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RESUMO

O interesse da indUstria em reduzir ruidos' sonoros n&o € nenhuma novidade,
principalmente quando estes ruidos sdo fontes _prejudic’:iais pata mecanismos &
sistemas emi areas importantes, como aquelés causados por vibragdes mecénicas ou
os que-denunciam falhas na estrutura de turbinas, como exemplos. Conseguir detectar
a fonte desses ruidos e qual a intensidade de sua energia acustica séo:de exirema

importancia na censtrugao de projetos de estruturas e maquinas.

Urma das principais maneiras de se fazer o levantamento dessas intensidades,
que-estdo relacionadas as poténcias dos sinais dos ruidos sonoros, € através da
estimagdo de imagens actisticas, feita utiizando arranjos de microfones. Nessa
ab‘orc!'agem-, um arranjo -capfa os sihais em seus microfones e.estes sinais sao
processados por um algoritimo _de..es_timaﬁéo, que: determina as poténcias vindas em
cada diregdo. Muitos dos algoritmos mais conhecidos fazem um passo intermediario
2o calcular a matriz de correlagéo dos sinais para realizar a estimagéo, e nesse passo
s3o feitas hipdteses que acarretam em perda de informagoes. Ainda, conforme se
aumenta a 'com_pl‘exidade do arranjo, colocando rmais’ microfones, © tempo que o
algoritmo: leva para realizar a.estimagao & sua complexidade aumentam, aumentando
o custo computacional do algoritmo. Faz-se interessante um algoritmo que elimine
essa perda de informaces com baixo custo computacional.

Além disso, como proposto em trabalhos recentes. [1] [2] [3], & possivel propor
uma transformada rapida que acelere os célculos do algoritmo de estimagéo, o que
diminuiria o tempo de processamento e o nimero de calculos necéssarios para
realizar a estimativa, com &ficiénecia igual ou melhor que os frabalhos aqui

referenciados.

Pa'lav"ras-cha\__re:_ Arranjo de Microfones, Algoritmos de Estimacdo, Imagens
Actsticas, Matrizes de Autocorrelagéo, Transformada Rapida.




ABSTRACT

The industry's. interest in reducing audible noise is nothing new, especially when
these noises are harmful sources for mechanisms and systems inimportantareas such
as those caused by mechanical vibrations or denouncing flaws in turbines structure,
as examples. To be able to detect the source of these noises and what is the intensity
of its acoustic energy are extremely important in projects of building structures and

machinery.

One of the main ways 1o make the estimation of these intensities, which are
related to the powers of the signals of audible noise, is through the estimation of
acoustic i’magés, which is made using.an array of microphones: In this approach, an
array captures the signals using its' microphones. and these signals are processed by
an estimation a‘[gbrithm, which determines the coming powers in each direction. Many
of the best known algorithms have an intermediate step to calculate the correlation
matrix of signals for performing the estimation, and in this step assumptions are made
that lead o loss of information. Furthermore, as itincreases the complexity of the array,
placing more microphones, the time it takes the algorithm toperform the estimation
and the complexity increase, increasing the computational cost of the algorithm. An
algorithm that eliminates this loss of information with low computational cost makes it
interesting:

In addition, as proposed in recent studies [1] [2] [3], it is possible to propose a
fast transform to speed up the calculations of the estimation algorithm, which reduces
processing time and number of computations required to perform an estimation in

efficiency with equal or better than the works referenced herein.

Keywords: Microphones Array, Estimation Algorithms, Acoustic Images,

Autacorrelation Matrices, Fast Transform.
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1. Defini¢ao do Problema

O imageamento acustico consiste em mapear as diregoes e intensidades dos
sinais vindos de fontes de som espalhadas no espaco utilizando arranjos de
microfones. O tipo de processamento que é realizado com esses arranjos é util em
diversas areas da engenharia e da ciéncia, como na construgao e analise de sinais de
radares, na radioastronomia, em sonares, em comunicagées, na detecgao na diregcao
de chegada dos sinais dessas fontes, em sismologia e no tratamento e diagnéstico

medico.
Figura 1 - Imageamento Acustico usando arranjos de microfones

20 dB
15dB
10dB

5dB

e 0dB

Fonte: “Acoustic Imaging Using the Kronecker Array,” pp. 6, 10 Fevereiro 2015,

O imageamento acustico é particularmente usado para se projetar carros, trens
e avibes que sejam mais eficientes aerodinamicamente e apresentem menos ruido,
além de ser usados para o projeto de turbinas e salas de concerto com objetivo
semelhante. Tal analise pode ainda ser utilizada para se detectar fontes de ruidos,
que é feita em projetos nas etapas de prototipagem e evitam falhas no funcionamento

dos produtos finais de tais projetos.

O nome de imageamento ndo € em vao. Assim como quando se tira uma foto
com uma camera fotografica de uma imagem qualquer, o arranjo de microfones fara
0 mesmo com o som, mostrando onde sdo os pontos com maior intensidade de
poténcia, utilizando para isso ou um mapa de cores ou uma escala de cinza, por
exemplo, para facilitar a visualizacdo. Nota-se, porém, que numa foto normal a cor
esta relacionada com a frequéncia do sinal, enquanto no imageamento acustico o
mapa de cores € um artificio para auxiliar na compreensao dos resultados obtidos,
uma vez que aqui neste problema as cores estao relacionadas as intensidades de

poténcia num dado ponto.
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Existern diversos miétodos e algoritmos qué realizam a estimacéo do valor das
poténcias desses sinais que sdo bem conhecidos e amplamente utilizados para os
propositos anteriormente citados, porém se faz interessante que tais medigdes sejam
realizadas com custo computacional menor, de maneira mais rapida e, quando
necessério, em situagdes de tempo real. Assim sendo, Ui algoritmo que realize o

mesmo processamento com maijor eficiéncia é de grande interesse,

Dentro.do universo do processamento de sinais usando arranjos, tal algoritmo
possibi'iitaria que, com a sua aceleragao, algoritmos de reconstrucdo mais avangados
da imagem acustica sejam ufilizados, como métodos que usem problemas de
minimizacéo com regularizagdo, possibilitando  a ‘solugdo de problemas -onde o
numero de microfones no arranjo seja maior, coisa que demoraria muito mais tempo
usando os algoritmos conhecidos que séo utilizados hoje em dia.

Para este projeto, todas as figuras utilizadas foram de autoria do. préprio autor

do projeto, salvo quando indicado.
2. Objetivos

Os objetivos desse trabalho: de formatura consistem em adaptar algofitmos para
aceleragiio do cdlculo de imagens actsticas para métodos que nao. requeiram a
estimagéo de matrizes de autocorrelagio. Esses métodos t&m diversas vantagens em
face de métodos tradicionais que dependam de matrizés de autocorrelacdo, em
particular menor tempo-de cédlculo, necessidade de usar um conjunto menor de dados
para se obter uma.imagem, e robustez frente as co_rr_ela_gﬁes.-entre_ os pixels da imagem
estimada. Este processamento poderd ser embarcade fazendo uso de uma FPGA,
para que seja possivel se fazer tais testes de desempenho, aléni de ver como: o
algoritmo se comporta em tempo real. Far-se-a o uso da FPGA, pois outros
dispositivos de processamento de dados, como um DSP ou um embarcado genérico,
ndo seriam capazes de processar o volume de dados n_ecess_é'rio.para- este problema
de estimagio, além do fato de que a FPGA possui certas facilidades na sua
programacao, come a paralelizagdo de processos; coisa gue néo ocotre num DSP,

‘que realiza seus processos de maneira seriada.

Portanto, os objetivos, em uma sequéncia logica de realizacio, séo;
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«  Estudar e utilizar os métodos mais conhecidos para a solugao do problema de.
imageamento acstico e se familiarizar com tais algoritmos;

o |mplementar o método para calcular a imagem acistica a parir do algoritmo
proposto em [2];

e Comparar os resuitados do métedo anterior coni e sem uso de transformadas
rapidas, tambémi propostas em [2], para acelerar os calculos de estimativa e verificar
a melhoria de desempenho o tempo de processamento;

e Procurar uma melhoria no algoritmo presente em [2], evitando o uso de
matrizes de autocorrefagéo e tentar achar uma transformada nos moldes daquela
‘proposta-também em [2], para acelerar os calculos de estimacao.

» Comparaf o método presente em [2], que faz uso de matrizes de autocorrelacao
e de uma transformada rapida para .aceléra‘.g:éo- dos calculos de estimacgéo, com o
método proposto neste trabalho, que nao faz uso-de matrizes de autocorrelagao e faz
uso-de uma nova transformada rapida eom 0s mesmos objetivos da anterior;

o Validar a melhoria. de desempenho. obtida com ¢ modelo proposto neste

trabalho frente ac modelo anteriormente proposto em [2];
Como objetivos secundarios, seriam interessantes os seguintes;

» Estudar a influsncia dos parametros presentes nos métodos (variaveis de
regularizagdo da minimizagao, janela utilizada quando se utiliza a Transformada de
Fourier, etc.);

« Pensar em como utilizar a solugéo. desse problema em.um instante como
condigéo inicial para o seguinte, para problemas em tempo real;

e |mplementar o algoritmo ‘de [1] ou o algoritmo com & 3rn‘eihori_a numa FPGA,

caso haja témpo para tanto,
3. Pesquisa de Levantamento da Situagéo

Nesta secao, serio discutidos alguns conceitos importantes para o entendimento.
do que esta sendo desenvolvido neste projeto, além de melhor se explicar o problema

que se pretende ser resolvido aqui neste trabalho.
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3.1. Visao Geral
A literatura sobre o problema de imageamento actistico & bem conhecida € os’
métodos propostos para a solugdo do problema sdo os mais diversos possiveis,

presentes numa série de artigos e livros académicos,

Inicialmente, o imageamento aclstico consiste numa série de métodos e
algoritmos qué permitam se estimar as intensidades de som num ponto qualguer do
‘espaco-chegando de diferentes diregées. Utilizando tais métodos, pode-se verificara

presenca de fontes de som e suas diregdes em relacdo ao arranjo de microfones.

‘O nivel de som chegando num dado ponto de varias diregSes pode ser estimado
atraves do uso de filtros espaciais, que estdo intimamente ligados a geometria do
arranjo utilizado e as diregbes das fontes, ou através da solugdo de um problema de
otimizagdo que englobe tais informag&es. Outro-problema presente nestes métodos
estd em querer methorar a resolugao do arranjo de microfories sem alterar o n uamero
desensores no arranjo, sendo qué sua geometria influencia na qualidade da imagem
actistica. Todos eles, nas solugfes propostas, porém, fazem com que o custo
computacional aumente conforme se tem solugbes. iterativas vindas de um.problema
de otimizagdo-que necessita do calculo de produtos de vetores ou matrizes muito
grandes. Também, deve-se lembrar. que 0 posicionamento-dos microfones possui

erros, que alteram os resultados obtidos para a imagem acustica.

Além disso, esses métodos que foram utilizados até agora, em seus algoritmos
de funcionamento, utilizam calculos de matrizes de autocorrelagdo como passo
intermediario para caleular a imagem. A KAT (Kronecker-Array Transform), proposta
em [2], é utilizada para acelerar os calculos nesse caso. Mas ¢ uso desses métodos
com fatrizes.de autocorrélagéo envolve algumas hipéteses, que nao séo verdadeiras
em geral, em particular, que as fontes de som s&o descorrelacionadas. A intengio,
portanto, & tentar estender a ideia da KAT para métodos que ndo precisem usar a
matriz de autocorrelagdo. Além de evitar'o problema de aproximagéo, isso poderia
resultar em algoritmos mais répidos e com melhor qualidade de imagem, e que
precisem de- menos dados para chegar a um miesmo resultado. lsso poderia
possibilitar -a obterigio de imagens. de fendmenos que variam rapidamente, por

exemplo.
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A intengéo, portanto, desse trabalho, serd a de utilizar técnicas propostas em [2],
aplicadas especificamente para esse problema de imageamento actstico.

3.2. Resumos de Conceitos Relevantes
Serao discutidos agora alguns conceitos preliminares. necessarios para a melhor

compreens&o deste trabaiho.

3.2.1. Non-equispaced in time and frequency fast Fourier transform
(NNFFT), Non-equispaced fast Fourier transform (NFFT) e Kronecker array
transform (KAT)

Séo transformadas que acelaram o célculo de produtos de matrizes/vetores,
-explicitadas: em [2]. A NNFFT & o mais geral, porém © mais lento método de
aceleragéo, sendo que pode ser empregada para qualquer geometria de arranjo de

‘microfones que se desejar, por exemplo.

A NFFT & mais rapida, mas festrita a casos onde os diregdes que s&o
examinadas estao amostradas uniformemente; isto é, as direcfes analisadas sdo.

divididas espacialmente num determinado nimero de amostras.

Finalmente & proposta uma nova fransformada, que, apesar de ser utilizada para
casos bem especificos de geometria do arranjo-de microfones e de organizagao de
direces examinadas, como, porexemplo, num caso em que o arranjo e a organizagao
tenham geometria separavel, isto ¢, de grade retangular. Essa transformada, também
presente e desenvolvida em [2] & a KAT. Ao contrario dos outros métodos, esta
transformada-trabalha bem estimando a imagem acistica quando as fontes de som
estéio mais proximas. do arranjo, eliminando a restrigéo de fontes erh campos distante,

além de cumprir a diminuigao do custo computacional.

3.2:2. Minimizagdo por Regularizagio

E um método: de resolugéo de problemas de minimizagdo com restri¢oes.
Regularizacdo, em matematica e estatistica e, em particular nas areas de aprendizado
de maguina e problemas inversos, refere-se .8 um progesso de infrodugao de
informacées adicionais, a fim de resoiver um p_roble_ma_ mal colocado ou para evitar
superajuste. Esta informagio & geralmente da forma de uma penalidade para a

‘complexidade, tais como restrices sobre a norma vetorial.




3.2.3. FPGA - Field-programmable gate array
Uma FPGA (ou em portugués “Arranjo de Portas Programavel em.Campo”) & um

-circuito integrado projetado para ser programavel por um projetista, sendo que isso é
possivel apds sua fab ricacdo. Diferente da grande -maiori‘a dos chips qle se encontra
no cotidiano, como em celulares, TVs, etc.; que ja vem pré-programados, uma FPGA
€ completamiente reprogramével, sendo qué- suas fiincionalidades sio totalmente
configuradas pelos usuarios, e ndo pelo fabricante. E um dispositivo semicondutor
altamente utilizado no processamento de dad.‘os_di'g'it'ai_s-e,-_fisicam'ehte',:_-é praticamente

composta por trés componentes:

e Blocos de Entrada-e Saida (I/0)
¢ Blocos Légicos Configuraveis

s Chaves de Interconiexdo
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4. Arvore de Objetivos

Atraves da metodologia de projeto adequada, foi gerada a seguinte arvore de
objetivos, que ilustra de maneira visual o que se pretende obter no fim deste projeto

de formatura.

Pode ser utilizado em
Tempo Real

Embarcavel em uma

Arranjos de Microfones

Estimac3o de Imagens Actsticas por

N3o Utiliza Matrizes
de Autocorrelacdo

™
S5
v 9
-~
(S
g2
o
s §

(W]

Figura 2 - Arvore de Objetivos
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5. Especificagcao de Requisitos
Os principais requisitos de projeto deste trabalho sdo os seguintes:

e O estimador deve ser capaz de realizar a estimativa da imagem acustica
utilizando para isso um algoritmo com a menor complexidade possivel.

e O tempo de processamento do algoritmo utilizado pelo estimador deve ser no
minimo menor ou igual aos tempos de processamento ja obtidos em outros trabalhos
aqui referenciados, que utilizam matrizes de autocorrelagcdo em seus algoritmos [1].

* A resolugéo das imagens obtidas pelo algoritmo deve ser igual ou melhor que
aquelas obtidas em trabalhos aqui referenciados [1].

e A utilizacdo de meméria pelo algoritmo deve ser a menor possivel para auxiliar
a melhoria do tempo de processamento do mesmo, além de possibilitar a utilizagao
de um volume menor de dados para solucionar o problema.

e O algoritmo deve funcionar tao bem quanto outros trabalhos aqui referenciados
[1] quando os processos analisados forem estacionarios, mas deve servir também
para processos que sejam nao estacionarios (quando as fontes de som sdo maéveis,

por exemplo).

Os resultados apresentados em [1] apontam alguns limites, porém nao todos,
que este trabalho devera alcancar respeitar os requisitos de projeto acima. La foram
utilizados varios algoritmos de reconstrugéo de imagens acusticas, como o “Delay and
Sum” (DAS), descrito em [2] e [4], e outros apresentados em [2], todos utilizando a
transformada de arranjos de Kronecker (KAT), proposto em [2], para acelerar os
algoritmos. Os tempos obtidos pelos diversos algoritmos que utilizavam a KAT estao

na tabela a seguir:

Tabela 1 - Média do Tempo de Reconstrugdo para cada método presente em [1]

Algoritmos Tempo [s]

DAS 0.13
DAMAS2 1.58
Regularizagao [, 1.96
Regularizagao TV 2.46

Fonte: C. B. Arroyo, “Estimagéo de Imagens Acusticas com Arranjos de Microfones,” S&o Paulo, 2015.
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Outra andlise pertinente presente em [2] que deve ser realizada neste trabalho
€ ver como é o comportamento do novo algoritmo aplicado diretamente, sem nenhuma
ajuda de uma transformada que acelere os calculos de estimacédo, e comparado ao
comportamento do mesmo algoritmo, fazendo uso de uma transformada rapida que
acelere seus calculos. Neste trabalho, deve-se que chegar num resultado igual ou
melhor que o apresentado em [1], [2] e [5] quando se elimina a matriz de

autocorrelagao presente nos algoritmos anteriores.

Finalmente, quando se diz que se quer que este novo algoritmo funcione para
processos que nao sejam estacionarios, quer-se que o tempo necessério para que o

algoritmo analise o sinal quando ele é aproximadamente estacionario seja o menor

possivel.

Figura 3 — Janelas de tempo para casos de processos nao estacionarios

o o
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__..-——'-'
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Jjanela de Amostras usada para reconstruir
a imagem acistica atualmente

Atualmente, os algoritmos conhecidos requerem que os processos analisados
permanegam aproximadamente estacionarios (no sentido de média e correlagbes
aproximadamente constantes) num intervalo de tempo relativamente longo, que
permite o calculo de transformadas e matrizes de autocorrelagédo. Porém este intervalo

de tempo pode ser menor ou, em termos discretos, pode-se utilizar uma janela de
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menos amostras a fim de se identificar esses trechos do processo. Quanto menos

amostras, menor a janela utilizada ou menor o tempo desse intervalo, melhor sera o

algoritmo.

Relacionando estes requisitos com as necessidades apontadas na arvore de

objetivos do projeto e considerando que:
1 = Baixo Custo Computacional
2 — Nao utilizagao de Matrizes de Autocorrelagao
3 — Pode ser embarcavel em uma FPGA
4 — Pode ser utilizado em tempo real

tem-se a seguinte tabela:

Tabela 2 - Relagdo das Necessidades da Arvore de Objetivos e os Requisitos do Projeto

Necessidades da
Requisitos de Projeto

Arvore de Objetivos

Justificativas

O estimador deve ser capaz de realizar a
estimativa da imagem acustica utilizando para

Baseado na comparagéo com algoritmos ja
existentes. O algoritmo que sera proposto
neste trabalho deve apresentar um grau de
complexidade igual ou menor que os
existentes na literatura, senao nao se torna
viavel sua utilizagao.

1e2
isso um algoritmo com a menor complexidade
possivel.
O tempo de processamento do algoritmo
1e2 utilizado pelo estimador deve ser no minimo

menor ou igual aos tempos de processamento
ja obtidos em outros trabalhos.

Calcular produtos de matrizes de maneira
mais rapida, com o uso de transformadas
adequadas, e utilizar um algoritmo que ndo
necessite de aproximagdes criadas por se
utilizar autocorrelagao tornam o tempo de
processamento e a complexidade menores.

A resolugao das imagens obtidas pelo
1e2 algoritmo deve ser igual ou melhor que
aquelas obtidas em trabalhos.

Espera-se que as melhorias que seréo obtidas

aqui, além de diminuir a complexidade do
algoritmo e o tempo de processamento,
venham a ter como consequéncia a melhoria
da resolugdo da imagem acustica obtida.
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A utilizagdo de meméria pelo algoritmo deve

O menor uso de meméria, relacionado a nao
utilizagdo de matrizes de correlagao, torna o
algoritmo atraente, pois vai garantir que o
custo computacional e o embarque sejam
mais faceis.

12e3
ser a menor possivel.
O algoritmo pode vir a funcionar para
14 processos estacionarios, mas deve servir

tambem para processos que sejam nédo
estacionarios.

Se todas as melhorias forem alcangadas,
espera-se que o algoritmo possa ser capaz de
estimar imagens acusticas de fontes cujos
processos sao nao estacionarios com taxas
de nao estacionariedade maiores.

5.1. Restrigdes para o Sistema

As restricoes técnicas mais importantes para este trabalho estdao em querer um

algoritmo que nao utilize matrizes de correlagcéo e suas aproximagdes decorrentes,

pois isso vai gerar um algoritmo mais simples e rapido que os que existem hoje em

dia. O embarque em uma FPGA é apenas uma maneira de tornar a analise e

processamento dos dados mais facil, pois a FPGA tem funcionalidade e poder de

processamento que garantem isso. Porém a sua utilizagédo pode ser feita apenas em

longo prazo, pois serdo as simulacdes que garantirdao se o algoritmo alcangou os

requisitos de projeto.

Ainda, o método de analise do desempenho do algoritmo proposto deve ser bem

preciso. Assim como feito em [1], o numero de calculos realizados no algoritmo e o

tempo que este leva para terminar sua operacao devem ser e serdo cuidadosamente

analisados, pois a viabilidade do algoritmo depende disso.
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6. Projeto

A tabela a seguir mostra algumas ferramentas que podem ser usadas para se
chegar aos resultados pretendidos neste trabalho. Para se diminuir a complexidade
do algoritmo, sera usado o grande banco de fung¢des e a facilidade de programacgao
do MATLAB® Script. Tentar fazer o algoritmo em linguagem C ou outra do tipo nao é

plausivel quando se tem em maos uma ferramenta como o ambiente de simulagao do
MATLAB. '

Tabela 3 - Tabela de Conceitos

Menor Tempo de Maior/Melhor Menor Uso de
Menor Complexidade
Processamento resolugao Memodria e Dados
Uso do MATLAB® Script NNFFT DAS DSP
Linguagem C NFFT DAMAS?2 FPGA
Python FFT Regularizagao 4
Regularizagao TV
KAT
(Total Variation)
Outra transformada

Além disso, serao implementadas inicialmente todas as transformadas propostas
para diminuir o tempo de processamento dos algoritmos e se optara por aquela que o
fizer com a menor complexidade possivel, reduzindo também o numero de calculos
necessarios para o algoritmo funcionar. Propor uma nova transformada que funcione
como a KAT para os casos de algoritmos que nao utilizam autocorrelagdo na

estimagao das imagens acusticas & extremamente interessante.

A sequéncia de métodos de reconstrugdo apresentada — DAS, DAMAS2, [, e
TV, presentes em [2] — estda em ordem de melhor resolugao. Todas serao analisadas,
pois sua complexidade também aumenta na ordem apresentada, e isso afeta o tempo

de processamento, como anteriormente citado.
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Figura 4 - Complexidade e Resolugdo dos algoritmos conhecidos na literatura

[ Complexidade

| Resolugdo

O melhor conjunto que obtiver uma resolugédo e um tempo de processamento

igual ou melhor que os apresentados anteriormente sera escolhido para o
desenvolvimento deste trabalho. Este estudo sera feito como parte preliminar deste

trabalho, neste inicio do projeto.

Por fim, como ja dito, fez-se a escolha pela FPGA por sua capacidade de
processamento e paralelizacdo de processos, que a diferem de um DSP. Como o
problema que este trabalho trata possui um volume de dados consideravel, uma FPGA

se faz mais interessante.

Portanto, pode-se concluir que se tem como proposta para este projeto criar um

estimador de imagens acusticas com as seguintes caracteristicas:

e Elimine a necessidade de uma matriz de autocorrelacdo, devido a perda de
informagéao causada pelas hipoteses feitas para facilitar calculos intermediarios (fontes
nao correlacionadas, portanto correlagées cruzadas nulas).

e Seja tao eficiente quanto os algoritmos existentes (Baixo custo computacional,

realiza calculos mais rapidamente, etc).
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Figura 6 - Diagrama de Blocos do Projeto - Nivel 1
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6.3. Decomposig¢do Funcional: Nivel 2
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Figura 7 - Diagrama de Blocos do Projeto - Nivel 2 - Maior Detalhamento e com as mudangas propostas ja
implementadas
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6.4. Analise de Riscos do Projeto
A analise de riscos desse trabalho sera feita tendo como base o nivel 1 de
decomposig¢ao funcional do projeto, que € mais simples de ser analisado, porém

consegue mostrar claramente onde os possiveis problemas podem vir a ocorrer.

6.4.1. Bloco 1: Recepgdo dos sinais do arranjo de microfones

Este é o primeiro bloco do projeto. E nele que os sinais vindos das fontes
espalhadas no espago sao captados e processados (conversao Analégico/Digital). Os
sinais que saem desse bloco sdo os sinais captados por cada um dos M microfones
do arranjo, e sa@o, também, as entradas do bloco seguinte, que realiza o calculo da

FFT de cada um desses sinais.

Figura 8 - Bloco 1: Recepgéao dos sinais do arranjo de microfones
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BLOCO 1: Recepgdo dos sinais do

arranjo de microfones

Esse bloco possui alguns riscos intrinsecos no seu funcionamento, sendo alguns

deles os seguintes:

e Arranjo de Microfones pode simplesmente nao funcionar quando ele for
necessario, e, como apenas ha um arranjo deste tipo no LPS (Laboratério de
Processamento de Sinais da POLI-USP), isso pode impedir a realizagcdo das medidas

necessarias para a realizagao deste trabalho.
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e Mesmo que ele funcione, por falta de calibracdo ou erro humano na instalagao
do equipamento de medigéo, o arranjo pode nao realizar a coleta de dados da maneira
desejada.

e Os microfones presentes no arranjo podem queimar, pois sao bastante

sensiveis.

A maior parte desses problemas foi solucionada, pois ja ha um banco de dados

devidamente salvo, com as informagdes previamente coletadas.

6.4.2. Bloco 2: Calculo da FFT
Este bloco tem a simples fungao de tomar a FFT (Fast Fourier Transform, ou

Transformada Rapida de Fourier) de cada um dos sinais que vém dos M microfones.

Figura 9 - Bloco 2: Calculo da FFT
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BLOCO 2: Calculoda FFT

Ele possui poucos riscos, pois fazendo uso, por exemplo, do MATLAB® para se

realizar este calculo, ele se faz muito simples.

6.4.3. Bloco 3: Algoritmo de estimativa
Este é, sem duvida, o bloco mais problematico do projeto. Ele € o cerne da
mudanga proposta nesse trabalho, pois é nele que sera implementado o novo

algoritmo que sera aqui criado.
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Figura 10 - Bloco 3: Algoritmo de Estimativa

BLOCO 3: Algoritmo de Estimativa
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Os principais riscos neste bloco sdo os seguintes:

e Sabe-se que calculos serao poupados quando este algoritmo for implementado
(uma vez que a matriz de autocorrelagdo sera eliminada), o que pode ajudar na
melhora do tempo de processamento (custo computacional) e, possivelmente, na
resolucdo, ja que informagao que antes era perdida agora sera utilizada. Mas a
qualidade da imagem ainda é uma incognita.

e O meétodo pode ser mais dificil de convergir, por exigir mais iteragées para tanto.

e O algoritmo pode ser muito sensivel aos parametros ou mais sensivel que os
algoritmos atuais.

e Por envolver niumeros complexos, pode haver problemas nao antecipados.

Apesar dos riscos aqui apresentados, na proxima se¢ao vai se tentar mostrar a
viabilidade deste projeto, tendo em méaos os resultados obtidos em duas publicagées,

devidamente referenciadas neste trabalho.

6.5. Prova de Conceito

A grande parte dos trabalhos na literatura para estimagao de imagens acusticas
envolve o calculo de matrizes de autocorrelagcdo como parte intermediaria do seu
método, como ja foi exposto. Porém, também como ja foi dito, ha perda de informagéo

quando isso é feito, por causa das hipéteses que sdo assumidas. Seria interessante
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que essas hipdteses fossem eliminadas e se:gerasse um algoritmo giie conseglisse
realizar a estimativa tendo como dados de entrada apenas os dados referentes:d FFT
dos sinafs nos microfones. 1sso ja foi proposto no artigo referide em [6]: neste artigo,
os autores. propdem exatamente éste método, istc &, ndo usam matrizes de
autocorrelagdo no seu método de estimagdo, mas ndo fazem uso de -algumia

transformada nessa etapa que aceléere os calculos de estimacdo.

Ja natesede mestrado referida em [1], o autor faz exatamente-o oposto, ou seja,
ele demonstra a viabilidade de uma transformada (a KAT — Kronecker Array
Transform) na diminuicdo dos calculos necessarios para se estimar as imagens
acusticas, mas fazendo uso de um algoritmo -de_...ESiima'gﬁo_ que ainda usa matrizes de

autocorrelagéo.

Portanto, sabendo dos resultados desses. dois casos; pode-se afirmar que uni-
los & possivel e se faz muito ‘interessante, pois se estaria unindo o melhor de dois
mundos: a héo perda de informagbes de um método, pelo ndo uso da matriz de
autocorrelagdo, e a velocidade nos cdlculos Gue sé pode atingir fazendo uso de uma’

fransformada gue auxilie no caso deste projeto.

Finalmente, criar um métedo que una o algoritmo presente em [6] a uma
transformada que acelere seus calculos de estimacao, como em. [_'I_,_]_-,_ go priricipal
escopo deste projeto, e se prova bastante plausivel tentar fazé-lo dados os resultados
anteriores, ou.seja, poer ndo ser um problema trivial, mas com alta: probabilidade de

sucesso, pode-se-afirmar que 'ha viabilidade nesse: projeto.

6.6. Deserivolvimento do Projeto

A parte inicial do desernivolvimento desse projeto se deu com o estudo elou
revisao-de conceitos que foram frequentemente utilizados: no decorrer deste trabatho.,
Alguns desses conceitos valem ser comentados devido & sua importancia para que
se forne mais claro o entendimento do que esta se implementando e quais sao os
‘objetivos: em ‘se estudar fais conceitos. A seguir, faz-se um breve resumo dos

conceitos mais importantes para este trabaiho.

6.6.1. Modelo de Propagaco de Ondas
O tipo de onda analisado serdo ondas sonoras € se pode modelar sua

propagagio no espago.com seguinte equagio:de onda:
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8x2 By? " 8z% T 2 g2’

onde p. esta relacionada & press&o sonora da onda, x,y e z s80 as coordenadas
escolhidas e ¢ é a velocidade de propagacéo da-onda sonora no meio. A solucgio da
equagio anterior pode ‘ser decomposta, para um ponto P = [p, p; P,
suficientemente longe de todas as fontes, como uma superposigao de ondas planas

se propagando de diferentes diregoes,

Uma tnica onda se propagando na diregéo k.= [k, k, k,]" tem a forma:

x2(6p) = F(t— Kp,u) = f(t+ 252, ),

onde k¢ o vetor de nimero-de onda, um vetor que aponta na diregéo de propagagao
da onda, cuja magnitude € [kl = w/c, w = 2af, f & a frequéncia do sinal, e u =
—ck/w &um vetor unjtario que aponta para a diregdo dé onde & onda esta chegando
ao arranjo.(um vetor que tem origem no arranjo de sensores e-aponta para a fonte do

sinal),
Se-o sinal da fonte apresentar apenas uma frequéncia, pode-se escrever que:

e o sinal num ponto p no espaco tera a forma:

LuTp

x(t,p) = X(w,p)e’, com X(w,p) = F(w,u)e’s" 7.

Neste trabalho, em todas as simulagbes, sera considerado um arranjo de
microfones planar de M'sensores, isto &, o arranjo terd microfones com coordenadas
Um = [Py Py P, 17y COM Dy, =0, m =1, .., M. Pode-se escrever o-sinal que chega
em cada um dos microfones guando a onda plana chega ao arranjo, sendo. que esta

-onda vem da diregio: 1.como:
X((D) - X(“’;Pz) — F(ﬂ),u) ef?fa-}_?z _é F(w,u)v(u),

X(w, Pu). . jfé'{u?fp M
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onde v(u) é conhecido como “array manifold vector” ou vetor de diregées do arranjo.
Este vetor contém as informagdes de atraso com o qual a onda que se propaga na da
dire¢do —u chega ao arranjo. O arranjo consegue diferenciar ondas planas que
chegam de diferentes direcoes por esses atrasos nos sinais em cada microfone. Esse
vetor tem um papel fundamental em imageamento acustico exatamente por

representar estes atrasos de maneira concisa e conveniente.

Para os casos onde ha mais de uma fonte, se o campo sonoro préximo ao arranjo
for linear e todas as fontes estiverem longe o suficiente para que a condigédo de onda
plana chegando no arranjo seja respeitada o sinal recebido nos microfones sera a
superposi¢cdao de um numero infinito de ondas planas. Aqui essa superposigao infinita
sera aproximada pelo caso discreto, que corresponde a aproximar os sinais que
chegam ao arranjo como a superposi¢ao de um numero finito de ondas planas vindo
de diregbes previamente escolhidas, isto é, divide-se o espaco visto pelo arranjo de
maneira discreta, com N amostras, onde pode haver uma onda plana vinda de cada

diregao, de u, até u,, como na figura a seguir:

Figura 11 - Espago visto pelo arranjo de microfones, amostrado

Fonte: Autoria Prépria. Figura feita com auxilio do MATLAB.
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O modelo resultante para o caso-de mais de uma fonte fica sendo, portanto:

o | Flw;ui)
X{w) =Xy F(w,_u_n)_.v@n_)= () - o)) : }

Flouy) |

‘Até agora, assumiu-se implicitamente gue os sinais gue vém das fontes sonoras
s&o sinais determinfsticos. Neste caso, a imagem acustica discreta que se quer

estimar é dada pela expressao Y(w,u,) £ |Flw,u,)|%

E necessario que se expanda esse modelo para incluir sinais mais genéricos,
podendo os sinais vindo de cada direcéio serem: processos aleatérios estacionarios.
Um modelo como ¢ anteriormente mostrado nio esta disponivel, uma vez que
processos estacionarios ndo-tem energia finita, apenas o -espectro de poténcia é
definido. Para lidar com esse caso, & necessario o uso da Transformada Discreta de.
Fourier (TDF), ou, mais especificamente na implementacdo em MATLAR, da FFT
(“Fast Fourier Transform *). Assume-ge aqui que a transformada toma K amostras para
que seu calculo seja realizado, e que as frequéncias do sinal e dé amostragem
respeitam ‘as condigbes de- Nyquist para néo haver nenhum tipo de problema de

amostragem.

‘Os métodos ja testados em [2] comegam a diferir dos métodos propostos neste
‘trabalho a partir deste ponto. A estimacéo realizada em [Z{]é feita da. seguinte maneira:

SejaV'=[wlw,) - w(uy)]. Nesse caso, a matriz de autocorrelagio do 'sinal
que chega aos microfones pode ser escrita como. sendo, para uma dada frequéncia

W

Ry (@) = E{X(a)X(0)"} = VRp (w)V¥,
onde X(&) & a transformada de Fourier em tempo discreto dos sinais dos microfones
¢ Rp(w) € a matriz de autocorrelacdo dos sinais das fontes e pode ser escrita como:

{F Cw,uq) - ) o N
Bp(w) = E[ [ ] lcanj(Flw,u)) = conj(F(wun)ly,
e E{:} ¢ o valor esperado e (-} denota a operagso que caleula o hermitiano de uma

matriz ou vetor, que se define comg ¢ transposto conjugado da matriz. Ri(w)
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normalmente é uma matriz cheia, significando que os sinais vindo de. diferentes
diregdes podem ser correlacionades. Porém, para tornar & solugéo do problema
factivel para valores grandes de N, € comum se assumir que néo existe correlagao
entre as fontes. Isso faz com Ry(w) sefa uma matriz diagenal, o que facilita a
abordagem para a estimagéo, porém cria uma aproximagéo para ¢ qlie se é observado

na realidade. Tendo essas hipdteses, pode-se afirmar que:
R, = E{XX"} = T vlu)Y (up) v (),

com Y(u,) = E{|Flw, u-ﬁ')l'z_} e 530 os elementos da _diég_o‘nal -de Rrp e a imagem
acustica que se deseja estimar. Para ajudar a resolver esse problema, de-achar ¥ (u,)
na equagio anterior, sejam Ty & vec(Ry) e A=
[conj(v(u)) @by - conj(v(uy)) ® v(uy)], onde ® denota o Produto de
Kr.onebker,- deﬂnido da seguinte maneira:

141 412
Paramatriz A = [(.'121_ Q57 ‘ e-B, matrizes A e B quaisquer.Entao:

ARB &

a11B 2B
'a2_1.3 ypB oo

Aplicando para a equagho R, = XN_,v(i,)Y(uw,)v/(u;) a seguinte
propriedade:
vec(ACB) = (BT® A) vec(C),

podemos escrever gue:

Y{ug)
Ty =4 P ‘ = Ay,.

Y Cuy)

e se quer estimar y.

O modelo adetado rieste trabalho, a estimagéo fica bem mais simples, uma vez
que néo ha necess"ida'de--‘de se calcular as matrizes de autocorrelagio dos sinais das
fontes (que ha pratica'ndo s&o0 conhecidas) & nem dos sinais dos _m_'ibrofoﬂes_'-(q‘ue--'s_'a'o
as Unicas informagdes conhecidas), apenas as TDFs de-cada sinal e-a matriz com os

vetores de diregdes. Para este trabalho, sejam:
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X(w,p1)]
X’(w',_-??z") = [X]Mxl

s _'((U., pM)

como definidos para o caso anterior, tem-se que o modelo que sera.utilizado para se

realizar as estimativas dos sinais no microfones ¢ o seguinte:
X(w) = V¥{(w)

e o valor gue se deseja estimar sao os valores de [¥]y,;, cujas poténcias. médias
formam & imagem acustica. Na seg#o a seguir sdo discutidos os métodos para realizar

essas estimativas.

6.6.2: Métodos de Estimagéo de Imagens Aclisticas

Existem: diversds maneiras de se realizar a estimativa para as imagens
-acusticas, com varios niveis de complexidade, como ja citado nas partes iniciais deste
trabalho. Todos eles tem .como hipétese o fato:de que o arranjo se ericontra da regigo
de campo distante emn relagdo as fontes dos sinais. Os métodos que foram utilizados

em [2] & neste trabalho-sé&o 0s-se seguem.

6.6.2.1. Delay and Sum: DAS

E um dos métodos miais simples de estimativa e é desciito com precisdo em [4];
E um beamformer deterministico gue tenta compensar o atraso rélativo em cada
sensor do airanjo e calcula a média dos sinais resultantes, a partir da ‘seguinte
expresséo para o seu respectivo filtro espacial (que realiza'a ponderagio para cada
sensor):

N YN
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‘Para se-obter a imagem acUstica, é preciso estimar a-intensidade do som de

cada diregéio u ja _pré#deﬁnida, para se obter um vetor de.es_timatiVas- ¥ para y, do
problema descrito em [2], ou ¥{w; u,),n. = 1,..., N no caso deste trabalho, Tem-se para

[2] que:

o 1 oy
y=:5 477,

Nota-se que o resultado do segundo membro fornece um vetor cujos elemenros
s&o nGmeros reais, isto &, jd-é uma aproximagao para as poténcias dos sinais vindo
de cada dirégao. Agora, para este trabalho. temos que:

Y=V¥X,

sendo que o resultado obtido do produto do segundo membro ¢ um vetor com
elementos complexos. Para se calcular a poténcia, & necessario calcular | - |2 de cada

elemento:

Vale notar que ¥ s seria igual a y somente se A= ;{1-,- 4%, o que acontece
apenas se as colunas de A fossem oriogonais e A fosse uma matriz quadrada, que
sdo condigbes que normalmente ndo s&o encontradas na pratica. Sao necessarios
métodos que condizem mais com 4 realidade.

6.6.2.2. Deconvolution Approach for the Mapping of Acoustic Sources:

DAMAS2

E um método-que utiliza deconvolugées 2D para estimar a imagem acustica;
Denotando por ¥ a imagem-ac(stica bidimensional, isto &, y vetor rearranjado como
uma matriz (imagem bidimensional), e da mesma maneira definir ¥ para a imagem
aclstica bidimensional estimada. O método DAMAS2 calcula uma melhor
aproximagdo ¥ para ¥ dada a estimativa realizada utilizando o método de Soma e
Atraso (Delay -and Sum - DAS), denotado como ¥, de maneira iterativa, como

mostrado na expressio a seguir:
{k+1). — _ . w L Ly _rp v ol
¥ max {? + a_[:l’_ (P = )], -0},

onde * denota:a deconvolugio 2D, PX) ¢ a imagem reconstruida na iteragdo 'k com

Y@ =0, P é a Point Spread Function (PSF) discrétizada do arranjo, cuja definigéo
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precisa esta presente em [4], = )i J.:'I:-j_?_|-¢-j € uma constante e max{-.,_-} retorna o
maximo. A maneira coro este método esta d_eﬁnidq_-'é para garantir que as estimativas

tenharm valores estritamente positivos.

Esse é um dos problemas pelos qu‘ais@aﬂe’ﬁﬁi_g’:_éo deste método para o problema
deste trabalho se torna complexa. Neste trabalho, os valores de Y estio relacionados
aos valores da transformada de Fourierem tempo discreto do sinal vindo de uma dada
direcdo em uma frequénci’a: qualquer, e, portanto, seu valor assume valores
complexos, e néo se pode-definir uma comparagéo tal que o ntimero complexo seja
estfitamente positivo; pois ndo faz sentido algum. Qutro ponto para se ittilizar o
DAMAS2 seria que o método teria que ser totalmente repensado para as novas.
hipéteses deste preblema e definir uma deconvolugdo 2D para este novo caso mais
uma PSF seria extremamente, além de nao ser escopo deste trabalho. Tendo emvista:
esses problemas de definigdo para sua correta utilizagéo, preferiu-se nao utilizar esse:

método neste trabalho.

6.6.2.3. Regularizagao I1
E ummétodo.de reconstrugdo que utiliza conceitos de otimizagso cotivexa, que
podem ser resolvidas por métodos iterativos eficientes computacionaimente.

Assume-se que o campo acustico que chega ao amranjo de microfones foi gerado
por apenas algumas fontes pontuais, compactas, isto €, a distribuigdo de fontes no
espago: vista pelo _a.rranj'o'--é_ esparsa. Neste caso & possivel aplicar uma restrigdo,
presente no seguinte problema. de otimiza¢so convexo proposto para o problema

propoesto em [2]:
minimizar gz |1re — A — a*vec(d) 12 tal que¥;; = 0,62 = 0 e Py <4,

onde I & a'matrizidentidade, o* & a variancia de um ruido presente nos sinais (incluido
ho-modelo anteriormente adotado nos sinais dos microfones) e [17]l, denota a norma
i1, definida pela-soma do médulo das componentes do vetor 3. A restrigio da norimna
i1 |_|?||:1_ < 4 serve para regularizar o problema enquanto se forga que a esparsividade

e A é um parémetro de regularizagéo.

Outra opgao para se definir a equacéo anterior como o que foi definido com
“basis pursuit denoising. pmbfem-‘;j gue tem a seguinte forma:




minimizarg 19l tal que |y, — Aj’:‘”:z <ua,

que é a forma adotada em [2] para se estimar a’ imagem aclstica e também sera
adotada para.o problema deste trabalho, onde ¢ € o desvio padrao do rufdo (assumiu-
se esse valor como parametro de-reg_u‘lariZagé‘Q)‘. Para este trabalho, o problema de
otimizagao convexo fica sendo descrito-da seguinte maneira:
minimizarg,||P|l, tal que [X ~ VY|, < 0.
6.6.24. Regularizagao TV (Total Variation)
Outra possibilidade ainda & reconstruir a imagem aciistica utilizande um método

que faz uso de regularizagéo da variagao total (‘Total Variation Regularization - TV").

Define-se aseguinte norma, denominada noma isotropica da variagéo fotal:

¥ N7y = Ty J [V;ch]a2 it [‘?}.Y]i},

onde V, e V, denotam os primeiros operadores de diferenga nas dire¢es x ey (estio
relacioriados com -as primeiras derivadas) e i e j s0 os indices relacionados as
coordenadas x ey, respectivamente. O seguinte problema de otimizagéo pode, dada

a definigao anterior, sef resolvido para o problema propoesto-em [2]:
minimizargy|[¥| ., + ulirs — A1 ] tal que [¥] = 0.

O primeiro termio mede como & imagem oscila e o segundo lermo da
minimizagéo assegura uma boa aproximacéo entre a imagem reconstruida e os.dados
medidos. do arranjo. Esse método consegue ter i'magen_s. acuradas.e reconstrugdes
estaveis com convergéncia garantida.

Esse mesmo método pode ser usado aqui neste trabalho, sendo que o problema
de otimizagéo fica sendo o seguinte:

minimizar ||}, +u]lX = V| ,

Deve-se notar, contudo, que-este método de reconstrugéo n&o € apropriado para
imagens pontuais, de maneira oposta ao métodoe de regularizagdo {1, este é um
método adequado patra imagens ditas suaves, onde a d istribuigéo é continuada, & naa

dpenas pontdos-esparsos..
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6.6.3. Transformadas Répidas: KAT (Kronocker Array Transform) e Nova

KAT proposta.

Apresentados os métodos anteriores, & possivel estimar imagens aciisticas com
boa resolugéo, porém -usando arranjos com um nimero de microfones moderado,
condig&o que se deve a problemas de dimensionalidade das matrizes utilizadas no
programa gue implementa tais métodos. Alguns:desses métodos séo iterativos, o que
na pratica req ue_r-:que‘.'ha]a operagdes de multiplicagdio de matrizes: r_e_p_é.tidas" vezes,

tanto na forma A¥ (ou V¥, no caso deste trabalho) ou A%r, (ou V¥X).

Na prética, a matriz A para o caso de estimagao que faz uso da mairiz de
autocorrelagdo € geralmente grande para se ter uma resolugdio muito boa das
imagens acusticas. Um exemplo presente em [2] mostra que se um arranjo fiver 64
microfones e a imagem desejada term 128.x 128 pixels, isto &, um nimero de
microfones M = 64 e de: divisdes N, =N, = 128 (N = N, x N, = 128% = 16384), a
matriz A teria MZXx N = 4096 x 16384 = 67108864 elementos. Esse exemplo
evidencia ‘que; quanto mais. complexo for o método aplicado para reconstrucac das
imagens. ‘acusticas, mais fempo de processamento ele ird consumir. Como
comparagio, a mudanga proposta neste trabalho j& atua nesse problema de
dimensionalidade: seguindo o exemplo anterior, isto &, com 08 mesmos valores de M
€ N, ter-se-ia uma inatriz V de dimensdes M x N = 64 x 16384 = 1048576 elementos,

64 vezes menos elementos que a do exemplo anterior:

A ideia central das transformadas rapidas, seja a NNFFT, NFFT ou da KAT (e da
nova KAT, como serd descrito nesta secao), é a de acelerar os calculos desses
produtos de matrizes, rearranjando a estrutura da matriz A no caso que utiliza matrizes
de autocorrelagéio, e da matriz ¥ no caso proposto neste trabalho, que nao fara uso
de matrizes de autocorrela¢ao. Focou-se na utilizagdo da KAT nesté projeto, uma vez
que-esta transformada foi a que apresentou os melhores resultados [2]. A Kronocker
Array Transform, como ja foi descrita ho inicio deste trabalho, € uma transformada
cuja utilizagdo depende de como os sensores estdo arranjados € como o espago visto
pelo arranjo foi amostrado. A KAT vale para arranjos planares & para-arranjos de
geometria e amostragem sepa‘rév’éis_,_ isto &, 'arra_njbs:- com sensores e amostragem

distribuidos em arranjos retangulares, ndo necessariamente uniformes.
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Arranjo Utilizado
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Figura 12 - Exemplo de Arranjo de Microfones Separavel e Ndao Uniforme
Considere um arranjo planar, como microfones arranjados em uma malha
retangular como na figura anterior e assuma que o sistema de coordenadas esta no
plano do arranjo seja o plano xy e que as dire¢des u,, foram escolhidas tais que:

Uy, i
Uy,j

Ujst(i-1)Ny =
1—-u?,;,—u?
x,i y.J

onde -1 <u,; <le-1<u,; <1, N, €0 numero de diregoes vistas na diregcéo x e
N,, na diregao y. Esse vetor apresenta a informagéo de todas as diregGes vistas pelo

arranjo de maneira organizada para tornar a implementagao computacional mais facil.
O indice j caminha na diregcdo y passando por todas as linhas da malha retangular, e

o indice i caminha na direg¢ao x, passando por todos os elementos presentes na linha
j-
Para a posi¢do dos microfones, a malha retangular e a posicdo dos microfones

nesta malha pode ser organizadas da seguinte maneira:
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x,r
Ps+(r-1)My = Frs‘»l Sr=sMyelsssM,,
0

onde M, é o numero de microfones na diregdo x e M,, € o nimero de microfones na

diregéo y, com M, x M, = M, M total de microfones no arranjo. O indice s caminha na

direcao y passando por todas as linhas da malha retangular, e o indice » caminha na

direcao x, passando por todos os elementos presentes na linha s.

Figura 13 - Modelo de arranjo com as posigdes dos microfones com indices devidamente organizadas
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Fonte: Autoria propria. Figura feita com auxilio do Visio 2013.

Dadas as hipoteses anteriores, pode-se decompor o vetor de direcbes numa

dada direcao da seguinte maneira, utilizando o produto de Kronecker ja definido:

v(u}+(i—1)Ny) = vy () @ vy (uy,5),

ef“‘:'“x.i Px1 ef%“y.j Pya
L L
J Ui Px,2 JTUy,jPy2 i W
onde v (uy) 2| €™ | e vy(uy,) 2] €7 | cujas definigdes saem da
ef%“x,[ Px,Mx ef%uy,} PyMy

seguinte expressao:
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g/Tun P ..Ej Ui Pxr ¢ e}-,‘.‘y,j I’-J{rsj_n_ = j4(—1) Ny em =38+ {r— DM,

ndo havendo térmos em z ra expressio anterior, pois o arranjo € considerado planar,

isto & a posigédo z dos microfones é zero, come modelado anteriormente.

Sob estas condigbes, os produtos entre matrizes e vetores podem ser obtidos
de maneira mais eficiente pelo rearranjo. da matriz 4, e obter-se assim um custo
computacional menor que quando utilizada a multiplicagio direta. Os resultados até
este ponto. apresentados valem para os dois ¢asos, com e sem matrizes de

autocorrelagao {matrizes 4 e V).

Para o caso que faz uso das matrizes de autocorrelagac presente em [2], pode-

se definir matrizes V,, e V,, como sendo:
Vi 2 [0, (n) @ ()~ 92 (van,) @ V(e )] =

' =?7'x-._'1.(1£5\c_,1_).'x Vx1(ux1) 'V*'x'.-1-c'_ux_,mx).- X Vi1 (ux,Nx).
Vi1 (U ) X Dea(iny) o "V’x._L.(ux,NJ X gz (Uxn,) € (:{Zf‘f;‘r;*Nx

Uy (“—xl) X Vi (,uéc.i)- v-*x.-mx(ux.wg) X -"x.Mx(_ux,Nx)--

Vy & [0y () @y (uya) vy (uyn,) By (uyw,,)=

"'.‘y.l.(uy;i).*' Vysllly) o Dy (uyNy) X Uy (:uy,nfy) ]

”'y.My(uy;i) X Vyar, (Uya) o Py (”y;-!\?y.;) X Vymy (uylvy)

Pode-se definir ¥ para um dado vetor ¥, tal que ¥ = vec(¥) e Z=V, ¥ V]. Para,
uma certa matriz de perimutacao H, responsavel por reorganizar os-elementos de um

dado vetor, pode-se verificar que:
T, = AV = Hvec(Z) = H vec(V, Y VL)

e esta & a Kronecker Array Transform. O produto do tipo 3 = A_A‘ii‘: pode ser obtido
similarmente. Definindo Z tal que vec(Z) = H'#, pode-se mostrar que:

vec(A"T) = vec(VY Z V).
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Todas as vezes que algum produto entre matrizes € vetores aparecer na
implementagéo. eém MATLAB, por exemplo, d troca do produto direto pelo. uso da
transformada vai reduzir-o témpo de processamento computacional necessério para
se reconstruir a imagem aclstica. Vale notar que a transformada, segundo o.que é
apontado em [2], funciona melhor que o produto direto e as demais transformadas
comentadas para uma certa dimenséo do problema’(niimero de microfones e numero
de.amostras do espago), a partir do qual a transformada passa a ter vantagens

computacionais,
Para o'caso estudado neste trabalho, feitas as hipéteses como no caso anterior
e lembrando-que!

[vlan) - v

vV = -'='_-[V]MxN31-

'??'(u.l,pm) i 'v(uy,l_’m-._).
com M = My X My & N = N, x-N;, podemos definir, rieste-caso de:forma simplificada,

que:

i P_x,;_(ux,x)' v Vxa (uxNx) .
Vx & [v-x-_(ux,y) T Vg (u'i")Nx-)] = vx,z(ux.l) vx’z:(‘:lx’w") ‘& @_M:EXN::
;Vx,f-if'é(;{x;jr) . '”x,_M;'(ux,-Ng) .

Vya (u'.vl) o Uyn 1(:u}'i.Ny)

vy [uy () - vy ()] = -'vy;z-.guy,'l'_). vy (tym,) | & cmpxmy

2, () < ey (w5,

e como consequéncia das definigdes anteriores, podemios verificar que V = ¥, ® I/,
Como no caso gue faz uso das matrizes de -autocorrelagdo, podemos definir os

produtos V¥ e V4 X, com [7] s © [X] (4, xrtzyx1» da Seguinte maneira para ¢ caso

deste trabalho:-

X = V¥ = (V, ®V,)P = vec(Vy ¥ V}),com ¥ = [7]

| Ny Ny *

VEX = (V, @ V)X = (V] @ V)X = vec(Vl XV}), com X = [Xluy,xa,
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e deve-se notar que neste caso hao existird. a necessidade de uma matriz de
permutagido como no caso anterior, mais-um fator que torna esta analise bem mais

simples.

Dadas todas as definigdes anieriores, passou-se para as etapas de
implementacdo dos -algoritmos propostos- para, futuramente; comparar-se seus
resultados e validar as methorias propostas aqui nesta segéo. As "impfementagées-

realizadas estao presentes na sécao seguinte.

6.7. Implementagdo dos Algoritmos

A eta‘pa"déiImplementagéo dos algoritmos para o caso que ndo faz uso da matriz
de autocorrelacdo, escopo desse trabalho, se fez, primeiramente, com a geracéo do.
modelo de propagacéo dos sinais emitidos pelas fontes espalhadas no espago e a.
analise dos sinais recebidos no-arranjo de microfones, calculando-se a matriz formada

pelos vetores de diregdes previamente escolhidas. para tanto.

Foran escolhidos alguns valores constantes para todos os-algoritmos possiveis
de serem implementados, todos devidamente explicados -na seg&o anterior, como
critério de comparagéo inicial. Os cédigos principais estdo em anexos devidamente.
referenciados aqui nesta se¢so, mas algumas fungdes' e trechos de codigos serdo.
utiizados para explicar o funcionamento das partes em comum dos. algoritmos

implementados.

Os cadigos desenvolvidos para cada método de reconstrugdo de imagens
actsticas foram implementados primeiramente sem a utilizagdo da nova. KAT &
posteriormente fazendo uso desta. As modificagbes _'princ'i'pais nos algoritmos
utilizados estédo presentes. nas secdes dos cbdigos que realizam a estimacéo de fato..
Em relagdo. ao tempo de processamento dos algoritmos, serdo analisados tanto o
tempo que o codigo em MATLAB levou para estimar as imagens quanto o custo
computacional de cada algeritmo em refagéio ac numerc de operagbes matematicas
‘nécessarias. para a-esiimagéo (operacbes estas de soma e multiplicagao, presentes
hos produtos entre matrizes que existem nos métodos de reconstrucac). As
comparagdes entre os résultados para ouiros cenarios que néo este inicial; feito com
o objetivo de avaliar o sucesso dos métodos preliminarmente, -serdo realizadas em

secfes seguintes..
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6.7.1. Geragao do Modelo e Cenario Inicial Adotado
O cenario escolhido para os testes iniciais foi o seguinte: foi adotada uma

frequéncia Fg = 217 = 131072 amostras/segundo, tendo-se, portanto, um periodo de

amostragem T = F—Is = 7.629e~% segundo/amostra, tomando-se K = 2!® = 65536

amostras dos sinais das fontes. Foram tomados valores exponenciais com base 2 a
fim de acelerar os calculos da FFT, posteriormente. Foram consideradas 3 fontes
espalhadas no espaco visto pelo arranjo de microfones, cujos sinais eram senoidais e
tinham a mesma frequéncia fy, = 5 kHz, vinda das diregoes u;; = [-0.6 — 0.8 0]7,
ur, = [001]" e ug = [0.5 0.5 0,7071]7, com amplitude de sinal para a fonte 1 de 5,
para a fonte 2 de 7 e para a fonte 3 de 9, e defasagem nula entre os trés sinais. Além
disso, foi considerado que todos os sinais foram corrompidos por ruidos brancos
gaussianos de variancia o = 0.1. Considerou-se a velocidade de propagagao de uma

onda sonora no ar como ¢ = 340.29 m/s.

Figura 14 - Sinais das trés fontes consideradas no cenario inicial

Signal in Time

10 i
0

time

Para o arranjo, dada a frequéncia dos sinais, para simplificacéo dos algoritmos,

foi adotado que a disténcia entre dois sensores no arranjo planar na diregao do eixo x
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ou na direg&o y seria equivalente a metade do comprimento de onda dos sinais, dado

por A = ﬁ isto &, a distancia d entre os microfones foi considerada como sendo d =
slg

%, sendo que d = 0.034029 m neste caso. Foi considerado em todos os casos um

arranjo planar de microfones quadrado e com elementos uniformemente espacados,
com M =49 microfones, isto &, M, = M, =7 e foi considerada que a visada do
arranjo, ou seja, o espago visto pelo arranjo e suas respectivas direcées foram
amostradas com passo k = 0.05 de -1 a 1 nas direcbes x e y, ou seja, N, = N, = 41
e N = 1681 diregcdes. O arranjo foi construido em MATLAB com o auxilio de uma
fungéo do MATLAB de autoria do aluno, chamada “arranjo.m”, cujo cédigo esta no
Anexo A. Ela faz uso da geometria do arranjo (um arranjo quadrado) para criar um
arranjo planar dadas as posigdes dos microfones presentes ou no eixo x ou no eixo y

(o arranjo é simétrico).

Figura 15 - Visada do Arranjo de Microfones e Arranjo de Microfones utilizados no cenario inicial
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Construido o modelo para as diregbes vistas pelo arranjo e para o proprio
arranjo, calculou-se a matriz de direges V para este caso inicial. Com auxilio de uma
fungado criada no MATLAB, chamada “steer.m”, de autoria do préprio aluno, foi
possivel realizar o calculo da matriz V, uma vez conhecida sua definigao (vide segéo
6.6.1). O codigo desta fungao esta presente no Anexo B. Esta fungéo além de dar a
matriz de dire¢cbes nos fornece, também, dado o passo de amostragem do espaco

visto pelo arranjo, todas as coordenadas destas diregdes.

Passou-se para o calculo dos sinais nos microfones, utilizados na modelagem

do problema a fim de serem utilizados para realizar a estimativa das poténcias em
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cada direcao vista pelo arranjo, e das suas respectivas FFTs. Calculadas as FFTs dos
sinais, tomou-se o valor das transformadas dos trés sinais na frequéncia analisada,
de 5 kHz, portanto, trés valores complexos. A seguir, tem-se um exemplo simples,
com as mesmas premissas que este cenario inicial, porém com quatro microfones na
geometria do arranjo, apenas para se ter uma ideia de como o resultado foi obtido,
uma vez que a analise temporal desses valores para um nimero muito grande de
microfones se torna inviavel. Nota-se nesse exemplo a defasagem entre os sinais,

causada pelo atraso de chegada da frente de onda plana em cada um dos microfones.

Figura 16 - Sinais em cada um dos microfones, no tempo, para um exemplo simples de quatro
microfones, sob as mesmas circunstincias do cenario inicial analisado

Sinais em cada um dos Microfones, no tempo
25 T T

Tempo

Por fim, o cédigo que gera o modelo usa as informagdes anteriores e fungdes
também ja definidas anteriormente para calcular ou a matriz V para o caso que ndo
faz uso da nova KAT ou as matrizes V, e V,, utilizadas pela nova KAT no processo
de aceleragao dos calculos de estimagéo. A partir deste ponto, para cada método que
foi implementado, ha diferencas de implementagdo, que serdo brevemente
comentadas nas proximas seg¢des, além das diferengas explicitas entre os codigos
que fazem uso da nova KAT e aqueles que ndo. Os resultados obtidos para cada
método estudado estdo a seguir.
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As simulagGes foram realizadas em um computador com as seguintes

caracteristicas:

e Sistema Operacional Windows 10 Pro, 64-bit, processador x64-based
* Processador Intel(R) Core(TM)2 Quad CPU Q9550 @2.83GHz
e Memoéria RAM de 4GB

6.7.2. Resultados para o método Delay and Sum

O codigo gerado para implementar o método Delay and Sum esta presente no
Anexo C, para este cenario inicial. O mesmo cddigo é utilizado para implementar o
modelo proposto neste trabalho fazendo uso da nova KAT ou néo. Foi utilizada uma
outra fungéo, denominada “mapa.m” para auxiliar na geragao das imagens acusticas
e seu codigo esta presente no Anexo D, sendo que esta fungédo esta presente em
todos os métodos. A fim de determinar uma estimativa para o tempo de
processamento, foram utilizadas as fungoes tic e toc do MATLAB e um numero de
realizagdes do algoritmo de reconstrugcao de 250 vezes. As imagens acusticas obtidas
pelos dois casos (com e sem a nova KAT) foram as mesmas, diferindo apenas no
tempo de processamento, isso para o DAS, para a regularizacdo I1 e para a

regularizagao TV.

A imagem acustica obtida para este cenario inicial fazendo uso do DAS, sem o

uso da nova KAT, foi a seguinte:

Figura 17 - Imagem Aciistica estimada pelo DAS para o cenério inicial

X=0
Y=0
Level= 0.019449

53




Analisando os picos desta figura, pode-se observar a direcdes estimadas pelo
algoritmo. Observa-se que os picos da imagem coincidem com os pontos esperados,
o que evidencia o sucesso da estimagdo. A imagem acustica em trés dimensdes

observada foi a seguinte:

Figura 18 - Imagem acuistica 3D para o DAS no cendrio inicial

O tempo de processamento para cada uma das realizacées € o presente no

grafico a seguir:

Figura 19 - Tempo de Processamento para cada realizagdo para o DAS, sem e com da nova KAT, no
cenario inicial
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O valor médio observado para o tempo de processamento sem uso da nova KAT
foi de 8.3008 x 10~* segundos. Agora, para o caso que faz uso da nova KAT, os
resultados obtidos para as imagens acusticas foram os mesmos, exceto pelo tempo
de processamento, sendo que tempo de processamento médio neste caso foi de
5.3842 x 10~° segundos. Ha um desvio de aproximadamente 96.41%, isto &, a KAT
nesse caso torna o algoritmo 93.51% mais rapido.

6.7.3. Resultados para o método Regularizagao [1

O cédigo gerado para implementar o método que usa regularizagao [1 esta
presente no Anexo E, onde nao se utiliza a nova KAT, e no Anexo F, onde se faz uso
da nova KAT, para este cenario inicial. Faz-se uso também de um pacote para o
MATLAB, disponivel em [7], para solucionar exatamente o problema de regularizagao
l1. Mais uma vez, foram utilizadas as funcgées tic e toc do MATLAB para se levantar
o tempo de processamento da estimacao, com um numero de realizagdes igual a 250
vezes. Os resultados obtidos para a imagem acustica reconstruida foram os mesmos
para os dois casos, sem e com a KAT, exceto no tempo de processamento. Estes

resultados sao apresentados a seguir.

Figura 20 - Posigdo dos picos presentes na imagem acustica obtida para a regularizagdo I1 no cenario
inicial, para os dois casos, com e sem o uso da nova KAT
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Figura 21 - Tempo de Processamento para cada realizagio para a regularizagdo I1, sem e com uso da
nova KAT, no cendério inicial
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O tempo de processamento médio quando nao se utiliza a nova KAT foi de
0,3751 segundos e quando se utiliza a nova KAT foi de 0,3058 segundos, isto &, o uso
da nova KAT torna o processamento 18.48% mais rapido. Alguns testes comparativos
serao realizados entre a imagem reconstruida com a KAT proposta neste trabalho e a
mesma imagem estimada pela KAT proposta em [2] mais a frente neste trabalho, onde

se mostra a qualidade das imagens dado que as fontes sdo ou nao correlacionadas.

6.7.4. Resultados para o método Regularizagio TV
O codigo gerado para implementar o método que usa regularizagao TV esta presente
no Anexo G, onde néao se utiliza a nova KAT, e no Anexo H, onde se faz uso da nova
KAT, para este cenario inicial. Faz-se uso também de um pacote para o MATLAB,
disponivel em [8], para solucionar exatamente o problema de regularizagao TV. Mais
uma vez, foram utilizadas as fungdes tic e toc do MATLAB para se levantar o tempo
de processamento da estimagao, com um nimero de realizagdes igual a 250 vezes.
Os resultados obtidos para a imagem acustica reconstruida foram os mesmos para os
dois casos, sem e com a KAT, exceto no tempo de processamento. Nota-se que as
imagens acusticas possuem um erro de estimagdo na direcdo das fontes de
aproximadamente 0.05 (adimensional) nas direcées x e y. Estes resultados sio

apresentados a seguir.
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Figura 22 - Imagem Acdstica estimada pela Regularizagdo TV para o cenario inicial, para os dois casos,
com e sem o uso da nova KAT

X=.0.05
Y=-005
Level= 11 4551

Figura 23 - Tempo de Processamento para cada realizagio para a regularizagéo TV, sem e com o uso da
nova KAT, no cenario inicial
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O tempo de processamento médio quando nédo se utiliza a nova KAT foi de
0.1446 segundos e quando se utiliza a nova KAT foi de 0,1105 segundos, isto €, o uso
da nova KAT torna o processamento 23.62% mais rapido. Portanto, apesar do erro de
estimacéo da diregéo das fontes, nota-se que o uso da nova KAT nesse caso também
diminui o tempo de processamento. Neste caso, ainda, a imagem estimada foi

exatamente a mesma para os dois casos, sem e com o uso da nova KAT.
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Vale notar que a regularizago TV nio & indicada para o'caso do cendrio inicial,
onde as fontes sdo esparsas {pontuais), e sirm para caso onde as imagens: aclisticas.

a serem reconstruidas sao mais “suaves” (continuas).
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6.8. Tempos de Processamento Experimentais dos Métodos com a
Variagdo do Numero de Microfones no Arranjo
Foi feita uma analise experimental sobre o tempo de processamento dos
algoritmos anteriormente implementados e ainda dos algoritmos que faziam uso da
KAT proposta para o problema cujo modelo fazia uso da matriz de autocorrelagao. As
comparagoes que foram realizadas foram feitas em relagao aos mesmos métodos,
quando se fazia uso ou ndo da nova KAT e quando se utilizava a KAT que fazia uso
da matriz de autocorrelac@o, variando-se o nimero de microfones no arranjo de
microfones. Variou-se de M, = M,, = 2 (M = 4 microfones) até M, =M, =15 (M =

225 microfones).

6.8.1. Tempo de Processamento para o DAS
Os resultados experimentalmente obtidos para o tempo de processamento

quando se utilizou o método DAS foi o observado na figura a seguir.

Figura 24 - Tempo de Processamento para o Delay and Sum, variando-se o nimero de microfones no
arranjo
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Os valores obtidos para cada configuragédo do arranjo e as discrepancias entre

os tempos de processamento sem e com o uso da nova KAT e da antiga KAT séo os

que se seguem:

Tabela 4 - Tempo de Processamento para cada configuragdo do arranjo, para o método DAS

:Il.ilcn::;:niz Sen&ova Co r:A I\-lrova Ace [:;-ag do Com K::tiga :::' xNCt::; :::I xh::?r:
no Arranjo ’ Antiga KAT  Antiga KAT
4 6,7056E-05  2,9990E-05 55,28% 7,5296E-05 10,94% 60,17%
9 1,9959E-04  3,4651E-05 82,64% 8,9924E-05 -121,96% 61,47%
16 3,3083E-04  4,0103E-05 87,88% 1,2979€E-04 -154,91% 69,10%
25 4,4594E-04  5,2093E-05 88,32% 1,9846E-04 -124,70% 73,75%
36 6,9697E-04  5,2308E-05 92,49% 2,5700E-04 -171,19% 79,65%
49 8,1585E-04  5,5805E-05 93,16% 4,1324E-04 -97,43% 86,50%
64 1,1601E-03  5,3999E-05 95,35% 4,4012E-04 -163,59% 87,73%
81 1,8756E-03  6,2467E-05 96,67% 5,7552E-04 -225,90% 89,15%
100 2,3832E-03  6,5259E-05 97,26% 9,6072E-04 -148,06% 93,21%
121 3,0711E-03  6,5579E-05 97,86% 1,1007E-03 -179,00% 94,04%
144 3,5403E-03  6,7453E-05 98,09% 1,2145E-03 -191,50% 94,45%
169 4,3221E-03  7,6579E-05 98,23% 1,3723E-03 -214,95% 94,42%
196 5,0416E-03 7,9461E-05 98,42% 1,5037E-03 -235,27% 94,72%
225 5,9404E-03  8,0309E-05 98,65% 2,0318€E-03 -192,37% 96,05%

E notavel o ganho
no aumento significativo

quando se usa e quando

se tem quando se utiliza a nova transformada rapida, visto

da aceleragao obtido pela diferenca entre os resultados

nao se usa a nova KAT. Nota-se também que o tempo de

processamento aumenta, em ambos os casos, conforme se aumenta o nimero de

microfones presentes no arranjo, assim como se aumenta a discrepancia entre os

valores quando se faz uso da nova KAT e quando nao se faz uso desta.

Comparando o modelo desenvolvido no presente projeto, ainda sem usar a nova

KAT, com o modelo apresentado em [2], ja fazendo uso da antiga KAT, nota-se que,

quando nao se usa a nova KAT no modelo atual, o modelo antigo ganha em tempo de

processamento, porém ao utiliza-la, tem-se ganhos crescentes de aceleragao com o

aumento da complexidade do arranjo, proporcional ao nimero de microfones presente

no mesmao.

60



6.8.2. Tempo de Processamento para a Regularizacao 1
Os tempos de processamento experimentalmente obtidos quando se variava a
configuragao do arranjo, isto €, quando o nimero de microfones presentes no arranjo

variava, para o método regularizagao l1 estao presentes na figura a seguir.

Figura 25 - Tempo de Processamento para a Regularizagdo [1, variando-se o nimero de microfones no
arranjo
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Nota-se que o tempo de processamento quando se faz uso da nova KAT é na
maioria das vezes menor que da situagao onde esta transformada nao é utilizada.
Porém, o tempo de processamento em ambos o0s casos tem comportamento
crescente até aproximadamente 49 microfones, quando volta a cair. Os tempos

obtidos neste experimento sao os seguintes:
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Tabela 5 - Tempo de Processamento para cada configuragdo do arranjo, para o método Regularizagdo 11

Nimero de - . Sem Nova Com Nova
Microfones Sermova ComKAI\.lrova Acel:;.a;ao Comxigttga KAT x Com KAT x Com
no Arranjo ) Antiga KAT  Antiga KAT
4 9,1307E-02 9,2508E-02 -1,32% 2,8716E-02 -217,97% -222,15%
9 2,6604E-01 3,4228E-01 -28,66% 6,3535E-02 -318,72% -438,73%
16 3,2886E-01 2,6706E-01 18,79% 9,4609E-02 -247,60% -182,27%
25 3,3055E-01 3,0704E-01 7,11% 1,3020E-01 -153,87% -135,82%
36 3,5512E-01 3,0254E-01 14,81% 4,1263E-01 13,94% 26,68%
49 3,6940E-01 3,0594E-01 19,18% 4,6001E-01 19,70% 33,49%
64 3,7853E-01 3,0157E-01 18,36% 5,6775E-01 33,33% 46,88%
81 4,5698E-01 1,7124€-01 62,53% 7,0501E-01 35,18% 75,71%
100 3,7936E-01 2,1922E-01 42,21% 8,5953E-01 55,86% 74,50%
121 2,9957E-01 1,5181E-01 49,33% 1,0350E+00 71,06% 85,33%
144 3,9169E-01 1,6044E-01 59,04% 1,1219E+00 65,09% 85,70%
169 2,6853E-01 1,7832E-01 33,59% 1,1909E+00 77,45% 85,03%
196 2,7052E-01 1,3301E-01 50,83% 1,6186E+00 83,29% 91,78%
225 1,8314E-01 9,2136E-02 49,69% 1,8218E+00 89,95% 94,94%

Comparando os casos do novo modelo, sem e com o uso da nova transformada
rapida, nota-se que o tempo de processamento cresce até certo ponto a partir do qual
ele volta a cair. A explicagdo mais plausivel esta na maneira como o método [1 faz
sua minimizagao. O pacote utilizado, que implementa o método 1, o SPGL1 [7],
possui critérios de parada, tal como menor erro aceitavel nas estimativas ou numero
maximo de iteragdes. Quando o arranjo possui poucos microfones, a tendéncia é que
o algoritmo pare pelo critério de nimero de iteragées, o que faz ele demorar cada vez
mais tempo com o aumento da complexidade do arranjo, pois ele utiliza todas a
iteracdes, e com o aumento da complexidade, cada iteragao leva mais tempo. A partir
de certo ponto, com um numero maior de microfones, o algoritmo termina sua
estimacgao pelo critério do erro minimo, pois ele encontra uma solugao, e nao utiliza
todas as iteragcdées, o que diminui o tempo de processamento observado. Essa
hipotese precisa ser melhor estudada, mas € totalmente plausivel de ser a

responsavel pelos resultados obtidos anteriormente.

Para arranjos com entre 4 ou 36 microfones, o tempo de processamento
quando se utiliza a antiga transformada € menor que quando se utiliza o modelo sem
autocorrelagao, sem e com a nova transformada rapida. A partir de 36 microfones,

nota-se que o novo modelo, tanto sem e com a nova transformada, possui tempo de
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processamento menor, ponto a partir do qual os ganhos de aceleragdo do novo

modelo frente a antiga KAT aumentam gradativamente.

Portanto, tem-se que, comparando o novo modelo sem e com o uso da nova
transformada, os ganhos do uso da nova KAT surgem a partir de 16 microfones, e
comparando o novo modelo usando a nova KAT com o modelo anterior, usando a
antiga KAT, tem-se que a nova abordagem se torna vantajosa a partir de 36

microfones no arranjo.

6.8.3. Tempo de Processamento para a Regularizagdo TV

As curvas experimentais para o tempo de processamento na reconstrucdo da
imagem acusticas utilizando a regularizagéo TV pelo nimero de microfones no arranjo
de sensores, sem se fazer uso da nova KAT e fazendo uso desta e ainda da antiga

KAT, estéo apresentadas no grafico a seguir.

Figura 26 - Tempo de Processamento para a Regularizagéo TV, variando-se o niumero de microfones no
arranjo
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Nota-se que para quantidade de microfones pequenas quase nao ha distingao
entre o uso ou nao da nova transformada rapida, para o modelo sem autocorrelacao,
porém com o aumento da complexidade do arranjo, verifica-se que a discrepancia
entre o tempo de processamento sem e com o uso da nova KAT aumenta cada vez

mais. Os valores obtidos foram os seguintes:

Tabela 6 - Tempo de Processamento para cada configuragao do arranjo, para o método Regularizagdo TV

Nimero de Sem Nova Com Nova Aceleragdo  Com Antiga Sem Nova Com Nova

Microfones KAT KAT de: KAT KAT x Com KAT x Com
no Arranjo Antiga KAT Antiga KAT
4 1,7775E-01 1,7815E-01 -0,22% 1,1040E-01 -61,01% -61,37%
9 1,7133E-01 1,6891E-01 1,42% 1,0867E-01 -57,66% -55,43%
16 1,7177€-01 1,5707E-01 8,56% 1,2143E-01 -41,46% -29,35%
25 1,4688E-01 1,3476E-01 8,25% 1,3870E-01 -5,90% 2,84%
36 1,4945E-01 1,3225E-01 11,51% 1,4755E-01 -1,29% 10,37%
49 1,7786E-01 1,4923E-01 16,09% 1,6845E-01 -5,58% 11,41%
64 1,3763E-01 1,2628E-01 8,25% 2,0615E-01 33,24% 38,74%
81 1,5472E-01 1,1311E-01 26,89% 2,4052E-01 35,67% 52,97%
100 1,5708E-01 1,1744E-01 25,23% 2,9281E-01 46,36% 59,89%
121 2,1595E-01 1,5366E-01 28,84% 2,6443E-01 18,33% 41,89%
144 2,5175E-01 1,5648E-01 37,84% 3,3547E-01 24,96% 53,36%
169 3,0588E-01 1,7548E-01 42,63% 3,0726E-01 0,45% 42,89%
196 3,4513E-01 1,7842E-01 48,30% 3,3415E-01 -3,29% 46,60%
225 3,9653E-01 1,8057E-01 54,46% 3,1680E-01 -25,17% 43,00%

Assim como o DAS, nota-se que com o aumento do numero de microfones do
arranjo, maior a discrepancia entre os valores obtidos ndo usando e usando a nova
KAT. Até o valor de 100 microfones, nota-se uma flutuagéo nos valores obtidos, mas
a partir desse ponto, os tempos de processamento passam a aumentar e a divergir

cada vez mais.

Quando comparada a antiga KAT, comparando o uso da nova KAT com a
antiga KAT, tem-se que, a partir de 25 microfones, a nova KAT possui um tempo de
processamento menor, ponto a partir do qual os ganhos de aceleragéo obtidos com o

uso da nova KAT se mantém em torno de 40%, na média.

Portanto, o uso da nova KAT frente a sua nao utilizagao, para o modelo sem
autocorrelagao, é recomendado em quase todos os casos, e € recomendado a partir
de 25 microfones frente a antiga KAT, cujo modelo utilizava autocorrelagao.
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6.9. Uso de Fontes Correlacionadas e Nao Correlacionadas

Para se realizar comparagbes entre a nova transformada e a antiga
transformada, criou-se um cenario comparativo semelhante ao da secédo anterior,
porem mudando o numero de fontes para 2 fontes e as diregcbes destas para,
respectivamente, uy;, = [-0.5—0.50.7071]" e wu;, =[0.50.50.7071]". Foram
comparados os métodos de reconstrugdo anteriormente analisados (DAS, [1 e TV)
para os casos onde nao havia uso da autocorrelacdo e se utilizava a nova
transformada, e onde havia o uso da autocorrelacdo e se utilizava a antiga

transformada rapida. Os resultados para o Delay and Sum foram os seguintes:

Figura 27 - Fontes Correlacionadas e Descorrelacionadas, com a nova e antiga KAT, utilizando o método
Delay and Sum
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As imagens, com a nova e a antiga transformada, sao bem semelhantes, mas

0 mais notavel € a presenca de mais pontos nao nulos nas imagens cujas fontes sao
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correlacionadas. Quanto & gualidade das imagens, percebe-se que as imagens sdo
praticamente iguais.

Deve:se acrescentar que, sobre o método DAS, tanto para o modelo presente
em: [2] como para ¢ modelo aqui proposto, o resultado que a 'ser obtido deveria ser
idéntico, como foi de fato observado. Isso ocorre pois, uma vez que o método ndo €
Herativo, o (nico calculo que este realiza para reconstruir a imagem foi construido
matematicamente para que, nas duas maneiras apresentadas, o resultado: fosse o

mhesmo,

Fazendo as mesmas simulagGes para o metodo. I1, sob'as mesmas condig;ﬁes,
terri-se os seguintes resultados, presentes na Figura 28. Aqui neste caso, um dos
efeitos esperados para a nova transformada é faciimente notade: quando se usa a
nova transformada, ndo se nota a presenca de pontos nado nulos, a nao ser os
proximos das diregbes estimadas das fontes, porém, com'a antiga transformada, nota-
se que tanto no caso com fontes descorrelacionadas como com fontes
co.r"rellacio:na'da_s_,_ ha a. presenca desses pontos N0 nulos, sendo que a imagem
estimada’ utilizando fontes correlacionadas o resultado piora sinda mais. Isso est4
diretamente relacionado ao fato de se utilizar um modelo onde parte dos dados:da
matriz.de autocorrélagdo da transformada antiga é ignorado, lembrando que & feita a

suposicédo de que esta matriz € diagonal, guando ndoc oé.
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Figura 28 - Fontes Correlacionadas e Descorrelacionadas, com a nova e antiga KAT, utilizando o método
11
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Os resultados para o metodo TV estao presentes na Figura 29. A analise feita
para este método mostra que a imagem obtida pelo método TV atravées do modelo
proposto aqui neste trabalho possui uma piora em relagao a imagem obtida pela antiga
transformada rapida, e o uso de fontes correlacionadas piora a qualidade da imagem
para o método atual. Mesmo o método antigo apresentando pontos na@o nulos, sua
qualidade & melhor. Vale ressaltar que este cenario ndo é o ideal para realizar a
comparacgao, pois teriam de ser gerados sinais com imagens acusticas “suaves” para

que o meétodo TV funcione para aquilo que ele foi projetado.
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Figura 29 - Fontes Correlacionadas e Descorrelacionadas, com a nova e antiga KAT, utilizando o método
TV
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7.. Verificagio de Requisitos, Consideragées Finais e Conclusdes
Para que se possa realizar uma melhor comparagéo dos res_qltados obtidos

neste trabalho, a seguiir relembra-se os requisitos desejados para este projeto:

» O algoritmo desenvolvido, auxiliado pelo uso da transformada rapida de
aceleragdo’ dos calculos de estimagéo, deveria ser o menos complexo possivel,
comparado com o algoritmo proposto-em [2].

. O tempo de processamento do algoritmo deveria ser menor ou igual ao tempo
de processamento observado quando se utiliza ¢ algoritmo proposto em [2].

¢ Aqualidade e a resolugdo das imagens acusticas obtidas pelo algoritmo aqui
implementado deveria ser melhor ou igual ao do algoritmo proposto-em [2].

» O algoritmo deveria ser implementado de maneira tal que este utilizasse o
‘menor espacgo de meméria possivel, fazendo com gue sua implementagao em

hardware fosse a mais simples possivel.

O uso.excessivo de meméoria, aliada & complexidadée de implementagdo, fazem
com que esta seja complicada para oalgoritmo proposto em [2], uma vez que-existem
célculos. q__ue-:sé\'o-'_ite_ra'ti'vos- neste algoritmo, além de envolver operagdes matematicas
com matrizes de dimens@es muito grandes; o que retarda o tempo de processamento

em muito, problema‘que ja foi mencionado anteriormente neste trabalho.

Comparando o modelo de.estimagao proposto neste trabalho, que néo faz uso
de matrizes de a_utocorre'!agéo. para se estimar poténcia vinda de cada direcdo do
espago, aliada ao uso de uma nova transformada rapida que acelera .os-célculos de
eStimagéo. feitos para se reconstruir a imagem acustica, com-o modelo. proposto em
trabaltios anteriores, principalmente o referido em [2], podemos. chegar as seguintes
comparacdes de desempenho:

A eliminaggo da matriz de autocorrelagio proposta neste projeto foi possivel e
frouxe mudancas no ‘modelo dque possibilitaram a melhora no tempo de.
processamento, observadas principalmente na secdd ‘onde foram levantadas as
curvas para os tempos de progessamento para os métodos DAS, 11 e TV. Comparando
apenas os dois modelos com o uso de suas respectivas transformadas rapidas, aqui’
chamadas de antiga KAT e nova KAT, observa-se que o novo modelo meihora

substancialmente o tempo de processamento para 0 método de reconstrugéio DAS, e
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tanto para o [1 como para o TV, a partir de determinado numero de microfones no
arranjo utilizado, observa-se um ganho de processamento acentuado. A melhar
hipétese: para .o fato. de que o método i1 e TV ndo ganharem sempre no tempo de:
processamento no novo modelo esta exatamente na mudanga que a eliminagéo da
miatriz-dé autocorrelagdo incorreu ao modelo: a matriz de diregdes ¥, para o-modelo
anterior, possuia dimensdes M2 x N, sendo que no novo modelo tem-se que a mesma
matriz tem dimensdes M X N, sendo este o principal catalisador para a melhora no
tempo de processamento, assim como para diminuir a complexidade do algoritmo e
consequente menor uso de meméria. Porém, como o algoritmo rio novo madelo
estima um valor complexo, ligado & FFT do-sinal das fontes, & rido sua poténcia em
si, como fazia o algoritmo anterior, temos gue o novo algoritmo passa a estimar 2N
varidveis, e ndo mais N, pois agora o algoritmo tem que estimar tanto a parte real
como a parté imaginaria do sinal vindo de cada dirego. Apesar do ganho na matriz.
de dire¢oes, para arranjos pequenos, com poucos microfones, tem-se-que este ganho
e suplantado pelo nimero maior de varidveis que devem ser gstimadas. Conforme se-
aumenta a complexidade do arranjo de microfones, observa-se que esse viés .deixa
de ‘existir. Portanto, pode-se afirmar que-a melhoria no t_empo"de processamento- foi

observada corn sucesso satisfatério.

Quanto & complexidade de implementa¢éio, além das melhorias citadas
anteriormente, tem-se gue a implementagéo do algoritmo anteriormente proposto, em.
sua formulagio, exigia uma permutacédo de um vetor para se utilizar a transformada
rapida respectiva, como foi mostrada neste trabalho em sua devida segéo, € como ja
foi mencionado, a nova transformada rapida nao precisa de fal permutagao, fazendo
com que os calculos sejam feitos de maneira direta. Isso, somado a eliminagao da
necessidade de estimar a matriz de autocorrelacio e mais a redugdo de elementos
na matriz dediregbes V, diminuem o ntimero de blocos gue devem ser implementados.
em hardware, o que a torna bem mais simples. Portanto, quanto & complexidade,

conseguiu-se proporum algoritmo mais simplés que o do modelo _proposto---emﬁ [2].

A gualidade da imagem ¢ igual quando se usa o métedo DAS, bem methor
quando se usa a regularizagéo (1 e pior para a regularizagéo TV, mas a melhor
explicacdo para esta piora esta no fato de que o cendrio utilizado para se cormparar o

desempenho do método antige & -0 método antigo ndo corresponde a um exemplo:
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para o qual a 'regular'izagéo TV foi criado. Como. foi explicado na segdo onde se
explicou os métodos de reconstrugio e recorrentemente. em outras partes desse
projeto, a regularizacao TV é recomendado para.imagens acusticas “suaves’, isto é,
as fontes geradoras ndo s&o pontuais no espago e geram um sinal senoidal & Unica
frequéncia, cuja a imagem aclstica ideal seria um ponto, exatamente o caso criado
no cenario de teste. Seria riecessario gerar uma imagem suave e comparar
'devidamente os dois métodos. Salvo isso, 6 tempo de processamento € menora partir
de certo ponto, como jd mencionado. Portanto, quanto a qualidade e resolugédo da
imagem, pode-se-afirmar que conseguiu-se propor um aigoritmo tao eficiente quanto

o do modelo anterior.

Levando em conta 0s riscos levantados para cada parte do trabatho, nota-se que
o surgimento de algum problema com os nimeros complexos se fez verdade, como
mencionande anteriormente, mas quanto a sensibilidade em relagio aos parametros
do programaem MATLAB que implementa o algoritmo do novo modelo, nao. foram
observados problemas diretamente relacionados a isso, assim como ndo se notou
problemas relacionados & possibilidade de o algoritmo ndo convergir e necessitar de

muitas iteragoes para tanto.

Mas uma das mais importantes possibilidades que novo modelo gerou foi a
possibilidade de usar umajanela de dados das imagens acisticas numa dada diregéo
e conseguir se estimar o-sinal nesta diregao, isto €, da maneira-como foi proposto e
implementado o algoritmo, € possivel propor uma anti-transformagao capaz estimar o
sinal no-tempo (ou na frequéncia) vindo-de cada diregéo, coisa que ndo era possivel
com o modelo antigo, pois-este eliminava o-sinal de fase das correlagdes cruzadas na
matriz de autocorrefagao, guando como hovo modelo todos os dados séo utilizados.
Essa ideia ndo foi desenvolvida neste trabalho, mas criar o método que resolve o
problema oposto a este trabalho, dé estimar o'sinal vindo de quaiquer dire¢éo dado
uma série de dados das imagens acusticas dessa diregdo, se forna possivel e
interessante, & pode vir a ser explorada em trabalhos futuros e posteriores a esse
projeta. Além disso, dados os resultados positivos desse trabalho, porém a falta de
tempo, podera ser possivel se implementar de fato, em um momento posterior ao fim
desse projeto, este algoritmo em uma FPGA, para se verificar o funcionamento desse:

‘trabalho em hardware.
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Pode-se. concluir, portanto, que, deniro dos objetivos desse trabalho de.
conclusdo de curso, que eram os de criar um algoritmo- que realizasse a esii_‘magéo
das imagens aciisficas sem fazer uso de matrizés de autocorrelagio, porém de
maneira tao eficiente e com gualidade igual .ou melhor que algoritmos presentes na
literatura, além: de ter simples implementacio em hardware, dados os ganhos de
tempo de processamento, do baixo custo computacional e do- menor uso de memdria.
em relagio aos algoriimos presentes na literatura, além. dos ganhos de
dimensionalidade das matrizes presentes no algoritmo, o projete apresentou
resultados satisfatorios, atendendo todos os requisitos e pode-se considerar que sua

realizagéo foi dentro do esperado.
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Gerenciamento de Projeto

F £

Nesta segéo séo discutidas a formas de gerenciamento do projeto, que se deram

através do cronograma e suas atualizagbes, além da organizagdo das etapas e

atividades do projeto por meio de um diagrama de blocos, e da analise dos custos de

projeto.

7.1.1. Cronograma do Projeto — Diagrama de Gantt

Este cronograma feito com auxilio do programa Microsoft® Excel 2013.
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Figura 30 - Diagrama de Gantt do Projeto
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7.1.2. Etapas e Atividades do Projeto (EAP)
Este diagrama foi gerado tendo como base o cronograma anterior, e foi feito com
auxilio do programa Microsoft® Project 2013.

Estimador de
Imagens Acusticas

Documentacdo Implementagdo do

Projeto

Primeira Parte

) Necessidades do Estudo sobre as f | J Documentacao
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| -
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Requisitos de Testes e
Engenharia Depuracdo
Geragao de Verifica;o_es Finals
Conceitos s Projato
Finalizado

Decomposigéo
Funcional

Figura 31 - Etapas e Atividades do Projeto
7.1.3. Custos de Projeto
Baseando-se no cronograma anteriormente apresentado, e sabendo que néo
serdo utilizados outros materiais que nao estejam ja disponiveis e que o MATLAB®
esta disponivel para o aluno para o desenvolvimento deste projeto, pode-se estimar o
quanto este projeto vai custar ao aluno, tendo como base de medida de tal custo a
unidade de horas/homem trabalhadas.

Figura 32 - Custos de Projeto (em horas/homem trabalhadas)

Estimativa de dias para confec¢ao do Projeto 199 dias

Se forem usadas 18h/semana para o projeto 522 horas/homem trabalhadas
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ANEXO A - Fung¢ao “arranjo.m”, que auxilia na modelagem do

arranjo planar

function

end

pPOS_

M =

for

[p] = arranjo(pos_x)
X = pos_x';
length (pos_x)"2;
i = l:sqrt(M)

y(:,1) = ones(sgrt(M),1)*pos_x(i):

reshape (y,M,1);

[1:

.
[}

l:sgrt (M)

-
]

[x; pos Xx];

[x vy zeros(M,1)];
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ANEXO B - Fungao “steer.m”, que calcula a matriz de diregées V

Array Manifold Vector or Steering Vector
function [v,u] = steer(f,p,k,u)

c = 340.29; 'm/s : velocidade do som
= 2%pi*f;

=
|

if nargin == 4

p=p';
v exp(li*u*p* (w/c));

i
—
tn
[y7]

figure ()
plot(p(:,1);p(:,2),"'ob','linewidth',2)
title('Arranijo Utilizado'}

grid

x = =1lik:il;
y = —-1:k:1;

for i = l:length(x)
for j = 1l:length(y)

if (x{i)"2 + y(j)r2 <= 1)

uz({i,j) = real(sgrt(l - x(i)."”2 - y(3)."2)):
else

uz(i,j) = 0;
end

ux(i,j) = x(i);
uy(i,j) y{j):

end
end

mapa (X, y,uz);

ux = ux'; ux = ux(:);
uy = uy'; uy = uy(:);
uz = uz'; uz = uz(:);
u = [ux uy uzl;
po=p"%;

v = exp(li*u*p*(w/c)):

end

end




ANEXO C - Codigo para o cenario inicial para o Delay and Sum

close all, clear all

Constantes

Fs = 2~17; Frequéncia de Amostragem
T = 1/Fs; Periodo de Amostragem
K = 2716; # de Amostras do Sinal

of
|

(0:K-1)*T; Vetor do Tempo

fsig = 5000; Sinal de 5 KHz

w = 2*pi*fsig; Frequéncia Angular

c = 340.29; Velocidade do Som no ar, m/s

k = 0.05; Divisdo do Espaco (Visada: -1 a 1) com passo k - Amostragem do
Espacgo

d = (c/fsiqg)/2; Distdncia entre os microfones de meio comprimento de onda

FFT dos Sinais das Fontes
fl = 5*sin(2*pi*fsig*t);
f2 = T*sin(2*pi*fsig*t);
£f3 = 9*sin(2*pi*fsig*t);
f = [£f1;f2;£3]; Sinais Analisados

uF = [-0.6 -0.8;0 0;0.5 0.5];
uF = [uF sgrt(l-uF(:,1).%2-uF{(:,2).7%2)1; Direcdes das Fontes #1, 02 e #3

L = size(f,1); # de Fontes
sigma2 = 0.1; Varidncia do Ruido dos Sinais
noise = sqrt{sigmal)*randn(L,length(t));

for 1 = 1:L
noise(i,:) = sqrt(sigma2)*randn(l,length(t));
end
f = f + noise; Sinal + Ruido de variancia 0.1 e média nula
[F,W] = FFT(Fs,K, f); Funcdo FFT do sinal da fonte
Mod = abs(F);
Steering Vector, para todas as direcgdes escolhidas

pes_ x = [0 d 2*d 3*d 4*d 5*d 6*d];
p = arranjo(pes_x);

M = size(p,1); # de Microfones

[V,u] = steer(fsig,p,k):
N = length(u); # de Direcdes Vistas - Visada
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Sinais nos Microfones no tempo

vu = steer(fsig,p,k,uF);
XX = F(1:K/2,:)*(vu);

% = 2*real (K*ifft (XX,K)):
figure ()

plot (real (xx(1:150,:)),'linewidth',2), grid

title('Sinais em cada um dos Microfones, no tempo')

xlabel ("Tempo')
Sinal nos Microfones, para uma frequéncia fsig

index sig = length (F)*fsig/Fs+1;
X = 2*XX(index_sig,:);
X=X.";

Calculo de vx e vy
Mx sgrt (M) ;
My = Mx; arranjo com numerc quadradc de sensores

1

Nx = sqrt(N);
Ny = Nx;

ux = u(l:Nx,2)"';
uy = ux';

px = p(l:Mx,1)"';
Py = px';

Vx = steer(fsig,px',k,ux');
Vy = steer(fsig,py.k,uy):

Vx = Vx.';
Vy = Vy.';

Delay and Sum - DAS: Y hat = V"H*X
r = 200;

timel = zeros(r,1);
time2 = timel;

VV = kron(Vx,Vy)':
VVV = reshape (X, Mx,My);

for j = 1l:x
tic
Y hatl = (1/M"2)*VV*X; Sem a nova KAT
timel (j) = toc;

end

{FFT)
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for j = 1:r
tic

Y hat2 = (1/M"2)*Vy'*VVV*conj (Vx); * Com a nova KAT

time2(j) = toc;
end
Y hatl = reshape(Y_ hatl,Ny,Nx);
Y hatZ = reshape(Y hat2,Ny,Nx);

figure(), plot(l:r,timel,'linewidth’,2)
hold on
plot(l:r,time2, 'r', 'linewidth’',2)

hold off

grid

title('Tempc de Processamento para cada realizagao')
xlabel ('Realizacao')
ylabel ('Tempo(s) ")

legend('Sem a Nova KAT','Com a Nova KAT')

semKAT = mean(timel)

comKAT = mean(time2)

x = linspace(-1,1,sqgrt(N)):
y = ®;

z = abs(Y _hatl).”2;

2 =z

mapa (x,vy,2)

z = abs(Y _hat2).”2;

z =2z';

mapa (x,y,2z)
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ANEXO D - Func¢ao “mapa.m”, que auxilia na geracao da imagem

acustica

olormap - TCC

function [] = mapa(x,y,uz)
[X,Y] = meshgrid(x,y):
Z = uz;

figure()

[~,h] = contourf (X,Y,Z,50);
set (h, 'EdgeColor', 'none') ;
axis square

figure()
surf (X,Y, 2, 'EdgeColor', 'none');
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ANEXO E - Codigo para o cenario inicial para a Regularizagao l1 sem

uso da nova KAT

close all, clear all

Constantes

Fs = 2717; Frequéncia de Amostragem
T = 1/Fs; Periodo de Amostragem

K = 2*16; § de Amostras do Sinal

t = (0:K-1)*T; Vetor do Tempo

fsig = 5000; Sinal de 5 KHz

w = 2*pi*fsig; Frequéncia Angular

c = 340.29; Velocidade do Som no ar, m/s

k= 0.05; Divisdo do Espago (Visada: -1 a 1) com passoc k - Amostragem do

Espago

d = (c/fsig)/2; Distancia entre os microfones de meio comprimento de onda
FFT dos Sinais das Fontes

fl = 5*sin(2*pi*fsig*t);

f2 = 7*sin(2*pi*fsig*t);

f3 = 9*sin(2*pi*fsig*t):;

£ = [f1;£2;13]; Sinais Analisados

ufF = [~-0.6 ~-0.8;0 0;.5 .5];

uf = [uF sqgrt(l-uF(:,1).%2-uF(:,2).%2)1: Direcoes das Fontes #1, #2 e #3

L = size(f,1); # de Fontes
sigma2 = 0.1; Variadncia do Ruido dos Sinais
noise sqrt{sigmaZ)*randn(L,length(t));

for i = 1:L
noise(i,:) = sqrt(sigma2)*randn(l,length(t));
end
f = f + noise; Sinal + Ruido de varidncia 0.1 e média nula
[F,W] = FFT(Fs,K,f); Funcado FFT do sinal da fonte
Mod = abs(F);
Steering Vector, para todas as direcgdes escolhidas

pos_x = [0 d 2*d 3*d 4*d 5*d 6*d];
p = arranjo(pos_x);

M = size(p,1); # de Microfones
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[V,u] = steer(fsiqg,p,k):

N = length(u); # de Diregdes Vistas - Visada

Sinais nos Microfones no tempo

I

vu steer(fsig,p, k,uF);

XX = F(1:K/2,:)* (vu);
XX 2*real (K*ifft (XX,K));

figure ()

plot(real (xx(1:150,:)),"linewidth',2), grid
title('Sinais em cada um dos Microfones, no tempo')

xlabel ( 'Tempo')

Sinal nos Microfones, para uma frequéncia fsig (FFT)

index _sig = length(F)*fsig/Fs+1;

X = 2*XX(index_ sig,:);
X=X.";

Calculo de vx e vy

Mx sgrt (M) ;

I

My = Mx; arranjo com numero quadrado de sensores

Nx = sqgrt(N);
Ny = Nx;

ux = u(l:Nx,2)';
uy = ux';

px = p(l:Mx,1)';
py = px';

Vx = steer(fsig,px',k,ux');
Vy = steer(fsig,py,k,uy);

Vx = Vx.'
Vy = Vy.'

s e

Regularizagdo 11 - Minimize

real = 1;
time sem = zeros(real,l);

opts = spgSetParms('iterations'

Coeficiente de regularizacao
sigma = 2*sqgrt(sigma2);

for i = 1l:real

tic

J1Yl) 1 subject to | |X = V*Y|| 2

, 200, 'verbosity',1);

Y = spg_bpdn(kron(Vx,Vy), X, sigma, opts): Regularizacao LI

nova KAT
time sem(i) = toc;

end

sigma

- Sem
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m_SemKAT = mean (time sem(10:end))

figure (), plot{l:real,time_sem,'linewidth',Z},grid
title('Tempo de Processamento para cada realizagio')
xlabel ('Realizacdo!')

ylabel {'Tempo(s) ")

= linspace(-1,1,sqrt(N));

= X;

= ¥Y;:

(abs (reshape(z,Nx,Ny))')."2;

NN A M

mapa (x, ¥y, z)
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ANEXO F - Cédigo para o cenario inicial para a Regularizagdo I1 com

uso da nova KAT

close all, clear all
Constantes

Fs = 2*17; Frequéncia de Amostragem
1/Fs; Periodo de Amostragem

= 2°16; # de Amostras do Sinal
(0O:K=1)*T; Vetor do Tempo

L~ |
I

fsig = 5000; Sinal de 5 KHz

w = 2*pi*fsig; Frequéncia Angular

c = 340.29; Velocidade do Som no ar, m/s

k = 0.05; Divisdo do Espago (Visada: -1 a 1) com passo k - Amostragem do
Espacgo

d = (c/fsiqg)/2; Distdncia entre os microfones de meio comprimento de onda

FFT dos Sinais das Fontes
fl = S*sin(2*pi*fsig*t);
£2 = T*sin(2*pi*fsig*t);
f3 = 9*sin(2*pi*fsig*t);
f = [fl1;£2;£3); Sinais Analisados

uF = [-0.6 -0.8;0 0:;0.5 0.5];
uF = [uF sgrt(l-uF(:,1).%2-uF(:,2).72)]; Diregdes das Fontes #1, #2 e #3

L = size(f,1); # de Fontes

sigma2 = 0.1; Variancia do Ruido dos Sinais
noise sqrt(sigma?l)*randn(L, length(t));

for i = 1:L
noise(i,:) = sqrt (sigma2) *randn (1, length(t));
end
f = f + noise; Sinal + Ruido de varidncia 0.1 e média nula
[F,W] = FFT(Fs,K,f); Fungdo FFT do sinal da fonte
Mod = abs(F);
Steering Vector, para todas as liregdes escolhidas

pos_x = [0 d 2*d 3*d 4*d 5*d 6+*d];
p = arranjo(pos_x);

M = size(p,1); # de Microfanes
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[V,u] = steer(fsig,p,k);:
N = length(u); # de Direcdes Vistas - Visada

Sinais nos Microfones no tempo

vu = steer(fsig,p,k,uF);
XX = F(1:K/2,:)* (vu);

xx = 2*real (K*ifft (XX,K));
figure()

plot(real{xx(l:l50,:)},'liuewidth',Z}, grid
title('Sinais em cada um dos Microfones, no tempo')
xlabel ('Tempo')

Sinal nos Microfones, para uma frequéncia fsig (FFT)

index_sig = length(F)*fsig/Fs+1;
X = 2*XX(index_sig,:);

X =X.";
Calculo de vx e vy
Mz = sqgrt(M);
My = Mx; arranjo com nimero quadrado de sensores

Nx = sqrt(N);
Ny = Nx;

ux = u{l:Nx,2)';
uy = ux';

Px = p(l:Mx,1)';
Py = px';

Vx = steer(fsiqg,px',k,ux');
Vy = steer (fsig,py, k,uy);

Vx = Vx.';
Vy = Vy.';
Regqularizacdo 11 - Minimize |[|Y|| 1 subject to | X - V*Y) |

- Com nova KAT

Coeficiente de regularizacio

sigma = 2*sqgrt(sigma2);

Minimize [IY|| 1 subject to ||Vv*Y+*Vx.,' - X|l|_2 <= sigma
A = @(Y,mode) Anonima KAT(Y, Mx, My, Nx, Ny, Vx, Vy, mode);

1l

time com plot 11(A, X, sigma, Nx, Ny); Regularizaciao L1

m_ComKAT mean (time com(10:end))

e

sigma
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ANEXO G - Cédigo para o cenario inicial para a Regularizagio TV
sem uso da nova KAT

close all, clear all
Constantes
Fs = 2°17; Frequéncia de Amostragem
T = 1/Fs; Periodo de Amostragem
K = 2*16; # de Amostras do Sinal
t

= (0:K-1)*T; Vetor do Tempo

fsig = 5000; Sinal de 5 KHz

w = 2*pi*fsig; Frequéncia Angular

c = 340.29; Velocidade do Som no ar, m/s

k = 0.05; Divisdo do Espago (Visada: -1 a 1) com passo k - Amostragem do
Espaco

d = (c/fsig)/2; Distancia entre os microfones de meio comprimento de onda
FFT dos Sinais das Fontes
fl = 5*sin(2*pi*fsig*t);

f2 T*sin(2*pi*fsig*t);
f3 = 9*sin(2*pi*fsig*t);

Il

f = (£f1;£2;£3]; Sinais Analisados

uF = [-0.6 -0.8;0 0;.5 .5];
uF = [uF sgrt(l-uF(:,1).%2-uF(:,2).72)); Diregbes das Fontes #1, #2 e #3

L = size(f,1); # de Fontes
sigma2 = 0.1; Varidncia do Ruido dos Sinais
noise sqrt (sigma2) *randn (L, length(t));

for i = 1:L
noise(i,:) = sqrt(sigma2)*randn(1,length(t));
end
f =f 4+ noise; Sinal + Ruido de variancia 0.1 e média nula
[F,W] = FFT(Fs,K, f); Funcdo FFT do sinal da fonte
Mod = abs(F);
Steering Vector, para todas as direcdes escolhidas

pos_x = [0 d 2*d 3*d 4*d 5*d 6*d 7*d ];
p = arranjo(pos_x);

M = size(p,1); # de Microfones
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[V,u] = steer(fsig,p,k):
N = length(u); # de Direcdes Vistas - Visada

Sinais nos Microfones no tempo

vu steer(fsig,p, k,ufF);

XX = F(1:K/2,:)*(vu);
pi&ld 2*real (K*ifft (XX,K));

figure ()

plot (real {(xx(1:150,:)),'linewidth',2), grid
title('Sinais em cada um dos Microfones, no tempo')
xlabel ( 'Tempo')

Sinal nos Microfones, para uma frequéncia fsig (FFT)

index_sig = length(F)*fsig/Fs+l;
X = 2*XX(index sig,:);
X =X.";

Calculo de vx e vy
Mx sgrt (M) ;
My = Mx; arranjo com nimero gquadrado de sensores

Nx = sgrt(N):
Ny = Nx;

ux = u(l:Nx,2)"';
uy = ux';

px = p(l:Mx,1)';
py = px';

Vx = steer(fsig,px',k,ux");
Vy = steer(fsig,py.k,uy):;

Vx = Vx.";

lotal Variation - TV

opts.maxit = 100;
opts.isreal = true;
opts.nonneg = true;
opts.TVL2 = true;
opts.mu = 2710;
opts.disp = false;

real = 1;
time sem = zeros(real,l);

for i = l:real

tic

Y = TVAL3 (kron(Vx,Vy), X, Ny, Nx, opts); Regularizagao TV - Sem nova
KAT

time sem(i) = toc;
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end

m_SemKAT = mean(time sem(10:end))

figure(), plot(l:real,time sem, 'linewidth',2),grid
title('Tempo de Processamento para cada realizacdo')
xlabel ('Realizacao')

ylabel ('Tempo(s) ")

= linspace(-1,1,sqrt (Nx*Ny));
_x;

Y;

( (reshape(z,Ny,Nx))"')."2;

NN M
|

mapa (x,y, z)

90




ANEXO H - Cédigo para o cenario inicial para a Regularizagio TV

com uso da nova KAT

close all, clear all

Constantes

Fs = 2717; Frequéncia de Amostragem
T = 1/Fs; Periodo de Amostragem

K = 2716; # de Amostras do Sinal

t = (0:K-1)*T; Vetor do Tempo

fsig = 5000; Sinal de 5 KHz

w = 2*pi*fsig; Frequéncia Angular
c = 340.29; Velocidade do Som no ar, m/s
k = 0.05; Divisdo do Espago (Visada: -1 a 1) com passo k - Amostragem do

Espaco
d = (c/fsiqg)/2; Distdncia entre os microfones de meic comprimentc de onda

FFT dos Sinais das Fontes
fl = 5*sin(2*pi*fsig*t);

f2 = 7T*sin(2*pi*fsig*t);
£3 = 9*sin(2*pi*fsig*t);

£ = [f1;£2;£3]; Sinais Analisados
ufF = [-0.6 -0.8;0 0;.5 .5];
ufF = [uF sgrt(l-uF(:,1}.”%2-uF{(:,2).72)]; Direcdes das Fontes #1, #2 e #3

L = size(£f,1); # de Fontes

sigma2 = 0.1; Variancia do Ruido dos Sinais
noise sqrt(sigma2)*randn(L,length(t));

for i = 1:L
noise(i,:) = sqgrt(sigma2)*randn(l,length(t));
end
f = f 4+ noise; Sinal + Ruido de wvaridncia 0.1 e média nula
[F,W] = FFT(Fs,K,f); Funcaoc FFT do sinal da fonte
Mod = abs(F);
Steering Vector, para todas as direcdes escolhidas

pos_x = [0 d 2*d 3*d 4*d 5*d 6*d 7*d];
p = arranjo(pos_x);

M = size(p,1): ## de Microfones
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[V,u] = steer(fsiqg,p,k);
N = length(u); # de Direcbes Vistas - Visada

Sinais nos Microfones no tempo

vu steer (fsig,p, k,uF);

XX = F(1:K/2,:)*(vu);
% 2*real (K*ifft (XX,K));

1]

figure ()

plot(real (xx(1:150,:)),'linewidth',2), grid
title('Sinais em cada um dos Microfones, no tempo')
xlabel ('Tempo')

Sinal nos Microfones, para uma frequéncia fsig (FFT)
index_sig = length(F)*fsig/Fs+1;

X = 2*XX(index_sig,:);
X =X.";

Calculo de vx e vy
Mx = sgrt(M};
My = Mx; arranjo com numero quadrado de sensores

Nx = sgrt(N);
Ny = Nx;

ux = u(l:Nx,2)";
uy = ux';

px = p(l:Mx,1)"';
pY = px';

Vx = steer(fsig,px',k,ux');
Vy = steer (fsig,py,k,uy);

Vx = Vx.';
Vy = Vy.';
Total Variation - TV

A = @(Y,mode) Anonima KAT(Y, Mx, My, Nx, Ny, Vx, Vy, mode);

time com plot TV(A, X, Nx, Ny);: Regularizacao TV - Com nova KAT

m_ComKAT mean (time com(10:end))




ANEXO | - Fungao “FFT.m” que auxilia no calculo da FFT dos sinais

nos microfones

Calculo da FFT - Mateus de Campos da Silva
function [F,£f] = FFT({Fs,K,x)
t = (0:K-1)*(1/Fs);

Ox: = xl:,1:250);

Ox = Ox';

figure ()

plot (Fs*t (1:150),0%, 'linewidth',2)
title('Signal in Time')

xlabel ('time')

grid

NFFT = 2%nextpow2 (K} Next power of 2 from length of y
F = fft(x',NFFT) /K;
f = Fs/2*linspace(0,1,NFFT/2+1);

figure ()

Plot single-sided amplitude spectrum.
plot (f,2*abs(F(1:NFFT/2+1,:)),"'linewidth"',2)
title('Single-Sided Amplitude Spectrum of =(t)"')
xlabel ('Freguency (Hz)')
ylabel ("IF(f) ')
grid

end
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ANEXO J - Fungéo “Mode1.m” e “Mode2.m” presentes no codigo da
regularizagao l1 e TV

Mode1.m
function Z = Model (Y, Vx, Vy)

[Mx,Nx] = size(Vx);
[My,Ny] = size(Vy);

costl
cost2

My * Nx * Ny/2 + Mx * My * Nx;
Mx * Nx * Ny/2 + Mx * My * Ny;

if costl < cost2

03
I

(Vy * Y) * vx, ';

Z=Vy * (Y * Vx.");
end

end

Mode2.m

function 2z = Mode?2 (Y, Vx, Vy)

[Mx,Nx] = size(Vx):;

[My,Ny] = size(Vy);
costl = Ny * Mx * (My + Nx/2);
costZ = Nx * My * (Mx + Ny/2):

if costl < cost2
Z Vy' + ¥} * conij(Vx)

F1 = Vy' * y;

F2 = conj (Vx);
else
‘ Vy' * (Y * conij(Vx));
F1 = Vy';
F2 = Y * conj(Vx);
end
Z = F1*F2;

end
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ANEXO K - Funcao “AnonimaKAT.m”, fungao do tipo anénima que
auxilia no processo de minimizagao, tanto na regularizagao /1 como
naTV

function Z = Anonima KAT(in vec, Mx, My, Nx, Ny, Vx, Vy, mode)

if mode == 1
Y = reﬁhape}in_yec, [Ny Nx]);
2 = Model (¥, Vx, Vy) ;.
2 =7Z2(:);

else

Y = reshape(in_vec, [My Mx]);
Z Uyt & ¥ * conj (Vx):
Mode2 (Y, Vx,Vy) ;

Z(:);

(o
||

end

end



ANEXO L - Fungdes “plot_l1.m” e “plot_TV.m”

plot_l1.m

function [time]

options =
real = 1;
time =

for i =

tic

Y =
- Bl

time (1)

| |AX

end

spgSetParms('iterations',

= plot 11(A, b, sigma, Nx, Ny)

zeros (real,l);
l:real
spg_bpdn (A, b, sigma, options);

STGMA
= toc;

minimiz

figure(), plot(l:real,time,'linewidth',2),grid

title('Tempo de Processamento para cada realiza

xlabel ('Realizacao')
ylabel ('Tempo(s) ')

b4
y = %;
z =1Y;
7z =
z+(z
db(z);
g = g N

mapa (x,y,z)

end

plot_TV.m

function time =

opts.maxit

opts.isreal

= linspace(-1,1,sqrt (Nx*Ny));

= abs(reshape (z,Nx,Ny))';

D)y*(le=10) ;

plot TV(A, b, Nx, Ny)

100;

= true;

opts.nonneg = true;
opts.TVL2 = true;

opts.mu =

20003

opts.disp = false;

real = 1;
time =

for i =
tic

Y—_—
time (i)

zeros (real,l);

l:real

TVAL3 (A, b, Ny, Nx, opts);
= toc;

cao')

200, 'verbosity',1);

X

1

subject
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end

figure(), Plot(l:real,time,'linewidth',Z},grid
title('Tempo de Processamento para cada realizacgio')
xlabel ('Realizacido")

ylabel ('Tempo(s) ')

X = linspace{—l,l,sqrt{Nx*Ny}};
y = %;

2 =¥

z = abs{reshape(ZJNx,Ny}}‘;

z = 2z,"2;

mapa (x,vy,z)
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