Adrien Samuel Marie Lejeune

BUILDING A LOCAL RENDERING CLUSTER AT W COMPANY

Graduation Project presented to the
Polytechnic School of the University
of Sdo Paulo for the obtention of the

Production Engineering degree.

Sao Paulo
2025

Adrien Samuel Marie Lejeune

BUILDING A LOCAL RENDERING CLUSTER AT W COMPANY

Graduation Project presented to the
Polytechnic School of the University
of Sao Paulo for the obtention of the

Production Engineering degree.

Advisor: Prof. André Leme Fleury

Sao Paulo
2025

CATALOGUE CARD

Lejeune, Adrien Samuel Marie

Building a local rendering cluster at W company / Adrien Samuel
Marie Lejeune, Sao Paulo, 2025.

Trabalho de Formatura - Escola Politécnica da Universidade de
Sao Paulo. Departamento de Engenharia de Produgao.

1.Engenharia de Produgdo 2.Start-up 3.Cluster de Computadores
4.Renderizagao 3D I. Universidade de Sao Paulo. Escola
Politécnica. Departamento de Engenharia de Produgao II. t.

To public education

ACKNOWLEDGEMENTS

I would like to thank my professor André Leme Fleury for his guidance and support
throughout the realization of this work. His availability, trust, and constructive feedback were
essential for the completion of this thesis.

I am also grateful to the Classe Préparatoire PC* of Lycée Joffre, in Montpellier, to the
Arts et Métiers Institute of Technology, Aix-en-Provence campus, and to the Escola
Politécnica of the University of Sdo Paulo for the rigorous scientific and engineering
education that formed the basis of my trajectory, developed my professional and technical
skills, and opened concrete perspectives for my future career as an engineer.

10

ABSTRACT

This work examines how a small creative studio can replace ad hoc cloud rendering with a
managed local render cluster. Focusing on W company, a Brazilian firm active in architectural
visualisation and immersive 3D experiences, the study analyses existing rendering practices,
designs a local infrastructure based on Deadline, and documents its implementation on
standard on premises hardware. The results indicate that structured render management
improves the predictability of rendering, increases utilisation of existing resources, and
reduces operational disruption for artists. More broadly, the thesis argues that a local render
cluster is a viable and economically attractive option for studios seeking greater control over
performance, costs, and confidentiality.

Keywords: distributed computing, local render cluster, resource optimization, render
management, Deadline, server infrastructure.

11

12

LIST OF ILLUSTRATIONS
Figure 1: Operating model of W COMPANY.......cccoviviiiiiiiiieiiieieereere ettt eenas 19
Figure 2: Examples of a render produced at W cOmpany...........cceceeeereeneenienieneeneeneenienns 21
Figure 3: Rendering workflow constraints and cost Structure.............cceceeveeeeierieeieeseeseenen. 24
Figure 4: Methodological roadmap for the implementation of the local cluster..................... 42
Figure 5: Network and storage topology of the Deadline based render cluster...................... 46
Figure 6: Repurposed desktop tower hosting all Deadline control-plane services................. 50
Figure 7: Logical Architecture of the Deadline Control-Plane Server and Storage................ 51
Figure 8: Network and Storage Footprint of the Local Render Cluster in Production............ 53
Figure 9-10: V-Ray Job Submission and Confirmation in Deadline Monitor....................... 56
Figure 11: Overview of the Internal Deadline Manual Created for W Company................... 61
Figure 12: Screenshot from the Internal Deadline Training Video..........cccccooeriinieninniencens 63

Figure 13: Final server based architecture of the Deadline control plane at W company.......65

13

14

LIST OF ABBREVIATIONS AND ACRONYMS

Al - Artificial intelligence based assistant used as a technical support tool

AWS - Amazon Web Services

CLUSTER - Local on premises render cluster built from internal machines
CORONA - Rendering engine by Chaos used with 3ds Max

CPU - Central processing unit

DHCP - Dynamic Host Configuration Protocol for automatic IP address assignment
GPU - Graphics processing unit

HDD - Hard disk drive used for bulk project storage

LAN - Local area network

LAUNCHER - Local Deadline component that starts and supervises the Worker
service

MONITOR - Graphical Deadline interface used to submit, monitor and control jobs
NAS - Network attached storage server providing shared volumes

NODE - Machine that participates in the cluster as a render node

PATH MAPPING - Automatic mechanism that rewrites file paths so that local assets
resolve correctly on shared storage

RCS - Remote Connection Server that exposes Deadline services to client machines
REPOSITORY - Central Deadline storage for configuration, plugins, scripts and logs
SMB - Server Message Block file sharing protocol used by Windows and Samba
SSD - Solid state drive used for system, database and high speed storage

TCP - Transmission Control Protocol carrying Deadline and file sharing traffic

TLS - Transport Layer Security used to protect connections and client certificates

UI - User interface

UNC - Universal Naming Convention style network path (for example \server\share)
V-RAY - Rendering engine by Chaos used with SketchUp

VM - Virtual machine running on the cluster host

WORKER - Background Deadline process that executes render tasks on each node
ZFS - Copy on write file system and volume manager used on the NAS server

15

16

TABLE OF CONTENTS
1. INTRODUCTION...coivvriiesssnnncsssssnrecsss 18
1.1 CONTEXT: W COMPANY, FROM ARCHITECTURAL FOUNDATIONS
TO DIGITAL. ..ottt e et e st st esabeeenans 18
1.1.A Foundational trajectory and entrepreneurial motivation....................... 18
1.1.B Integrated value proposition and dual operating model............cccccocereeriennnnene 19
1.1.C Portfolio signals, technology stack and production implications..................... 20
1.2 PROBLEM DEFINITION: CLOUD RENDERING AND OPERATIONAL
CONSTRAINTS. ..ttt ettt ettt ettt sttt et e s be e st e e e stesaeeneeneens 22
1.2.A Cloud rendering as a temporary response to local production constraints....... 22
1.2.B Time based pricing, iterative workflows and cost volatility..........cc.ccceceeneennen. 23
1.3 OBJECTIVE: A LOCAL CLUSTER.....coectetttteteee et 25
1.3.A Strategic objective and problem translation.............coceeceevereninieenenencneeeene 25
1.3.B Target local architecture and operating model..........c.ccceeeveverircienceencienciereenen. 26
1.3.C Expected outcomes and evaluation.............cceeeveerieeeciieiciiesiie e 27
1.4 JUSTIFICATION: REDUCING COST BY ELIMINATING CLOUD
DEPENDENCGE ...ttt e et e e e e e e s e e e e e e e 28
1.4.A Economic and operational rationale for local execution...................... 28
1.4.B Operational control and organisational capability..............c.ccccceeeeennes 29
1.5 Structure of the dOCUMENL.......cocuiriiiiiiiiieririeeeee ettt 31
2. LITERATURE REVIEW 33
2.1 TECHNICAL FOUNDATIONS.......cotiiiiieieirierteieeeeee sttt 34
2.1.A Technical view on software and systems engineering.............cceeeveevveeveacnenenens 34
2.1.B Service oriented and cloud perspectives for local infrastructure...................... 35
2.2 ARCHITECTURE, DEPLOYMENT AND OPERATIONS OF THE COMPUTING
CLUSTER ...ttt ettt et et e st e et et e aesaeeseene e seeneeneeneenee e 36
2.2.A Architectural structure in enterprise SYStemS.c.eerveeveereerieerierieeiesieseeseeens 36
2.2.B Deployment pipelines and DevOps practices..........ceceeverervereereenenerneenieniennes 37
2.2.C Cloud versus local deployment deCiSIONS.........c.cecvvevveeereecieecrinienrenresresnenenns 38
2.3 GOVERNANCE, OPERATIONAL CADENCE, AND ORGANISATIONAL
CHANGE ...ttt ettt st b e e bttt be et e aeees 39
2.3.A DevOps culture, feedback loops and operational cadence...........c.cceevveeneneen. 39
2.3.B Organisational change and adoption of new practices...........ccceevvevieeveeveennenne. 40
2.4 SYNTHESIS OF THE LITERATURE........cooiiiiieieeee et 41
3. METHOD: IMPLEMENTING A CLUSTER 42
3.1 METHODOLOGICAL ROADMAP AND FOUR-PHASE STRUCTURE.............. 43
3.2 PROJECT THROUGH THE 5W1H QUESTIONS......cceotiiiririreieeeeseeeeeeeeene 44
3.3 CONCLUSION....ccutitteteeetet ettt ettt ettt e st et e aesaeese e teseeseeneeneeneeene 47
4. RESULTS 48
4.1 IMPLEMENTED ARCHITECTURE........cccoiiiieieieiseeieie e 49
4.1.A Delivered control plane and server hoSt...........ccvvvverieereeciieciinieeie e 49

4.1.B Network and storage footprint in production.............ccceevveerieerreerreecreerreesreenens 52

17

4.1.C Render node population and alignment with the planned topology................. 53

4.2 OPERATION IN DAILY WORKooitiiiieieeeeeee et 55
4.2.A Submission workflows across the main pipelines............cocceeeveeeriecrercreninennenns 55
4.2.B Workstations as Workers, queue discipline, and off-hours utilisation.............. 56

4.3 OPERATIONAL RESULTS AND USER EXPERIENCE..........ccccceceieririeieiene. 58
4.3.A Functional validation and everyday operational behaviour.............c..ccccccocu.e... 58
4.3.B User experience and qualitative alignment with original objectives................ 59

4.4 SUPPORTING ARTEFACTS AND CHANGE MANAGEMENT.........ccccoovinienenne. 60
4.4.A Operator documentation, runbooks, and user guides...........ccceevveercreercreennnenn. 60
4.4.B Training, onboarding, and competency development.............ccccceeceereeruennnnne 61

4.5 FINAL STATE AND CURRENT LIMITATIONS OF THE CLUSTER................... 64
4.5.A Consolidated architecture at the time of WIiting............cceevveeveecriecincenieenenns 64
4.5.B Operational limitations, adoption and complementary tooling........................ 66

4.6 LESSONS LEARNED FROM THE IMPLEMENTATION PROJECT.................... 68
CONCLUSION 70

REFERENCIAS BIBLIOGRAFICAS.ooveueeeeeeesesessesesesessssssessssssssssssessssnsssssssssens 72

18

1. INTRODUCTION

1.1 CONTEXT: W COMPANY, FROM ARCHITECTURAL
FOUNDATIONS TO DIGITAL

W company is a Brazilian architecture and real-estate technology firm (proptech)
headquartered in Sao Paulo. Founded in September 2020 by a French architect, the
company emerged in the wake of the Covid-19 pandemic with the stated mission of
integrating architectural excellence and digital innovation to design agile,
human-centred, and sustainable workplaces. Public materials position W company at
the intersection of corporate architecture and immersive technologies, and trace its
conceptual development to design work conducted in Sdo Paulo since 2013.

1.1.A Foundational trajectory and entrepreneurial motivation

Before setting up the current organisation, the founder had already built a
significant track record by directing the Brazilian office of a European
corporate-architecture firm. That practice operated in several major cities and
delivered large office projects for multinational clients, which gave the founder direct
exposure to corporate real-estate strategies, complex stakeholder environments, and
high specification fit out work. Industry publications and contemporary records
document both the firm’s activity in Brazil and the founder’s leadership role during
that phase.

The internal testimonies collected for this thesis introduce a more intimate
dimension to this history. They recount how the former partnership came to an end
during the Covid-19 pandemic, after the death of one of its co-founders, and how this
event prompted a moment of reassessment. From this perspective, the current
organisation can be seen as a new beginning: a conscious attempt to rebuild after
personal and organisational disruption, while at the same time positioning the studio
in relation to structural shifts in office markets, such as the move towards hybrid
work patterns and experience driven workplaces. This storyline is based on internal
accounts and is therefore treated as contextual background rather than as a verifiable
external fact, but the wider market dynamics it refers to are aligned with
contemporary analyses of the office sector and the ongoing hybridisation of
workplace practices.

19

1.1.B Integrated value proposition and dual operating model

From its inception, the organisation articulated an integrated value proposition
structured around three complementary pillars: bespoke corporate interior design,
high-fidelity three-dimensional visualisation aimed at reducing uncertainty and
de-risking decisions prior to construction, and immersive and interactive experiences
designed to accelerate stakeholder alignment and support commercial storytelling. In
practice, this means that the same team that designs physical workspaces also
produces deterministic, presentation-grade imagery and interactive content that help
clients understand spatial options, compare alternatives and communicate design
intent internally.

This value proposition is reflected in the organisation’s operating model, which is
structured around two complementary divisions, as illustrated in Figure 1: operating
model of W company. The Architecture Division, corresponding to the classical
practice, delivers corporate interiors, renovations and competition work using a
SketchUp and V-Ray pipeline for modelling and rendering. In parallel, the Digital
Innovation Division develops immersive practice, relying on 3ds Max with Corona
Renderer for hyper-real stills and Unreal Engine for virtual tours and real-time
walkthroughs. Together, these two divisions provide a coherent framework that links
architectural design, advanced visualisation and client-experience consultancy within
a single studio.

W Company
Operating
Model

1
Digital

. Architecture
Innovation Division
Division |
3ds Max+ || | SketchUp + V-
Corona Ray
— Unreal Engine |— Revit
— AutoCAD

Figure 1: Operating model of W company

20

1.1.C Portfolio signals, technology stack and production
implications

The organisation’s portfolio highlights collaborations with major corporate clients
and consolidates both conceptual and project work across corporate interiors and
architectural visualisation. Publicly accessible project pages illustrate this diversity,
presenting examples that combine traditional architectural expression with digitally
augmented experiences. More broadly, the collection of showcased projects signals a
mixed pipeline comprising built environments, high-fidelity visualisation
deliverables, and immersive digital assets. Taken together, these references confirm
the organisation’s dual orientation, integrating architectural practice with immersive
technologies, and demonstrate the strategic use of imagery and interactive
experiences as key differentiators in client communication and pre-construction
decision-making.

The toolchain underpinning these operations relies on modelling environments,
offline rendering engines such as V-Ray and Corona, and real-time visualisation
platforms such as Unreal Engine, a combination that is computationally intensive and
highly sensitive to delivery deadlines, particularly under iterative client cycles typical
of corporate fit-outs and branding-driven projects. These characteristics expose a
production-engineering challenge centred on the need to scale rendering capacity
while controlling cost and preserving both speed and visual fidelity. In the
subsequent sections, this challenge motivates the evaluation of render-management
systems and the design of a local computing cluster aimed at reducing dependence on
external cloud execution, while the technical properties and operational implications
of this toolchain, including its effects on throughput, cost structure and workflow
stability, are analysed in detail throughout the thesis.

Figure 2 presents an example of a render produced at W company, illustrating the
level of photorealism that characterises the organisation’s visual output. This image
reflects the integrated workflow described earlier, where architectural modelling and
advanced rendering techniques converge to support client communication and design
decision making. The clarity of materials, the controlled lighting, and the immersive
spatial composition visible in this example are representative of the standards that
guide the studio’s deliverables. More broadly, it also illustrates the computational
intensity and iterative refinement that define the company’s production model,
providing a concrete reference point for the technical and operational challenges
examined later in this thesis.

21

‘ 2
o™ ?/,’//*7,'1/“7 W
p

Figure 2: Examples of a render produced at W company

22

1.2 PROBLEM DEFINITION: CLOUD RENDERING AND
OPERATIONAL CONSTRAINTS

This section formalises the production engineering problem that motivates the
remainder of the thesis. Building on the description of W company’s dual production
model and toolchain, with one division focused on architecture and another on digital
visualisation relying on V-Ray, Corona, and Unreal Engine, it examines how reliance
on cloud rendering emerged as a pragmatic response to local capacity constraints,
and how time based pricing models interact with iterative visual workflows to
generate cost volatility. Together, these operational and economic pressures define
the constraints that the subsequent design of a local, queue based render cluster is
intended to address.

1.2.A Cloud rendering as a temporary response to local production
constraints

The operating model, with one division focused on architectural production and
another on digital visualisation, generates large volumes of photorealistic imagery
under tight deadlines, with iterative client feedback acting as a central quality driver.
In this context, the organisation currently relies on a small pool of high performance
workstations that serve simultaneously as designers’ primary machines. Rendering
tasks are typically launched manually on these personal workstations, and no internal
render queue or local farm is available to enable unattended, overnight or parallel
execution. In practical terms, daytime productivity directly competes with rendering
operations, since a workstation engaged in rendering cannot be used for modelling,
lighting work or client revisions, and artists must actively monitor jobs rather than
delegating them to an automated pipeline.

Given these local constraints, the organisation has temporarily relied on cloud
based rendering solutions as a way to absorb peaks in demand and to process
multiple images concurrently without blocking local workstations. Commercial
render farms provide elastic and on demand computational capacity, with
straightforward submission workflows and native integration with widely used
rendering engines such as V-Ray, developed by Chaos Group, and Corona. They
support remote batching, queuing and parallel execution of scenes, so that rendering
tasks can be executed off site while designers continue working on their primary
machines. In effect, the cloud platform functions as an external queue and execution
layer, compensating for the absence of a local render farm and allowing the studio to
maintain creative throughput during intensive delivery cycles, at the cost of shifting
the bottleneck into a consumption based external service.

23

1.2.B Time based pricing, iterative workflows and cost volatility

Most commercial render farms charge for compute time rather than for a finished
image. Provider documentation makes this explicit by tying cost to the actual
duration consumed on farm nodes, often measured to the second, while online
calculators are positioned as approximate estimates prior to submission. For a still
image pipeline of the type operated by the organisation, this pricing structure has two
immediate consequences. First, the price of a single render is inherently variable,
because it depends on scene complexity, resolution, denoising parameters and
lighting choices rather than on a fixed per image tariff. Second, any client driven
iteration, such as a modification of material properties, a background change or a
camera adjustment, triggers new compute time and therefore new expenditure, even
when the visual difference is relatively modest. Technical explanations from
rendering engine vendors reinforce this logic by explicitly linking both render time
and cost to scene complexity and to the characteristics of the hardware executing the
job.

Internal project records illustrate how these mechanics translate into unit
economics. Under standard provider settings, a typical cloud render for catalogue
style imagery has generally been priced around USS$ 2 to 3 per image. For brand
accurate delivery, however, it is common for each image to require two or three
successive iterations, so that the effective cost per final output can approach
approximately US$ 10. While these amounts may appear modest when considered in
isolation, the cumulative effect across many deliverables and rounds of revision
becomes material, especially for a studio whose differentiation rests on visual fidelity
and rapid iteration and that therefore deliberately invites feedback loops with clients
and external collaborators. Under time based cloud billing, each additional loop
multiplies compute minutes, turning robust creative practice into budget volatility.
Combined with the structural local limitations of a workstation based setup without a
render queue, this dependence on consumption based cloud rendering defines the
core production engineering problem that motivates the design of a fully local, queue
based render cluster intended to internalise capacity and stabilise costs.

24

As a synthesis of these intertwined constraints, Figure 3 presents an overview of
the rendering workflow, showing how local workstation overload, reliance on cloud
platforms as an external execution layer, and time based pricing mechanisms
combine to create the operational and economic pressures examined in this section.

—t Local rendering overload J

- Two teams produce many photorealistic images.

- Tight deadlines and many client iterations.

- Designers use the same machines for modelling and rendering.

- When a workstation renders, it cannot be used for creative work.

—L Cloud platforms absorb peaks in demand. Jl

- Local workstations were overloaded because designers used the same machines for modelling and rendering.

- There was no local render farm or queue, so long renders blocked the machines during the day.

- The cloud allowed multiple images to be rendered in parallel without stopping artists from working.

- Cloud platforms provided quick, on-demand capacity with easy submission and native support for V-Ray and
Corona.

—[How cloud pricing works J

- Cloud providers charge for render time, not per finished image.
- The cost changes depending on scene complexity, resolution, lighting, and denoising settings.
- Each new iteration requires new compute time, which means new cost.

—t Resulting problem Jl

- Cloud rendering generates unpredictable, time-based costs that rise with each client iteration.

- Total spending becomes difficult to forecast when producing many images.
- The studio remains dependent on an external service with volatile consumption-based pricing.

Figure 3: Rendering workflow constraints and cost structure

25

1.3 OBJECTIVE: A LOCAL CLUSTER

Building on the earlier description of W company’s operating model and its
reliance on cloud rendering to compensate for limited local capacity, this section
specifies the target state that motivates the remainder of the thesis. The objective is
not only to move away from ad hoc dependence on external render farms, but to
redesign rendering as a managed production process executed on a local computing
cluster. The following subsections translate the problem into a strategic objective,
describe the intended local architecture and operating model, and outline the main
outcomes against which the initiative will later be evaluated.

1.3.A Strategic objective and problem translation

The central strategic objective is to eliminate manual, workstation bound
rendering on designers’ personal machines and to replace it with a disciplined, queue
based system executed entirely within the company’s own infrastructure. The
organisation currently operates with two intertwined fronts, architectural production
and digital visualisation, both of which rely on rapid cycles of photorealistic imagery
and deliberate client feedback. Under the previous arrangement, the same high
performance computers were used both for creative work and for rendering, so that
every heavy render interrupted modelling or lighting activities and encouraged
recourse to cloud services priced by compute time.

In this context, the objective can be reformulated as the internalisation of the
useful properties of cloud platforms without their exposure to consumption based
billing. The local cluster should provide parallel submission, unattended execution
and predictable turnaround while allowing designers to continue working on their
primary tasks. A queue based render manager, understood here as a software tool that
centralises jobs and assigns them to available machines according to explicit rules,
becomes the backbone of this transformation. Instead of artists launching and
supervising renders one by one, jobs are placed in an ordered list and executed
according to a chosen queue discipline, that is, a set of policies that determine which
tasks run first based on criteria such as project, deadline or client importance.
Rendering is thus reframed as an orchestrated background service that supports,
rather than competes with, daytime creative work.

26

1.3.B Target local architecture and operating model

The target local architecture centres on the deployment of a render management
tool that acts as an orchestration layer across the organisation’s existing machines.
This tool maintains a shared Repository, defined as a central storage area for
configuration, plugins and logs, and exposes a common job queue through which any
authorised workstation can submit, monitor and control renders. Each participating
machine runs a Worker, that is, a lightweight execution service responsible for
pulling tasks from the queue and running them with the specified settings. In
practice, the cluster is built first by pooling the most capable internal workstations as
render nodes, transforming them from isolated personal assets into a coordinated
computing resource that can be scheduled as a whole.

Compatibility with the current production pipelines is a non negotiable constraint
of this design. On the architectural side, SketchUp scenes rendered with V-Ray must
be exportable in a form that can be reliably executed on other machines, either
through dedicated submission plugins or through standardised scene exports. On the
digital visualisation side, 3ds Max with Corona and, where applicable, Unreal Engine
must be able to submit stills or animations to the same queue without fragmenting
storage or configuration. All inputs and outputs are expected to reside on clearly
defined folders under a single network location, with stable naming conventions that
minimise missing textures and duplicated assets and that prepare the ground for later
use of Path Mapping, the automatic mechanism that rewrites file paths so that assets
saved locally appear consistently on shared storage.

The operating model associated with this architecture formalises how work flows
through the cluster in everyday practice. Designers remain responsible for their own
submissions, including selecting appropriate presets, choosing output locations and
verifying that assets are correctly referenced before dispatching jobs. A light
governance structure designates a “queue steward” role, rotating if necessary, to
review priorities at the end of the day, align the queue with delivery commitments
and prepare off hours execution. Agreed time windows, typically evenings and
weekends, are reserved for long or heavy batches that would otherwise degrade
workstation responsiveness during client facing hours, while very short preview
renders can remain local and interactive. Over time, these routines constitute an
operational cadence in which rendering follows shared rules rather than individual
habits, making the cluster predictable and manageable with limited overhead.

27

1.3.C Expected outcomes and evaluation

The local cluster is expected to deliver a set of outcomes that respond directly to
the constraints described earlier in the chapter. On the productivity side, shifting
heavy rendering to unattended windows and distributing jobs across multiple nodes
should keep designers’ primary machines responsive for modelling, lighting and
client sessions during the day. Batches of images that previously ran sequentially on
a single workstation are expected to progress in parallel, reducing lead times for
catalogue style deliveries or intensive campaign work. On the economic side, routine
iterations that once multiplied cloud expenditure will execute on hardware already
owned by the company, so that the marginal cost of exploring an additional creative
option becomes almost negligible in accounting terms. This shift from variable,
usage based expenditure to predictable internal costs is intended to stabilise project
budgets and improve the accuracy of commercial proposals.

Beyond schedule and cost, the cluster is also intended to improve reliability,
reproducibility and scalability of rendering operations. Consistent presets, disciplined
storage paths and visible job states in the render management tool should reduce
failed renders and missing assets, lowering rework and frustration for artists. The
governance framework is designed so that additional internal machines can be added
as nodes with minimal friction when project loads require extra capacity, allowing
the cluster to grow incrementally rather than through abrupt step changes.
Subsequent chapters will evaluate these expectations using both quantitative
indicators, such as render times and workstation availability, and qualitative feedback
from users on workflow fit and perceived stability, thereby connecting this objective
statement to the concrete results observed in practice.

28

1.4 JUSTIFICATION: REDUCING COST BY
ELIMINATING CLOUD DEPENDENCE

Replacing routine cloud rendering with a fully local, queue based cluster at W
company is not a purely technical choice. It is a response to a concrete combination
of financial volatility and day to day friction in production. When high value artist
workstations are used both for modelling and for rendering, long jobs block creative
activity and often push work into nights and weekends. When the same jobs are
offloaded to external farms, invoices arrive in a fragmented and unpredictable way,
indexed to how many iterations the client ultimately demands rather than to a stable
production plan.

The proposed architecture addresses these issues by turning external, per minute
billing into predictable internal capacity and by decoupling creative work from long
running renders. It also gives the company closer control over the rendering pipeline
and creates room for systematic learning about how rendering behaves in practice.
For clarity, the argument is structured in two parts. Section 1.4.A concentrates on
economic and operational effects, while the following subsection focuses on
technical control and organisational learning, so that both financial and non financial
benefits can be evaluated in a coherent way.

1.4.A Economic and operational rationale for local execution

The organisation’s production model is intrinsically iterative. Visual assets evolve
through successive feedback rounds until they reach the required level of quality, and
each new version typically requires at least one fresh render. In commercial render
farms, pricing is tied directly to elapsed compute time, so every correction starts a
new billing interval. Internal records indicate that typical renders have been charged
around US$ 2 to 3 per image and, with two to three further iterations for brand
accurate delivery, often approach roughly US$ 10 per final deliverable. This
consumption logic converts creative rigour into budget volatility, since every
additional refinement increases spend, and it complicates forecasting across image
libraries and campaigns, because the number of client feedback loops cannot be
known in advance.

A fully local architecture reverses this relationship. Once the cluster hardware has
been procured and amortised, the marginal cost of an additional preview or re render
is close to zero in accounting terms. Unit economics are no longer driven by opaque
external tariffs, but by internal capacity planning decisions, including how many
nodes are available, which queue discipline is used to decide which jobs run first,
and which time windows are reserved for heavy computation. In practical terms,
expenditure shifts from uncertain operating costs to predictable in house costs. This

29

stabilises budget governance, improves cash flow planning, and makes client
quotations more accurate, while also eliminating ancillary cloud charges such as data
egress, priority surcharges, and hidden transaction costs linked to uploads, retries, or
failed submissions.

On the operational side, installing a render management layer such as Deadline
and pooling high specification machines into a local cluster directly addresses the
constraints of manual, workstation bound rendering. Instead of each designer
launching and supervising renders individually, Deadline maintains a central queue
of jobs and dispatches them to available machines according to priority and
eligibility rules. The team can submit long job lists in one step, coordinate priorities
across projects, and rely on unattended execution, so rendering becomes a
background production flow rather than an interruptive task tied to a single
workstation.

Batch scheduling then moves heavy computation to evenings and weekends,
freeing workstations for modelling, lighting, and client sessions during office hours,
while parallel execution across all available nodes converts idle local capacity into
throughput without external outsourcing. For high volume contexts such as catalogue
drops or marketing pushes, the queue can saturate local resources overnight and
recover the next morning with dozens or hundreds of frames advanced, without
degrading daytime responsiveness. Standardised presets, which distinguish preview
from final passes and catalogue stills from interiors, act as predefined submission
templates that reduce friction and misconfiguration. Simple telemetry on job
duration, failure rate, and queue waiting time surfaces bottlenecks early and supports
incremental improvement of operational practices as the cluster becomes part of
everyday work.

1.4.B Operational control and organisational capability

A local first design gives W company direct operational control over the entire
rendering workflow, from scene preparation to final output, by keeping inputs, assets,
and results inside the company network. Scene files and textures remain on internal
shared volumes used jointly by the architecture and visualisation teams, which
reduces relinking errors, avoids large uploads and downloads of high resolution
imagery, and removes dependence on external network conditions. The core
Deadline components are also deployed on premises. The Repository, understood as
the central storage for configuration, plug ins, and logs, the Remote Connection
Server (RCS), which brokers secure communication between user interfaces and the
render farm, and the Worker services, which are the agents executing render tasks on
each node, all operate under the same internal policies. This uniformity supports
reproducibility, because the same software versions, presets, and network paths apply

30

across all nodes, which simplifies incident diagnosis and makes behaviour easier to
audit.

Failure handling becomes more predictable under this local control. The queue
can automatically retry failed tasks on another node, temporarily isolate problematic
jobs, and record detailed error conditions for later review, which reduces rework and
unplanned downtime. At the same time, local execution limits dependency on
external providers. The company is less exposed to vendor lock in, price changes,
API deprecations, or quota constraints in external services, and confidentiality for
client material is managed through internal rules on role based access, versioned
storage, and auditable paths. In practice, these technical choices translate into
smoother day to day operation, particularly during peak periods when delivery
deadlines and rendering demands coincide.

Beyond the infrastructure, the move to a local cluster supports the development of
a shared organisational capability around rendering. Removing the cloud as a routine
option encourages the adoption of a standard way of rendering inside W company.
Instead of each artist managing a personal workflow on an individual workstation,
shared folder structures, stable naming conventions, and concise submission presets
become part of everyday practice, which reduces hand off friction between teams and
shortens onboarding for new staff and recurring collaborators. A lightweight
operating cadence, understood as the regular rhythm of activities such as end of day
queue reviews, weekly node health checks, and a brief incident log, keeps the system
reliable without excessive bureaucracy and provides clear touchpoints where issues
can be raised and resolved. Over time, technicians learn to operate the queue,
maintain nodes, and refine presets, and designers learn to frame submissions with
shared quality gates such as preview, pre final, and final. These routines accumulate
into organisational knowledge, including checklists, templates, and playbooks, that
raise baseline reliability, reduce the likelithood of costly last minute fixes, and
transform rendering from a fragile individual practice into a robust collective
capability.

31

1.5 Structure of the document

The remainder of this document is structured to guide the reader from context and
problem definition to theoretical framing, methodological design, concrete
implementation and observed results, before closing with a global synthesis. Chapter
1, in which this subsection appears, has an explicitly introductory role. Section 1.1
presents W company and its evolution, explaining how an architectural practice
progressively incorporated digital visualisation and real estate technology into a
single studio. Section 1.2 then formulates the production and cost problem created by
reliance on cloud based rendering in an iterative, image intensive workflow. Section
1.3 states the objective of deploying a local, queue based render cluster and clarifies
the intended operating model. Section 1.4 justifies this objective from economic,
operational, technical and organisational perspectives, arguing that rendering should
be treated as a managed, software intensive process rather than a set of isolated
actions on individual workstations.

Building on this foundation, Chapter 2 develops the literature review that provides
the analytical lens for the rest of the thesis. Section 2.1 revisits the foundations of
software engineering, including how projects are organised into processes and life
cycle phases, how requirements and stakeholders are identified, and how quality
attributes such as performance or reliability are used to shape design choices. Section
2.2 introduces core concepts in software architecture and distributed systems that
will later be used to describe the cluster as a software intensive system, with attention
to architectural views and patterns relevant for render farms. Section 2.3 examines
testing, validation and monitoring in distributed environments, extending the usual
testing perspective to long running, asynchronous workloads. Section 2.4 focuses on
organisational change and governance, discussing how roles, routines and user
engagement influence the success or failure of technical initiatives. Chapter 3 then
translates this body of theory into a four phase method for implementing a local
cluster at W company. It describes how the initial diagnostic and requirements were
established, how they informed the architectural design, how this design was turned
into a concrete network and storage topology and an ordered sequence of
implementation and testing steps, and how governance, roles and operating cadence
were defined so that the solution could be sustained in everyday work.

32

Chapter 4 constitutes the empirical counterpart of this method. It documents the
results of applying the four phases in the specific context of W company. One section
is devoted to the implemented architecture of the cluster, detailing the control plane,
the characteristics of the server host, and the integration of the network and shared
storage into production. A subsequent section follows the operation in daily work,
tracing how jobs move from designers’ workstations through submission and
queuing to execution on Workers. Another section reports operational results and
user experience, combining quantitative indicators such as execution times and queue
behaviour with qualitative feedback from designers and operators. The chapter also
describes the supporting artefacts, including documentation, training activities and
onboarding materials, that enable the internal team to operate and evolve the cluster.
It closes with a section on limitations and future improvements, addressing both
technical and competence related aspects. Finally, the conclusion revisits the initial
objectives in light of the results, summarises the contributions for W company and
for the broader discussion on local render clusters, and suggests avenues for further
work and generalisation, followed by the bibliographic references.

33

2. LITERATURE REVIEW

The purpose of this chapter is to assemble the theoretical concepts that support the
design and deployment of a local render management infrastructure at W company.
Instead of starting from generic life cycle models, the discussion adopts a pattern
based view of software and systems engineering, in which architectures are built
around recurring solutions to recurring problems and applications are treated as
structured compositions of components and services. Martin Fowler’s work on
enterprise application patterns is central to this perspective, since it emphasises how
stable architectural structures can guide the organisation of logic, data and
deployment topologies in complex systems, while Thomas Erl’s contributions on
service oriented and cloud based architectures provide the vocabulary to compare
cloud platforms and on premise services in a consistent way (FOWLER, 2002; ERL,
2013).

Building on these technical foundations, the chapter then turns to literature on
deployment, operations and DevOps, which is directly relevant to turning a
conceptual architecture into a working computing cluster that behaves reliably in
production. Jez Humble’s work on Continuous Delivery describes how disciplined
build, test and deployment automation can make software releases predictable and
reversible, while Gene Kim’s studies of high performing IT organisations show how
operational practices and culture jointly determine the stability and throughput of
technology platforms (HUMBLE, 2010; KIM, 2016). In the context of W company,
these contributions underpin the discussion of how a central repository, worker
processes, monitoring interfaces and local agent services should be deployed,
monitored and evolved as an integrated service instead of a one off installation.

Finally, the chapter incorporates an organisational perspective, since
implementing a local cluster affects not only servers and network diagrams but also
roles, responsibilities and everyday routines. John P. Kotter’s model of leading
change highlights the importance of creating urgency, forming a guiding coalition,
articulating a clear vision and anchoring new practices in organisational culture,
which are all directly relevant when a studio moves from ad hoc cloud rendering to a
centrally managed internal queue (KOTTER, 1996). The sections that follow apply
these combined insights from Fowler, Erl, Humble, Kim and Kotter to frame the
technical foundations of a local render infrastructure, the architecture and operations
of the computing cluster, and the governance and change mechanisms required for its
sustained adoption at W company.

34

2.1 TECHNICAL FOUNDATIONS

2.1.A Technical view on software and systems engineering

In this thesis, software and systems engineering are understood through the lens of
architecture and patterns rather than as a purely document driven process. In his
work on enterprise application patterns, Martin Fowler presents large software
systems as structured compositions of components that solve recurring problems in
standardised ways, and argues that the central task of software engineering is to
organise code, data and infrastructure so that these recurring problems are treated
systematically instead of ad hoc. This perspective emphasises that even when the
focus is on deploying and operating existing software rather than writing all of it
from scratch, engineers still make architectural decisions about how responsibilities

are divided, how components interact and how the system will evolve over time
(FOWLER, 2002).

Within this view, software architecture becomes the set of structural decisions that
shape how a system behaves and how costly it will be to change. Fowler describes
how typical enterprise systems can be organised into layers for presentation,
application logic and data access, and shows that these layers can be combined with
patterns for handling transactions, integrating external services and managing state,
so that complex behaviour emerges from a clear structural backbone rather than from
scattered implementation choices. Choices about layering, deployment boundaries,
integration mechanisms and the responsibilities of major components are treated as
architectural because they are difficult to reverse and because they determine how
easily the system can be adapted, monitored and operated in the future (FOWLER,
2002).

From this pattern based perspective, infrastructure projects are included within
software engineering to the extent that they involve designing and maintaining such
structures. Decisions about how to organise control services and worker processes,
how to define shared storage conventions or how to expose internal capabilities as
services are examples of architectural choices in Fowler’s sense, even when the
underlying software is largely off the shelf. Treating these decisions as part of
software and systems engineering, rather than as informal configuration, supports a
more rigorous analysis of local computing infrastructures, including render clusters
and other specialised platforms, and provides the conceptual basis for the later
chapters of this thesis (FOWLER, 2002).

35

2.1.B Service oriented and cloud perspectives for local
infrastructure

Thomas Erl’s work on cloud computing provides a detailed foundation for
understanding how computing resources can be organised as services rather than as
collections of isolated machines. In his treatment of cloud environments, he describes
clouds as distributed technology platforms that expose computing, storage and
networking capabilities through standardised service interfaces, with clearly defined
contracts, quality properties and management mechanisms (ERL, 2013).

This perspective emphasises that what distinguishes cloud systems is not only the
physical location of servers, but the way resources are made available as reusable
services, for example infrastructure as a service or storage as a service, with
predictable behaviours and formalised responsibilities between providers and
consumers (ERL, 2013).

Within the same body of literature, service orientation is presented as a general
design paradigm in which capabilities are encapsulated into services with explicit
contracts, loose coupling and clear boundaries. Erl explains that services are
designed to be autonomous units that can participate in larger solutions through
composition, governed by principles such as statelessness, standardised interfaces
and policy driven behaviour, so that different services can be combined without tight
dependencies. This approach provides a vocabulary and a set of patterns for
structuring complex systems as networks of services instead of monolithic
applications, linking technical mechanisms and business level concerns through
service definitions that can be reused across multiple solutions (ERL, 2013).

A further contribution of this literature is the articulation of cloud delivery and
deployment models, which show how service orientation interacts with economic
and governance considerations. Erl distinguishes between models such as software as
a service, platform as a service and infrastructure as a service, and between public,
private and hybrid deployment options, arguing that each combination implies a
specific distribution of control, responsibility and risk between consumers and
providers (ERL, 2013).

From this point of view, a local computing infrastructure can be designed to
behave in a cloud like manner for its internal users by applying the same service
oriented principles that underpin public clouds. Internal capabilities such as compute
capacity for specialised workloads, shared storage or scheduling mechanisms can be
encapsulated into services with clear contracts, access interfaces and quality
expectations, even when all hardware remains on premises and under direct
organisational control. The literature therefore suggests that the contrast between
external cloud platforms and local infrastructures is largely a matter of governance

36

scope and service design, and that the conceptual tools developed for cloud
computing can be used to reason about how internal clusters and other local
resources are structured, exposed and managed as shared services inside an
organisation (ERL, 2013).

2.2 ARCHITECTURE, DEPLOYMENT AND
OPERATIONS OF THE COMPUTING CLUSTER

2.2.A Architectural structure in enterprise systems

In the literature on enterprise applications, software architecture is described as
the way a system is organised into components that collaborate through well defined
responsibilities and interactions. Martin Fowler characterises enterprise applications
as systems that display, manipulate and store large volumes of complex data in order
to support business processes, and he argues that their recurring design problems are
best addressed through a catalogue of architectural patterns rather than isolated
solutions (FOWLER, 2002).

A central theme in this work is the use of layered architecture to separate concerns
within enterprise systems. Fowler describes how typical applications can be
organised into layers for presentation, application logic and data access, each layer
depending on the ones below but remaining independent from the layers above,
which helps limit the impact of change and reduces the risk of uncontrolled coupling
across the system (FOWLER, 2002).

Building on this perspective, Fowler emphasises that enterprise architectures
usually distinguish user facing interfaces, domain logic that contains the rules and
calculations of the business, and infrastructure components that handle storage,
communication and integration with external services. These elements are combined
through patterns that clarify which part of the system is responsible for which
function and where modifications should be made when requirements evolve, so that
complex behaviour emerges from well understood structural decisions instead of ad
hoc code scattered across the application (FOWLER, 2002).

Finally, the literature stresses that these structural choices have technical and
economic consequences, because they influence how easily a system can be adapted,
monitored and operated over time. An architecture in which responsibilities are
clearly separated, deployment boundaries are explicit and interactions between
components follow known patterns tends to reduce the cost and risk of future
changes, whereas a structure with blurred boundaries and implicit dependencies
makes each modification more uncertain and expensive, especially in large scale
enterprise environments (FOWLER, 2002).

37

2.2.B Deployment pipelines and DevOps practices

The literature on Continuous Delivery describes deployment as a disciplined,
automated flow rather than a series of manual, ad hoc steps. Jez Humble presents the
deployment pipeline as a central pattern in which every change to the code base
passes through a sequence of automated stages, from build and test to deployment in
production like environments, with the aim of making releases frequent, predictable
and low risk. Automation of build, test and deployment is treated not only as an
efficiency gain, but as a way to reduce human error and to ensure that the same
process is followed every time a change is promoted, so that failures can be traced
and corrected systematically instead of being attributed to unique release events
(HUMBLE, 2010).

Within this framework, a deployment pipeline also embodies a specific attitude
toward system evolution. Rather than accumulating large batches of changes and
releasing them infrequently, Humble argues that small, incremental updates that flow
continuously through the pipeline tend to be safer and easier to diagnose, because
any defect can be associated with a limited set of modifications and rolled back
quickly if necessary. This approach implies that the infrastructure needed for an
application, such as configuration, scripts and environment definitions, should be
treated as versioned artefacts that move through the same pipeline as the application
code, so that the entire system, including its runtime environment, can be reproduced
and deployed in a controlled and automated way (HUMBLE, 2010).

Gene Kim extends this technical view by situating deployment practices inside a
broader DevOps perspective that links engineering methods to organisational
performance. In his work on high performing technology organisations, DevOps is
presented as a set of principles and practices that integrate development and
operations through fast feedback loops, shared responsibility for reliability and a
culture of continual learning. Empirical studies reported in this literature associate
practices such as automated testing, continuous integration, small batch changes and
proactive monitoring with shorter lead times for changes, higher deployment
frequency and lower change failure rates, suggesting that disciplined deployment
pipelines are central to both agility and stability in modern IT environments (KIM,
2016).

Taken together, the contributions of Humble and Kim converge on a view of
deployment and operations in which infrastructure is managed through code, changes
are propagated via repeatable pipelines and teams are organised to treat reliability as
a continuous, measurable outcome rather than as a separate phase at the end of a
project. The deployment pipeline becomes not only a technical mechanism for
releasing software, but also a coordination device that structures how work flows
across roles and environments, from initial commit to production, and how

38

information about failures and performance is fed back into design and
implementation decisions (HUMBLE, 2010; KIM, 2016). This combined perspective
provides the conceptual background for later discussions of how computing clusters
and supporting services can be deployed, updated and operated using the same
principles of automation, small changes and shared ownership that characterise
Continuous Delivery and DevOps.

2.2.C Cloud versus local deployment decisions

In the cloud computing literature, deployment choices are framed as architectural
decisions that combine technical mechanisms with business and governance
considerations. Cloud platforms are described as distributed environments in which
computing, storage and networking resources are exposed as services with
standardised interfaces and explicit quality properties, and where a rich set of
concepts and models helps compare different service and deployment options, such
as public, private or hybrid cloud arrangements (ERL, 2013).

Within this body of work, service orientation is presented as a design paradigm
that can be applied independently of whether the underlying infrastructure is hosted
externally or remains on premises. Capabilities are encapsulated into services with
explicit contracts, loose coupling and clear boundaries, and an internal environment
can be organised as a private cloud like setting in which resources are provided as
shared services to multiple consumers, even though the hardware is fully controlled
by the organisation itself (ERL, 2013).

The literature on Continuous Delivery and DevOps complements this view by
emphasising that cloud based and local deployments face similar requirements for
automation, repeatability and operational feedback. Deployment pipelines,
automated configuration and proactive monitoring are treated as general mechanisms
for achieving frequent, low risk releases and stable operations, regardless of where
the servers are physically located, and high performing organisations are
characterised by their ability to apply these practices consistently across all
environments rather than by a particular choice of hosting model (HUMBLE, 2010;
KIM, 2016).

39

2.3 GOVERNANCE, OPERATIONAL CADENCE, AND
ORGANISATIONAL CHANGE

2.3.A DevOps culture, feedback loops and operational cadence

In the literature on Continuous Delivery, deployment is described not as a final
step at the end of a project, but as a repeatable flow that is integrated into everyday
work. Jez Humble defines Continuous Delivery as the ability to keep software in a
state where it can be released to users safely and quickly at any time, using
automated build, test and deployment processes to make releases routine rather than
exceptional events. Within this perspective, the deployment pipeline becomes the
central organising pattern, since every change must pass through the same sequence
of stages, which provides visibility into the status of each modification and reduces
the risk that local, manual practices will undermine system stability (HUMBLE,
2010).

Gene Kim extends this technical view by presenting DevOps as an approach that
links such automation to organisational culture and performance. In his work on high
performing technology organisations, DevOps is described as a set of principles and
practices that integrate development and operations through shared goals, fast
feedback and continual learning, with the explicit objective of improving both
deployment speed and reliability. Drawing on longitudinal survey data, this literature
reports that organisations which adopt practices such as frequent deployments,
automated testing and comprehensive monitoring tend to achieve shorter lead times
for changes, lower change failure rates and faster recovery from incidents than those
that rely on manual, siloed processes (KIM, 2016).

A recurring element in these studies is the role of feedback loops and flow metrics
in shaping operational cadence. Humble argues that small, incremental changes that
move continuously through the deployment pipeline are easier to diagnose and to roll
back than large, infrequent releases, because any problem can be associated with a
narrow set of modifications and corrected quickly without destabilising the entire
system (HUMBLE, 2010). Kim similarly highlights four key indicators of delivery
performance, deployment frequency, lead time for changes, mean time to recover and
change failure rate, and treats them as practical measures of how effectively feedback
is being captured and used to adjust processes and architectures over time (KIM,
2016).

Taken together, these contributions portray DevOps as more than a set of tools, it
is a culture built around automated delivery pipelines, shared responsibility for
reliability and explicit feedback mechanisms that determine the tempo at which
systems can safely evolve. In this view, governance is enacted through day to day

40

routines such as how often deployments occur, how incidents are reviewed and how
information from monitoring is translated into design changes, rather than only
through formal policies or occasional transformation projects (HUMBLE, 2010;
KIM, 2016). This combined perspective provides the conceptual background for
analysing how technical practices and organisational routines must align when new
computing infrastructures are introduced and maintained in production environments.

2.3.B Organisational change and adoption of new practices

In the change management literature, John P. Kotter’s work is one of the most
influential references for understanding how organisations adopt new ways of
working. In his book Leading Change, he argues that most transformation efforts fail
because managers underestimate the difficulty of changing habits, structures and
culture, and because they treat transformation as a single event instead of a multi
stage process. His model presents organisational change as a sequence of phases that
must build on one another, rather than as a set of isolated actions, and stresses that
skipping stages or declaring victory too early tends to undermine the entire effort
(KOTTER, 1996).

Kotter’s eight step model begins with creating a sense of urgency around the need
for change and forming a guiding coalition that has enough credibility and authority
to drive the process. These initial steps are followed by the development of a clear
vision and strategy, and by systematic communication of this vision throughout the
organisation so that employees understand the direction and rationale of the change.
The model then highlights the importance of removing obstacles that block the new
behaviours, empowering people to act, and generating short term wins that
demonstrate tangible progress and help maintain commitment over time (KOTTER,
1996).

The final stages of the model focus on consolidating gains and anchoring the new
approaches in the organisational culture. Kotter emphasises that early successes
should be used to drive further change, rather than as signals to stop, and that new
practices only become durable when they are linked to visible improvements in
performance and are reinforced through recruitment, promotion and everyday
management routines. From this perspective, change is considered complete only
when the new behaviours and structures have become the normal way of working,
and when regression to previous patterns is unlikely because the underlying
assumptions and values of the organisation have also evolved (KOTTER, 1996).

This literature therefore frames organisational adoption of new practices as a
leadership task that combines symbolic and practical elements, from articulating a
compelling vision and building coalitions to adjusting systems and recognising early
wins. Kotter’s model suggests that technical initiatives, such as the introduction of

41

new tools or infrastructures, require explicit attention to urgency, coalition building,
communication and cultural anchoring if they are to be sustained beyond initial
deployment, which provides a structured lens for later analysis of how technology
related changes are introduced and maintained in practice (KOTTER, 1996).

2.4 SYNTHESIS OF THE LITERATURE

The literature reviewed in this chapter presents software and systems engineering
as an architectural discipline, organised around patterns and services rather than
isolated implementations. Fowler’s work frames enterprise applications as layered
structures whose long term cost and adaptability depend on clear separations of
responsibility and well chosen interaction patterns, while Erl extends this reasoning
to cloud inspired and service oriented environments in which computing and storage
are exposed through explicit contracts and governance models (FOWLER, 2002;
ERL, 2013).

Continuous Delivery and DevOps studies add an operational lens, showing how
automated pipelines, small batch changes and feedback driven routines enable
frequent, reliable evolution of technical platforms, and how these practices correlate
with improved deployment speed and stability in high performing organisations
(HUMBLE, 2010; KIM, 2016). Kotter’s model of organisational change
complements these insights by emphasising that durable adoption of new practices
requires urgency, coalitions, vision, short term wins and cultural anchoring, rather
than technical changes alone (KOTTER, 1996).

Together, these contributions provide a compact framework for the remainder of
the thesis: Fowler and Erl for the structural design of a local render infrastructure,
Humble and Kim for its deployment and operational cadence, and Kotter for the
organisational conditions under which such an infrastructure can be introduced and
sustained at W company (FOWLER, 2002; ERL, 2013; HUMBLE, 2010; KIM,
2016; KOTTER, 1996).

42

3. METHOD: IMPLEMENTING A CLUSTER

This chapter explains how W company moved from the earlier problem, blocked
workstations and volatile cloud costs, to a concrete local render cluster based on
AWS Thinkbox Deadline. The project is treated as a software intensive initiative that
requires aligned choices on process, architecture, distributed systems, testing, and
governance, rather than a simple software installation.

The overall approach is structured into four phases, summarised in Figure 4.
Phase 1, Diagnostic, Stakeholders, and Requirements, analyses current workflows
and cloud usage, identifies the main stakeholders, and consolidates functional and
non functional requirements. Phase 2, Architectural Design of the Cluster, defines the
system architecture, maps components to network and file sharing resources, and
makes explicit the main distributed system patterns and quality attribute trade offs.
Phase 3, Topology, Implementation, and Testing, covers the installation and
configuration of the cluster, together with basic functional and performance tests and
the introduction of simple monitoring and logging mechanisms. Phase 4,
Governance, Roles, and Organisational Embedding, specifies roles and operating
cadence, usage policies, documentation practices, and feedback loops that support
the sustained use of the cluster in everyday work. The remainder of this chapter
follows these four phases in turn and explains, for each one, both the concrete
activities carried out at W company and the way in which the chosen method draws
on the software engineering literature.

Diagnostic & Architecture &
Requirements Topology Design
¢ Analyse of current * System

Implementation,
Testing & Monitoring

Governance & Long-

)

Term Operation

¢ |Installation & * Roles & operating

\

workflows and
cloud usage

architecture
* Network & file-

configuration
* Functional &

cadence
* Usage policies &

¢ Stakeholders and sharing topology performance documentation
objectives « Distributed- testing « Training &

® Functional & non- system patterns & * Monitoring, logs & feedback loops
functional quality attributes KPI baseline

requirements

J

\.

J

\.

J

\.

Figure 4: Methodological roadmap for the implementation of the local cluster

43

3.1 METHODOLOGICAL ROADMAP AND
FOUR-PHASE STRUCTURE

The method adopted in this thesis translates the initial problem of expensive and
unpredictable cloud rendering into a sequence of concrete, traceable steps that lead to
a fully local render cluster at W company. Instead of treating the implementation as a
single technical jump, the work is structured into four successive phases that move
from understanding the existing situation, to designing an appropriate architecture, to
installing and testing the cluster, and finally to embedding it in everyday work
through governance and training. These four phases are summarised in Figure 4,
which presents the methodological roadmap for the implementation of the local
cluster.

The first phase, Diagnostic and Requirements, focuses on understanding how
rendering was actually performed before the project and on consolidating the
expectations of the people involved. This includes mapping current workflows across
the architecture and digital innovation fronts, identifying where and when render jobs
accumulate, and documenting the practical problems that arise, such as blocked
workstations during core hours or last minute resort to cloud services. On this factual
basis, the phase identifies the main stakeholders, such as architects, visualisation
specialists and technical support, and captures both functional requirements, for
example the need for unattended overnight rendering, and quality attributes, for
example predictability of turnaround time and stability of costs. In other words,
Phase 1 answers what needs to change, for whom, and why, using the language of
requirements and quality attributes introduced earlier in the literature review.

The second phase, Architecture and Topology Design, treats the future cluster as a
software intensive system that must be explicitly defined before it is built. Here, the
method specifies the system boundary of the render-management solution, the main
components on the control plane and on the client side, and the interactions between
them. This includes defining how Deadline’s Repository, Database, Remote
Connection Server and Worker applications will be arranged, how they depend on
the local area network and on shared storage, and how they relate to existing tools
such as SketchUp with V-Ray, 3ds Max with Corona and Unreal Engine. At the same
time, the phase selects distributed-system patterns and trade offs that are appropriate
for a small studio, for example concentrating services on a single host for simplicity,
while still enforcing a clear separation between control-plane services and shared file
storage. The output is a set of architectural views and a network and storage topology
that can be implemented without ambiguity.

44

The third phase, Implementation, Testing and Monitoring, translates the design
into a working cluster and verifies that it behaves as intended. Concretely, this
involves installing the chosen operating system on the control-plane server,
deploying the Deadline components, configuring shared storage, and enrolling artist
workstations as Workers and Monitors. Once the basic installation is complete, a set
of functional and performance tests is executed, using representative scenes from W
company’s pipelines to check that jobs can be submitted, queued and processed
correctly, that Path Mapping resolves file paths as expected, and that render times
and queue behaviour are coherent with the design assumptions. Simple monitoring
and logging mechanisms are also introduced at this stage, so that job status, failures
and basic performance indicators can be observed without manual inspection of each
node. Together, these activities close the gap between the abstract architecture and a
concrete, observable system.

The fourth phase, Governance and Long term Operation, recognises that a render
cluster only delivers value if it is used consistently and maintained over time. In this
phase the method specifies who operates the system, which roles are responsible for
queue supervision, maintenance and support, and how decisions about priorities or
configuration changes are made. It also defines simple operating routines, such as
end of day reviews of the queue, weekly checks of Worker status and storage usage,
and periodic review of job presets. Usage policies and short internal documents are
prepared to clarify how artists should submit jobs, where outputs must be stored, and
how to escalate issues. Training sessions and feedback loops are included so that
early experiences can be incorporated into adjustments of presets, policies or even
architecture if necessary. In practice, Phase 4 ensures that the cluster becomes part of
the studio’s normal production system, instead of remaining a one off technical
experiment.

3.2 PROJECT THROUGH THE 5W1H QUESTIONS

This section summarises the project using the classic SW1H framework. The aim
is to clarify, in simple and direct terms, why W company is implementing a local
render cluster, who is involved, what is being built, where it operates, when it is
deployed, and how success is assessed. This framing provides a concise reference for
the remainder of the chapter and ensures that the project is understood consistently
by both technical and managerial readers.

Why this project exists is straightforward. W company needs to stop blocking
artist workstations during office hours and to reduce the volatility of cloud rendering
costs. In the current situation, the same high performance machines are used for
modelling and for rendering, so long jobs freeze creative work and often spill into
nights and weekends. When the team pushes work to external farms instead, invoices
arrive late, are hard to allocate to projects, and are difficult to forecast. This project is

45

therefore aimed at a concrete goal, to move rendering to a managed, queue based
local cluster that runs mostly off hours, keeps artists productive during the day, and
replaces unpredictable cloud expenses with a stable in house capacity that can be
monitored and tuned.

Who is involved in this project at W company is deliberately limited so that
decisions stay clear. At the strategic level, a member of management sponsors the
investment in the cluster and links it to client delivery and financial discipline. At the
operational level, a project supervisor arbitrates priorities between architecture and
digital visualisation work and approves maintenance windows. A technical lead
installs, configures and operates the Deadline based render system and becomes the
single technical owner. Around this core, a small group of primary users in both
divisions prepare scenes, submit jobs through standardised presets, and provide
feedback on image quality and turnaround times, so that the project can be adjusted
to real production needs rather than abstract assumptions.

The project implements a local, queue based render infrastructure built around
AWS Thinkbox Deadline and tied directly into W company’s existing production
tools. At its core is a Deadline control plane composed of a central Repository that
holds configuration, plug ins, scripts and logs, a MongoDB database that tracks jobs
and Worker state, and a Remote Connection Server that mediates all client
communication over HTTP or HTTPS. Artist workstations run the Deadline Worker
service, which executes renders, and the Deadline Monitor, which provides the
interface for submitting and supervising jobs. Submissions use native plug ins, such
as Submit Max To Deadline for 3ds Max with Corona and the V Ray Standalone
plug in for .vrscene exports, and are supported by Path Mapping rules that
systematically rewrite file paths so that scenes, textures and outputs are always
accessed on shared storage instead of local disks. In parallel with this technical stack,
the project defines governance elements such as presets, naming conventions and
simple operating routines, so that the cluster is delivered not only as a functioning
system but as a managed service embedded in everyday production.

Figure 5 presents how this Deadline based infrastructure is embedded in W
company’s local network. The existing Windows Server 2019 host remains the
central file and network service, exposing the shared drives G, H and P to artist
workstations while also acting as firewall, gateway and DHCP server. A separate
Ubuntu Server 22.04 machine with IP address 192.168.0.100 runs all Deadline
control plane services, combining the Repository and Remote Connection Server, the
MongoDB database for job state, and the DeadlineStorage export that workstations
mount as drive X. Artist machines reach these resources over the local area network,
use SMB to read and write assets and rendered outputs on the shared drives, and
contact the Remote Connection Server over HTTPS on port 8080 for job
management. Both servers and workstations obtain internet access through the router

46

and the gateway server, so that the cluster remains fully inside the office network
while still being able to connect to external services when necessary.

\

Internet Cloud
WAN / Fiber
Vivo Router
D P 192.168.01
‘ Fiber Gateway
DHCP / NAT
LAN uplink e N\
\ 4 ~ Deadline Server
IP: 192.168.0.100
W Server
IP: 192.168.0.3 Ubuntu Server 22.04
l\/:\'hndom gerver 20/18HC . Deadline Services: Repository + Remote
irewall / Gateway P _ Internet access via gateway Connection Server (RCS)
Network Drive G: geral$ (SMB share) MongoDB Database 6.0.16 — Job State]
Network Drive H: users$ (SMB share) Management
NotwarlcDitve R e ptosh (SMB:shars) Network Drive X: DeadlineStorage
X y { (SMB share) L

SMB file access (G/H/P) + Jobs / Monitoring - RCS]

Internet access via gateway HTTPS 8080 SMB access to X:
{ DeadlineStorage share
Artist Workstation
Windows PC

E 3 Deadline Worker + Monitor

Figure 5: Network and storage topology of the Deadline based render cluster

Where the project is implemented is strictly limited to W company’s on premises
environment. All core Deadline services run on a dedicated Linux server on the
office local area network, and all render jobs read and write data through a small
number of defined network shares. The Repository and Database stay on fast local
storage inside this server, while project scenes, textures and outputs live on a
separate share that every Worker can access with the same path. No external
infrastructure is required, and client data never leaves the company’s network
perimeter. This local scope shapes many design choices, for example the decision to
use Deadline’s Remote Connection Server to avoid exposing the database directly,
and the emphasis on simple, static IP addressing so that a small team can manage the
system without specialised network staff.

When the project is executed follows a staged logic aligned with the timeframe of
the thesis and the rhythm of the studio. First, a short diagnostic and preparation

47

period is used to baseline current rendering practices, estimate weekly throughput
and off hours usage, and capture the main pain points. Next, the control plane is
installed, a small set of Workers is enrolled, and a bounded pilot is run in Deadline
License Free Mode, using up to ten nodes without licence cost to verify that the
cluster behaves as intended in real projects. During this pilot, the project team
already measures simple indicators, weekly completed images, queue wait times, job
success ratio, off hours share, and the mix between Worker based and workstation
based execution. Only after these measurements show stable improvement does the
project move to a broader deployment phase, during which the cluster is used in
normal production and acceptance criteria are checked over several weeks instead of
in isolated tests.

How success is evaluated and how the project is steered combines practical
operations with clear quantitative targets. The cluster is considered successful if it
meets a compact set of thresholds that W company can verify directly in Deadline
Monitor, for example roughly doubling weekly image throughput compared to the
baseline, keeping queue wait time for standard jobs within a few minutes under
normal load, executing at least about 80 percent of jobs on Worker nodes rather than
on submitter machines, achieving a job success ratio in the low to mid ninety percent
range after stabilisation, and shifting about 70 to 80 percent of total render time to
outside core office hours. Evidence is collected by exporting Deadline statistics and
logs, by running a small acceptance suite of reference scenes for both divisions after
each significant change, and by recording configuration updates and incidents in
simple internal documents. In this way, the SW1H framing is not just descriptive, it
provides a precise backbone for the project, linking a clear motivation, defined
actors, a bounded technical scope, a local deployment context, a realistic calendar,
and measurable rules for judging whether the implementation of Deadline at W
company has actually delivered the intended benefits.

3.3 CONCLUSION

The architecture defined in this section provides W company with a clear and
workable foundation for a local render cluster. Deadline’s three core elements, the
Repository for configuration, the Database for job state, and the Remote Connection
Server for client access, are grouped on a single controlled server, while all Workers
and artist machines interact with this core through shared storage and consistent Path
Mapping. This keeps the system simple to operate, predictable in behaviour, and
aligned with the constraints of a small studio.By separating configuration from
runtime data, enforcing a single storage namespace, and funnelling all control traffic
through one gateway, the design remains both robust today and ready for incremental
expansion if needed. It turns the motivations of the project, unblocking workstations
and stabilising rendering throughput, into a concrete technical baseline.

48

4. RESULTS

This chapter presents the concrete outcomes of the Deadline implementation at W
company. It moves from design intentions and methodological choices to what was
actually installed on site, how this installation behaves in day to day work, and which
effects can be observed on costs, workstation usage and team practices. For readers
who are less interested in technical theory and more concerned with what changed in
reality, this chapter can be read as a factual narrative of the project, from the first
repurposed server to the current render cluster integrated into the company routine.

The first part of the chapter describes what was physically and logically built.
Section 4.1 details the implemented architecture of the local render cluster, starting
from the control plane and server host and then showing how existing machines were
reused as render nodes and how the cluster fits into the office network and shared
storage. Section 4.2 follows the same system during a normal working week,
explaining how artists submit jobs through Deadline Monitor, how the queue
organises work across Workstations as Workers, and how storage conventions and
path handling ensure that files can be found and rendered reliably. Together, these
sections answer two basic questions that matter for both managers and engineers,
namely what the cluster looks like in production and how it is used in practice by the
two main pipelines of W company.

The second part of the chapter focuses on impact, sustainability and learning.
Section 4.3 discusses operational results and user experience, combining simple
performance indicators with qualitative feedback on how the cluster changed
everyday work and on which pain points remain. Section 4.4 describes the
documentation, training materials and operating routines that keep the system
understandable and reliable despite staff rotation. Section 4.5 then presents the final
state of the cluster and its current limitations at the time of writing, including the
migration to the new company server. Finally, Section 4.6 summarises the main
lessons learned from the project, both technical and organisational, and shows how
an initially modest render cluster became the starting point for a broader reflection on
server infrastructure at W company.

49

4.1 IMPLEMENTED ARCHITECTURE

This section presents the actual architecture of the local render cluster that was
deployed at W company, focusing on the concrete infrastructure rather than on the
idealised options discussed in Chapter 3. It offers a single, coherent “snapshot” of
what exists in production: a repurposed desktop computer promoted to the role of
central server, the way this host is connected to the existing office network, and the
organisation of storage volumes used to hold both configuration data and render files.
Building on the design principles, the cluster is deliberately compact, with all core
Deadline services hosted on this control-plane machine. The Repository, which
stores configuration files, plug ins, scripts and Path Mapping rules, the Database,
which records job state and queue information, and the Remote Connection Server,
which exposes Deadline to clients over standard network ports, are all co located on
this single server. Around this control plane, ordinary workstations and Worker
machines connect via the local area network to submit and process jobs, while shared
storage volumes provide a common location for scene files, asset libraries and render
outputs. The following subsections describe this implemented architecture in more
detail, from the characteristics of the server host to its effective network and storage
footprint.

4.1.A Delivered control plane and server host

The Deadline control plane at W company is hosted on a repurposed desktop
tower that has been reinstalled with Ubuntu Server 22.04 LTS. Using a long term
support Linux distribution ensures regular security updates and a stable package
base, which is appropriate for a machine that is expected to operate continuously and
largely unattended in a small studio. On this single host, all server side Deadline
components are co located. The Repository stores configuration files, plug ins, Path
Mapping rules, job presets, scripts and log files, in other words everything that
defines how submissions are interpreted and how paths are normalised across
machines. A MongoDB 6.0.16 instance records the dynamic state of the farm,
including the job queue, per job metadata and global settings, while the Remote
Connection Server (RCS) exposes Deadline over HTTP and HTTPS so that
workstations can communicate through well known ports without directly mounting
the Repository file system.

The same server also concentrates the storage functions required by the cluster.
Internally it combines a solid state drive (SSD) and a traditional hard disk drive
(HDD). The SSD hosts the operating system, the Repository and the MongoDB data
directory, so that configuration reads, job lookups and state updates remain
responsive even when many Workers are polling the queue. The HDD provides
higher capacity magnetic storage for heavy project data and is exported as a Samba

50

share called DeadlineStorage over SMB on TCP port 445. Through Samba, the
Linux server presents this volume as a Windows compatible network drive, so that
both artists’ workstations and Worker nodes access scene files, shared asset libraries
and render outputs using identical paths, which simplifies Path Mapping and reduces
relinking errors.

Figure 6 focuses on the physical aspect of this design. It shows the repurposed
desktop tower that concentrates all Deadline control plane services and storage
volumes in production, making visible the decision to collapse server roles onto a
single, clearly identified machine. This visual emphasis on a compact, self contained
host underlines the project’s objective of minimising hardware costs and operational
complexity while still providing a robust foundation for a managed render service.

Figure 6. Repurposed desktop tower hosting all Deadline control-plane services

Figure 7 complements this with a logical view of the same host. The diagram
groups the Repository on SSD storage, the MongoDB 6.0.16 database and its state
data, and the HDD based DeadlineStorage share under the Samba service, and
indicates how the Remote Connection Server and local Deadline Monitor interact
with these layers through HTTP or HTTPS for configuration and through SMB for
file access. In doing so, it clarifies how configuration, state and project assets are
separated yet tightly integrated inside the control plane server, and it makes explicit
the points where future evolution, such as moving the database or the file share to
dedicated machines, could be introduced without changing the overall architecture.

51

(Deadline Server i
192.168.0.100
RO (I.Remote Local Deadline Client
Connection Server) Monitor
Ports: 8080/443
HTTP/HTTPS Config Direct Access
| \
d SSD Storage /
"I D"
4 Repository 5
Config Files
' Samba Share TCP 445 !
---------------------------- Preset Library
[Global Path Mapping j
Log Files
N >4
File Access State Operations
T HDD Storage ;
: I ; :
N DeadlineStorage) (MongoDB 6.0.16)
E Reset Library :
| Render Outputs :
E \ o i \. J
e .\
- /

Figure 7: Logical Architecture of the Deadline Control-Plane Server and Storage

52

4.1.B Network and storage footprint in production

In production, the local render cluster is inserted into the existing office network
without changing the global perimeter. Internet traffic still enters through the
commercial router and is then passed to the legacy office server, which continues to
act as gateway, firewall and DHCP provider. The Deadline control plane is added as
a dedicated host at the fixed address 192.168.0.100 on the same local area network,
so no new routing rules or external openings are required. A local area network, or
LAN, is the internal segment that connects the company’s machines inside the office,
typically over Ethernet or Wi-Fi.

Within this layout, all render related control traffic from Monitors and Workers is
directed to the single address of the Deadline server. The Remote Connection Server
(RCS) listens on TCP port 8080 for HTTP and can be configured to provide
encrypted HTTPS on port 443, so users and render nodes always contact one stable
endpoint for queue operations. The MongoDB database remains bound to the
localhost interface on the Deadline server and is never exposed directly on the
network, which is consistent with the hardening principles adopted for this project.

The storage footprint follows a clear separation between control plane data and
production payloads. All configuration files, plug ins, scripts and log files reside on
the server’s solid state drive inside the Deadline Repository, which is not accessed
directly by end users. Project scenes, textures and final frames are stored on a hard
disk based network share exported from the same host as the UNC path
\192.168.0.100\DeadlineStorage, so that all machines reference the same location in
a uniform way. The DeadlineStorage share is implemented with Samba, the Linux
service that speaks the same file sharing protocol as Windows, SMB, over TCP port
445. Workstations map this share as a normal network drive and Workers stream
assets and write outputs directly to it, without needing local copies. In daily
operation, artists export render ready packages into structured folders on
DeadlineStorage and submit jobs that point to these UNC paths; Workers then read
the scenes from the share and write finished frames back to the same volume. This
arrangement keeps heavy production traffic away from the SSD that hosts the
Repository, enforces a single canonical location for all render inputs and outputs, and
simplifies troubleshooting, since every job can be traced to a well defined folder tree
on a single server.

53

Figure 8 presents the render-farm network topology at W company. It summarises
how the router, the legacy office server and the new Deadline server are connected,
and shows how control traffic through the RCS and file traffic through
DeadlineStorage fit into the existing office network.

Internet Cloud

I
WAN/Fiber

Vivo Router

Artist Workstation IP: 192.168.0.1

Windows PC
Deadline Worker + Monitor

Fiber Gateway
DHCP/NAT

\
{
|'f LAN Gateway

| File Access /
| ~__
Workally Server
Jobs/Monitoring IP: 192.168.0.3
RCS HTTPS 8080 Firewall/Gateway/DHCP
SMB Storage Service —
| _— m,\x\
| Internet Access / \ T~

'.\‘l // S.";B S.i‘l\lc\B SMB
! !

Deadline Server
IP: 192.168.0.100 Network Drive G: Network Drive H: Network Drive P:
Ubuntu Server 22.04 geral$ share users$ share deptos$ share
Render Farm Manager
™

Database SMB

MongoDB Database

Version 6.0.16
Job State Management

Network Drive X:
DeadlineStorage Share

Figure 8: Network and Storage Footprint of the Local Render Cluster in Production
4.1.C Render node population and alignment with the planned topology

Building on the server footprint described in Section 4.1.A and the network layout
presented in Section 4.1.B, this final subsection details how W company’s existing
machines were effectively turned into render nodes and how closely the resulting
footprint matches the small on-prem topology. In practice, the render farm is
composed of a mixed population of high-specification designer workstations and a
small number of secondary desktop machines that are no longer required for
day-to-day modelling work but remain fully usable for background computation.
Each eligible machine receives the Deadline Launcher and Worker components,
which together transform a regular Windows workstation into a node capable of
accepting jobs from the central queue. As shown schematically in figure 7, this
results in a compact but heterogeneous cluster in which all nodes connect to the same

54

control-plane host and shared storage, without introducing any additional network
tier or specialised appliance beyond the single Deadline server.

From an operational perspective, nodes join and leave the farm according to
simple, transparent rules based on off-hours policies and logical groupings. Deadline
“pools” and “groups” are used as lightweight classification mechanisms: pools
indicate the type of workloads that a node may receive (for instance, architectural
stills versus immersive content), while groups reflect hardware and availability
characteristics such as GPU-capable machines, always-on secondary desktops, or
laptops that should only be used exceptionally. In everyday terms, this means that a
designer’s primary machine only accepts jobs from the appropriate pool and only
during defined windows, typically evenings and weekends, when the user is logged
off and the workstation would otherwise be idle. Secondary machines, by contrast,
are configured as permanent nodes, remaining attached to the farm for most of the
week and providing a stable baseline of capacity. The resulting configuration ensures
that rendering resources are harvested opportunistically, without disrupting
interactive work or requiring staff to modify their core tools and routines.

When compared to the target topology, the realised render-node population
closely follows the intended pattern of “one modest server plus a small constellation
of internal machines”, while documenting a few deliberate compromises. The cluster
remains anchored on a single control-plane host, which simplifies administration and
cost but concentrates risk on a single physical box; similarly, overall capacity is
bounded by the limited number of workstations that can be safely enrolled without
jeopardising daytime responsiveness. These constraints were explicitly accepted in
the design, since they still satisfy the operational objectives and acceptance criteria,
notably the ability to process overnight batches locally and to eliminate routine cloud
usage for still-image projects. At the same time, the alignment between logical
groupings, shared storage and network reachability creates a clear path to
incremental scale-out: additional repurposed desktops can be added to existing pools
with minimal configuration effort, and, if future demand justifies it, dedicated render
nodes or a second control-plane host can be introduced without revisiting the
fundamental architecture established in this chapter.

55

4.2 OPERATION IN DAILY WORK

4.2.A Submission workflows across the main pipelines

In everyday work, the two main production divisions at W company, the
Architecture division and the Digital Visualisation division, interact with the render
farm through a small number of standardised submission paths. In both cases, the
render cluster is accessed through Deadline Monitor, the graphical interface used to
submit and track jobs, and through the dedicated submission plug ins installed on
each workstation, so artists do not have to interact with the control plane directly.
Scenes are prepared in the familiar authoring tools, then exported together with their
associated textures and auxiliary data into project specific folder trees on the shared
DeadlineStorage volume, the central network share used for render scenes and
outputs. This reliance on common UNC paths, that is, network locations written in
the form \server\share, translates the integration objectives into concrete practice:
regardless of the pipeline, jobs enter the farm through a predictable combination of
local tools, submitter windows and centrally managed paths.

Within the architectural pipeline, designers work primarily in SketchUp with
V-Ray as their rendering engine. When a scene is ready for high quality output, it is
exported to the shared storage and submitted to Deadline using the dedicated V-Ray
submission window instead of manually creating a job in Monitor. This window
allows the artist to define the main job parameters and to select which
Workstations-as-Workers, that is, workstations that can temporarily act as render
nodes, are eligible to execute the render by moving machines between unselected and
selected lists. Once the form is confirmed, Deadline returns a concise summary of the
operation, including the Repository address, the network path used for assets and the
identifier of the created job, confirming that the scene has been accepted into the
queue. In practice, architects dispatch renders directly from their usual V-Ray
interface while still benefiting from the central queue and from the storage discipline
imposed by DeadlineStorage.

The Digital Visualisation division follows a closely related pattern for 3ds Max
and Corona workloads, with an additional layer of automation for batch processing.
For individual scenes, artists rely on the Submit Max To Deadline plug in, which
packages the current .max file and its render settings and forwards them to the central
queue using the same shared path conventions as in the architectural pipeline. For
larger batches, such as catalogues of views or families of camera angles derived from
a common base model, the studio uses custom 3ds Max scripts written in MaxScript,
the native scripting language of 3ds Max. These scripts traverse a designated project
directory, identify all relevant .max files, perform an automatic search for missing
assets across the studio file servers, repair broken file paths when the corresponding

56

textures or proxies are found, and then submit a separate Corona job for each
corrected scene. Building on the same integration mechanisms, this scripted
workflow allows dozens of scenes to be cleaned and dispatched to Deadline in a
single operation, reducing manual effort, lowering the risk of missing assets at render
time and ensuring that even complex visualisation batches enter the cluster through a
predictable, repeatable submission process.

Figures 9-10 present this interaction from the point of view of the architectural
pipeline. They show the V-Ray job submission window and the subsequent
confirmation dialog in Deadline Monitor, highlighting how artists select Workers,
define basic parameters and receive a clear acknowledgment that the job has been
registered in the central queue.

Job Optians V-Ray Opbons Tile Reendering raft Job Options | V-Ray C
Job Description

JabMame | testIs)

Comment [R Comment

Department
epartment [4] submission Fies
Job Options

100/ CeadineStorage ident/

Machine List adrien
Limits:
Dependences

On Job Complete | Nothing - Submit Job As Suspended On Job Complete | Nothing = v Submit Job As Suspended

Submit

Figure 9-10: V-Ray Job Submission and Confirmation in Deadline Monitor

4.2.B Workstations as Workers, queue discipline, and oft-hours
utilisation

In the implemented cluster, most of the effective rendering capacity comes from
the same Windows workstations that architects and visualisation artists use during
the day. Each eligible machine runs the Deadline Launcher and Worker services
locally, which together transform an ordinary desktop into a render node capable of
polling the central queue and executing tasks without additional user intervention.
Pools and groups are used as lightweight classification mechanisms so that the farm
encodes who can render what and where. Pools indicate the kind of workloads a node
may receive, for instance architectural stills or Corona based visualisation jobs, while
groups reflect more stable properties such as hardware configuration or whether a
machine is permanently available. Building on the operational objectives, designers’
primary machines are configured to act as Workers only during agreed off hours

57

windows, typically evenings and nights, when interactive modelling and client
sessions are no longer taking place. In everyday terms, an architect can submit a
series of renders at the end of the day and log off; once the workstation becomes idle,
the local Worker service accepts jobs in the relevant pools and processes them
overnight, so that results are available the next morning without having blocked
daytime work.

This same configuration also supports a simple but effective form of queue
discipline, in line with the governance principles. Rather than relying on informal
negotiations, a designated Champion or technically inclined Primary User performs a
brief review of the queue at the end of each working day using Deadline Monitor.
During this review, they verify that urgent deliveries have appropriate priority, that
jobs are assigned to suitable pools and groups, and that heavy exploratory renders are
not scheduled on machines that must remain responsive early in the following
morning. The practical rules agreed with management therefore become encoded in
Deadline’s scheduling attributes instead of remaining implicit, which makes the
behaviour of the farm more predictable and easier to explain to occasional users. In
this way, the governance model proposed in Chapter 3 is translated into a regular,
lightweight routine that shapes how the local cluster is actually used in production.

When problems arise, such as failed jobs, missing assets or misconfigured scenes,
they are detected and handled through a combination of Deadline’s built in
observability and a concise incident logging practice. Error summaries and per job
logs in Monitor allow the Champion to identify whether a failure stems from path
mapping issues, insufficient resources on a particular node or errors in scene
preparation. Recurrent issues are recorded in a simple incident log, which notes the
project, the failure mode and the corrective action taken. This log clarifies who is
expected to intervene in each type of situation, whether it is a matter for the technical
lead, a Champion or the original scene author. Over time, these modest practices of
queue review and incident tracking help to maintain the reliability of the cluster
without requiring a full time operator, and they anchor Deadline as a managed shared
resource rather than a collection of opaque background processes running on
individual workstations.

58

4.3 OPERATIONAL RESULTS AND USER EXPERIENCE.

4.3.A Functional validation and everyday operational behaviour

Before the local render cluster was introduced into routine production work, it
underwent a phase of functional validation to ensure that the main architectural
elements described in Sections 4.1 behaved as intended under representative
conditions. A small but diverse set of test scenes was assembled from the
Architecture and Digital Visualisation pipelines, including V-Ray based stills and
Corona scenes with typical texture libraries and project structures. These jobs were
submitted through the standard workflows detailed in Section 4.2, using Deadline
Monitor and the dedicated submitters, and were executed on a subset of
Workstations-as-Workers configured to respect off hours usage. The validation
focused on basic but critical success criteria: jobs had to appear correctly in the
queue, transition to the rendering state without manual intervention, complete
without errors at the Deadline level, and produce outputs in the expected folders on
the shared DeadlineStorage volume with paths that could be reopened directly in the
authoring tools. Logs and error summaries in Monitor were used to confirm that
Repository access, Path Mapping and Worker polling behaved consistently across
machines. While no formal benchmarking campaign or performance time series were
produced, this initial testing showed that the cluster could reliably process real
project scenes and that minor configuration issues, such as occasional missing
textures or incorrect network paths, could be resolved by tightening folder
conventions and Repository settings.

Once these functional checks were in place, the cluster was progressively used on
live projects, which provided a clearer picture of its everyday operational behaviour.
During the observation period, designers submitted end of day batches that were
processed overnight by workstations configured as Workers, with the Worker service
started only when interactive work had ceased, so that daytime responsiveness was
preserved. The queue absorbed these jobs without requiring constant supervision,
and outputs were generally available on DeadlineStorage at the beginning of the
following morning, replacing earlier practices in which individuals left renders
running manually on their own machines. Importantly, for the categories of work
routed through the farm, the studio stopped relying on cloud rendering and handled
the relevant workloads entirely on the local cluster, in line with the economic and
operational intent. In qualitative terms, the system demonstrated stable behaviour
under the studio’s normal load patterns: jobs progressed predictably through the
queue, Workstations-as-Workers provided sufficient overnight capacity for the tested
projects, and no structural bottleneck or recurrent failure mode emerged during the
period considered, even though the results are reported here as operational
observations rather than as formal quantitative KPIs.

59

4.3.B User experience and qualitative alignment with original
objectives

From the perspective of designers, Champions and managers, the introduction of
Deadline has primarily been experienced as a change in how render time is organised
rather than as the arrival of a new, visibly complex system. Once initial habits were
in place, architects and visualisation artists reported a clear benefit in being able to
continue modelling, preparing presentations or joining client meetings while their
renders progress on other machines, instead of having their own workstation locked
by a long sequence of frames. Deadline Monitor, which was initially perceived as
technical, gradually became a useful reference point to check job status, identify
which batches are running overnight and confirm that outputs have been produced on
the shared DeadlineStorage volume. For management, the existence of a single
queue, rather than a collection of personal rendering practices, provides reassurance
that rendering is being handled as a shared service with at least minimal visibility
and traceability. Importantly, for the categories of work that have been integrated into
the cluster, cloud rendering is no longer used in routine production: jobs that would
previously have been offloaded to cloud providers are now dispatched to internal
Workers, which reduces budget uncertainty and reinforces the sense that the studio is
operating its own controllable capacity rather than renting it per project.

This positive picture is tempered by a non-negligible learning curve, which shapes
how far the cluster can advance the objectives. New or occasional users often require
guidance to understand the submission windows, select the appropriate pools and
groups, and follow the storage conventions associated with DeadlineStorage, and
some still need help interpreting job states and error messages in Monitor.
Nevertheless, when the operational objectives and acceptance criteria are revisited
qualitatively, several appear clearly satisfied: daytime workstation availability has
improved for those who use the system, overnight capacity is regularly exploited,
and the reliability of the cluster is generally perceived as adequate, with most failures
attributable to scene preparation rather than to infrastructure. Other objectives, such
as systematic and effortless use of the queue by all potential users, are only partially
met and depend on continued training, refinement of documentation and incremental
simplification of submission presets and folder templates. Overall, the local render
cluster can be considered a meaningful step towards the envisioned balance between
cost control, creative freedom and operational predictability, even if its full potential
will be realised gradually as practices stabilise and adoption broadens within W
company.

60

4.4 SUPPORTING ARTEFACTS AND CHANGE
MANAGEMENT

4.4.A Operator documentation, runbooks, and user guides

Beyond the deployed infrastructure described earlier in Section 4.1, which
detailed the implemented architecture and network layout, the project deliberately
produced a small but coherent suite of documentation so that the render cluster can
be operated by staff who were not involved in its initial implementation. The central
artefact is an internal Deadline manual tailored to W company and hosted as a
Google Docs file on the studio’s shared drive. As shown in Figure 11, this manual is
available in both English and Portuguese and is structured into a concise set of
sections that mirror the typical lifecycle of a client machine: Project Details,
Installation Client, Deadline Overview, V-Ray, Corona and Resources. The Project
Details section introduces Deadline in accessible, non specialist terms, presenting it
as a render farm manager and outlining its main advantages and limitations for a
studio of this size. The Installation Client and Deadline Overview sections then
provide step by step guidance for mapping the DeadlineStorage network share,
installing the Deadline Client from the shared installers, configuring the Remote
Connection Server certificate and launching the Launcher, Monitor and Worker
components with the correct Repository settings. The V-Ray and Corona sections
walk through standard submission workflows based on scenes exported to shared
storage, while the Resources section centralises links to submission plug ins, the
client key, installer archives and upstream Thinkbox documentation, so that users can
quickly find all necessary material in a single location.

These user facing materials are complemented by more operational documents,
grouped informally into an Operator Pack that supports the technical lead or
Champion responsible for the cluster. In practice, this pack includes installation and
configuration checklists for new client machines, notes on the expected layout of
shared folders and UNC paths, and simple runbooks for recurring administrative
tasks such as verifying Repository connectivity, checking Worker health through
Monitor, and revoking or reissuing the client TLS certificate stored alongside the
installers on DeadlineStorage. While lightweight, these documents give concrete
form to the implementation steps and operating practices defined during the
implementation phase by specifying how to connect to the control plane, how to
bring new nodes into the farm in a repeatable way, and how to perform basic incident
response when jobs fail for infrastructure related reasons. Most of these artefacts are
stored either on the central server, within the Repository tree or in clearly labelled
subfolders of DeadlineStorage, or on the company’s shared drive next to the manual
itself, so that any authorised staff member can access the current version of the
guides and runbooks.

61

Figure 11 presents an overview of this internal Deadline manual as it is delivered
to W company. It shows the bilingual structure, the main sections that map to client
installation and submission workflows, and the way links to resources and installers
are grouped, making visible how the documentation layer supports everyday use of
the cluster.

DEADLINE
MANUAL

- Portugués

TABLE OF CONTENTS

PROJECT DETAILS
INSTALLATION CLIENT
DEADLINE OVERVIEW
V-RAY

CORONA

RESOURCES

BIZNIVS] IN PROGRESS -

[012{F.N (1Y Adrien Workally

Figure 11: Overview of the Internal Deadline Manual Created for W Company

4.4.B Training, onboarding, and competency development

Training activities played a central role in ensuring that the render cluster could be
adopted smoothly by designers and visualisation artists, whose daily routines had
previously relied on workstation based or cloud based rendering with little exposure
to render farm concepts. The onboarding process began with short demonstration
sessions delivered to small groups, during which the overall architecture of the
system was introduced in accessible terms and users were shown how to install the
Deadline Client, map the shared DeadlineStorage volume and authenticate through
the Remote Connection Server. These sessions focused on the concrete actions
required during a typical workday, such as launching Deadline Monitor, locating the
submission windows within their authoring tools and verifying that outputs appeared

62

correctly on the shared storage. By presenting the system through familiar workflows
rather than abstract diagrams, this initial training tied directly into the operational
conventions and prepared the ground for autonomous usage.

Following these introductory demonstrations, the project relied on targeted,
hands-on clinics with the staff members identified as local reference points for
Deadline. These users, who effectively play the role of Champions in the sense of
Phase 4 of the method, acted as intermediaries between the technical lead and the
wider team. They received more detailed explanations on topics such as the meaning
of pools and groups, the expected behaviour of Workstations as Workers during off
hours windows, and the interpretation of job states and error logs within Monitor.
Reference scenes were used deliberately during this phase: small, well controlled
examples allowed participants to practise the submission workflow end to end
without the uncertainty and time pressure associated with full production projects.
Each successful submission served both as a learning milestone for the individual
and as evidence that the procedures could be executed in practice, thereby spreading
operational know-how beyond the original implementer.

As the cluster entered routine use, competency development evolved into an
ongoing, distributed process rather than a one-off training event, supported by both
documentation and audiovisual material. Designers and visualisation artists
continued to consult these local reference users when encountering configuration
issues or unfamiliar error messages, and brief explanations were integrated naturally
into live project work instead of being confined to formal sessions. In parallel, a
short internal training video was recorded, hosted as an unlisted clip and summarised
in figure 12, which walks through the key steps of connecting to Deadline,
submitting a scene and interpreting basic job status indicators in Monitor. This video,
together with the documentation layer described in Section 4.4.A, provided a stable
reference point for reinstalling the client, checking Worker settings or following the
expected folder structure on DeadlineStorage, thereby reducing the cognitive load on
individual experts. Over time, this combination of structured onboarding, practical
exercises with reference scenes, informal peer support and a reusable training video
contributed to institutionalising a shared understanding of how to submit, monitor
and interpret render jobs, and ensured that the cluster could be operated and
supported by more than one person within W company.

63

Figure 12 presents a screenshot from the internal Deadline training video
produced for W company. In roughly three minutes, this video walks a new user
through the complete basic workflow for SketchUp and V-Ray: exporting a render
ready .vrscene file from the SketchUp interface, placing it in the appropriate project
folder on shared storage, opening Deadline Monitor, creating a new job that points to
this exported file and finally sending the job into the pending queue so that it can be
picked up by Workers during off hours. By condensing the full sequence from scene
preparation to job submission into a short, visual demonstration, the video provides a
concrete, easy to follow reference on how to place a V-Ray render on the Deadline
farm.

o x
@ e == B @G &%
= B - S P0(900ee PTHEAESNS B RBEBD
x G /SERGO I IV $S&CCHD IV 7F kA ¢2LPAXA IS SR &€ BYOLTHXCO Q% B 5@
NI /O H S ASCHE L OB G2 LM GRS %O mnpNNBREHTY
ot G2 o3 o o7 G 0 G 3 Cna10 Cnal Conai2 Cnatd Gt TS
r@ om
X4 2 > |
/S 1 e
HR =9<>um: i
(X
2 ocfait
4 s = (1380
: & *-:*fi I
iz
e €@ e Ly & D0 B B 22

Figure 12: Screenshot from the Internal Deadline Training Video
(https://www.youtube.com/watch?v=HylQOgtlujo)

https://youtu.be/HyIQOgtLujo
https://www.youtube.com/watch?v=HyIQOgtLujo

64

4.5 FINAL STATE AND CURRENT LIMITATIONS OF
THE CLUSTER

4.5.A Consolidated architecture at the time of writing

Several months after the initial deployment of Deadline on the repurposed desktop
tower, W company decided to give the render manager a more durable home and, at
the same time, to expand its shared storage. To achieve this, a new physical server
was specified, assembled and configured by the author of this thesis. The intention
was not only to migrate Deadline away from a single workstation class machine, but
to build a simple and modern platform that could host virtual machines and other
infrastructure services. In parallel, the project aimed to increase internal storage
capacity so that W company would rely less on ad hoc disks attached to individual
workstations and more on centralised pools that could be managed and backed up
consistently.

The new machine runs a TrueNAS based environment that combines ZFS storage
with a lightweight virtualisation layer. On the network, the server is attached to the
office LAN through a bridge interface. This configuration means that each virtual
machine can receive its own [P address on the same subnet as ordinary desktops,
which simplifies routing and avoids complex network address translation rules. The
physical host is identified as W company server with IP address 192.168.0.5. On top
of it, several virtual machines are defined. Some of these are dedicated to
infrastructure workloads such as Deadline, while others support more general uses,
for example virtual desktop style environments for experimentation and future tools.
All of them share the same underlying storage pools, which are also exposed as
classic file shares for project data and common resources.

Within this environment, two Linux virtual machines are dedicated to the render
cluster. The first VM, at IP address 192.168.0.6, runs Docker, understood here as a
lightweight platform for running applications in containers that are isolated from the
host system. Inside Docker, a MongoDB container hosts the Deadline database and
stores the dynamic state of the farm, including job queues, pools, groups and
configuration values that must persist across restarts. The second VM, at IP address
192.168.0.4, runs the main Deadline services. It exposes the Deadline Repository,
which is the central file store for plug ins, scripts, Path Mapping definitions and log
files, and it also hosts the Remote Connection Server, which is the network entry
point for all clients. In daily operation, the services on 192.168.0.4 read and write job
state to MongoDB on 192.168.0.6, while the Repository on the same VM provides
configuration and plug ins to the Remote Connection Server and to the Workers.

65

From the perspective of the artists, this internal separation is largely invisible.

Their workstations are configured with the Deadline Worker service, the background
agent that executes render tasks, and the Deadline Monitor, the graphical interface
used to submit and track jobs. These machines do not access the database directly

and do not need to know that it runs inside a container. They simply connect to the

Remote Connection Server on 192.168.0.4, which authenticates them, exposes the

central queue and relays all requests to the services and database running inside the
server. This keeps the cluster simple to use, since only a single address needs to be
configured on the clients, while the data layer remains confined within the new

hardware platform that was designed for storage and virtualisation.

Figure 13 presents this final server side layout of the Deadline control plane at W
company. The diagram shows the W company server on IP address 192.168.0.5 with
its two Linux virtual machines, one at 192.168.0.6 running Docker and the
MongoDB container that stores the Deadline database, and one at 192.168.0.4
running the Deadline Repository and the Remote Connection Server. It also depicts
how artist workstations connect only to the Remote Connection Server, which in turn
uses the Repository and the MongoDB database to read and write job data, so that
the figure visually summarises how the new server, its virtual machines and the
desktops together form the current control plane of the render cluster.

@ R
W company server, IP 192.168.0.5

Users connect to

@ N 7a N Deadline via RCS

7 5 ; o o on 192.168.0.4

Linux VM with Docker, Linux VM - Deadline services,
IP192.168.0.6 1P 192.168.0.4 =
et Artist workstation 1
Deadline services Repository for i D%idalar};:":;gﬁirtgp 3
read and write job job data and
: state to MongoDB configuration
MongoDB container |« > «—>
- Deadline database
‘%-m_\
Deadline Remote Users connect to %

Repository Connection Deadline via RCS =

(files and Server (RCS) 0n 192.168.0.4
configuration) ’ c

Artist workstation 2
S i k 4 Deadline Worker and
\ J Deadline Monitor

Figure 13: Final server based architecture of the Deadline control plane at W company

66

4.5.B Operational limitations, adoption and complementary tooling

The most visible limitation of the cluster at the time of writing does not come
from hardware or software, but from people. W company has gone through a period
of strong staff rotation, so several of the artists and technicians who were originally
trained on Deadline and on the underlying render workflows are no longer in the
organisation. Newcomers are often young and have little prior experience with render
management tools, which makes their first contact with Deadline demanding in terms
of concepts and vocabulary. In this context, the internal artefacts created during the
project have become essential. The short videos that demonstrate the main
workflows and the compact manual that explains how to install the client, connect to
the Remote Connection Server and submit jobs now play a central role in
onboarding. Without them, knowledge of the cluster would be much more fragile.

Despite this changing team, the technical platform itself is extremely stable. Since
the migration to the dedicated server and its two Linux virtual machines, the
Deadline services have run with very few interruptions and nightly queues have
completed reliably.

In everyday work, the cluster functions as a safety valve for heavy batches of
renders. When large volumes of images need to be produced, jobs are sent to the
queue and processed overnight or during low activity periods, so that the impact on
daytime interactive work remains limited. From the point of view of many artists,
Deadline therefore appears as a black box that simply executes jobs when configured
correctly. The difficulty is that configuration is not self explanatory. Understanding
pools and groups, choosing appropriate priorities and diagnosing errors require a
level of familiarity with the Monitor interface that new staff only acquire after
several weeks of practice. Even with the manual and videos, users still rely heavily
on informal support from colleagues who already know the tool, which concentrates
operational knowledge in a small subset of the team and can create bottlenecks when
those people are unavailable.

Alongside the main cluster, the author of this thesis also developed a smaller,
independent application focused on V-Ray workloads. This auxiliary tool runs
locally on a workstation, watches a predefined folder for V-Ray scene files and
schedules them to be rendered during the night. Its scope is narrow, but its interface
is intentionally simple and more modern than the standard Deadline Monitor, which
makes it approachable for users who are reluctant to interact with a full render farm
manager. Implemented in Python, it does not pursue aggressive optimisation or
complex automation, yet in practice it has proved stable and has become a practical
way to automate a subset of repetitive renders on a single machine.

67

As a result, W company now operates two complementary solutions for handling
intensive rendering periods. The Deadline cluster on the server provides a powerful,
highly reliable queue based system that distributes work across multiple machines,
but its adoption depends on users investing time to understand its concepts and
interface. The auxiliary V-Ray application is lighter, less general and only suitable
for specific jobs, yet it offers an easier entry point to automation for artists who are
still learning the main tool. The main limitation of the current situation is therefore
not the absence of technical capability, but the challenge of embedding these
solutions into a team that continues to change, which reinforces the importance of
concise documentation, clear examples and incremental learning paths for new
employees.

68

4.6 LESSONS LEARNED FROM THE
IMPLEMENTATION PROJECT

This project first taught me how to design and operate servers as shared
production resources for a team, rather than simply installing software on an
individual machine. At the beginning I had almost no experience with networking or
system administration, these were not my main areas of training. Starting from a
single recycled office computer, I had to understand what it means to turn a
workstation into a stable service unit, assign it a clear role in the internal network,
keep it available continuously and ensure that other people can rely on it. This shifted
my perspective from isolated applications to an integrated system, with
interconnected machines, shared storage and services that must deliver predictable
performance over time.

In parallel, the project gave me a concrete understanding of a render farm as a
production system, and more broadly of what a shared technical service represents in
a small organisation. Previously, rendering was a local operation, triggered from a
3D tool on the artist’s own workstation. With Deadline and the cluster, I learned to
think in terms of coordination and flow: a central node that plans work, resources
that execute tasks, and information that must remain consistent and accessible across
all points in the process. Delegating renders to a central system changes the
production model of the studio, freeing workstations for interactive work and turning
rendering into a background process rather than a bottleneck. It also made clear that
technical design alone is not sufficient. The architecture has to match working
practices, naming conventions, file structures and the way projects are prepared if it
is to function as a real production system.

A significant part of the learning concerned the link between the technical system
and the human system. The cluster creates value only if people understand what it
provides and are able to use it correctly. Staff turnover at W company made this very
visible. Several of the people trained at the beginning left, new colleagues arrived
with no prior exposure to render management, and the system had to remain usable
despite these shifts. To address this, I produced a concise manual, recorded short
training videos and organised regular discussions to capture the problems that users
encountered and to explain the most common error patterns. Acting as the internal
reference person for Deadline required me to clarify my own reasoning, to translate
relatively complex mechanisms into simple explanations, and to accept that project
success 1s measured as much in stable adoption and routine use as in configuration
details on the server.

The intensive use of artificial intelligence tools also changed the way I learned
and worked throughout this project. As an engineer I already had a solid technical

69

background, but I did not master corporate networks, file servers or virtualisation
environments. Al acted as a continuous technical coach. Instead of spending hours
searching fragmented documentation, I could ask targeted questions, receive
explanations in clear language and immediately test the proposed solution on W
company’s infrastructure. Work progressed through a series of small, controlled
experiments with rapid feedback, rather than through long blocks of abstract study.
This made learning less tedious and more operational, and allowed me to focus on
higher value topics such as user experience, process clarity for artists and the long
term sustainability of the system in a changing team.

In the end, this project moved me from someone who knew almost nothing about
networks and servers to someone capable of designing and evolving an infrastructure
that is actually used in production. Building on this first experience with the render
cluster, I was able to design a more comprehensive server for W company, which
now sits at the centre of internal storage and several core applications. This
strengthened my overall understanding of how modern information systems operate
inside an organisation, from physical resources to day to day user practices, and
showed me how to combine new tools such as Al with human constraints and
technical requirements to build a socio technical system that is both robust and
understandable.

70

CONCLUSION

This work has examined the implementation of a local, Deadline based render
cluster at W company, a Brazilian organisation operating at the intersection of
architectural practice and digital visualisation. Starting from the production and cost
challenges introduced in the first chapter, the thesis treated rendering as a software
intensive process rather than as an isolated graphical task. The initial problem was
characterised by a strong dependence on external cloud render farms, variable time
indexed costs and a structural tension between interactive use of workstations during
the day and heavy rendering workloads. In response, the project defined the objective
of designing and deploying a fully local, queue based cluster capable of absorbing
routine rendering demand on premises and turning rendering into a predictable,
managed service aligned with the company’s constraints and ways of working.

To support this objective, the thesis assembled a focused theoretical framework
drawing on software engineering, software architecture, distributed systems, testing
and organisational change. Concepts such as requirements and quality attributes,
architectural views and patterns, distributed coordination, staged testing and
monitoring, and governance and operating cadence were used to structure both the
analysis and the proposed solution. These elements were then integrated into a four
phase method that guided the implementation at W company: from diagnostic and
requirements, through architectural design, network and storage topology and
validation, to governance, roles and embedding in everyday practice. The method is
explicit enough to be followed step by step, yet simple enough to be adapted by a
small studio with limited specialised IT capacity.

Applying this method on the existing infrastructure led to the deployment of a
control plane on a repurposed server and the enrolment of workstations and
secondary machines as Workers executing jobs against shared storage. Submission
workflows in the main production pipelines were restructured around Deadline as a
central queue, so that designers and visualisation artists now send scenes to a
common cluster rather than rendering locally or outsourcing by default to the cloud.
Qualitative observations collected during the project indicate that, for the integrated
workflows, daytime workstation availability has improved, overnight capacity is
regularly exploited and recourse to cloud rendering for routine still images has
largely been eliminated. Beyond the technical artefacts, the project also contributed
to defining roles, routines and lightweight operating practices, together with internal
documentation and training materials, so that the cluster is treated as a shared service
that can be understood, operated and maintained by more than one individual.

71

At the same time, the analysis of limitations shows that the implemented solution
remains a first iteration rather than a definitive end state. Organisationally, the studio
still depends strongly on a small group of Champions to concentrate operational
competence, in a labour market where staff turnover can be abrupt and formal
handovers are not guaranteed. Without a more structured training pipeline,
knowledge about pools and groups, Worker behaviour, troubleshooting procedures
and expected folder structures risks eroding over time. Technically, the choice to
concentrate all control plane services and shared storage on a single, ageing server
keeps the solution economical and simple, but introduces a clear single point of
failure and leaves the system exposed to local power cuts and hardware faults.
Reasonable future improvements include appointing and training multiple
Champions, defining a standardised onboarding path for new staff, scheduling
periodic refresh sessions, adding an uninterruptible power supply and basic hardware
health monitoring, and, in a later phase, gradually separating roles across two hosts
or adding dedicated render nodes.

Beyond its immediate impact at W company, the thesis suggests a way of treating
render management in small and medium sized studios as a software engineering and
production engineering problem. By combining established concepts with a concrete,
resource constrained implementation, it offers a method that can be reused or adapted
by other organisations wishing to internalise render capacity using existing machines
rather than relying systematically on the cloud. Possible extensions include
developing more advanced monitoring and logging, exploring controlled hybrid
configurations that occasionally burst to external capacity under clear rules, refining
scheduling and quality presets based on observed usage and documenting
comparative case studies across studios. In summary, the project has shown that it is
possible, within the constraints of a small creative team, to design and implement a
local render cluster that replaces routine cloud usage, improves control over
rendering workflows and initiates the institutionalisation of rendering as a managed,
observable and standardised service.

72

REFERENCIAS BIBLIOGRAFICAS

FOWLER, M. Patterns of Enterprise Application Architecture. Boston, MA:
Addison-Wesley Longman, 2002.

ERL, T. Cloud Computing: Concepts, Technology & Architecture. Harlow: Pearson
Education, 2013.

HUMBLE, J.; FARLEY, D. Continuous Delivery: Reliable Software Releases
through Build, Test, and Deployment Automation. Boston, MA: Addison-Wesley,
2010.

KIM, G.; HUMBLE, J.; DEBOIS, P.; WILLIS, J. The DevOps Handbook: How to
Create World-Class Agility, Reliability, and Security in Technology Organizations.
Portland, OR: IT Revolution Press, 2016.

KOTTER, J. P. Leading Change. Boston, MA: Harvard Business School Press, 1996.

	
	1. INTRODUCTION
	1.1 CONTEXT: W COMPANY, FROM ARCHITECTURAL FOUNDATIONS TO DIGITAL
	1.1.A Foundational trajectory and entrepreneurial motivation
	1.1.B Integrated value proposition and dual operating model
	Figure 1: Operating model of W company

	1.1.C Portfolio signals, technology stack and production implications
	Figure 2: Examples of a render produced at W company

	1.2 PROBLEM DEFINITION: CLOUD RENDERING AND OPERATIONAL CONSTRAINTS
	1.2.A Cloud rendering as a temporary response to local production constraints
	1.2.B Time based pricing, iterative workflows and cost volatility
	Figure 3: Rendering workflow constraints and cost structure

	1.3 OBJECTIVE: A LOCAL CLUSTER
	1.3.A Strategic objective and problem translation
	1.3.B Target local architecture and operating model
	1.3.C Expected outcomes and evaluation

	1.4 JUSTIFICATION: REDUCING COST BY ELIMINATING CLOUD DEPENDENCE
	1.4.A Economic and operational rationale for local execution
	1.4.B Operational control and organisational capability

	1.5 Structure of the document

	2. LITERATURE REVIEW
	2.1 TECHNICAL FOUNDATIONS
	2.1.A Technical view on software and systems engineering
	2.1.B Service oriented and cloud perspectives for local infrastructure

	2.2 ARCHITECTURE, DEPLOYMENT AND OPERATIONS OF THE COMPUTING CLUSTER
	2.2.A Architectural structure in enterprise systems
	2.2.B Deployment pipelines and DevOps practices
	2.2.C Cloud versus local deployment decisions

	2.3 GOVERNANCE, OPERATIONAL CADENCE, AND ORGANISATIONAL CHANGE
	2.3.A DevOps culture, feedback loops and operational cadence
	2.3.B Organisational change and adoption of new practices

	2.4 SYNTHESIS OF THE LITERATURE

	3. METHOD: IMPLEMENTING A CLUSTER
	Figure 4: Methodological roadmap for the implementation of the local cluster
	3.1 METHODOLOGICAL ROADMAP AND FOUR-PHASE STRUCTURE
	3.2 PROJECT THROUGH THE 5W1H QUESTIONS
	Figure 5: Network and storage topology of the Deadline based render cluster

	3.3 CONCLUSION

	4. RESULTS
	4.1 IMPLEMENTED ARCHITECTURE
	4.1.A Delivered control plane and server host
	Figure 6: Repurposed desktop tower hosting all Deadline control-plane services
	Figure 7: Logical Architecture of the Deadline Control-Plane Server and Storage

	4.1.B Network and storage footprint in production
	Figure 8: Network and Storage Footprint of the Local Render Cluster in Production

	4.1.C Render node population and alignment with the planned topology

	4.2 OPERATION IN DAILY WORK
	4.2.A Submission workflows across the main pipelines
	Figure 9-10: V-Ray Job Submission and Confirmation in Deadline Monitor

	4.2.B Workstations as Workers, queue discipline, and off-hours utilisation

	4.3 OPERATIONAL RESULTS AND USER EXPERIENCE.
	4.3.A Functional validation and everyday operational behaviour
	4.3.B User experience and qualitative alignment with original objectives

	4.4 SUPPORTING ARTEFACTS AND CHANGE MANAGEMENT
	4.4.A Operator documentation, runbooks, and user guides
	Figure 11: Overview of the Internal Deadline Manual Created for W Company

	4.4.B Training, onboarding, and competency development
	Figure 12: Screenshot from the Internal Deadline Training Video

	4.5 FINAL STATE AND CURRENT LIMITATIONS OF THE CLUSTER
	4.5.A Consolidated architecture at the time of writing
	Figure 13: Final server based architecture of the Deadline control plane at W company

	4.5.B Operational limitations, adoption and complementary tooling

	4.6 LESSONS LEARNED FROM THE IMPLEMENTATION PROJECT

	CONCLUSION
	REFERÊNCIAS BIBLIOGRÁFICAS

