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RESUMO

A poroelasticidade € um campo interdisciplinar que une a mecénica dos soélidos
porosos e a mecanica dos fluidos. Este trabalho de concluséo de curso expande a
formulacdo poroelastica de 2D para 3D, permitindo simulacbes mais precisas e
realistas. Utilizando o método dos elementos finitos e malhas tetraédricas, a simulagéo
numérica é realizada em Python, analisando o deslocamento e a pressdo em uma

rocha saturada com fluidos submetida a esforgos de compresséo.

Os métodos explicitos sdo empregados para a integracdo temporal, que para o
problema equilibra eficiéncia computacional e estabilidade de longo prazo. Condicdes
de contorno drenadas séo definidas para simular cenarios realistas, o que influencia

diretamente a distribuicdo de pressdes e tensdes dentro do material.

Este estudo ndo apenas avanca a compreensao tedrica da poroelasticidade em
3D, mas também demonstra a aplicacdo pratica de técnicas numéricas para resolver
problemas em engenharia geotécnica e geomecéanica. Exemplos de tais problemas
incluem geometrias irregulares, propriedades heterogéneas e anisotropias.
AplicacBes praticas desse estudo abrangem casos como a subsidéncia em torno de
pocos de extracdo, onde € possivel considerar condi¢cbes simplificadas de
propriedades homogéneas. Assim, a pesquisa proporciona uma base sélida para
futuras investigacdes e aplicacfes no campo da engenharia para a andlise e mitigacdo

de fenbmenos geomecanicos.

Palavras-chave: poroelasticidade, 3D, método dos elementos finitos.



ABSTRACT

Poroelasticity is an interdisciplinary field that combines the mechanics of porous
solids and fluid mechanics. This thesis expands the poroelastic formulation from 2D to
3D, allowing for more precise and realistic simulations. Using the finite element method
and tetrahedral meshes, the numerical simulation is performed in Python, analyzing
displacement and pressure in a fluid-saturated rock subjected to compressive
stresses.

Explicit methods are employed for temporal integration, which for this problem
balances computational efficiency and long-term stability. Drained boundary conditions
are defined to simulate realistic scenarios, which directly influence the distribution of

pressures and stresses within the material.

This study not only advances the theoretical understanding of 3D poroelasticity
but also demonstrates the practical application of numerical techniques to solve
problems in geotechnical and geomechanical engineering. Examples of such problems
include irregular geometries, heterogeneous properties, and anisotropies. Practical
applications of this study encompass cases such as subsidence around extraction
wells, where simplified conditions of homogeneous properties can be considered.
Thus, this research provides a solid foundation for future investigations and
applications in engineering for the analysis and mitigation of geomechanical

phenomena.

Keywords: poroelasticity, 3D, finite element method.
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1 INTRODUCAO

Poroelasticidade € uma teoria que se refere as interacdes complexas entre o fluxo
de fluidos e as deformagfes em solidos presentes em um meio poroso. Os materiais
porosos sao estruturas compostas por pequenos espagos vazios, ou poros, 0s quais
estdo preenchidos por fluidos. Essas estruturas podem ser encontradas em objetos
naturais e artificiais, desde rochas e solos até tecidos biologicos, espumas, ceramicas
e produtos de papel (WANG ,2000).

Quando uma forca externa é aplicada a um meio poroso, a pressao exercida afeta
a fracdo de volume ocupada pelos poros. Assim, ao considerar 0s poros preenchidos
com fluido, sob a influéncia de uma carga externa, 0os poros comprimem-se, levando
a uma mudanca na pressao do fluido. Este aumento de pressao impulsiona o
movimento do fluido através da matriz porosa, uma dindmica que € crucial para a

compreensao de processos naturais e industriais.

Por outro lado, o sodlido que compbe a matriz porosa que podem ser
caracterizados como visco-poro-elasticos também reage a essa mudanca. A
deformacéo do volume dos poros induz o material sélido a se deslocar e se deformar.
A natureza dessa deformacdo depende de uma série de fatores, incluindo as
propriedades elasticas do sdlido, a magnitude da forca aplicada e a estrutura do meio
poroso. A modelagem de tais fenbmenos, portanto, requer um entendimento solido de
vérias disciplinas, mecéanica dos fluidos, a mecéanica dos sélidos e a termodinamica.

Isso torna a poroelasticidade um campo de estudo desafiador e multidisciplinar.

Na engenharia de petréleo, o estudo da poroelasticidade é fundamental para
prever o comportamento de reservatorios de petroleo e gas. Na biologia e na medicina,
pode contribuir para a compreensao dos processos de fluxo e transporte em tecidos
biolégicos. Na geologia, ajuda a entender a dinamica do fluxo de agua subterranea e

o0 comportamento das rochas sob estresse tecténico.

O Método dos Elementos Finitos (FEM) € uma abordagem numérica utilizada
para resolver equagOes diferenciais parciais que modelam uma variedade de
problemas fisicos, incluindo problemas poroelasticos tridimensionais. Em termos

gerais, o FEM transforma um problema continuo, como um problema poroelastico, em
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uma série de problemas discretos que podem ser resolvidos com o auxilio de modelos
de algebra linear computacional. O dominio continuo (no nosso caso, 0 meio poroso
3D) é subdividido em um conjunto de subdominios menores e mais manejaveis
chamados "elementos finitos". Cada elemento € conectado aos outros por pontos
chamados "nés". Os nds e os elementos formam uma malha que cobre todo o dominio
do problema (KATTAN, 2008).

Para resolver um problema poroelastico 3D, primeiramente precisamos
formular as equacdes poroelasticas que governam o comportamento do meio. As
equacdes poroelasticas sado descritas por uma combinacéo das leis de conservagao
de massa, bem como a lei de Darcy que representa o balanco da quantidade de
movimento para o fluxo de fluidos em meios porosos. Essas equacdes sdo expressas

em termos de pressodes de fluidos e deslocamentos de soélidos.

No contexto da poroelasticidade, a equacédo a ser resolvida € uma equacao de
difusdo acoplada com as equacbes de equilibrio mecanico. Estas equacbes
representam a interacdo entre o movimento do fluido (representado pela equacéo de
difusdo) e a deformacao do sélido (representada pelas equacdes de equilibrio). Em
um problema tridimensional, estas equacdes sao dependentes do espaco em trés
dimensdes, tornando-os intrinsecamente mais complexos do que seus equivalentes
bidimensionais (Cheng, 2016).

Uma das etapas na aplicacdo do FEM a um problema poroelastico 3D é a
discretizagcdo do dominio. O dominio (ou seja, o volume do material poroso que
estamos estudando) € dividido em uma série de pequenos "elementos finitos". Os
vértices desses elementos, onde eles se intersectam, sdo referidos como "nos". Cada
um desses elementos podem ser tratados como tetraedros ou hexaedros, por

exemplo.

Apo0s a discretizacdo, as equacdes diferenciais sao convertidas em um sistema
de equacdes algébricas usando um processo chamado de "método dos residuos

ponderados”, este processo envolve o uso do método de Galerkin.

Finalmente, as equacdes algébricas séo resolvidas para encontrar a solucao
em cada n6. Em um problema poroelastico, uma das escolhas é a solucdo em cada

no inclui o deslocamento do solido e a pressédo do fluido. Dadas as condi¢cbes de
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contorno do problema, o sistema de equacdes resultante € geralmente grande e

esparso.

A aplicacdo do FEM a problemas poroelasticos 3D € bastante complexo, devido
ao acoplamento entre o movimento do fluido e a deformacéo do sélido e a natureza
tridimensional do problema. No entanto, com uma implementacéo cuidadosa, o FEM
pode proporcionar uma ferramenta poderosa para a resolucao destes problemas. Uma
das principais vantagens do FEM € que ele é capaz de lidar com dominios complexos
e condicbes de contorno variadas. Isso o torna ideal para modelar problemas
poroelasticos 3D, que frequentemente envolvem geometrias complicadas e condi¢des

de contorno variaveis no tempo e no espaco.

Além disso, o FEM é altamente flexivel: o tamanho do problema pode ser
facilmente aumentado ou diminuido simplesmente alterando o nimero de elementos
na malha. Isso significa que o FEM pode ser usado para resolver problemas
poroelasticos em varias escalas, desde pequenos experimentos de laboratério até

grandes simulacfes de reservatérios de petrdleo.

Na mecanica dos solos, uma distincdo importante é feita entre problemas
drenados e nao drenados. Essa distingdo € baseada na capacidade do fluido de se
mover ou "drenar" de um meio poroso quando um esforco é aplicado. Nos problemas
drenados, quando um esforco é aplicado ao meio poroso, o fluido dentro dos poros é
capaz de se mover livremente para fora dos poros. Essa movimentacdo de fluido
causa uma mudanca no volume dos poros, levando a uma redistribuicdo da pressao
do fluido. Como o fluido pode drenar, a pressdo do fluido permanece constante no
equilibrio. Por outro lado, nos problemas nédo drenados, o esfor¢co € aplicado téo
rapidamente que o fluido nos poros ndao tem tempo para se mover ou drenar. Outro
caso é quando o meio esta selado e com isso a velocidade de carregamento nao
importa. Como resultado, o volume dos poros permanece constante e a pressao do
fluido aumenta (Prévost, J.H, 1980).

Portanto, a distingdo entre problemas drenados e ndo drenados € fundamental
na poroelasticidade pois remete a caracterizacdo laboratorial dos parametros
poroelasticos. A consideracdo do regime de drenagem apropriado € crucial para a

modelagem da resposta de materiais porosos sob carregamento.
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1.1 OBJETIVO

Este trabalho tem como objetivo desenvolver e implementar uma solucéo
computacional para o modelo poroelastico 3D utilizando o método dos elementos
finitos, ao utilizar a expansdo das equacdes poroelasticas de 2D para o cenario
tridimensional. Além disso, busca-se estruturar e construir um algoritmo capaz de
resolver as equacdes poroelasticas 3D em um ambiente computacional, permitindo a
analise detalhada do comportamento de um meio poroso tridimensional quando

submetido a varia¢des de pressédo do fluido ou a tensdes na matriz sélida.

1.2 JUSTIFICATIVA

A utilizacado de modelos computacionais tem um papel fundamental em diversas
areas da engenharia e das ciéncias, especialmente no setor de petroleo, pois
possibilita uma reducéo significativa de custos operacionais e um aumento de
seguranca em muitas operacdes. Isso é possivel pois esses modelos permitem a
simulacdo de diferentes cenarios, fornecendo antecipadamente resultados e
indicando possiveis condi¢des criticas que poderiam surgir no ambiente operacional.
Na area de petréleo, a modelagem computacional € crucial para a analise da pressao
de poros, essencial no controle de estabilidade de reservatérios e na prevencao de

falhas durante a perfuracéo.

O projeto de operacdes de fraturamento hidraulico se baseiam em simulacOes
numéricas de simulacdes para otimizar a criacdo de fraturas e maximizar a extracédo
de hidrocarbonetos. Modelos computacionais também sdo indispensaveis em
processos de Recuperacdo melhorada, onde permitem a avaliacdo de diferentes
estratégias para aumentar a recuperacdo de petroleo de reservatorios maduros.
Operacdes complexas e de alto custo, como a extracdo de petréleo em aguas
profundas, séo diretamente beneficiadas pelo aprimoramento dessas tecnologias de
simulacdo, garantindo eficiéncia e seguranca nas operacbes de perfuragdo e

producéo.

No entanto, a simulacao de problemas complexos pode rapidamente esgotar 0s

recursos computacionais disponiveis. Por isso, é essencial desenvolver um ambiente
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de desenvolvimento que simplifique a abordagem inicial. Isso facilita a escalabilidade
dos recursos computacionais e permite a busca por melhores arquiteturas e condigbes

de execucao.

Embora softwares como o COMSOL ja possuam implementacdes baseadas em
elementos finitos, no caso desse trabalho, o objetivo é aprendizado e teste de métodos
numéricos. Para isso, a extensdo das equacdes do modelo 2D para o 3D e
implementacdo numerica em software foi o estudo escolhido. Esta € uma tarefa que
requer uma compreensao da teoria subjacente e da modelagem computacional, e tem

o potencial de abrir novas oportunidades em uma variedade de campos de aplicacao.
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2 REVISAO BIBLIOGRAFICA

A poroelasticidade € um campo que estuda a interacdo entre a deformacao de
solidos porosos e o fluxo de fluidos em seus poros (Biot, 1941), sendo crucial para
entender processos geomecanicos e hidrogeolégicos (Cheng, 2016). A
poroelasticidade estatica é predominante na literatura, focando em situacdes onde o
movimento do fluido e a deformacéo do esqueleto sélido ocorrem simultaneamente e
se influenciam mutuamente. Esta abordagem € essencial para modelar
comportamentos como a consolidacdo dos solos, onde a drenagem do fluido

influencia diretamente a deformacédo do solo (Biot, 1941; Wang, 2000).

Além disso, a poroelasticidade dinamica, que considera a propagacao de ondas
elasticas em meios saturados por fluidos, esta relacionada a resposta em alta
frequéncia, ampliando a aplicacdo desta teoria para cenarios onde a velocidade do
movimento das fases é significativa. Este ramo é relevante para a analise de vibracdes
e ondas de tensdo em materiais porosos saturados com aplicacOes para a engenharia
de reservatorios e estudos sismicos. A utilizacdo de modelos poroelasticos em 3D
permite uma analise mais detalhada e realista das intera¢6es fluido-sdlido em rochas
e outros materiais geolégicos (Coussy, 2003; Dormieux et al., 2006).

A teoria da poroelasticidade de Biot tem sido amplamente aplicada em diversas
areas da engenharia e geociéncias. No campo da engenharia geotécnica, é utilizada
para modelar a consolidac&o de solos saturados, permitindo prever a deformacéo e a
dissipacéo de pressdes de poro ao longo do tempo. Na engenharia de reservatérios,
auxilia na compreensao do comportamento de rochas reservatorio durante a producao
de petréleo. Além disso, na biomecanica, a teoria de Biot é empregada para estudar
a resposta mecanica de tecidos biolégicos porosos, como cartilagens e 0ssos, sob
diferentes condi¢cGes de carga e pressao intersticial. Essas aplicagcbes demonstram a
versatilidade e a importancia da teoria de Biot na modelagem de materiais porosos
saturados em diversos contextos (BIOT, 1941; WANG, 2000).

A extenséo das equacdes poroelasticas 2D disponiveis em (Wang, 2000) para 3D
€ um passo necessario para simulacbes mais precisas e realistas. As equagcdes em
3D incluem termos adicionais que capturam as variagdes ao longo do terceiro eixo,

proporcionando uma representacdo mais completa dos fendbmenos fisicos. Esta
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extensdo é vital para a modelagem de processos geomecanicos complexos, onde as
interacdes entre os fluidos e a matriz sélida ocorrem em todas as dire¢cdes espaciais
(Wang, 2000; Coussy, 2003).

A adaptacao das equacdes diferenciais parciais do modelo 2D para 3D requer um
entendimento das interacdes entre os parametros fisicos envolvidos. Isso inclui a
consideracao das forcas de corpo, tensdes de cisalhamento e variagbes de pressao

ao longo de todas as direcoes.

O método dos elementos finitos (FEM) € uma técnica numérica amplamente
utilizada para resolver problemas em engenharia e fisica. O MEF permite a
discretizac@o de dominios continuos em elementos menores, facilitando a solugéo de
equacdes diferenciais parciais que descrevem o comportamento do sistema. Esta
metodologia permite a analise de deformacdes e distribuicbes de pressdo em

materiais porosos saturados por fluidos (Hughes, 2000; Zienkiewicz et al., 2013).

A utilizacdo do MEF envolve a criagdo de uma malha que representa a geometria
do material estudado. Cada elemento da malha é associado a uma regido do dominio
acoplada a um conjunto de equacdes que descrevem o comportamento local do fluido
e do sdlido. A solucao dessas equacdes para todos os elementos permite a construgcao
de um modelo global que captura as interagbes complexas dentro do material (Cook
et al., 2001; Belytschko et al., 1994).

A escolha de elementos tetraédricos em malhas de elementos finitos é
estratégica, especialmente em modelos 3D, devido a sua capacidade de adaptacao a
geometrias complexas e a facilidade na geracdo automatica de malhas. Esses
elementos possibilitam uma distribuicdo eficiente e uniforme em dominios
tridimensionais com formas irregulares, assegurando uma representacao mais fiel e
detalhada da area de estudo. As funcbes de forma associadas aos tetraedros
permitem interpolar variaveis de interesse, como deslocamentos, pressoes e tensoes,
dentro de cada elemento, proporcionando precisdo na analise e versatilidade na

simulac&o de fenbmenos geomecanicos (Cook et al., 2001; Zienkiewicz et al., 2013).

A simulacdo numérica de modelos poroelasticos envolve a resolucéo de equacdes
diferenciais que descrevem as interacdes entre o fluido e o s6lido em meios porosos.

Utilizando a linguagem de programacéao Python, por exemplo, € possivel implementar
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algoritmos para resolver essas equacdes, permitindo a analise temporal e espacial do
comportamento do sistema. Esta abordagem computacional é essencial para
investigar a resposta de materiais porosos sob diferentes condicfes de carregamento

e confinamento.

E necessario que a implementacdo de simulagdes numéricas realize estudos
paramétricos e a avaliacao de diferentes cenarios, oferecendo uma ferramenta para a
previsdo do comportamento do dominio. A simulacdo numérica é uma parte
fundamental da analise de poroelasticidade, proporcionando uma compreensao que

seria dificil de obter por métodos experimentais ou analiticos tradicionais.

Os métodos explicitos e implicitos sdo abordagens numéricas utilizadas para a
integracdo temporal em simulacBes poroelasticas. O método explicito calcula as
respostas do sistema em pequenos incrementos de tempo, 0 que pode torna-lo mais
eficiente para certos problemas dinamicos. Por outro lado, o método implicito envolve
a resolucdo de equacdes simultaneas em cada passo de tempo, 0 que o torna
incondicionalmente estavel. A escolha entre métodos explicitos e implicitos depende
de um estudo de estabilidade numérica para garantir a adequac¢ao da abordagem em

relacdo a estabilidade e convergéncia da simulagao (Bathe, 1996; Hall, 2012).

Por outro lado, o método implicito, embora envolva a inversdo de matrizes que
podem ser resolvidas com ferramentas do Python, é computacionalmente intensivo.
A escolha entre métodos explicitos e implicitos depende das caracteristicas

especificas do problema a ser resolvido. (Zienkiewicz et al., 2013; Cook et al., 2001).

A definicdo de condi¢Bes de contorno séo parte do problema e também aspecto
critico nas simulagdes poroelasticas, pois determina como o sistema interage com seu
ambiente. Condi¢cfes de contorno drenadas, por exemplo, permitem a saida de fluido
do sistema, influenciando diretamente a distribuicéo de pressodes e tensbes dentro do
material. Estas condi¢Oes sdo essenciais para modelar cenarios realistas onde o fluxo

de fluido pode ocorrer livremente através das fronteiras do sistema.

E evidente que a escolha adequada das condigdes de contorno garante que a
simulagéo represente fielmente os fenémenos fisicos observados em situagdes reais.
Condicdes de contorno bem definidas sdo fundamentais para a precisdo dos

resultados da simulagéo, permitindo uma analise detalhada e confiavel dos processos
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geomecanicos. Este aspecto € particularmente importante em estudos de estabilidade
de encostas, fundacdes e reservatorios de petrdleo, onde a modelagem precisa das
condicBes de contorno € essencial para a otimizacdo da perfuracdo de pocos, 0
planejamento de operacdes de fraturamento hidraulico, a implementacéo de técnicas
de recuperacdo avancada de petréleo (EOR) e a avaliagdo da integridade estrutural

dos reservatorios durante a producdo (Cheng, 2016; Coussy, 2003).
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3 METODO

A primeira etapa deste projeto consistiu em estender a formulacao poroelastica
de duas dimensdes para trés dimensdes. Para realizar essa tarefa, a literatura
existente referente a poroelasticidade 2D foi de extrema importancia. O processo
descrito abaixo envolveu o estudo cuidadoso da literatura base (WANG, 2000) e a
integracdo dos conhecimentos adquiridos para o desenvolvimento de um quadro

tedrico coerente e sdlido para a poroelasticidade 3D.

3.1 DESENVOLVIMENTO DAS EQUACOES PARA O MODELO
POROELASTICO 3D - SISTEMAS DE EQUACOES NA FORMA
MATRICIAL

s

O propésito fundamental deste trabalho é resolver o sistema de equacdes
matriciais [M]{U}!*2t + [K]{U}* = {F}* sendo k uma variavel que pode apontar para
aproximacgdo explicita k = t ou implicita k = t + At ou mista ao partir dos termos K e
F para atender parte k = t e parte k = t + At. Este sistema representa as equacgdes
diferenciais parciais que governam a difusdo de fluidos na rocha. A matriz [K] é a
matriz de rigidez, que descreve as propriedades elasticas da rocha e sua interacéo
com o fluido. O vetor U representa os deslocamentos nas trés direcoes e a pressao

de poros, enquanto o vetor F contém as forcas externas que atuam sobre o sistema.

O processo de solucéo é realizado de forma iterativa, avancando passo a passo
no tempo. Em cada passo, a solu¢cdo do sistema de equacBes fornece os
deslocamentos e pressdes dos poros para o proximo instante. Estes valores sdo entao

armazenados para uso futuro.

O armazenamento dos resultados, permite a criacao de representagdes visuais
dos deslocamentos e pressdes dos poros ao longo do tempo. Estas representacdes
podem ser estaticas (imagens) ou dinamicas (animacgdes), proporcionando uma Vvisao
clara da evolucdo dessas quantidades ao longo do tempo. Isso ndo s6 facilita a
compreensao dos fenbmenos em estudo, mas também pode revelar padrées ou

comportamentos que poderiam ser dificeis de perceber de outra forma.
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Armazenar esses resultados também possibilita uma analise aprofundada do
comportamento dos deslocamentos e pressdes dos poros. Ao estudar a evolugéo ao
longo do tempo, podemos visualizar o comportamento da rocha e do fluido sob varias

condicdes.

3.2 DISCRETIZACAO ESPACIAL USANDO TETRAEDROS

O primeiro passo crucial na implementacdo computacional do modelo
poroelastico 3D foi a escolha do elemento finito e suas funcdes de forma. Os
elementos finitos sdo subdivisdes do dominio total do problema e, neste contexto,
referem-se ao volume total do meio poroso em estudo. A selecdo de um elemento

finito impacta diretamente a preciséo e eficacia da solucdo computacional.

A Figura 1 ilustra a geometria do elemento tetraédrico utilizado na discretizacéo
espacial do dominio, destacando seus quatro nés e a disposicao das arestas que
formam a estrutura. Além disso, a simplicidade dos elementos isoparamétricos facilita
a definicho e o calculo das funcdes de forma, essenciais para a precisdo das
simulacdes. Os nos formadores de cada elemento sdo descritos por coordenadas

cartesianas, o que permite uma representacao clara e eficiente no espaco 3D.

Figura 1: Elemento Tetraédrico

A Equacéo (1) mostra o calculo implementado para o volume de cada elemento

finito da malha, a partir das coordenadas cartesianas dos nés formadores.
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X1 Y1 %
X2 Y2 23 1)
X3 Y3 Z3
Xa Y4 Z4

6V =

[N

3.3 EQUAGCAO GERAL DAS FUNGCOES DE FORMA DO ELEMENTO
TETRAEDRICO

As equacoes (2) a (5) descrevem analiticamente o formato das funcdes para
cada elemento de deslocamento e pressao para cada elemento. Como o problema
esta em um cenério de trés dimensdes, com a presenca de um fluido que exercera
uma pressao no meio poroso, descrito por tetraedros, teremos portanto quatro funcdes
de forma Nk, trés fungcdes em relagcéo aos deslocamentos U,V e W e uma em relacao
a pressdo P onde m representa o numero de nds do elemento finito escolhido

conforme posto por (Wang, 2000).

°(x,y,2) = Xik=1 Ng(x,y, 2) U 2)
0°(x,y,2) = Xik=1 N (x, ¥, 2)Vk 3)
wé(x,y,2) = Xi=1 Ng(x,y,2)Wk 4)
pe(x,y,2) = Lik=1 Ng(x,¥,2)Pg (5)

3.4 SOLUCOES DAS FUNCOES DE FORMA PARA O DOMINIO DO
PROBLEMA

As equacdes (6) a (9) sao as equacdes globais de deslocamento e pressao
para o problema Poroelastico 3D, definidas para o dominio do problema, isso significa
realizar a somatoria para o nimero de nés do elemento tetraédrico, ou seja, quatro

nos.
i(x,y,z) = LR¥PF Ng(x,y, 2)Ug (6)

ﬁ(x' Y, Z) = Ilgg?DE NK(-X' Y Z)VK (7)
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W(X, YV Z) = Z%I:?DE NK(x' Y, Z)WK (8)

p(x,y,2) = ZkZTPF N (x,y,2)Pg (9)

3.5 FUNCOES DE FORMA DO TETRAEDRO

Para o elemento finito tetraédrico, as funcdes de forma sédo detalhadamente

delineadas na literatura (Kattan, 2008). Com base nessa literatura, derivamos as

equacdes (10) a (13), que caracterizam as funcdes de forma para o elemento

tetraédrico linear, considerando que os nos sao descritos no espaco em coordenadas

cartesianas. Esse conjunto de equacgfes serve como uma base para a interpolacao

da solucéo no elemento tetraédrico e sdo vitais para a implementacédo do Método dos

Elementos Finitos no contexto da poroelasticidade 3D.

1
N; = o (a1 + Bix +v1y + 6,2) (10)
1
N, = o (az + B2x + v,y + 6,2) (11)
1
Ny =~ (as + B3x +y3y + 632) (12)
1
N, = o (ay + Bax + Vay + 842) (13)
X2 Y2 23 X1 N1 4 X1 Y1 4 Y1z
a, =Xz Y3 Z3|;a,=—|X3 Y3 Z3|;az3=|X2 V2 Zz2|;a,=—|X2 Y2 Z2 (14)
Xa Yo Z4 X4 Y4 Z4 Xa Yo 24 X3 Y3 Z3
1y, 2z, 1y 7z 1 3 z 1y 7z
Pr1=—11 y3 z3[;B,=|1 y3 z3|;B3=|1 Y2 Z|;B=|1 Y. 2 (15)
1 v, 2z 1 v, 2z 1 vy, z 1 y; 273
1 xz ZZ 1 x1 21 1 xl Zl 1 x1 21
]/1 = 1 .x3 Z3 ,)/2 = — 1 X3 Z3 ,]/3 = 1 xZ ZZ ,)/4_ = — 1 x2 Zz (16)
1 x4, 2z4 1 x4 24 1 x4, 2z4 1 x3 2z3
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1 % ¥ 1 x1 »n 1 % w»n 1 v »n
01 =—11 x3 y3[;6, =1 x3 y3|;63=—|1 X3 ¥250,=1|1 % ¥ (17)
1 x4 Y 1 x4 Y 1 x4 Y 1 x3 y3

3.6 EQUACOES DE EQUILIBRIO MECANICO

As equacdes de equilibrio mecanico expressam o equilibrio de for¢cas no
material poroso sob condicbes de tensdo. A notacdo geral para estas equacdes
encapsula as interacdes entre deformacfes do material sélido e o fluxo do fluido no
meio poroso (WANG, 2000). Este conjunto de equacgOes guia a implementacdo

computacional e a analise numérica.

A notacdo geral para as equacdes de equilibrio mecanico para o problema
tridimensional esta descrita na Equacéao (18).

99ji _

] -
6x]

(18)

Assim a notacao para cada direcéo esta disponivel nas equacdes (19) a (21).

adxx ao—yx asz

ax+ay+az +F =0 (29)

00xy 00yy 002y _

ax+ay-|-az +FE =0 (20)
a Z ZZ

00xz 4 20z 4 0%z 4 b = (21)

ox ay 0z

3.7 EQUACOES DIFERENCIAIS PARCIAIS CONTENDO AS
COMPONENTES DE DESLOCAMENTO USANDO EQUACOES
CONSTITUTIVAS

O processo de desenvolvimento das equacOes diferenciais parciais que
representam o equilibrio mecanico com as componentes de deslocamento é
fundamental na analise poroelastica. Essas equacfes sdo obtidas através da

substituicdo das equacdes constitutivas, que descrevem as propriedades inerentes do
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material poroso, nas equacdes de equilibrio de forcas ao considerar 0 meio como

isotropico.

A equacao geral de equilibrio mecanico, que representa 0 comportamento do
meio poroso em 3D sob uma variedade de condi¢des de carregamento, € dada pela
equacdo (22). As equacbes especificas para cada uma dessas dire¢cdes sao

fornecidas pelas equacgdtes (23) a (25), respectivamente.

G 9%uy ap

szui+1—2v6xi—8xk:aa_xi_ i (22)
6Vt [Tt St ] = s F 23)
GV + = [;y—a‘; 27” ;y;vz - 3_5_ . (24)
CVw [t T S = e E, (25)

3.8 EQUACOES DE DESLOCAMENTO-PRESSAO DAS EQUACOES DE
EQUILIBRIO MECANICO

As forcas de corpo séo forcas distribuidas que atuam em todo o volume de um
objeto, como a forca gravitacional. Ao zerar as forcas de corpo, estamos assumindo
qgue a influéncia dessas forcas € insignificante para o problema em estudo,
principalmente para o caso monofasico que estamos lindando, onde o sistema esta
em equilibrio a desidade é constante e temos uma pressao em excesso, ou seja, uma
pressao adicional que submete o meio a uma carga externa. Essa é uma suposi¢cao
feita no livro base e simplifica a analise, permitindo focar nas interacdes mecanicas

mais relevantes entre a estrutura soélida e o fluido nos poros.

Desta maneira, com a suposicdo de que as forcas de corpo séo
negligenciaveis, podemos simplificar a Equacao (22), o que resulta nas equacdes de
deslocamento-pressédo das equacdes de equilibrio mecanico. Essas equacgbes sao
dadas por (26), (27) e (28) para as direcdes X, y e z, respectivamente. Essas sao as

equacbes que governam o comportamento mecanico do meio poroso, permitindo
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entender como o deslocamento da estrutura sélida e a presséo do fluido nos poros
estao inter-relacionados em resposta as forgas aplicadas.

[0%u 0%u G [0%u 0%v 2*w op

G | 9x2 + + az2 ] + 1-2vlox2 ~ axay = oxdzl T 7 ox (26)
[0%v = 9%v . 9% G [0%u 2%v . 9*w 9

R e e
[0x2  0y?  0z2 —2v loyox = dy? = 0dyoz ay
[0%w . 9%w | 32w G [0%u 0%v 2%w op

o [ ) [ = a2 28
| 0x2 + + az2 1—2v 0z0x  0z0y  0z2 dz ( )

3.9 EQUACOES DE DESLOCAMENTO-PRESSAO DAS EQUACOES DE
EQUILIBRIO MECANICO MANIPULADAS

As equac0bes de equilibrio mecanico obtidas no tdpico anterior sdo complexas
e ndo mantem de forma clara a conexao entre os componentes de deslocamento (u,

VvV, W) e a pressado (P) com os componentes de tenséo.

Por isso, optamos por uma reorganizacdo e manipulacdo dessas equacoes,
assim como na literatura, visando expressa-las de uma maneira que evidencie essa
conexao e facilite o tratamento numérico subsequente. O objetivo aqui é reformular as
equacdes para que possamos lidar diretamente com o0s componentes de

deslocamento e pressdo, mas mantendo a ligacdo com as tensoées.

Com essa manipulacdo, chegamos as equacbes (29) a (31), em que as

26(1- v) 2Gv
1-2v ' 1-2v

constantes multiplicativas sédo e G respectivamente. Nota-se que esses

termos comuns séo derivados da relacdo de Poisson e ao modulo de cisalhamento,
caracteristicas intrinseca dos materiais elasticos. Essas equac¢fes reformuladas nos

permitem proceder com a implementag&o numérica do problema de forma mais direta.

_ 2 2 2 2
2G(1 v)a_u 2Gv 0°v 2Gv 0°w Ga_u +Ga_u +G Gawzaa_p (29)

1-2v 9x2  1-2voxdy 1-2v axaz y2 dz2 axay 0x0z 0x
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2G(1-v) 3%v 26v 9%u 26v 9%w 9%v 9%v 2%u 2w op

1-2v dy?  1-2v0dydx 1-2vdyodz dx2 +G 0z2 +G dyodx tG dydz a B_y (30)
26(1-v) d%w | 2Gv 0%u 26v 9%v a%w a%w 0%u a%v dp

— G G G =a— (31

1-2v 0z2 1-2v 9zdx  1-2v 0zdy dx2 + ay?2 t 0z0x t 0z0y dz ( )

3.10 METODO DOS RESIDUOS PONDERADOS

No contexto do Método dos Elementos Finitos, a solucdo de um problema é
aproximada dentro de cada elemento por meio de fun¢bes de interpolacdo, também
chamadas de funcbes de forma. Essas funcBes de forma, que sao definidas
localmente para cada elemento, permitem a descricdo do comportamento do

problema dentro do elemento em termos dos valores da solu¢do nos nés do elemento.

No caso do problema poroelastico tridimensional que estamos considerando,
essas funcbes de forma sdo aplicadas as componentes de deslocamento em cada
direcéo (u, v, w) e a pressao dos poros (p), sendo elas parte constituinte das Equacdes
de deslocamento e pressao (2), (3), (4), e (5). Assim, Uy, Vg, Wy e Py representam o

deslocamento e a pressao dos poros em cada n6 do elemento, respectivamente.

Para resolver o problema, adotamos o método de Galerkin, que € uma variante
do método de residuos ponderados. O objetivo deste método é minimizar o residuo,
ou seja, a diferenca entre a solu¢cdo aproximada e a solucdo exata da equacgao
governante. Neste método, as funcBes de ponderacdo escolhidas sdo as proprias

fungdes de forma.

Ao aplicar este método, o dominio do problema é dividido em uma malha de
elementos finitos tetraédricos, e a solucdo € obtida por meio da integracdo das
equacdes governantes ponderadas em cada um desses elementos. Isso resulta em
um sistema linear de equacdes algébricas que pode ser resolvido para encontrar a

solucéo aproximada do problema em toda a malha.
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Assim, para cada equacao governante, obtemos um conjunto de equacdes de
residuos ponderados. Estas sdo dadas pelas equacdes (32) a (34).

fff 2G(1-v)d%u . 2Gv 9%v 26v 0%w 0%u +Gazu LG 2%v 2w
D 1-2v 0x2 1-2v0xdy 1-2v 0x0z ay? 0z2 dx0y 0x0z
7]
a SZIN, (x, y, z)dxdydz = 0 (32)
26(1-v) 3%v 26v 9%u 26v 9%w 9%u 9%v 0%u 2w
[ L -
D 1-2v 0dy? 1-2v0ydx 1-2vayoz dx2 0z2 dyox dyoz
[7]
a%]NL(x, y,z)dxdydz = 0 (33)
2G6(1-v) 0w 26v 9%u 26v 9%v 2w 2w 0%u 0%v
[1,5520 Gos +G5% +G -
D 1-2v 09z2 1-2v 0zdx  1-2v 0zdy dx2 ay? 0z0x 0z0y
[7]
aa—Z]NL(x, y,z)dxdydz = 0 (34)

3.11 INTEGRACAO POR PARTES

A integracdo por partes permite transformar as equacdes diferenciais de
segunda ordem em equacdes de primeira ordem. Quando aplicamos a integragéo por
partes as Equacdes de residuos ponderados (32) a (34) referentes aos residuos
ponderados, reduzimos a ordem das derivadas para um. Isso é feito manipulando as
equacdes de maneira que as derivadas de segunda ordem sejam "transferidas" das
funcdes de ponderacdo para as fungdes de forma, resultando em equacbes de

primeira ordem.

Em seguida, substituimos as expressfes para as funcbes de forma de um
elemento tetraédrico como descrito pelas Equacdes (6) a (9) nas equacgdes integradas
por partes. Este procedimento nos permite expressar o problema inteiramente em

termos das incognitas nodais.
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Como resultado deste processo, obtemos as Equacdes (35) a (37). Estas
representam as equacgdes de residuos ponderados, agora em termos das variaveis

nodais e com derivadas de primeira ordem.

2G(1- V)aNKaNL aNKaNL aNKaNL
fff [ 1-2v  0dx O0x G dy +65, ]Udedde
2GvV) ONg 0Ny, ONg aNL
H T [R5+ 6555, ]dexdydz
260) DM P . ; DA P 35
+[ [, [1_2V -+ G~ ]Wdedydz (35)

a
+1 [ f, [« ZEN, | Pedxdy
_f fr [(0xx + ap)ny + OxyNy t+ Oy Nz N, dA =0

G(1-v) ONkg 0 ONg 0 ONg 0
1] [2 1(_121:/)aLyKalyL ;\;K aNL+G N NL] Ugdxdydz
Nk 0 ONg 0
10, [T + G R Vdxdydz
+1 1], [ff—:i‘%%+6"”’<a“] Wydxdydz (36)

)
+[ [ [aaL;NL] Pgdxdy
—f fr [(oyxnx + (0yy + ap)n,, + 6y,n,]N,dA = 0

26(1-v) 9Nk Ny, |~ ONgON, . ONgINy
11 [ v oz 0z V0 ax T 0%y ]dexdydz

+1 [, [ERZEZ 6 DK vy dxdydz

1-2v 0z 0x

2Gv) Nk ONy, BNK N 37
+f f fD [1—21/ dz 0dy t6o - ]Wdedde ( )

0
+[ [, [a%NL] Pydxdy
_f fr [(sznx + OzyNy + (04, + ap)nz]NLdA =0

3.12 EQUACOES PARA A PRESSAO DE POROS A PARTIR DA EQUACAO
DE DIFUSAO DE FLUIDO

Ao seguir o equacionamento disponivel em (Wang, 2000) a partir da equacao

geral para a difuséo de fluido expressao em (38), obtemos a equacéo (39).



29

aekk ko2
+Seat #V p+Q (38)
90w, v aw op _k[9’p  0°p , 0%p
a5 ax+ +az]+Seat_u[6x2+ay2+ay2] (39)

3.13 INTEGRACAO POR PARTES APOS A APLICACAO DO METODO DOS
RESIDUOS PONDERADOS PARA A EQUACAO DE DIFUSAO DO
FLUIDO

O mesmo procedimento utilizado para se chegar nas Equacdes (35) a (37) é
aplicado para a equacéo de difusédo de fluido e assim obtemos a Equacéao (40).

JI [, a [NL Nk dUK + N, ‘Zﬁdc‘;’f + N, aNK dWK] dxdydz

+1 [, SNLNKd—dedydz

Iy N, | DIy | SM 3]
+fffD /L[ax 6x ay dy + dz 0z PKdXdde

[/ [—nx a—ZnZ] N, dA =0

(40)

3.14 EQUACOES RESIDUAIS PONDERADAS INTEGRADAS POR PARTES
NA FORMA MATRICIAL: EQUILIBRIO MECANICO E DIFUSAO DE
FLUIDO

Uma das etapas-chave do MEF é o transporte das equacfes locais do
elemento na matriz global do sistema. Este procedimento consiste em somar as
contribuicdes dos coeficientes U, V, W e P (referentes ao deslocamento nas diregbes
X, Y, Z e a pressao dos poros, respectivamente) de cada elemento para a matriz global.
Em termos mais concretos, isto significa que para cada n6 compartilhado por véarios

elementos, as contribuicbes de cada elemento para esse no sao somadas.

Ao organizar as Equacbes (35), (36), (37) e (40) desta forma, € possivel
reformula-las na forma matricial. Essa etapa € crucial, pois transforma as equacodes
em um formato que é mais eficiente e conveniente para solucionar numericamente.

As expressdes matriciais resultantes podem ser vistas nas equagoes (41) a (43).
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E importante destacar que a montagem do sistema global é uma etapa critica
e deve ser exata, uma vez que qualquer erro nesta fase pode levar a resultados

incorretos ou instaveis no processo de solucéao.

[STIU + [S*2]V + [S3W + [S**]P = B? (41)
[S21U + [S?2]V + [S?3]W + [S?**]P = B? (42)
[S3YU + [S32]V + [S33]W + [S34]P = B3 (43)

3.15 COMPONENTES DA MATRIZ SY

As matrizes SY e os termos B' formam a base da representa¢do matricial de
nosso sistema de equacdes. Na verdade, esses componentes sédo correlacionados
com os termos integrados das Equacdes (35) a (37).

Cada um dos elementos da matriz S¥, representa uma interacédo especifica
entre os nds do sistema. De forma mais especifica, os elementos na matriz SY
correspondem as contribuicbes de um elemento finito particular para o sistema global,
0 que significa que eles sdo diretamente proporcionais a resisténcia do material em

um ponto especifico a deformacao.

Ja os termos B!, conhecidos como termos de carregamento, representam as
forcas externas atuando sobre o sistema. Estes podem incluir, por exemplo, a pressao

exercida pelo fluido nos poros do material.

Assim, SU e B! e as Equacdes (35) a (37) € uma das chaves para a solucéo do
sistema. As Equacdes (44) a (58) detalham essas correlagbes e nos ajudam a
entender como os termos individuais das Equacdes (35) a (37) se manifestam na

estrutura matricial.

Ao entender essa correlacdo, somos capazes de construir uma representacao
matricial precisa do sistema. Essa representacao € essencial para a solu¢do numérica
do problema, pois nos permite usar técnicas de algebra linear para resolver o sistema

de equacodes.
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3.16 PRESSAO NA FORMA MATRICIAL

Ao analisar as equacdes de difusédo de fluidos, adotamos a mesma abordagem
gue foi aplicada para as matrizes S. Essa abordagem envolve a representacao da
pressdo em uma forma matricial, acumulando as contribuicbes de cada elemento
individualmente. Assim, obtemos a Equacao 40 em uma apresentacao matricial. 1Sso
nos permite estabelecer uma correspondéncia entre os termos das integrais presentes
nas Equacoes (35) a (37) e (40) e as Equacdes (44) a (58).

Desse modo, conseguimos uma Vvisdo mais clara de como as variacdes de
pressdo, que dirigem a difusdo do fluido, influenciam o comportamento poroeléstico
global do meio.

(A1) + (A1 5+ (A1 G+ (A 0+ [A*)(P) = B* (59)
Al = [ [ f, «ZEN, dxdydz (60)
=[], a‘%mdxdydz (61)
Aig =11 [, o L Ndedydz (62)

Atg = ff SeN Ngdxdydz (63)

Br=111 ["’;i’(aa’? "’;Vy’”’a—NyL+"’NK"’NL]d dydz (64)

= [ [ [22ne+5En, +52n, | Nyda (65)

3.17 APROXIMACAO POR DIFERENCAS FINITAS NAS DERIVADAS
TEMPORAIS

Finalmente, a resolugdo do sistema € realizada por meio da aplicacdo do

meétodo de diferencas finitas para aproximar as derivadas temporais. Este consiste na
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aproximacéo linear das derivadas temporais por meio da diferenca entre os valores
da varidvel em dois instantes de tempo distintos, separados por um intervalo de tempo

pré-determinado.

Este intervalo de tempo, também conhecido como passo de tempo tem um
papel crucial na preciséo e estabilidade da simulagéo. Se o passo de tempo for muito
grande, pode-se perder eventos rapidos ou oscilagbes na solugdo e ndo garantir
estabilidade numérica. Se for muito pequeno, a simulacdo pode exigir um tempo
computacional excessivo. Portanto, a escolha de um passo de tempo adequado é

crucial para equilibrar preciséo e eficiéncia computacional.

O sistema é resolvido iterativamente, avancando passo a passo no tempo. Em
cada passo, as equacOes sdo resolvidas para o estado atual do sistema e, em
seguida, esse estado € atualizado com base nas derivadas calculadas. Este processo
€ repetido até que se atinja o tempo final desejado ou se atinjam outras condi¢des de
parada predefinidas.

Ao usar este método, podemos obter uma série temporal da evolucdo do
sistema, representada pelas Equacdes (66) a (69) o que nos permite entender como

0 sistema responde a variagdes de pressao ao longo do tempo.

(L = L quyee -y (66)
(£ = Ly — 39 (67)
(£ = L wyreee — w3 (68)
{Z—f} = = ({P}+2 — {P}) (69)

3.18 METODO EXPLICITO E IMPLICITO

Na analise numérica, existem duas abordagens principais para resolver
equacdes diferenciais: os metodos explicito e implicito. A escolha entre um e outro
pode afetar significativamente a precisdo, a estabilidade e a eficiéncia computacional

da solucao.
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No método explicito, o estado atual do sistema é usado para calcular o préximo
estado. Isso significa que todas as varidveis sdo determinadas diretamente pelas
condi¢Bes iniciais e pelo tempo atual. No entanto, essa abordagem pode levar a
instabilidades numéricas e acumulacdo de erro, especialmente quando a resolucao
temporal € alta (pequenos passos de tempo). Ou seja, pequenos erros na solucéo

atual podem levar a grandes erros na proxima etapa.

Por outro lado, o método implicito € incondicionalmente estavel. Nele, o
préximo estado do sistema é calculado considerando-se o préprio estado, criando um
sistema de equacgOes que deve ser resolvido em cada passo de tempo, o0 que torna o

método incondicionalmente estavel.

O parametro S é utilizado para controlar a estratégia utilizada. Um valor de g =
1 corresponde a um método totalmente explicito, g = % 0 método de Crank Nicolson,

enquanto f = 0 corresponde a um método totalmente implicito.

Levando em consideracado as duas estratégias distintas para a resolucédo das
equacOes diferenciais - os métodos implicito e explicito - decidiu-se estruturar uma
solucao que pudesse abranger ambas. A intencdo € construir um cédigo que permita
alternar entre essas metodologias de forma flexivel, de modo a facilitar as
comparacoes e analises em relagcdo ao impacto de cada método na resolucao do

Nnosso problema.

A importancia dessa abordagem dual reside na possibilidade de explorar as
vantagens de cada método em situacfes diferentes, permitindo assim uma analise

mais robusta.
Assim para exemplificar, ao aplicar para a Equacéo (66) abaixo temos:
U=BUt+ (1-p)UtHAt (70)
B=0-U=Uf+t (71)

f=1-U="Ut (72)
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3.19 SISTEMA [K]{x} = {F} PARA O PROBLEMA POROELASTICO 3D

Ao prosseguir com os calculos, o objetivo era reformatar as componentes
identificadas por meio das integrais acima para o formato que seria implementado nas
fungbes de resolucdo do problema em Python: [K]{x} = {F}. Esse formato & usado
para representar sistemas de equacodes lineares, onde [K] & a matriz de coeficientes,

X € 0 vetor de incognitas e F € o vetor dos termos independentes.

Com base na formulacdo tridimensional desenvolvida, procedemos para
desenvolver o sistema e chegamos a matriz de coeficientes [K], que é uma matriz de
dimensdo 4N x 4N onde N é o numero de nés da malha. J& os vetores x e F
desenvolvidos representam, respectivamente, o conjunto de variaveis desconhecidas

(valores de deslocamento e pressao de cada nd) e o vetor F sdo as forcantes.

A-=-B)S11]yxn A =B)[S12]yxny (1 — B[S13]nxn (1-B)[S14]nxn

K = A-=-PB)S21lyxn A —=B[S22]nxn (1 — BI[S23]nxn (1—-B)[S24]nxn

A-=B)S31nxn (A —=BA)[S32]nxn (1 — BI[S33]nxn (1—-B)[S34]nxn
[A1l]lnxn [A2]nxn [A3]nxn [A4]nxn + At(1 = B)[AS]nxnd x4

Ut+At

o)
|

Vt+At
W t+At
Wt+At
Pt+At
Pt+At
4X1
U i wi Pt
[s"IyxnB1 ]_ [SlZ]NXNB R i I R I B [514]NXNﬂ[ : ]
UN P

s e
{ ] [s* TnxnB
U

g
i
’
j

v wi P
} [s?1uxnBY i t = [s%InxwBy & {— [524]NXN:8[ H ]

v w P
} %43 wi

[531]NXNﬂ

P
[s*1nxnBq ¢ { = [$*3IuxnBy ¢ ¢ — [534]NXNﬁ[ : ]
v wy P

V wi —Pf —pf
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(73)
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4 DESCRICAO DO PROBLEMA

Decidimos optar pelo método explicito para a resolucdo de nosso problema. O
método explicito permite que cada novo passo de tempo seja calculado com base
apenas no passo de tempo atual. Isto €, cada etapa é uma fungéo explicita das etapas
anteriores, o que torna os calculos rapidos e eficientes. Além disso, 0 método explicito
€ muito eficaz para problemas que apresentam um comportamento previsivel ao longo
do tempo, onde o estado atual € um bom indicador do estado futuro. Com base na
andlise do problema e considerando os prés e contras de diferentes métodos,
concluimos que o método explicito seria a melhor escolha para a resolu¢cdo de nosso

problema.
4.1 CARACTERISTICAS DA SIMULACAO

O problema proposto envolve a simulacdo de um sdlido tridimensional
representando uma amostra de rocha porosa com dimensdes de 12x12x12 metros.
Essa rocha esta preenchida com fluido, o que caracteriza o cenario poroelastico. O
estudo tem como objetivo compreender o comportamento da rocha, saturada com
fluido, quando submetida a um esfor¢co de compressao na base (o,,), que € assumido
ser negativo, representando uma compressdo. Em um contexto geoldgico, tais
condi¢Bes podem ocorrer, por exemplo, em formacdes rochosas subterraneas sob a

influéncia de forcas tectbnicas ou do peso de camadas de rocha sobrejacentes.

Este é um problema drenado, o que significa que a pressao dos fluidos nos poros
da rocha tem a oportunidade de se equilibrar com as mudanc¢as na pressdo. Isso
implica que a presséo do fluido pode variar, permitindo o0 movimento do fluido dentro
e fora da rocha. A simulagdo captura o comportamento da rocha sob compresséao,
levando em conta as interacdes entre a matriz rochosa e os fluidos em seus poros.
Compreender esse comportamento tem aplicacbes praticas importantes na
exploracdo e producdo de petréleo e gas e na gestdo de reservatorios de agua

subterranea, por exemplo.
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4.2 PROPRIEDADES DA ROCHA E DO FLUIDO

Apresentaremos e discutiremos 0s resultados de nossa analise, considerando
as propriedades especificas da rocha que utilizamos em nossos testes. Essas
propriedades sdo importantes para compreender a natureza do nosso estudo e os
resultados obtidos.

A rocha saturada de fluido em estudo possui propriedades fisicas e mecéanicas
bem definidas que tém implicacdes significativas para o seu comportamento sob
diferentes condi¢cbes. Aqui estdo as propriedades fundamentais da rocha que sao

relevantes para o nosso estudo, explicadas simplificadamente:

Mdédulo de cisalhamento (G em Pa): Este valor, também conhecido como modulo
de rigidez, descreve a capacidade da rocha de resistir a deformacdes cisalhantes. Isso
€ importante em contextos onde a rocha é submetida a tensdes de cisalhamento que
poderiam distorcer sua estrutura, como em falhas geoldgicas ou durante a extracao

de recursos minerais.

Constante de Biot (a, adimensional): Nomeado em homenagem ao fisico francés
Maurice Anthony Biot descreve a deformac@o do meio e o contetdo de fluido a
pressao constante. Essa constante € relevante em rochas porosas preenchidas com
fluido, onde mudancas na pressao do fluido podem induzir deformacfes na matriz da

rocha

Coeficiente de Poisson (v, adimensional): Este coeficiente € uma medida da
capacidade da rocha de se contrair ou expandir em uma direcdo perpendicular a
direcdo da forca aplicada. Quando uma rocha € comprimida ou esticada, ela responde
com uma expansao ou contra¢cdo em uma direcdo perpendicular a forga. O coeficiente

de Poisson quantifica essa relagéo.

Compressibilidade efetiva (Se, em Pa™!): Esta propriedade descreve a
capacidade de armazenamento de uma rocha sob deformacao constante, refletindo
como o volume de fluido armazenado na rocha muda em resposta a variacdes de
pressdo. Quanto maior a compressibilidade, maior a capacidade da rocha de

armazenar fluido a medida que a pressao aplicada varia
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Permeabilidade (k, em m?): A permeabilidade de uma rocha é uma medida da
facilidade com que um fluido pode se mover através dela como resposta a um
determinado gradiente de pressado. Isso depende da porosidade da rocha e do

tamanho e interconexao dos poros.

Viscosidade (4 em Pa -s): A viscosidade € uma medida da resisténcia de um
fluido ao fluxo. Simplificadamente, fluidos com alta viscosidade fluem mais lentamente
do que aqueles com baixa viscosidade. A viscosidade pode influenciar a rapidez com
gue os fluidos se movem através da rocha, o que € importante para aplicacdes como

a extracao de petréleo e gas.

Estas propriedades séo fundamentais para a compreensao do comportamento
da rocha sob diferentes condi¢des de estresse e permitem-nos modelar as respostas
de forma precisa. Portanto, a simulacdo buscara capturar o comportamento da rocha
sob a presséo de compressao aplicada, levando em conta as interagdes entre a matriz

rochosa e os fluidos em seus poros.

4.3 PROPRIEDADES E CARACTERISTICAS DA MALHA

Neste estudo, foram considerados parametros que impactam diretamente a
simulacéo poroelastica. Além disso, a configuracdo da malha para a simulacdo foi
planejada para equilibrar detalhamento e eficiéncia computacional, assegurando que
os resultados obtidos oferecam tanto a precisdo necessdaria quanto a viabilidade
préatica para a realizacédo dos calculos. Abaixo, sao descritos 0s principais parametros

e a estrutura da malha utilizada.

Além dos parametros mencionados, a malha utilizada para a simulagcédo foi
composta por 1536 elementos (Figura 2). Esse numero representa uma quantidade
intermediaria, escolhida para oferecer um equilibrio entre a resolucéo dos detalhes e
a eficiéncia computacional. Com essa configuracéo, € possivel capturar as nuances
do comportamento do sistema simulado, assegurando que as variacdes locais e 0s
gradientes de grandezas fisicas sejam representados suficientemente. Ao mesmo
tempo, o uso de uma quantidade moderada de elementos evita 0 aumento excessivo

do tempo de processamento e dos recursos computacionais necessarios, permitindo
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uma execucao mais pratica e acessivel da simulagdo. Dessa forma, a escolha da
malha com 1536 elementos garante que o modelo atenda aos requisitos de economia

computacional, mantendo a simulacao robusta e eficiente.

Malha tetraédrica de 1536 elementos

Figura 2 - Malha tetraédrica de 1536 elementos

4.4 CONDICOES DE CONTORNO

As condigbes de contorno sdo um conjunto de restricbes que definem o
comportamento de um sistema fisico nas suas fronteiras ou limites. Elas séo parte do
problema e fundamentais para a solucdo de equacgOes diferenciais parciais que
descrevem o comportamento de sistemas fisicos, no nosso caso um modelo
poroelastico. As condi¢gbes de contorno determinam o comportamento do um sistema,

limitando ou especificando seus valores em determinados pontos ou regides.

No contexto deste problema, estamos analisando o comportamento de um cubo
gue representa uma rocha, sob condi¢des de variacdo de pressédo e deslocamento.
Para cada n6 na malha de elementos finitos que representa o cubo, definimos
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condic¢des de contorno que determinam se o né pode se mover nas dire¢cdes x, y, z e
se a pressao pode ou nao variar. As condi¢des de contorno no nosso problema sao
definidas por uma lista de quatro digitos, cada um podendo ser 0 ou 1. Esses digitos
representam, respectivamente, a possibilidade de variacdo nas direcbes X, y, Z e a
condicao de pressdo. Quando o digito € 1, isso significa que é permitida a variacdo na
direcdo ou condicao correspondente. Por outro lado, um digito O impede a variacéo.
Por exemplo, a lista [1, 0, 1, 1] permitiria variacoes na direcao X e z e ha pressao, mas

nao na direcao y.

Dessa forma, as condi¢cdes de contorno foram definidas de acordo com a

localizacao do né para refletir seu comportamento em fungéo da sua localizagéao:

e Se 0 no esta no interior do cubo, ele pode se mover em todas as direcdes e a
presséo pode variar.

e Se 0 no pertence a uma face, ele pode se deslocar apenas sob sua face e sua
pressao pode variar. Com excecédo da face inferior, os nos pertencentes a ela
possuem condi¢ao de contorno para pressoes iguais a 0.

e Se 0 no pertence a uma aresta, ele pode se deslocar sob sua aresta e sua
pressao pode variar. A pressao € igual a zero para n@s pertencentes a arestas
na base do cubo.

e Os no6s de canto na face inferior do cubo podem se deslocar apenas em z e
suas pressdes ndo podem variar.

e Os nos de canto na face superior do cubo ndo podem se deslocar em nenhuma
direcdo e suas pressdes podem variar.

e Paraasfaces em que a pressao pode variar temos outra restricdo: ndo ha fluxo,
~ dP .. P .
entao — = 0, ou seja impermeavel ou sem fluxo de fluido.

A razdo para aplicar essas condicbes de contorno é que elas refletem as
restricdes fisicas do problema que estamos tentando resolver. Por exemplo, um n6 na
face de um cubo de rocha real ndo pode se mover para fora do cubo, porque seria
obstruido pela rocha circundante. Essas condi¢des de contorno ajudam a modelar as
restricdes fisicas e as interagfes entre a rocha e fluido, o que torna nosso modelo

mais preciso e realista.
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As condi¢des de contorno definem o comportamento do sistema em regides
especificas, nesse caso, as bordas do nosso "cubo" que representa a rocha. Ao
estabelecer a condicédo de contorno de presséao igual a O para 0s nés que pertencem
a face inferior do cubo, estamos efetivamente criando uma area de baixa presséo por
onde o fluido pode sair. Existe, portanto, condicbes onde definimos faces seladas
(regibes onde n&o definimos condi¢cdes de Neuman) e faces onde permitimos o fluido

ser drenado (condicéo de Dirichlet).

Essa area de baixa pressdo desempenha um papel crucial na dinamica do fluxo
de fluidos. Na natureza, os fluidos tendem a se mover de areas de alta pressao para
areas de baixa presséo. Ao criar uma regido de pressao mais baixa na face inferior do

nosso modelo, estamos direcionando o fluxo de fluido para fora do dominio.

Portanto, essa condicdo de contorno de pressédo 0 na face inferior do cubo
serve para simular o comportamento natural do fluido, que é escoar em direcdo a
regides de menor pressdo. Esse ensaio € fundamental para entender a consolidacéo

em caracterizacao laboratorial.

Com estas condicbes de contorno aplicadas, o modelo de elementos finitos esta
agora definido para simular a resposta da rocha sob condi¢fes realistas de presséo e

tensao.

4.5 DESCRICAO DO CODIGO EM PYTHON

O cbdigo em Python desenvolvido para este estudo foi estruturado para possuir
boa eficiéncia e legibilidade, garantindo sua reutilizagdo eficaz, uma vez que certas
funcbes demandam um tempo computacional consideravel. Com uma abordagem
modular, o codigo é dividido em duas partes fundamentais: a definicdo das funcdes e

a execucao dos calculos.

A primeira parte, definicdo das fungdes, funciona como o esqueleto do cédigo.
Nesta secdo, todas as operacdes necessarias sado encapsuladas em funcdes
dedicadas. Isso ndo apenas aumenta a legibilidade do codigo, como também facilita

a depuracgdo e o teste de partes individuais do cédigo sem a necessidade de executar
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0 programa inteiro. Além disso, essas fun¢des podem ser facilmente reutilizadas em

outros contextos ou projetos, contribuindo para a eficiéncia do codigo.

A segunda parte é a execucdo dos calculos. Aqui, as funcdes definidas
anteriormente sdo "chamadas” na ordem correta e realizam os calculos necessarios
para resolver o problema da malha de entrada. Os dados de entrada s&o processados,
as constantes sao inicializadas, os calculos sdo executados e os arquivos .txt que
possuem o0s deslocamentos de cada n6 em X, y, z e 0s valores de pressao sao

exportados.

Além disso, para garantir a clareza, o cédigo esta comentado, explicando o
objetivo de cada funcdo e os detalhes dos célculos realizados. Assim, o cédigo em
Python foi desenvolvido de uma maneira que nédo so resolve o problema em questéao,

mas também serve como uma base solida para futuros trabalhos de pesquisa.

Como podemos ver nas Figuras 5 e 6 que representam as etapas de importacao
de bibliotecas e definicdo das funcdes, uma série de funcbes é definida para realizar

varias tarefas:

e Inicializar Constantes: inicializa as constantes necessarias para os calculos
subsequentes, como as propriedades da rocha.

e Leitura: € responsavel pela leitura de dados de entrada da malha de elementos
finitos do arquivo de texto.

e Coord Vol: é usada para calcular os volumes dos elementos na malha.

e Basis Function: € usada para calcular as funcdes de forma para cada elemento
da malha.

e Vetor Normal: calcula o vetor normal as faces de cada triangulo que comp&em
cada tetraedro da malha.

e Inicializa area triangulos: inicializa as variaveis responsaveis pelas areas de
cada triangulo na malha.

e Set areas zero e self check: definem areas que ndo sao do contorno para zero.

e Matriz SijAij: calcula as matrizes Sij e Aij locais para cada elemento.

e Matriz bi: calcula os termos das matrizes bi para cada elemento.

e Matrizes globais: transporta as matrizes S e A locais para a respectiva matriz

global.
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Vetores Bglobais: organiza os vetores B em um vetor B global.

Propriedades lteragbes: define as propriedades das iteragbes para resolver o
sistema como o tempo total da simulagéo e o passo de tempo.

Matriz K: calcula a matriz de rigidez do sistema.

Inicializacdo das matrizes Unn,Vnn,Wnn e Pnn: inicializa as matrizes para
armazenar os deslocamentos e a pressao dos poros em cada né da malha no
atual passo de tempo.

Vetor F: calcula o vetor de carga do sistema no atual passo de tempo.

Solve problem: resolve o sistema resultante [K[{U} = {F}, para todos os instantes
de tempo.

Xnntsplot, Unntsplot, Vnntsplot, Wnntsplot, Pnntsplot: essas funcdes
armanezam o0s resultados obtidos para cada deslocamento e pressdo em uma

matriz, para que as animacfes possam ser produzidas.
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Leitura {F}
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2.7) Fungio
set_ares_zero e
self_chek {F}
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Figura 3 - Fluxograma Caodigo Python Parte 1
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3) Calculos

_1) Cédlculos das
constantes e
propriedades da
rocha {F}

3.2) Calculo da
Funcdo Leitura {F}

3.3) Calculo da
Funcdo Coord_Vol
{F}

3.4) Calculo da
funcéo
Bazis_Function {F}

3.5) Calculo da
funcdo Vetor-Mormal
{F}

3.6) Area_Triangulos
{Titulo}

6.1) Célculo da funcip
in|cializa_areas_{friangulps

3.6.2) Calculo
set_ares_zeroe
self_check {F}

_6.3) Calculo dos
etores para o calculd
das areas dos
triangulos {SF}

3.6.4) Calculo das
areas dos tridngulos
1SF}

36.5) Calculo park
zerar as éreas que

n&o sdo do contorno
IS

.6.6) Calculo dog
vetores normais as
areas de cada
triangulo {SF}

3.13.2) Exportacdo
das Matrizes
Xnntsplot {SF}

3.13.1) Célculo das
fatrizes Xnnisplot {F}

3.13) Matrizes
Xnntsplot {Titulo}

3.12) Célculo do
solve_problem {F}

3.11) Célculo de
inicializaco das
matrizes Unn, Vnn,
Wnn e Pnn {F}

3.10.2) Célculo da
matriz Kcc {SF}

3.10.1) Célculo da
Matriz K {F}

3.7) Calculo de
transposicdo das
matrizes dNx, dhly e
dNz {SF}

3.10) Matriz K e Kcc
{Titulo}

3.8) Calculo das
Matrizes Globais
{Titulo}

3.8.1) Calculo das
Matrizes Globais
zeradas {SF}

3.9) Calculo das
propriedades das
iteracties {F}

3.8.2) Calculo das
latrizes Globais local
e global {SF}

7

Figura 4 - Fluxograma Codigo em Python Parte 2
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5 RESULTADOS

5.1 RESULTADOS ESPERADOS

Com base nas caracteristicas da simulacdo e nas condi¢cdes impostas, espera-se
gue o comportamento da pressdo e da deformagao siga um padréo condizente com
os principios fisicos do problema. Durante a simulacéo, prevé-se que a pressao nos
nos da malha diminua progressivamente ao longo do tempo, um fenbmeno que ocorre
devido a tendéncia do fluido a sair gradualmente através do meio rochoso, resultando
em uma queda de pressao tipica de processos de difusdo em meios porosos.

Em regides superiores da rocha, a presséo apés a reacao da aplicacdo da tensdo
tende a ser mais elevada, em funcdo da concentracdo de fluido nas camadas
superiores em reacao a aplicacdo do esforco de compressdao na base da rocha,
gerando um gradiente de presséo entre o topo e a base da rocha. Inversamente, nos
nos localizados nas regiées mais baixas, espera-se que a pressao seja menor, ja que
parte do fluido foi deslocada para as camadas superiores, resultando em um gradiente

de pressao descendente.

No que diz respeito a deformacao, é esperado que 0s nds proximos a base da
rocha apresentem maiores deformacdes em comparacdo aos localizados no topo,
devido a maior concentracdo de tensdes nas camadas inferiores. Isso resulta em

forgas compressivas mais intensas e, consequentemente, maior deformagéao.

Dessa forma, os resultados da simulagdo devem refletir esses comportamentos
esperados, oferecendo uma compreensdo detalhada da distribuicdo de presséo e

deformacgé&o ao longo do tempo e em diferentes regides da rocha.

5.2 RESULTADOS OBTIDOS

Os valores e parametros utilizados para gerar os resultados encontram-se na

Figura 5.

Parametro Valor Unidade
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L 12 [m]
Py 108 [Pa]
G 6.10° [Pa]
o 0,79 —

Y 0,2 —
Se 8.107 11 [Pa~1]
K 1,910 3 | [m?]
u 1073 [Pa.s]

Figura 5 - Parametros utilizados para avaliagdo do problema
O comportamento esperado para os deslocamentos foi evidenciado pelos
resultados obtidos nas simulac¢des, conforme evidenciado pelo grafico exposto na
Figura 6. A analise desses dados confirma que os nés localizados préximos a base
da rocha exibem, de fato, as maiores deformacfes quando comparados aos nos
situados nas regides superiores. Esse resultado corrobora a hipdétese de que a
concentracdo da pressdo exercida nas camadas inferiores, gera forcas compressivas

mais intensas na base, resultando em maiores deslocamentos.
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Figura 6 - Deslocamentos em metros calculados para diferentes posicdes em metros e instantes de
tempo para os nds do eixo central da malha de 1536 elementos e passo de tempo 0.1s

Os resultados de deslocamento podem ser comparados e validados com os

resultados analiticos 2D apresentados na Figura 7, conforme expostos no trabalho de

(Reis, 2018). Tanto o formato, quanto a escala dos resultados é semelhante aos

resultados analiticos, diferindo somente em valores absolutos.
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Figura 7 - Deslocamentos calculados analiticamente para diferentes posi¢des e instantes de tempo
em (Reis, 2018)

A pressdo nos nos diminuiu ao longo do tempo, especialmente apos a reacao
inicial a pressdo aplicada na base da rocha. Isso se alinha com o comportamento
esperado de dissipacdo da pressao a medida que o fluido se dispersa pela malha de
nds da simulacdo. No inicio, a aplicagdo de pressao causa uma resposta imediata nos
nds, mas com o passar do tempo, a pressao tende a decair, conforme o sistema busca

atingir um estado de equilibrio.

Além disso, ao final da simulacdo, o comportamento da pressao apresentou um
padrdo consistente com o esperado. NOs situados em posicdes mais elevadas da
rocha mantiveram pressfes mais altas, enquanto os nés localizados mais préximos
da base exibiram pressOes mais baixas. Esse gradiente de pressdo era previsto
devido a influéncia da distribuig&o do fluido ao longo da rocha, com maior acumulacao
de pressao nas regifes superiores e menor nas inferiores. Através grafico exposto na
Figura 8, & possivel verificar detalhadamente esse comportamento. Os dados
mostram claramente a queda de presséo ao longo do tempo, assim como a variagao
de pressao em diferentes posi¢cdes na rocha, confirmando a correlacdo entre a

posicdo em z dos nds e os niveis de pressao.
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Pressdes Calculadas para Diferentes Posicdes e Instantes de Tempo
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Tempo (s)

Tempo 1.0 s
Tempo 2.0 s
Tempo 3.0 s
Tempo 4.0s
Tempo 5.0 s
Tempo 6.0 s
Tempo 7.0 s
Tempo 8.0 s
Tempo 9.0 s
Tempo 10.0 s
Tempo 15.0 s
Tempo 20.0 s
Tempo 25.0 s
Tempo 30.0 s
Tempo 35.0 s
Tempo 40.0 s
Tempo 45.0 s
Tempo 50.0 s
Tempo 55.0 s
Tempo 59.9 s

Figura 8 - Pressfes em Pa calculadas para diferentes posi¢cdes em metros e instantes de tempo para

0s noés do eixo central da malha de 1536 elementos e passo de tempo 0.1s

Os resultados de pressédo podem ser comparados e validados com os resultados

analiticos 2D apresentados na Figura 9, conforme expostos no trabalho de (Reis,

2018).
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Figura 9 - Press0fes calculadas analiticamente para diferentes posicdes e instantes de tempo em
(Reis, 2018)

Outra andlise realizada foi em relacao a simetria dos resultados. Os valores de
deslocamento e presséo analisados nas posicoes selecionadas da rocha apresentam
simetria notavel quando comparados a posi¢des simétricas. Essa simetria indica uma
distribuicdo uniforme das forcas internas dentro da malha tetraédrica utilizada, bem
como das deformacfes resultantes. Isso reflete a uniformidade das propriedades
geomecanicas da rocha submetida as condicbes do carregamento aplicado e
corrobora para a validagcédo da simulacédo realizada. Como exemplo, temos as figuras
10e 11 que mostram os gréaficos de pressdo e valores de pressdo para 0s nos
localizados no eixo de coordenadas X =1.5 e Y = 10.5 e o0 eixo simétrico com X=10.5
eY=15.
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Figura 10 - Pressdes Calculadas para Diferentes Posicdes e instantes para os nés de posicdo X = 1.5
e Y = 10.5 da malha de 1536 elementos e passo de tempo 0.1s
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Figura 11 - Valores de Pressfes Calculadas para Diferentes Posi¢des e instantes para os nos de
posicdo X =10.5 e Y = 1.5 da malha de 1536 elementos e passo de tempo 0.1s
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6 CONCLUSAO

Os resultados das simulacfes confirmaram o comportamento esperado para 0s
deslocamentos e pressdes na rocha porosa. Observou-se que os nos localizados
proximos a base da rocha apresentaram as maiores deformacdes em comparagao
com 0s nos das regides superiores, corroborando a hipotese de que a concentracao
de pressao nas camadas inferiores gera forcas compressivas mais intensas na base.
Os gréficos de deslocamento e pressdo forneceram suporte quantitativo para a
previsao tedrica, e os resultados de deslocamento foram comparados e validados com
os resultados analiticos apresentados em (Wang, 2000) apresentando similaridade
em formato e escala, apesar das diferencas em valores absolutos devido as limitacbes

da simulacéo tridimensional em relacdo ao modelo bidimensional analitico.

A pressdo nos nos diminuiu ao longo do tempo, especialmente apds a reacao
inicial & pressédo aplicada na base da rocha, alinhando-se com o comportamento
esperado de dissipacéo da pressdo a medida que o fluido se dispersa pela malha. No
final da simulacdo, observou-se um padrédo consistente, onde nés em posicées mais
elevadas mantiveram pressdes mais altas, enquanto os nés préximos a base exibiram
pressdes mais baixas. Esse gradiente de pressao era previsto devido a distribuicéo

do fluido ao longo da rocha, com maior acumulac&o nas regifes superiores.

Os dados confirmaram a correlacdo entre a posicdo em z dos nés e 0s niveis de
pressao, indicando consisténcia na tendéncia dos resultados obtidos. No entanto, os
graficos apresentados diferem um pouco em termos de valores absolutos quando
comparados aos resultados analiticos apresentados em (Wang, 2000). Essa
discrepancia sugere a possibilidade de erros na implementacao do cédigo em Python
utilizado para a analise. O trabalho esta em revisao e finalizar o processo de validacao,
com o0 objetivo de identificar e corrigir possiveis falhas no cédigo e garantir maior

precisdo nos resultados apresentados.

Adicionalmente, a analise revelou a simetria nos valores de deslocamento e
pressdo quando comparados em posi¢cdes simeétricas da rocha. Essa simetria indica
uma distribuicéo uniforme das forcas internas e das deformac¢des na malha tetraédrica

utilizada, refletindo a uniformidade das propriedades geomecanicas da rocha sob as
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condicOes de carregamento aplicadas. Essa observacao corrobora a validacdo da

simulagéo realizada.

O desenvolvimento e a implementacdo de uma solucdo computacional para o
modelo poroelastico 3D utilizando o método dos elementos finitos representaram um
avanco significativo na simulacdo de fendmenos poroelasticos complexos. Ao
expandir as equacdes poroelasticas de 2D para o cenario tridimensional e construir
um algoritmo capaz de resolver essas equac¢des em um ambiente computacional, este
trabalho proporcionou uma ferramenta valiosa para a analise detalhada do
comportamento de meios porosos tridimensionais sob variagdes de pressao do fluido

ou tensdes na matriz sélida.

A utilizacdo de modelos computacionais permitiu maior flexibilidade e uma
compreensao do processo de modelagem, para simular problemas complexos sem
esgotar rapidamente os recursos computacionais disponiveis. Embora existam
softwares como o COMSOL com implementacdes baseadas em elementos finitos, a
abordagem adotada facilitara a escalabilidade dos recursos computacionais e a
exploracéo de diferentes arquiteturas e condi¢cdes de execuc¢dao. Isso € particularmente
relevante em areas como a engenharia de petréleo, onde simulagdes precisas podem

levar a reducdes significativas de custos operacionais e aumento da seguranca.

Os achados deste trabalho tém implicacdes em diversas aplicacfes, incluindo a
previsdo do comportamento de reservatorios na engenharia de petroleo, a
compreensao de processos de fluxo em tecidos biolégicos na medicina e a andlise do
fluxo de agua subterranea e respostas de rochas a estresses tectbnicos na geologia.
A capacidade de modelar e simular problemas poroelasticos tridimensionais com
precisao e eficiéncia abre novas oportunidades para pesquisas e aplicacdes praticas

nesses campos.

Em suma, este estudo demonstrou a viabilidade e os beneficios de desenvolver
uma solugdo computacional para modelos poroelasticos 3D utilizando o método dos
elementos finitos. A simulacdo bem-sucedida e a validagdo com resultados analiticos
confirmam a precisdo do modelo e a eficacia da abordagem adotada. Este trabalho

contribui para o avanco da modelagem poroelastica e fornece uma base sélida para
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futuros desenvolvimentos na simulacéo de interacdes complexas entre fluxo de fluidos

e deformagdes em meios porosos.
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7 TRABALHOS FUTUROS

Como continuidade deste trabalho, propde-se a extensdo da formulacdo atual
para permitir a andlise da precisdo em fungédo do passo de tempo. Investigar como
diferentes passos de tempo afetam os resultados numéricos pode fornecer ideias
valiosos sobre a estabilidade e a eficiéncia do método utilizado. Essa analise permitira
otimizar o equilibrio entre a precisdo dos resultados e o0 custo computacional,

essencial para aplicacbes em sistemas complexos.

Além disso, é recomendada a realizacdo de andlises utilizando uma malha mais
refinada, com um numero maior de elementos. O refinamento da malha tende a
aumentar a acuracia espacial dos resultados. Essa abordagem contribuira para a
validacdo do modelo numérico, assegurando que os resultados nao sao influenciados

por limitagdes impostas pela discretizagéo grosseira.

Para aprofundar a analise da integridade dos resultados obtidos através de
simulacdes mais abrangentes, pode ser explorada a utilizacdo de diferentes malhas
tetraédricas com variadas discretizacdes, 0 que permitira avaliar como a resolucdo da
malha influencia a precisdo e a estabilidade das simulagfes. Além disso, considerar
espacamentos de tempo distintos e periodos de simulacao variados, permitira verificar
a sensibilidade do modelo as condi¢ces temporais e garantir gue 0s passos de tempo

adotados ndo comprometam a fidelidade dos dados.

Integrando essas propostas, espera-se aprofundar a compreensdo dos
fenbmenos estudados e aprimorar a confiabilidade dos resultados obtidos. A anélise
combinada da influéncia do passo de tempo, do refinamento da malha e da geometria
do dominio permitira desenvolver um modelo numérico mais robusto e preciso,

contribuindo significativamente para avangos futuros na area de pesquisa.
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Resumo

A poroelasticidade é um campo interdisciplinar que une a mecanica dos solidos porosos e a mecanica
dos fluidos. Este trabalho de conclusdo de curso expande a formulagdo poroeléstica de 2D para 3D,
permitindo simulacdes mais precisas e realistas. Utilizando o método dos elementos finitos e malhas
tetraédricas, a simulagdo numérica é realizada em Python, analisando o deslocamento e a pressao em
uma rocha saturada com fluidos submetida a esforcos de compresséo.

Este estudo ndo apenas avanca a compreensdo teorica da poroelasticidade em 3D, mas também
demonstra a aplicacdo préatica de técnicas numeéricas para resolver problemas em engenharia geotécnica
e geomecanica. Exemplos de tais problemas incluem geometrias irregulares, propriedades heterogéneas
e anisotropias. Aplicacfes praticas desse estudo abrangem casos como a subsidéncia em torno de po¢os
de extracdo, onde é possivel considerar condi¢des simplificadas de propriedades homogéneas. Assim, a
pesquisa proporciona uma base sélida para futuras investigacdes e aplicacbes no campo da engenharia
para a analise e mitigacdo de fenbmenos geomecanicos.

Abstract

Poroelasticity is an interdisciplinary field that combines the mechanics of porous solids and fluid
mechanics. This thesis expands the poroelastic formulation from 2D to 3D, allowing for more precise
and realistic simulations. Using the finite element method and tetrahedral meshes, the numerical
simulation is performed in Python, analyzing displacement and pressure in a fluid-saturated rock
subjected to compressive stresses.

This study not only advances the theoretical understanding of 3D poroelasticity but also demonstrates
the practical application of numerical techniques to solve problems in geotechnical and geomechanical
engineering. Examples of such problems include irregular geometries, heterogeneous properties, and
anisotropies. Practical applications of this study encompass cases such as subsidence around extraction
wells, where simplified conditions of homogeneous properties can be considered. Thus, this research
provides a solid foundation for future investigations and applications in engineering for the analysis and
mitigation of geomechanical phenomena.

1. Introducéo

A poroelasticidade descreve as interagdes complexas entre o fluxo de fluidos e as deformagdes dos
solidos em meios porosos, como rochas, solos e tecidos bioldgicos (WANG, 2000). Quando uma carga
externa é aplicada a esses materiais, a pressao nos fluidos internos varia devido a compressao dos poros,
provocando o movimento do fluido através da matriz porosa. Este trabalho tem como objetivo
desenvolver e implementar uma solugdo computacional para o modelo poroelastico 3D utilizando o
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método dos elementos finitos, expandindo as equagdes poroelasticas de 2D para o cenario tridimensional
e construindo um algoritmo capaz de resolver essas equaces em um ambiente computacional.

2. Metodologia

Neste projeto, escolhnemos o elemento finito tetraédrico para nossa analise poroeléstica 3D devido a
sua simplicidade geométrica e versatilidade na adaptacdo a varias configuracbes de dominios
tridimensionais. Além disso, a simplicidade dos elementos isoparamétricos facilita a definicdo e o
calculo das func@es de forma.

O proposito deste trabalho é resolver o sistema de equagbes matriciais [M]{U}: ™2t + [K]{U}* = {F}¥
sendo k uma notagédo genérica que pode apontar para aproximacao explicita k = tou implicita k = t +
At ou mista ao partir dos operadores K e F para atender parte k = t e parte k = t + At. Esse sistema
representa as equacOes diferenciais parciais que governam a difusdo de fluidos na rocha. A matriz [K] €
a matriz de rigidez, que descreve as propriedades elasticas da rocha e sua interacdo com o fluido. Os
vetores U,V e W representam os deslocamentos nas trés direcoes e P a pressdo de poros, enquanto o
vetor F contém as forcas externas que atuam sobre o sistema. O processo de solucdo € realizado de
forma iterativa, avancando passo a passo no tempo. Em cada passo, a solugdo do sistema de equacOes
fornece os deslocamentos e pressdes dos poros para aquele instante especifico. Estes valores sdo entdo
armazenados para uso futuro.
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Atk = J-fj;y[ax ax ay W-l_ azgdxdydz

dp
B} = f J- ny anz] N, dA

Os parametros utilizados na simulagdo incluem o mddulo de cisalhamento ¢ = 6 x 10° Pa, , a
razdo de Poisson v = 0,2, o coeficiente de compressibilidade efetiva S, =8 x 1071'pa~1, o
coeficiente de Biot a =0,79 e a permeabilidade da rocha k=19 x10713m?2, cada um
desempenhando um papel essencial na caracterizacdo do comportamento mecanico e do fluxo em rochas
porosas: G e v influenciam a resposta eléstica da rocha sob esforcos mecanicos; S, e a avaliam as
interacdes entre a matriz solida e os fluidos nos poros, para entender a deformacéo dependente da
pressdo de poros; e k é chave na determinacdo do fluxo de fluidos dentro da rocha, afetando a dissipacéo
de presséo e a distribuicdo do fluido. Outros parametros importantes sdo o comprimento, largura e altura
da rocha de 12 metros, a pressdo inicial aplicada P, = 1 x 108 e a viscosidade dinamica do fluido
u=1 x10"3 Pa -s; P, influencia a resposta inicial do sistema ao ser aplicada na base da rocha, e u
afeta a resisténcia ao fluxo do fluido nos poros, influenciando a taxa de dissipacdo de presséo e o tempo
para o sistema atingir o equilibrio, todos selecionados para refletir condigdes reais e essenciais para a
simulacgdo precisa do comportamento mecéanico e de fluxo em rochas porosas. Além dos parametros
mencionados, a malha utilizada para a simulacdo foi composta por 1536 elementos (Figura 1). Esse
namero representa uma quantidade intermediaria, para oferecer um equilibrio entre a resolucdo dos
detalhes e a eficiéncia computacional. Dessa forma, a escolha da malha com 1536 elementos garante que
0 modelo atenda aos requisitos de economia computacional, mantendo a simulacédo robusta e eficiente.

Figura 1 — Malha Tetraédrica de 1536 elementos

3. Resultados

A implementacdo realizada é similar ao problema de Terzaghi e os resultados das simulacGes
evidenciaram o comportamento esperado para os deslocamentos e pressdes na rocha, conforme exposto
nas Figuras 2, 4 e 8. A analise dos dados confirma que 0s nds préximos a base da rocha exibem as
maiores deformagdes em comparacdo com 0s nos das regides superiores, corroborando a hipdtese de que
a concentragdo de pressdo nas camadas inferiores gera forgas compressivas mais intensas na base. A
pressdo nos nds diminuiu ao longo do tempo, especialmente apos a reacdo inicial a pressdo aplicada na
base, alinhando-se ao comportamento esperado de dissipacdo da pressdo a medida que o fluido se
dispersa pela malha de nds da simulacdo. Inicialmente, a aplicacdo de pressdo causa um incremento
imediato de pressdo (resposta ndo drenada), mas com o passar do tempo, a pressdo tende a decair
conforme o sistema busca atingir um estado de equilibrio.

No final da simulagdo, o comportamento da pressdo apresentou um padrdo consistente com o
esperado: ao final da simulacdo, nds em posi¢cdes mais elevadas mantiveram pressdes mais altas,
enguanto os nds préximos a base exibiram pressdes mais baixas. Esse gradiente de pressdo era previsto
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devido a distribuicdo do fluido ao longo da rocha, com maior acumulagdo nas regides superiores. Os
dados, mostram claramente a queda de pressdo ao longo do tempo e a variacéo de pressdo em diferentes
posi¢oes, confirmando a correlacdo entre a posi¢do em z dos nds e 0s niveis de pressdo. Os resultados de
deslocamento e pressao podem ser comparados os resultados analiticos disponiveis no trabalho de (Reis,
2018) e expostos nas Figuras 2, 3, 4 e 5. Tanto o formato quanto a escala dos resultados s&o semelhantes
aos analiticos, diferindo apenas em valores absolutos.
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Figura 2 - Deslocamentos calculados para diferentes posi¢cdes Figura 3 - Deslocamentos calculados analiticamente para
e instantes de tempo para os nés do eixo central da malha de diferentes posicdes e instantes de tempo
1536 elementos e passo de tempo 0.1s
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Figura 4 - Pressdes calculadas para diferentes posicdes e Figura 5 - Pressdes calculadas analiticamente para diferentes
instantes de tempo para os nos do eixo central da malha de posicles e instantes de tempo
1536 elementos e passo de tempo 0.1s

4. Conclusao

Os resultados das simulagdes confirmaram o comportamento esperado para 0os deslocamentos e
pressdes na rocha porosa. Observou-se que os nos localizados proximos a base da rocha apresentaram as
maiores deformacGes em comparagdo com 0s nds das regides superiores, corroborando a hipotese de que
a concentracao de pressdo nas camadas inferiores gera forcas compressivas mais intensas na base. Os
graficos de deslocamento e pressdo forneceram suporte quantitativo para a previsdo teodrica, e 0s
resultados de deslocamento foram comparados com os resultados analiticos de Reis (2018),
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apresentando similaridade em formato e escala, apesar das diferencas em valores absolutos. Os dados
confirmaram a correlacdo entre a posi¢cdo em z dos nds e os niveis de pressao, indicando consisténcia na
tendéncia dos resultados obtidos. No entanto, os graficos apresentados diferem um pouco em termos de
valores absolutos quando comparados aos resultados analiticos apresentados em (Wang, 2000). Essa
discrepancia sugere a possibilidade de erros na implementacdo do codigo em Python utilizado para a
analise. O trabalho estd em revisdo e finalizar o processo de validacdo, com o objetivo de identificar e
corrigir possiveis falhas no codigo e garantir maior precisao nos resultados apresentados.

O desenvolvimento e a implementacdo de uma solugdo computacional para 0 modelo poroelastico 3D
utilizando o método dos elementos finitos representaram um avancgo significativo na simulagdo de
fendmenos poroelasticos complexos. Ao expandir as equacdes poroelasticas de 2D para 0 cenério
tridimensional e construir um algoritmo capaz de resolver essas equacfes em um ambiente
computacional, este trabalho proporcionou uma ferramenta valiosa para a analise detalhada do
comportamento de meios porosos tridimensionais sob variages de pressdo do fluido ou tensbes na
matriz solida.

Em suma, este estudo demonstrou a viabilidade e os beneficios de desenvolver uma solugéo
computacional para modelos poroelasticos 3D utilizando o método dos elementos finitos. A simulacao
bem-sucedida e a validacdo com resultados analiticos confirmam a precisdo do modelo e a eficacia da
abordagem adotada. Este trabalho contribui para o avan¢o da modelagem poroelastica e fornece uma
base sélida para futuros desenvolvimentos na simulacao de interacGes complexas entre fluxo de fluidos e
deformacgdes em meios porosos.
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