desenvolvimento de software, ndo enfatizando os aspectos de gestédo de projeto.

O objetivo deste trabalho é propor o uso do Sistema Kanban como elemento
de gestdo de projeto de software que utilize as praticas de desenvolvimento de

software do Extreme Programming.

44

3.1 Combinando o Extreme Programming com o Sistema Kanban

Em ambientes de equipes que utilizam metodologias ageis como Extreme
Programming e Scrum pode-se encontrar quadros com cartées sinalizando o estado
(ex.: “nd@o iniciadas”, “em andamento” e “finalizadas”) do desenvolvimento de
funcionalidades de um sistema que muitos chamam de kanban. Neste caso o nome
kanban esta apenas associado ao uso de cartées. Apesar de serem utilizados como
ferramenta de gestao, ndo se pode chamar este quadro com cartdes de um Sistema
Kanban.

O Sistema Kanban no desenvolvimento de software tem a mesma funcao que
na producdo enxuta, ou seja, € utilizado para amortecer as demandas e permitir o
estabelecimento de um fluxo continuo e de um sistema puxado de entregas
unitarias.

Os principais elementos de um Sistema Kanban sao:
= Limite definido de trabalhos em processo (work-in-process);
= (Cartdes de sinal sdo criados para representar esse trabalho;

» Os cartées sao usados para puxar o trabalho através do sistema.

A figura 7 mostra o BPMN para a implantagéo inicial de um Sistema Kanban.

Mapear o
Fluxo de Valer

Quadro
Kanban

Definir Limite

Pl HDeﬁnir Métrica }—)O

Equipe de
Desenvolvimento

Figura 7 — BPMN para a implantacio do Sistema Kanban.

45

Um Sistema Kanban pode ser implantando em qualquer processo de
desenvolvimento de software, mas neste caso sera mostrada a implantagdo com o

Extreme Programming.

3.1.1 Mapear o Fluxo de Valor

A etapa inicial para a implantagcdo de um Sistema Kanban é definir o tipo de
trabalho valorizado pelo cliente e mapear o fluxo de valor dos itens de trabalho. No
Extreme Programming pode-se definir que as estdrias de usuario sdo um tipo de
item de trabalho que sera controlado.

O mapeamento do fluxo de valor é feito identificando a série de estados em
que o item de trabalho, neste caso a estéria de usuario, atravessa ao longo da
cadeia de valor.

A figura 6 mostra a cadeia de valor de um processo cascata. O tempo total de
desenvolvimento é a soma dos tempos de cada etapa, mais os tempos de espera
causados pela transicao de cada etapa. O cliente s6 percebera o valor do software
ao final do processo quando tera o software pronto.

Ja no processo utilizando XP, procura-se maximizar o valor do software,
através de ciclos de desenvolvimentos iterativos e incrementais, entregando
software funcional o mais cedo possivel, priorizando os requisitos mais importantes
para 0s negoécios.

A identificacdo dos estados pelo qual as estérias fluem no desenvolvimento
utilizando XP deve ser feita analisando-se 0 seu processo.

r)
Escrever Flanejamento N Flanejamento Escrever Programagdo
\ Estdrizs das Re ezses wy das lteragbes 8 Testes em Par
J . J

Testes de
Erro Unidade

Teste de Teste de
Leeitagdo | Integragdo

Integragdo
Figura 8 - BPMN do Extreme Programming.

Equipe de Desenvolvimento

Felease Continua

| S—

46

O importante é se concentrar nos estados em que a estéria atravessa e ndo
nas especializacdes da forca de trabalho ou nas entregas ao longo da cadeia de
valor.

Com os estados definidos pode-se montar o quadro Kanban desenhando o
fluxo de valor da esquerda para a direita, com uma série de colunas. Cada coluna
representa um estado do fluxo de trabalho. Na figura 9 esta a representagdo do
quadro Kanban aplicado ao XP.

Planejamento Desenvolvimento Aceitacdo Release
Backlog Selecionado | Em Andamento Pronto
] G E D A
N H
K B
F
0 I C
L

Figura 9 — Quadro Kanban.

A coluna “Planejamento’ representa o Jogo do Planejamento do XP e esta
dividido em dois estados, o “Backlog” e “Selecionado’. O termo “Backlog” foi
“emprestado” do Scrum e representa a lista de desejos do cliente onde cada cartao
representa uma estéria escrita pelo cliente. Na coluna “Selecionado” do
“Planejamento” estao as estorias que foram puxadas do “Backlog” e priorizadas para
serem trabalhadas na iteragdo. A coluna “Desenvolvimento” foi dividida em duas
colunas para representar o estado “Em Andamento”, que engloba todas as fases do
desenvolvimento XP (escrever testes, codificar, testar, integrar e testar a integragao)
e o estado “Pronto” que identificam as estérias que estdo implementadas e testadas.
Da coluna “Pronto” as estoérias sao puxadas para o teste de aceitagdo com o cliente.
As estorias aprovadas sdo colocadas na coluna “Release” identificando que estao

disponiveis para a entrega.

47

3.1.2 Definir os Limites dos Trabalhos em Processo

O passo seguinte para a implantacao de um Sistema Kanban é a definicdo
dos limites dos trabalhos em processo (limite WIP) de cada etapa do fluxo de
trabalho. A definicdo dos limites é essencial para que se ajuste a demanda a
capacidade de desenvolvimento da equipe, para que nao se tenha sobrecarga,
identifique os gargalos do processo, se implemente o sistema puxado e se
estabeleca um processo de fluxo continuo.

A definicao precisa dos limites WIP nao é facil de determinar, e de um modo
geral em sistemas enxutos, estes limites sdo ajustados empiricamente em ciclos de
melhoria continua. Uma regra inicial simples € definir que cada pessoa sé ira
trabalhar com um item de cada vez. Como este trabalho utiliza-se das praticas do
XP, um par representa um recurso. Por exemplo, se ha trés duplas de

desenvolvimento o limite WIP para o estado “Desenvolvimento” sera definido em

trés.
Planejamento Desenvolvimento Aceitagéao Release
(3] (2]
Backlog Selecionado | Em Andamento Pronto
(4]
] I H
G E D A
K M L
B
] P N
F C
u \Y 0

Figura 10 — Quadro Kanban com os limites de trabalhos em processo definidos.

Na coluna “Backlog” nao ha limite WIP definido porque ele s representa a
lista de desejos do cliente, ou seja, as estdrias que foram escritas pelo cliente. Na
coluna “Selecionado” ha um limite WIP de quatro que definem os quatro itens de
maior prioridade que podem ser puxados para o desenvolvimento. A coluna
“Selecionado” funciona como um estoque amortecedor (buffer) para garantir que
tenham itens suficientes para que o fluxo nao tenha interrupcoes ou espera durante

o desenvolvimento. As colunas “Em Andamento” e “Pronto” compartilham o limite

48

WIP de trés definido para o desenvolvimento. Isto significa que um par sé podera
puxar uma nova estéria para o desenvolvimento se o limite ndo for excedido, mesmo
que existam estérias no estado “Pronto”. Isto incentiva a equipe a olhar todo o
processo € ajudar a equipe de testes de aceitacao para identificar algum problema
que esteja acontecendo na “Aceitacao” que esteja impedindo que puxe uma estéria
que esteja no estado “Pronto”.

3.1.3 Definir a Cadéncia de Entrega

A cadéncia de entrega em projetos XP é definida em uma estratégia
conhecida como “timeboxed”’, ou seja, o cronograma de entregas € dividido em um
namero de periodos de tempo definido. O software sera entregue de forma
incremental, de modo que apds cada entrega o cliente possa comecar a utilizar o
sistema e obter os beneficios que ele oferece. Desta forma os desenvolvedores
poderao receber o feedback dos usuarios finais do sistema, permitindo que se fagam
ajustes para aprimorar a qualidade dos releases subsequentes. Essas entregas séo
os releases em XP.

Os projetos em XP procuram trabalhar com o conceito de releases pequenos,
que preferencialmente devem ter em torno de dois meses. Mesmo pequenos, um
release representa um tempo muito longo para o desenvolvimento em XP. E por
esta razao, cada release é dividido em unidades de tempo menores, conhecidas
como iteracdo. Normalmente, uma iteracdo pode variar de uma a trés semanas
dependendo das caracteristicas do projeto. Uma vez definido o tamanho de uma
iteracdo, deve-se, preferencialmente, manté-lo inalterado ao longo de todo projeto,
facilitando a geréncia e o planejamento.

Em muitos projetos, nem sempre o tamanho de uma estéria se encaixa bem
no tempo definido para cada iteracdo. Algumas vezes as estdrias sdo muito
pequenas € levam algumas horas, tal como fazer uma mudanca em uma
funcionalidade existente. Algumas vezes as estoérias sao dificeis de dividi-las em
tamanhos que se encaixem em uma iteragdo. Algumas vezes as estorias variam
muito de tamanho em relagcdo a outras. Tudo isso torna o trabalho de definir a
melhor duracao das iteracdes muito dificil.

49

Em contrapartida a abordagem “timeboxed” do XP, o Sistema Kanban pode
trabalhar sem a estratégia de tempo definido das iteragdes. O desenvolvimento
continua sendo iterativo, mas o Sistema Kanban desacopla a priorizacao (entrada do
sistema) da entrega (saida). Uma estoria em um Sistema Kanban pode levar varias
semanas para ser processado. O limite ndo esta na duracao do desenvolvimento da
estéria e sim na quantidade de estdrias que estdo em desenvolvimento.

Se por exemplo for definida uma cadéncia de entrega com o cliente para duas
semanas, isto ndo implica que a estéria deve ser concluida em duas semanas,
apenas os itens na fila de “Release” serdao entregues. Todas as outras estorias

continuardo em processo para ser entregue em uma versao futura.

3.1.4 Métricas

Em qualquer tipo de projeto sdo necessarias métricas para se conseguir uma
correta gestdo do processo. Tanto no XP, quanto no Sistema Kanban as métricas
sao relacionadas a medida de capacidade. Ou seja, é importante conhecer a
capacidade para atender as demandas sem causar sobrecarga no processo. Forcar
0 processo a trabalhar acima de sua capacidade causara turbuléncias e as coisas
acontecerao mais devagar.

Uma medida de capacidade em sistemas iterativos como o XP é a velocidade,
isto &, quantas estérias podem ser regularmente entregues durante o tamanho da
iteragédo escolhida. Como os tamanhos das estorias variam, a velocidade € medida
em termos de pontos. Cada estéria tem atribuido uma quantidade de pontos em
funcdo do seu nivel de dificuldade. Uma estoria deveria variar entre um e trés pontos
ou seis pontos, mas ndao mais que isso. Estdrias maiores deveriam ser quebradas
em estérias menores. A equipe deveria completar o mesmo numero de pontos por
iteracdo. Por exemplo, uma equipe pode ter contabilizado 40 pontos por iteracao.
Essa velocidade define a capacidade desta equipe. E importante ressaltar que
velocidade é uma medida de capacidade e ndo uma medida de desempenho.

A medida de capacidade do Sistema Kanban esta relacionada a quantidade e

a idade dos trabalhos em processo (WIP). A taxa de transferéncia total dos itens

50

entregues em um dado periodo de tempo é uma medida de capacidade. Esta taxa
de transferéncia é chamada de throughput.

Throughput = WIP / Tempo de Ciclo

O tempo de ciclo é a duracdo para completar um processo. No nosso caso é
o tempo gasto pela estoria percorrer do estado “Selecionado” até o estado “Release”
do Sistema Kanban. Este tempo de ciclo algumas vezes é chamado de lead time.

E possivel reduzir o tempo de ciclo reduzindo a quantidade de trabalhos em
processo (WIP). O ideal de um sistema enxuto é alcancar o fluxo unitario de pecas,
ou seja, o tamanho do lote é igual a um. Somente ha um Unico item sendo
processado em cada etapa do fluxo de trabalho. Como o tempo de processamento
de cada trabalho pode sofrer variagcbes € necessdria a utilizacdo de filas, ou
estoques de amortecimento (buffers) para garantir o fluxo continuo. Quanto mais
estavel o processo ficar, menos filas serdo necessarias e consequentemente o

tempo de ciclo diminuira, tornando o processo mais eficaz.

3.1.5 A Gestao Visual

A Gestao Visual esta ligada a utilizacado de controles visuais. Os controles
visuais sdo quaisquer dispositivos de comunicacao utilizados no ambiente de
trabalho para informar rapidamente como o trabalho dever ser executado e se ha
algum desvio de padrédo. Auxilia a todos que desejam fazer um bom trabalho a ver
imediatamente como o estdo executando. Pode mostrar a que categoria os itens
pertencem, quantos itens devem constar naquela categoria, qual procedimento
padrdo para uma determinada tarefa, e muitos outros tipos de informacdes
importantes para o fluxo de atividades de trabalho. O controle visual esta ligado a
criacao de informacdes just-in-time de todos os tipos para garantir a execucao rapida
e adequada de operacdes e de processos.

O Sistema Kanban é um bom exemplo de controle visual. O quadro Kanban
da um rapido feedback a todos sobre o estado do desenvolvimento. A utilizacdo dos
cartbes para a operacdao do sistema puxado melhora os aspectos de auto-

51

gerenciamento das equipes. Problemas podem ser visualizados para que sejam
solucionados o mais rapido possivel. Todos visualizam a mesma informagao, sejam
clientes, gerentes ou desenvolvedores, melhorando o processo de comunicagao.

As informacdes no quadro Kanban podem ser enriquecidas com a utilizacéo
de mais recursos visuais. Por exemplo, os cartdbes que representam as estorias
podem ser classificadas por cores para identificar tipos diferentes de funcionalidades
que representam. Cartdes verdes poderiam representar estorias que agregam valor
diretamente ao sistema (novas funcionalidades). Cartdes vermelhos poderiam
representar estérias necessarias para a correcdo de problemas no sistema. E
cartdes amarelos poderiam representar estorias para melhorias no sistema.

Outras informacbes importantes para enriquecer o controle visual sdo os
graficos. Um grafico normalmente utilizado em metodologias ageis é o gréafico de
burndown. O grafico de burndown mostra quanto trabalho ainda resta para concluir a
iteragdo. Sua principal proposta € mostrar facilmente o mais cedo possivel se o
cronograma esta sendo cumprido ou ndo para que sejam tomadas as agdes cabiveis

se necessario.

1009 B
%
Fil] \"'-
. ;
50 - -]
m
L
m
.
25 -N
LN
o - b

1T 2 345 6 7.8 8 1011 1213

-# Planejado -« Realizado

Figura 11 — Grafico de burndown.

Um grafico utilizado em sistemas enxutos € o CFD, ou Cumulative Flow
Diagram (Diagrama de Fluxo Acumulado). Este grafico mostra o quanto o fluxo esta
nivelado e como o WIP afeta o tempo de ciclo.

52

30
25
20
O Backlog
of
: 15 B Dev
items 9 items |
in each - WIP J @ Test
column N\ B Production
5
0

i 234 5867831010101
Day

Figura 12 — Grafico CFD (Cumulative Flow Diagram).

Neste exemplo, todo dia o total de nimero de itens em cada coluna do quadro
Kanban esta empilhado no eixo Y. No dia 4 ha 9 itens no quadro. Iniciando da
coluna mais a direita ha 1 item em Producdo, 1 item em Teste, 2 em
Desenvolvimento e 5 no Backlog. A seta vertical e horizontal mostra a relacao entre
o WIP e o lead time ou tempo de ciclo.

A seta horizontal nos mostra que os itens adicionados ao Backlog no dia 4
demoraram, em média 6 dias para chegar a Producdo. Cerca de metade desse
tempo foi em Teste. Pode-se ver que se fosse limitado o WIP no Teste e no Backlog
haveria redugéo significativa no lead time.

O declive da area azul-escura nos mostra a velocidade (ou seja, numero de
itens implantado por dia). Ao longo do tempo, podemos ver como maior velocidade
reduz o lead time, enquanto aumentar o WIP aumenta o lead time.

3.1.6 Operacao do Sistema Kanban

No modelo proposto, a operacao do Sistema Kanban esta centrada no quadro
Kanban e nos cartdes que representam as estérias escritas pelo cliente. Os cartdes

53

fluem pelos estados que representam o desenvolvimento baseado no Extreme
Programming.
As figuras abaixo mostram, em BPMN, o ciclo de desenvolvimento baseado

no Extreme Programming utilizando o Sistema Kanban.

s Escrever Classificar
= = CTE v Eak
5 EE.-;;‘E?i-_esr Testes Estérias Por @,
= - Funcionais Valor
(%)
™, .
i Carts de Qu’%\\] ro
H Estdrias Kanban
Auilio Para
A R Escrever
Testes
Funcionais
o
=
s e e e el
a
E
]
o . Classificar
> Estimar Estén
----------------------- - tarias Por
= o
@ Rlsoo
0
[
o
1)
-
1]
B
3
o
w
Atuglizar Backlog

Figura 13 - BPMN do planejamento

A figura 13 mostra em BPMN a fase do planejamento, onde o cliente escreve
as estérias, e os testes funcionais e as classifica em funcdo do valor para os
negécios. O testador auxilia o cliente para escrever os testes funcionais. Os
programadores estimam as estorias e as classificam pelo risco em fungdo da
precisdao que podem estimar. O rastreador fica responsavel por reunir estas
informacdes e atualizar o quadro na coluna “Backlog”.

54

W

Quadro
Kanban

Puxar Estdria
Pricritaria do
"Backlog” para
“Selecionado”

Selecionado™ < WIP

Verificar
‘I/ 5 Quadro
Kanban

Cliente

“Selecionado” = WIP

Figura 14 - BPMN da priorizacio das estorias

A figura 14 mostra o processo de priorizacao das estorias feita pelo cliente e
sua interacdo com o quadro Kanban, puxando as estérias mais prioritarias para a
coluna “Selecionado”.

A figura 15 mostra como as estérias fluem em um sistema puxado do
desenvolvimento, respeitando os limites de trabalho em processo (WIP) para que
ndo haja sobrecarga do sistema, fazendo-o trabalhar na sua capacidade real.

Como o sistema é puxado e os limites de trabalho em processo definidos
devem ser respeitados, os problemas sdo expostos imediatamente porque ha a
interrupcdo do fluxo, seja por um desequilibrio na composicdo da equipe ou
problemas que podem ocorrer durante o desenvolvimento. Isso da o sentido de
urgéncia a equipe para que o problema seja resolvido rapidamente.

A interacdo com o sistema €& feita por todos, clientes e equipe

desenvolvimento, promovendo o auto-gerenciamento.

55

Cliente

Testede
Aceitaggo

Quadro
Kanban

Equipe de Desenvolvimento

Pusar Estéria de
“Desenvelvimento -
Fronic” para
“Aceitscio”

Verificar
Quadro
Kanban

Disponivel

Teste de
Aceitagdo

Atualizar
quadro
“Release”
Release

“Fronto =0

Puxar Estéria de
*Flancjamento -
> " para

i R P
3 Desenvohviments < VP | -acoonadd’ para
Em Andamento”

S

Werificar
uadro
Kanban

Dispenivel

“Desenvolvimento = WIF

®
®

Programagde
em Par

Escrever
Testes

Testede

Unidade

Erro

}4

Testede
Integragao

Integragao
Continua

Il

Atualizar Quadro
Desenvolvimento
- Pronto”™

Atualizar Métricas H I«éurgl&:r]—O
S v
Cartdes de
Estérias CFD

Figura 15 - BPMN do desenvolvimento

56

4 Conclusoes

O Pensamento Enxuto é um tema recente no desenvolvimento de software e
tem sido levantado principalmente nos meios das comunidades que utilizam
metodologias ageis.

O estudo para o desenvolvimento deste trabalho mostrou que existem mais
de uma abordagem para se aplicar os principios enxutos ao desenvolvimento de
software. Alguns abordam as praticas utilizadas em metodologias &geis
relacionando-os com o0s principios enxutos e outros abordam os processos de
desenvolvimento de software em termos de fluxo de trabalho aplicando os principios
enxutos.

A abordagem das praticas das metodologias ageis em termos enxutos
geralmente acaba focando apenas nas praticas para a eliminacao de desperdicio,
gerando apenas uma base de compreensdao melhor das praticas de
desenvolvimento de software que sdo comuns nas metodologias ageis.

Ja abordagem no fluxo de trabalho em termos enxutos envolve a aplicagéo
mais clara dos principios enxutos relacionados ao fluxo continuo e ao sistema
puxado, que sdo essenciais para eliminacao de sobrecarga e do desnivelamento das
demandas, que sao fontes de desperdicios. O Sistema Kanban no desenvolvimento
de software faz parte desta abordagem.

A implantacdo de um Sistema Kanban no desenvolvimento de software se
mostra como um processo que pode levar de forma mais efetiva a implantacéo de
Desenvolvimento Enxuto de Software. Porque com o Sistema Kanban expde todo o
fluxo de trabalho do processo de desenvolvimento de software deixando evidente
todos os gargalos e problemas do processo para que sejam constantemente
tratados em ciclos de melhoria continua para a efetiva eliminagao dos desperdicios.
O processo é olhado como um todo e ndo somente na aplicagdo de praticas e
ferramentas para o desenvolvimento de software.

A utilizacdo do Extreme Programming complementa este sistema com suas
praticas especificas de desenvolvimento de software, que de uma forma geral tem

principios compativeis com os principios enxutos.

57

REFERENCIAS

ANDERSON, D. J. “The Kanban Primer: A Cultural Evolution in Software”.
Better Software, Jan/Fev 2009. pp 84-90.

ANDERSON, D. J. Agile Management for Software Enginnering: Applying the
Theory of Constraints for Business Results. Prentice Hall, 2003.

ASTELS, D.; MILLER, G.; NOVAK, M. Extreme Programming: Guia Pratico.
Campus, 2002.

BECK, K. Programacao Extrema Explicada: Acolha as Mudancas. Bookman,
2004.

HIBBS, C. The Art of Lean Software Development: A Pratical and Incremental
Approach. O’'Reilly Media, 2009.

LADAS, C. Scrumban - Essays on Kanban Systems for Lean Software
Development. Modus Cooperandi Press, 2009.

LIKER, J. K. O Modelo Toyota: 14 Principios de Gestao do Maior Fabricante do
Mundo. Bookman, 2005.

LIKER, J. K.; MEIER, D. O Modelo Toyota: Manual de Aplicacao. Bookman, 2007.

LIKER, J. K.; HOSEUS, M. A Cultura Toyota: A Alma do Modelo Toyota.
Bookman, 2009.

OHNO, T. O Sistema Toyota de Producao: Além da Producao em Larga Escala.
Bookman, 1997.

POPPENDIECK, M.; POPPENDIECK, T. Leading Lean Software Development:
Results Are Not the Point. Addison-Wesley, 2009.

SOMMERVILLE, I. Engenharia de Software, 82 edicao. Sado Paulo: Pearson
Addison-Wesley, 2007.

TELES, V. M. Extreme Programming. Novatec, 2004.

WOMACK, J. P.; JONES, D. T. A Mentalidade Enxuta nas Empresas: Elimine o
Desperdicio e Crie Riqueza. Elsevier, 2004.

