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RESUMO 

A poroelasticidade é um campo interdisciplinar que une a mecânica dos sólidos 

porosos e a mecânica dos fluidos. Este trabalho de conclusão de curso expande a 

formulação poroelástica de 2D para 3D, permitindo simulações mais precisas e 

realistas. Utilizando o método dos elementos finitos e malhas tetraédricas, a simulação 

numérica é realizada em Python, analisando o deslocamento e a pressão em uma 

rocha saturada com fluidos submetida a esforços de compressão. 

Os métodos explícitos são empregados para a integração temporal, que para o 

problema equilibra eficiência computacional e estabilidade de longo prazo. Condições 

de contorno drenadas são definidas para simular cenários realistas, o que influencia 

diretamente a distribuição de pressões e tensões dentro do material. 

Este estudo não apenas avança a compreensão teórica da poroelasticidade em 

3D, mas também demonstra a aplicação prática de técnicas numéricas para resolver 

problemas em engenharia geotécnica e geomecânica. Exemplos de tais problemas 

incluem geometrias irregulares, propriedades heterogêneas e anisotropias. 

Aplicações práticas desse estudo abrangem casos como a subsidência em torno de 

poços de extração, onde é possível considerar condições simplificadas de 

propriedades homogêneas. Assim, a pesquisa proporciona uma base sólida para 

futuras investigações e aplicações no campo da engenharia para a análise e mitigação 

de fenômenos geomecânicos. 

Palavras-chave: poroelasticidade, 3D, método dos elementos finitos. 



 

 

ABSTRACT 

Poroelasticity is an interdisciplinary field that combines the mechanics of porous 

solids and fluid mechanics. This thesis expands the poroelastic formulation from 2D to 

3D, allowing for more precise and realistic simulations. Using the finite element method 

and tetrahedral meshes, the numerical simulation is performed in Python, analyzing 

displacement and pressure in a fluid-saturated rock subjected to compressive 

stresses. 

Explicit methods are employed for temporal integration, which for this problem 

balances computational efficiency and long-term stability. Drained boundary conditions 

are defined to simulate realistic scenarios, which directly influence the distribution of 

pressures and stresses within the material. 

This study not only advances the theoretical understanding of 3D poroelasticity 

but also demonstrates the practical application of numerical techniques to solve 

problems in geotechnical and geomechanical engineering. Examples of such problems 

include irregular geometries, heterogeneous properties, and anisotropies. Practical 

applications of this study encompass cases such as subsidence around extraction 

wells, where simplified conditions of homogeneous properties can be considered. 

Thus, this research provides a solid foundation for future investigations and 

applications in engineering for the analysis and mitigation of geomechanical 

phenomena. 

Keywords: poroelasticity, 3D, finite element method. 
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1 INTRODUÇÃO 

Poroelasticidade é uma teoria que se refere às interações complexas entre o fluxo 

de fluidos e as deformações em sólidos presentes em um meio poroso. Os materiais 

porosos são estruturas compostas por pequenos espaços vazios, ou poros, os quais 

estão preenchidos por fluidos. Essas estruturas podem ser encontradas em objetos 

naturais e artificiais, desde rochas e solos até tecidos biológicos, espumas, cerâmicas 

e produtos de papel (WANG ,2000). 

Quando uma força externa é aplicada a um meio poroso, a pressão exercida afeta 

a fração de volume ocupada pelos poros. Assim, ao considerar os poros preenchidos 

com fluido, sob a influência de uma carga externa, os poros comprimem-se, levando 

a uma mudança na pressão do fluido. Este aumento de pressão impulsiona o 

movimento do fluido através da matriz porosa, uma dinâmica que é crucial para a 

compreensão de processos naturais e industriais. 

Por outro lado, o sólido que compõe a matriz porosa que podem ser 

caracterizados como visco-poro-elásticos também reage a essa mudança. A 

deformação do volume dos poros induz o material sólido a se deslocar e se deformar. 

A natureza dessa deformação depende de uma série de fatores, incluindo as 

propriedades elásticas do sólido, a magnitude da força aplicada e a estrutura do meio 

poroso. A modelagem de tais fenômenos, portanto, requer um entendimento sólido de 

várias disciplinas, mecânica dos fluidos, a mecânica dos sólidos e a termodinâmica. 

Isso torna a poroelasticidade um campo de estudo desafiador e multidisciplinar. 

Na engenharia de petróleo, o estudo da poroelasticidade é fundamental para 

prever o comportamento de reservatórios de petróleo e gás. Na biologia e na medicina, 

pode contribuir para a compreensão dos processos de fluxo e transporte em tecidos 

biológicos. Na geologia, ajuda a entender a dinâmica do fluxo de água subterrânea e 

o comportamento das rochas sob estresse tectônico.  

O Método dos Elementos Finitos (FEM) é uma abordagem numérica utilizada 

para resolver equações diferenciais parciais que modelam uma variedade de 

problemas físicos, incluindo problemas poroelásticos tridimensionais. Em termos 

gerais, o FEM transforma um problema contínuo, como um problema poroelástico, em 
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uma série de problemas discretos que podem ser resolvidos com o auxílio de modelos 

de algebra linear computacional. O domínio contínuo (no nosso caso, o meio poroso 

3D) é subdividido em um conjunto de subdomínios menores e mais manejáveis 

chamados "elementos finitos". Cada elemento é conectado aos outros por pontos 

chamados "nós". Os nós e os elementos formam uma malha que cobre todo o domínio 

do problema (KATTAN, 2008). 

Para resolver um problema poroelástico 3D, primeiramente precisamos 

formular as equações poroelásticas que governam o comportamento do meio. As 

equações poroelásticas são descritas por uma combinação das leis de conservação 

de massa, bem como a lei de Darcy que representa o balanço da quantidade de 

movimento para o fluxo de fluidos em meios porosos. Essas equações são expressas 

em termos de pressões de fluidos e deslocamentos de sólidos. 

No contexto da poroelasticidade, a equação a ser resolvida é uma equação de 

difusão acoplada com as equações de equilíbrio mecânico. Estas equações 

representam a interação entre o movimento do fluido (representado pela equação de 

difusão) e a deformação do sólido (representada pelas equações de equilíbrio). Em 

um problema tridimensional, estas equações são dependentes do espaço em três 

dimensões, tornando-os intrinsecamente mais complexos do que seus equivalentes 

bidimensionais (Cheng, 2016). 

Uma das etapas na aplicação do FEM a um problema poroelástico 3D é a 

discretização do domínio. O domínio (ou seja, o volume do material poroso que 

estamos estudando) é dividido em uma série de pequenos "elementos finitos".  Os 

vértices desses elementos, onde eles se intersectam, são referidos como "nós". Cada 

um desses elementos podem ser tratados como tetraedros ou hexaedros, por 

exemplo.  

Após a discretização, as equações diferenciais são convertidas em um sistema 

de equações algébricas usando um processo chamado de "método dos resíduos 

ponderados", este processo envolve o uso do método de Galerkin.  

Finalmente, as equações algébricas são resolvidas para encontrar a solução 

em cada nó. Em um problema poroelástico, uma das escolhas é a solução em cada 

nó inclui o deslocamento do sólido e a pressão do fluido. Dadas as condições de 
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contorno do problema, o sistema de equações resultante é geralmente grande e 

esparso. 

A aplicação do FEM a problemas poroelásticos 3D é bastante complexo, devido 

ao acoplamento entre o movimento do fluido e a deformação do sólido e à natureza 

tridimensional do problema. No entanto, com uma implementação cuidadosa, o FEM 

pode proporcionar uma ferramenta poderosa para a resolução destes problemas. Uma 

das principais vantagens do FEM é que ele é capaz de lidar com domínios complexos 

e condições de contorno variadas. Isso o torna ideal para modelar problemas 

poroelásticos 3D, que frequentemente envolvem geometrias complicadas e condições 

de contorno variáveis no tempo e no espaço. 

Além disso, o FEM é altamente flexível: o tamanho do problema pode ser 

facilmente aumentado ou diminuído simplesmente alterando o número de elementos 

na malha. Isso significa que o FEM pode ser usado para resolver problemas 

poroelásticos em várias escalas, desde pequenos experimentos de laboratório até 

grandes simulações de reservatórios de petróleo. 

Na mecânica dos solos, uma distinção importante é feita entre problemas 

drenados e não drenados. Essa distinção é baseada na capacidade do fluido de se 

mover ou "drenar" de um meio poroso quando um esforço é aplicado. Nos problemas 

drenados, quando um esforço é aplicado ao meio poroso, o fluido dentro dos poros é 

capaz de se mover livremente para fora dos poros. Essa movimentação de fluido 

causa uma mudança no volume dos poros, levando a uma redistribuição da pressão 

do fluido. Como o fluido pode drenar, a pressão do fluido permanece constante no 

equilíbrio. Por outro lado, nos problemas não drenados, o esforço é aplicado tão 

rapidamente que o fluido nos poros não tem tempo para se mover ou drenar. Outro 

caso é quando o meio está selado e com isso a velocidade de carregamento não 

importa. Como resultado, o volume dos poros permanece constante e a pressão do 

fluido aumenta (Prévost, J.H, 1980).  

Portanto, a distinção entre problemas drenados e não drenados é fundamental 

na poroelasticidade pois remete a caracterização laboratorial dos parâmetros 

poroelásticos. A consideração do regime de drenagem apropriado é crucial para a 

modelagem da resposta de materiais porosos sob carregamento. 
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1.1 OBJETIVO 

Este trabalho tem como objetivo desenvolver e implementar uma solução 

computacional para o modelo poroelástico 3D utilizando o método dos elementos 

finitos, ao utilizar a expansão das equações poroelásticas de 2D para o cenário 

tridimensional. Além disso, busca-se estruturar e construir um algoritmo capaz de 

resolver as equações poroelásticas 3D em um ambiente computacional, permitindo a 

análise detalhada do comportamento de um meio poroso tridimensional quando 

submetido a variações de pressão do fluido ou a tensões na matriz sólida. 

1.2 JUSTIFICATIVA 

A utilização de modelos computacionais tem um papel fundamental em diversas 

áreas da engenharia e das ciências, especialmente no setor de petróleo, pois 

possibilita uma redução significativa de custos operacionais e um aumento de 

segurança em muitas operações. Isso é possível pois esses modelos permitem a 

simulação de diferentes cenários, fornecendo antecipadamente resultados e 

indicando possíveis condições críticas que poderiam surgir no ambiente operacional. 

Na área de petróleo, a modelagem computacional é crucial para a análise da pressão 

de poros, essencial no controle de estabilidade de reservatórios e na prevenção de 

falhas durante a perfuração.  

O projeto de operações de fraturamento hidráulico se baseiam em simulaçÕes 

numéricas de simulações para otimizar a criação de fraturas e maximizar a extração 

de hidrocarbonetos. Modelos computacionais também são indispensáveis em 

processos de Recuperação melhorada, onde permitem a avaliação de diferentes 

estratégias para aumentar a recuperação de petróleo de reservatórios maduros. 

Operações complexas e de alto custo, como a extração de petróleo em águas 

profundas, são diretamente beneficiadas pelo aprimoramento dessas tecnologias de 

simulação, garantindo eficiência e segurança nas operações de perfuração e 

produção. 

No entanto, a simulação de problemas complexos pode rapidamente esgotar os 

recursos computacionais disponíveis. Por isso, é essencial desenvolver um ambiente 
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de desenvolvimento que simplifique a abordagem inicial. Isso facilita a escalabilidade 

dos recursos computacionais e permite a busca por melhores arquiteturas e condições 

de execução. 

Embora softwares como o COMSOL já possuam implementações baseadas em 

elementos finitos, no caso desse trabalho, o objetivo é aprendizado e teste de métodos 

numéricos. Para isso, a extensão das equações do modelo 2D para o 3D e 

implementação numerica em software foi o estudo escolhido. Esta é uma tarefa que 

requer uma compreensão da teoria subjacente e da modelagem computacional, e tem 

o potencial de abrir novas oportunidades em uma variedade de campos de aplicação. 
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2 REVISÃO BIBLIOGRÁFICA 

A poroelasticidade é um campo que estuda a interação entre a deformação de 

sólidos porosos e o fluxo de fluidos em seus poros (Biot, 1941), sendo crucial para 

entender processos geomecânicos e hidrogeológicos (Cheng, 2016). A 

poroelasticidade estática é predominante na literatura, focando em situações onde o 

movimento do fluido e a deformação do esqueleto sólido ocorrem simultaneamente e 

se influenciam mutuamente. Esta abordagem é essencial para modelar 

comportamentos como a consolidação dos solos, onde a drenagem do fluido 

influencia diretamente a deformação do solo (Biot, 1941; Wang, 2000). 

Além disso, a poroelasticidade dinâmica, que considera a propagação de ondas 

elásticas em meios saturados por fluidos, está relacionada à resposta em alta 

frequência, ampliando a aplicação desta teoria para cenários onde a velocidade do 

movimento das fases é significativa. Este ramo é relevante para a análise de vibrações 

e ondas de tensão em materiais porosos saturados com aplicaçÕes para a engenharia 

de reservatórios e estudos sísmicos. A utilização de modelos poroelásticos em 3D 

permite uma análise mais detalhada e realista das interações fluido-sólido em rochas 

e outros materiais geológicos (Coussy, 2003; Dormieux et al., 2006). 

A teoria da poroelasticidade de Biot tem sido amplamente aplicada em diversas 

áreas da engenharia e geociências. No campo da engenharia geotécnica, é utilizada 

para modelar a consolidação de solos saturados, permitindo prever a deformação e a 

dissipação de pressões de poro ao longo do tempo. Na engenharia de reservatórios, 

auxilia na compreensão do comportamento de rochas reservatório durante a produção 

de petróleo. Além disso, na biomecânica, a teoria de Biot é empregada para estudar 

a resposta mecânica de tecidos biológicos porosos, como cartilagens e ossos, sob 

diferentes condições de carga e pressão intersticial. Essas aplicações demonstram a 

versatilidade e a importância da teoria de Biot na modelagem de materiais porosos 

saturados em diversos contextos (BIOT, 1941; WANG, 2000). 

A extensão das equações poroelásticas 2D disponíveis em (Wang, 2000) para 3D 

é um passo necessário para simulações mais precisas e realistas. As equações em 

3D incluem termos adicionais que capturam as variações ao longo do terceiro eixo, 

proporcionando uma representação mais completa dos fenômenos físicos. Esta 
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extensão é vital para a modelagem de processos geomecânicos complexos, onde as 

interações entre os fluidos e a matriz sólida ocorrem em todas as direções espaciais 

(Wang, 2000; Coussy, 2003). 

A adaptação das equações diferenciais parciais do modelo 2D para 3D requer um 

entendimento das interações entre os parâmetros físicos envolvidos. Isso inclui a 

consideração das forças de corpo, tensões de cisalhamento e variações de pressão 

ao longo de todas as direções.  

O método dos elementos finitos (FEM) é uma técnica numérica amplamente 

utilizada para resolver problemas em engenharia e física. O MEF permite a 

discretização de domínios contínuos em elementos menores, facilitando a solução de 

equações diferenciais parciais que descrevem o comportamento do sistema. Esta 

metodologia permite a análise de deformações e distribuições de pressão em 

materiais porosos saturados por fluidos (Hughes, 2000; Zienkiewicz et al., 2013). 

A utilização do MEF envolve a criação de uma malha que representa a geometria 

do material estudado. Cada elemento da malha é associado a uma região do dominío 

acoplada a um conjunto de equações que descrevem o comportamento local do fluido 

e do sólido. A solução dessas equações para todos os elementos permite a construção 

de um modelo global que captura as interações complexas dentro do material (Cook 

et al., 2001; Belytschko et al., 1994). 

A escolha de elementos tetraédricos em malhas de elementos finitos é 

estratégica, especialmente em modelos 3D, devido à sua capacidade de adaptação a 

geometrias complexas e à facilidade na geração automática de malhas. Esses 

elementos possibilitam uma distribuição eficiente e uniforme em domínios 

tridimensionais com formas irregulares, assegurando uma representação mais fiel e 

detalhada da área de estudo. As funções de forma associadas aos tetraedros 

permitem interpolar variáveis de interesse, como deslocamentos, pressões e tensões, 

dentro de cada elemento, proporcionando precisão na análise e versatilidade na 

simulação de fenômenos geomecânicos (Cook et al., 2001; Zienkiewicz et al., 2013). 

A simulação numérica de modelos poroelásticos envolve a resolução de equações 

diferenciais que descrevem as interações entre o fluido e o sólido em meios porosos. 

Utilizando a linguagem de programação Python, por exemplo, é possível implementar 
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algoritmos para resolver essas equações, permitindo a análise temporal e espacial do 

comportamento do sistema. Esta abordagem computacional é essencial para 

investigar a resposta de materiais porosos sob diferentes condições de carregamento 

e confinamento.  

É necessário que a implementação de simulações numéricas realize estudos 

paramétricos e a avaliação de diferentes cenários, oferecendo uma ferramenta para a 

previsão do comportamento do domínio. A simulação numérica é uma parte 

fundamental da análise de poroelasticidade, proporcionando uma compreensão que 

seria difícil de obter por métodos experimentais ou analíticos tradicionais. 

Os métodos explícitos e implícitos são abordagens numéricas utilizadas para a 

integração temporal em simulações poroelásticas. O método explícito calcula as 

respostas do sistema em pequenos incrementos de tempo, o que pode torná-lo mais 

eficiente para certos problemas dinâmicos. Por outro lado, o método implícito envolve 

a resolução de equações simultâneas em cada passo de tempo, o que o torna 

incondicionalmente estável. A escolha entre métodos explícitos e implícitos depende 

de um estudo de estabilidade numérica para garantir a adequação da abordagem em 

relação à estabilidade e convergência da simulação (Bathe, 1996; Hall, 2012). 

Por outro lado, o método implícito, embora envolva a inversão de matrizes que 

podem ser resolvidas com ferramentas do Python, é computacionalmente intensivo. 

A escolha entre métodos explícitos e implícitos depende das características 

específicas do problema a ser resolvido. (Zienkiewicz et al., 2013; Cook et al., 2001). 

A definição de condições de contorno são parte do problema e também aspecto 

crítico nas simulações poroelásticas, pois determina como o sistema interage com seu 

ambiente. Condições de contorno drenadas, por exemplo, permitem a saída de fluido 

do sistema, influenciando diretamente a distribuição de pressões e tensões dentro do 

material. Estas condições são essenciais para modelar cenários realistas onde o fluxo 

de fluido pode ocorrer livremente através das fronteiras do sistema. 

É evidente que a escolha adequada das condições de contorno garante que a 

simulação represente fielmente os fenômenos físicos observados em situações reais. 

Condições de contorno bem definidas são fundamentais para a precisão dos 

resultados da simulação, permitindo uma análise detalhada e confiável dos processos 
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geomecânicos. Este aspecto é particularmente importante em estudos de estabilidade 

de encostas, fundações e reservatórios de petróleo, onde a modelagem precisa das 

condições de contorno é essencial para a otimização da perfuração de poços, o 

planejamento de operações de fraturamento hidráulico, a implementação de técnicas 

de recuperação avançada de petróleo (EOR) e a avaliação da integridade estrutural 

dos reservatórios durante a produção (Cheng, 2016; Coussy, 2003). 
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3 MÉTODO 

A primeira etapa deste projeto consistiu em estender a formulação poroelastica 

de duas dimensões para três dimensões. Para realizar essa tarefa, a literatura 

existente referente à poroelasticidade 2D foi de extrema importância. O processo 

descrito abaixo envolveu o estudo cuidadoso da literatura base (WANG, 2000) e a 

integração dos conhecimentos adquiridos para o desenvolvimento de um quadro 

teórico coerente e sólido para a poroelasticidade 3D.  

3.1 DESENVOLVIMENTO DAS EQUAÇÕES PARA O MODELO 

POROELÁSTICO 3D – SISTEMAS DE EQUAÇÕES NA FORMA 

MATRICIAL 

O propósito fundamental deste trabalho é resolver o sistema de equações 

matriciais [𝐌]{𝐔}𝒕+∆𝒕 + [𝐊]{𝐔}𝒌 = {𝐅}𝒌 sendo k uma variável que pode apontar para 

aproximação explícita 𝒌 = 𝒕 ou implícita 𝐤 = 𝐭 + ∆𝐭 ou mista ao partir dos termos K e 

F para atender parte 𝒌 = 𝒕 e parte 𝐤 = 𝐭 + ∆𝐭. Este sistema representa as equações 

diferenciais parciais que governam a difusão de fluidos na rocha. A matriz [𝐾] é a 

matriz de rigidez, que descreve as propriedades elásticas da rocha e sua interação 

com o fluido. O vetor 𝑈 representa os deslocamentos nas três direçoes e a pressão 

de poros, enquanto o vetor 𝐹 contém as forças externas que atuam sobre o sistema. 

O processo de solução é realizado de forma iterativa, avançando passo a passo 

no tempo. Em cada passo, a solução do sistema de equações fornece os 

deslocamentos e pressões dos poros para o próximo instante. Estes valores são então 

armazenados para uso futuro. 

O armazenamento dos resultados, permite a criação de representações visuais 

dos deslocamentos e pressões dos poros ao longo do tempo. Estas representações 

podem ser estáticas (imagens) ou dinâmicas (animações), proporcionando uma visão 

clara da evolução dessas quantidades ao longo do tempo. Isso não só facilita a 

compreensão dos fenômenos em estudo, mas também pode revelar padrões ou 

comportamentos que poderiam ser difíceis de perceber de outra forma. 
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Armazenar esses resultados também possibilita uma análise aprofundada do 

comportamento dos deslocamentos e pressões dos poros. Ao estudar a evolução ao 

longo do tempo, podemos visualizar o comportamento da rocha e do fluido sob várias 

condições.  

3.2 DISCRETIZAÇÃO ESPACIAL USANDO TETRAEDROS  

O primeiro passo crucial na implementação computacional do modelo 

poroelástico 3D foi a escolha do elemento finito e suas funções de forma. Os 

elementos finitos são subdivisões do domínio total do problema e, neste contexto, 

referem-se ao volume total do meio poroso em estudo. A seleção de um elemento 

finito impacta diretamente a precisão e eficácia da solução computacional. 

A Figura 1 ilustra a geometria do elemento tetraédrico utilizado na discretização 

espacial do dominío, destacando seus quatro nós e a disposição das arestas que 

formam a estrutura. Além disso, a simplicidade dos elementos isoparamétricos facilita 

a definição e o cálculo das funções de forma, essenciais para a precisão das 

simulações. Os nós formadores de cada elemento são descritos por coordenadas 

cartesianas, o que permite uma representação clara e eficiente no espaço 3D. 

 

 

Figura 1: Elemento Tetraédrico 

A Equação (1) mostra o cálculo implementado para o volume de cada elemento 

finito da malha, a partir das coordenadas cartesianas dos nós formadores. 
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 6𝑉 = |

1 𝑥1 𝑦1 𝑧1
1 𝑥2 𝑦2 𝑧2
1 𝑥3 𝑦3 𝑧3
1 𝑥4 𝑦4 𝑧4

| (1) 

3.3 EQUAÇÃO GERAL DAS FUNÇÕES DE FORMA DO ELEMENTO 

TETRAÉDRICO 

As equações (2) a (5) descrevem analiticamente o formato das funções para 

cada elemento de deslocamento e pressão para cada elemento. Como o problema 

está em um cenário de três dimensões, com a presença de um fluido que exercerá 

uma pressão no meio poroso, descrito por tetraedros, teremos portanto quatro funções 

de forma 𝑁𝐾, três funções em relação aos deslocamentos U,V e W e uma em relação 

à pressão P onde 𝑚  representa o número de nós do elemento finito escolhido 

conforme posto por (Wang, 2000).   

 𝑢̂𝑒(𝑥, 𝑦, 𝑧) = ∑𝑚𝐾=1 𝑁𝐾
𝑒(𝑥, 𝑦, 𝑧)𝑈𝐾 (2) 

 𝑣𝑒(𝑥, 𝑦, 𝑧) = ∑𝑚𝐾=1 𝑁𝐾
𝑒(𝑥, 𝑦, 𝑧)𝑉𝐾 (3) 

 𝑤̂𝑒(𝑥, 𝑦, 𝑧) = ∑𝑚𝐾=1 𝑁𝐾
𝑒(𝑥, 𝑦, 𝑧)𝑊𝐾 (4) 

 𝑝̂𝑒(𝑥, 𝑦, 𝑧) = ∑𝑚𝐾=1 𝑁𝐾
𝑒(𝑥, 𝑦, 𝑧)𝑃𝐾 (5)  

3.4 SOLUÇÕES DAS FUNÇÕES DE FORMA PARA O DOMÍNIO DO 

PROBLEMA 

As equações (6) a (9) são as equações globais de deslocamento e pressão 

para o problema Poroelástico 3D, definidas para o domínio do problema, isso significa 

realizar a somatória para o número de nós do elemento tetraédrico, ou seja, quatro 

nós.   

 𝑢̂(𝑥, 𝑦, 𝑧) = ∑𝑁𝑁𝑂𝐷𝐸𝐾=1 𝑁𝐾(𝑥, 𝑦, 𝑧)𝑈𝐾 (6) 

 𝑣(𝑥, 𝑦, 𝑧) = ∑𝑁𝑁𝑂𝐷𝐸𝐾=1 𝑁𝐾(𝑥, 𝑦, 𝑧)𝑉𝐾 (7) 
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 𝑤̂(𝑥, 𝑦, 𝑧) = ∑𝑁𝑁𝑂𝐷𝐸𝐾=1 𝑁𝐾(𝑥, 𝑦, 𝑧)𝑊𝐾 (8) 

 𝑝̂(𝑥, 𝑦, 𝑧) = ∑𝑁𝑁𝑂𝐷𝐸𝐾=1 𝑁𝐾(𝑥, 𝑦, 𝑧)𝑃𝐾 (9) 

 

3.5 FUNÇÕES DE FORMA DO TETRAEDRO 

Para o elemento finito tetraédrico, as funções de forma são detalhadamente 

delineadas na literatura (Kattan, 2008). Com base nessa literatura, derivamos as 

equações (10) a (13), que caracterizam as funções de forma para o elemento 

tetraédrico linear, considerando que os nós são descritos no espaço em coordenadas 

cartesianas. Esse conjunto de equações serve como uma base para a interpolação 

da solução no elemento tetraédrico e são vitais para a implementação do Método dos 

Elementos Finitos no contexto da poroelasticidade 3D.  

  

 𝑁1 =
1

6𝑉
(𝛼1 + 𝛽1𝑥 + 𝛾1𝑦 + 𝛿1𝑧) (10) 

 𝑁2 =
1

6𝑉
(𝛼2 + 𝛽2𝑥 + 𝛾2𝑦 + 𝛿2𝑧) (11) 

 𝑁3 =
1

6𝑉
(𝛼3 + 𝛽3𝑥 + 𝛾3𝑦 + 𝛿3𝑧) (12) 

 𝑁4 =
1

6𝑉
(𝛼4 + 𝛽4𝑥 + 𝛾4𝑦 + 𝛿4𝑧) (13) 

 𝛼1 = |

𝑥2 𝑦2 𝑧2
𝑥3 𝑦3 𝑧3
𝑥4 𝑦4 𝑧4

| ; 𝛼2 = − |

𝑥1 𝑦1 𝑧1
𝑥3 𝑦3 𝑧3
𝑥4 𝑦4 𝑧4

| ; 𝛼3 = |

𝑥1 𝑦1 𝑧1
𝑥2 𝑦2 𝑧2
𝑥4 𝑦4 𝑧4

| ; 𝛼4 = − |

𝑥1 𝑦1 𝑧1
𝑥2 𝑦2 𝑧2
𝑥3 𝑦3 𝑧3

| (14) 

 𝛽1 = − |

1 𝑦2 𝑧2
1 𝑦3 𝑧3
1 𝑦4 𝑧4

| ; 𝛽2 = |

1 𝑦1 𝑧1
1 𝑦3 𝑧3
1 𝑦4 𝑧4

| ; 𝛽3 = |

1 𝑦1 𝑧1
1 𝑦2 𝑧2
1 𝑦4 𝑧4

| ; 𝛽4 = |

1 𝑦1 𝑧1
1 𝑦2 𝑧2
1 𝑦3 𝑧3

|  (15) 

 𝛾1 = |

1 𝑥2 𝑧2
1 𝑥3 𝑧3
1 𝑥4 𝑧4

| ; 𝛾2 = − |

1 𝑥1 𝑧1
1 𝑥3 𝑧3
1 𝑥4 𝑧4

| ; 𝛾3 = |
1 𝑥1 𝑧1
1 𝑥2 𝑧2
1 𝑥4 𝑧4

| ; 𝛾4 = − |

1 𝑥1 𝑧1
1 𝑥2 𝑧2
1 𝑥3 𝑧3

| (16) 
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 𝛿1 = − |

1 𝑥2 𝑦2
1 𝑥3 𝑦3
1 𝑥4 𝑦4

| ; 𝛿2 = |

1 𝑥1 𝑦1
1 𝑥3 𝑦3
1 𝑥4 𝑦4

| ; 𝛿3 = − |

1 𝑥1 𝑦1
1 𝑥2 𝑦2
1 𝑥4 𝑦4

| ; 𝛿4 = |

1 𝑥1 𝑦1
1 𝑥2 𝑦2
1 𝑥3 𝑦3

| (17) 

3.6 EQUAÇÕES DE EQUILIBRIO MECÂNICO 

As equações de equilíbrio mecânico expressam o equilíbrio de forças no 

material poroso sob condições de tensão. A notação geral para estas equações 

encapsula as interações entre deformações do material sólido e o fluxo do fluido no 

meio poroso (WANG, 2000). Este conjunto de equações guia a implementação 

computacional e a análise numérica. 

A notação geral para as equações de equilibrio mecânico para o problema 

tridimensional está descrita na Equação (18).   

 
𝜕𝜎𝑗𝑖

𝜕𝑥𝑗
= −𝐹𝑖 (18)  

 Assim a notação para cada direção está disponível nas equações (19) a (21).   

 
𝜕𝜎𝑥𝑥

𝜕𝑥
+
𝜕𝜎𝑦𝑥

𝜕𝑦
+
𝜕𝜎𝑧𝑥

𝜕𝑧
+ 𝐹𝑥 = 0 (19) 

  
𝜕𝜎𝑥𝑦

𝜕𝑥
+
𝜕𝜎𝑦𝑦

𝜕𝑦
+
𝜕𝜎𝑧𝑦

𝜕𝑧
+ 𝐹𝑧 = 0 (20) 

 
𝜕𝜎𝑥𝑧

𝜕𝑥
+
𝜕𝜎𝑦𝑧

𝜕𝑦
+
𝜕𝜎𝑧𝑧

𝜕𝑧
+ 𝐹𝑧 = 0 (21) 

3.7 EQUAÇÕES DIFERENCIAIS PARCIAIS CONTENDO AS 

COMPONENTES DE DESLOCAMENTO USANDO EQUAÇÕES 

CONSTITUTIVAS 

O processo de desenvolvimento das equações diferenciais parciais que 

representam o equilíbrio mecânico com as componentes de deslocamento é 

fundamental na análise poroelástica. Essas equações são obtidas através da 

substituição das equações constitutivas, que descrevem as propriedades inerentes do 
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material poroso, nas equações de equilíbrio de forças ao considerar o meio como 

isotrópico. 

A equação geral de equilíbrio mecânico, que representa o comportamento do 

meio poroso em 3D sob uma variedade de condições de carregamento, é dada pela 

equação (22). As equações específicas para cada uma dessas direções são 

fornecidas pelas equações (23) a (25), respectivamente.  

𝐺∇2𝑢𝑖 +
𝐺

1−2𝜈

𝜕2𝑢𝑘

𝜕𝑥𝑖𝜕𝑥𝑘
= 𝛼

𝜕𝑝

𝜕𝑥𝑖
− 𝐹𝑖  (22) 

𝐺∇2𝑢 +
𝐺

1−2𝜈
[
𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑣

𝜕𝑥𝜕𝑦
+

𝜕2𝑤

𝜕𝑥𝜕𝑧
] = 𝛼

𝜕𝑝

𝜕𝑥
− 𝐹𝑥 (23) 

𝐺∇2𝑣 +
𝐺

1−2𝜈
[
𝜕2𝑢

𝜕𝑦𝜕𝑥
+

𝜕2𝑣

𝜕𝑦2
+

𝜕2𝑤

𝜕𝑦𝜕𝑧
] = 𝛼

𝜕𝑝

𝜕𝑦
− 𝐹𝑦 (24) 

𝐺∇2𝑤 +
𝐺

1−2𝜈
[
𝜕2𝑢

𝜕𝑧𝜕𝑥
+

𝜕2𝑣

𝜕𝑧𝜕𝑦
+
𝜕2𝑤

𝜕𝑧2
] = 𝛼

𝜕𝑝

𝜕𝑧
− 𝐹𝑧 (25) 

3.8 EQUAÇÕES DE DESLOCAMENTO-PRESSÃO DAS EQUAÇÕES DE 

EQUILÍBRIO MECÂNICO 

As forças de corpo são forças distribuídas que atuam em todo o volume de um 

objeto, como a força gravitacional. Ao zerar as forças de corpo, estamos assumindo 

que a influência dessas forças é insignificante para o problema em estudo, 

principalmente para o caso monofásico que estamos lindando, onde o sistema está 

em equilibrio a desidade é constante e temos uma pressão em excesso, ou seja, uma 

pressão adicional que submete o meio a uma carga externa. Essa é uma suposição 

feita no livro base e simplifica a análise, permitindo focar nas interações mecânicas 

mais relevantes entre a estrutura sólida e o fluido nos poros. 

Desta maneira, com a suposição de que as forças de corpo são 

negligenciáveis, podemos simplificar a Equação (22), o que resulta nas equações de 

deslocamento-pressão das equações de equilíbrio mecânico. Essas equações são 

dadas por (26), (27) e (28) para as direções x, y e z, respectivamente. Essas são as 

equações que governam o comportamento mecânico do meio poroso, permitindo 
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entender como o deslocamento da estrutura sólida e a pressão do fluido nos poros 

estão inter-relacionados em resposta às forças aplicadas.  

𝐺 [
𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
+
𝜕2𝑢

𝜕𝑧2
] +

𝐺

1−2𝜈
[
𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑣

𝜕𝑥𝜕𝑦
+

𝜕2𝑤

𝜕𝑥𝜕𝑧
] = 𝛼

𝜕𝑝

𝜕𝑥
 (26) 

𝐺 [
𝜕2𝑣

𝜕𝑥2
+

𝜕2𝑣

𝜕𝑦2
+
𝜕2𝑣

𝜕𝑧2
] +

𝐺

1−2𝜈
[
𝜕2𝑢

𝜕𝑦𝜕𝑥
+

𝜕2𝑣

𝜕𝑦2
+

𝜕2𝑤

𝜕𝑦𝜕𝑧
] = 𝛼

𝜕𝑝

𝜕𝑦
 (27) 

𝐺 [
𝜕2𝑤

𝜕𝑥2
+
𝜕2𝑤

𝜕𝑦2
+
𝜕2𝑤

𝜕𝑧2
] +

𝐺

1−2𝜈
[
𝜕2𝑢

𝜕𝑧𝜕𝑥
+

𝜕2𝑣

𝜕𝑧𝜕𝑦
+
𝜕2𝑤

𝜕𝑧2
] = 𝛼

𝜕𝑝

𝜕𝑧
 (28)  

3.9 EQUAÇÕES DE DESLOCAMENTO-PRESSÃO DAS EQUAÇÕES DE 

EQUILÍBRIO MECÂNICO MANIPULADAS 

As equações de equilíbrio mecânico obtidas no tópico anterior são complexas 

e não mantem de forma clara a conexão entre os componentes de deslocamento (u, 

v, w) e a pressão (P) com os componentes de tensão. 

Por isso, optamos por uma reorganização e manipulação dessas equações, 

assim como na literatura, visando expressá-las de uma maneira que evidencie essa 

conexão e facilite o tratamento numérico subsequente. O objetivo aqui é reformular as 

equações para que possamos lidar diretamente com os componentes de 

deslocamento e pressão, mas mantendo a ligação com as tensões. 

Com essa manipulação, chegamos às equações (29) a (31), em que as 

constantes multiplicativas são 
2𝐺(1−𝜈)

1−2𝜈
, 
2𝐺𝜈

1−2𝜈
 e 𝐺 respectivamente. Nota-se que esses 

termos comuns são derivados da relação de Poisson e ao módulo de cisalhamento, 

características intrínseca dos materiais elásticos. Essas equações reformuladas nos 

permitem proceder com a implementação numérica do problema de forma mais direta.  

 

2𝐺(1−𝜈)

1−2𝜈

𝜕2𝑢

𝜕𝑥2
+

2𝐺𝜈

1−2𝜈

𝜕2𝑣

𝜕𝑥𝜕𝑦
+

2𝐺𝜈

1−2𝜈

𝜕2𝑤

𝜕𝑥𝜕𝑧
+ 𝐺

𝜕2𝑢

𝜕𝑦2
  + 𝐺

𝜕2𝑢

𝜕𝑧2
  + 𝐺

𝜕2𝑣

𝜕𝑥𝜕𝑦
+ 𝐺

𝜕2𝑤

𝜕𝑥𝜕𝑧
= 𝛼

𝜕𝑝

𝜕𝑥
 (29) 
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2𝐺(1−𝜈)

1−2𝜈

𝜕2𝜈

𝜕𝑦2
+

2𝐺𝜈

1−2𝜈

𝜕2𝑢

𝜕𝑦𝜕𝑥
+

2𝐺𝜈

1−2𝜈

𝜕2𝑤

𝜕𝑦𝜕𝑧
+ 𝐺

𝜕2𝑣

𝜕𝑥2
  + 𝐺

𝜕2𝑣

𝜕𝑧2
  + 𝐺

𝜕2𝑢

𝜕𝑦𝜕𝑥
+ 𝐺

𝜕2𝑤

𝜕𝑦𝜕𝑧
= 𝛼

𝜕𝑝

𝜕𝑦
 (30) 

 

2𝐺(1−𝜈)

1−2𝜈

𝜕2𝑤

𝜕𝑧2
+

2𝐺𝜈

1−2𝜈

𝜕2𝑢

𝜕𝑧𝜕𝑥
+

2𝐺𝜈

1−2𝜈

𝜕2𝑣

𝜕𝑧𝜕𝑦
+ 𝐺

𝜕2𝑤

𝜕𝑥2
  + 𝐺

𝜕2𝑤

𝜕𝑦2
  + 𝐺

𝜕2𝑢

𝜕𝑧𝜕𝑥
+ 𝐺

𝜕2𝑣

𝜕𝑧𝜕𝑦
= 𝛼

𝜕𝑝

𝜕𝑧
 (31) 

 

3.10 MÉTODO DOS RESÍDUOS PONDERADOS  

No contexto do Método dos Elementos Finitos, a solução de um problema é 

aproximada dentro de cada elemento por meio de funções de interpolação, também 

chamadas de funções de forma. Essas funções de forma, que são definidas 

localmente para cada elemento, permitem a descrição do comportamento do 

problema dentro do elemento em termos dos valores da solução nos nós do elemento. 

No caso do problema poroelástico tridimensional que estamos considerando, 

essas funções de forma são aplicadas às componentes de deslocamento em cada 

direção (u, v, w) e à pressão dos poros (p), sendo elas parte constituinte das Equações 

de deslocamento e pressão (2), (3), (4), e (5). Assim, 𝑈𝐾, 𝑉𝐾, 𝑊𝐾 e 𝑃𝐾 representam o 

deslocamento e a pressão dos poros em cada nó do elemento, respectivamente. 

Para resolver o problema, adotamos o método de Galerkin, que é uma variante 

do método de resíduos ponderados. O objetivo deste método é minimizar o resíduo, 

ou seja, a diferença entre a solução aproximada e a solução exata da equação 

governante. Neste método, as funções de ponderação escolhidas são as próprias 

funções de forma. 

Ao aplicar este método, o domínio do problema é dividido em uma malha de 

elementos finitos tetraédricos, e a solução é obtida por meio da integração das 

equações governantes ponderadas em cada um desses elementos. Isso resulta em 

um sistema linear de equações algébricas que pode ser resolvido para encontrar a 

solução aproximada do problema em toda a malha. 
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Assim, para cada equação governante, obtemos um conjunto de equações de 

resíduos ponderados. Estas são dadas pelas equações (32) a (34). 

 ∫ ∫ ∫
𝐷

2𝐺(1−𝜈)

1−2𝜈

𝜕2𝑢

𝜕𝑥2
+

2𝐺𝜈

1−2𝜈

𝜕2𝑣

𝜕𝑥𝜕𝑦
+

2𝐺𝜈

1−2𝜈

𝜕2𝑤

𝜕𝑥𝜕𝑧
+ 𝐺

𝜕2𝑢

𝜕𝑦2
  + 𝐺

𝜕2𝑢

𝜕𝑧2
  + 𝐺

𝜕2𝑣

𝜕𝑥𝜕𝑦
+ 𝐺

𝜕2𝑤

𝜕𝑥𝜕𝑧
−

𝛼
𝜕𝑝

𝜕𝑥
]𝑁𝐿(𝑥, 𝑦, 𝑧)𝑑𝑥𝑑𝑦𝑑𝑧 = 0 (32) 

  

 ∫ ∫ ∫
𝐷

2𝐺(1−𝜈)

1−2𝜈

𝜕2𝑣

𝜕𝑦2
+

2𝐺𝜈

1−2𝜈

𝜕2𝑢

𝜕𝑦𝜕𝑥
+

2𝐺𝜈

1−2𝜈

𝜕2𝑤

𝜕𝑦𝜕𝑧
+ 𝐺

𝜕2𝑢

𝜕𝑥2
  + 𝐺

𝜕2𝑣

𝜕𝑧2
  + 𝐺

𝜕2𝑢

𝜕𝑦𝜕𝑥
+ 𝐺

𝜕2𝑤

𝜕𝑦𝜕𝑧
−

𝛼
𝜕𝑝

𝜕𝑦
]𝑁𝐿(𝑥, 𝑦, 𝑧)𝑑𝑥𝑑𝑦𝑑𝑧 = 0 (33) 

  

 ∫ ∫ ∫
𝐷

2𝐺(1−𝜈)

1−2𝜈

𝜕2𝑤

𝜕𝑧2
+

2𝐺𝜈

1−2𝜈

𝜕2𝑢

𝜕𝑧𝜕𝑥
+

2𝐺𝜈

1−2𝜈

𝜕2𝑣

𝜕𝑧𝜕𝑦
+ 𝐺

𝜕2𝑤

𝜕𝑥2
  + 𝐺

𝜕2𝑤

𝜕𝑦2
  + 𝐺

𝜕2𝑢

𝜕𝑧𝜕𝑥
+ 𝐺

𝜕2𝑣

𝜕𝑧𝜕𝑦
−

𝛼
𝜕𝑝

𝜕𝑧
]𝑁𝐿(𝑥, 𝑦, 𝑧)𝑑𝑥𝑑𝑦𝑑𝑧 = 0 (34) 

 

3.11 INTEGRAÇÃO POR PARTES  

A integração por partes permite transformar as equações diferenciais de 

segunda ordem em equações de primeira ordem. Quando aplicamos a integração por 

partes às Equações de resíduos ponderados (32) a (34) referentes aos resíduos 

ponderados, reduzimos a ordem das derivadas para um. Isso é feito manipulando as 

equações de maneira que as derivadas de segunda ordem sejam "transferidas" das 

funções de ponderação para as funções de forma, resultando em equações de 

primeira ordem. 

Em seguida, substituímos as expressões para as funções de forma de um 

elemento tetraédrico como descrito pelas Equações (6) a (9) nas equações integradas 

por partes. Este procedimento nos permite expressar o problema inteiramente em 

termos das incógnitas nodais. 
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Como resultado deste processo, obtemos as Equações (35) a (37). Estas 

representam as equações de resíduos ponderados, agora em termos das variáveis 

nodais e com derivadas de primeira ordem.  

 

∫ ∫ ∫
𝐷
  [
2𝐺(1−𝜈)

1−2𝜈

𝜕𝑁𝐾

𝜕𝑥

𝜕𝑁𝐿

𝜕𝑥
+ 𝐺

𝜕𝑁𝐾

𝜕𝑦

𝜕𝑁𝐿

𝜕𝑦
+ 𝐺

𝜕𝑁𝐾

𝜕𝑧

𝜕𝑁𝐿

𝜕𝑧
] 𝑈𝐾𝑑𝑥𝑑𝑦𝑑𝑧

+∫ ∫ ∫
𝐷
  [

2𝐺𝜈)

1−2𝜈

𝜕𝑁𝐾

𝜕𝑥

𝜕𝑁𝐿

𝜕𝑦
+ 𝐺

𝜕𝑁𝐾

𝜕𝑦

𝜕𝑁𝐿

𝜕𝑥
] 𝑉𝐾𝑑𝑥𝑑𝑦𝑑𝑧

+∫ ∫ ∫
𝐷
  [

2𝐺𝜈)

1−2𝜈

𝜕𝑁𝐾

𝜕𝑥

𝜕𝑁𝐿

𝜕𝑧
+ 𝐺

𝜕𝑁𝐾

𝜕𝑧

𝜕𝑁𝐿

𝜕𝑥
]𝑊𝐾𝑑𝑥𝑑𝑦𝑑𝑧

+∫ ∫ ∫
𝐷
[𝛼

𝜕𝑁𝐾

𝜕𝑥
𝑁𝐿] 𝑃𝐾𝑑𝑥𝑑𝑦

−∫ ∫
Γ
[(𝜎𝑥𝑥 + 𝛼𝑝)𝑛𝑥 + 𝜎𝑥𝑦𝑛𝑦 + 𝜎𝑥𝑧𝑛𝑧]𝑁𝐿𝑑𝐴 = 0

 (35) 

 

 

∫ ∫ ∫
𝐷
  [
2𝐺(1−𝜈)

1−2𝜈

𝜕𝑁𝐾

𝜕𝑦

𝜕𝑁𝐿

𝜕𝑦
+ 𝐺

𝜕𝑁𝐾

𝜕𝑥

𝜕𝑁𝐿

𝜕𝑥
+ 𝐺

𝜕𝑁𝐾

𝜕𝑧

𝜕𝑁𝐿

𝜕𝑧
] 𝑈𝐾𝑑𝑥𝑑𝑦𝑑𝑧

+∫ ∫ ∫
𝐷
  [

2𝐺𝜈)

1−2𝜈

𝜕𝑁𝐾

𝜕𝑦

𝜕𝑁𝐿

𝜕𝑥
+ 𝐺

𝜕𝑁𝐾

𝜕𝑥

𝜕𝑁𝐿

𝜕𝑦
] 𝑉𝐾𝑑𝑥𝑑𝑦𝑑𝑧

+∫ ∫ ∫
𝐷
  [

2𝐺𝜈)

1−2𝜈

𝜕𝑁𝐾

𝜕𝑦

𝜕𝑁𝐿

𝜕𝑧
+ 𝐺

𝜕𝑁𝐾

𝜕𝑧

𝜕𝑁𝐿

𝜕𝑦
]𝑊𝐾𝑑𝑥𝑑𝑦𝑑𝑧

+∫ ∫ ∫
𝐷
[𝛼

𝜕𝑁𝐾

𝜕𝑦
𝑁𝐿] 𝑃𝐾𝑑𝑥𝑑𝑦

−∫ ∫
Γ
[(𝜎𝑦𝑥𝑛𝑥 + (𝜎𝑦𝑦 + 𝛼𝑝)𝑛𝑦 + 𝜎𝑦𝑧𝑛𝑧]𝑁𝐿𝑑𝐴 = 0

 (36) 

 

 

∫ ∫ ∫
𝐷
  [
2𝐺(1−𝜈)

1−2𝜈

𝜕𝑁𝐾

𝜕𝑧

𝜕𝑁𝐿

𝜕𝑧
+ 𝐺

𝜕𝑁𝐾

𝜕𝑥

𝜕𝑁𝐿

𝜕𝑥
+ 𝐺

𝜕𝑁𝐾

𝜕𝑦

𝜕𝑁𝐿

𝜕𝑦
] 𝑈𝐾𝑑𝑥𝑑𝑦𝑑𝑧

+∫ ∫ ∫
𝐷
  [

2𝐺𝜈)

1−2𝜈

𝜕𝑁𝐾

𝜕𝑧

𝜕𝑁𝐿

𝜕𝑥
+ 𝐺

𝜕𝑁𝐾

𝜕𝑥

𝜕𝑁𝐿

𝜕𝑧
] 𝑉𝐾𝑑𝑥𝑑𝑦𝑑𝑧

+∫ ∫ ∫
𝐷
  [

2𝐺𝜈)

1−2𝜈

𝜕𝑁𝐾

𝜕𝑧

𝜕𝑁𝐿

𝜕𝑦
+ 𝐺

𝜕𝑁𝐾

𝜕𝑦

𝜕𝑁𝐿

𝜕𝑧
]𝑊𝐾𝑑𝑥𝑑𝑦𝑑𝑧

+∫ ∫ ∫
𝐷
[𝛼

𝜕𝑁𝐾

𝜕𝑧
𝑁𝐿] 𝑃𝐾𝑑𝑥𝑑𝑦

−∫ ∫
Γ
[(𝜎𝑧𝑥𝑛𝑥 + 𝜎𝑧𝑦𝑛𝑦 + (𝜎𝑧𝑧 + 𝛼𝑝)𝑛𝑧]𝑁𝐿𝑑𝐴 = 0

 (37) 

 

3.12 EQUAÇÕES PARA A PRESSÃO DE POROS A PARTIR DA EQUAÇÃO 

DE DIFUSÃO DE FLUIDO 

Ao seguir o equacionamento disponivel em (Wang, 2000) a partir da equação 

geral para a difusão de fluido expressão em (38), obtemos a equação (39).   
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 𝛼
𝜕𝑒𝑘𝑘

𝜕𝑡
+ 𝑆𝑒

𝜕𝑝

𝜕𝑡
=

𝑘

𝜇
∇2𝑝 + 𝑄 (38) 

 𝛼
𝜕

𝜕𝑡
[
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+
𝜕𝑤

𝜕𝑧
] + 𝑆𝑒

𝜕𝑝

𝜕𝑡
=

𝑘

𝜇
[
𝜕2𝑝

𝜕𝑥2
+

𝜕2𝑝

𝜕𝑦2
+

𝜕2𝑝

𝜕𝑦2
] (39) 

3.13 INTEGRAÇÃO POR PARTES APÓS A APLICAÇÃO DO MÉTODO DOS 

RESÍDUOS PONDERADOS PARA A EQUAÇÃO DE DIFUSÃO DO 

FLUIDO 

O mesmo procedimento utilizado para se chegar nas Equações (35) a (37) é 

aplicado para a equação de difusão de fluido e assim obtemos a Equação (40).   

 

∫ ∫ ∫
𝐷
𝛼 [𝑁𝐿

𝜕𝑁𝐾

𝜕𝑥

𝑑𝑈𝐾

𝑑𝑡
+𝑁𝐿

𝜕𝑁𝐾

𝜕𝑦

𝑑𝑉𝐾

𝑑𝑡
+ 𝑁𝐿

𝜕𝑁𝐾

𝜕𝑧

𝑑𝑊𝐾

𝑑𝑡
] 𝑑𝑥𝑑𝑦𝑑𝑧

+∫ ∫ ∫
𝐷
𝑆𝑒𝑁𝐿𝑁𝐾

𝑑𝑃𝐾

𝑑𝑡
𝑑𝑥𝑑𝑦𝑑𝑧

+∫ ∫ ∫
𝐷

𝑘

𝜇
[
𝜕𝑁𝐾

𝜕𝑥

𝜕𝑁𝐿

𝜕𝑥
+
𝜕𝑁𝐾

𝜕𝑦

𝜕𝑁𝐿

𝜕𝑦
+
𝜕𝑁𝐾

𝜕𝑧

𝜕𝑁𝐿

𝜕𝑧
] 𝑃𝐾𝑑𝑥𝑑𝑦𝑑𝑧

−∫ ∫
𝜏
[
𝜕𝑝

𝜕𝑥
𝑛𝑥 +

𝜕𝑝

𝜕𝑦
𝑛𝑦 +

𝜕𝑝

𝜕𝑧
𝑛𝑧] 𝑁𝐿𝑑𝐴 = 0

 (40) 

3.14 EQUAÇÕES RESIDUAIS PONDERADAS INTEGRADAS POR PARTES 

NA FORMA MATRICIAL: EQUILIBRIO MECÂNICO E DIFUSÃO DE 

FLUIDO 

Uma das etapas-chave do MEF é o transporte das equações locais do 

elemento na matriz global do sistema. Este procedimento consiste em somar as 

contribuições dos coeficientes U, V, W e P (referentes ao deslocamento nas direções 

x, y, z e à pressão dos poros, respectivamente) de cada elemento para a matriz global. 

Em termos mais concretos, isto significa que para cada nó compartilhado por vários 

elementos, as contribuições de cada elemento para esse nó são somadas. 

Ao organizar as Equações (35), (36), (37) e (40) desta forma, é possível 

reformulá-las na forma matricial. Essa etapa é crucial, pois transforma as equações 

em um formato que é mais eficiente e conveniente para solucionar numericamente. 

As expressões matriciais resultantes podem ser vistas nas equações (41) a (43). 
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É importante destacar que a montagem do sistema global é uma etapa crítica  

e deve ser exata, uma vez que qualquer erro nesta fase pode levar a resultados 

incorretos ou instáveis no processo de solução.  

 [𝑆11]𝑈 + [𝑆12]𝑉 + [𝑆13]𝑊 + [𝑆14]𝑃 = 𝐵1 (41) 

 [𝑆21]𝑈 + [𝑆22]𝑉 + [𝑆23]𝑊 + [𝑆24]𝑃 = 𝐵2 (42) 

 [𝑆31]𝑈 + [𝑆32]𝑉 + [𝑆33]𝑊 + [𝑆34]𝑃 = 𝐵3 (43)  

3.15 COMPONENTES DA MATRIZ 𝑺𝒊𝒋 

As matrizes 𝑆𝑖𝑗 e os termos 𝐵𝑖 formam a base da representação matricial de 

nosso sistema de equações. Na verdade, esses componentes são correlacionados 

com os termos integrados das Equações (35) a (37). 

Cada um dos elementos da matriz 𝑆𝑖𝑗 , representa uma interação específica 

entre os nós do sistema. De forma mais específica, os elementos na matriz 𝑆𝑖𝑗 

correspondem às contribuições de um elemento finito particular para o sistema global, 

o que significa que eles são diretamente proporcionais à resistência do material em 

um ponto específico à deformação. 

Já os termos 𝐵𝑖, conhecidos como termos de carregamento, representam as 

forças externas atuando sobre o sistema. Estes podem incluir, por exemplo, a pressão 

exercida pelo fluido nos poros do material. 

Assim, 𝑆𝑖𝑗 e 𝐵𝑖 e as Equações (35) a (37) é uma das chaves para a solução do 

sistema. As Equações (44) a (58) detalham essas correlações e nos ajudam a 

entender como os termos individuais das Equações (35) a (37) se manifestam na 

estrutura matricial. 

Ao entender essa correlação, somos capazes de construir uma representação 

matricial precisa do sistema. Essa representação é essencial para a solução numérica 

do problema, pois nos permite usar técnicas de álgebra linear para resolver o sistema 

de equações. 
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 𝑆𝐿𝐾
11 = ∫ ∫ ∫

𝐷
  [
2𝐺(1−𝜈)

1−2𝜈

𝜕𝑁𝐾

𝜕𝑥

𝜕𝑁𝐿

𝜕𝑥
+ 𝐺

𝜕𝑁𝐾

𝜕𝑦

𝜕𝑁𝐿

𝜕𝑦
+ 𝐺

𝜕𝑁𝐾

𝜕𝑧

𝜕𝑁𝐿

𝜕𝑧
] 𝑑𝑥𝑑𝑦𝑑𝑧 (44) 

 𝑆𝐿𝐾
12 = ∫ ∫ ∫

𝐷
  [

2𝐺𝜈

1−2𝜈

𝜕𝑁𝐾

𝜕𝑥

𝜕𝑁𝐿

𝜕𝑦
+ 𝐺

𝜕𝑁𝐾

𝜕𝑦

𝜕𝑁𝐿

𝜕𝑥
] 𝑑𝑥𝑑𝑦𝑑𝑧 (45) 

 𝑆𝐿𝐾
13 = ∫ ∫ ∫

𝐷
  [

2𝐺𝜈

1−2𝜈

𝜕𝑁𝐾

𝜕𝑥

𝜕𝑁𝐿

𝜕𝑧
+ 𝐺

𝜕𝑁𝐾

𝜕𝑧

𝜕𝑁𝐿

𝜕𝑥
] 𝑑𝑥𝑑𝑦𝑑𝑧 (46) 

 𝑆𝐿𝐾
14 = ∫ ∫ ∫

𝐷
[𝛼

𝜕𝑁𝐾

𝜕𝑥
𝑁𝐿] 𝑑𝑥𝑑𝑦𝑑𝑧 (47) 

 𝑆𝐿𝐾
21 = ∫ ∫ ∫

𝐷
  [

2𝐺𝜈

1−2𝜈

𝜕𝑁𝐾

𝜕𝑦

𝜕𝑁𝐿

𝜕𝑥
+ 𝐺

𝜕𝑁𝐾

𝜕𝑥

𝜕𝑁𝐿

𝜕𝑦
] 𝑑𝑥𝑑𝑦𝑑𝑧 (48) 

 𝑆𝐿𝐾
22 = ∫ ∫ ∫

𝐷
  [
2𝐺(1−𝜈)

1−2𝜈

𝜕𝑁𝐾

𝜕𝑦

𝜕𝑁𝐿

𝜕𝑦
+ 𝐺

𝜕𝑁𝐾

𝜕𝑥

𝜕𝑁𝐿

𝜕𝑥
+ 𝐺

𝜕𝑁𝐾

𝜕𝑧

𝜕𝑁𝐿

𝜕𝑧
] 𝑑𝑥𝑑𝑦𝑑𝑧 (49) 

 𝑆𝐿𝐾
23 = ∫ ∫ ∫

𝐷
  [

2𝐺𝜈

1−2𝜈

𝜕𝑁𝐾

𝜕𝑦

𝜕𝑁𝐿

𝜕𝑧
+ 𝐺

𝜕𝑁𝐾

𝜕𝑧

𝜕𝑁𝐿

𝜕𝑦
] 𝑑𝑥𝑑𝑦𝑑𝑧 (50) 

 𝑆𝐿𝐾
24 = ∫ ∫ ∫

𝐷
[𝛼

𝜕𝑁𝐾

𝜕𝑦
𝑁𝐿] 𝑑𝑥𝑑𝑦𝑑𝑧 (51) 

 𝑆𝐿𝐾
31 = ∫ ∫ ∫

𝐷
  [

2𝐺𝜈

1−2𝜈

𝜕𝑁𝐾

𝜕𝑧

𝜕𝑁𝐿

𝜕𝑥
+ 𝐺

𝜕𝑁𝐾

𝜕𝑥

𝜕𝑁𝐿

𝜕𝑧
] 𝑑𝑥𝑑𝑦𝑑𝑧 (52) 

   

 𝑆𝐿𝐾
32 = ∫ ∫ ∫

𝐷
  [

2𝐺𝜈

1−2𝜈

𝜕𝑁𝐾

𝜕𝑧

𝜕𝑁𝐿

𝜕𝑦
+ 𝐺

𝜕𝑁𝐾

𝜕𝑦

𝜕𝑁𝐿

𝜕𝑧
] 𝑑𝑥𝑑𝑦𝑑𝑧 (53) 

 𝑆𝐿𝐾
33 = ∫ ∫ ∫

𝐷
  [
2𝐺(1−𝜈)

1−2𝜈

𝜕𝑁𝐾

𝜕𝑧

𝜕𝑁𝐿

𝜕𝑧
+ 𝐺

𝜕𝑁𝐾

𝜕𝑥

𝜕𝑁𝐿

𝜕𝑥
+ 𝐺

𝜕𝑁𝐾

𝜕𝑦

𝜕𝑁𝐿

𝜕𝑦
] 𝑑𝑥𝑑𝑦𝑑𝑧 (54) 

 𝑆𝐿𝐾
34 = ∫ ∫ ∫

𝐷
[𝛼

𝜕𝑁𝐾

𝜕𝑧
𝑁𝐿] 𝑑𝑥𝑑𝑦𝑑𝑧 (55) 

 𝐵𝐿
1 = ∫ ∫

Γ
[(𝜎𝑥𝑥 + 𝛼𝑝)𝑛𝑥 + 𝜎𝑥𝑦𝑛𝑦 + 𝜎𝑥𝑧𝑛𝑧]𝑁𝐿𝑑𝐴 (56) 

 𝐵𝐿
2 = ∫ ∫

Γ
[(𝜎𝑦𝑥𝑛𝑥 + (𝜎𝑦𝑦 + 𝛼𝑝)𝑛𝑦 + 𝜎𝑦𝑧𝑛𝑧]𝑁𝐿𝑑𝐴 (57) 

 𝐵𝐿
3 = ∫ ∫

Γ
[(𝜎𝑧𝑥𝑛𝑥 + 𝜎𝑧𝑦𝑛𝑦 + (𝜎𝑧𝑧 + 𝛼𝑝)𝑛𝑧]𝑁𝐿𝑑𝐴 (58) 
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3.16 PRESSÃO NA FORMA MATRICIAL 

Ao analisar as equações de difusão de fluidos, adotamos a mesma abordagem 

que foi aplicada para as matrizes 𝑆. Essa abordagem envolve a representação da 

pressão em uma forma matricial, acumulando as contribuições de cada elemento 

individualmente. Assim, obtemos a Equação 40 em uma apresentação matricial. Isso 

nos permite estabelecer uma correspondência entre os termos das integrais presentes 

nas Equações (35) a (37) e (40) e as Equações (44) a (58). 

Desse modo, conseguimos uma visão mais clara de como as variações de 

pressão, que dirigem a difusão do fluido, influenciam o comportamento poroelástico 

global do meio.  

 [𝐴1]
𝑑𝑈

𝑑𝑡
+ [𝐴2]

𝑑𝑉

𝑑𝑡
+ [𝐴3]

𝑑𝑊

𝑑𝑡
+ [𝐴4]

𝑑𝑃

𝑑𝑡
+ [𝐴4]{𝑃} = 𝐵4 (59) 

 𝐴𝐿𝐾
1 = ∫ ∫ ∫

𝐷
𝛼
𝜕𝑁𝐾

𝜕𝑥
𝑁𝐿𝑑𝑥𝑑𝑦𝑑𝑧 (60) 

 𝐴𝐿𝐾
2 = ∫ ∫ ∫

𝐷
𝛼
𝜕𝑁𝐾

𝜕𝑦
𝑁𝐿𝑑𝑥𝑑𝑦𝑑𝑧 (61) 

 𝐴𝐿𝐾
3 = ∫ ∫ ∫

𝐷
𝛼
𝜕𝑁𝐾

𝜕𝑧
𝑁𝐿𝑑𝑥𝑑𝑦𝑑𝑧 (62) 

   

 𝐴𝐿𝐾
4 = ∫ ∫ ∫

𝐷
𝑆𝑒𝑁𝐿𝑁𝐾𝑑𝑥𝑑𝑦𝑑𝑧 (63) 

 𝐴𝐿𝐾
5 = ∫ ∫ ∫

𝐷

𝑘

𝜇
[
𝜕𝑁𝐾

𝜕𝑥

𝜕𝑁𝐿

𝜕𝑥
+
𝜕𝑁𝐾

𝜕𝑦

𝜕𝑁𝐿

𝜕𝑦
+
𝜕𝑁𝐾

𝜕𝑧

𝜕𝑁𝐿

𝜕𝑧
] 𝑑𝑥𝑑𝑦𝑑𝑧 (64) 

 𝐵𝐿
4 = ∫ ∫

𝜏
[
𝜕𝑝

𝜕𝑥
𝑛𝑥 +

𝜕𝑝

𝜕𝑦
𝑛𝑦 +

𝜕𝑝

𝜕𝑧
𝑛𝑧] 𝑁𝐿𝑑𝐴 (65) 

3.17 APROXIMAÇÃO POR DIFERENÇAS FINITAS NAS DERIVADAS 

TEMPORAIS 

Finalmente, a resolução do sistema é realizada por meio da aplicação do 

método de diferenças finitas para aproximar as derivadas temporais. Este consiste na 



33 

 

aproximação linear das derivadas temporais por meio da diferença entre os valores 

da variável em dois instantes de tempo distintos, separados por um intervalo de tempo 

pré-determinado. 

Este intervalo de tempo, também conhecido como passo de tempo tem um 

papel crucial na precisão e estabilidade da simulação. Se o passo de tempo for muito 

grande, pode-se perder eventos rápidos ou oscilações na solução e não garantir 

estabilidade numérica. Se for muito pequeno, a simulação pode exigir um tempo 

computacional excessivo. Portanto, a escolha de um passo de tempo adequado é 

crucial para equilibrar precisão e eficiência computacional. 

O sistema é resolvido iterativamente, avançando passo a passo no tempo. Em 

cada passo, as equações são resolvidas para o estado atual do sistema e, em 

seguida, esse estado é atualizado com base nas derivadas calculadas. Este processo 

é repetido até que se atinja o tempo final desejado ou se atinjam outras condições de 

parada predefinidas. 

Ao usar este método, podemos obter uma série temporal da evolução do 

sistema, representada pelas Equações (66) a (69) o que nos permite entender como 

o sistema responde a variações de pressão ao longo do tempo.  

 {
𝑑𝑈

𝑑𝑡
} =

1

Δ𝑡
({𝑈}𝑡+Δ𝑡 − {𝑈}𝑡) (66) 

 {
𝑑𝑉

𝑑𝑡
} =

1

Δ𝑡
({𝑉}𝑡+Δ𝑡 − {𝑉}𝑡) (67) 

 {
𝑑𝑊

𝑑𝑡
} =

1

Δ𝑡
({𝑊}𝑡+Δ𝑡 − {𝑊}𝑡) (68) 

 {
𝑑𝑃

𝑑𝑡
} =

1

Δ𝑡
({𝑃}𝑡+Δ𝑡 − {𝑃}𝑡) (69) 

3.18 MÉTODO EXPLÍCITO E IMPLÍCITO 

Na análise numérica, existem duas abordagens principais para resolver 

equações diferenciais: os métodos explícito e implícito. A escolha entre um e outro 

pode afetar significativamente a precisão, a estabilidade e a eficiência computacional 

da solução. 
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No método explícito, o estado atual do sistema é usado para calcular o próximo 

estado. Isso significa que todas as variáveis são determinadas diretamente pelas 

condições iniciais e pelo tempo atual. No entanto, essa abordagem pode levar a 

instabilidades numéricas e acumulação de erro, especialmente quando a resolução 

temporal é alta (pequenos passos de tempo). Ou seja, pequenos erros na solução 

atual podem levar a grandes erros na próxima etapa. 

Por outro lado, o método implícito é incondicionalmente estável. Nele, o 

próximo estado do sistema é calculado considerando-se o próprio estado, criando um 

sistema de equações que deve ser resolvido em cada passo de tempo, o que torna o 

método incondicionalmente estável. 

O parâmetro 𝛽 é utilizado para controlar a estratégia utilizada. Um valor de 𝛽 =

1 corresponde a um método totalmente explícito, 𝛽 =
1

2
 o método de Crank Nicolson, 

enquanto 𝛽 = 0 corresponde a um método totalmente implícito. 

Levando em consideração as duas estratégias distintas para a resolução das 

equações diferenciais - os métodos implícito e explícito - decidiu-se estruturar uma 

solução que pudesse abranger ambas. A intenção é construir um código que permita 

alternar entre essas metodologias de forma flexível, de modo a facilitar as 

comparações e análises em relação ao impacto de cada método na resolução do 

nosso problema. 

A importância dessa abordagem dual reside na possibilidade de explorar as 

vantagens de cada método em situações diferentes, permitindo assim uma análise 

mais robusta.  

Assim para exemplificar, ao aplicar para a Equação (66) abaixo temos:  

 U = 𝛽𝑈𝑡 + (1 − 𝛽)𝑈𝑡+∆𝑡 (70) 

 𝛽 = 0 → U = 𝑈1
𝑡+Δ𝑡 (71) 

 𝛽 = 1 → 𝑈 = 𝑈𝑡 (72) 
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3.19 SISTEMA [𝐊]{𝐱} = {𝐅} PARA O PROBLEMA POROELÁSTICO 3D 

Ao prosseguir com os cálculos, o objetivo era reformatar as componentes 

identificadas por meio das integrais acima para o formato que seria implementado nas 

funções de resolução do problema em Python: [𝐊]{𝐱} = {𝐅}. Esse formato é usado 

para representar sistemas de equações lineares, onde [𝐊] é a matriz de coeficientes, 

𝐱 é o vetor de incógnitas e 𝑭 é o vetor dos termos independentes. 

Com base na formulação tridimensional desenvolvida, procedemos para 

desenvolver o sistema e chegamos à matriz de coeficientes [K], que é uma matriz de 

dimensão 4N x 4N onde N é o número de nós da malha. Já os vetores x e F 

desenvolvidos representam, respectivamente, o conjunto de variáveis desconhecidas 

(valores de deslocamento e pressão de cada nó) e o vetor F são as forçantes.  

𝐾 = [

(1 − 𝛽)[𝑆11]𝑁𝑋𝑁 (1 − 𝛽)[𝑆12]𝑁𝑋𝑁 (1 − 𝛽)[𝑆13]𝑁𝑋𝑁 (1 − 𝛽)[𝑆14]𝑁𝑋𝑁
(1 − 𝛽)[𝑆21]𝑁𝑋𝑁 (1 − 𝛽)[𝑆22]𝑁𝑋𝑁 (1 − 𝛽)[𝑆23]𝑁𝑋𝑁 (1 − 𝛽)[𝑆24]𝑁𝑋𝑁
(1 − 𝛽)[𝑆31]𝑁𝑋𝑁 (1 − 𝛽)[𝑆32]𝑁𝑋𝑁 (1 − 𝛽)[𝑆33]𝑁𝑋𝑁 (1 − 𝛽)[𝑆34]𝑁𝑋𝑁

[𝐴1]𝑁𝑋𝑁 [𝐴2]𝑁𝑋𝑁 [𝐴3]𝑁𝑋𝑁 [𝐴4]𝑁𝑋𝑁 + ∆𝑡(1 − 𝛽)[𝐴5]𝑁𝑋𝑁

]

4𝑋4

 

𝑥 =

{
 
 
 
 
 
 

 
 
 
 
 
 
{
𝑈1
𝑡+Δ𝑡

⋮
𝑈𝑛
𝑡+Δ𝑡

}

{
𝑉1
𝑡+Δ𝑡

⋮
𝑉𝑛
𝑡+Δ𝑡

}

{
𝑊1

𝑡+Δ𝑡

⋮
𝑊𝑛

𝑡+Δ𝑡
}

{
𝑃1
𝑡+Δ𝑡

⋮
𝑃𝑛
𝑡+Δ𝑡

}

}
 
 
 
 
 
 

 
 
 
 
 
 

4𝑋1

 

𝐹 = 

{
 
 
 
 
 
 

 
 
 
 
 
 

{
𝐵1
⋮
𝐵𝑁

} − [𝑠11]𝑁𝑋𝑁𝛽 {
𝑈1
𝑡

⋮
𝑈𝑁
𝑡
} − [𝑠12]𝑁𝑋𝑁𝛽 {

𝑉1
𝑡

⋮
𝑉𝑁
𝑡
} − [𝑠13]𝑁𝑋𝑁𝛽 {

𝑊1
𝑡

⋮
𝑊𝑁

𝑡
} − [𝑠14]𝑁𝑋𝑁𝛽 {

𝑃1
𝑡

⋮
𝑃𝑁
𝑡
}

{
𝐵1
⋮
𝐵𝑁

} − [𝑠21]𝑁𝑋𝑁𝛽 {
𝑈1
𝑡

⋮
𝑈𝑁
𝑡
} − [𝑠22]𝑁𝑋𝑁𝛽 {

𝑉1
𝑡

⋮
𝑉𝑁
𝑡
} − [𝑠23]𝑁𝑋𝑁𝛽 {

𝑊1
𝑡

⋮
𝑊𝑁

𝑡
} − [𝑠24]𝑁𝑋𝑁𝛽 {

𝑃1
𝑡

⋮
𝑃𝑁
𝑡
}

{
𝐵1
⋮
𝐵𝑁

} − [𝑠31]𝑁𝑋𝑁𝛽 {
𝑈1
𝑡

⋮
𝑈𝑁
𝑡
} − [𝑠32]𝑁𝑋𝑁𝛽 {

𝑉1
𝑡

⋮
𝑉𝑁
𝑡
} − [𝑠33]𝑁𝑋𝑁𝛽 {

𝑊1
𝑡

⋮
𝑊𝑁

𝑡
} − [𝑠34]𝑁𝑋𝑁𝛽 {

𝑃1
𝑡

⋮
𝑃𝑁
𝑡
}

∆𝑡 {
𝐵1
⋮
𝐵𝑁

}

𝑁𝑋1

− [𝐴1]𝑁𝑋𝑁 {
−𝑈1

𝑡

⋮
−𝑈𝑁

𝑡
}

𝑁𝑋1

− [𝐴2]𝑁𝑋𝑁 {
−𝑉1

𝑡

⋮
−𝑉𝑁

𝑡
}

𝑁𝑋1

− [𝐴3]𝑁𝑋𝑁 {
−𝑊1

𝑡

⋮
−𝑊𝑁

𝑡
}

𝑁𝑋1

− [𝐴4]𝑁𝑋𝑁 {
−𝑃1

𝑡

⋮
−𝑃𝑁

𝑡
}

𝑁𝑋1

− [𝐴5]𝑁𝑋𝑁∆𝑡𝛽 {
−𝑃1

𝑡

⋮
−𝑃𝑁

𝑡
}

𝑁𝑋1}
 
 
 
 
 
 

 
 
 
 
 
 

4𝑋1

 

 (73) 
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4 DESCRIÇÃO DO PROBLEMA 

Decidimos optar pelo método explícito para a resolução de nosso problema. O 

método explícito permite que cada novo passo de tempo seja calculado com base 

apenas no passo de tempo atual. Isto é, cada etapa é uma função explícita das etapas 

anteriores, o que torna os cálculos rápidos e eficientes. Além disso, o método explícito 

é muito eficaz para problemas que apresentam um comportamento previsível ao longo 

do tempo, onde o estado atual é um bom indicador do estado futuro. Com base na 

análise do problema e considerando os prós e contras de diferentes métodos, 

concluímos que o método explícito seria a melhor escolha para a resolução de nosso 

problema. 

4.1 CARACTERÍSTICAS DA SIMULAÇÃO 

O problema proposto envolve a simulação de um sólido tridimensional 

representando uma amostra de rocha porosa com dimensões de 12x12x12 metros. 

Essa rocha está preenchida com fluido, o que caracteriza o cenário poroelástico. O 

estudo tem como objetivo compreender o comportamento da rocha, saturada com 

fluido, quando submetida a um esforço de compressão na base (𝜎𝑧𝑧), que é assumido 

ser negativo, representando uma compressão. Em um contexto geológico, tais 

condições podem ocorrer, por exemplo, em formações rochosas subterrâneas sob a 

influência de forças tectônicas ou do peso de camadas de rocha sobrejacentes. 

Este é um problema drenado, o que significa que a pressão dos fluidos nos poros 

da rocha tem a oportunidade de se equilibrar com as mudanças na pressão. Isso 

implica que a pressão do fluido pode variar, permitindo o movimento do fluido dentro 

e fora da rocha. A simulação captura o comportamento da rocha sob compressão, 

levando em conta as interações entre a matriz rochosa e os fluidos em seus poros. 

Compreender esse comportamento tem aplicações práticas importantes na 

exploração e produção de petróleo e gás e na gestão de reservatórios de água 

subterrânea, por exemplo. 
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4.2 PROPRIEDADES DA ROCHA E DO FLUIDO 

Apresentaremos e discutiremos os resultados de nossa análise, considerando 

as propriedades específicas da rocha que utilizamos em nossos testes. Essas 

propriedades são importantes para compreender a natureza do nosso estudo e os 

resultados obtidos. 

A rocha saturada de fluido em estudo possui propriedades físicas e mecânicas 

bem definidas que têm implicações significativas para o seu comportamento sob 

diferentes condições. Aqui estão as propriedades fundamentais da rocha que são 

relevantes para o nosso estudo, explicadas simplificadamente: 

Módulo de cisalhamento (G em Pa): Este valor, também conhecido como módulo 

de rigidez, descreve a capacidade da rocha de resistir a deformações cisalhantes. Isso 

é importante em contextos onde a rocha é submetida a tensões de cisalhamento que 

poderiam distorcer sua estrutura, como em falhas geológicas ou durante a extração 

de recursos minerais. 

Constante de Biot (α, adimensional): Nomeado em homenagem ao físico francês 

Maurice Anthony Biot descreve a deformação do meio e o conteúdo de fluido a 

pressão constante. Essa constante é relevante em rochas porosas preenchidas com 

fluido, onde mudanças na pressão do fluido podem induzir deformações na matriz da 

rocha 

Coeficiente de Poisson (ν, adimensional): Este coeficiente é uma medida da 

capacidade da rocha de se contrair ou expandir em uma direção perpendicular à 

direção da força aplicada. Quando uma rocha é comprimida ou esticada, ela responde 

com uma expansão ou contração em uma direção perpendicular à força. O coeficiente 

de Poisson quantifica essa relação. 

Compressibilidade efetiva ( 𝑆𝜖 , em 𝑃𝑎−1 ): Esta propriedade descreve a 

capacidade de armazenamento de uma rocha sob deformação constante, refletindo 

como o volume de fluido armazenado na rocha muda em resposta a variações de 

pressão. Quanto maior a compressibilidade, maior a capacidade da rocha de 

armazenar fluido à medida que a pressão aplicada varia 
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Permeabilidade (k, em 𝑚2): A permeabilidade de uma rocha é uma medida da 

facilidade com que um fluido pode se mover através dela como resposta a um 

determinado gradiente de pressão. Isso depende da porosidade da rocha e do 

tamanho e interconexão dos poros.  

Viscosidade (μ em 𝑃𝑎 ∙ 𝑠): A viscosidade é uma medida da resistência de um 

fluido ao fluxo. Simplificadamente, fluidos com alta viscosidade fluem mais lentamente 

do que aqueles com baixa viscosidade. A viscosidade pode influenciar a rapidez com 

que os fluidos se movem através da rocha, o que é importante para aplicações como 

a extração de petróleo e gás. 

Estas propriedades são fundamentais para a compreensão do comportamento 

da rocha sob diferentes condições de estresse e permitem-nos modelar as respostas 

de forma precisa. Portanto, a simulação buscará capturar o comportamento da rocha 

sob a pressão de compressão aplicada, levando em conta as interações entre a matriz 

rochosa e os fluidos em seus poros. 

4.3 PROPRIEDADES E CARACTERÍSTICAS DA MALHA 

Neste estudo, foram considerados parâmetros que impactam diretamente a 

simulação poroelástica. Além disso, a configuração da malha para a simulação foi 

planejada para equilibrar detalhamento e eficiência computacional, assegurando que 

os resultados obtidos ofereçam tanto a precisão necessária quanto a viabilidade 

prática para a realização dos cálculos. Abaixo, são descritos os principais parâmetros 

e a estrutura da malha utilizada. 

Além dos parâmetros mencionados, a malha utilizada para a simulação foi 

composta por 1536 elementos (Figura 2). Esse número representa uma quantidade 

intermediária, escolhida para oferecer um equilíbrio entre a resolução dos detalhes e 

a eficiência computacional. Com essa configuração, é possível capturar as nuances 

do comportamento do sistema simulado, assegurando que as variações locais e os 

gradientes de grandezas físicas sejam representados suficientemente. Ao mesmo 

tempo, o uso de uma quantidade moderada de elementos evita o aumento excessivo 

do tempo de processamento e dos recursos computacionais necessários, permitindo 
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uma execução mais prática e acessível da simulação. Dessa forma, a escolha da 

malha com 1536 elementos garante que o modelo atenda aos requisitos de economia 

computacional, mantendo a simulação robusta e eficiente. 

 

Figura 2 - Malha tetraédrica de 1536 elementos 

 

4.4 CONDIÇÕES DE CONTORNO 

As condições de contorno são um conjunto de restrições que definem o 

comportamento de um sistema físico nas suas fronteiras ou limites. Elas são parte do 

problema e fundamentais para a solução de equações diferenciais parciais que 

descrevem o comportamento de sistemas físicos, no nosso caso um modelo 

poroelástico. As condições de contorno determinam o comportamento do um sistema, 

limitando ou especificando seus valores em determinados pontos ou regiões. 

No contexto deste problema, estamos analisando o comportamento de um cubo 

que representa uma rocha, sob condições de variação de pressão e deslocamento. 

Para cada nó na malha de elementos finitos que representa o cubo, definimos 
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condições de contorno que determinam se o nó pode se mover nas direções x, y, z e 

se a pressão pode ou não variar. As condições de contorno no nosso problema são 

definidas por uma lista de quatro dígitos, cada um podendo ser 0 ou 1. Esses dígitos 

representam, respectivamente, a possibilidade de variação nas direções x, y, z e a 

condição de pressão. Quando o dígito é 1, isso significa que é permitida a variação na 

direção ou condição correspondente. Por outro lado, um dígito 0 impede a variação. 

Por exemplo, a lista [1, 0, 1, 1] permitiria variações na direção x e z e na pressão, mas 

não na direção y. 

Dessa forma, as condições de contorno foram definidas de acordo com a 

localização do nó para refletir seu comportamento em função da sua localização: 

• Se o nó está no interior do cubo, ele pode se mover em todas as direções e a 

pressão pode variar. 

• Se o nó pertence a uma face, ele pode se deslocar apenas sob sua face e sua 

pressão pode variar. Com exceção da face inferior, os nós pertencentes a ela 

possuem condição de contorno para pressões iguais a 0. 

• Se o nó pertence a uma aresta, ele pode se deslocar sob sua aresta e sua 

pressão pode variar. A pressão é igual a zero para nós pertencentes a arestas 

na base do cubo. 

• Os nós de canto na face inferior do cubo podem se deslocar apenas em z e 

suas pressões não podem variar. 

• Os nós de canto na face superior do cubo não podem se deslocar em nenhuma 

direção e suas pressões podem variar. 

• Para as faces em que a pressão pode variar temos outra restrição: não há fluxo, 

então 
𝑑𝑃

𝑑𝑛
= 0, ou seja impermeável ou sem fluxo de fluido. 

A razão para aplicar essas condições de contorno é que elas refletem as 

restrições físicas do problema que estamos tentando resolver. Por exemplo, um nó na 

face de um cubo de rocha real não pode se mover para fora do cubo, porque seria 

obstruído pela rocha circundante. Essas condições de contorno ajudam a modelar as 

restrições físicas e as interações entre a rocha e fluido, o que torna nosso modelo 

mais preciso e realista. 
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As condições de contorno definem o comportamento do sistema em regiões 

específicas, nesse caso, as bordas do nosso "cubo" que representa a rocha. Ao 

estabelecer a condição de contorno de pressão igual a 0 para os nós que pertencem 

à face inferior do cubo, estamos efetivamente criando uma área de baixa pressão por 

onde o fluido pode sair. Existe, portanto, condições onde definimos faces seladas 

(regiões onde não definimos condições de Neuman) e faces onde permitimos o fluido 

ser drenado (condição de Dirichlet).  

Essa área de baixa pressão desempenha um papel crucial na dinâmica do fluxo 

de fluidos. Na natureza, os fluidos tendem a se mover de áreas de alta pressão para 

áreas de baixa pressão. Ao criar uma região de pressão mais baixa na face inferior do 

nosso modelo, estamos direcionando o fluxo de fluido para fora do domínio. 

Portanto, essa condição de contorno de pressão 0 na face inferior do cubo 

serve para simular o comportamento natural do fluido, que é escoar em direção a 

regiões de menor pressão. Esse ensaio é fundamental para entender a consolidação 

em caracterização laboratorial.  

Com estas condições de contorno aplicadas, o modelo de elementos finitos está 

agora definido para simular a resposta da rocha sob condições realistas de pressão e 

tensão. 

4.5 DESCRIÇÃO DO CÓDIGO EM PYTHON 

O código em Python desenvolvido para este estudo foi estruturado para possuir 

boa eficiência e legibilidade, garantindo sua reutilização eficaz, uma vez que certas 

funções demandam um tempo computacional considerável. Com uma abordagem 

modular, o código é dividido em duas partes fundamentais: a definição das funções e 

a execução dos cálculos. 

A primeira parte, definição das funções, funciona como o esqueleto do código. 

Nesta seção, todas as operações necessárias são encapsuladas em funções 

dedicadas. Isso não apenas aumenta a legibilidade do código, como também facilita 

a depuração e o teste de partes individuais do código sem a necessidade de executar 
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o programa inteiro. Além disso, essas funções podem ser facilmente reutilizadas em 

outros contextos ou projetos, contribuindo para a eficiência do código. 

A segunda parte é a execução dos cálculos. Aqui, as funções definidas 

anteriormente são "chamadas" na ordem correta e realizam os cálculos necessários 

para resolver o problema da malha de entrada. Os dados de entrada são processados, 

as constantes são inicializadas, os cálculos são executados e os arquivos .txt que 

possuem os deslocamentos de cada nó em x, y, z e os valores de pressão são 

exportados. 

Além disso, para garantir a clareza, o código está comentado, explicando o 

objetivo de cada função e os detalhes dos cálculos realizados. Assim, o código em 

Python foi desenvolvido de uma maneira que não só resolve o problema em questão, 

mas também serve como uma base sólida para futuros trabalhos de pesquisa. 

Como podemos ver nas Figuras 5 e 6 que representam as etapas de importação 

de bibliotecas e definição das funções, uma série de funções é definida para realizar 

várias tarefas: 

• Inicializar Constantes: inicializa as constantes necessárias para os cálculos 

subsequentes, como as propriedades da rocha. 

• Leitura: é responsável pela leitura de dados de entrada da malha de elementos 

finitos do arquivo de texto. 

• Coord Vol: é usada para calcular os volumes dos elementos na malha. 

• Basis Function: é usada para calcular as funções de forma para cada elemento 

da malha. 

• Vetor Normal: calcula o vetor normal às faces de cada triângulo que compõem 

cada tetraedro da malha. 

• Inicializa área triângulos: inicializa as variáveis responsáveis pelas áreas de 

cada triângulo na malha. 

• Set areas zero e self check: definem áreas que não são do contorno para zero. 

• Matriz SijAij: calcula as matrizes Sij e Aij locais para cada elemento. 

• Matriz bi: calcula os termos das matrizes bi para cada elemento. 

• Matrizes globais: transporta as matrizes S e A locais para a respectiva matriz 

global. 
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• Vetores Bglobais: organiza os vetores B em um vetor B global. 

• Propriedades Iterações: define as propriedades das iterações para resolver o 

sistema como o tempo total da simulação e o passo de tempo. 

• Matriz K: calcula a matriz de rigidez do sistema. 

• Inicialização das matrizes 𝑈𝑛𝑛, 𝑉𝑛𝑛,𝑊𝑛𝑛 𝑒 𝑃𝑛𝑛 : inicializa as matrizes para 

armazenar os deslocamentos e a pressão dos poros em cada nó da malha no 

atual passo de tempo. 

• Vetor F: calcula o vetor de carga do sistema no atual passo de tempo. 

• Solve problem: resolve o sistema resultante [K]{U} = {F}, para todos os instantes 

de tempo. 

• Xnntsplot, Unntsplot, Vnntsplot, Wnntsplot, Pnntsplot: essas funções 

armanezam os resultados obtidos para cada deslocamento e pressão em uma 

matriz, para que as animações possam ser produzidas. 
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Figura 3 - Fluxograma Código Python Parte 1 
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Figura 4 - Fluxograma Código em Python Parte 2 
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5 RESULTADOS  

5.1 RESULTADOS ESPERADOS 

Com base nas características da simulação e nas condições impostas, espera-se 

que o comportamento da pressão e da deformação siga um padrão condizente com 

os princípios físicos do problema. Durante a simulação, prevê-se que a pressão nos 

nós da malha diminua progressivamente ao longo do tempo, um fenômeno que ocorre 

devido à tendência do fluido a sair gradualmente através do meio rochoso, resultando 

em uma queda de pressão típica de processos de difusão em meios porosos. 

Em regiões superiores da rocha, a pressão após a reação da aplicação da tensão 

tende a ser mais elevada, em função da concentração de fluido nas camadas 

superiores em reação a aplicação do esforço de compressão na base da rocha, 

gerando um gradiente de pressão entre o topo e a base da rocha. Inversamente, nos 

nós localizados nas regiões mais baixas, espera-se que a pressão seja menor, já que 

parte do fluido foi deslocada para as camadas superiores, resultando em um gradiente 

de pressão descendente. 

No que diz respeito à deformação, é esperado que os nós próximos à base da 

rocha apresentem maiores deformações em comparação aos localizados no topo, 

devido à maior concentração de tensões nas camadas inferiores. Isso resulta em 

forças compressivas mais intensas e, consequentemente, maior deformação.  

Dessa forma, os resultados da simulação devem refletir esses comportamentos 

esperados, oferecendo uma compreensão detalhada da distribuição de pressão e 

deformação ao longo do tempo e em diferentes regiões da rocha.  

5.2 RESULTADOS OBTIDOS 

Os valores e parâmetros utilizados para gerar os resultados encontram-se na 

Figura 5. 

Parâmetro Valor Unidade 
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L 12 [m] 

P0 108 [Pa] 

G 6.109 [Pa] 

α 0,79 − 

ν 0,2 − 

Sϵ 8.10−11 [Pa−1] 

k 1,9.10−13 [m2] 

μ 10−3 [Pa. s] 

Figura 5 - Parâmetros utilizados para avaliação do problema 

O comportamento esperado para os deslocamentos foi evidenciado pelos 

resultados obtidos nas simulações, conforme evidenciado pelo gráfico exposto na 

Figura 6. A análise desses dados confirma que os nós localizados próximos à base 

da rocha exibem, de fato, as maiores deformações quando comparados aos nós 

situados nas regiões superiores. Esse resultado corrobora a hipótese de que a 

concentração da pressão exercida nas camadas inferiores, gera forças compressivas 

mais intensas na base, resultando em maiores deslocamentos.  
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Figura 6 - Deslocamentos em metros calculados para diferentes posições em metros e instantes de 
tempo para os nós do eixo central da malha de 1536 elementos e passo de tempo 0.1s 

Os resultados de deslocamento podem ser comparados e validados com os 

resultados analíticos 2D apresentados na Figura 7, conforme expostos no trabalho de 

(Reis, 2018). Tanto o formato, quanto a escala dos resultados é semelhante aos 

resultados analíticos, diferindo somente em valores absolutos. 
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Figura 7 - Deslocamentos calculados analiticamente para diferentes posições e instantes de tempo 
em (Reis, 2018) 

A pressão nos nós diminuiu ao longo do tempo, especialmente após a reação 

inicial à pressão aplicada na base da rocha. Isso se alinha com o comportamento 

esperado de dissipação da pressão à medida que o fluido se dispersa pela malha de 

nós da simulação. No início, a aplicação de pressão causa uma resposta imediata nos 

nós, mas com o passar do tempo, a pressão tende a decair, conforme o sistema busca 

atingir um estado de equilíbrio. 

Além disso, ao final da simulação, o comportamento da pressão apresentou um 

padrão consistente com o esperado. Nós situados em posições mais elevadas da 

rocha mantiveram pressões mais altas, enquanto os nós localizados mais próximos 

da base exibiram pressões mais baixas. Esse gradiente de pressão era previsto 

devido à influência da distribuição do fluido ao longo da rocha, com maior acumulação 

de pressão nas regiões superiores e menor nas inferiores. Através gráfico exposto na 

Figura 8, é possível verificar detalhadamente esse comportamento. Os dados 

mostram claramente a queda de pressão ao longo do tempo, assim como a variação 

de pressão em diferentes posições na rocha, confirmando a correlação entre a 

posição em z dos nós e os níveis de pressão.  
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Figura 8 - Pressões em Pa calculadas para diferentes posições em metros e instantes de tempo para 
os nós do eixo central da malha de 1536 elementos e passo de tempo 0.1s 

Os resultados de pressão podem ser comparados e validados com os resultados 

analíticos 2D apresentados na Figura 9, conforme expostos no trabalho de (Reis, 

2018).  
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Figura 9 - Pressões calculadas analiticamente para diferentes posições e instantes de tempo em 
(Reis, 2018) 

Outra análise realizada foi em relação a simetria dos resultados. Os valores de 

deslocamento e pressão analisados nas posições selecionadas da rocha apresentam 

simetria notável quando comparados a posições simétricas. Essa simetria indica uma 

distribuição uniforme das forças internas dentro da malha tetraédrica utilizada, bem 

como das deformações resultantes. Isso reflete a uniformidade das propriedades 

geomecânicas da rocha submetida às condições do carregamento aplicado e 

corrobora para a validação da simulação realizada. Como exemplo, temos as figuras 

10e 11 que mostram os gráficos de pressão e valores de pressão para os nós 

localizados no eixo de coordenadas X =1.5 e Y = 10.5 e o eixo simétrico com X= 10.5 

e Y = 1.5. 
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Figura 10 - Pressões Calculadas para Diferentes Posições e instantes para os nós de posição X = 1.5 
e Y = 10.5 da malha de 1536 elementos e passo de tempo 0.1s 
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Figura 11 - Valores de Pressões Calculadas para Diferentes Posições e instantes para os nós de 
posição X = 10.5 e Y = 1.5 da malha de 1536 elementos e passo de tempo 0.1s 
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6 CONCLUSÃO 

Os resultados das simulações confirmaram o comportamento esperado para os 

deslocamentos e pressões na rocha porosa. Observou-se que os nós localizados 

próximos à base da rocha apresentaram as maiores deformações em comparação 

com os nós das regiões superiores, corroborando a hipótese de que a concentração 

de pressão nas camadas inferiores gera forças compressivas mais intensas na base. 

Os gráficos de deslocamento e pressão forneceram suporte quantitativo para a 

previsão teórica, e os resultados de deslocamento foram comparados e validados com 

os resultados analíticos apresentados em (Wang, 2000) apresentando similaridade 

em formato e escala, apesar das diferenças em valores absolutos devido às limitações 

da simulação tridimensional em relação ao modelo bidimensional analítico. 

A pressão nos nós diminuiu ao longo do tempo, especialmente após a reação 

inicial à pressão aplicada na base da rocha, alinhando-se com o comportamento 

esperado de dissipação da pressão à medida que o fluido se dispersa pela malha. No 

final da simulação, observou-se um padrão consistente, onde nós em posições mais 

elevadas mantiveram pressões mais altas, enquanto os nós próximos à base exibiram 

pressões mais baixas. Esse gradiente de pressão era previsto devido à distribuição 

do fluido ao longo da rocha, com maior acumulação nas regiões superiores.  

Os dados confirmaram a correlação entre a posição em z dos nós e os níveis de 

pressão, indicando consistência na tendência dos resultados obtidos. No entanto, os 

gráficos apresentados diferem um pouco em termos de valores absolutos quando 

comparados aos resultados analíticos apresentados em (Wang, 2000). Essa 

discrepância sugere a possibilidade de erros na implementação do código em Python 

utilizado para a análise. O trabalho está em revisão e finalizar o processo de validação, 

com o objetivo de identificar e corrigir possíveis falhas no código e garantir maior 

precisão nos resultados apresentados. 

Adicionalmente, a análise revelou a simetria nos valores de deslocamento e 

pressão quando comparados em posições simétricas da rocha. Essa simetria indica 

uma distribuição uniforme das forças internas e das deformações na malha tetraédrica 

utilizada, refletindo a uniformidade das propriedades geomecânicas da rocha sob as 
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condições de carregamento aplicadas. Essa observação corrobora a validação da 

simulação realizada.  

O desenvolvimento e a implementação de uma solução computacional para o 

modelo poroelástico 3D utilizando o método dos elementos finitos representaram um 

avanço significativo na simulação de fenômenos poroelásticos complexos. Ao 

expandir as equações poroelásticas de 2D para o cenário tridimensional e construir 

um algoritmo capaz de resolver essas equações em um ambiente computacional, este 

trabalho proporcionou uma ferramenta valiosa para a análise detalhada do 

comportamento de meios porosos tridimensionais sob variações de pressão do fluido 

ou tensões na matriz sólida. 

A utilização de modelos computacionais permitiu maior flexibilidade e uma 

compreensão do processo de modelagem, para simular problemas complexos sem 

esgotar rapidamente os recursos computacionais disponíveis. Embora existam 

softwares como o COMSOL com implementações baseadas em elementos finitos, a 

abordagem adotada facilitará a escalabilidade dos recursos computacionais e a 

exploração de diferentes arquiteturas e condições de execução. Isso é particularmente 

relevante em áreas como a engenharia de petróleo, onde simulações precisas podem 

levar a reduções significativas de custos operacionais e aumento da segurança. 

Os achados deste trabalho têm implicações em diversas aplicações, incluindo a 

previsão do comportamento de reservatórios na engenharia de petróleo, a 

compreensão de processos de fluxo em tecidos biológicos na medicina e a análise do 

fluxo de água subterrânea e respostas de rochas a estresses tectônicos na geologia. 

A capacidade de modelar e simular problemas poroelásticos tridimensionais com 

precisão e eficiência abre novas oportunidades para pesquisas e aplicações práticas 

nesses campos. 

Em suma, este estudo demonstrou a viabilidade e os benefícios de desenvolver 

uma solução computacional para modelos poroelásticos 3D utilizando o método dos 

elementos finitos. A simulação bem-sucedida e a validação com resultados analíticos 

confirmam a precisão do modelo e a eficácia da abordagem adotada. Este trabalho 

contribui para o avanço da modelagem poroelástica e fornece uma base sólida para 
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futuros desenvolvimentos na simulação de interações complexas entre fluxo de fluidos 

e deformações em meios porosos.  
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7 TRABALHOS FUTUROS 

Como continuidade deste trabalho, propõe-se a extensão da formulação atual 

para permitir a análise da precisão em função do passo de tempo. Investigar como 

diferentes passos de tempo afetam os resultados numéricos pode fornecer ideias 

valiosos sobre a estabilidade e a eficiência do método utilizado. Essa análise permitirá 

otimizar o equilíbrio entre a precisão dos resultados e o custo computacional, 

essencial para aplicações em sistemas complexos. 

Além disso, é recomendada a realização de análises utilizando uma malha mais 

refinada, com um número maior de elementos. O refinamento da malha tende a 

aumentar a acurácia espacial dos resultados. Essa abordagem contribuirá para a 

validação do modelo numérico, assegurando que os resultados não são influenciados 

por limitações impostas pela discretização grosseira. 

Para aprofundar a análise da integridade dos resultados obtidos através de 

simulações mais abrangentes, pode ser explorada a utilização de diferentes malhas 

tetraédricas com variadas discretizações, o que permitirá avaliar como a resolução da 

malha influencia a precisão e a estabilidade das simulações. Além disso, considerar 

espaçamentos de tempo distintos e períodos de simulação variados, permitirá verificar 

a sensibilidade do modelo às condições temporais e garantir que os passos de tempo 

adotados não comprometam a fidelidade dos dados.  

Integrando essas propostas, espera-se aprofundar a compreensão dos 

fenômenos estudados e aprimorar a confiabilidade dos resultados obtidos. A análise 

combinada da influência do passo de tempo, do refinamento da malha e da geometria 

do domínio permitirá desenvolver um modelo numérico mais robusto e preciso, 

contribuindo significativamente para avanços futuros na área de pesquisa. 
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Resumo 

A poroelasticidade é um campo interdisciplinar que une a mecânica dos sólidos porosos e a mecânica 

dos fluidos. Este trabalho de conclusão de curso expande a formulação poroelástica de 2D para 3D, 

permitindo simulações mais precisas e realistas. Utilizando o método dos elementos finitos e malhas 

tetraédricas, a simulação numérica é realizada em Python, analisando o deslocamento e a pressão em 

uma rocha saturada com fluidos submetida a esforços de compressão. 

Este estudo não apenas avança a compreensão teórica da poroelasticidade em 3D, mas também 

demonstra a aplicação prática de técnicas numéricas para resolver problemas em engenharia geotécnica 

e geomecânica. Exemplos de tais problemas incluem geometrias irregulares, propriedades heterogêneas 

e anisotropias. Aplicações práticas desse estudo abrangem casos como a subsidência em torno de poços 

de extração, onde é possível considerar condições simplificadas de propriedades homogêneas. Assim, a 

pesquisa proporciona uma base sólida para futuras investigações e aplicações no campo da engenharia 

para a análise e mitigação de fenômenos geomecânicos. 

Abstract 

Poroelasticity is an interdisciplinary field that combines the mechanics of porous solids and fluid 

mechanics. This thesis expands the poroelastic formulation from 2D to 3D, allowing for more precise 

and realistic simulations. Using the finite element method and tetrahedral meshes, the numerical 

simulation is performed in Python, analyzing displacement and pressure in a fluid-saturated rock 

subjected to compressive stresses. 

This study not only advances the theoretical understanding of 3D poroelasticity but also demonstrates 

the practical application of numerical techniques to solve problems in geotechnical and geomechanical 

engineering. Examples of such problems include irregular geometries, heterogeneous properties, and 

anisotropies. Practical applications of this study encompass cases such as subsidence around extraction 

wells, where simplified conditions of homogeneous properties can be considered. Thus, this research 

provides a solid foundation for future investigations and applications in engineering for the analysis and 

mitigation of geomechanical phenomena. 

1. Introdução 

A poroelasticidade descreve as interações complexas entre o fluxo de fluidos e as deformações dos 

sólidos em meios porosos, como rochas, solos e tecidos biológicos (WANG, 2000). Quando uma carga 

externa é aplicada a esses materiais, a pressão nos fluidos internos varia devido à compressão dos poros, 

provocando o movimento do fluido através da matriz porosa. Este trabalho tem como objetivo 

desenvolver e implementar uma solução computacional para o modelo poroelástico 3D utilizando o 
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método dos elementos finitos, expandindo as equações poroelásticas de 2D para o cenário tridimensional 

e construindo um algoritmo capaz de resolver essas equações em um ambiente computacional.  

2. Metodologia 

Neste projeto, escolhemos o elemento finito tetraédrico para nossa análise poroelástica 3D devido à 

sua simplicidade geométrica e versatilidade na adaptação a várias configurações de domínios 

tridimensionais. Além disso, a simplicidade dos elementos isoparamétricos facilita a definição e o 

cálculo das funções de forma.  

O propósito deste trabalho é resolver o sistema de equações matriciais [𝐌]{𝐔}𝒕+∆𝒕 + [𝐊]{𝐔}𝒌 = {𝐅}𝒌 

sendo k uma notação genérica que pode apontar para aproximação explícita 𝒌 = 𝒕ou implícita 𝐤 = 𝐭 +
∆𝐭 ou mista ao partir dos operadores 𝑲 e 𝑭 para atender parte 𝒌 = 𝒕 e parte 𝐤 = 𝐭 + ∆𝐭. Esse sistema 

representa as equações diferenciais parciais que governam a difusão de fluidos na rocha. A matriz [K] é 

a matriz de rigidez, que descreve as propriedades elásticas da rocha e sua interação com o fluido. Os 

vetores 𝑈, 𝑉 𝑒 𝑊 representam os deslocamentos nas três direçoes e 𝑃 a pressão de poros, enquanto o 

vetor F contém as forças externas que atuam sobre o sistema. O processo de solução é realizado de 

forma iterativa, avançando passo a passo no tempo. Em cada passo, a solução do sistema de equações 

fornece os deslocamentos e pressões dos poros para aquele instante específico. Estes valores são então 

armazenados para uso futuro. 
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] 𝑑𝑥𝑑𝑦𝑑𝑧 

𝐵𝐿
4 = ∫ ∫

𝜏

[
𝜕𝑝

𝜕𝑥
𝑛𝑥 +

𝜕𝑝

𝜕𝑦
𝑛𝑦 +

𝜕𝑝

𝜕𝑧
𝑛𝑧] 𝑁𝐿𝑑𝐴 

 

Os parâmetros utilizados na simulação incluem o módulo de cisalhamento 𝐺 = 6 × 109 𝑃𝑎, , a 

razão de Poisson 𝜈 = 0,2, o coeficiente de compressibilidade efetiva 𝑆𝑒 = 8 × 10
−11𝑃𝑎−1, o 

coeficiente de Biot 𝛼 = 0,79 e a permeabilidade da rocha 𝑘 = 1.9 × 10−13𝑚2, cada um 

desempenhando um papel essencial na caracterização do comportamento mecânico e do fluxo em rochas 

porosas: 𝐺 𝑒 𝜈 influenciam a resposta elástica da rocha sob esforços mecânicos; 𝑆𝑒 e 𝛼 avaliam as 

interações entre a matriz sólida e os fluidos nos poros, para entender a deformação dependente da 

pressão de poros; e 𝑘 é chave na determinação do fluxo de fluidos dentro da rocha, afetando a dissipação 

de pressão e a distribuição do fluido. Outros parâmetros importantes são o comprimento, largura e altura 

da rocha de 12 𝑚𝑒𝑡𝑟𝑜𝑠, a pressão inicial aplicada 𝑃0 = 1 × 108 e a viscosidade dinâmica do fluido 

𝜇 = 1 × 10−3 𝑃𝑎 ∙ 𝑠; 𝑃0 influencia a resposta inicial do sistema ao ser aplicada na base da rocha, e 𝜇  

afeta a resistência ao fluxo do fluido nos poros, influenciando a taxa de dissipação de pressão e o tempo 

para o sistema atingir o equilíbrio, todos selecionados para refletir condições reais e essenciais para a 

simulação precisa do comportamento mecânico e de fluxo em rochas porosas. Além dos parâmetros 

mencionados, a malha utilizada para a simulação foi composta por 1536 elementos (Figura 1). Esse 

número representa uma quantidade intermediária, para oferecer um equilíbrio entre a resolução dos 

detalhes e a eficiência computacional. Dessa forma, a escolha da malha com 1536 elementos garante que 

o modelo atenda aos requisitos de economia computacional, mantendo a simulação robusta e eficiente. 

 
Figura 1 – Malha Tetraédrica de 1536 elementos 

3. Resultados 

A implementação realizada é similar ao problema de Terzaghi e os resultados das simulações 

evidenciaram o comportamento esperado para os deslocamentos e pressões na rocha, conforme exposto 

nas Figuras 2, 4 e 8. A análise dos dados confirma que os nós próximos à base da rocha exibem as 

maiores deformações em comparação com os nós das regiões superiores, corroborando a hipótese de que 

a concentração de pressão nas camadas inferiores gera forças compressivas mais intensas na base. A 

pressão nos nós diminuiu ao longo do tempo, especialmente após a reação inicial à pressão aplicada na 

base, alinhando-se ao comportamento esperado de dissipação da pressão à medida que o fluido se 

dispersa pela malha de nós da simulação. Inicialmente, a aplicação de pressão causa um incremento 

imediato de pressão (resposta não drenada), mas com o passar do tempo, a pressão tende a decair 

conforme o sistema busca atingir um estado de equilíbrio. 

No final da simulação, o comportamento da pressão apresentou um padrão consistente com o 

esperado: ao final da simulação, nós em posições mais elevadas mantiveram pressões mais altas, 

enquanto os nós próximos à base exibiram pressões mais baixas. Esse gradiente de pressão era previsto 
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devido à distribuição do fluido ao longo da rocha, com maior acumulação nas regiões superiores. Os 

dados, mostram claramente a queda de pressão ao longo do tempo e a variação de pressão em diferentes 

posições, confirmando a correlação entre a posição em z dos nós e os níveis de pressão. Os resultados de 

deslocamento e pressão podem ser comparados os resultados analíticos disponíveis no trabalho de (Reis, 

2018) e expostos nas Figuras 2, 3, 4 e 5. Tanto o formato quanto a escala dos resultados são semelhantes 

aos analíticos, diferindo apenas em valores absolutos.  

 

 

 

 

 
Figura 2 - Deslocamentos calculados para diferentes posições 
e instantes de tempo para os nós do eixo central da malha de 

1536 elementos e passo de tempo 0.1s 

Figura 3 - Deslocamentos calculados analiticamente para 
diferentes posições e instantes de tempo 

 

 

 

Figura 4 - Pressões calculadas para diferentes posições e 
instantes de tempo para os nós do eixo central da malha de 

1536 elementos e passo de tempo 0.1s 

Figura 5 - Pressões calculadas analiticamente para diferentes 
posições e instantes de tempo 

4. Conclusão 

Os resultados das simulações confirmaram o comportamento esperado para os deslocamentos e 

pressões na rocha porosa. Observou-se que os nós localizados próximos à base da rocha apresentaram as 

maiores deformações em comparação com os nós das regiões superiores, corroborando a hipótese de que 

a concentração de pressão nas camadas inferiores gera forças compressivas mais intensas na base. Os 

gráficos de deslocamento e pressão forneceram suporte quantitativo para a previsão teórica, e os 

resultados de deslocamento foram comparados com os resultados analíticos de Reis (2018), 
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apresentando similaridade em formato e escala, apesar das diferenças em valores absolutos. Os dados 

confirmaram a correlação entre a posição em z dos nós e os níveis de pressão, indicando consistência na 

tendência dos resultados obtidos. No entanto, os gráficos apresentados diferem um pouco em termos de 

valores absolutos quando comparados aos resultados analíticos apresentados em (Wang, 2000). Essa 

discrepância sugere a possibilidade de erros na implementação do código em Python utilizado para a 

análise. O trabalho está em revisão e finalizar o processo de validação, com o objetivo de identificar e 

corrigir possíveis falhas no código e garantir maior precisão nos resultados apresentados. 

O desenvolvimento e a implementação de uma solução computacional para o modelo poroelástico 3D 

utilizando o método dos elementos finitos representaram um avanço significativo na simulação de 

fenômenos poroelásticos complexos. Ao expandir as equações poroelásticas de 2D para o cenário 

tridimensional e construir um algoritmo capaz de resolver essas equações em um ambiente 

computacional, este trabalho proporcionou uma ferramenta valiosa para a análise detalhada do 

comportamento de meios porosos tridimensionais sob variações de pressão do fluido ou tensões na 

matriz sólida.  

Em suma, este estudo demonstrou a viabilidade e os benefícios de desenvolver uma solução 

computacional para modelos poroelásticos 3D utilizando o método dos elementos finitos. A simulação 

bem-sucedida e a validação com resultados analíticos confirmam a precisão do modelo e a eficácia da 

abordagem adotada. Este trabalho contribui para o avanço da modelagem poroelástica e fornece uma 

base sólida para futuros desenvolvimentos na simulação de interações complexas entre fluxo de fluidos e 

deformações em meios porosos.  
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