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Resumo

Redes neurais artificiais (RNAs) possuem diversas aplicações, sendo indicadas, principalmente,
para a resolução de problemas envolvendo reconhecimento de padrões e generalização. Entretanto,
a maior parte de seus modelos envolve unidades de multiplicação, o que aumenta a complexi-
dade de sua implementação em hardware. Motivados por esse problema, surgiram diversos estudos
envolvendo redes neurais sem peso (RNSP). O modelo WISARD (Wilkie, Stonham, Aleksander
Recognition Device) é uma RNSP baseada em RAMs (Random Access Memories) que, entre outras
vantagens, possui um tempo relativamente curto de treinamento e uma estrutura lógica simples.
No entanto, existem poucos resultados sobre a implementação em hardware desse modelo na lite-
ratura. Este trabalho envolve a descrição de uma rede WISARD parametrizada em VHDL (Very
High Speed Integrated Circuits Hardware Description Language), síntese e desenho do layout na
tecnologia AMS (AustriaMicroSystems) CMOS (Complementary Metal-Oxide-Semiconductor) 0,35
µm, validação em FPGA (Field-programmable Gate Array) Cyclone II e o desenvolvimento de uma
equação relacionando os parâmetros da rede e a área mínima gerada em ASIC (Application Specific
Integrated Circuit). A frequência máxima de operação do circuito foi de 240 MHz segundo a simu-
lação do layout (modelo típico) em ASIC e de 350 MHz na implementação em FPGA. O layout
completo do ASIC ocupou uma área de 0,329 mm2, e a síntese para FPGA utilizou 288 células
lógicas, das quais 196 possuíam registradores lógicos dedicados e 92 apenas LUTs (Look-up Tables).
Os resultados da equação que estima a área gerada em ASIC apresentou uma correlação de 0,98
com os valores obtidos na síntese.

Palavras-chave: rede neural, WISARD, ASIC, CMOS, FPGA.
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Abstract

Artificial neural networks (ANNs) have many applications and are mainly indicated to solve
problems involving pattern recognition and generalization. However, most of its models involve
multiplication units which increases the complexity of its implementation in hardware. Motivated
by this problem, several studies involving weightless neural networks (WNN) have emerged. The
WISARD (Wilkie, Stonham, Aleksander Recognition Device) model is a WNN based on RAMs
(Random Access Memories) which, among other advantages, has a relatively short time of training
and a simple logical structure. However, there are few results on hardware implementations of this
model in the literature. This work involves the description of a parametrized WISARD network in
VHDL (Very High Speed Integrated Circuits Hardware Description Language), synthesis and layout
design in the AMS (AustriaMicroSystems) CMOS (Complementary Metal-Oxide-Semiconductor)
0.35 µm technology, validation on a Cyclone II FPGA (Field-programmable Gate Array) and the
development of an equation relating the parameters of the network and the minimum area gene-
rated in ASIC (Application Specific Integrated Circuit). The maximum frequency of operation of
the circuit was 240 MHz according to ASIC layout simulations (typical model) and 350 MHz in
the FPGA implementation. The complete ASIC layout occupied an area of 0.329 mm2, and the
FPGA synthesis used 288 logical cells, of which 196 had dedicated logic registers and 92 only LUTs
(Look-up Tables). The results of the equation that estimates the area generated in ASIC showed a
correlation of 0.98 with the values obtained in the synthesis.

Keywords: neural network, WISARD, ASIC, CMOS, FPGA.
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Capítulo 1

Introdução

1.1 Contextualização e Motivação

Problemas de certas categorias não podem ser facilmente resolvidos por algoritmos. Normal-
mente são problemas dependentes de um grande número de variáveis inter-relacionadas como, por
exemplo, o problema de reconhecimento de imagens e sua classificação em grupos. Para a resolução
dessa classe de problemas, a estrutura do cérebro humano demonstra ser mais apropriada, pois
trabalha de modo paralelizado, além de ser capaz de aprender através de exemplos. Com o intuito
de automatizar a resolução dessa classe de problemas, que funciona bem em sistemas biológicos,
foram criadas as redes neurais artificiais (RNAs). Seu modelo computacional compartilha dos mes-
mos paralelismo e capacidade de aprendizagem não algorítimica do seu correspondente biológico.
Essa capacidade possibilita generalização e associação de dados em RNAs, ou seja, a partir de um
conjunto de treinamento, uma rede neural pode encontrar soluções para entradas similares, porém
ainda não apresentadas, o que implica em um alto grau de tolerância a falhas quando os dados
de entrada possuem certa margem de ruído (KRIESEL, 2005). Apesar do abandono do estudo de
RNAs com a publicação de um livro mostrando algumas dificuldades das redes neurais modelo Per-
ceptron por Minsky e Papert (19691 apud KROSE; SMAGT, 1996), a partir do final dos anos 80 o
interesse pelo tema foi retomado. Atualmente existem diversos grupos de pesquisa trabalhando na
área (KROSE; SMAGT, 1996) e variadas aplicações, tais como reconhecimento de imagens (LINES
et al., 2001), identificação e classificação de ondas cerebrais (CECOTTI; GRASER, 2011), análise
de séries temporais financeiras (OLIVEIRA, 2007) etc.

Ao longo do tempo foram propostos diversos modelos de redes neurais. Em muitos deles é
necessário utilizar multiplicação, o que dificulta sua implementação em hardware. Motivados por
essa dificuldade, estudos envolvendo redes neurais sem peso (RNSP) surgiram na década de 60
(BRAGA et al., 2000). A rede WISARD (Wilkie, Stonham & Aleksander’s Recognition Device)
é uma RNSP formada por discriminadores baseados em RAMs (Random Access Memories) que,
entre outras vantagens, possui um tempo relativamente curto de treinamento e uma estrutura lógica
simples (PATTICHIS et al., 1994).

Linguagens de descrição de hardware (Hardware Description Languages - HDLs) são linguagens
computacionais com a finalidade de descrição formal de circuitos digitais, representando o hardware
independentemente da tecnologia alvo a ser utilizada para sua síntese. Entre as principais vantagens
da utilização de HDLs estão a facilidade de descrição e simulação de circuitos complexos. VHDL
(Very High Speed Integrated Circuits HDL) é, junto com Verilog, uma das HDLs mais empregadas
na indústria e no meio acadêmico (GODSE; GODSE, 2009).

A tecnologia CMOS (Complementary Metal-Oxide-Semiconductor) é bastante utilizada em cir-
cuitos integrados (CIs), principalmente para o projeto de circuitos digitais, devido ao seu baixo
consumo de potência, facilidade de projeto e alto nível de integração. Segundo BREWER (1998),
cerca de 98% da produção de semicondutores era baseada em silício, sendo mais de 75% dos circuitos

1MINSKY, M.; PAPER, S. Perceptrons: An Introduction to Computational Geometry. The MIT Press,
1969.
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2 INTRODUÇÃO 1.3

feitos em CMOS (dados de 1998). O domínio da tecnologia CMOS continua atualmente: no último
trimestre de 2011, a produção semanal de wafers em tecnologia MOS atingiu 90% da produção
total (wafers incluindo circuitos discretos e integrados) (SIA, 2012).

Assim, a popularidade e aplicabilidade de redes neurais, HDLs e circuitos com tecnologia CMOS
foram os principais fatores motivadores para a elaboração desse projeto. Outra motivação é que,
embora a rede WISARD tenha sido criada com o intuito de implementação em hardware, a maior
parte dos trabalhos encontrados na literatura a seu respeito foi feita em software, como os projetos
de SOUZA (2011) e LINES et al. (2001). Além disso, as implementações em hardware encontradas
(AZHAR; DIMOND, 2002, WILLIAMS; YORK, 1999) não mostraram resultados de área ocupada
e frequência máxima de operação do circuito.

1.2 Objetivos

Esse trabalho tem como objetivos:

• a descrição parametrizada de uma rede neural modelo WISARD em linguagem VHDL;

• síntese de um exemplo da rede neural WISARD para ASIC (Application Specific Integrated
Circuit) na tecnologia CMOS 0,35 µm da AMS (AUSTRIAMICROSYSTEMS, 2003, AUS-
TRIAMICROSYSTEMS, 2012);

• a realização de simulações do ASIC para verificação da frequência máxima de operação e do
consumo de potência do circuito;

• a validação da descrição em VHDL através de FPGA (Field-Programmable Gate Array).

Através dos dados obtidos, procura-se estabelecer, adicionalmente, relações entre os parâmetros
da descrição da rede e a área mínima (excetuando-se conexões de metal) do circuito implementado
em ASIC.

1.3 Organização do Trabalho

O restante dessa monografia está divido como segue: o Capítulo 2 apresenta os conceitos teóricos
aprendidos durante o desenvolvimento do projeto; o Capítulo 3 descreve as ferramentas utilizadas,
considerações de projeto e a implementação da rede neural e dos testes; o Capítulo 4 mostra os
resultados obtidos e os discute; e o Capítulo 5 apresenta a conclusão do trabalho.



Capítulo 2

Fundamentos Teóricos

Neste capítulo é apresentado um breve resumo de redes neurais artificiais, focando-se em redes
neurais sem peso e, mais especificamente, na descrição da rede WISARD.

2.1 Redes Neurais Artificiais

2.1.1 Introdução

Redes neurais artificiais (RNAs) são sistemas computacionais que lembram a estrutura do cé-
rebro humano, executando tarefas de forma não algorítmica (BRAGA et al., 2000). Elas possuem
em geral duas fases de operação: a fase de aprendizado ou treinamento, quando os parâmetros
da rede são ajustados de acordo com as entradas apresentadas, e a fase de uso ou teste, na qual
a rede é utilizada para executar alguma tarefa. Desse modo, a composição final de uma rede não
é pré-determinada, sendo uma função de suas entradas de treinamento. A sua estrutura é formada
por nós, também chamados de neurônios, dispostos em uma ou mais camadas interligadas por co-
nexões denominadas axônios. Na maioria das RNAs, essas conexões possuem pesos, de forma que
ponderam as entradas recebidas pelos neurônios.

As principais caracerísticas que levam à solução de problemas através de RNAs são suas ca-
pacidades de aprendizagem com um número reduzido de exemplos, e de posterior generalização,
responsável por a rede responder conforme o esperado a entradas desconhecidas.

A fim de se compreender a estrutura e o funcionamento de uma rede neural artificial, será feita
uma breve explicação sobre seu sistema biológico equivalente sem, entretanto, entrar em detalhes
que fogem ao escopo do projeto.

Os neurônios biológicos possuem três componentes básicos: o corpo do neurônio, os dentritos e o
axônio (BRAGA et al., 2000), conforme mostrado na Figura 2.1. Através dos dentritos a informação
chega ao corpo celular, é processada e gera uma saída que será conduzida pelo axônio até os dentritos
dos próximos neurônios. A conexão entre dentritos e axônios é denominada sinapse. No estado de
repouso, a ação de bombas de sódio e potássio dentro do neurônio, que enviam 3 íons de sódio (Na+)
para fora da célula a cada 2 íons de potássio (K+) que entram, cria uma diferença de potencial de
aproximadamente - 70 mV em relação ao exterior. Para que a célula produza um impulso nervoso e
dispare para as células seguintes é necessário que a combinação de impulsos inibitórios e excitatórios
de entrada aumentem a diferença de potencial do neurônio para - 50 mV. Nesse momento, canais da
célula controlados por tensão e responsáveis pelo transporte de sódio se abrem, de forma que seus
íons adentram o neurônio elevando a tensão para 30 mV. Assim, moléculas neurotransmissoras são
geradas, determinando a polarização ou despolarização das próximas células. Após a geração de um
impulso, o neurônio entra em um período de refração, no qual sua diferença de potencial retorna à
do estado de repouso devido ao fechamento dos canais de sódio (ALTERS; ALTERS, 1999).

O primeiro modelo matemático de um neurônio foi descrito por MCCULLOCH; PITTS (1943)
e é denominado MCP, sendo utilizado como base para a maioria das implementações de redes
neurais. Este modelo apresenta n entradas representando os dentritos, (x1, ..., xn), e uma saída y

3
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Figura 2.1: Neurônio biológico. Fonte: ALTERS; ALTERS, 1999, p. 263.

binária, representado o axônio. As sinapses são modeladas por conexões entre neurônios com pesos
acoplados (w1, ..., wn). No modelo MCP, o disparo do neurônio ocorre quando a soma ponderada
de suas entradas atinge um limiar θ, conforme a Equação 2.1.

n∑
i=1

xiwi ≥ θ (2.1)

Além disso, no modelo MCP são feitas as seguintes simplificações (MCCULLOCH; PITTS,
1943):

• a atividade do neurônio é um processo binário;

• um número fixo de sinapses deve ser excitado dentro do período de repouso a fim de excitar
um neurônio em qualquer tempo, e esse número é independente da atividade anterior e posição
do neurônio;

• o único atraso significativo no sistema nervoso é o atraso sináptico;

• a atividade de qualquer sinapse inibitória previne completamente a excitação do neurônio
naquele período;

• a estrutura da rede não muda com o tempo.

Entretanto, no artigo em que o modelo MCP é apresentado não há preocupação com técnicas de
aprendizado, de forma que as diferenças entre o sistema biológico e o modelo MCP, principalmente
a assunção de que os pesos acoplados não são ajustáveis, tornaram o modelo original bastante
limitado.

Nas diversas variações do modelo MCP original, a saída não necessariamente é binária, mas
representada por uma função qualquer, como rampa, degrau etc. Além disso, o número de camadas
da rede (quantidade de neurônios percorridos por um dado entre qualquer entrada e saída da rede),
a quantidade de neurônios por camada e o tipo de conexão entre eles (com realimentação ou não,
conexão parcial ou completa) podem ser alterados. Estes parâmetros permitem a divisão das RNAs
em diversas classes, como retroalimentadas, completamente conectadas etc.

Outra classificação de RNAs é baseada no modo de aprendizado, isto é, no algoritmo através do
qual parâmentros da rede neural, como os pesos, são ajustados a fim de executar a tarefa desejada.



2.1 REDES NEURAIS ARTIFICIAIS 5

Baseado nessa classificação, as redes neurais são divididas em dois grupos: redes de aprendizado
supervisionado (quando informações sobre a saída esperada são passadas para a rede através de um
supervisor) e não-supervisionado (quando não há supervisor, o aprendizado depende da redundância
da entrada).

2.1.2 Redes Neurais Sem Peso

Devido à dificuldade de implementação em hardware dos pesos das conexões entre os neurônios,
uma nova classe de RNAs passou a ser estudada: as redes neurais sem peso (RNSP). O primeiro
trabalho relacionado a RNSPs foi o método das n-tuplas de BLEDSOE; BROWNING (1959), cuja
aplicação era o reconhecimento de caracteres alfanuméricos. O projeto consistia em um mosaico de
10x15 fotocélulas aleatoriamente agrupadas em 75 pares (n-tuplas, onde n=2) de forma exclusiva
(cada fotocélula relacionada a apenas um elemento de uma n-tupla). Nesse mosaico eram projetados
os caracteres, de modo que um valor binário era associado a cada fotocélula de acordo com a ilumi-
nação da mesma (Figura 2.2). Além disso, foi utilizada uma matriz de memória com palavras de 36
bits cujas linhas representavam todos os valores que as n-tuplas poderiam assumir, totalizando 300
(4 combinações para cada uma das 75 n-tuplas). Desse modo, cada par de fotocélulas era responsá-
vel pelo endereçamento de 4 palavras da matriz de memória. Os bits das palavras representavam os
caracteres alfanuméricos, totalizando 36 (26 letras, 9 números e um ponto). Quando um caractere
era apresentado como padrão, o nível lógico ‘1’ era colocado na matriz, na coluna correspondente
a este caractere (Figura 2.3) e em apenas uma das quatro linhas correspondentes a cada n-tupla
(justamente nas linhas associadas aos valores correspondentes à iluminação das fotocélulas). Com a
apresentação de outro caractere, outras linhas das n-tuplas poderiam ser também escritas seguindo
as mesmas regras descritas anteriormente.

Figura 2.2: Aprendizagem da letra I segundo o método das n-tuplas (apenas 2 n-tuplas são mostradas).
Fonte: BLEDSOE; BROWNING, 1959, p. 226.

A principal diferença entre as RNSPs e as demais redes neurais consiste na localização da infor-
mação aprendida. Enquanto nas RNAs convencionais a mesma se encontra nos pesos das conexões,
em RNSPs a informação é armazenada em tabelas-verdade. Além disso, em redes sem peso as en-
tradas são sempre discretas e seus neurônios são capazes de computar todas as funções booleanas
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Figura 2.3: Matriz de memória após a aprendizagem dos caracteres B, G e 5, onde o caractere G foi
apresentado duas vezes como padrão. Fonte: BLEDSOE; BROWNING, 1959, p. 227.

de suas entradas digitalizadas. Já as redes neurais com peso, que geralmente utilizam o modelo
de neurônio threshold neuron com entradas e pesos assumindo qualquer valor real, possuem neurô-
nios que computam apenas problemas com padrões de entrada formando conjuntos linearmente
separáveis1.

2.1.3 WISARD

WISARD (Wilkie, Stonham, Aleksander Recognition Device) é uma implementação em hardware
ou software do método das n-tuplas de BLEDSOE; BROWNING (1959). Entre as suas principais
vantagens estão a alta velocidade de treinamento (nas demais redes neurais normalmente o ajuste
de pesos é um processo bastante demorado), a simplicidade de sua estrutura, permitindo implemen-
tação rápida e ajustável ao problema apresentado, além da redução natural dos dados de entrada
devido à necessidade de quantização dos mesmos (PATTICHIS et al., 1994).

A estrutura do sistema WISARD consiste em nós RAM e diversos discriminadores, cada um
responsável pelo reconhecimento de um padrão.

Um neurônio é representado, na rede WISARD, pelo nó RAM, uma estrutura com n entradas
e uma saída binárias. As entradas endereçam uma memória de tamanho 2n com palavras de um
bit. Durante a fase de treinamento a memória é escrita, sendo lida na fase de teste.

Cada discriminador representa um padrão a ser reconhecido, ou seja, corresponde a uma
classe de entradas. Ele é formado por um conjunto de k neurônios RAM com n entradas cada.
Portanto, o tamanho da entrada de um discriminador é de k ∗ n bits. Cada neurônio é conectado
a n entradas dentre todas as do discriminador, de modo que o mesmo aprende apenas parte do
padrão apresentado. A saída de um discriminador é dada pela soma das saídas dos seus neurônios.
Em uma rede WISARD, cada discriminador pode ter um número diferente de neurônios, já que
cada um representa um padrão distinto.

Para a separação de imagens em classes, que é a principal aplicação desta rede, o mapeamento
entre os pixels da imagem e as entradas dos neurônios pode ser feito de modo aleatório. Durante a

1 Dois subconjuntos X e Y de Rd são linearmente separáveis se existe um hiperplano tal que os elementos de X e
Y estão em lados opostos do mesmo (ELIZONDO, 2006). No modelo de neurônio threshold neuron, similar ao MCP
original, sua saída é dada por uma função φ(z), que apresenta resultado binário dependendo de um limiar em z, onde
z = w0 + w1x1 + ...+ wnxn determina a equação de um hiperplano no espaço n-dimensional (AIZENBERG, 2011).
Como poucos subconjuntos de Rd podem ser separados por um hiperplano formado a partir de w reais, apenas um
threshold neuron com pesos complexos pode computar problemas não linearmente separáveis.
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fase de teste, o discriminador que responder com a maior soma dos resultados dos neurônios terá
sua classe atribuída à imagem de entrada. Uma estimativa da qualidade dessa resposta pode ser
obtida através da confiança relativa, dada pela seguinte equação:

C =
D

Rjmax
(2.2)

onde C é a confiança relativa, Rj a resposta do j -ésimo discriminador, D a diferença entre os
dois Rjs mais altos e Rjmax o maior dos Rjs (BRAGA et al., 2000).

A Figura 2.4 mostra um exemplo de treinamento para um discriminador da rede WISARD com
8 neurônios por discriminador e 16 entradas. O padrão a ser reconhecido é uma imagem de 4x4
pixels. Inicialmente as RAMs dos neurônios possuem todas as palavras em nível lógico ‘0’. A cada
nova entrada apresentada como pertencente à classe relacionada com esse discriminador, a memória
de cada neurônio é escrita com ‘1’ na posição endereçada pelo conjunto de entradas conectados a
ele.
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Figura 2.4: a)Estado inicial do discriminador correspondente à classe 1; b)discriminador após o primeiro
treinamento; c)discriminador após o segundo treinamento.

Considerando a rede com apenas dois discriminadores (classes), o teste para o reconhecimento
da classe 1 após o treinamento de ambas encontra-se na Figura 2.5. Para cada discriminador, o
conteúdo da posição de memória de cada neurônio que for endereçada pelas entradas do teste
é somado e apresentado como saída do mesmo. Um comparador é então usado para escolher o
discriminador que apresenta a maior soma. A classe correspondente à esse discriminador é, então,
atribuída à imagem de entrada.
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Figura 2.5: Teste da classe 1 após os treinamentos das classes 1 e 2.



Capítulo 3

Metodologia e Implementação

Neste capítulo são descritas as ferramentas de projeto utilizadas, considerações de projeto e as
implementações em Python e VHDL.

3.1 Ferramentas utilizadas

Neste trabalho foram utilizadas algumas ferramentas de auxílio a projeto, descritas a seguir:

• ModelSim é uma ferramenta utilizada para simulação de linguagens de descrição de hardware,
com suporte para as linguagens VHDL e Verilog, além de permitir o uso de scripts TCL (Tool
Command Language) (MENTOR GRAPHICS, 2012).

• O software Quartus II provê um ambiente de desenvolvimento para system-on-a-programmable-
chip (SOPC), incluindo design baseado em diagrama de blocos ou HDL, síntese, routing e
programação de FPGA (ALTERA, 2010).

• LeonardoSpectrum é uma suíte de ferramentas de design para FPGA e ASIC, podendo ter
entradas em VHDL ou Verilog e oferecendo síntese lógica de circuitos com análise de tempo-
rização e otimização baseada em restrições (MENTOR GRAPHICS, 1999).

• A suíte IC Station é composta por três pacotes de aplicação: ICgraph Basic, IC Station
Schematic-driven Layout (SDL) e ICassemble (MENTOR GRAPHICS, 2009). O ICgraph
Basic consiste em um conjunto de funções básicas de edição de polígonos para o desenvolvi-
mento manual de layouts de circuitos integrados (CIs). Já o IC Station SDL permite a criação
automática do layout através da utilização das informações de conectividade no esquemático,
aumentando significativamente a produtividade em relação ao design manual. Finalmente, o
ICassemble possui um conjunto de funções para o planejamento da localização das células
(floorplanning) e routing interativo.

• Calibre LVS (Layout Versus Schematic) e DRC (Design Rule Check) são ferramentas utili-
zadas na verificação física do layout, isto é, se o mesmo se conforma com o esquemático do
circuito (LVS) e com as regras de fabricação (DRC) (MENTOR GRAPHICS, 2005).

• Design Architect - IC é um aplicativo de captura de esquemático com um ambiente direcionado
à otimização da criação de circuitos integrados. A ferramenta proporciona captura e verificação
de esquemáticos, descrição integrada de conexões, instâncias e atributos (Netlist) SPICE,
suporta atalhos definidos pelo usuário, permite a criação de designs hierárquicos utilizando
metodologia bottom-up ou top-down e a edição de arquivos nas linguagens VHDL, VHDL-
AMS, Verilog, Verilog-A, SPICE, HSPICE e EldoSPICE. As ferramentas IC Station podem
também ser invocadas diretamente do Design Architect (MENTOR GRAPHICS, 2003).

9
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• Eldo é um simulador de circuitos integrados baseado em SPICE. Possui tecnologia multi-
threading e é suportado por todas as principais foundries do mundo, cobrindo os modelos
mais importantes de dispositivos (MENTOR GRAPHICS, 2011a).

• O software EZwave é um visualizador de forma de onda avançado, com suporte nativo para
diversos simuladores, dentre eles Eldo Classic e Questa. Ele permite a análise de vários tipos
de formas de onda nos domínios da frequência e tempo, como diagrama de olho, carta de
Smith e histogramas (MENTOR GRAPHICS, 2011b).

• R é uma linguagem e um ambiente para computação estatística que possui diversas facilidades
gráficas e testes clássicos de análise de dados, podendo ser facilmente estentido através de
pacotes (R-PROJECT, 2012).

A Figura 3.1 mostra como foram utilizadas as ferramentas descritas durante a execução deste
projeto.

3.2 Considerações de projeto e observações

Para que o funcionamento da rede fosse testado, foi necessário encontrar algum problema que
pudesse ser resolvido por ela. O reconhecimento de imagens de caracteres escritos à mão é uma
aplicação clássica da rede WISARD e, portanto, foi escolhido como aplicação da rede implementada
neste projeto.

O número de pixels da imagem escolhido (16) para a implementação em ASIC foi o mínimo
possível de modo que ainda permitisse uma variação nas imagens de entrada mas não deixasse
o layout muito grande. Para facilitar a descrição da rede, todos os discriminadores possuem o
mesmo número de neurônios. O número de neurônios por discriminador (8) é o que gerou a menor
quantidade de instâncias na síntese do LeonardoSpectrum. Como o número de pixels é pequeno,
o reconhecimento de muitos caracteres se tornaria inviável, pois poderia haver sobreposição dos
contornos dos mesmos. Portanto, foram escolhidas apenas três classes para serem reconhecidas,
representando os caracteres 0, 1 e 2.

A partir desta seção, quando for citado o número de entradas da rede, subentende-se que o
mesmo exclui os sinais de controle, clock e reset, representando apenas os sinais correspondentes
aos pixels da imagem.

O FPGA utilizado para validação da rede neural foi o Cyclone II (tecnologia 90 nm), devido à
disponibilidade da placa Starter Development Board (Figura 3.2), da Altera, que contém o mesmo.
A implementação em ASIC foi feita na tecnologia AMS CMOS 0,35 µm por ser essa a tecnologia
aprendida e aplicada nas disciplinas da graduação. Todas as simulações no Eldo (típico, worst power
e worst speed) utilizaram o modelo BSIM3v3 (Berkley Short-channel IGFET Model).

3.3 Implementação

3.3.1 Python

A seguir encontra-se uma descrição dos códigos implementados em Python, disponíveis no Apên-
dice A.

Gerador de testbenches em VHDL (tb_gen.py)

De modo a facilitar a geração de testbenches em VHDL para um número grande de entradas
da rede neural, foi implementado em Python um programa que lê um arquivo de imagem bmp
em tons de cinza com 10x10 pixels e imprime, na saída padrão, uma descrição de sinais de forma
equivalente a um arquivo de testbench em VHDL. Para que as entradas da rede neural fossem
binárias, cada pixel da imagem lida é convertido em ‘0’ ou ‘1’ de acordo com um limiar no nível
de intensidade do mesmo. As imagens a serem utilizadas nos treinamentos e nos testes podem ser
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Python
(geração de testbenches

- tb_gen.py)

VHDL
(descrição do circuito

- wisard_pkg.vhd
wisard_neuron.vhd,

wisard_disc.vhd,
wisard_top.vhd)

ModelSim
(simulações do VHDL
- tb_wisard_top.vhd)

Quartus II
(síntese para FPGA

- tb_syn_wisard_top.vhd)

LeonardoSpectrum
(síntese para ASIC)

R
(análise de áreas geradas)

Design Architect  - IC
(implementação em ASIC)

IC Station
(desenho do layout)

Calibre DRC
(verificação de conformidade 
com as regras de fabricação)

Calibre LVS
(verificação de conformidade 

com o esquemático)

Eldo
(simulação do circuito implementado em ASIC)

EZwave
(vizualização de formas de onda)

Python
(geração de arquivos SPICE

- wave_gen.py)

Figura 3.1: Utilização das ferramentas de auxílio a projeto.
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Figura 3.2: Placa Starter Development Board da Altera. Fonte: TERASIC, 2012.

alteradas facilmente na função principal. Uma descrição das funções mais importantes que compõem
o programa encontra-se a seguir:

• read_file: recebe como parâmetro o nome do arquivo de imagens bmp que então é lido e
retorna um vetor de zeros e uns de acordo com um limiar no nível de intensidade do pixel ;

• train: recebe como parâmetros o nome de um arquivo e uma classe, chama a função read_file
e imprime sinais de entrada em VHDL relativos à classe especificada e aos pixels do arquivo
lido;

• test: recebe como parâmetro o nome de um arquivo, chama a função read_file e imprime os
sinais de entrada da rede em VHDL baseados no arquivo lido, colocando-a no modo de teste.

Gerador de arquivo SPICE (wave_gen.py)

Como a simulação do circuito implementado em ASIC envolvia vários sinais de entrada que
eram alterados em instantes de tempo diferentes, um gerador de arquivos SPICE (extensão .cir)
em Python foi criado a fim de se evitar erros na criação manual do mesmo, erros estes que só seriam
descobertos ao fim de uma longa simulação.

A principal função utilizada nesse programa é a gen_wave, que recebe como parâmetros o nome
do sinal, uma lista contendo em quais pulsos de clock o sinal deve ser alterado e outra com os valores
de tensão nesses pulsos. Esta função gera, assim, uma onda do tipo PWL (Piece-Wise Linear).

3.3.2 VHDL

Os módulos descritos em VHDL (Apêndice B) seguiram uma estrutura hierárquica, com wi-
sard_neuron sendo o módulo de nível mais baixo, seguido de wisard_disc e wisard_top. A fim de
simular a operação do top-level, foi criado o testbench tb_wisard_top. Para os testes em FPGA,
foi também descrito um módulo de testbench sintetizável, o tb_syn_wisard_top. Além disso, um
pacote (package) foi definido de modo que a rede neural fosse completamente parametrizada. A
seguir, encontra-se uma descrição desse pacote e dos demais módulos.
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Pacote wisard_pkg

As constantes que foram criadas nesse pacote estão descritas na Tabela 3.1 e são utilizadas como
parâmetro nos demais módulos.

Tabela 3.1: Constantes definidas no pacote wisard_pkg.

Constante Significado Valor usado para
a implementação

em ASIC
CLASS_NUMBER Número de classes 3
INPUTS_NUMBER Número de entradas 16

NEURONS_NUMBER Número de neurônios 8
SUM_SIZE Número mínimo de bits para 4

descrever NEURONS_NUMBER
ADD_SIZE Tamanho do endereço dos neurônios: 2

INPUTS_NUMBER
NEURONS_NUMBER

WORDS_NUMBER Tamanho da RAM de cada neurônio: 2ADD_SIZE 4

Módulo wisard_neuron

Este módulo descreve um neurônio como uma memória com endereçamento de ADD_SIZE bits
e tamanho de WORDS_NUMBER. A Figura 3.3 mostra a interface do neurônio descrito. Os sinais
de entrada e saída do bloco são:

• clk_i: sinal de entrada de sincronismo (clock);

• rst_i: sinal de controle reset (nível alto);

• rw_i: sinal de controle de leitura (nível alto) e escrita (nível baixo);

• address_i: sinais de entrada que fornecem o endereço da memória;

• data_o: sinal de saída de dados.

Neste bloco a escrita é síncrona, sendo que o dado a ser escrito é sempre o nível lógico ‘1’; a
leitura de dados e o reset, que zera a memória inteira, são assíncronos.

clk_i

rst_i

rw_i

address_i

data_o
wisard_neuron

Figura 3.3: Interface do neurônio descrito em VHDL.

Módulo wisard_disc

Este módulo consiste na descrição de um discriminador com número de neurônios e entradas
parametrizado, conforme descrito na Tabela 3.1. A interface do discriminador é apresentada na
Figura 3.4. Os sinais de entrada e saída do bloco são:
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• clk_i: sinal de entrada de sincronismo (clock);

• rst_i: sinal de controle reset (nível alto);

• start_i: sinal que inicia o teste ou treinamento do discriminador (nível alto);

• mode_i: sinal de controle de teste (nível alto) ou treinamento (nível baixo);

• input_i: sinais de entrada da rede representando os pixels de uma imagem;

• done_o: sinal que indica o término da operação de teste ou treinamento;

• sum_o: sinais que representam a soma das saídas dos neurônios quando em teste.

O discriminador é baseado em uma máquina de estados, de forma que caso o sinal start_i esteja
em nível alto, o estado é alterado de acordo com o modo da rede em treinamento (mode_i = ‘0’)
ou em teste (mode_i = ‘1’).

clk_i

rst_i

start_i

sum_o

wisard_disc

mode_i

input_i

done_o

Figura 3.4: Interface do discriminador descrito em VHDL.

Módulo wisard_top

Este módulo consiste na descrição da entidade top-level da rede neural WISARD, utilizando-se
dos parâmetros descritos na Tabela 3.1. A Figura 3.5 mostra a interface do bloco criado. Os sinais
de entrada e saída do bloco são:

• clk_i: sinal de entrada de sincronismo (clock);

• rst_i: sinal de controle reset (nível alto);

• start_i: sinal que inicia o teste ou treinamento da rede (nível alto);

• mode_i: sinal de controle de teste (nível alto) ou treinamento (nível baixo);

• input_i: sinais de entrada da rede representando os pixels de uma imagem;

• class_i: sinais de entrada representando a classe a ser treinada;

• done_o: sinal que indica o término da operação de teste ou treinamento;

• class_o: sinais de saída indicando os resultados de cada discriminador.

A máquina de estados correspondente à implementação de wisard_top encontra-se na Figura 3.6.
Cada transição mostrada ocorre durante a borda de subida do clock. Durante o reset, assíncrono,
a máquina retorna ao estado IDLE. Dependendo do modo da rede, o próximo estado será o de
treinamento (S1) ou de teste (S2). O sinal de saída class_o é um vetor de inteiros que mostra o
resultado de cada discriminador para a entrada apresentada. Quando em modo de treinamento,
deve ser apresentada a classe correspondente à entrada através do barramento class_i.
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class_o
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mode_i

input_i

done_o

class_i

Figura 3.5: Interface do top-level descrito em VHDL.
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start_s <= (others=>'0')

done_s(0)='0'/
start_s <= (others=>'0')

done_s(class_i)='1'/
done_o<='1'
class_o(i) <= sum_s(i)

Figura 3.6: Máquina de estados de Mealy correspondente à descrição do top-level (wisard_top).
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Módulo tb_wisard_top

O módulo tb_wisard_top foi criado com o intuito de simular o funcionamento da entidade
top-level (wisard_top) da rede WISARD. Esse módulo não é sintetizável e foi utilizado apenas no
ModelSim. Ele não possui portas, apenas sinais internos correspondentes aos sinais de entrada e
saída da rede neural instanciada descritos na seção 3.3.2.

Com o módulo tb_wisard_top foram realizadas diversas simulações: algumas utilizando os mes-
mos parâmetros do circuito que seria implementado em ASIC e outras com uma RNA de 100
entradas.

Na simulação do circuito que seria implementado em ASIC, três classes são aprendidas com
um treinamento cada e as mesmas são testadas posteriormente com entradas não utilizadas no
treinamento. Cada novo teste ou treinamento é realizado após o sinal de concluído (done_s) estar
em nível alto. A Figura 3.7 mostra as imagens correspondentes às entradas de treinamento e testes.
Para estas entradas, teremos que se o primeiro pixel for branco, input_s(0) <= ‘0’, se for preto,
input_s(0) <= ‘1’ e assim sucessivamente.

Treinamento

Testes

Classes
0 1 2

Figura 3.7: Imagens de 16 pixels correspondentes às entradas no treinamento e nos testes executados por
classe.

A fim de se verificar o funcionamento do circuito para outros parâmetros, novos testes foram
criados através do gerador de testbenches implementado em Python. O número de entradas foi
alterado de 16 para 100 e diversos números de neurônios por discriminador foram escolhidos. Um
exemplo das imagens correspondentes às entradas de wisard_top encontra-se na Figura 3.8. Con-
forme descrito na seção 3.3.1 um limiar foi utilizado para que tons de cinza mais escuro fossem
convertidos em nível lógico ‘1’ e os mais claros em ‘0’ através do software tb_gen.py.

Figura 3.8: Imagens de 100 pixels utilizadas para treinamento (linha superior) e para teste (linha inferior)
da classe 2.

Módulo tb_syn_wisard_top

Este módulo foi criado a fim de ser sintetizado em FPGA, de modo que o correto funcionamento
do circuito pudesse ser testado e sua frequência máxima obtida. As entradas utilizadas foram as
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mesmas para o teste do layout em ASIC. Os sinais de entrada, de saída e internos desse bloco são:

• clk_i: sinal de entrada de sincronismo (clock);

• rst_i: sinal de controle reset (nível alto);

• led1_o: sinal de saída indicando que a classe 1 foi reconhecida corretamente (nível alto);

• led2_o: sinal de saída indicando que a classe 2 foi reconhecida corretamente (nível alto);

• led3_o: sinal de saída indicando que a classe 3 foi reconhecida corretamente (nível alto);

• start_s: sinal que inicia o teste ou treinamento da rede (nível alto);

• mode_s: sinal de controle de teste (nível alto) ou treinamento (nível baixo);

• input_s: sinais de entrada da rede representando os pixels de uma imagem;

• class_i_s: sinais de entrada representando a classe a ser treinada;

• done_s: sinal que indica o término da operação de teste ou treinamento;

• class_o_s: sinais de saída indicando os resultados de cada discriminador;

• results_s: sinais correspondentes aos esperados para class_o_s.

O módulo tb_syn_wisard_top é baseado na máquina de estados mostrada na Figura 3.9. Du-
rante o reset, a máquina é colocada no estado IDLE, o sinal para o início da rede (start_s) e os sinais
ledX_o são colocados em nível baixo e seu modo em treinamento (mode_s=‘0’ ). Cada transição
representada ocorre durante a borda de subida do clock. A fim de simplificar o diagrama, os sinais
de entrada da rede correspondentes aos pixels das imagens a serem treinadas ou testadas não estão
descritos no mesmo.

IDLE

T3

L1
L2

L3

T1

T2

done_s='1'/
start_s <= '1'
class_i_s <=1

done_s='0'/
start_s <= '0'

λ/
start_s <= '1'
class_i_s <=0

done_s='0'/
start_s <= '0'

done_s='0'/
start_s <= '0'

done_s='0'/
start_s <= '0'

done_s='0'/
start_s <= '0'

done_s='0'/
start_s <= '0'

done_s='1'/
start_s <= '1'
class_i_s <=2

done_s='1'/
start_s <= '1'
mode_s <='1'

done_s='1' and class_o_s = result_s/
start_s <= '1'
led1_o <= '1'

done_s='1' and class_o_s = result_s/
start_s <= '1'
led2_o <= '1'

done_s='1' and class_o_s = result_s/
led3_o <= '1' done_s='1' and 

class_o_s != result_s/
start_s <= '1'

done_s='1' and 
class_o_s != result_s/
start_s <= '1'

Figura 3.9: Máquina de estados de Mealy do testbench sintetizável.

Nos estados IDLE, L1 e L2 são iniciados os treinamentos das classes 0, 1 e 2 respectivamente.
No estado L3 o último treinamento é concluído e o teste da classe 0 é iniciado. Durante os estados
T1, T2 e T3, caso o resultado dos testes seja igual ao esperado (que está armazenado em um vetor),
os sinais led1_o, led2_o e led3_o são, respectivamente, colocados em nível alto. As portas clk_i e
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rst_i foram conectadas à saída de clock do bloco PLL (Phase-locked Loop) da Altera ALTPLL e
de um switch da placa utilizada. Os sinais ledX_o foram conectados a três LEDs. O diagrama de
blocos do circuito sintetizado com esse módulo se encontra na Figura 3.10.

Figura 3.10: Diagrama de blocos do circuito sintetizado no FPGA.



Capítulo 4

Resultados e Discussão

Neste capítulo são apresentados e discutidos os resultados do projeto.

4.1 ModelSim - simulação (16 entradas)

Utilizando-se do testbench tb_wisard_top, foi simulado no ModelSim o funcionamento da RNA
WISARD descrita em VHDL com os mesmos parâmetros que foram utilizados na síntese para
ASIC, isto é, 16 entradas, 3 discriminadores e 8 neurônios por classe. Inicialmente as 3 classes são
aprendidas (sinais class_i = 0, 1 e 2; sinal mode_i = ‘0’) e posteriormente testadas (sinal mode_i
= ‘1’). Os resultados dos discriminadores para cada classe encontram-se nos sinais class_o.

Conforme esperado, durante o teste com entradas de sua respectiva classe, cada discriminador
respondeu com o maior valor (Figura 4.1 e Tabela 4.1).

Figura 4.1: Simulação no ModelSim para 16 entradas, 8 neurônios por discriminador e 3 classes.

Tabela 4.1: Resposta dos discriminadores para simulação do ModelSim com 16 entradas, 8 neurônios por
discriminador e 3 classes.

Discriminante Teste - classe 0 Teste - classe 1 Teste - classe 2
2 2 2 7
1 1 6 2
0 6 0 3

19
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4.2 ModelSim - simulação (100 entradas)

Novas simulações no ModelSim foram realizadas para três redes WISARD com 100 entradas, 3
discriminadores e 10, 25 e 50 neurônios por discriminador. Ao todo foram usadas 18 imagens, 6 para
cada classe (3 para treinamento e 3 para teste), como entradas do programa tb_gen.py, responsável
pela criação do testbench em VHDL (tb_wisard_top) utilizado nestas simulações. A alteração do
número de neurônios para cada simulação foi feita mudando-se apenas os parâmetros descritos no
pacote wisard_pkg. Portanto, não foi necessária a alteração do testbench gerado, sendo utilizadas
as mesmas imagens nas três simulações.

Os resultados das simulações bem como a confiança relativa dos mesmos (Equação 2.2) encontram-
se na Tabela 4.2 e nas Figuras 4.2 e 4.3. A Figura 4.2 mostra as formas de onda geradas para a
simulação com 50 neurônios por discriminador.

Tabela 4.2: Resposta dos discriminadores para testes com imagens de 100 pixels e diversos números de
neurônios por discriminador (N/D), onde D0, D1 e D2 são os discriminadores treinados para reconhecer as
classes 0, 1 e 2, respectivamente.

N/D Classes testadas (número do teste) D0 D1 D2 Confiança relativa
0 (1) 2 0 0 1,00
0 (2) 4 3 2 0,25
0 (3) 3 0 1 0,67
1 (1) 4 10 3 0,60

10 1 (2) 2 10 1 0,80
1 (3) 4 10 2 0,60
2 (1) 1 2 3 0,33
2 (2) 1 1 6 0,83
2 (3) 2 2 3 0,33
0 (1) 17 2 7 0,59
0 (2) 18 8 9 0,50
0 (3) 17 3 8 0,53
1 (1) 11 25 17 0,32

25 1 (2) 9 25 15 0,40
1 (3) 11 25 16 0,36
2 (1) 13 12 17 0,24
2 (2) 11 11 23 0,52
2 (3) 12 10 17 0,29
0 (1) 42 21 26 0,38
0 (2) 45 28 33 0,27
0 (3) 44 22 27 0,39
1 (1) 40 50 42 0,16

50 1 (2) 38 50 40 0,20
1 (3) 40 50 42 0,16
2 (1) 39 34 40 0,03
2 (2) 34 33 48 0,29
2 (3) 39 32 43 0,09

Novamente, cada discriminador teve uma resposta maior quando apresentada uma entrada da
classe para a qual foi treinado reconhecer.
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Figura 4.2: Saída dos discriminadores para 9 testes (3 com cada classe) utilizando-se 50 neurônios por
discriminador e 100 entradas.
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Número de neurônios por discriminador

Figura 4.3: Confiança relativa do resultado da rede WISARD versus número de neurônios por discriminador
para imagens de 100 pixels.

Conforme se pode observar, a confiança relativa diminui à medida que o número de neurônios por
discriminador se aproxima do número de entradas da rede. Esse resultado era esperado, dado que o
aumento do número de neurônios faz com que cada um deles seja responsável pelo reconhecimento
de uma quantidade menor de pixels da imagem. Dessa forma, a probabilidade de um neurônio
responder com ‘1’ aumenta, pois o tamanho da RAM diminui.

As Figuras 4.4 e 4.5 foram criadas com o intuito de exemplificar esse efeito. Considerando-se
que o número de entradas da rede é 4, essas figuras mostram um treinamento e um teste realizados
para uma classe. Para uma rede com apenas um neurônio (Figura 4.4), a saída do discriminador é
a mesma do neurônio, 0. Para uma rede com 4 neurônios (Figura 4.5), a saída é a soma das saídas
dos neurônios, 3. Pode-se ver, então, que o discriminador com apenas um neurônio só reconheceria
a imagem de teste caso fosse igual à entrada apresentada como treinamento, enquanto que o dis-
criminador com mais neurônios tende a reconhecer mais imagens como pertencendo à sua classe.
Portanto, quando o número de neurônios por discriminador aumenta, cada discriminador perde
especificidade.
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Figura 4.4: Exemplo de treinamento e teste para uma imagem de 4 pixels e 1 neurônio por discriminador.
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Figura 4.5: Exemplo de treinamento e teste para uma imagem de 4 pixels e 4 neurônios por discriminador.
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4.3 LeonardoSpectrum - síntese

A Tabela 4.3 mostra o número de instâncias geradas para diversos tipos de otimizações do
LeonardoSpectrum, bem como a frequência máxima estimada e a área mínima, calculada apenas
somando as áreas das instâncias geradas. Como se pode observar, a frequência máxima de operação
do circuito aumenta quando a síntese é feita sem a obrigação de manter a hierarquia (flatten),
principalmente na otimização por atraso. A área gerada é menor nas sínteses não hierárquicas
devido à maior liberdade de otimização do LeonardoSpectrum.

Tabela 4.3: Frequência máxima de operação e área mínima estimadas e número de instâncias geradas para
diversas otimizações do LeonardoSpectrum no circuito a ser implementado em ASIC.

Otimização Frequência máxima (MHz) Área (µm2) Instâncias
por área (mantendo hierarquia) 220 99554 583

por área (sem hierarquia) 319 97807 523
por atraso (mantendo hierarquia) 274 101065 599

por atraso (sem hierarquia) 442 97934 492

Os esquemáticos gerados pelo LeonardoSpectrum com otimização para área de modo hierárquico
encontram-se nas Figuras 4.6, 4.7 e 4.8.

Figura 4.6: Esquemático do neurônio gerado pelo LeonardoSpectrum.
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neurônios

Figura 4.7: Esquemático do discriminador gerado pelo LeonardoSpectrum.

Figura 4.8: Esquemático da rede WISARD gerado pelo LeonardoSpectrum.
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4.4 IC-Station - Layout

A fim de facilitar o desenho do layout, a síntese do circuito para ASIC foi otimizada para área
mantendo a hierarquia dos módulos.

A partir da síntese da descrição em VHDL pelo LeonardoSpectrum foi gerado um arquivo em
Verilog com as instâncias da tecnologia alvo (AMS CMOS 0,35 µm) e suas conexões. O arquivo
foi importado e seu esquemático gerado através das ferramentas da Mentor Graphics de forma
automatizada. A partir do esquemático foram instanciadas as standard cells da tecnologia no IC
Station para que o desenho do layout fosse concluído. A localização (placement) das células foi feita
de modo automático no nível mais baixo da hierarquia (neurônio) e parcialmente de forma manual
nos nívels mais altos devido aos blocos dos neurônios serem maiores que uma célula padrão. O routing
também foi feito de modo semi-automático, embora as intervenções manuais que eram necessárias
provocassem um grande atraso no desenho do layout, que devia não apenas estar corretamente
conectado conforme o esquemático (Calibre LVS ), mas conformar-se com as regras de fabricação
(Calibre DRC ). Foi também tomado o cuidado de engrossar as linhas de alimentação (VDD e
VSS), o que diminui a resistência das mesmas e gera capacitâncias parasitas capazes de diminuir
o ruído causado pelas portas lógicas, estabilizando o circuito e possibilitando maiores frequências
de operação. As Figuras 4.9, 4.10 e 4.11 mostram os layouts do neurônio, discriminador e top-level
respectivamente.

Figura 4.9: Layout do neurônio (60 µm x 68 µm).
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Figura 4.10: Layout do discriminador (267 µm x 272 µm).
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Figura 4.11: Layout do top-level (565 µm x 582 µm).
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A área do layout de cada módulo encontra-se na Tabela 4.4. Como a área apresentada no
relatório de síntese do LeonardoSpectrum não considera as conexões de metal, apenas soma todas
as áreas das instâncias geradas, e a síntese hierárquica tende a aumentar o desperdício de espaço,
o layout ficou maior, principalmente para o top-level.

Tabela 4.4: Áreas mínimas da síntese pelo LeonardoSpectrum (sem considerar as conexões), áreas finais
do layout implementado para cada módulo e a razão entre as mesmas (layout/LeonardoSpectrum).

Módulo LeonardoSpectrum (µm2) Layout (µm2) Razão
wisard_neuron 2038 4106 2,0
wisard_disc 30139 72865 2,4
wisard_top 99554 329053 3,3

4.5 Eldo - simulação

A partir do layout da RNA WISARD com 16 entradas, 3 classes e 8 neurônios por classe (Figura
4.11) extraiu-se um arquivo para realizar a simulação elétrica (Eldo). As simulações foram feitas
com os modelos típico, worst power e worst speed e são similares à executada no ModelSim para 16
entradas (Seção 4.1): 3 classes foram aprendidas e depois testadas.

Os resultados da simulação para o modelo típico encontram-se nas Figuras 4.12, 4.13, 4.14 e
4.15. A correspondência entre os sinais apresentados nessas figuras e os utilizados na descrição em
VHDL de wisard_top é mostrada na Tabela 4.5.

Tabela 4.5: Correspondênia entre os sinais da simulação no Eldo e sua descrição em VHDL.

Eldo VHDL (wisard_top)
V(CLK) clk_i
V(RST) rst_i

V(START) start_i
V(MODE) mode_i
V(DONE) done_o

V(CLASS_O_0_0)
V(CLASS_O_0_1) class_o(0)
V(CLASS_O_0_2)
V(CLASS_O_0_3)
V(CLASS_O_1_0)
V(CLASS_O_1_1) class_o(1)
V(CLASS_O_1_2)
V(CLASS_O_1_3)
V(CLASS_O_2_0)
V(CLASS_O_2_1) class_o(2)
V(CLASS_O_2_2)
V(CLASS_O_2_3)

Os três primeiros pulsos de V(DONE) correspondem ao fim do treinamento das classes 0, 1 e
2, e os três últimos ao término dos testes. O sinal V(MODE) (Figura 4.12) indica o período de
treinamento (nível lógico ‘0’) e de teste (nível lógico ‘1’). Os sinais de saída do discriminador 0
(Figura 4.13) foram 6, 0 e 3; os do discriminador 1 (Figura 4.14) 1, 6 e 2; e os do discriminador 2
(Figura 4.15) 2, 2 e 7 quando as entradas do teste pertenciam às classes 0, 1 e 2, respectivamente.

Comparando-se os resultados com a simulação no ModelSim (Figura 4.1) e com seus resultados
(Tabela 4.1), pode-se ver que as saídas foram as esperadas, ou seja, para uma entrada da classe 0,
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Figura 4.12: Sinais de controle e clock para o modelo típico.

Figura 4.13: Saída do discriminador correspondente à classe 0 para o modelo típico.
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Figura 4.14: Saída do discriminador correspondente à classe 1 para o modelo típico.

Figura 4.15: Saída do discriminador correspondente à classe 2 para o modelo típico.
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seu discriminador correspondente respondeu com 6 (6 neurônios dispararam) e assim por diante.
A frequência máxima de operação e a potência consumida encontradas para cada modelo se-

gundo a simulação no Eldo encontra-se na Tabela 4.6. O resultado para frequência máxima, modelo
típico, (240 MHz) foi um pouco maior que a estimativa do LeonardoSpectrum (220 MHz) pois este
possivelmente sobre-estimou as capacitâncias parasitas do circuito.

Tabela 4.6: Frequência máxima e consumo de potência do top-level implementado na tecnologia AMS 0,35
µm para vários modelos.

Modelo Frequência máxima (MHz) Consumo de potência (mW/GHz)
Worst Power 370 86,4
Tipical Model 240 83,6
Worst Speed 170 82,5

4.6 Quartus II - síntese

Foi sintetizada uma RNA WISARD descrita em VHDL com os mesmos parâmetros usados
no ASIC (16 entradas, 3 classes e 8 neurônios por discriminador) para um FPGA Cyclone II
utilizando-se do testbench tb_syn_wisard_top e do bloco ALTPLL da Altera (Figura 3.10). Com
as configurações padrão de otimização foram geradas, excetuando-se o testbench sintetizável e a
PLL, 288 células lógicas, das quais 196 possuíam registradores lógicos dedicados e 92 apenas LUTs
(Look-up Tables).

A partir de alterações dos parâmetros da PLL da Altera e da utilização do testbench sintetizável,
pôde-se verificar que a frequência máxima de operação do circuito, semelhante ao implementado em
ASIC, exceto pelo nível mais alto da hirarquia (tb_syn_wisard_top), foi de 350 MHz. Comparando-
se este valor com a frequência máxima encontrada para a simulação do circuito em ASIC (240 MHz
no caso típico), temos que a implementação em FPGA foi cerca de 45% mais rápida.

Para que fosse possível a comparação de resultados de frequência máxima de operação entre
implementações diferentes (ASIC com standard cells e FPGA) em tecnologias diferentes (AMS 0,35
µm e Cyclone II 90 nm), alguns resultados da literatura foram úteis:

• Segundo KUON; ROSE (2007), a relação média entre as frequências máximas de implementa-
ções em ASIC com standard cells (tecnologia STMicroeletronics 90 nm) e em FPGA (Stratix
II - 90 nm) é de 3,2.

• Apesar de o FPGA utilizado (Cyclone II) também ser feito em uma tecnologia 90 nm, ana-
lisando diversas implementações (HELIUM TECHNOLOGY, 2008, VISENGI, 2011, JOP,
2008, IPCORES, 2008), o mesmo possui uma frequência máxima de operação entre 1,3 e 1,6
vezes menor que o Stratix II.

• Implementações de um comparador binário em standard cells nas tecnologias STMicroeletro-
nics 90 nm e AMS 0,35 µm (PERRI; CORSONELLO, 2008) mostram uma razão de 4,7 entre
as suas frequências máximas de operação.

• Ainda, de acordo com (PERRI; CORSONELLO, 2011), que implementa um banco de memó-
ria, a razão dos atrasos da memória (tempo de acesso aos dados, setup de endereço etc.) entre
as implementações em tecnologias AMS 0,35 µm e STMicroeletronics 90 nm varia entre 4,2 e
8,7.

Assim, dado que a frequência máxima do circuito em FPGA é de 350 MHz, a partir das in-
formações apresentadas nos itens anteriores, era de se esperar que a frequência máxima de uma
implementação ASIC na tecnologia AMS 0,35 µm estivesse no intervalo de 170 MHz a 430 MHz.
Como a frequência máxima obtida da rede WISARD foi de 240 MHz para o modelo típico (podendo
variar de 170 MHz a 370 MHz nos demais modelos), os resultados estão dentro do esperado.
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4.7 LeonardoSpectrum, R - análises

Com o intuito de estabelecer relações entre a área total das instâncias geradas na implementação
para ASIC e os parâmetros da rede neural descrita em VHDL, foram executadas 60 sínteses no
LeonardoSpectrum otimizadas para área mantendo hierarquia com diversos valores de número de
entradas, número de classes e número de neurônios por discriminador. Esses parâmetros, juntamente
com a estimativa de células de um bit (descrita na subseção seguinte) foram relacionados com a
área e o atraso do caminho crítico obtidos nas sínteses realizadas.

4.7.1 Estimativa de células de um bit

Analisando a estrutura da rede WISARD, pode-se concluir que há uma relação entre o número
de células de 1 bit necessárias e o número de neurônios por discriminador, o número de classes e a
quantidade de pixels, expressa pela seguinte equação:

Estim = N ∗ C ∗ 2
I
N (4.1)

onde N é o número de neurônios por discriminador, C o número de classes, I o número de pixels
da imagem e Estim a estimativa do número de células de 1 bit.

4.7.2 Correlações

A Tabela 4.7 e a Figura 4.16 mostram, respectivamente, as correlações dos dados extraídos e
um gráfico de dispersão em pares. As correlações foram calculadas através do software R segundo
o método de Pearson e as mais importantes serão discutidas nas próximas subseções.

Tabela 4.7: Correlação entre os diversos parâmetros de entrada da rede WISARD, estimativas de células
de um bit e dados do relatório apresentados pelo LeonardoSpectrum.

Área do circuito No Instâncias Atraso
No Pixels 0,74 0,74 0,53

Neurônios/Discriminador 0,45 0,46 0,70
Tamanho do endereço 0,16 0,16 -0,07

No Classes 0,50 0,50 -0,03
Estimativa de células de um bit 0,98 0,99 0,41

4.7.3 Atraso do caminho crítico

A correlação de 0,70 entre o atraso do caminho crítico e o número de neurônios por discriminador
pode ser explicada pelas seguintes observações:

• Na maioria das sínteses executadas, o caminho crítico encontrava-se dentro do discriminador.

• O discriminador possui um somador que acrescenta no máximo um ao seu valor anterior, ou
seja, ele pode ser considerado um contador síncrono com enable.

• O discriminador possui um comparador relacionado a esse somador.

Devido às entradas do somador terem sido descritas em VHDL como inteiros de tamanho má-
ximo igual ao número de neurônios por discriminador, a área e o atraso correspondentes a ele
crescem linearmente com o teto do logaritmo na base dois desse número. Além disso, o comparador
relacionado a esse somador possui um crescimento de área e atraso também logarítmicos. Um outro
modo de descrever o somador seria com um shift register. Nesse caso o caminho crítico quase não
aumentaria, porém a área cresceria linearmente com o número de neurônios por discriminador. Por
outro lado, o comparador seria reduzido ao último bit do shift register.
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Figura 4.16: Gráfico de dispersão em pares, onde input é a quantidade de pixels, neuron o número de
neurônios, address o tamanho do endereço, classes o número de classes, estim o tamanho estimado de
acordo com a equação 4.1, size o tamanho apresentado pelo LeonardoSpectrum, inst o número de instâncias
e delay o atraso do caminho crítico.
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4.7.4 Estimativa de área

A alta correlação entre a estimativa de células de 1 bit e a área mínima apresentada pelo
LeonardoSpectrum (0,98), bem como o gráfico apresentado na Figura 4.16, indicam uma relação
linear entre as mesmas. Portanto, foi utilizada a função de regressão linear disponível no R (lm()),
chegando-se à seguinte fórmula de cálculo da área:

Estim = N ∗ C ∗ 2
I
N ∗ 650.2 + 51668.7 (4.2)

onde N é o número de neurônios por discriminador, C o número de classes, I o número de pixels
da imagem e Estim o tamanho mínimo do circuito, excetuando-se as conexões, em µm2. O ajuste
entre a estivativa de número de células de bit e a área mínima dada pelo LeonardoSpectrum foi
alto, isto é, o valor de R2-ajustado (Apêndice C) foi de 0,97.

Entretanto, existem alguns pressupostos para que a regressão linear possa ser utilizada:

1. A relação entre a covariável número de células de um bit e a variável de resposta área do
circuito deve ser linear.

2. O número de células de um bit não é uma variável aleatória.

3. O número de células de um bit possui uma variância não nula.

4. A covariância entre o erro e o número de células de um bit é nula.

5. A variância do erro é constante (homogênea).

6. Os erros das variáveis de resposta são independentes.

7. O erro possui uma distribuição normal.

Apesar do ajuste da reta ter sido bom, a variância do erro não é constante, ou seja, ele aumenta
com o aumento do tamanho do circuito, conforme pode ser visto na Figura 4.17. Caso a variância
fosse constante, o gráfico de resíduos por valores preditos deveria ter uma distribuição homogênea
de pontos, não a forma triangular encontrada. Portanto, a Equação 4.2 deve ser usada com cautela
para um circuito maior.

4.7.5 Previsões de área

Com a Equação 4.2, foram feitos gráficos de previsões do tamanho do circuito para diversos
números de pixels e neurônios por discriminador com o intuito de se observar o efeito dos mesmos
na área final. Assim, foram obtidos os gráficos das Figuras 4.18 e 4.19. Conforme esperado, a área
aumenta exponencialmente com a diminuição do número de neurônios. Além disso, para um número
fixo de neurônios por discriminador, a área também aumenta exponencialmente com o aumento do
número de pixels de entrada.
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Figura 4.17: Resíduos versus valores preditos.

Figura 4.18: Tamanho estimado (µm2) versus número de neurônios por discriminador para um número
variável de classes com uma imagem de 90 pixels.
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Figura 4.19: Tamanho estimado (µm2) versus número de pixels para um número variável de classes com
4 neurônios por discriminador.

A fim de se verificar a validade da estimativa em relação às áreas apresentadas pelo LeonardoS-
pectrum, foi gerado um gráfico com esses valores para os casos testados (Figura 4.20).

Para um número maior de pixels na entrada não foi possível obter os dados do LeonardoSpectrum
para uma quantidade baixa de neurônios pois, neste caso, devido ao tamanho do circuito aumentar
exponencialmente, o programa deixou de responder.
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Figura 4.20: Áreas estimadas segundo a Equação 4.2 e apresentadas pelo LeonardoSpectrum (µm2) para
os testes realizados.



Capítulo 5

Conclusões

Nesse trabalho foi descrita uma rede neural WISARD em VHDL e simulada com o software
ModelSim. Um exemplo dessa descrição, uma rede com 16 entradas, 3 classes e 8 neurônios por
discriminador, foi sintetizado para ASIC. Seu layout foi desenvolvido e o circuito extraído a partir
do mesmo foi simulado no Eldo. A descrição em VHDL da rede com os mesmos parâmetros foi
também validada em FPGA. Além disso, foi implementado um gerador de testbenches em VHDL e
um gerador de arquivos SPICE para esse problema específico utilizando-se da linguagem Python.

As velocidades máximas de operação obtidas para a rede WISARD sintetizada com 16 entradas,
3 classes e 8 neurônios por discriminador foram de 350 MHz para o FPGA Cyclone II, da Altera,
e de 240 MHz para a tecnologia AMS 0,35 µm, modelo típico. Conforme discutido na Seção 4.6,
esses resultados estão coerentes de acordo com a análise de outras implementações encontradas na
literatura.

A área mínima do layout apresentada pelo LeonardoSpectrum foi cerca de 3,3 vezes menor que a
área final do circuito (329053 µm2) na tecnologia AMS 0,35 µm. Na síntese para o Cyclone II, foram
utilizadas 288 células lógicas (196 com registradores lógicos dedicados e 92 com apenas LUTs).

Foi criada uma equação a fim de estimar a área mínima do circuito implementado em ASIC
(AMS 0,35 µm) que é calculada a partir da soma das áreas das instâncias sintetizadas pelo Leonar-
doSpectrum. A estimativa de área fornecida pela equação apresentou uma correlação de 98% com
os dados reais obtidos.

Esse projeto permitiu o aprendizado sobre redes neurais, que não haviam sido estudadas durante
a graduação, o aprimoramento nas habilidades de descrição de hardware em VHDL direcionado à
síntese e a utilização de conceitos de estatística para gerar estimativas de área. Além disso, esse
trabalho compreendeu desde o uso de uma linguagem de alto nível, como Python, até o desenvolvi-
mento de esquemáticos e layouts de circuitos, envolvendo aplicação de diversos conceitos aprendidos
durante a graduação em um mesmo projeto.

Como sugestões para trabalhos futuros estão: otimizações do código em VHDL com o intuito de
se reduzir a área ou aumentar a velocidade máxima de operação; mudanças em cada discriminador
a fim de otimizar a rede para a resolução de algum problema específico; implementações dessa rede
em outras tecnologias ASIC a fim de se comparar área e atraso do caminho crítico; e comparação
da rede WISARD com outras redes neurais a serem implementadas em hardware.
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APÊNDICE A – Código Fonte em
Python

Gerador de testbenches - tb_gen.py

1 import s t r u c t
2 import sys
3
4 def r e ad_f i l e ( f i l ename ) :
5 x = [ ]
6 f = open ( f i l ename , " rb" )
7 i = 1
8 try :
9 byte = f . read (54)

10 byte = f . read (1 )
11 while byte != "" :
12
13 i f i == 10 :
14 byte = f . read (1 )
15 i = 0
16 else :
17 a = ( s t r u c t . unpack ( ’B ’ , byte ) [ 0 ] )
18 byte = f . read (1 )
19 b = ( s t r u c t . unpack ( ’B ’ , byte ) [ 0 ] )
20 byte = f . read (1 )
21 c = ( s t r u c t . unpack ( ’B ’ , byte ) [ 0 ] )
22 i f a>128:
23 x . append (0)
24 else :
25 x . append (1)
26 i += 1
27 byte = f . read (1 )
28 f ina l ly :
29 f . c l o s e ( )
30 return x
31
32 def print_bin (x ) :
33 sys . s tdout . wr i t e ( "\"" )
34 for i in range (0 , l en (x ) ) :
35 sys . s tdout . wr i t e ( s t r ( x [ i ] ) )
36 sys . s tdout . wr i t e ( "\"" )
37
38 def print_setup ( ) :
39 print " input_s <= ( othe r s =>’0 ’) ; "
40 print " start_s <= ’ 0 ’ ; "
41 print "mode_s <= ’ 0 ’ ; "
42 print "wait f o r RST_TIME; "
43 print "wait u n t i l r i s ing_edge ( clk_s ) ; "
44
45 def print_input ( input_s ) :
46 print " input_s <= " ,
47 print_bin ( input_s )
48 print " ; "

43
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49
50 def pr in t_c l a s s ( c l a s s_s ) :
51 print " c lass_i_s <= " ,
52 sys . s tdout . wr i t e ( s t r ( c l a s s_s ) )
53 print " ; "
54
55 def pr int_start_pulse ( ) :
56 print " start_s <= ’ 1 ’ ; "
57 print "wait u n t i l r i s ing_edge ( clk_s ) ; "
58 print " start_s <= ’ 0 ’ ; "
59
60 def print_wait_for_done ( ) :
61 print "wait u n t i l done_s = ’ 1 ’ ; "
62 print "wait u n t i l r i s ing_edge ( clk_s ) ; "
63
64 def t r a i n ( f i l ename , c la s s_s ) :
65 f i l e_r ead = read_f i l e ( f i l ename )
66 print_input ( f i l e_r ead )
67 p r in t_c l a s s ( c l a s s_s )
68 pr int_start_pulse ( )
69 print_wait_for_done ( )
70 print
71
72 def pr int_test_setup ( ) :
73 print "mode_s <= ’ 1 ’ ; "
74
75 def t e s t ( f i l ename ) :
76 pr int_input ( r e ad_f i l e ( f i l ename ) )
77 pr int_start_pulse ( )
78 print_wait_for_done ( )
79
80
81 i f __name__ == "__main__" :
82 print_setup ( )
83 t r a i n ( " images /0_1 .bmp" ,0)
84 t r a i n ( " images /0_2 .bmp" ,0)
85 t r a i n ( " images /0_3 .bmp" ,0)
86 t r a i n ( " images /1_1 .bmp" ,1)
87 t r a i n ( " images /1_2 .bmp" ,1)
88 t r a i n ( " images /1_3 .bmp" ,1)
89 t r a i n ( " images /2_1 .bmp" ,2)
90 t r a i n ( " images /2_2 .bmp" ,2)
91 t r a i n ( " images /2_3 .bmp" ,2)
92 pr int_test_setup ( )
93 t e s t ( " images /0_4 .bmp" )
94 t e s t ( " images /0_5 .bmp" )
95 t e s t ( " images /0_6 .bmp" )
96 t e s t ( " images /1_4 .bmp" )
97 t e s t ( " images /1_5 .bmp" )
98 t e s t ( " images /1_6 .bmp" )
99 t e s t ( " images /2_4 .bmp" )

100 t e s t ( " images /2_5 .bmp" )
101 t e s t ( " images /2_6 .bmp" )

Gerador de arquivos SPICE - wave_gen.py

1 import sys
2 from sys import stdout
3
4 def gen_wave (name , times , value , d e s l=True ) :
5 print name ,
6 sys . s tdout . wr i t e ( ’PWL( ’ )
7 print t imes [ 0 ] , va lue [ 0 ] , ’ ’ ,
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8
9 i f de s l :

10 for i in xrange (1 , l en ( t imes ) ) :
11 print ’ ’ ,
12 sys . s tdout . wr i t e ( ’ \ ’ ’ )
13 sys . s tdout . wr i t e ( s t r ( t imes [ i ] ) )
14 print ’ ∗T1+DESL−INF\ ’ ’ , va lue [ i −1] , ’ ’ ,
15 sys . s tdout . wr i t e ( ’ \ ’ ’ )
16 sys . s tdout . wr i t e ( s t r ( t imes [ i ] ) )
17 print ’ ∗T1+DESL\ ’ ’ , va lue [ i ] ,
18 else :
19 for i in xrange (1 , l en ( t imes ) ) :
20 print ’ ’ ,
21 sys . s tdout . wr i t e ( ’ \ ’ ’ )
22 sys . s tdout . wr i t e ( s t r ( t imes [ i ] ) )
23 print ’ ∗T1−INF\ ’ ’ , va lue [ i −1] , ’ ’ ,
24 sys . s tdout . wr i t e ( ’ \ ’ ’ )
25 sys . s tdout . wr i t e ( s t r ( t imes [ i ] ) )
26 print ’ ∗T1\ ’ ’ , va lue [ i ] ,
27
28 sys . s tdout . wr i t e ( ’ ) ’ )
29
30 i f __name__ == "__main__" :
31 VDD = 3
32 START1 = 3
33 START2 = 10
34 START3 = 17
35 START4 = 24
36 START5 = 40
37 START6 = 56
38
39 print ’ \n ’
40 t imes = [ 0 , 1 ]
41 value = [VDD, 0 ]
42 gen_wave ( ’V_rst RST 0 ’ , times , value , Fa l se )
43 print ’ \n ’
44 t imes = [ 0 , START4]
45 value = [ 0 , VDD]
46 gen_wave ( ’V_mode MODE 0 ’ , times , va lue )
47 print ’ \n ’
48 t imes = [ 0 , START1, START1+1, START2, START2+1, START3, START3+1, START4,

START4+1, START5, START5+1, START6, START6+1]
49 value = [ 0 , VDD, 0 , VDD, 0 , VDD, 0 , VDD,

0 , VDD, 0 , VDD, 0 ]
50 gen_wave ( ’ V_start START 0 ’ , times , va lue )
51 print ’ \n ’
52 t imes = [ 0 , START1, START2, START3, START4, START5, START6]
53 value = [ 0 , VDD, 0 , VDD, 0 , 0 , VDD]
54 gen_wave ( ’V_i00 INPUT_0 0 ’ , times , va lue )
55 print ’ \n ’
56 t imes = [ 0 , START1, START2, START3, START4, START5, START6]
57 value = [ 0 , VDD, 0 , VDD, VDD, VDD, VDD]
58 gen_wave ( ’V_i01 INPUT_1 0 ’ , times , va lue )
59 print ’ \n ’
60 t imes = [ 0 , START1, START2, START3, START4, START5, START6]
61 value = [ 0 , VDD, VDD, VDD, VDD, 0 , VDD]
62 gen_wave ( ’V_i02 INPUT_2 0 ’ , times , va lue )
63 print ’ \n ’
64 t imes = [ 0 , START1, START2, START3, START4, START5, START6]
65 value = [ 0 , VDD, 0 , VDD, VDD, 0 , VDD]
66 gen_wave ( ’V_i03 INPUT_3 0 ’ , times , va lue )
67 print ’ \n ’
68 t imes = [ 0 , START1, START2, START3, START4, START5, START6]
69 value = [ 0 , VDD, 0 , 0 , VDD, 0 , 0 ]
70 gen_wave ( ’V_i04 INPUT_4 0 ’ , times , va lue )
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71 print ’ \n ’
72 t imes = [ 0 , START1, START2, START3, START4, START5, START6]
73 value = [ 0 , 0 , 0 , 0 , 0 , 0 , 0 ]
74 gen_wave ( ’V_i05 INPUT_5 0 ’ , times , va lue )
75 print ’ \n ’
76 t imes = [ 0 , START1, START2, START3, START4, START5, START6]
77 value = [ 0 , 0 , VDD, VDD, 0 , VDD, VDD]
78 gen_wave ( ’V_i06 INPUT_6 0 ’ , times , va lue )
79 print ’ \n ’
80 t imes = [ 0 , START1, START2, START3, START4, START5, START6]
81 value = [ 0 , VDD, 0 , 0 , VDD, 0 , 0 ]
82 gen_wave ( ’V_i07 INPUT_7 0 ’ , times , va lue )
83 print ’ \n ’
84 t imes = [ 0 , START1, START2, START3, START4, START5, START6]
85 value = [ 0 , VDD, 0 , 0 , VDD, 0 , 0 ]
86 gen_wave ( ’V_i08 INPUT_8 0 ’ , times , va lue )
87 print ’ \n ’
88 t imes = [ 0 , START1, START2, START3, START4, START5, START6]
89 value = [ 0 , 0 , 0 , VDD, 0 , 0 , VDD]
90 gen_wave ( ’V_i09 INPUT_9 0 ’ , times , va lue )
91 print ’ \n ’
92 t imes = [ 0 , START1, START2, START3, START4, START5, START6]
93 value = [ 0 , 0 , VDD, 0 , 0 , VDD, 0 ]
94 gen_wave ( ’V_i10 INPUT_10 0 ’ , times , va lue )
95 print ’ \n ’
96 t imes = [ 0 , START1, START2, START3, START4, START5, START6]
97 value = [ 0 , VDD, 0 , 0 , VDD, 0 , 0 ]
98 gen_wave ( ’V_i11 INPUT_11 0 ’ , times , va lue )
99 print ’ \n ’

100 t imes = [ 0 , START1, START2, START3, START4, START5, START6]
101 value = [ 0 , VDD, 0 , VDD, VDD, 0 , 0 ]
102 gen_wave ( ’V_i12 INPUT_12 0 ’ , times , va lue )
103 print ’ \n ’
104 t imes = [ 0 , START1, START2, START3, START4, START5, START6]
105 value = [ 0 , VDD, 0 , VDD, VDD, 0 , VDD]
106 gen_wave ( ’V_i13 INPUT_13 0 ’ , times , va lue )
107 print ’ \n ’
108 t imes = [ 0 , START1, START2, START3, START4, START5, START6]
109 value = [ 0 , VDD, VDD, VDD, VDD, VDD, VDD]
110 gen_wave ( ’V_i14 INPUT_14 0 ’ , times , va lue )
111 print ’ \n ’
112 t imes = [ 0 , START1, START2, START3, START4, START5, START6]
113 value = [ 0 , VDD, 0 , VDD, 0 , 0 , VDD]
114 gen_wave ( ’V_i15 INPUT_15 0 ’ , times , va lue )
115 print ’ \n ’
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Pacote wisard_pkg

1 l ibrary i e e e ;
2 use i e e e . std_logic_1164 . a l l ;
3 use i e e e . numeric_std . a l l ;
4
5 package wisard_pkg i s
6
7 constant CLASS_NUMBER : i n t e g e r := 3 ;
8
9 constant INPUTS_NUMBER : i n t e g e r := 16 ;

10 constant NEURONS_NUMBER : i n t e g e r := 8 ;
11
12 −− minimum number o f b i t s to d e s c r i b e neurons_number
13 constant SUM_SIZE : i n t e g e r := 4 ;
14
15 −− inputs_number/neurons_number
16 constant ADD_SIZE : i n t e g e r := INPUTS_NUMBER/NEURONS_NUMBER;
17
18 −− 2^ADD_SIZE
19 constant WORDS_NUMBER : i n t e g e r := 2∗∗ADD_SIZE;
20
21 type c lass_vector_t i s array (CLASS_NUMBER−1 downto 0) of
22 i n t e g e r range NEURONS_NUMBER downto 0 ;
23
24 component wisard_top i s
25 port (
26 r s t_i : in s td_log i c ;
27 c lk_i : in s td_log i c ;
28
29 s ta r t_ i : in s td_log i c ;
30 done_o : out s td_log i c ;
31
32 input_i : in s td_log ic_vector (INPUTS_NUMBER−1 downto 0) ;
33 c l a s s_ i : in i n t e g e r range CLASS_NUMBER−1 downto 0 ;
34
35 c lass_o : out c lass_vector_t ;
36
37 −− ’1 ’ = t e s t , ’0 ’ = l earn
38 mode_i : in s td_log i c
39 ) ;
40 end component ;
41
42 component wisard_disc i s
43 port (
44 r s t_i : in s td_log i c ;
45 c lk_i : in s td_log i c ;
46
47 s ta r t_ i : in s td_log i c ;
48 done_o : out s td_log i c ;

47
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49
50 input_i : in s td_log ic_vector (INPUTS_NUMBER−1 downto 0) ;
51
52 −− ’1 ’ = t e s t , ’0 ’ = l earn
53 mode_i : in s td_log i c ;
54
55 sum_o : out i n t e g e r range NEURONS_NUMBER downto 0
56 ) ;
57 end component ;
58
59 component wisard_neuron i s
60
61 port (
62 r s t_i : in s td_log i c ;
63 c lk_i : in s td_log i c ;
64
65 −− ’1 ’ = read , ’0 ’ = wr i t e
66 rw_i : in s td_log i c ;
67 address_i : in i n t e g e r range WORDS_NUMBER−1 downto 0 ;
68
69 data_o : out s td_log i c
70 ) ;
71 end component ;
72
73 end wisard_pkg ;

Módulo wisard_neuron

1 −− Module : wisard_neuron . vhd
2 −− Descr ip t i on : memory o f 1 b i t words
3
4 l ibrary i e e e ;
5 use i e e e . std_logic_1164 . a l l ;
6 use i e e e . numeric_std . a l l ;
7
8 l ibrary wisard ;
9 use wisard . wisard_pkg . a l l ;

10
11 entity wisard_neuron i s
12
13 port (
14 r s t_i : in s td_log i c ;
15 c lk_i : in s td_log i c ;
16
17 −− ’1 ’ = read , ’0 ’ = wr i t e
18 rw_i : in s td_log i c ;
19 address_i : in i n t e g e r range WORDS_NUMBER−1 downto 0 ;
20
21 data_o : out s td_log i c
22 ) ;
23 end wisard_neuron ;
24
25 architecture r t l of wisard_neuron i s
26 signal memory_s : s td_log ic_vector (WORDS_NUMBER−1 downto 0) ;
27 begin
28
29 data_o <= memory_s( address_i ) ;
30
31 process ( clk_i , r s t_i )
32 begin
33 i f ( r s t_i = ’1 ’ ) then
34 memory_s <= ( others => ’0 ’ ) ;
35 e l s i f ( r i s ing_edge ( c lk_i ) ) then
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36 i f ( rw_i = ’0 ’ ) then
37 memory_s( address_i ) <= ’ 1 ’ ;
38 end i f ;
39 end i f ;
40 end process ;
41
42 end r t l ;

Módulo wisard_disc

1 −− Module : wisard_disc
2 −− Descr ip t i on : Wisard neura l network d i s c r im ina to r
3 −− Each d i s c r im ina to r r ep r e s en t s one c l a s s and
4 −− has one or more neurons
5
6 l ibrary i e e e ;
7 use i e e e . std_logic_1164 . a l l ;
8 use i e e e . numeric_std . a l l ;
9

10 l ibrary wisard ;
11 use wisard . wisard_pkg . a l l ;
12
13 entity wisard_disc i s
14 port (
15 r s t_i : in s td_log i c ;
16 c lk_i : in s td_log i c ;
17
18 s ta r t_ i : in s td_log i c ;
19 done_o : out s td_log i c ;
20
21 input_i : in s td_log ic_vector (INPUTS_NUMBER−1 downto 0) ;
22
23 −− ’1 ’ = t e s t , ’0 ’ = l earn
24 mode_i : in s td_log i c ;
25
26 sum_o : out i n t e g e r range NEURONS_NUMBER downto 0
27 ) ;
28 end wisard_disc ;
29
30 architecture r t l of wisard_disc i s
31
32 type state_t i s (IDLE , S1 , S2 , S3 ) ;
33
34 signal state_fsm , nstate_fsm : state_t ;
35
36 signal i_cnt : i n t e g e r range NEURONS_NUMBER downto 0 ;
37 signal r e su l t_s : i n t e g e r range NEURONS_NUMBER downto 0 ;
38 signal rw_neuron_s : s td_log i c ;
39 signal data_neuron_s : std_log ic_vector (NEURONS_NUMBER−1 downto 0) ;
40
41 type address_t i s array (NEURONS_NUMBER−1 downto 0)
42 of i n t e g e r range WORDS_NUMBER−1 downto 0 ;
43
44 signal address_neuron_s : address_t ;
45 begin
46
47 neurons_gen : for i in 0 to NEURONS_NUMBER−1 generate
48 neuron_u : wisard_neuron
49 port map (
50 r s t_i => rst_i ,
51 c lk_i => clk_i ,
52 rw_i => rw_neuron_s ,
53 address_i => address_neuron_s ( i ) ,



50 APÊNDICE

54 data_o => data_neuron_s ( i )
55 ) ;
56 end generate ;
57
58 process ( clk_i , r s t_i )
59 begin
60 i f r s t_i = ’1 ’ then
61 state_fsm <= IDLE ;
62 e l s i f r i s ing_edge ( c lk_i ) then
63 state_fsm <= nstate_fsm ;
64 end i f ;
65 end process ;
66
67 process ( state_fsm , start_i , i_cnt , mode_i )
68 begin
69 nstate_fsm <= state_fsm ;
70
71 case state_fsm i s
72 when IDLE =>
73 i f s t a r t_ i = ’1 ’ then
74 i f mode_i = ’1 ’ then
75 nstate_fsm <= S1 ;
76 else
77 nstate_fsm <= S3 ;
78 end i f ;
79 end i f ;
80 when S1 => −− t e s t i n g mode
81 nstate_fsm <= S2 ;
82 when S2 =>
83 i f i_cnt = NEURONS_NUMBER then
84 nstate_fsm <= IDLE ;
85 end i f ;
86 when S3 => −− l e a rn mode
87 nstate_fsm <= IDLE ;
88 end case ;
89 end process ;
90
91 process ( clk_i , r s t_i )
92 begin
93 i f r s t_i = ’1 ’ then
94 done_o <= ’ 0 ’ ;
95 rw_neuron_s <= ’1 ’ ;
96 sum_o <= 0 ;
97 i_cnt <= 0 ;
98 re su l t_s <= 0 ;
99 for i in NEURONS_NUMBER−1 downto 0 loop

100 address_neuron_s ( i ) <= 0 ;
101 end loop ;
102 e l s i f r i s ing_edge ( c lk_i ) then
103 case state_fsm i s
104 when IDLE =>
105 rw_neuron_s <= ’ 1 ’ ;
106 done_o <= ’ 0 ’ ;
107 i_cnt <= 0 ;
108 re su l t_s <= 0 ;
109 sum_o <= 0 ;
110 −− t e s t
111 when S1 =>
112 for i in NEURONS_NUMBER−1 downto 0 loop
113 address_neuron_s ( i ) <= to_integer ( unsigned ( input_i ( ( i +1)

∗ADD_SIZE−1 downto i ∗ADD_SIZE) ) ) ;
114 end loop ;
115
116 rw_neuron_s <= ’ 1 ’ ;
117
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118 when S2 =>
119 i f i_cnt = NEURONS_NUMBER then
120 done_o <= ’ 1 ’ ;
121 sum_o <= resu l t_s ;
122 else
123 i f data_neuron_s ( i_cnt ) = ’1 ’ then
124 re su l t_s <= resu l t_s + 1 ;
125 end i f ;
126 i_cnt <= i_cnt + 1 ;
127 end i f ;
128
129 −− t r a i n
130 when S3 =>
131 for i in NEURONS_NUMBER−1 downto 0 loop
132 address_neuron_s ( i ) <= to_integer ( unsigned ( input_i ( ( i +1)

∗ADD_SIZE−1 downto i ∗ADD_SIZE) ) ) ;
133 end loop ;
134 rw_neuron_s <= ’ 0 ’ ;
135 done_o <= ’ 1 ’ ;
136 end case ;
137 end i f ;
138 end process ;
139
140 end r t l ;

Módulo wisard_top

1 −− Module : wisard_top . vhd
2 −− Descr ip t i on : top l e v e l e n t i t y o f wisard neura network .
3 −− Each d i s c r im ina to r i s r e s p on s i b l e f o r one c l a s s
4
5 l ibrary i e e e ;
6 use i e e e . std_logic_1164 . a l l ;
7 use i e e e . numeric_std . a l l ;
8
9 l ibrary wisard ;

10 use wisard . wisard_pkg . a l l ;
11
12 entity wisard_top i s
13 port (
14 r s t_i : in s td_log i c ;
15 c lk_i : in s td_log i c ;
16
17 s ta r t_ i : in s td_log i c ;
18 done_o : out s td_log i c ;
19
20 input_i : in s td_log ic_vector (INPUTS_NUMBER−1 downto 0) ;
21 c l a s s_ i : in i n t e g e r range CLASS_NUMBER−1 downto 0 ;
22
23 c lass_o : out c lass_vector_t ;
24
25 −− ’1 ’ = t e s t , ’0 ’ = l earn
26 mode_i : in s td_log i c
27 ) ;
28 end wisard_top ;
29
30 architecture r t l of wisard_top i s
31
32 type state_t i s (IDLE , S1 , S2 , S3 ) ;
33
34 signal state_fsm , nstate_fsm : state_t ;
35
36 signal s tart_s : s td_log ic_vector (CLASS_NUMBER−1 downto 0) ;
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37 signal done_s : s td_log ic_vector (CLASS_NUMBER−1 downto 0) ;
38 signal mode_s : s td_log ic_vector (CLASS_NUMBER−1 downto 0) ;
39
40 signal sum_s : c lass_vector_t ;
41
42 begin
43
44 disc_gen : for i in CLASS_NUMBER−1 downto 0 generate
45 disc_u : wisard_disc
46 port map (
47 r s t_i => rst_i ,
48 c lk_i => clk_i ,
49 s ta r t_ i => start_s ( i ) ,
50 done_o => done_s ( i ) ,
51 input_i => input_i ,
52 mode_i => mode_s( i ) ,
53 sum_o => sum_s( i )
54 ) ;
55 end generate ;
56
57 process ( clk_i , r s t_i )
58 begin
59 i f r s t_i = ’1 ’ then
60 done_o <= ’ 0 ’ ;
61 c lass_o <= ( others => 0) ;
62 start_s <= ( others => ’0 ’ ) ;
63 mode_s <= ( others => ’1 ’ ) ;
64 e l s i f r i s ing_edge ( c lk_i ) then
65 case state_fsm i s
66 when IDLE =>
67 done_o <= ’ 0 ’ ;
68 i f s t a r t_ i = ’1 ’ then
69 mode_s( c l a s s_ i ) <= mode_i ;
70 i f mode_i= ’0 ’ then
71 start_s ( c l a s s_ i ) <= ’ 1 ’ ;
72 else
73 start_s <= ( others => ’1 ’ ) ;
74 end i f ;
75 else
76 mode_s <= ( others => ’1 ’ ) ;
77 start_s <= ( others => ’0 ’ ) ;
78 end i f ;
79 when S1 => −− l e a rn
80 start_s <= ( others => ’0 ’ ) ;
81
82 i f done_s ( c l a s s_ i ) = ’1 ’ then
83 done_o <= ’ 1 ’ ;
84 end i f ;
85 when S2 => −− t e s t
86 start_s <= ( others => ’0 ’ ) ;
87
88 i f done_s (0 ) = ’1 ’ then
89 done_o <= ’ 1 ’ ;
90 for i in CLASS_NUMBER−1 downto 0 loop
91 c lass_o ( i ) <= sum_s( i ) ;
92 end loop ;
93 end i f ;
94 when others =>
95 end case ;
96 end i f ;
97 end process ;
98
99 process ( clk_i , r s t_i )

100 begin
101 i f r s t_i = ’1 ’ then
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102 state_fsm <= IDLE ;
103 e l s i f r i s ing_edge ( c lk_i ) then
104 state_fsm <= nstate_fsm ;
105 end i f ;
106 end process ;
107
108 process ( state_fsm , start_i , done_s , mode_i )
109 begin
110 nstate_fsm <= state_fsm ;
111
112 case state_fsm i s
113 when IDLE =>
114 i f s t a r t_ i = ’1 ’ then
115 i f mode_i = ’1 ’ then
116 nstate_fsm <= S2 ;
117 else
118 nstate_fsm <= S1 ;
119 end i f ;
120 end i f ;
121 when S1 => −− l e a rn mode
122 i f done_s ( c l a s s_ i ) = ’1 ’ then
123 nstate_fsm <= IDLE ;
124 end i f ;
125 when S2 => −− t e s t mode
126 i f done_s (0 ) = ’1 ’ then
127 nstate_fsm <= IDLE ;
128 end i f ;
129 when others =>
130 nstate_fsm <= IDLE ;
131 end case ;
132 end process ;
133
134 end r t l ;

Testbench tb_wisard_disc

1 −− Module : tb_wisard_disc
2 −− Descr ip t i on : Wisard neura l network d i s c r im ina to r t e s t b ench
3
4 l ibrary i e e e ;
5 use i e e e . std_logic_1164 . a l l ;
6 use i e e e . numeric_std . a l l ;
7
8 use work . wisard_pkg . a l l ;
9

10 entity tb_wisard_disc i s
11 end tb_wisard_disc ;
12
13 architecture behav io ra l of tb_wisard_disc i s
14 signal clk_s : s td_log i c ;
15 signal rst_s : s td_log i c ;
16 signal s tart_s : s td_log i c ;
17 signal done_s : s td_log i c ;
18 signal input_s : s td_log ic_vector (INPUTS_NUMBER−1 downto 0) ;
19 signal mode_s : s td_log i c ;
20 signal sum_s : i n t e g e r range NEURONS_NUMBER downto 0 ;
21
22 constant CLK_PERIOD : time := 10 ns ;
23 constant RST_TIME : time := 40 ns ;
24
25 begin
26
27 disc_u : wisard_disc
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28 port map (
29 r s t_i => rst_s ,
30 c lk_i => clk_s ,
31 s ta r t_ i => start_s ,
32 done_o => done_s ,
33 input_i => input_s ,
34 mode_i => mode_s ,
35 sum_o => sum_s
36 ) ;
37
38 process
39 begin
40 clk_s <= ’ 0 ’ ;
41 wait for CLK_PERIOD/2 ;
42 clk_s <= ’ 1 ’ ;
43 wait for CLK_PERIOD/2 ;
44 end process ;
45
46 process
47 begin
48 rst_s <= ’ 1 ’ ;
49 wait for RST_TIME;
50 rst_s <= ’ 0 ’ ;
51 wait ;
52 end process ;
53
54 process
55 begin
56 start_s <= ’ 0 ’ ;
57 mode_s <= ’ 0 ’ ;
58 wait for RST_TIME;
59 wait until r i s ing_edge ( clk_s ) ;
60 start_s <= ’ 1 ’ ;
61 wait until r i s ing_edge ( clk_s ) ;
62 start_s <= ’ 0 ’ ;
63 wait until done_s = ’ 1 ’ ;
64 wait until r i s ing_edge ( clk_s ) ;
65 mode_s <= ’ 1 ’ ;
66 start_s <= ’ 1 ’ ;
67 wait until r i s ing_edge ( clk_s ) ;
68 start_s <= ’ 0 ’ ;
69 wait ;
70 end process ;
71
72 process
73 begin
74 input_s <= "1111100110011111" ;
75 −− 1111
76 −− 1001
77 −− 1001
78 −− 1111
79 wait ;
80 end process ;
81
82 end behav io ra l ;

Testbench tb_wisard_top

1 −− Module : tb_wisard_top
2 −− Descr ip t i on : Wisard top l e v e l t e s t b ench
3
4 l ibrary i e e e ;
5 use i e e e . std_logic_1164 . a l l ;
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6 use i e e e . numeric_std . a l l ;
7
8 l ibrary wisard ;
9 use wisard . wisard_pkg . a l l ;

10
11 entity tb_wisard_top i s
12 end tb_wisard_top ;
13
14 architecture behav io ra l of tb_wisard_top i s
15 signal clk_s : s td_log i c ;
16 signal rst_s : s td_log i c ;
17 signal s tart_s : s td_log i c ;
18 signal done_s : s td_log i c ;
19 signal input_s : s td_log ic_vector (INPUTS_NUMBER−1 downto 0) ;
20 signal c lass_i_s : i n t e g e r range CLASS_NUMBER−1 downto 0 ;
21 signal class_o_s : c lass_vector_t ;
22 signal mode_s : s td_log i c ;
23
24 constant CLK_PERIOD : time := 10 ns ;
25 constant RST_TIME : time := 40 ns ;
26
27 begin
28
29 top_u : wisard_top
30 port map (
31 r s t_i => rst_s ,
32 c lk_i => clk_s ,
33 s ta r t_ i => start_s ,
34 done_o => done_s ,
35 input_i => input_s ,
36 c l a s s_ i => class_i_s ,
37 c lass_o => class_o_s ,
38 mode_i => mode_s
39 ) ;
40
41 process
42 begin
43 clk_s <= ’ 0 ’ ;
44 wait for CLK_PERIOD/2 ;
45 clk_s <= ’ 1 ’ ;
46 wait for CLK_PERIOD/2 ;
47 end process ;
48
49 process
50 begin
51 rst_s <= ’ 1 ’ ;
52 wait for RST_TIME;
53 rst_s <= ’ 0 ’ ;
54 wait ;
55 end process ;
56
57 process
58 begin
59 input_s <= "0000000000000000" ;
60 start_s <= ’ 0 ’ ;
61 mode_s <= ’ 0 ’ ; −− l e a rn c l a s s 0
62 wait for RST_TIME;
63 wait until r i s ing_edge ( clk_s ) ;
64 input_s <= "1111100110011111" ;
65 −− 1111
66 −− 1001
67 −− 1001
68 −− 1111
69 start_s <= ’ 1 ’ ;
70 c lass_i_s <= 0 ;
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71 wait until r i s ing_edge ( clk_s ) ;
72 start_s <= ’ 0 ’ ;
73 wait until done_s = ’ 1 ’ ;
74 wait until r i s ing_edge ( clk_s ) ; −− l e a rn c l a s s 1
75 start_s <= ’ 1 ’ ;
76 c lass_i_s <= 1 ;
77 input_s <= "0100010001000100" ;
78 −− 0100
79 −− 0100
80 −− 0100
81 −− 0100
82 wait until r i s ing_edge ( clk_s ) ;
83 start_s <= ’ 0 ’ ;
84 wait until done_s = ’ 1 ’ ;
85 wait until r i s ing_edge ( clk_s ) ; −− l e a rn c l a s s 2
86 input_s <= "1111001001001111" ;
87 −− 1111
88 −− 0010
89 −− 0100
90 −− 1111
91 start_s <= ’ 1 ’ ;
92 c lass_i_s <= 2 ;
93 wait until r i s ing_edge ( clk_s ) ;
94 start_s <= ’ 0 ’ ;
95 wait until done_s = ’ 1 ’ ;
96 wait until r i s ing_edge ( clk_s ) ; −− t e s t c l a s s 0
97 mode_s <= ’ 1 ’ ;
98 start_s <= ’ 1 ’ ;
99 input_s <= "0111100110011110" ;

100 −− 0111
101 −− 1001
102 −− 1001
103 −− 1110
104 wait until r i s ing_edge ( clk_s ) ;
105 start_s <= ’ 0 ’ ;
106 wait until done_s = ’ 1 ’ ;
107 wait until r i s ing_edge ( clk_s ) ; −− t e s t c l a s s 1
108 input_s <= "0100010001000010" ;
109 −− 0100
110 −− 0100
111 −− 0100
112 −− 0010
113 start_s <= ’ 1 ’ ;
114 wait until r i s ing_edge ( clk_s ) ;
115 start_s <= ’ 0 ’ ;
116 wait until done_s = ’ 1 ’ ;
117 wait until r i s ing_edge ( clk_s ) ; −− t e s t c l a s s 2
118 input_s <= "1110001001001111" ;
119 −− 1110
120 −− 0010
121 −− 0100
122 −− 1111
123 start_s <= ’ 1 ’ ;
124 wait until r i s ing_edge ( clk_s ) ;
125 start_s <= ’ 0 ’ ;
126 wait ;
127 end process ;
128
129 end behav io ra l ;

Testbench tb_syn_wisard_top

1 −− Module : tb_syn_wisard_top . vhd
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2 −− Descr ip t i on : Wisard s y n t h e s i z a b l e t e s t b ench
3
4 l ibrary i e e e ;
5 use i e e e . std_logic_1164 . a l l ;
6 use i e e e . numeric_std . a l l ;
7
8 l ibrary wisard ;
9 use wisard . wisard_pkg . a l l ;

10
11 entity tb_syn_wisard_top i s
12 port (
13 c lk_i : in s td_log i c ;
14 r s t_i : in s td_log i c ;
15
16 led1_o : out s td_log i c ;
17 led2_o : out s td_log i c ;
18 led3_o : out s td_log i c
19 ) ;
20 end tb_syn_wisard_top ;
21
22 architecture r t l of tb_syn_wisard_top i s
23 type r e su l t s_t i s array ( (CLASS_NUMBER∗3−1) downto 0) of
24 i n t e g e r range NEURONS_NUMBER downto 0 ;
25 signal r e su l t s_s : r e su l t s_t ;
26 signal s tart_s : s td_log i c ;
27 signal done_s : s td_log i c ;
28 signal input_s : s td_log ic_vector (INPUTS_NUMBER−1 downto 0) ;
29 signal c lass_i_s : i n t e g e r range CLASS_NUMBER−1 downto 0 ;
30 signal class_o_s : c lass_vector_t ;
31 signal mode_s : s td_log i c ;
32
33 type state_t i s (IDLE , L1 , L2 , L3 , T1 , T2 , T3) ;
34
35 signal state_fsm , nstate_fsm : state_t ;
36 begin
37 r e su l t s_s (0 ) <= 6 ;
38 r e su l t s_s (1 ) <= 1 ;
39 r e su l t s_s (2 ) <= 2 ;
40 r e su l t s_s (3 ) <= 0 ;
41 r e su l t s_s (4 ) <= 6 ;
42 r e su l t s_s (5 ) <= 2 ;
43 r e su l t s_s (6 ) <= 3 ;
44 r e su l t s_s (7 ) <= 2 ;
45 r e su l t s_s (8 ) <= 7 ;
46
47 top_u : wisard_top
48 port map (
49 r s t_i => rst_i ,
50 c lk_i => clk_i ,
51 s ta r t_ i => start_s ,
52 done_o => done_s ,
53 input_i => input_s ,
54 c l a s s_ i => class_i_s ,
55 c lass_o => class_o_s ,
56 mode_i => mode_s
57 ) ;
58
59 process ( clk_i , r s t_i )
60 begin
61 i f r s t_i = ’1 ’ then
62 state_fsm <= IDLE ;
63 e l s i f r i s ing_edge ( c lk_i ) then
64 state_fsm <= nstate_fsm ;
65 end i f ;
66 end process ;
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67
68
69 process ( clk_i , r s t_i )
70 begin
71 i f r s t_i = ’1 ’ then
72 start_s <= ’ 0 ’ ;
73 input_s <= ( others => ’0 ’ ) ;
74 c lass_i_s <= 0 ;
75 mode_s <= ’ 0 ’ ;
76 led1_o <= ’ 0 ’ ;
77 led2_o <= ’ 0 ’ ;
78 led3_o <= ’ 0 ’ ;
79 e l s i f r i s ing_edge ( c lk_i ) then
80 case state_fsm i s
81 when IDLE =>
82 start_s <= ’ 1 ’ ;
83 input_s <= "1111100110011111" ;
84 c lass_i_s <= 0 ;
85 when L1 =>
86 start_s <= ’ 0 ’ ;
87 i f done_s = ’1 ’ then
88 start_s <= ’ 1 ’ ;
89 c lass_i_s <= 1 ;
90 input_s <= "0100010001000100" ;
91 end i f ;
92 when L2 =>
93 start_s <= ’ 0 ’ ;
94 i f done_s = ’1 ’ then
95 start_s <= ’ 1 ’ ;
96 c lass_i_s <= 2 ;
97 input_s <= "1111001001001111" ;
98 end i f ;
99 when L3 =>

100 start_s <= ’ 0 ’ ;
101 mode_s <= ’ 0 ’ ;
102 i f done_s = ’1 ’ then
103 mode_s <= ’ 1 ’ ;
104 start_s <= ’ 1 ’ ;
105 input_s <= "0111100110011110" ;
106 end i f ;
107 when T1 =>
108 start_s <= ’ 0 ’ ;
109 i f done_s = ’1 ’ then
110 i f ( class_o_s (0 ) = re su l t s_s (0 ) )
111 and ( class_o_s (1 ) = re su l t s_s (1 ) )
112 and ( class_o_s (2 ) = re su l t s_s (2 ) ) then
113 led1_o <= ’ 1 ’ ;
114 end i f ;
115 input_s <= "0100010001000010" ;
116 start_s <= ’ 1 ’ ;
117 end i f ;
118 when T2 =>
119 start_s <= ’ 0 ’ ;
120 i f done_s = ’1 ’ then
121 i f ( class_o_s (0 ) = re su l t s_s (3 ) )
122 and ( class_o_s (1 ) = re su l t s_s (4 ) )
123 and ( class_o_s (2 ) = re su l t s_s (5 ) ) then
124 led2_o <= ’ 1 ’ ;
125 end i f ;
126 input_s <= "1110001001001111" ;
127 start_s <= ’ 1 ’ ;
128 end i f ;
129 when T3 =>
130 start_s <= ’ 0 ’ ;
131 i f done_s = ’1 ’ then
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132 i f ( class_o_s (0 ) = re su l t s_s (6 ) )
133 and ( class_o_s (1 ) = re su l t s_s (7 ) )
134 and ( class_o_s (2 ) = re su l t s_s (8 ) ) then
135 led3_o <= ’ 1 ’ ;
136 end i f ;
137 end i f ;
138 end case ;
139 end i f ;
140 end process ;
141
142 process ( state_fsm , done_s )
143 begin
144 nstate_fsm <= state_fsm ;
145
146 case state_fsm i s
147 when IDLE =>
148 nstate_fsm <= L1 ;
149 when L1 =>
150 i f done_s = ’1 ’ then
151 nstate_fsm <= L2 ;
152 end i f ;
153 when L2 =>
154 i f done_s = ’1 ’ then
155 nstate_fsm <= L3 ;
156 end i f ;
157 when L3 =>
158 i f done_s = ’1 ’ then
159 nstate_fsm <= T1 ;
160 end i f ;
161 when T1 =>
162 i f done_s = ’1 ’ then
163 nstate_fsm <= T2 ;
164 end i f ;
165 when T2 =>
166 i f done_s = ’1 ’ then
167 nstate_fsm <= T3 ;
168 end i f ;
169 when T3 =>
170 nstate_fsm <= T3 ;
171 when others =>
172 nstate_fsm <= IDLE ;
173 end case ;
174 end process ;
175
176
177 end r t l ;
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APÊNDICE C – R2-ajustado

O coeficiente de determinação R2 é uma equação que descreve a proporção da variação em uma
variável de resposta Y que pode ser linearmente predito pelas covariáveis do modelo. Contudo, esse
coeficiente é viesado, aumentando com o número de variáveis preditoras. Esse viés é removido com
a utilização de R2-ajustado, dado pela seguinte equação (RUPPERT, 2011):

AdjR2 = 1 −

[(∑N
i=1(Yi − Ŷi)

2∑N
i=1(Yi − Ȳ )2

)(
N − 1

N − P − 1

)]
(1)

onde N é o número de amostras, Yi o i-ésimo valor observado, Ŷi o i-ésimo valor predito, Ȳ a
média aritmética dos valores observados e P o número de variáveis preditoras.
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