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Resumo

Redes neurais artificiais (RNAs) possuem diversas aplicagoes, sendo indicadas, principalmente,
para a resolugao de problemas envolvendo reconhecimento de padrdes e generalizagao. Entretanto,
a maior parte de seus modelos envolve unidades de multiplicagdo, o que aumenta a complexi-
dade de sua implementagao em hardware. Motivados por esse problema, surgiram diversos estudos
envolvendo redes neurais sem peso (RNSP). O modelo WISARD (Wilkie, Stonham, Aleksander
Recognition Device) é uma RNSP baseada em RAMs (Random Access Memories) que, entre outras
vantagens, possui um tempo relativamente curto de treinamento e uma estrutura légica simples.
No entanto, existem poucos resultados sobre a implementagao em hardware desse modelo na lite-
ratura. Este trabalho envolve a descrigdo de uma rede WISARD parametrizada em VHDL ( Very
High Speed Integrated Clircuits Hardware Description Language), sintese e desenho do layout na
tecnologia AMS (AustriaMicroSystems) CMOS (Complementary Metal-Oxide-Semiconductor) 0,35
pm, validagao em FPGA (Field-programmable Gate Array) Cyclone II e o desenvolvimento de uma
equagao relacionando os parametros da rede e a area minima gerada em ASIC (Application Specific
Integrated Clircuit). A frequéncia maxima de operagao do circuito foi de 240 MHz segundo a simu-
lagao do layout (modelo tipico) em ASIC e de 350 MHz na implementacdo em FPGA. O layout

completo do ASIC ocupou uma area de 0,329 mm?

, € a sintese para FPGA utilizou 288 células
logicas, das quais 196 possuiam registradores logicos dedicados e 92 apenas LUTs (Look-up Tables).
Os resultados da equagdo que estima a area gerada em ASIC apresentou uma correlagdo de 0,98

com os valores obtidos na sintese.

Palavras-chave: rede neural, WISARD, ASIC, CMOS, FPGA.
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Abstract

Artificial neural networks (ANNs) have many applications and are mainly indicated to solve
problems involving pattern recognition and generalization. However, most of its models involve
multiplication units which increases the complexity of its implementation in hardware. Motivated
by this problem, several studies involving weightless neural networks (WNN) have emerged. The
WISARD (Wilkie, Stonham, Aleksander Recognition Device) model is a WNN based on RAMs
(Random Access Memories) which, among other advantages, has a relatively short time of training
and a simple logical structure. However, there are few results on hardware implementations of this
model in the literature. This work involves the description of a parametrized WISARD network in
VHDL (Very High Speed Integrated Circuits Hardware Description Language), synthesis and layout
design in the AMS (AustriaMicroSystems) CMOS (Complementary Metal-Oxide-Semiconductor)
0.35 pm technology, validation on a Cyclone II FPGA (Field-programmable Gate Array) and the
development of an equation relating the parameters of the network and the minimum area gene-
rated in ASIC (Application Specific Integrated Circuit). The maximum frequency of operation of
the circuit was 240 MHz according to ASIC layout simulations (typical model) and 350 MHz in
the FPGA implementation. The complete ASIC layout occupied an area of 0.329 mm?, and the
FPGA synthesis used 288 logical cells, of which 196 had dedicated logic registers and 92 only LUTs
(Look-up Tables). The results of the equation that estimates the area generated in ASIC showed a

correlation of 0.98 with the values obtained in the synthesis.

Keywords: neural network, WISARD, ASIC, CMOS, FPGA.
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Capitulo 1

Introducao

1.1 Contextualizacao e Motivacao

Problemas de certas categorias nao podem ser facilmente resolvidos por algoritmos. Normal-
mente sao problemas dependentes de um grande ntimero de variaveis inter-relacionadas como, por
exemplo, o problema de reconhecimento de imagens e sua classificacao em grupos. Para a resolugao
dessa classe de problemas, a estrutura do cérebro humano demonstra ser mais apropriada, pois
trabalha de modo paralelizado, além de ser capaz de aprender através de exemplos. Com o intuito
de automatizar a resolugao dessa classe de problemas, que funciona bem em sistemas biologicos,
foram criadas as redes neurais artificiais (RNAs). Seu modelo computacional compartilha dos mes-
mos paralelismo e capacidade de aprendizagem nao algoritimica do seu correspondente biolégico.
Essa capacidade possibilita generalizacdo e associagdo de dados em RNAs, ou seja, a partir de um
conjunto de treinamento, uma rede neural pode encontrar solugoes para entradas similares, porém
ainda nao apresentadas, o que implica em um alto grau de tolerancia a falhas quando os dados
de entrada possuem certa margem de ruido (KRIESEL, 2005). Apesar do abandono do estudo de
RNAs com a publicagdo de um livro mostrando algumas dificuldades das redes neurais modelo Per-
ceptron por Minsky e Papert (1969' apud KROSE; SMAGT, 1996), a partir do final dos anos 80 o
interesse pelo tema foi retomado. Atualmente existem diversos grupos de pesquisa trabalhando na
area (KROSE; SMAGT, 1996) e variadas aplicagoes, tais como reconhecimento de imagens (LINES
et al., 2001), identificagdo e classificacao de ondas cerebrais (CECOTTI; GRASER, 2011), analise
de séries temporais financeiras (OLIVEIRA, 2007) etc.

Ao longo do tempo foram propostos diversos modelos de redes neurais. Em muitos deles é
necessario utilizar multiplicagdo, o que dificulta sua implementagdo em hardware. Motivados por
essa dificuldade, estudos envolvendo redes neurais sem peso (RNSP) surgiram na década de 60
(BRAGA et al., 2000). A rede WISARD (Wilkie, Stonham & Aleksander’s Recognition Device)
¢ uma RNSP formada por discriminadores baseados em RAMs (Random Access Memories) que,
entre outras vantagens, possui um tempo relativamente curto de treinamento e uma estrutura légica
simples (PATTICHIS et al., 1994).

Linguagens de descrigao de hardware (Hardware Description Languages - HDLs) sao linguagens
computacionais com a finalidade de descri¢ao formal de circuitos digitais, representando o hardware
independentemente da tecnologia alvo a ser utilizada para sua sintese. Entre as principais vantagens
da utilizacdo de HDLs estao a facilidade de descri¢do e simulacao de circuitos complexos. VHDL
(Very High Speed Integrated Circuits HDL) é, junto com Verilog, uma das HDLs mais empregadas
na industria e no meio académico (GODSE; GODSE, 2009).

A tecnologia CMOS (Complementary Metal-Ozxide-Semiconductor) é bastante utilizada em cir-
cuitos integrados (Cls), principalmente para o projeto de circuitos digitais, devido ao seu baixo
consumo de poténcia, facilidade de projeto e alto nivel de integracdo. Segundo BREWER, (1998),
cerca de 98% da producao de semicondutores era baseada em silicio, sendo mais de 75% dos circuitos

IMINSKY, M.; PAPER, S. Perceptrons: An Introduction to Computational Geometry. The MIT Press,
1969.



2 INTRODUCAO 1.3

feitos em CMOS (dados de 1998). O dominio da tecnologia CMOS continua atualmente: no taltimo
trimestre de 2011, a produgao semanal de wafers em tecnologia MOS atingiu 90% da produgao
total (wafers incluindo circuitos discretos e integrados) (SIA, 2012).

Assim, a popularidade e aplicabilidade de redes neurais, HDLs e circuitos com tecnologia CMOS
foram os principais fatores motivadores para a elaboracao desse projeto. Outra motivagdao é que,
embora a rede WISARD tenha sido criada com o intuito de implementagdo em hardware, a maior
parte dos trabalhos encontrados na literatura a seu respeito foi feita em software, como os projetos
de SOUZA (2011) e LINES et al. (2001). Além disso, as implementagoes em hardware encontradas
(AZHAR; DIMOND, 2002, WILLIAMS; YORK, 1999) nao mostraram resultados de area ocupada
e frequéncia maxima de operagao do circuito.

1.2 Objetivos
Esse trabalho tem como objetivos:

e a descrigdo parametrizada de uma rede neural modelo WISARD em linguagem VHDL;

e sintese de um exemplo da rede neural WISARD para ASIC (Application Specific Integrated
Circuit) na tecnologia CMOS 0,35 pm da AMS (AUSTRIAMICROSYSTEMS, 2003, AUS-
TRIAMICROSYSTEMS, 2012);

e a realizacao de simulacoes do ASIC para verificagao da frequéncia méaxima de operacgao e do
consumo de poténcia do circuito;

e a validagao da descrigao em VHDL através de FPGA (Field-Programmable Gate Array).

Através dos dados obtidos, procura-se estabelecer, adicionalmente, relagdes entre os parametros
da descri¢ao da rede e a drea minima (excetuando-se conexoes de metal) do circuito implementado
em ASIC.

1.3 Organizagao do Trabalho

O restante dessa monografia esta divido como segue: o Capitulo 2 apresenta os conceitos tedricos
aprendidos durante o desenvolvimento do projeto; o Capitulo 3 descreve as ferramentas utilizadas,
consideracgoes de projeto e a implementacao da rede neural e dos testes; o Capitulo 4 mostra os
resultados obtidos e os discute; e o Capitulo 5 apresenta a conclusao do trabalho.



Capitulo 2

Fundamentos Teodricos

Neste capitulo é apresentado um breve resumo de redes neurais artificiais, focando-se em redes
neurais sem peso e, mais especificamente, na descri¢gao da rede WISARD.

2.1 Redes Neurais Artificiais

2.1.1 Introducgao

Redes neurais artificiais (RNAs) sao sistemas computacionais que lembram a estrutura do cé-
rebro humano, executando tarefas de forma nao algoritmica (BRAGA et al., 2000). Elas possuem
em geral duas fases de operacao: a fase de aprendizado ou treinamento, quando os parametros
da rede sao ajustados de acordo com as entradas apresentadas, e a fase de uso ou teste, na qual
a rede é utilizada para executar alguma tarefa. Desse modo, a composicao final de uma rede nao
é pré-determinada, sendo uma funcao de suas entradas de treinamento. A sua estrutura é formada
por nés, também chamados de neurdnios, dispostos em uma ou mais camadas interligadas por co-
nexoes denominadas axdnios. Na maioria das RNAs, essas conexdes possuem pesos, de forma que
ponderam as entradas recebidas pelos neurénios.

As principais caraceristicas que levam & solu¢ao de problemas através de RNAs sdo suas ca-
pacidades de aprendizagem com um ntumero reduzido de exemplos, e de posterior generalizagao,
responséavel por a rede responder conforme o esperado a entradas desconhecidas.

A fim de se compreender a estrutura e o funcionamento de uma rede neural artificial, seré feita
uma breve explicacao sobre seu sistema bioldgico equivalente sem, entretanto, entrar em detalhes
que fogem ao escopo do projeto.

Os neurdnios biolégicos possuem trés componentes béasicos: o corpo do neurdnio, os dentritos e o
axonio (BRAGA et al., 2000), conforme mostrado na Figura 2.1. Através dos dentritos a informagao
chega ao corpo celular, é processada e gera uma saida que seré conduzida pelo axénio até os dentritos
dos proximos neurénios. A conexao entre dentritos e axoénios é denominada sinapse. No estado de
repouso, a agao de bombas de sodio e potassio dentro do neurénio, que enviam 3 fons de sédio (Na™)
para fora da célula a cada 2 fons de potassio (KT) que entram, cria uma diferenga de potencial de
aproximadamente - 70 mV em relacao ao exterior. Para que a célula produza um impulso nervoso e
dispare para as células seguintes é necessario que a combinacao de impulsos inibitérios e excitatorios
de entrada aumentem a diferenca de potencial do neurénio para - 50 mV. Nesse momento, canais da
célula controlados por tensao e responséveis pelo transporte de sédio se abrem, de forma que seus
fons adentram o neurdnio elevando a tensao para 30 mV. Assim, moléculas neurotransmissoras sao
geradas, determinando a polarizagdo ou despolarizagao das proximas células. Apds a geracdo de um
impulso, o neurénio entra em um periodo de refragdo, no qual sua diferenca de potencial retorna a
do estado de repouso devido ao fechamento dos canais de sodio (ALTERS; ALTERS, 1999).

O primeiro modelo matematico de um neurénio foi descrito por MCCULLOCH; PITTS (1943)
e ¢ denominado MCP, sendo utilizado como base para a maioria das implementacoes de redes
neurais. Este modelo apresenta n entradas representando os dentritos, (z1,...,zy), € uma saida y
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Layers of

sheat Nodes of Ranvier

Dendrites

Figura 2.1: Neurdnio biolégico. Fonte: ALTERS; ALTERS, 1999, p. 263.

binéria, representado o ax6nio. As sinapses sao modeladas por conexdes entre neurénios com pesos
acoplados (w1, ...,w,). No modelo MCP, o disparo do neur6nio ocorre quando a soma ponderada
de suas entradas atinge um limiar 8, conforme a Equacao 2.1.

> wawi > 6 (2.1)
=1

Além disso, no modelo MCP sao feitas as seguintes simplificagdoes (MCCULLOCH; PITTS,
1943):

e a atividade do neurénio é um processo binario;

e um numero fixo de sinapses deve ser excitado dentro do periodo de repouso a fim de excitar
um neurdnio em qualquer tempo, e esse ntimero é independente da atividade anterior e posigao
do neurdnio;

o0 Unico atraso significativo no sistema nervoso é o atraso sinaptico;

a atividade de qualquer sinapse inibitéria previne completamente a excitacdo do neurdnio
naquele periodo;

e a estrutura da rede ndo muda com o tempo.

Entretanto, no artigo em que o modelo MCP é apresentado nao ha preocupagao com técnicas de
aprendizado, de forma que as diferencas entre o sistema bioldgico e o modelo MCP, principalmente
a assuncao de que os pesos acoplados nao sao ajustaveis, tornaram o modelo original bastante
limitado.

Nas diversas variagdes do modelo MCP original, a saida ndo necessariamente é binéria, mas
representada por uma funcao qualquer, como rampa, degrau etc. Além disso, o numero de camadas
da rede (quantidade de neurénios percorridos por um dado entre qualquer entrada e saida da rede),
a quantidade de neurdnios por camada e o tipo de conexao entre eles (com realimentagao ou nao,
conexao parcial ou completa) podem ser alterados. Estes parametros permitem a divisao das RNAs
em diversas classes, como retroalimentadas, completamente conectadas etc.

Outra classificagdo de RNAs é baseada no modo de aprendizado, isto é, no algoritmo através do
qual pardmentros da rede neural, como os pesos, sao ajustados a fim de executar a tarefa desejada.
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Baseado nessa classificacao, as redes neurais sao divididas em dois grupos: redes de aprendizado
supervisionado (quando informagoes sobre a saida esperada sao passadas para a rede através de um
supervisor) e nao-supervisionado (quando nao hé supervisor, o aprendizado depende da redundancia
da entrada).

2.1.2 Redes Neurais Sem Peso

Devido & dificuldade de implementacao em hardware dos pesos das conexdes entre os neurénios,
uma nova classe de RNAs passou a ser estudada: as redes neurais sem peso (RNSP). O primeiro
trabalho relacionado a RNSPs foi o método das n-tuplas de BLEDSOE; BROWNING (1959), cuja
aplicagao era o reconhecimento de caracteres alfanuméricos. O projeto consistia em um mosaico de
10x15 fotocélulas aleatoriamente agrupadas em 75 pares (n-tuplas, onde n=2) de forma exclusiva
(cada fotocélula relacionada a apenas um elemento de uma n-tupla). Nesse mosaico eram projetados
os caracteres, de modo que um valor binario era associado a cada fotocélula de acordo com a ilumi-
nacao da mesma (Figura 2.2). Além disso, foi utilizada uma matriz de memoria com palavras de 36
bits cujas linhas representavam todos os valores que as n-tuplas poderiam assumir, totalizando 300
(4 combinagoes para cada uma das 75 n-tuplas). Desse modo, cada par de fotocélulas era responsa-
vel pelo enderecamento de 4 palavras da matriz de memoéria. Os bits das palavras representavam os
caracteres alfanuméricos, totalizando 36 (26 letras, 9 nameros e um ponto). Quando um caractere
era apresentado como padrao, o nivel logico ‘1’ era colocado na matriz, na coluna correspondente
a este caractere (Figura 2.3) e em apenas uma das quatro linhas correspondentes a cada n-tupla
(justamente nas linhas associadas aos valores correspondentes a iluminagao das fotocélulas). Com a
apresentacao de outro caractere, outras linhas das n-tuplas poderiam ser também escritas seguindo
as mesmas regras descritas anteriormente.

;'/ A ;/.u'
7 1 /‘/ I
D%
% v
o < ADDRESS {'é
7 GROUP  |—
77 5 ) g:)
9% ! |
'/‘ ---'
]
[ ]
2 % 2, SF o /
/ 17 /_/ T FE
i
Iz 2
GHe7
i 71

Figura 2.2: Aprendizagem da letra I segundo o método das n-tuplas (apenas 2 n-tuplas sdo mostradas).
Fonte: BLEDSOE; BROWNING, 1959, p. 226.

A principal diferenca entre as RNSPs e as demais redes neurais consiste na localizacao da infor-
magao aprendida. Enquanto nas RNAs convencionais a mesma se encontra nos pesos das conexdes,
em RNSPs a informacéao é armazenada em tabelas-verdade. Além disso, em redes sem peso as en-
tradas sdo sempre discretas e seus neurdnios sao capazes de computar todas as fungoes booleanas
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STATE +123456789 ABCDEFGHIJKLMNOPQRSTUVWXYZ
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Figura 2.3: Matriz de memoéria apos a aprendizagem dos caracteres B, G e 5, onde o caractere G foi
apresentado duas vezes como padrao. Fonte: BLEDSOE; BROWNING, 1959, p. 227.

de suas entradas digitalizadas. Ja as redes neurais com peso, que geralmente utilizam o modelo
de neurdnio threshold neuron com entradas e pesos assumindo qualquer valor real, possuem neurd-
nios que computam apenas problemas com padroes de entrada formando conjuntos linearmente

separaveis’.

2.1.3 WISARD

WISARD ( Wilkie, Stonham, Aleksander Recognition Device) é uma implementacao em hardware
ou software do método das n-tuplas de BLEDSOE; BROWNING (1959). Entre as suas principais
vantagens estao a alta velocidade de treinamento (nas demais redes neurais normalmente o ajuste
de pesos é um processo bastante demorado), a simplicidade de sua estrutura, permitindo implemen-
tagao rapida e ajustével ao problema apresentado, além da reducao natural dos dados de entrada
devido & necessidade de quantiza¢ao dos mesmos (PATTICHIS et al., 1994).

A estrutura do sistema WISARD consiste em ndés RAM e diversos discriminadores, cada um
responsavel pelo reconhecimento de um padrao.

Um neurodnio é representado, na rede WISARD, pelo n6 RAM, uma estrutura com n entradas
e uma saida binarias. As entradas enderecam uma memoria de tamanho 2" com palavras de um
bit. Durante a fase de treinamento a memoria é escrita, sendo lida na fase de teste.

Cada discriminador representa um padrao a ser reconhecido, ou seja, corresponde a uma
classe de entradas. Ele é formado por um conjunto de k£ neurénios RAM com n entradas cada.
Portanto, o tamanho da entrada de um discriminador é de k * n bits. Cada neurdnio é conectado
a n entradas dentre todas as do discriminador, de modo que o mesmo aprende apenas parte do
padrao apresentado. A saida de um discriminador é dada pela soma das saidas dos seus neurdnios.
Em uma rede WISARD, cada discriminador pode ter um nimero diferente de neurénios, ja que
cada um representa um padrao distinto.

Para a separagdo de imagens em classes, que é a principal aplicagao desta rede, o mapeamento
entre os pizels da imagem e as entradas dos neuronios pode ser feito de modo aleatério. Durante a

! Dois subconjuntos X e Y de R? so linearmente separaveis se existe um hiperplano tal que os elementos de X e
Y estao em lados opostos do mesmo (ELIZONDO, 2006). No modelo de neurdnio threshold neuron, similar ao MCP
original, sua saida é dada por uma fungao ¢(z), que apresenta resultado binario dependendo de um limiar em z, onde
z = wo + wix1 + ... + wpx, determina a equagao de um hiperplano no espago n-dimensional (AIZENBERG, 2011).
Como poucos subconjuntos de R? podem ser separados por um hiperplano formado a partir de w reais, apenas um
threshold neuron com pesos complexos pode computar problemas nao linearmente separaveis.
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fase de teste, o discriminador que responder com a maior soma dos resultados dos neurénios tera
sua classe atribuida & imagem de entrada. Uma estimativa da qualidade dessa resposta pode ser
obtida através da confianca relativa, dada pela seguinte equagao:

c=_2_ (22)

ijax

onde C ¢ a confianga relativa, R; a resposta do j-ésimo discriminador, D a diferenca entre os
dois R;s mais altos e Rjmq, 0 maior dos R;js (BRAGA et al., 2000).

A Figura 2.4 mostra um exemplo de treinamento para um discriminador da rede WISARD com
8 neurodnios por discriminador e 16 entradas. O padrao a ser reconhecido é uma imagem de 4x4
pizels. Inicialmente as RAMs dos neurénios possuem todas as palavras em nivel 16gico ‘0’. A cada
nova entrada apresentada como pertencente a classe relacionada com esse discriminador, a memoria
de cada neurdnio é escrita com ‘1’ na posicao enderegada pelo conjunto de entradas conectados a
ele.

discriminador (classe 1) discriminador (classe 1) discriminador (classe 1)
neurénio 0 neurdnio 0 neurﬁﬂo
1[0 1 [0] 11[0]
wlo| 10[0] 10(0]
o [o] _—— pafn o[
00 0] @D o]0 00 [0] @[oJ2]o Moo [1]
neur.(;r.\io 7 0j1j0j0 neu|:€;|:1io 7 0/0f1]0 neur'é:vr'ﬂo 7
11? 0[{1]0]0 11? 0[0f[1]0 11?
00| 0[1f0 [ 10[0] 0/0/@10 L 10[1]
o [o] o1[0] o1 o]
00 [0] L 00 1] 001

(a) (b) (c)

Figura 2.4: a)Estado inicial do discriminador correspondente & classe 1; b)discriminador ap6s o primeiro
treinamento; c¢)discriminador ap6s o segundo treinamento.

Considerando a rede com apenas dois discriminadores (classes), o teste para o reconhecimento
da classe 1 ap6s o treinamento de ambas encontra-se na Figura 2.5. Para cada discriminador, o
conteido da posicdo de memoria de cada neurdnio que for enderecada pelas entradas do teste
é somado e apresentado como saida do mesmo. Um comparador é entdo usado para escolher o
discriminador que apresenta a maior soma. A classe correspondente & esse discriminador é, entao,

atribuida & imagem de entrada.
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Figura 2.5: Teste da classe 1 apos os treinamentos das classes 1 e 2.

2.1



Capitulo 3

Metodologia e Implementacao

Neste capitulo sao descritas as ferramentas de projeto utilizadas, consideragoes de projeto e as
implementacoes em Python e VHDL.

3.1 Ferramentas utilizadas
Neste trabalho foram utilizadas algumas ferramentas de auxilio a projeto, descritas a seguir:

e ModelSim é uma ferramenta utilizada para simulacéo de linguagens de descrigdo de hardware,
com suporte para as linguagens VHDL e Verilog, além de permitir o uso de scripts TCL ( Tool

Command Language) (MENTOR GRAPHICS, 2012).

e O software Quartus II prové um ambiente de desenvolvimento para system-on-a-programmable-
chip (SOPC), incluindo design baseado em diagrama de blocos ou HDL, sintese, routing e
programacao de FPGA (ALTERA, 2010).

e LeonardoSpectrum é uma suite de ferramentas de design para FPGA e ASIC, podendo ter
entradas em VHDL ou Verilog e oferecendo sintese 16gica de circuitos com anélise de tempo-
rizagdo e otimizacao baseada em restrigoes (MENTOR GRAPHICS, 1999).

e A suite IC Station é composta por trés pacotes de aplicacao: [Cgraph Basic, IC Station
Schematic-driven Layout (SDL) e ICassemble (MENTOR GRAPHICS, 2009). O ICgraph
Basic consiste em um conjunto de fung¢des bésicas de edicdo de poligonos para o desenvolvi-
mento manual de layouts de circuitos integrados (Cls). Ja o IC Station SDL permite a cria¢ao
automatica do layout através da utilizagdo das informacgoes de conectividade no esquemaético,
aumentando significativamente a produtividade em relacao ao design manual. Finalmente, o
ICassemble possui um conjunto de fungbes para o planejamento da localizagdo das células
(floorplanning) e routing interativo.

e Calibre LVS (Layout Versus Schematic) e DRC (Design Rule Check) sao ferramentas utili-
zadas na verificagao fisica do layout, isto é, se 0 mesmo se conforma com o esquemaético do

circuito (LVS) e com as regras de fabricacao (DRC) (MENTOR GRAPHICS, 2005).

e Design Architect - IC é um aplicativo de captura de esquemético com um ambiente direcionado
& otimizacao da criacdo de circuitos integrados. A ferramenta proporciona captura e verificacao
de esquematicos, descricao integrada de conexoes, instancias e atributos (Netlist) SPICE,
suporta atalhos definidos pelo usuario, permite a criacao de designs hierarquicos utilizando
metodologia bottom-up ou top-down e a edigdo de arquivos nas linguagens VHDL, VHDL-
AMS, Verilog, Verilog-A, SPICE, HSPICE e EldoSPICE. As ferramentas IC Station podem
também ser invocadas diretamente do Design Architect (MENTOR GRAPHICS, 2003).
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e Eldo é um simulador de circuitos integrados baseado em SPICE. Possui tecnologia multi-
threading e é suportado por todas as principais foundries do mundo, cobrindo os modelos
mais importantes de dispositivos (MENTOR GRAPHICS, 2011a).

e O software EZwave é um visualizador de forma de onda avangado, com suporte nativo para
diversos simuladores, dentre eles Eldo Classic e Questa. Ele permite a analise de vérios tipos

de formas de onda nos dominios da frequéncia e tempo, como diagrama de olho, carta de
Smith e histogramas (MENTOR GRAPHICS, 2011b).

e R é uma linguagem e um ambiente para computagao estatistica que possui diversas facilidades
graficas e testes classicos de anélise de dados, podendo ser facilmente estentido através de

pacotes (R-PROJECT, 2012).

A Figura 3.1 mostra como foram utilizadas as ferramentas descritas durante a execucao deste
projeto.

3.2 Consideragoes de projeto e observacoes

Para que o funcionamento da rede fosse testado, foi necessério encontrar algum problema que
pudesse ser resolvido por ela. O reconhecimento de imagens de caracteres escritos & mao é uma
aplicacao classica da rede WISARD e, portanto, foi escolhido como aplicagao da rede implementada
neste projeto.

O namero de pizels da imagem escolhido (16) para a implementa¢ao em ASIC foi o minimo
possivel de modo que ainda permitisse uma variacao nas imagens de entrada mas nao deixasse
o layout muito grande. Para facilitar a descricao da rede, todos os discriminadores possuem o
mesmo numero de neurénios. O nimero de neurénios por discriminador (8) é o que gerou a menor
quantidade de instancias na sintese do LeonardoSpectrum. Como o ntimero de pizels é pequeno,
o reconhecimento de muitos caracteres se tornaria inviavel, pois poderia haver sobreposicao dos
contornos dos mesmos. Portanto, foram escolhidas apenas trés classes para serem reconhecidas,
representando os caracteres 0, 1 e 2.

A partir desta secdo, quando for citado o numero de entradas da rede, subentende-se que o
mesmo exclui os sinais de controle, clock e reset, representando apenas os sinais correspondentes
aos pizels da imagem.

O FPGA utilizado para validagao da rede neural foi o Cyclone II (tecnologia 90 nm), devido a
disponibilidade da placa Starter Development Board (Figura 3.2), da Altera, que contém o mesmo.
A implementagao em ASIC foi feita na tecnologia AMS CMOS 0,35 pum por ser essa a tecnologia
aprendida e aplicada nas disciplinas da graduagao. Todas as simulagdes no Eldo (tipico, worst power
e worst speed) utilizaram o modelo BSIM3v3 (Berkley Short-channel IGFET Model).

3.3 Implementacao

3.3.1 Python

A seguir encontra-se uma descrigao dos codigos implementados em Python, disponiveis no Apén-
dice A.

Gerador de testbenches em VHDL (tb_ gen.py)

De modo a facilitar a geragdo de testbenches em VHDL para um numero grande de entradas
da rede neural, foi implementado em Python um programa que 1&é um arquivo de imagem bmp
em tons de cinza com 10x10 pizels e imprime, na saida padrao, uma descri¢cdo de sinais de forma
equivalente a um arquivo de testbench em VHDL. Para que as entradas da rede neural fossem
binarias, cada pizel da imagem lida é convertido em ‘0’ ou ‘1’ de acordo com um limiar no nivel
de intensidade do mesmo. As imagens a serem utilizadas nos treinamentos e nos testes podem ser
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Figura 3.1: Utilizagao das ferramentas de auxilio a projeto.
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Figura 3.2: Placa Starter Development Board da Altera. Fonte: TERASIC, 2012.

alteradas facilmente na fungao principal. Uma descrigao das fungdes mais importantes que compoem
0 programa encontra-se a seguir:

e read file: recebe como parametro o nome do arquivo de imagens bmp que entao é lido e
retorna um vetor de zeros e uns de acordo com um limiar no nivel de intensidade do pizel;

e train: recebe como pardmetros o nome de um arquivo e uma classe, chama a fungao read_ file
e imprime sinais de entrada em VHDL relativos a classe especificada e aos pizels do arquivo
lido;

e test: recebe como parametro o nome de um arquivo, chama a funcdo read_ file e imprime os
sinais de entrada da rede em VHDL baseados no arquivo lido, colocando-a no modo de teste.

Gerador de arquivo SPICE (wave_ gen.py)

Como a simulagdo do circuito implementado em ASIC envolvia varios sinais de entrada que
eram alterados em instantes de tempo diferentes, um gerador de arquivos SPICE (extensao .cir)
em Python foi criado a fim de se evitar erros na criagdo manual do mesmo, erros estes que s6 seriam
descobertos ao fim de uma longa simulacao.

A principal fungao utilizada nesse programa é a gen_ wave, que recebe como pardmetros o nome
do sinal, uma lista contendo em quais pulsos de clock o sinal deve ser alterado e outra com os valores
de tensao nesses pulsos. Esta func¢ao gera, assim, uma onda do tipo PWL (Piece- Wise Linear).

3.3.2 VHDL

Os modulos descritos em VHDL (Apéndice B) seguiram uma estrutura hierdrquica, com wi-
sard_ neuron sendo o moédulo de nivel mais baixo, seguido de wisard_ disc e wisard_top. A fim de
simular a operagdo do top-level, foi criado o testbench tb _wisard_top. Para os testes em FPGA,
foi também descrito um modulo de testbench sintetizavel, o tb syn_ wisard_top. Além disso, um
pacote (package) foi definido de modo que a rede neural fosse completamente parametrizada. A
seguir, encontra-se uma descrigdo desse pacote e dos demais modulos.
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Pacote wisard pkg

As constantes que foram criadas nesse pacote estao descritas na Tabela 3.1 e sao utilizadas como
parametro nos demais modulos.

Tabela 3.1: Constantes definidas no pacote wisard_ pkg.

Constante Significado Valor usado para
a implementacao
em ASIC
CLASS NUMBER Numero de classes 3
INPUTS NUMBER Ntmero de entradas 16
NEURONS NUMBER Numero de neurdnios 8
SUM _SIZE Numero minimo de bits para 4
descrever NEURONS NUMBER
ADD SIZE Tamanho do enderego dos neurénios: 2
INPUTS NUMBER
NEURONS _NUMBER
WORDS NUMBER | Tamanho da RAM de cada neurénio: 24PP _STZE 4

Moédulo wisard neuron

Este modulo descreve um neurénio como uma memoria com enderecamento de ADD  SIZE bits
e tamanho de WORDS NUMBER. A Figura 3.3 mostra a interface do neurénio descrito. Os sinais
de entrada e saida do bloco sao:

e clk_i: sinal de entrada de sincronismo (clock);

e rst_i: sinal de controle reset (nivel alto);

e rw_i: sinal de controle de leitura (nivel alto) e escrita (nivel baixo);
e address_i: sinais de entrada que fornecem o enderego da memoéria;

e data o: sinal de saida de dados.

Neste bloco a escrita é sincrona, sendo que o dado a ser escrito é sempre o nivel légico ‘1’; a
leitura de dados e o reset, que zera a memoria inteira, sao assincronos.

clk_j

_rsti data_o

rw i wisard_neuron

address i

Figura 3.3: Interface do neurénio descrito em VHDL.

Moédulo wisard _disc

Este moédulo consiste na descricdo de um discriminador com ntimero de neurénios e entradas
parametrizado, conforme descrito na Tabela 3.1. A interface do discriminador é apresentada na
Figura 3.4. Os sinais de entrada e saida do bloco séo:
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e clk_i: sinal de entrada de sincronismo (clock);

e rst_i: sinal de controle reset (nivel alto);

e start_i: sinal que inicia o teste ou treinamento do discriminador (nivel alto);

e mode_i: sinal de controle de teste (nivel alto) ou treinamento (nivel baixo);

e input 14: sinais de entrada da rede representando os pizels de uma imagem;

e done_ o: sinal que indica o término da operacao de teste ou treinamento;

e sum_ o: sinais que representam a soma das saidas dos neurdnios quando em teste.

O discriminador é baseado em uma maquina de estados, de forma que caso o sinal start i esteja
em nivel alto, o estado ¢é alterado de acordo com o modo da rede em treinamento (mode_i = ‘0’)
ou em teste (mode i = ‘1’).

clk_i
rst_i
Emm— done_o
start i wisard_disc
mode_i sum_o
input_i

Figura 3.4: Interface do discriminador descrito em VHDL.

Moébdulo wisard _top

Este modulo consiste na descrigao da entidade top-level da rede neural WISARD, utilizando-se
dos parametros descritos na Tabela 3.1. A Figura 3.5 mostra a interface do bloco criado. Os sinais
de entrada e saida do bloco sao:

e clk_i: sinal de entrada de sincronismo (clock);

e rst_i: sinal de controle reset (nivel alto);

e start i: sinal que inicia o teste ou treinamento da rede (nivel alto);

e mode_i: sinal de controle de teste (nivel alto) ou treinamento (nivel baixo);
e input 4 sinais de entrada da rede representando os pizels de uma imagem;
e class_i: sinais de entrada representando a classe a ser treinada;

e done o: sinal que indica o término da operagao de teste ou treinamento;

e class_o: sinais de saida indicando os resultados de cada discriminador.

A méquina de estados correspondente & implementacao de wisard_ top encontra-se na Figura 3.6.
Cada transi¢ao mostrada ocorre durante a borda de subida do clock. Durante o reset, assincrono,
a maquina retorna ao estado IDLE. Dependendo do modo da rede, o proximo estado serd o de
treinamento (S1) ou de teste (S2). O sinal de saida class_ o é um vetor de inteiros que mostra o
resultado de cada discriminador para a entrada apresentada. Quando em modo de treinamento,
deve ser apresentada a classe correspondente & entrada através do barramento class_i.
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clk_j

rst_i
— done_o

start_i wisard_top

mode_i class_o

input_i

class i

Figura 3.5: Interface do top-level descrito em VHDL.

. done_s(class_i)='0'/
start_s <= (others=>'0'")

Y
S
SN
6&’0‘ éef" N
start_i='0"/ 2
done_o <="'0' &2

mode_s <= (others =>'1")
start_s <= (others =>"'0")

done_s(class_i)="1"/
done_o<='1l'

done_s(0)='0"/
start_s <= (others=>'0")

done_s(class_i)="1'"/
done_o<="1'
class_o(i) <= sum_s(i)

Figura 3.6: Maquina de estados de Mealy correspondente a descrigdo do top-level (wisard_top).
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Moébdulo tb _wisard _top

O modulo tb_wisard_top foi criado com o intuito de simular o funcionamento da entidade
top-level (wisard_top) da rede WISARD. Esse modulo nao é sintetizavel e foi utilizado apenas no
ModelSim. Ele nao possui portas, apenas sinais internos correspondentes aos sinais de entrada e
saida da rede neural instanciada descritos na segao 3.3.2.

Com o moédulo th_wisard_ top foram realizadas diversas simulagoes: algumas utilizando os mes-
mos pardmetros do circuito que seria implementado em ASIC e outras com uma RNA de 100
entradas.

Na simulacdo do circuito que seria implementado em ASIC, trés classes s@o aprendidas com
um treinamento cada e as mesmas sdo testadas posteriormente com entradas nao utilizadas no
treinamento. Cada novo teste ou treinamento ¢ realizado ap6s o sinal de concluido (done_ s) estar
em nivel alto. A Figura 3.7 mostra as imagens correspondentes as entradas de treinamento e testes.
Para estas entradas, teremos que se o primeiro pizel for branco, input_s(0) <= ‘0’, se for preto,
input_s(0) <= ‘1’ e assim sucessivamente.

Classes
2

il
ik

Figura 3.7: Imagens de 16 pizels correspondentes as entradas no treinamento e nos testes executados por
classe.

Treinamento

Testes

EEO

A fim de se verificar o funcionamento do circuito para outros parametros, novos testes foram
criados através do gerador de testbenches implementado em Python. O ntimero de entradas foi
alterado de 16 para 100 e diversos numeros de neurénios por discriminador foram escolhidos. Um
exemplo das imagens correspondentes as entradas de wisard top encontra-se na Figura 3.8. Con-
forme descrito na secao 3.3.1 um limiar foi utilizado para que tons de cinza mais escuro fossem
convertidos em nivel 16gico ‘1’ e os mais claros em ‘0’ através do software tb_gen.py.

Figura 3.8: Imagens de 100 pizels utilizadas para treinamento (linha superior) e para teste (linha inferior)
da classe 2.

Moébdulo tb _syn wisard top

Este modulo foi criado a fim de ser sintetizado em FPGA, de modo que o correto funcionamento
do circuito pudesse ser testado e sua frequéncia méaxima obtida. As entradas utilizadas foram as
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mesmas para o teste do layout em ASIC. Os sinais de entrada, de saida e internos desse bloco sao:

e clk_i: sinal de entrada de sincronismo (clock);

e rst_i: sinal de controle reset (nivel alto);

e ledl o: sinal de saida indicando que a classe 1 foi reconhecida corretamente (nivel alto);
e led2 o: sinal de saida indicando que a classe 2 foi reconhecida corretamente (nivel alto);
e led3 o: sinal de saida indicando que a classe 3 foi reconhecida corretamente (nivel alto);
e start_s: sinal que inicia o teste ou treinamento da rede (nivel alto);

e mode_ s: sinal de controle de teste (nivel alto) ou treinamento (nivel baixo);

e inpul s: sinais de entrada da rede representando os pizels de uma imagem;

e class_1_s: sinais de entrada representando a classe a ser treinada;

e done_s: sinal que indica o término da operacao de teste ou treinamento;

e class_o_s: sinais de saida indicando os resultados de cada discriminador;

e results s: sinais correspondentes aos esperados para class o s.

O modulo tb_syn_ wisard top é baseado na maquina de estados mostrada na Figura 3.9. Du-
rante o reset, a maquina é colocada no estado IDLE, o sinal para o inicio da rede (start_s) e os sinais
ledX o sao colocados em nivel baixo e seu modo em treinamento (mode_s=‘0’). Cada transicao
representada ocorre durante a borda de subida do clock. A fim de simplificar o diagrama, os sinais
de entrada da rede correspondentes aos pizels das imagens a serem treinadas ou testadas nao estao
descritos no mesmo.

done_s='0'"/ done_s='1'/ done_s="0'/
start s <=0 start_s <="'1' start s <=0’
N class_i_s <=1

A
start s <="'1"
class i s <=0

done_s='1"/
start_ s <="1'
class_i_s <=2

done_s='0"/
start_s <="'0"

done_s='1" and

class_o_s != result_s/

start_ s <="'1' done_s='0'/
start_s <="'0"

done_s='1" and class_o_s = result_s/
led3_ o <="'1'

done_s='1"' and
done_s='0'/ class_o_s != result_s/
start s <= '0' Start.s <='1'

done_s='1"/
start_ s <="1'
mode_s <='1'
done_s='1" and class_o_s = result_s/
start_ s <="1'

led2 0 <="1 done_s='1" and class_o_s = result_s/

start s <="'1'
ledl_o <="1'

Figura 3.9: Maquina de estados de Mealy do testbench sintetizavel.

Nos estados IDLE, L1 e L2 sao iniciados os treinamentos das classes 0, 1 e 2 respectivamente.
No estado L3 o dltimo treinamento é concluido e o teste da classe 0 é iniciado. Durante os estados
T1, T2 e T3, caso o resultado dos testes seja igual ao esperado (que esta armazenado em um vetor),
os sinais led! o, led2 o e led3 o sdo, respectivamente, colocados em nivel alto. As portas clk_i e
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rst_1 foram conectadas a saida de clock do bloco PLL (Phase-locked Loop) da Altera ALTPLL e
de um switch da placa utilizada. Os sinais ledX o foram conectados a trés LEDs. O diagrama de
blocos do circuito sintetizado com esse moédulo se encontra na Figura 3.10.

TR
H =

.. R 7o)

.. FIlN D12 ...... R

S I O

R altpll0

S _syn_wisard_top

----- inclk0 0
....... ne inclkd frequency: 27.000 MHz = clk_i led1_o
o Operation Mode: Normal rst_i ledZ_o ] .
------- - - - PIN_R19
o Clk [Ratio|Ph (dg)|DC (%) o e
L c0 131 0.00 | 50.00 L D
I I Cyclone i S

Figura 3.10: Diagrama de blocos do circuito sintetizado no FPGA.



Capitulo 4

Resultados e Discussao

Neste capitulo sao apresentados e discutidos os resultados do projeto.

4.1 ModelSim - simulagao (16 entradas)

Utilizando-se do testbench tb_wisard_ top, foi simulado no ModelSim o funcionamento da RNA
WISARD descrita em VHDL com os mesmos parametros que foram utilizados na sintese para
ASIC, isto é, 16 entradas, 3 discriminadores e 8 neurdnios por classe. Inicialmente as 3 classes sao
aprendidas (sinais class_i = 0, 1 e 2; sinal mode_i = ‘0’) e posteriormente testadas (sinal mode_ i
= ‘1"). Os resultados dos discriminadores para cada classe encontram-se nos sinais class_ o.

Conforme esperado, durante o teste com entradas de sua respectiva classe, cada discriminador
respondeu com o maior valor (Figura 4.1 e Tabela 4.1).

Figura 4.1: Simulacao no ModelSim para 16 entradas, 8 neurénios por discriminador e 3 classes.

Tabela 4.1: Resposta dos discriminadores para simulacao do ModelSim com 16 entradas, 8 neur6énios por
discriminador e 3 classes.

Discriminante | Teste - classe 0 | Teste - classe 1 | Teste - classe 2
2 2 2 7
1 1 6 2
0 6 0 3

19
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4.2 ModelSim - simulagao (100 entradas)

Novas simulacoes no ModelSim foram realizadas para trés redes WISARD com 100 entradas, 3
discriminadores e 10, 25 e 50 neurénios por discriminador. Ao todo foram usadas 18 imagens, 6 para
cada classe (3 para treinamento e 3 para teste), como entradas do programa tb_ gen.py, responsavel
pela criagao do testbench em VHDL (tb_wisard_ top) utilizado nestas simulagoes. A alteragao do
nimero de neurénios para cada simulacao foi feita mudando-se apenas os parametros descritos no
pacote wisard_ pkg. Portanto, ndo foi necessaria a alteragdo do testbench gerado, sendo utilizadas
as mesmas imagens nas trés simulacoes.

Os resultados das simulagoes bem como a confianga relativa dos mesmos (Equagao 2.2) encontram-
se na Tabela 4.2 e nas Figuras 4.2 e 4.3. A Figura 4.2 mostra as formas de onda geradas para a
simulagao com 50 neurénios por discriminador.

Tabela 4.2: Resposta dos discriminadores para testes com imagens de 100 pizels e diversos niimeros de
neurdnios por discriminador (N/D), onde D0, D1 e D2 sao os discriminadores treinados para reconhecer as
classes 0, 1 e 2, respectivamente.

N/D | Classes testadas (nimero do teste) | DO | D1 | D2 | Confianca relativa
0 (1) 2 10| 0 1,00
0(2) 4| 3| 2 0,25
0 (3) 310 |1 0,67
1 (1) 4110 3 0,60
10 1(2) 2 |10 | 1 0,80
1 (3) 4110 | 2 0,60
2 (1) 12| 3 0,33
2 (2) 1116 0,83
2 (3) 2 2 3 0,33
0(1) 17| 2 | 7 0,59
0(2) 18] 8 | 9 0,50
0(3) 17 | 3 8 0,53
1(1) 11 | 25 | 17 0,32
25 1(2) 9 | 25| 15 0,40
1(3) 11| 25 | 16 0,36
2 (1) 13 | 12 | 17 0,24
2 (2) 11 | 11 | 23 0,52
2 (3) 12 | 10 | 17 0,29
0(1) 42 | 21 | 26 0,38
0(2) 45 | 28 | 33 0,27
0(3) 44 | 22 | 27 0,39
1(1) 40 | 50 | 42 0,16
50 1(2) 38 | 50 | 40 0,20
1(3) 40 | 50 | 42 0,16
2 (1) 39 | 34 | 40 0,03
2 (2) 34 | 33 | 48 0,29
2 (3) 39 | 32 | 43 0,09

Novamente, cada discriminador teve uma resposta maior quando apresentada uma entrada da
classe para a qual foi treinado reconhecer.



4.2 MODELSIM - SIMULAGAO (100 ENTRADAS) 21

Figura 4.2: Saida dos discriminadores para 9 testes (3 com cada classe) utilizando-se 50 neurénios por
discriminador e 100 entradas.
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Figura 4.3: Confianca relativa do resultado da rede WISARD wversus ntimero de neurdnios por discriminador
para imagens de 100 pizels.

Conforme se pode observar, a confianga relativa diminui & medida que o niimero de neurdnios por
discriminador se aproxima do ntmero de entradas da rede. Esse resultado era esperado, dado que o
aumento do nimero de neurénios faz com que cada um deles seja responséavel pelo reconhecimento
de uma quantidade menor de pizels da imagem. Dessa forma, a probabilidade de um neurdnio
responder com ‘1’ aumenta, pois o tamanho da RAM diminui.

As Figuras 4.4 e 4.5 foram criadas com o intuito de exemplificar esse efeito. Considerando-se
que o niamero de entradas da rede é 4, essas figuras mostram um treinamento e um teste realizados
para uma classe. Para uma rede com apenas um neurénio (Figura 4.4), a saida do discriminador é
a mesma do neurdnio, 0. Para uma rede com 4 neurénios (Figura 4.5), a saida é a soma das saidas
dos neurénios, 3. Pode-se ver, entao, que o discriminador com apenas um neurénio s6 reconheceria
a imagem de teste caso fosse igual & entrada apresentada como treinamento, enquanto que o dis-
criminador com mais neurénios tende a reconhecer mais imagens como pertencendo & sua classe.
Portanto, quando o ntimero de neurdnios por discriminador aumenta, cada discriminador perde
especificidade.
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Treinamento Teste
neurénio 0 neurdnio 0
1111 [ 0| 1111 [ 0|
1110 [ O 1110 [ O
1101 | Q 1101 | Q
1100 | 0 1100 | 0
1011 | Q 1011 | Q
1010 | 0 1010 | 0
1001 | O 1001 | Q
1000 | 0 EJ 1000 [ O
0111 | Q EJ 0111 | Q
0110 [ O 0110 (O
0101 |1 0101 |1
0100 | 0 0100 0)
0011 | Q 0011 | Q
0010 [ O 0010 [ O
0001 | Q 0001 | Q
0000 | 0 0000 | O

Figura 4.4: Exemplo de treinamento e teste para uma imagem de 4 pixels e 1 neurénio por discriminador.

Treinamento Teste
neurdnio 0 neurdnio 0
1[0] E
o1 |
neurénﬂ neurénio
/"‘l 1 /ﬁ\ E
,
% i neur(')c“)né r neuromc?z
A 110 110
o1 E
neurénio 3 neurdnio 3
1 [1]
) E

Figura 4.5: Exemplo de treinamento e teste para uma imagem de 4 pizels e 4 neur6énios por discriminador.
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4.3 LeonardoSpectrum - sintese

A Tabela 4.3 mostra o numero de insténcias geradas para diversos tipos de otimizacoes do
LeonardoSpectrum, bem como a frequéncia méxima estimada e a &rea minima, calculada apenas
somando as areas das instancias geradas. Como se pode observar, a frequéncia méxima de operagao
do circuito aumenta quando a sintese é feita sem a obrigagdo de manter a hierarquia (flatten),
principalmente na otimizacdo por atraso. A area gerada é menor nas sinteses nao hierarquicas
devido a maior liberdade de otimizagao do LeonardoSpectrum.

Tabela 4.3: Frequéncia méxima de operacao e area minima estimadas e nimero de instancias geradas para
diversas otimizagoes do LeonardoSpectrum no circuito a ser implementado em ASIC.

Otimizacao Frequéncia maxima (MHz) | Area (um?) | Instancias
por area (mantendo hierarquia) 220 99554 583
por area (sem hierarquia) 319 97807 523
por atraso (mantendo hierarquia) 274 101065 599
por atraso (sem hierarquia) 442 97934 492

Os esquematicos gerados pelo LeonardoSpectrum com otimizacao para area de modo hierarquico
encontram-se nas Figuras 4.6, 4.7 e 4.8.
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Figura 4.6: Esquematico do neurénio gerado pelo LeonardoSpectrum.
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Figura 4.7: Esquematico do discriminador gerado pelo LeonardoSpectrum.
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Figura 4.8: Esquematico da rede WISARD gerado pelo LeonardoSpectrum.
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4.4 IC-Station - Layout

A fim de facilitar o desenho do layout, a sintese do circuito para ASIC foi otimizada para area
mantendo a hierarquia dos moédulos.

A partir da sintese da descrigao em VHDL pelo LeonardoSpectrum foi gerado um arquivo em
Verilog com as instancias da tecnologia alvo (AMS CMOS 0,35 pm) e suas conexdes. O arquivo
foi importado e seu esquematico gerado através das ferramentas da Mentor Graphics de forma
automatizada. A partir do esquemético foram instanciadas as standard cells da tecnologia no IC
Station para que o desenho do layout fosse concluido. A localizagao (placement) das células foi feita
de modo automaético no nivel mais baixo da hierarquia (neurdnio) e parcialmente de forma manual
nos nivels mais altos devido aos blocos dos neurénios serem maiores que uma célula padrao. O routing
também foi feito de modo semi-automatico, embora as intervengoes manuais que eram necessarias
provocassem um grande atraso no desenho do layout, que devia nao apenas estar corretamente
conectado conforme o esquematico (Calibre LVS), mas conformar-se com as regras de fabricagao
(Calibre DRC). Foi também tomado o cuidado de engrossar as linhas de alimentacao (Vpp e
Vss), o que diminui a resisténcia das mesmas e gera capacitancias parasitas capazes de diminuir
o ruido causado pelas portas logicas, estabilizando o circuito e possibilitando maiores frequéncias
de operagao. As Figuras 4.9, 4.10 e 4.11 mostram os layouts do neurénio, discriminador e top-level
respectivamente.

Figura 4.9: Layout do neurénio (60 ym x 68 pm).
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Figura 4.10: Layout do discriminador (267 pm x 272 pm).
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Figura 4.11: Layout do top-level (565 pm x 582 um).
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A érea do layout de cada modulo encontra-se na Tabela 4.4. Como a area apresentada no
relatorio de sintese do LeonardoSpectrum nao considera as conexoes de metal, apenas soma todas
as areas das instancias geradas, e a sintese hierarquica tende a aumentar o desperdicio de espago,
o layout ficou maior, principalmente para o top-level.

Tabela 4.4: Areas minimas da sintese pelo LeonardoSpectrum (sem considerar as conexdes), dreas finais
do layout implementado para cada modulo e a razdo entre as mesmas (layout/LeonardoSpectrum).

Moédulo LeonardoSpectrum (um?) | Layout (um?) | Razao
wisard__neuron 2038 4106 2,0
wisard_ disc 30139 72865 2,4
wisard_ top 99554 329053 3,3

4.5 Eldo - simulagao

A partir do layout da RNA WISARD com 16 entradas, 3 classes e 8 neurénios por classe (Figura
4.11) extraiu-se um arquivo para realizar a simulac¢ao elétrica (Eldo). As simulagdes foram feitas
com os modelos tipico, worst power e worst speed e sao similares & executada no ModelSim para 16
entradas (Segao 4.1): 3 classes foram aprendidas e depois testadas.

Os resultados da simulacao para o modelo tipico encontram-se nas Figuras 4.12, 4.13, 4.14 e
4.15. A correspondéncia entre os sinais apresentados nessas figuras e os utilizados na descrigdo em
VHDL de wisard_top é mostrada na Tabela 4.5.

Tabela 4.5: Correspondénia entre os sinais da simulagao no Eldo e sua descricao em VHDL.

Eldo VHDL (wisard_top)
V(CLK) ok i
V(RST) rst_i

V(START) start_i
V(MODE) mode_i
V(DONE) done_ o
V(CLASS_O_0_0)
V(CLASS O _0_1) class_o(0)
V(CLASS O _0_2)
V(CLASS_O_0_3)
V(CLASS_O_1_0)
V(CLASS O 1 1) class_o(1)
V(CLASS O 1 2)
V(CLASS O 1 3)
V(CLASS O _2 0)
V(CLASS _O_2 1) class_o(2)
V(CLASS O 2 2)
V(CLASS_O_2_3)

Os trés primeiros pulsos de V(DONE) correspondem ao fim do treinamento das classes 0, 1 e
2, e os trés dltimos ao término dos testes. O sinal V(MODE) (Figura 4.12) indica o periodo de
treinamento (nivel logico ‘0’) e de teste (nivel logico ‘1’). Os sinais de saida do discriminador 0
(Figura 4.13) foram 6, 0 e 3; os do discriminador 1 (Figura 4.14) 1, 6 e 2; e os do discriminador 2
(Figura 4.15) 2, 2 e 7 quando as entradas do teste pertenciam as classes 0, 1 e 2, respectivamente.

Comparando-se os resultados com a simula¢ao no ModelSim (Figura 4.1) e com seus resultados
(Tabela 4.1), pode-se ver que as saidas foram as esperadas, ou seja, para uma entrada da classe 0,
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Figura 4.12: Sinais de controle e clock para o modelo tipico.
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Figura 4.14: Saida do discriminador correspondente a classe 1 para o modelo tipico.
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Figura 4.15: Saida do discriminador correspondente & classe 2 para o modelo tipico.



32 RESULTADOS E DISCUSSAO 4.7

seu discriminador correspondente respondeu com 6 (6 neurdnios dispararam) e assim por diante.

A frequéncia méaxima de operacao e a poténcia consumida encontradas para cada modelo se-
gundo a simulagéo no Eldo encontra-se na Tabela 4.6. O resultado para frequéncia méaxima, modelo
tipico, (240 MHz) foi um pouco maior que a estimativa do LeonardoSpectrum (220 MHz) pois este
possivelmente sobre-estimou as capacitancias parasitas do circuito.

Tabela 4.6: Frequéncia méxima e consumo de poténcia do top-level implementado na tecnologia AMS 0,35
pm para varios modelos.

Modelo Frequéncia maxima (MHz) | Consumo de poténcia (mW /GHz)
Worst Power 370 86,4
Tipical Model 240 83,6
Worst Speed 170 82,5

4.6 Quartus II - sintese

Foi sintetizada uma RNA WISARD descrita em VHDL com os mesmos parametros usados
no ASIC (16 entradas, 3 classes e 8 neur6nios por discriminador) para um FPGA Cyclone II
utilizando-se do testbench tb_syn_wisard_top e do bloco ALTPLL da Altera (Figura 3.10). Com
as configuraces padrao de otimizacao foram geradas, excetuando-se o testbench sintetizavel e a
PLL, 288 células logicas, das quais 196 possuiam registradores logicos dedicados e 92 apenas LUTs
(Look-up Tables).

A partir de alteracoes dos parametros da PLL da Altera e da utilizagao do testbench sintetizéavel,
pbde-se verificar que a frequéncia maxima de operacao do circuito, semelhante ao implementado em
ASIC, exceto pelo nivel mais alto da hirarquia (tb_ syn_wisard_ top), foi de 350 MHz. Comparando-
se este valor com a frequéncia maxima encontrada para a simulagao do circuito em ASIC (240 MHz
no caso tipico), temos que a implementacao em FPGA foi cerca de 45% mais réapida.

Para que fosse possivel a comparacao de resultados de frequéncia maxima de operacao entre
implementagoes diferentes (ASIC com standard cells e FPGA) em tecnologias diferentes (AMS 0,35
pum e Cyclone II 90 nm), alguns resultados da literatura foram tteis:

e Segundo KUON; ROSE (2007), a relagao média entre as frequéncias maximas de implementa-
¢oes em ASIC com standard cells (tecnologia STMicroeletronics 90 nm) e em FPGA (Stratix
IT - 90 nm) ¢é de 3,2.

e Apesar de o FPGA utilizado (Cyclone II) também ser feito em uma tecnologia 90 nm, ana-
lisando diversas implementagdes (HELIUM TECHNOLOGY, 2008, VISENGI, 2011, JOP,
2008, IPCORES, 2008), o mesmo possui uma frequéncia maxima de operagao entre 1,3 e 1,6
vezes menor que o Stratix II.

e [mplementagoes de um comparador binario em standard cells nas tecnologias STMicroeletro-
nics 90 nm e AMS 0,35 pm (PERRI; CORSONELLO, 2008) mostram uma razao de 4,7 entre
as suas frequéncias méximas de operacao.

e Ainda, de acordo com (PERRI; CORSONELLO, 2011), que implementa um banco de memo-
ria, a razdo dos atrasos da memoria (tempo de acesso aos dados, setup de endereco etc.) entre
as implementagoes em tecnologias AMS 0,35 pum e STMicroeletronics 90 nm varia entre 4,2 e
8,7.

Assim, dado que a frequéncia méaxima do circuito em FPGA é de 350 MHz, a partir das in-
formagoes apresentadas nos itens anteriores, era de se esperar que a frequéncia maxima de uma
implementagdo ASIC na tecnologia AMS 0,35 um estivesse no intervalo de 170 MHz a 430 MHz.
Como a frequéncia méaxima obtida da rede WISARD foi de 240 MHz para o modelo tipico (podendo
variar de 170 MHz a 370 MHz nos demais modelos), os resultados estao dentro do esperado.
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4.7 LeonardoSpectrum, R - analises

Com o intuito de estabelecer relagoes entre a area total das instancias geradas na implementacao
para ASIC e os parametros da rede neural descrita em VHDL, foram executadas 60 sinteses no
LeonardoSpectrum otimizadas para area mantendo hierarquia com diversos valores de niimero de
entradas, nimero de classes e niimero de neurénios por discriminador. Esses pardmetros, juntamente
com a estimativa de células de um bit (descrita na subsecao seguinte) foram relacionados com a
area e o atraso do caminho critico obtidos nas sinteses realizadas.

4.7.1 Estimativa de células de um bit

Analisando a estrutura da rede WISARD, pode-se concluir que ha uma relagéo entre o ntimero
de células de 1 bit necessarias e o nimero de neurdnios por discriminador, o niimero de classes e a
quantidade de pizels, expressa pela seguinte equagao:

Estim = N % C % 2% (4.1)

onde N é o niimero de neurdnios por discriminador, C o ntimero de classes, I o nimero de pizels
da imagem e Estim a estimativa do ntumero de células de 1 bit.

4.7.2 Correlagoes

A Tabela 4.7 e a Figura 4.16 mostram, respectivamente, as correlagbes dos dados extraidos e
um grafico de dispersao em pares. As correlagbes foram calculadas através do software R segundo
o método de Pearson e as mais importantes serao discutidas nas proximas subsegoes.

Tabela 4.7: Correlagdo entre os diversos parametros de entrada da rede WISARD, estimativas de células
de um bit e dados do relatorio apresentados pelo LeonardoSpectrum.

Area do circuito | N° Instancias | Atraso
N° Pixels 0,74 0,74 0,53
Neuronios/Discriminador 0,45 0,46 0,70
Tamanho do endereco 0,16 0,16 -0,07
N° Classes 0,50 0,50 -0,03
Estimativa de células de um bt 0,98 0,99 0,41

4.7.3 Atraso do caminho critico

A correlagao de 0,70 entre o atraso do caminho critico e o nimero de neurénios por discriminador
pode ser explicada pelas seguintes observacoes:

e Na maioria das sinteses executadas, o caminho critico encontrava-se dentro do discriminador.

e O discriminador possui um somador que acrescenta no maximo um ao seu valor anterior, ou
seja, ele pode ser considerado um contador sincrono com enable.

e O discriminador possui um comparador relacionado a esse somador.

Devido as entradas do somador terem sido descritas em VHDL como inteiros de tamanho ma-
ximo igual ao niimero de neurénios por discriminador, a drea e o atraso correspondentes a ele
crescem linearmente com o teto do logaritmo na base dois desse numero. Além disso, o comparador
relacionado a esse somador possui um crescimento de area e atraso também logaritmicos. Um outro
modo de descrever o somador seria com um shift register. Nesse caso o caminho critico quase nao
aumentaria, porém a area cresceria linearmente com o niimero de neurénios por discriminador. Por
outro lado, o comparador seria reduzido ao altimo bit do shift register.
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Figura 4.16: Grafico de dispersao em pares, onde input é a quantidade de pizels, neuron o namero de
neurénios, address o tamanho do enderego, classes o nimero de classes, estim o tamanho estimado de
acordo com a equagao 4.1, size o tamanho apresentado pelo LeonardoSpectrum, inst o nimero de instancias
e delay o atraso do caminho critico.
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4.7.4 Estimativa de area

A alta correlagdo entre a estimativa de células de 1 bit e a area minima apresentada pelo
LeonardoSpectrum (0,98), bem como o grafico apresentado na Figura 4.16, indicam uma relagao
linear entre as mesmas. Portanto, foi utilizada a fungao de regressao linear disponivel no R (Im()),
chegando-se & seguinte formula de calculo da area:

Estim = N % C % 2% % 650.2 + 51668.7 (4.2)

onde N é o niimero de neurénios por discriminador, C o ntimero de classes, I o ntimero de pizels
da imagem e Estim o tamanho minimo do circuito, excetuando-se as conexdes, em um?. O ajuste
entre a estivativa de nimero de células de bit e a drea minima dada pelo LeonardoSpectrum foi
alto, isto &, o valor de R?-ajustado (Apéndice C) foi de 0,97.

Entretanto, existem alguns pressupostos para que a regressao linear possa ser utilizada:

1. A relacdo entre a covariavel nidmero de células de um bit e a variavel de resposta drea do
circuito deve ser linear.

2. O numero de células de um bit ndo é uma varidvel aleatoria.

3. O numero de células de um bit possui uma varidncia nao nula.

4. A covariancia entre o erro e o niumero de células de um bit é nula.
5. A variancia do erro é constante (homogénea).

6. Os erros das varidveis de resposta sao independentes.

7. O erro possui uma distribui¢do normal.

Apesar do ajuste da reta ter sido bom, a variancia do erro nao é constante, ou seja, ele aumenta
com o aumento do tamanho do circuito, conforme pode ser visto na Figura 4.17. Caso a varidncia
fosse constante, o grafico de residuos por valores preditos deveria ter uma distribuicao homogénea
de pontos, nao a forma triangular encontrada. Portanto, a Equagao 4.2 deve ser usada com cautela
para um circuito maior.

4.7.5 Previsoes de area

Com a Equacao 4.2, foram feitos graficos de previsdes do tamanho do circuito para diversos
ntmeros de pizels e neurénios por discriminador com o intuito de se observar o efeito dos mesmos
na area final. Assim, foram obtidos os graficos das Figuras 4.18 e 4.19. Conforme esperado, a area
aumenta exponencialmente com a diminuicdo do nimero de neurénios. Além disso, para um nimero
fixo de neurénios por discriminador, a area também aumenta exponencialmente com o aumento do
nimero de pizels de entrada.
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A fim de se verificar a validade da estimativa em relagao as areas apresentadas pelo LeonardoS-
pectrum, foi gerado um grafico com esses valores para os casos testados (Figura 4.20).

Para um ntimero maior de pizels na entrada nao foi possivel obter os dados do LeonardoSpectrum
para uma quantidade baixa de neurdnios pois, neste caso, devido ao tamanho do circuito aumentar
exponencialmente, o programa deixou de responder.
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Capitulo 5

Conclusoes

Nesse trabalho foi descrita uma rede neural WISARD em VHDL e simulada com o software
ModelSim. Um exemplo dessa descri¢do, uma rede com 16 entradas, 3 classes e 8 neurdnios por
discriminador, foi sintetizado para ASIC. Seu layout foi desenvolvido e o circuito extraido a partir
do mesmo foi simulado no Eldo. A descricdo em VHDL da rede com os mesmos parametros foi
também validada em FPGA. Além disso, foi implementado um gerador de testbenches em VHDL e
um gerador de arquivos SPICE para esse problema especifico utilizando-se da linguagem Python.

As velocidades méximas de operagao obtidas para a rede WISARD sintetizada com 16 entradas,
3 classes e 8 neurénios por discriminador foram de 350 MHz para o FPGA Cyclone II, da Altera,
e de 240 MHz para a tecnologia AMS 0,35 um, modelo tipico. Conforme discutido na Segao 4.6,
esses resultados estao coerentes de acordo com a anélise de outras implementacoes encontradas na
literatura.

A area minima do layout apresentada pelo LeonardoSpectrum foi cerca de 3,3 vezes menor que a
area final do circuito (329053 m?) na tecnologia AMS 0,35 pum. Na sintese para o Cyclone II, foram
utilizadas 288 células logicas (196 com registradores 1ogicos dedicados e 92 com apenas LUTS).

Foi criada uma equacdo a fim de estimar a area minima do circuito implementado em ASIC
(AMS 0,35 pm) que é calculada a partir da soma das areas das instancias sintetizadas pelo Leonar-
doSpectrum. A estimativa de area fornecida pela equacao apresentou uma correlagao de 98% com
os dados reais obtidos.

Esse projeto permitiu o aprendizado sobre redes neurais, que nao haviam sido estudadas durante
a graduagao, o aprimoramento nas habilidades de descricao de hardware em VHDL direcionado &
sintese e a utilizagdo de conceitos de estatistica para gerar estimativas de area. Além disso, esse
trabalho compreendeu desde o uso de uma linguagem de alto nivel, como Python, até o desenvolvi-
mento de esquematicos e layouts de circuitos, envolvendo aplicagao de diversos conceitos aprendidos
durante a graduagdo em um mesmo projeto.

Como sugestoes para trabalhos futuros estao: otimizagoes do c6digo em VHDL com o intuito de
se reduzir a drea ou aumentar a velocidade méxima de operagao; mudancas em cada discriminador
a fim de otimizar a rede para a resolucao de algum problema especifico; implementacoes dessa rede
em outras tecnologias ASIC a fim de se comparar area e atraso do caminho critico; e comparagao
da rede WISARD com outras redes neurais a serem implementadas em hardware.
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APENDICE A — Cédigo Fonte em
Python

Gerador de testbenches - tb__gen.py

1 import struct
2 import sys

3

4 def read file(filename):

5 x- ]

6 f = open(filename, "rb")

7 i =1

8 try:

9 byte = f.read (54)

10 byte = f.read (1)

11 while byte != "":

12

13 if i = 10:

14 byte = f.read (1)

15 i=0

16 else:

17 a = (struct.unpack(’'B’, byte)[0])
18 byte = f.read (1)

19 b = (struct.unpack(’B’, byte)[0])
20 byte = f.read (1)

21 ¢ = (struct.unpack(’B’, byte)[0])
22 if a>128:

23 x.append (0)

24 else:

25 x.append (1)

26 i4+=1

27 byte = f.read (1)

28 finally:

29 f.close()

30 return x

31

32 def print_ bin(x):

33 sys.stdout.write("\"")

34 for i in range(0,len(x)):

35 sys.stdout.write(str(x[i]))
36 sys.stdout . write("\"")

37

38 def print setup():

39 print "input s <= (others=>’0");"
40 print "start s <= ’0’;"

41 print "mode s <= ’0’;"

42 print "wait for RST TIME;"

43 print "wait until rising edge(clk_s);"
44

45 def print input (input_s):

46 print "input s <= ",

47 print_bin (input_s)

48 print ";"

43
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49

50 def print_class(class_s):

51 print "class i s <= ",

52 sys.stdout.write(str(class_s))
53 print ";"

54

55 def print start pulse():

56 print "start s <= '1°;"

57 print "wait until rising edge(clk s);"
58 print "start s <= '0’;"

59

60 def print wait for domne():

61 print "wait until done s = ’17;"
62 print "wait until rising edge(clk _s);"
63

64 def train(filename, class s):

65 file read = read file(filename)
66 print _input(file read)

67 print _class(class_s)

68 print _start pulse ()

69 print _wait for done()

70 print

71

72 def print test setup():

73 print "mode s <= ’17;"

74

75 def test (filename):

76 print _input(read file(filename))
7 print _start pulse ()

78 print wait for done()

79

80

81 if mname — " main ":

82 print setup ()

83 train ("images/0_1.bmp" ,0)

84 train ("images/0_ 2.bmp" ,0)

85 train ("images/0_3.bmp" ,0)

86 train ("images/1_ 1.bmp" 1)

87 train ("images/1 2.bmp" 1)

88 train ("images/1_3.bmp",1)

89 train ("images/2 1.bmp",2)

90 train ("images/2 2.bmp" ,2)

91 train ("images/2_ 3.bmp",2)

92 print test setup ()

93 test ("images /0 4.bmp")

94 test ("images/0_5.bmp")

95 test ("images/0_6.bmp")

96 test ("images/1 4.bmp")

97 test ("images/1_5.bmp")

98 test ("images/1 6.bmp")

99 test ("images /2 4.bmp")

100 test ("images/2 5.bmp")

101 test ("images /2 6.bmp")

Gerador de arquivos SPICE - wave gen.py

1 import sys

2 from sys import stdout

3

4 def gen wave(name,times ,value, desl=True):
5 print name,

6  sys.stdout.write ('PWL()

7  print times[0], value[O0], 7,
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10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

49

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

if desl:
for i in xrange(l, len(times)):
print 7
sys.stdout.write(’\’7)
sys.stdout.write(str (times[i]))
print ’'«T14DESL-INF\’’, value[i-1], 7,
sys.stdout.write(’\’7)
sys.stdout.write(str (times[i]))
print ’'«T14DESL\’’, value[i],
else:
for i in xrange(l, len(times)):
print 7
sys.stdout.write(’\’7)
sys.stdout.write(str (times[i]))
print '«T1-INF\’’, value[i-1], ',
sys.stdout.write(’\’7)
sys.stdout.write(str (times[i]))
print '«T1\’’, value[i],
sys.stdout.write(’) ")
if  pame  — " man_ ":
VDD = 3
START1 = 3
START2 = 10
START3 = 17
START4 = 24
START5 = 40
START6 = 56
print ’\n’
times = [0, 1]
value = [VDD, 0]
gen _wave(’V _rst RST 0 ’, times, value, False)
print ’\n’
times = [0, START4]
value = [0, VDD]
gen wave(’V_mode MODE 0 ’, times, value)
print ’'\n’
times = [0, START1, STARTI1+1, START2, START2+1, START3, START3+1, START4,
START4+1, START5, START5+1, START6, STARTG+1]|
value = [0, VDD, 0, VDD, 0, VDD,
0, VDD, 0, VDD, 0]
gen wave(’V _ start START 0 ’, times, value)
print ’'\n’
times = [0, START1, START2, START3, START4, STARTS5, STARTG|
value = [0, VDD, 0, VDD, 0, 0, VDD|
gen _wave(’V_i00 INPUT 0 0 ’, times, value)
print ’\n’
times = [0, START1, START2, START3, START4, STARTS5, STARTG|
value = [0, VDD, 0, VDD, VDD, VDD, VDD
gen wave(’V_i01 INPUT 1 0 ’, times, value)
print ’'\n’
times = [0, STARTI, START2, START3, START4, START5, START6]
value = [0, VDD, VDD, VDD, VDD, 0, VDD
gen wave(’V_i02 INPUT 2 0 ’, times, value)
print ’'\n’
times = [0, START1, START2, START3, START4, START5, START6]
value = [0, VDD, 0, VDD, VDD, 0, VDD|
gen _wave(’V_i03 INPUT _3 0 ’, times, value)
print ’'\n’
times = [0, START1, START2, START3, START4, STARTS5, STARTG|
value = [0, VDD, 0, 0, VDD, 0, 0]
gen wave(’V_i04 INPUT 4 0 ’, times, value)

APENDICE A - CODIGO FONTE EM PYTHON
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print ’'\n’
times = [0, STARTI, START2, STARTS3,
value = [0, 0, 0, 0,
gen wave(’V_i05 INPUT 5 0 ’, times,
print ’\n’
times = [0, START1, START2, STARTS3,
value = [0, 0, VDD, VDD,
gen wave(’'V_i06 INPUT 6 0 ’, times,
print ’'\n’
times — [0, START1, START2, STARTS,
value = [0, VDD, 0, 0,
gen wave(’V _i07 INPUT 7 0 ’, times,
print ’\n’
times = [0, STARTI, START2, STARTS3,
value = [0, VDD, 0, 0,
gen wave( 'V _i08 INPUT 8 0 ’, times,
print ’\n’
times = [0, START1, START2, STARTS3,
value = [0, 0, 0, VDD,
gen wave(’V_i09 INPUT 9 0 ’, times,
print ’'\n’
times = [0, START1, START2, STARTS,
value = [0, 0, VDD, 0,
gen wave(’V _i10 INPUT 10 0 ’, times
print ’'\n’
times — [0, STARTI, START2, STARTS3,
value = [0, VDD, 0, 0,
gen wave(’'V _ill INPUT 11 0 ’, times
print ’'\n’
times = [0, START1, START2, STARTS,
value = [0, VDD, 0, VDD,
gen wave(’V _il12 INPUT 12 0 ’, times
print ’'\n’
times — [0, START1, START2, STARTS,
value = [0, VDD, 0, VDD,
gen wave(’V _i13 INPUT 13 0 ’, times
print ’'\n’
times = [0, STARTI, START2, STARTS3,
value = [0, VDD, VDD, VDD,
gen wave(’'V _il4 INPUT 14 0 ’, times
print ’'\n’
times = [0, START1, START2, STARTS,
value = [0, VDD, 0, VDD,

gen wave(’V _il5 INPUT 15 0 ’, times
print ’'\n’
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Pacote wisard pkg

1 library ieee;
2 use ieee.std_ logic_1164.all;
3 use ieee.numeric_std.all;

4

5 package wisard pkg is

[l )]

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

constant CLASS NUMBER integer := 3;
constant INPUTS NUMBER : integer := 16;
constant NEURONS NUMBER : integer := 8;

— minimum number of bits to describe neurons_ number

constant SUM_SIZE

integer = 4;

— inputs_number/neurons_number

constant ADD_SIZE

— 2°ADD SIZE
constant WORDS NUMBER

integer := INPUIS NUMBER/NEURONS NUMBER;

integer := 2%xxADD_SIZE;

type class vector t is array(CLASS NUMBER-1 downto 0) of
integer range NEURONS NUMBER downto 0;

component wisard top is

port (
rst i

clk i

start i
done o

input i
class i

class o

— 1’7 = test

mode i

)

end component;

component wisard disc
port (
rst i
clk i

start i
done o

in std_ logic;
in std_logic;

in std_logic;
out std logic;

in std logic_vector (INPUTS NUMBER-1 downto 0);
in integer range CLASS NUMBER-1 downto O0;

out class vector t;

, 07 = learn
in std logic

is

in std logic;
in std_logic;

in std logic;
out std logic;

47
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49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

input i : in std_logic_vector (INPUTS NUMBER-1 downto 0);
— 1’ = test, 0’ = learn

mode_i : in std_logic;

sum_ o : out integer range NEURONS NUMBER downto 0

)

end component;
component wisard neuron is
port (
rst_ i : in std_logic;
clk i : in std logic;
— 17 = read, 0’ = write
rw i : in std logic;
address i : in integer range WORDS NUMBER-1 downto O0;
data_o : out std logic

)

end component;

end wisard pkg;

Moédulo wisard neuron

0~ O Tk W

==
N = O O

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

— Module : wisard_mneuron.vhd
— Description : memory of 1 bit words
library ieee;
use ieee.std_ logic_1164.all;
use ieee.numeric_std.all;
library wisard;
use wisard.wisard pkg. all;
entity wisard_neuron is
port (
rst_ i : in std_logic;
clk i : in std_logic;
— 1’ = read, 0’ = write
rw_i : in std_logic;
address i : in integer range WORDS NUMBER-1 downto O0;
data_o : out std logic

)

end wisard neuron;

architecture rtl of wisard_ neuron is
signal memory s : std logic vector (WORDS NUMBER-1 downto 0);

begin
data_o <= memory s(address 1i);
process(clk i, rst_1i)
begin
if (rst_i = ’1’) then

memory s <= (others => ’0’);
elsif (rising edge(clk 1)) then
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if (rw_i = ’0’) then
memory s(address i) <= ’17;
end if;

end if;
end process;

end rtl;

Moébdulo wisard _disc

0~ O Tk Wi+

= e
W N = O ©

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

— Module

wisard _disc

— Description : Wisard neural network discriminator

Fach discriminator represents one class and
has ome or more neurons

library ieee;
use ieee.std logic 1164.all;
use ieee.numeric_std.all;

library wisard;

use wisard.

wisard pkg.all;

entity wisard disc is

port (
rst_ i : in std logic;
clk i : in std _logic;
start i : in std logic;
done o : out std logic;
input i : in std logic_ vector (INPUTS NUMBER-1 downto 0);
— 1’ = test, 0’ = learn
mode i : in std logic;
sum_ o : out integer range NEURONS NUMBER downto 0

)

end wisard disc;

30 architecture rtl of wisard disc is

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

type state t is (IDLE, S1, S2, S3);
signal state fsm, nstate fsm : state t;
signal i cnt : integer range NEURONS NUMBER downto O0;
signal result_s : integer range NEURONS NUMBER downto O0;
signal rw_neuron_s : std_logic;
signal data neuron_s : std_logic vector (NEURONS NUMBER-1 downto 0);
type address_t is array (NEURONS NUMBER-1 downto 0)
of integer range WORDS NUMBER-1 downto O0;
signal address neuron_ s : address t;
begin
neurons_gen: for i in 0 to NEURONS _NUMBER-1 generate
neuron_u : wisard neuron
port map (
rst i = rst_i,
clk i = clk i,
rw_i => rw_neuron_s,
address i  => address_neuron_s(i),

49
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54 data_o => data_neuron_s(1i)

55 )3

56 end generate;

57

58 process(clk i, rst_1i)

59 begin

60 if rst_i = ’1’ then

61 state fsm <= IDLE;

62 elsif rising edge(clk i) then

63 state fsm <= nstate fsm;

64 end if;

65 end process;

66

67 process (state fsm, start i, i _cnt, mode i)

68 begin

69 nstate fsm <= state fsm;

70

71 case state fsm is

72 when IDLE =>

73 if start_i = 1’ then

74 if mode i = ’1’ then

75 nstate fsm <= S1;

76 else

7 nstate fsm <= S3;

78 end if;

79 end if;

80 when S1 => — testing mode

81 nstate fsm <= S52;

82 when 52 =>

83 if i cnt = NEURONS NUMBER then

84 nstate fsm <= IDLE;

85 end if;

86 when S3 => — learn mode

87 nstate fsm <= IDLE;

88 end case;

89 end process;

90

91 process(clk i, rst 1)

92 begin

93 if rst_i = ’1’ then

94 done_o <= ’0’;

95 rw_neuron_s <= '1’ ;

96 sum_o <= 0;

97 i _cnt <= 0;

98 result s <= 0;

99 for i in NEURONS NUMBER-1 downto 0 loop

100 address _mneuron_ s(i) <= 0;

101 end loop;

102 elsif rising edge(clk i) then

103 case state fsm is

104 when IDLE =>

105 rw_neuron_s <= ’'17;

106 done_o <= ’07;

107 i_cnt <= 0;

108 result _s <= 0;

109 sum_o <= 0;

110 — test

111 when S1 =>

112 for i in NEURONS NUMBER-1 downto 0 loop

113 address _mneuron s(i) <= to_integer (unsigned (input i((i+1)
*ADD_SIZE—1 downto i*ADD_SIZE)) ) ;

114 end loop;

115

116 rw_neuron_s <= ’'17;

117
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118 when S2 =>

119 if i cnt = NEURONS NUMBER then

120 done o <= ’17;

121 sum_o <= result_s;

122 else

123 if data neuron s(i_cnt) = ’1’ then

124 result s <= result_s + 1;

125 end if;

126 i_cnt <= i _cnt + 1;

127 end if;

128

129 — train

130 when S3 =>

131 for i in NEURONS NUMBER-1 downto 0 loop

132 address _neuron s(i) <= to_integer (unsigned (input_ i((i+1)
*ADD_SIZE—1 downto i*ADD SIZE)));

133 end loop;

134 rw_neuron_s <= ’'07;

135 done_o <= ’17;

136 end case;

137 end if;

138 end process;

139

140 end rtl;

Moédulo wisard _top

1 — Module : wisard_top.vhd

2 — Description : top level entity of wisard neura network.
3 — FEach discriminator is responsible for one class
4

5 library ieee;

6 use ieee.std logic_1164.all;

7 use ieee.numeric_std.all;

8

9 library wisard;

10 use wisard.wisard pkg. all;

11

12 entity wisard top is

13 port (

14 rst_ i ¢ in std_logic;

15 clk i : in std_logic;

16

17 start i : in std _logic;

18 done_o : out std_logic;

19

20 input i : in std logic_vector (INPUTS NUMBER-1 downto 0);
21 class i : in integer range CLASS NUMBER-1 downto O0;
22

23 class_o : out class_vector t;

24

25 — 1’ = test, 0’ = learn

26 mode_ i : in std_logic

27 )

28 end wisard top;

29

30 architecture rtl of wisard_ top is

31

32 type state t is (IDLE, S1, S2, S3);

33

34 signal state fsm, nstate fsm : state t;

35

36 signal start_s : std_logic_vector (CLASS NUMBER-1 downto 0);
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signal done_s : std_logic_ vector (CLASS NUMBER-1 downto 0);
signal mode_s : std_logic_vector (CLASS NUMBER-1 downto 0);
signal sum_s : class_vector t;
disc_gen: for i in CLASS NUMBER-1 downto 0 generate
disc_u: wisard disc
port map (
rst_ i = rst_i,
clk i = clk i,
start i => start s(i),
done o => done s(i),
input_i => input i,
mode i => mode s(1i),
sum_o => sum_s(1i)
)
end generate;
process(clk i, rst i)
begin
if rst_i="1" then
done o <= 0,
class o <= (others => 0);
start _s <= (others => ’0’);
mode s <= (others => ’'1’);
elsif rising edge(clk i) then
case state fsm is
when IDLE =>
done_o <= ’0";
if start_i = 1’ then
mode s(class i) <= mode i;
if mode i=’0’ then
start _s(class i) <= ’17;
else
start s <= (others => ’1’);
end if;
else
mode s <= (others => ’'1’);
start _s <= (others = ’0’);
end if;
when S1 => — learn
start _s <= (others = ’0’);
if done s(class i) = 1’ then
done_o <= ’17;
end if;
when S2 => — test
start _s <= (others = ’0’);
if done s(0) = 1’ then
done o <= ’17;
for i in CLASS NUMBER-1 downto 0 loop
class o(i) <= sum_s(i);
end loop;
end if;
when others =>
end case;
end if;
end process;
process(clk i, rst i)
begin
if rst i = ’1’ then
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102 state fsm <= IDLE;

103 elsif rising edge(clk i) then
104 state fsm <= nstate fsm;

105 end if;

106 end process;

107

108 process(state fsm, start i, done s, mode i)
109 begin

110 nstate fsm <= state fsm;

111

112 case state fsm is

113 when IDLE =>

114 if start i = 1’ then
115 if mode i = ’'1’ then
116 nstate fsm <= S52;
117 else

118 nstate_fsm <= S1;
119 end if;

120 end if;

121 when S1 => — learn mode

122 if done s(class i) = ’1’ then
123 nstate fsm <= IDLE;
124 end if;

125 when S2 => — test mode

126 if done s(0) = ’1’ then
127 nstate_fsm <= IDLE;
128 end if;

129 when others —>

130 nstate fsm <= IDLE;

131 end case;

132 end process;

133

134 end rtl;

Testbench tb__wisard disc

1 — Module o tb_wisard disc

2 — Description : Wisard neural network discriminator testbench
3

4 library ieee;

5 use ieee.std logic_1164.all;

6 use ieee.numeric_std.all;

7

8 use work.wisard pkg.all;

9

=
o

entity tb_wisard disc is

11 end tb_wisard disc;

12

13 architecture behavioral of tb wisard disc is

14 signal clk_s : std_logic;

15 signal rst_s : std_logic;

16 signal start s : std logic;

17 signal done_s : std_logic;

18 signal input_s : std_ logic_ vector (INPUTS NUMBER-1 downto 0);
19 signal mode_s : std _logic;

20 signal sum_s : integer range NEURONS NUMBER downto O0;
21

22 constant CLK PERIOD : time := 10 ns;

23 constant RST TIME ¢ time := 40 ns;

24

25 begin

26

27 disc_u : wisard_disc
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28 port map (

29 rst_i = rst_s,

30 clk i = clk_s,

31 start i => start_s,
32 done_o => done_s,
33 input_i => input_s,
34 mode i => mode_s,
35 sum_o  => sum_s

36 )

37

38 process

39 begin

40 clk_ s <= 70’;

41 wait for CLK PERIOD/2;
42 clk s <= 174

43 wait for CLK PERIOD/2;
44 end process;

45

46 process

47 begin

48 rst s <= ’'17;

49 wait for RST TIME;

50 rst_s <= '0’;

51 wait ;

52 end process;

53

54 process

55 begin

56 start _s <= '07;

57 mode s <= ’'0’;

58 wait for RST TIME;

59 wait until rising edge(clk s);
60 start s <= ’1°;

61 wait until rising edge(clk s);
62 start _s <= '07;

63 wait until done s = '17;
64 wait until rising edge(clk _s);
65 mode s <= ’'17;

66 start s <= ’17;

67 wait until rising edge(clk s);
68 start _s <= '07;

69 wait ;

70 end process;

71

72 process

73 begin

74 input s <= "1111100110011111";
75 — 1111

76 — 1001

7 — 1001

78 — 1111

79 wait ;

80 end process;

81

82 end behavioral;

Testbench tb_wisard top

U W N~

— Module

— Description

library

ieee ;

tb_wisard_top

Wisard top

use ieee.std_ logic_1164.all;

level

testbench
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use ieee.numeric_std. all;

library wisard;
use wisard.wisard pkg.all;

entity tb wisard top is

end tb_ wisard top;
architecture behavioral of tb_ wisard top is
signal clk_s : std_logic;
signal rst_s ¢ std_logic;
signal start s : std _logic;
signal done_s : std_logic;
signal input_s : std_logic_vector (INPUTS NUMBER-1 downto 0);
signal class i s : integer range CLASS NUMBER-1 downto O0;
signal class_o_s : class_vector t;
signal mode_s ¢ std_logic;
constant CLK PERIOD : time := 10 ns;
constant RST TIME : time := 40 ns;
begin
top_u: wisard top
port map (
rst_ i = rst_s,
clk i = clk_s,
start i => start_s,
done_o => done_s,
input i => input_s,
class i => class_1i_s,
class_o => class_o_s,
mode i => mode_s
)
process
begin
clk_s <= ’07;
wait for CLK PERIOD/2;
clk_s <= 17
wait for CLK PERIOD/2;
end process;
process
begin
rst_s <= ’'17;
wait for RST_ TIME;
rst_ s <= ’0’;
wait ;
end process;
process
begin
input_s <= "0000000000000000";
start _s <= '07;
mode_s <= ’0’; — learn class 0
wait for RST TIME;
wait until rising edge(clk_s);
input_s <= "1111100110011111";
— 1111
— 1001
— 1001
— 1111
start _s <= '17;

class_i_s <= 0;
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71 wait until rising edge(clk s);
72 start _s <= '07;

73 wait until done s = '17;

74 wait until rising edge(clk _s); — learn class 1
75 start _s <= '17;

76 class i s <= 1;

T input_s <= "0100010001000100";
78 — 0100

79 — 0100

80 — 0100

81 — 0100

82 wait until rising edge(clk s);
83 start _s <= ’0’;

84 wait until done_s = '17;

85 wait until rising edge(clk s); — learn class 2
86 input_s <= "1111001001001111";
87 — 1111

88 — 0010

89 — 0100

90 — 1111

91 start s <= ’1°;

92 class_i_s <= 2;

93 wait until rising edge(clk_s);
94 start s <= ’0’;

95 wait until done s = '17;

96 wait until rising edge(clk _s); — test class 0
97 mode s <= ’'17;

98 start _s <= ’17;

99 input_s <= "0111100110011110";
100 — 0111

101 — 1001

102 — 1001

103 — 1110

104 wait until rising edge(clk s);
105 start _s <= '07;

106 wait until done s = '17;

107 wait until rising edge(clk_s); — test class 1
108 input_s <= "0100010001000010";
109 — 0100

110 — 0100

111 — 0100

112 — 0010

113 start _s <= '17;

114 wait until rising edge(clk s);
115 start s <= ’0’;

116 wait until done s = '17;

117 wait until rising edge(clk s); — test class 2
118 input_s <= "1110001001001111";
119 — 1110

120 — 0010

121 — 0100

122 — 1111

123 start _s <= '17;

124 wait until rising edge(clk s);
125 start _s <= '07;

126 wait ;

127 end process;

128

129 end behavioral;

Testbench tb_syn wisard top

1 — Module : tb_syn_ wisard top.vhd
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— Description : Wisard synthesizable testbench
library ieece;
use ieee.std logic 1164.all;
use ieee.numeric_std.all;
library wisard;
use wisard.wisard pkg.all;
entity tb_syn_ wisard top is
port (
clk i : in std logic;
rst_ i : in std_logic;
ledl o : out std logic;
led2 o : out std logic;

led3_o : out std_logic
)

end tb_syn wisard top;

architecture rtl of tb_ syn wisard top is
type results t is array ((CLASS NUMBER%*3—1) downto 0) of

integer range NEURONS NUMBER downto 0;
signal results s : results _t;
signal start_ s : std_logic;
signal done_s : std_logic;
signal input_s : std_logic vector (INPUTS NUMBER-1 downto 0);
signal class_i_s : integer range CLASS NUMBER-1 downto O0;
signal class _o_s ¢ class_vector t;
signal mode_s : std_logic;
type state t is (IDLE, L1, L2, L3, T1, T2, T3);
signal state fsm, nstate fsm : state t;
begin
results s (0) <= 6;
results s (1) <= 1;
results s (2) <= 2;
results s (3) <= 0;
results s (4) <= 6;
results s (5) <= 2;
results s (6) <= 3;
results s (7) <= 2;
results s (8) <= 7;
top_u: wisard top
port map (
rst_i = rst_i,

clk_i = clk_i,
start i =—> start_ s,
done_o => done_s,
input_i => input_s,
class i => class_i_ s,
class o => class_o_s,
mode_i => mode_s

)

process(clk i, rst_1i)
begin
if rst i = ’1’ then
state fsm <= IDLE;
elsif rising edge(clk i) then
state fsm <= nstate fsm;
end if;
end process;
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process(clk i, rst i)
begin
if rst_i = 1’ then
start s <= ’0’;
input s <= (others => ’0’);
class i s <= 0;
mode s <= ’'0’;
ledl_o <= ’07;
led2 o <= ’07;
led3 o <= '07;
elsif rising edge(clk i) then
case state fsm is
when IDLE =>
start_s <= ’17;
input_s <= "1111100110011111";
class i s <= 0;
when L1 =>
start _s <= '07;
if done s = ’1’ then
start_s <= ’17;
class 1 s <= 1;
input s <= "0100010001000100";
end if;
when L2 =>
start s <= ’07;
if done_s = ’1’ then
start _s <= 17,
class i s <= 2;
input_s <= "1111001001001111";
end if;
when L3 =>
start_s <= ’07;
mode_s <= '07;
if done s = ’1’ then
mode_s <= ’'17;
start _s <= 17,
input_s <= "0111100110011110";
end if;
when T1 =>
start s <= ’07;
if done_s = ’1’ then
if (class o s(0) = results s (0))
and (class_o_s(1) = results s (1))
and (class o s(2) = results s (2)) then
ledl_o <= '17;
end if;
input_s <= "0100010001000010";
start _s <= 17,
end if;
when T2 =>
start _s <= '07;
if done s = ’1’ then
if (class_o_s(0) = results_s(3))
and (class o s(1) = results s(4))
and (class o s(2) = results s (5)) then
led2_o <= '17;
end if;
input_s <= "1110001001001111";
start_s <= '17;
end if;
when T3 =>
start _s <= '07;
if done_ s = ’1’ then
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132 if (class o s(0) = results_s(6))
133 and (class_o_s(1) = results_ s (7))
134 and (class o s(2) = results s(8)) then
135 led3_o <= ’17;
136 end if;

137 end if;

138 end case;

139 end if;

140 end process;

141

142 process (state fsm, done_s)

143 begin

144 nstate fsm <= state fsm;

145

146 case state fsm is

147 when IDLE =>

148 nstate_fsm <= LI1;

149 when L1 =>

150 if done_s = ’1’ then
151 nstate_fsm <= L2;
152 end if;

153 when L2 —=>

154 if done_s = ’'1’ then
155 nstate fsm <= L3;
156 end if;

157 when L3 =>

158 if done_s = ’1’ then
159 nstate fsm <= T1;
160 end if;

161 when T1 =>

162 if done_s = ’1’ then
163 nstate fsm <= T2;
164 end if;

165 when T2 =>

166 if done_s = ’'1’ then
167 nstate fsm <= T3;
168 end if;

169 when T3 =>

170 nstate fsm <= T3;

171 when others =>

172 nstate fsm <= IDLE;
173 end case;

174 end process;

175

176

177 end rtl;
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APENDICE C — R?%-ajustado

O coeficiente de determinacio R? é uma equacdo que descreve a proporcao da variacio em uma
variavel de resposta Y que pode ser linearmente predito pelas covaridveis do modelo. Contudo, esse
coeficiente é viesado, aumentando com o niimero de variaveis preditoras. Esse viés é removido com
a utilizagio de R?-ajustado, dado pela seguinte equagao (RUPPERT, 2011):

S (Yi—Y)2 ) AN-P-1
onde N é o numero de amostras, Y; o i-ésimo valor observado, Y; o i-ésimo valor predito, Y a
média aritmética dos valores observados e P o ntimero de variéveis preditoras.

AdjR* =1 —
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