ESCOLA POLITECNICA DA UNIVERSIDADE DE SAO PAULO

DEPARTAMENTO DE ENGENHARIA MECANICA

APLICACAO DE REDES NEURAIS
PARA
RECONHECIMENTO
DE SINAIS ACUSTICOS

DISSERTACAO APRESENTADA A ESCOLA
POLITECNICA DA UNIVERSIDADE DE SAQ
PAULO PARA OBTENCAO DO TiTULO DE

GRADUACAO EM ENGENHARIA.

CHANG CHIH WEI
No. USP: 185014

PROF. ORIENTADOR:
MARCELOQ GODOY SIMOES wh\
0o
Sao Paulo

1998

FICHA CATALOGRAFICA

WEI, Chang C., Aplicacfio de redes neurais para reconhecimento de

sinais acuisticos, pp, 1998.

PARA AQUELES QUE CONSIDERAM A EDUCACAO
O MAIS IMPORTANTE PARA UM PAIS E SEU POVO.

A MINHA MAE PELA SUA PREOCUPACAO COM A
MINHA FORMACAO.

AGRADECIMENTOS

Ao amigo e orientador Prof. Marcelo Godoy Simdes pelas diretrizes

seguras e permanente incentivo neste trabalho.

A minha namorada Letéiva, cujo amor fez aumentar ainda mais a

minha dedicagéo.

Ao Céssio, que permitiu a conclusdio do curso com as suas retificagdes

de matricula.

A todos que direta ou indiretamente colaboraram na execugio deste

trabalho.

INDICE

1. INTRODUCAO cccrrsssnrerrsecssnannes E——— |
2. METODOLOGIA DE TRABALHO ..cvvuvrrsrenssesssseassssansene X wd
3. ESPECIFICACAO DO PROBLEMA ccccversrnearersssnuenecssssansasses - 4
4. FUNDAMENTOS SOBRE REDES NEURAIS ARTIFICTAIS cevveiiiesccssarencanes corness 0
A1 INEOAUGHODcoeiieiieeiie ettt e 6
4.2 O modelo DIOIOZICOc.ovvviriieeieiee ettt ea e 9
4.3 O neurdnio artifiCIalccoovioeir e 10
4.4 As fungBes de ativagBo ... 10
4.5 Redes neurais de camada IniCa............ceovivvieive e 13
4.6 Redes neurais de camadas multiplascooooriveceiiin i 14
4.7 A fungfio de ativagio ndo linear entre as camMadasoooevereeeeeinen 15
4,8 Redes NEUrais TECOTTENTEScoiviviuiieieeinrniec e 15
4.9 Treinamento de redes neurais artificials..........ccoooeevioiiiiiiiecce s 16
4.10 Treinamento supervisionado € ndo supervisionado................ooeeieiiiiiennn, 16
4.11 Classificagiio das Redes NEUFaISocoivoiiiineiiieieecie s e 17
5. REDE NEURAL BACKPROPAGATION.....e0eeee uiSessssseasssenseaEisentssssnssay 20
5.1 IAEFOTUGHO ..o ettt na b 20
5.2 Configuragdo da rede..........cocciiiiiiiie e 20
5.2 T O NEUIGINO ..oovviieeieeeieeeee ettt em e 20
5.2.2 A rede de camadas mUltiplasccccoooriiiii e 22

5.3 O treinamento da rede neural backpropagation.............ccoooee i 22
5.3.1 Ajuste dos pesos da camada de saida............cooiiii 25
5.3.2 Ajuste dos pesos da camada escondida.............coooei 28
5.3.3 Coeficiente de MOMENTOccoouivviiieriee e e 31

6. REDE NEURAL COUNTERPROPAGATIONccoverersanaananes sGEsssaleneresnattu s 32
8.1 INTOAUGAOoeeceeee et e 32
6.2 A estrutura da rede counterpropagationc.ococvevrvereeiencsiene s 33
6.3 Funcionamento da rede counterpropagationccvevieeoienrn i ciciineiisienners 33
6.3.1 Camada KORONEN ... e 33
6.3.2 Camada GroSSDETZcoviiiiiiiicet et 34

6.4 Treinamento da Camada Kohonen ..o 35
6.4.1 Pré-processamento dos vetores de entrada ..o 36
6.4.2 Competigio dos neurdnios e ajuste dos PESOS ... 36
6.4.3 Inicializago dOS PESOS......oiveieeie et 39
6.4.4 Modo interpolativo (mais de um Gnico vencedor)...........co.ooeeiiiiiiinns 41

6.5 Treinamento da camada Grossbergcocvvvevireevrieeicecc e 42
6.6 Resumo do treinamento da rede counterpropagation.............cocoovviieciieeccnenn, 43
7. IMPLEMENTACAQ DA REDE BACKPROPAGATION .44
T 1 IIEOAUGHG ..ottt b e e e 44
7.2 Descrigio do programa implementado.coiirviere i 45
7.3 Arquitetura do Programa ...t 48

7.4 Os 0bjetos Utilizados.ccooooeviiveueieeee s 51

7.5 O relacionamento entre 08 ODJETOS ...oovivereiii it 54

8. IMPLEMENTACAO DA REDE COUNTERPROPAGATION ..ccevievee resssessncasee 30
8.1 INMTOAUGHO ...t ivtiee et 56
8.2 Descrigiio do programa implementado.........cooooiiini s 56
8.3 Arquitetura d0 PTOSIAMAoooimiiiiere s e 60
8.4 Os 0bjet0s UIIHZAAOS ... oociiiiiiiee e 64
8.5 O relacionamento entre 08 ODJELOS ...ocoev i 66

9. PRE-PROCESSAMENTO DOS SINAIS DE ENTRADA ...cccceeeeene ok rrzmnes e ass ~07
9.1 Fntradas da rede neural atrasadas uma em relag8o as outras ... 67
9.2 Transformagio da dindmica do sinal em uma SUperficie. ... 69

10. VALIDACAO E VERIFICACAO - FORMULACAQ ..cvvceenceeer O S o o2 13
10,7 TIEEOQUGHO ..o ooieieuesererasie e cee st er e b e 73
10.2 VETIICAGHOvoveviveeeeiecieeiieieiiiss s ses ettt 73
10.3 VAAAGHO ..o eeeeeeeeer et eeae e bbb 74

10.3.1 Teste de validaga0.........oooovovveiiiie et s 75
10.3.2 Tamanho da amostra a ser utilizada...............c.coo 76

11, TESTES E RESULTADOS ..ceversencscosarssans erssnsassonscasis T S 77
11.1 Calculo da proporgio de erros maxima desejada... ..., 77
11.2 Célculo da proporgio de erros maxima permitida ... 78
11.3 Testes de validagio realizados para a rede backpropagation................cocoovenv. 79

11.3.1 Sinais com degradagio.ccoooimriiromniii e 79
11.3.2 Sinais com harmONICAScoooeeeieieeereenr oo st errae e 81
11.3.3 Perda dos pontos iniciais do sinal.............ooooii 82
11.3.4 Discussio sobre os resultados obtidos pela rede backpropagation.............. 84
11.4 Testes de validagio realizados para a rede counterpropagation.cve.... 85
11.4.1 Redes neurais treinadas com os sinais com degradagdo..........ccoooovennen 85
11.4.2 Sinais com harmoOnICasccvveeeeemritei oo ere e e 90
11.4.3 Solugio do problema das harmomicas...........oooveimnnieiisie 92
11.4.4 Perda dos pontos iniciais do sinal.............coovii 92
11.4.5 Discussio sobre os resultados obtidos pela rede counterpropagation 93

12. DISCUSSAO SOBRE AS DIFICULDADES DO PROJETO ..ccvvessaascessanees weenee 94

13. RESULTADOS DO PROJETO ccerrrsmmesicrsssassaresssssenceses S R 97

14. PROPOSTAS PARA DESENVOLVIMENTO FUTURO...cecesnss .98

15. CONCLUSAO E CONSIDERACOES FINAIS...cccceessanecas SRR vereransssness 39

16. REFERENCIAS BIBLIOGRAFICAS.cccue.. e o FEEETER 5 eessrsssasnsnenes vesesensnsnes 100

1. INTRODUCAO

Este projeto mecénico visa a aplicagiio de redes neurais artificiais no reconhecimento
de sinais em um sistema de transmisséo acustica. Este sistema ¢ aplicado em pogos de
extracio petrolifera onde os sinais a serem reconhecidos permitem o monitoramento

constante da temperatura e pressdo no fundo do pogo.

Neste sistema, o sinal acistico é utilizado para a transmissfo de informagdes do poco
para a superficie através de uma tubulagfo, o que faz com que este sistema seja

independente de fios ou outros tipos de ligagdes bastante sujeitos & deterioragio rapida.

As informagdes transmitidas pelo sensor no fundo do pogo ao receptor compdem-se de
codigos binarios transmitidos em duas frequiéncias, utilizando-se a modulagdo FSK
(Frequency Shift Keying). Este tipo de transmissdo esta sujeita 4 problemas de ruido,
atenuagdo, distorgdes nio lineares e muiltiplas reflexdes nas conexdes da tubulagio,
fazendo com que técnicas convencionais de demodulagdo ndo possam se aplicados de

maneira satisfatoria.

A proposta apresentada neste trabalho tem como objetivo resolver dois problemas
principais: a captura da dinimica do sinal (freqiiéncia de chaveamento) e a habilidade

de classificagdo desta dindmica.

Para o primeiro problema, a proposta € um preé-processamento do sinal de entrada
transformando a dindmica (fungfio temporal) em uma imagem tridimensional

(superficie).

RESUMO

Neste projeto mecinico utilizou-se redes neurais artificiais no reconhecimento de sinais
em um sistema de transmissdo acustica aplicado em pogos de extraco petrolifera. Os
sinais a serem reconhecidos permitem o monitoramento constante da temperatura e
pressio no fundo do pogo mas estdo sujeitos a problemas de ruido, atenuagdo,
distorgdes nio lineares e multiplas reflexSes nas conexdes da tubulagio, fazendo com
que técnicas convencionais de demodulagdo ndo possam se aplicados de maneira

satisfatoria.

A proposta apresentada resolveu dois problemas principais: a captura da dindmica do

sinal (freqiiéncia de chaveamento) e a habilidade de classificaggo desta dindmica.

Para a captura da dinidmica do sinal, utilizou-se um pre-processamento do sinal de
entrada transformando a dindmica (fungfo temporal) em uma imagem {ridimensional

(superficie).

Para a classificagiio das imagens obtidas no pré-processamento, utilizou-se a rede neural

counterpropagation apresentando resultados bastante satisfatorios.

Com a validagdio e verificagdo dos resultados, o projeto foi concluido tendo-se como
produtos dois programas de redes neurais em C++ que também podem ser utilizados

para outras aplicagdes.

Para o segundo problema, a proposta ¢ a utilizagdo de redes neurais para a classifica¢éo

das imagens obtidas no pré-processamento.

Com a validagéo e verificagdio dos resultados, os principios utilizados neste trabalho de
formatura poderdio ser aplicados de maneira satisfatéria em outros sistemas de

reconhecimento de padrbes dindmicos.

2. METODOLOGIA DE TRABALHO

A metodologia de trabalho utilizada para a realizagdo deste projeto teve as seguintes

etapas:

1. Especificagfo sucinta do problema

2. Apresentagfio da proposta para a solugdo do problema

3. Estudo de modelos de redes neurais

4. Equacionamento do modelo de rede neural e do algoritmo de treinamento.
5. Implementagdo da rede neural em software utilizando-se a linguagem C++.
6. Testes de validagdo e verificagio da rede neural para a aplicagfio

7. Avaliaggo das dificuldades deste projeto

8. Propostas para desenvolvimento futuro

9. Concluséo

3. ESPECIFICACAO DO PROBLEMA

O modelo simplificado do sistema da plataforma de extragdo de petréleo estd
representado na Figura 1. O petroleo flui por uma tubulacdo interna, que € composta por
diversos tubos e conexdes. A figura também mostra uma tubulagio externa, que protege
a interna do meio em que se encontra. O espago entre a tubulagdo externa ¢ a interna €

preenchida por 4gua e o comprimento deste sistema ¢ normalmente maior que 3000m.

- —\ receptor
77770 777

7| H |

/I

|/

tubo r-»ﬂl’
|

internc ':_\J\

l -
i || conexao

externo

‘\,. tubo

|
| |
‘ | J 1 sensor

Figura 1 - Plataforma de extracdo petrolifera

Para uma boa operagio em pogos de petréleo, deve-se realizar um monitoramento
periédico da temperatura ¢ pressio do fundo do pogo. Utiliza-se um sensor PDS
(Permanent Downhole Sensor) para aquisigdo de dados sobre a temperatura € a pressao.
Os responsaveis pela manutengdo monitoram diariamente estas varidveis e injetam agua
entre a tubulagdo interna e externa para que os sistema se mantenha nas condigdes
timas. Entretanto, os sensores sdo conectados a superficie através de cabos, o que faz
com que o sistema fique sujeito a danos além de ter alto custo de instalagdo e

manutengao.

A proposta que foi encontrada € a de se utilizar transmissdo acustica para este sistema,
4 que transmissdo radio ndo ¢ apropriada devido a atenuagiio obtida com a propagagéo
da onda na 4gua ¢ na tubulagfio. Este tipo de transmissdo ¢ bastante usada em

submarinos por exemplo.

Uma simples técnica de modulagdo utilizada para transmitir informagdes bindrias € o
chaveamento de freqiéncias ou FSK (Frequency Shift Keying), que utiliza duas
freqiiéncias diferentes f; e f; . Estas duas freqiiéncias correspondem aos bits “0” e “17

respectivamente.

Apesar de parecer bastante simples esta técnica, a detecgdo dos bits “0” € “17 no
receptor ¢ de extrema dificuldade. Isto ocorre devido a distor¢des e atenuagbes que o
sinal recebe até chegar no receptor. As reflexes que ocorrem nas conexdes da
tubulagio resultam em interferéncias ndo lineares no sinal. Além disso, o fluxo de 6leo
que passa pela tubulagdo interna também produz distiirbios que aumentam ainda mais a

complexidade do sinal.

Para a solugdio deste problema, a proposta ¢ a utilizagéo de redes neurais que realizem o
reconhecimento do sinal e tratem de forma satisfatoria as caracteristicas ndo lineares do

sistema.

4. FUNDAMENTOS SOBRE REDES NEURAIS ARTIFICIAIS

4.1 Introducdo

O desafio de se entender o cérebro motivou o pioneiro Ramén y Cayal (1911) a
introduzir a idéia de neurdnios como sendo constituintes estruturais do cérebro. Os
neurdnios sdo bem mais lentos que as portas logicas de silicone. Os eventos em um chip
ocorrem em nano-segundos, enquanto que em um neurdnio ocorrem em mili-segundos.
Entretando, a atua¢do do neurénio ¢ compensada pelo nimero imenso de células
nervosas e interconexdes entre elas. I estimado que o coértex humano contenha
aproximadamente 10 bilhdes de neurdnios e 60 trilhdes de sinapses ou interconexdes.
Em termos de eficiéncia energética, o cérebro consome aproximadamente 107" joules
por operagio por segundo enquanto que o valor correspondente para os melhores

computadores em uso atualmente é de aproximadamente 10 joules por operagdo por
segundo.

O cérebro é um computador complexo, ndo-linear e com paralelismo no processamento
de informagdes. Ele possui a capacidade de organizar neurdnios assim como realizar
processamentos como reconhecimento de padrdes, percepgo € controle motor muitas

vezes mais rapido que o mais veloz computador digital.

Desde o nascimento, o c¢érebro tem uma Otima estrutura e a habilidade para construir
suas proprias regras que podemos chamar de experiéncia. Esta experiéncia € construida
ao longo dos anos e durante este estagio de desenvolvimento, aproximadamente um

milhdo de sinapses sdo formadas por segundo.

As sinapses sdo um unidades elementares estruturais ¢ funcionais que mediam as
interacbes entre os neurdnios. Uma sinapse ¢ uma simples conexdo que pode impor

excitagdo ou inibi¢lio em um certo neurdnio receptor.

No desenvolvimento dos neurdnios uma caracteristica ¢ extremamente importante: a
plasticidade, que permite que o sistema nervoso em desenvolvimento se adapte ao
ambiente externo. Em um cérebro humano esta plasticidade pode ser vista por dois
mecanismos: a criagio de novas conexdes sindpticas entre os neurdnios ¢ a modificagio

de antigas sinapses.

Observando-se a plasticidade dos neurdnios como unidades de processamento de
informagdes em um cérebro humano, toma-se como analogia a criagio de redes neurais
com neurdnios artificiais. De forma genérica, uma rede neural € uma maquina que €
projetada para modelar a forma como o cérebro desempenha uma tarefa ou fungéo. A
rede é normalmente implementada utilizando-se componentes eletrdnicos ou entéo
simuladas em software em um computador. Para se alcangar um grande desempenho, as
redes neurais empregam uma imensa interconexdo de unidades de processamento

chamadas de neurdnios.

Uma rede neural ¢ um imenso processador paralelo distribuido que tem a capacidade de
armazenar experiéncias e tornd-las vidveis para o uso. Ela assemelha-se ao cérebro por

dois motivos:
1. A experiéncia é adquirida através de um processo de aprendizagem.

2. Os pesos das conexdes entre neurdnios sio utilizados para armazenar as experiéncias.

O processo para se executar a aprendizagem chama-se de algoritmo de aprendizagem,
que & uma fungdo que ir4 modificar os pesos sinapticos em rede para ater-se a0 objetivo

do projeto.

A utilizagdo de redes neurais oferece, como beneficios, as seguintes propriedades:
v" Nio-linearidade;

v" Mapeamento de entradas e saidas num processo de aprendizagem;

v' Adaptabilidade 4s mudangas no ambiente através de treinamentos;

v’ Resposta evidencial para padrdes conflitantes (entradas iguais com saidas diferentes

dados durante o treinamento);
v Informagdes contextuais, onde cada neurdnio ¢ afetado pela atividade global da rede;

v Robustez do sistema, ou seja, tolerAncia em relagiio a erros (como perda de conexdes

entre neurénios);
v" Processamento paralelo simultédneo através dos neurénios;
v Uniformidade de anélise e projeto que confere & rede um caréter universal.

As redes neurais artificiais sdo desenvolvidas em uma grande quantidade de
configuragdes. Apesar dessa diversidade, elas tém vérios aspectos em comum. A seguir
serdo descritos temas, notagdes e representagdes basicas que serdo constantemente

utilizadas neste trabalho.

4.2 O modelo biolégico

Por serem inspirados em aspectos biologicos, os pesquisadores tém procurado aprender
mais sobre a organizac¢do do cérebro em relacéio a configuragdes de redes e algoritmos.
Os projetistas de redes neurais devem partir de conhecimentos bioldgicos, procurando
por estruturas adequadas que gerem fungdes Uteis. A Figura 2 mostra a estrutura de um
par neurdnios biologicos. Os dendritos se estendem do corpo celular para outros
neurdnios, onde eles recebem sinais em um ponto de conexdo chamado de sinapse. No
lado receptor da sinapse, as entradas so conduzidas para a célula corpo. As entradas
sdo somadas, ¢ algumas tendem a excitar a célula e outras a inibir o disparo. Quando a
excitacdo acumulada em um corpo celular exceder um valor de threshold, a célula
dispara, mandando um sinal através do axdnio para outros neurénios. Este tipo basico
de funcionamento tem varias complexidades ¢ excegdes, enfretando, a maioria das

redes neurais artificiais modelam apenas estas simples caracteristicas.

‘H"H\ //,_— dendritos
‘;‘b - ;’/i‘:— r;‘ r4
_ wrp:z cj:lutr}(; i, Fd ,ti

XV

e _
g

\)
=
i
/_/
i
@,
=
o
£
a
" f‘r’
7
Fs
o

Figura 2 - O neurdnio bioldgico

10

4.3 O neurénio artificial

O neurdnio artificial foi projetado para desempenhar as caracteristicas de primeira
ordem dos neurdnios biolégicos. Em esséncia, um conjunto de entradas ¢ aplicado, cada
qual representando a saida de outro neurdnio. Cada entrada ¢ multiplicada por um peso
correspondente (peso sinaptico), e todas as entradas ja ponderadas pelos pesos sdo
somadas para determinar o nivel de ativagiio do neurdnio. A Figura 3 mostra um
modelo representa esta idéia. Apesar da diversidade de configuragdes possiveis, quase

todas se baseiam neste tipo de configuragdo.

U=X101 + X0, + ... + X0,

Figura 3 - O Neurdnio Artificial

4.4 As funcbes de ativacao

O sinal « (soma das entradas ponderadas) é geralmente processado por uma funcdo de
ativaglo @ para produzir um sinal de saida y do neurdnio. Isto pode ser realizado através

de uma simples fungdo linear,

yv=@(uj=k-u onde k é uma constante

ou através de uma fungéo threshold,

11

{ >4
v=gfu}= seu onde 8¢ uma constante de threshold.
0 seu<@

Na Figura 4, a fungfio de ativaglio @ aceita a saida u e produz um sinal y. Se o
processamento em ¢ comprime a faixa de valores de u, entdo y nunca excede um valor

limite.

=X + X0, + ... + X0,

Figura 4 -Neurdnio Artificial com a Fungdo de Ativacdo

A funciio mais escolhida é a fungdo logistica ou sigmoidal (em forma de “S™) como
mostra a Figura 5.

Fungda Log'stica
T

T
'

v=lungin da abvagiaix}

Figura 5 - IFungdo de Ativagdo Sigmoidal (Logistica)

A fungdo logistica ¢ dada por:

b
I+e”

y=ofu)=

12

Pela analogia a sistemas eletrdnicos, pode-se pensar que a fun¢io de ativagio é definida
por um ganho néo linear para o neurénio artificial. Este ganho ¢ calculado pela taxa de
mudanga em y para uma pequena mudanga em ». Entdo, o ganho € a rampa da curva
para um nivel de excitag@o especificado. O ganho varia de um valor baixo para grandes
excitagles negativas (a curva ¢ quase horizontal), até um valor alto para excitagio zero.
O wvalor torna a ser baixo novamente para grandes excitagdes negativas. Esta
caracteristica ndo linear resolve o problema de processamento de sinais pequenos e
grandes por uma mesma rede. A parte central de grande ganho da fungfio logistica
resolve o problema de processamento de sinais pequenos, enquanto que as regides
laterais de ganhos pequenos (extremos positivos e negativos) resolvem o problema para

grandes excitagoes.

Outra fungdio de ativagiio amplamente utilizada € a fungio tangente hiperbolica (Figura
6), com 0 mesmo formatoe de curva da fungfio logistica (curva em °S’). Entretanto, a
funcdio tangente-hiperbdlica é simétrica na origem, resultando em valor zero quando a

entrada é zero.

Fungdo Tangente Hpeutice
T

Figura 6 - Fungdo de Ativagdo Hiperbdlica

A fungdo tangente hiperbolica é dada por:

v = @(u) - tanh(x)

13

Este modelo simples para o neurbnio artificial ignora muitas caracteristicas biologicas
como por exemplo, o atraso de tempo que afeta a dindmica do sistema. Uma entrada
gera imediatamente uma saida, e mais, 0 modelo nio leva em conta os efeitos do

sincronismo dos neurdnios, o que varios pesquisadores acham de extrema importincia.

4.5 Redes neurais de camada tnica

Apesar de um neurdnio ter a capacidade de desempenhar certas fungdes simples, o
poder da utilizagdo computacional advém de se conectar os neurénios em redes. A rede

mais simples é formado por um grupo de neurdnios dispostos em uma Unica camada.

(Figura 7).

X U

Uz

&
®
©

Xm u3

Figura 7 - Rede neural de camada tinica

Deve-se notar que existem nés que apenas distribuem as entradas, e portanto nio devem
ser considerados como constituintes de uma camada. Um conjunto de entradas x tem
cada um dos seus elementos conectados em cada um dos neurdnios passando por um
peso determinado. Cada neurdnio ¢ simplesmente processado gerando uma saida que €
somada s outras. Deve-se considerar os pesos como sendo elementos de uma matnz ®.
A dimensfo desta matriz é mxn, onde m é o numero de entradas e » o numero de

neurdnios. Por exemplo, o peso da conexdo da quarta entrada com o segundo neurdnio ¢

14

@s;. Sendo assim, o calculo das saidas u para a camada é uma simples multiplicagfio

matricial:

onde u ¢ @ sdo vetores coluna.

4.6 Redes neurais de camadas multiplas

Maiores ¢ mais complexas, estas redes oferecem geralmente maiores capacidades
computacionais. Apesar das redes serem construidas em quaisquer configuragdes, o
arranjo de redes em estrutura de camadas assimila-se mais ainda a certas partes do
cérebro. Estas redes de camadas multiplas contém mais capacidades do que a de
camada Unica e, recentemente, muitos algoritmos foram desenvolvidos para treinar

estas redes.

As redes de camadas multiplas sio formadas pelo agrupamento de redes de camadas
unicas. A saida de uma camada serd a entrada da camada subseqiiente. A Figura 8

mostra este tipo de configuracéo.

e

u

Uz

Us

Figura 8 - Rede neural de camadas miltiplas

15

4.7 A funcéo de ativacdo nao linear entre as camadas

As rtedes neurais da camadas multiplas nfo fornecem nenhuma vantagem
computacional sobre as redes de camada tinica a nfo ser que haja uma fungéio de
ativacdo ndo linear entre as camadas. O calculo da saida de uma camada consiste em se
multiplicar o vetor de entrada por uma primeira matriz de pesos, ¢ depois (s¢ néo
houver uma fung¢fo de ativagdio nfio linear) multiplicar o vetor resultante por uma

segunda matriz de pesos. Isto pode ser expresso por:
(x0;)@,

Como a multiplicagdo de matrizes ¢ associativa, pode-se reagrupar:
X(0y02)

Isto mostra que uma rede neural de duas camadas lineares ¢ exatamente equivalente a
uma rede de camada Unica, considerando-se os pesos desta rede como sendo o produto
®10,. Portanto, a fungdo de ativagio ndo linear entre as camadas é de vital importancia
para a expansdo das capacidades das redes de camadas multiplas em relagfio as de

camada unica.

4.8 Redes neurais recorrentes

As redes consideradas até agora ndo tinham nenhuma conexdo para realimentacdo, ou
seja, nfio tinham conexdes com pesos que ligavam a saida de uma camada a entrada da
camada anterior, Este grupo de redes ¢ chamado de ndo-recorrentes, ou de alimentago
positiva. Para redes que contém conexdes para realimentagfo sdo consideradas como

recorrentes. Para redes ndo-recorrentes ndo existe memoria, ou seja, sua saida é

16

determinada apenas a partir das entradas e dos pesos da rede. Para redes recorrentes, a
saida ¢ determinada pelas entradas. pelos pesos e pelas saidas anteriores. Por esta razdo,
a redes recorrentes podem exibir propriedades muito similares & memoria a curto prazo

de seres humanos.

4.9 Treinamento de redes neurais artificiais

Entre todas as caracteristicas interessantes das redes neurais artificiats, nenhuma € mais
impottante do que a sua capacidade de aprendizagem. O treinamento das redes ¢ uma
analogia ao desenvolvimento intelectual humano. Apesar disso, deve-se atentar com o

fato de que a aprendizagem das redes ¢ limitada.

Uma rede ¢ considerada treinada quando, com a aplicagdo de um conjunto de entradas,
obtém-se um conjunto de saidas desejado. Cada conjunto de entradas é representado por
um vetor. Entdio, o freinamento consiste em se aplicar seqiiencialmente conjuntos de
vetores, enquanto os pesos da rede sdo ajustados conforme um procedimento pré-
determinado. Durante o treinamento, os pesos da rede convergem para valores que

fazem com que a aplicagio do vetor de entradas produza o vetor de safdas desejado.

4.10 Treinamento supervisionado e ndo supervisionado

Os algoritmos de treinamento sfo classificados como supervisionados e ndo-
supervisionados. O treinamento supervisionado requer o conjunto formado pelo vetor
de entradas e pela de saidas desejadas para as respectivas entradas. Normalmente, a
rede ¢ treinada com um certo niimero de pares de treinamento (nome dado ao conjunto
entradas+saidas). Um vetor de entradas € aplicado, entfio a saida da rede € calculada e

comparada com a saida desejada correspondente. A diferenca (erro) entre elas €

17

realimentada para a correcfo dos pesos da rede utilizando-se um certo algoritmo de
treinamento que minimizard o erro. Os vetores de entrada s@o aplicados
seqiiencialmente, os seus respectivos erros calculados, e os pesos da rede modificados

até que o erro gerado pela rede para todo o conjunto de dados seja aceitavel.

O treinamento n&o-supervisionado nfio necessita de um vetor de saidas desejadas. O
conjunto de dados para treinamento consiste apenas nos vetores de entradas. O
algoritmo de treinamento modifica os pesos da rede para gerar uma saida consistente.
Essa saida consistente é a aplicagfio entradas similares que geram o mesmo padréio de
saida. O processo d¢ treinamento, portanto, envolve propriedades estatisticas do
conjunto de dados para treinamento e agrupa vetores similares em classes. Para

caracterizar essas classes deve-se entdo verificar as relagdes entre entrada e saida.

4.11 Classificacdo das Redes Neurais

As redes neurais podem ser classificadas quanto 4 sua estratégia de treinamento, quanto
ao tipo de aprendizagem, quanto ao tipo de aplicagfo e quanto & sua arquitetura. A
seguir, serdo classificadas as redes mais usuais segundo estes critérios. Algumas redes

neurais existentes sdo:

o ADALINE - Adaptive-Linear Neural ¢ Boltzmann Machine
Element e CCN - Cascade Correlation
e ART - Adaptative Ressonant Theory e Cauchy Machine

¢ AM - Associative Memories e CPN - Counter Propagation

e BAM - Bidirectional Associative ¢ Hamming

Memories
e Hopfield

18

PNN - Probabilistic Neural Network

¢ LVQ - Linear Vector Quantization

MADALINE ¢ RBF - Radial Basis Function

RNN -Recurrent Neural Networks

MLFFBP - Multilayer Feedfoward

Back-Propagation

SOFM - Self-Organizing Feature

Perceptron Map

Estratégia de treinamento

— S~

Supervisionado Ndo Supervisionado
ADALINE ART
Boltzmann Hopfield

Hopfield LVQ
LvQ SOFM
MLFFBP
PNN
RBF
RNN

Tipe de treinamento

_— NS

Corregdo do ervo por Hebb Competitivo Stocdstico
ADALINE AM ART Boltzmann Machine
CCN BAM CPN Cauchy Machine
Hopfield Hopfield LVS
MLFFBP SOFM
Perceptron
RBF
RNN

Tipo de Aplicagéio
Memoria Classificagio Recorhecimento Predicéo
Associativa de padries
ADALINE ADALINE
ART ART ART CCN
AM CCN CCN MADALINE
BAM PN CPN MLFFBP
Hopfield LVQ LVQ RBF
MILFFBP MLFFBP MLFFBP RNN
RBF RBF SOFM
RCE RCE
SOFM SOFM
Otingzagdo Mapeamento
Geral
ADALINE
Boltzman CCN
Hopfield
MLEFBP
RINN
SOFM

Tipo de Arquitetura

/

Camada Unica
sem realimentagdo

ADALINE
AM
Hopfield
LVQ
Perceptron
SOFT

Multiplas camadas
com realimentagdo

CCN
MADALINE
MLFFBP
RBF
RCE

\

Recorrenies

ART
BAM
Boltzmann Machine
Cauchy Machine
Hopfield
RNN

19

20

5. REDE NEURAL BACKPROPAGATION

5.1 Introducgdo

Durante muitos anos nfio existia um algoritmo conciso e pratico para o treinamento de
rede neurais com multiplas camadas. Além disso, as redes neurais de uma Unica camada
mostravam-se limitados. Com isso, surgiu-se um novo tipo de algoritmo denominado

backpropagation.

O backpropagation ¢ um método sistematico para treinamento de redes de camadas
multiplas, ¢ contém fundamentos matematicos bastante praticos. Apesar de suas
limitagdes, este algoritmo expandiu muito a aplicagdo de redes neurais, gerando étimas

demonstrag¢Ges de seu potencial.

5.2 Configuracao da rede
5.2.1 O neurdnio

A Figura 9 mostra o neurdnio utilizado como a unidade fundamental para redes com
backpropagation. Um conjunto de entradas lhe ¢ aplicado, tanto externamente como de
uma camada anterior. Cada uma destas entradas ¢ multiplicada por um peso e entdo
somam-se os produtos obtidos. Esta soma de produtos € representada por u ¢ deve ser
calculado para cada neurdnio da rede. Apds o calculo de u, uma fungdo de ativacio ¢f.}

lhe ¢ aplicada para sua modificagfo, produzindo um sinal y.

21

y = ¢u)

%

U= X0 T X200 + ... T Xyt

Figura 9 - Neurénio da Rede com Backpropagation

A funcdo de ativacio mais utilizada ¢ a fungdo logistica ou sigmoidal, dada por:

Fung8o Loglstica

o D e e o op

W & th ©1 ~ M B =
'
feo
1

y=fungdo de sivagfio(x)

Figura 10 - Funcdo de Ativagdo Sigmoidal

Observando-se a fungfio sigmoidal acima, pode-se deduzir que a sua derivada é dada

por:

=y(1-y)

ple

Pode-se utilizar também outras expressdes matematicas, mas desde que elas sejam
diferenciaveis em todas as regides. A func¢io logistica atende a esse requisito ¢, além do
mais, tem a vantagem de ter um controle automatico do ganho. Quando aplica-se sinais
de pequena amplitude obtém-se amplitudes grandes e, ao se aumentar a amplitude do

sinal, diminui-se o seu ganho. Deste jeito, sinais de grande amplitude podem ser

22

aplicadas a rede sem saturagio, enquanto que sinais de pequena amplitude nfo irdo

receber atenuagio excessiva.

5.2.2 A rede de camadas miltiplas

A Figura 11 mostra uma rede de camadas miltiplas propria para o treinamento com o

backpropagation.
camada de camada camada de
entrada escondida saida erro,

(O =
X : ¥a alvo,

€10, 1
O i s/ Yo . alvo,

N . b eITon,]

Figura 11 - Rede neural de trés camadas para backpropagation

Neste caso, obtém-se uma rede neural com trés camadas. O backpropagation pode ser
aplicado a redes com qualquer niimero de camadas, entretanto, apenas duas camadas

sdo necessarias para demonstrar este algoritmo.

5.3 O treinamento da rede neural backpropagation

O objetivo do treinamento da rede € ajustar os pesos para que com a aplicagdo de um
conjunto de entradas seja gerado um conjunto de saidas desejado. Desta forma, pode-se
utilizar a notagfo de vetores para o conjunto de entradas e saidas. O treinamento ira
assumir que cada conjunto de entradas tenha uma par de saidas desejado, ou seja, os
dados para o treinamento sempre encontram-se aos pares (entrada/saida). O treinamento

se utiliza de um nimero de pares de dados, que pode variar em cada caso. Por exemplo,

23

para reconhecer a imagem de um caractere (supondo esta imagem dividida em varios

quadrantes) utilizar-se-ia um conjunto com 26 pares de dados para treinamento.

Antes de se iniciar o processo de treinamento, todos os pesos devem ser inicializados
com pesos pequenos e aleatérios. Isto ird garantir que a rede nfio se sature com grandes
valores de entrada e previne contra problemas de desempenho quando a rede exige

valores desiguais.

Na Figura 12, ¢ apresentado o fluxograma do treinamento da rede backpropagation.

| Selecionar o par de dados (entrada/saida)
que sera utilizado para treinamento

Aplicar o vetor de entrada 2

Calcular a saida da rede 3

Calcular o erro entre a saida da rede e
a saida descjada (do par de dados)

.
Ajustar os pesos de tal forma que
o0 erro seja minimizado

h 4
Repetir o passo inicial com outro conjunto de
pares de dados até que o erro para o conjunto | 6

inteiro de dados seja considerado pequeno

Figura 12 - Fluxograma do Treinamento Backpropagation

24

Os trés primeiros passos sdo similares ao modo como a rede ird calcular as saidas apos
o treinamento. Os calculos devem ser feitos camada por camada, ou seja, em um
exemplo com trés camadas, primeiro sdo calculados as satdas da camada de entrada,

depois da camada escondida e finalmente da camada de saida.

No passo 4, cada saida y da rede sera subtraida da saida desejada gerando um erro. Este
erro é utilizado na etapa 5 para ajustar os pesos da rede. A polaridade ¢ a magnitude da

variagio do peso serdio determinados pelo algoritmo de treinamento.

Apds varias iteragdes destas etapas, o erro entre as saidas da rede e as desejadas deve

reduzir-se a um valor aceitavel. Entfio ter-se 4 uma rede treinada.

Deve-se observar que as etapas 1, 2 e 3 constituem-se em “passos para frente”, ja que o
sinal se propaga da entrada para a saida. As etapas 4 e 5 sfo “passos para tras”, ja que
ha a propagacéo do erro da saida para a entrada visando o ajuste de erros. Os sinais que
constituem os passos para frente séo ditos como sinais da fungdo, enquanto que os que

constituem os passos para tras sdo ditos sinais dos erros (Figura 13).

—» sinal da fungho
<“— sinal do erro

Figura 13 - Sinais da funcdo e do erro

Com ja foi visto anteriormente, o calculo em redes neurais de camadas multiplas ¢
processado camada por camada, iniciando-se pelas camadas de entrada e terminando

nas camadas de saida. O valor de u para cada neurdnio da primeira camada ¢ calculado

25

a partir da soma dos produtos dos sinais de entrada pelos respectivos pesos na conexéo
sindptica. A fungfo de ativagdo ¢f,) faz com que o sinal proveniente v se limite certos
valores, gerando o sinal y para cada neurbnio da camada. Quando um conjunto de
saidas para uma camada ¢ encontrado, estas saidas se transformam em entradas para a
camada seguinte. Este processo se repete, camada por camada, até que um conjunto

final de saidas ¢ gerado.

Em notac¢io vetorial, obtém-se:

y = ¢(u)

Estas equagfes sdo entdo aplicadas para cada camada individualmente, desde a de

entrada até a de saida.

5.3.1 Ajuste dos pesos da camada de saida

Com o valor de saida desejado disponivel durante o treinamento da rede, a operagdo de
ajuste de pesos torna-se extremamente simples, utilizando-se uma modificagdo da regra
delta. O processo de treinamento inicia-se tomando o peso entre um neurbnio 7 da
camada escondida e um neurdnio j da camada de saida. A saida do neurbnio ; €

subtraida do valor da saida desejada gerando um sinal de erro ;.

e.f=d.f_yj

26

Camada Camada de
escondida saida

\Zi

Figura 14 - Ajusie de pesos na camada de saida

Define-se como erro quadratico global a soma dos erros quadraticos de cada neurdnio

da camada de saida, ou seja, € expresso por:
450
A atividade interna do neurdnio j antes de ser ou ndo ativado ¢ dado por:
u = Z @,y
Aplicando-se a fungio de ativagio obtém-se:
y,=¢(u)

O algoritmo do backpropagation visa aplicar uma corre¢io Aw; para o sinal sinaptico
a)!-,-)

o (n+l)=wn)+Ao, onde » sdo as iterag0es

A corregiio Awy, é proporcional ao gradiente:

27

Este gradiente representa um fator de sensibilidade, que determina a diregéio de busca

para 0 peso @.

Derivando-se a equagdo do erro quadratico, obtém-se:

7é

Derivando-se a equagio da fun¢io de ativagéo:

%=¢,’(u,)

#

Derivando-se a equago da atividade interna do neurdnio ; antes de passar pela fungio

de ativagéo:

Substituindo-se na equacéo do gradiente:

o¢)
- Y (u)-y,

A corregio Awy aplicada ao peso ay ¢ dada pela regra delta:

Aa)ﬁ = nt_%;
fw,

A constante # determina a taxa de aprendizagem e ¢ chamada de coeficiente de

aprendizagem.

28

Substituindo nas equagdes anteriores, obtém-se:
Aw,=-75dy,
onde & € o gradiente local, definido por:
b=e-9'(1)
Se a fungdo de ativagio for a logistica, pode-se deduzir que:
@' (u)=y(1-y)
Portanto, obtém-se que o gradiente local é dado por:

o =eu(l-u)

5.3.2 Ajuste dos pesos da camada escondida

As camadas escondidas ndo possuem informacdes sobre as saidas desejadas, entfo o
processo de treinamento descrito anteriormente nf#o pode ser utilizado. O
backpropagation treina as camadas escondidas através da propagagio do erro de saida
para dentro das camadas. Esta propagagfio do erro ¢ feito camada por camada até atingir

a entrada com os respectivos ajustes de pesos.

Considera-se agora a seguinte situa¢@o para o neurdnio ; da camada escondida:

Camada Camada de
escondida 7 saida &

€

¥i &

Figura 15 - Afuste de pesos na camada escondida

O gradiente local para um neurdnio escondido / € dado por:

5--F.3
’ @j GAI,IJ

! 7
ou seja, 6 ==-—9'(u)
P,

Rescrevendo a equag#io do erro quadratico global para os novos indices:

!

¢=32e

Diferenciando-se esta equagio:

& ke
E_Ze* & &

.

Entretanto, pela figura acima pode-se notar que:
€= dk = dk - cpk(uk)

Entéo, pode-se obter:

2, ;
011 . @k (Hk)

I3

Tomando-se a atividade interna do neurdnio £ da camada de saida:
uk = Z w_,’k .yj
r

Derivando-se esta equagio:

éhk
—3 a)ﬁ
@,

Entdo, pode-se obter a derivada parcial:

29

30

gz _Zex * qpk'(uk)'a)jk = _Z 5;0)_‘*

Finalmente, pode-se obter o gradiente local pelo rearranjo dos termos:

5} . ¢j’(uj)z §kwﬁ

O fator ¢’(u) que aparece no gradiente local & depende da ativagiio do neurdnio
escondido j. A somatoria que compde o segundo fator da multiplicagdo depende de dois
conjuntos de dados: & que requer conhecimento dos erros dos sinais para a camada
imediatamente seguinte da camada escondida j € que ¢ diretamente ligada 2 ela, e wy

que consiste nos pesos sinapticos associados a essas conexdes.
Pode-se entdio resumir as relagdes obtidas para o backpropagation:

1. A corregdo Aw; aplicada ao peso sindptico que conecta o neurdnio / com o neurdnio

j € definida pela regra delta:

3 Corregéo do erro
' Ao

i

)

4

n Y

O gradiente local & depende em qual camada estd se analisando:

* se 0 neurdnio ; pertencer 4 camada de saida, J; ¢ igual ao produto entre a
derivada da fungfio de ativagio e o erro, ambos associados ao neurdnio /.

e se o neurdnio j pertencer a camada escondida, & ¢ igual ao produto entre a
derivada da fungfio de ativagdo e a somatdria dos produtos enire 0s pesos

sinapticos e 0s &'s da camada seguinte que estdo conectados ao neurdnio ;.

[Coeﬁciente de aprendizagem) (Gradiente local J [Sinal de entrada no neurdnio j

)

31

5.3.3 Coeficiente de momento

Rumelhart, Hilton ¢ Williams (1986) descreveram um método para melhorar o tempo
de treinamento do algoritmo do backpropagation sem perda de estabilidade do
processo. Chamado de coeficiente de momento, o método envolve a adigdo de um termo
no ajuste de pesos que se seja proporcional ao valor anterior de ajuste de pesos. Quando
este termo ¢ adicionado, pode-se dizer que ha a presenga de memoria no ajuste dos

pesos. Entdo a equacdo de ajuste de pesos fica modificada para:
Aw (n+1)=—nd(n)y(n)+alw,(n)

o(ntl)=0n)+Ao(n+l)

Utilizando-se o método do momento, a rede tende a seguir mas suavemente a curva de
erro. Outros métodos de ajuste também sdo eficazes, como os baseados em atenuagio

exponencial.

32

6. REDE NEURAL COUNTERPROPAGATION

6.1 Introducédo

A tede counterpropagation foi desenvolvida por Robert Hecht-Nielsen (1987) e vai
além das redes de camada Ginica no que se refere a representatividade. Comparada com
a rede backpropagation, 0 tempo de treinamento é reduzido na ordem de centenas de
vezes. A counterpropagation nio ¢ tdo genérica quanto a backpropagation, mas permite

a obtengdo de solugdes para aplicagdes que ndo toleram grandes tempos de treinamento.

A rede counterpropagation ¢ uma combinagdo de duas configuragdes: a mapa auto-
organizador de Kohonen (1988) e a camada outstar de Grossberg (1969, 1971, 1982).
As duas configuragbes juntas agrupam propriedades peculiares que cada uma,
individualmente, ndo possuiria. Esta combinagdo de paradigmas pode produzir redes
neurais mais proximas aoc modelo bioldgico do cérebro do que uma estrutura
homogénea, ja que o cérebro possui modulos especializados que operam em cascata

para produzir uma determinada atividade.

O processo de treinamento da rede counterpropagation associa os vetores de entrada
com o correspondente vetor de saida. Estes vetores podem ser binarios, consistindo de
Zero e um, ou entfio continuos. Uma vez que a rede neural é treinada, a aplicagdo de um
vetor de entradas produz uma saida desejada. A capacidade de generalizagdo da rede
permite que a saida correta seja obtida mesmo que o vetor de entrada esteja
parcialmente incompleto ou incorreto. Isto faz com que a rede seja bastante utilizada

em reconhecimento de padrdes ¢ tratamento de sinais.

33

6.2 A estrutura da rede counterpropagation

A Figura 16 mostra uma verséio simplificada da rede counterpropagation. Ela ilustra as

caracteristicas funcionais deste paradigma.

camada de camada camada
entrada Kohonen Grossberg

’ vencedor

saidas
desejadas

Figura 16 - Rede Counterpropagation

Cada neurdnio da camada de entrada conecta todos os neurdnios da camada Kohonen,
fazendo a distribui¢fio do sinal, sem apresentar aspectos computacionais. Esta conexdo
enfre a camada de entrada ¢ a Kohonen possui um peso denominado ,,,.
Analogamente, cada neurdnic da camada Kohonen também esta conectado a todos os
neurdnios da camada Grossberg através de um peso v, . Esta configuragdo assemelha-
sc¢ a configuragdo de outras redes, entretanto, a diferenca estd no processamento

realizado pelos neurdnios da camada Kohonen e Grossberg.

6.3 Funcionamento da rede counterpropagation

6.3.1 Camada Kohonen

Na sua forma mais simples, a camada Kohonen funciona no modo “winner-takes-all”.
Isto significa que, para um dado vetor de entradas, um unico neurénio da Kohonen
dispara a saida logica 1, enquanto que os outros neurénios ndo disparam (ou disparam

0).

34

Associado a cada neurénio Kohonen esta um conjunto de pesos conectados a cada
entrada. Por exemplo, na Figura 16, o neurénio Kohonen K; tem pesos @, @y, ... ,
@y, A camada de entrada € representada por x;, x,, .., X,. Assim como na maioria das
redes neurais, a atividade de cada neurénio Kohonen € a soma das entradas multiplicada

pelos respectivos pesos, ou seja:
4= %0,
s

ou em notagdo vetonal:
U=X0
onde: u € o vetor de atividade dos neurdnios da camada Kohonen.

Para finalizar o processamento da camada Kohonen, o neurénio de maior atividade
(maior valor de ;) sera considerado vencedor (ou “winner”). A saida deste neurbnio

sera “1” e a saida dos demais neurénios sera “07.

6.3.2 Camada Grossbherg

A camada Grossberg funciona de forma similar a outras redes neurais. Sua saida ¢
composta pela soma ponderada das saidas da camada Kohonen &, &, ... , &, pelos seus
Tespectivos pesos Uy, Uy, ... , Uy, A saida para cada neurdnio Grossberg € entdo dada

por:
v, =2 ko,

ou em notacfo vetorial:

y=kv

35

onde: y € o vetor de saida da camada Grossberg;
k é o vetor de saida da camada Kohonen;
0 ¢ a matriz de pesos da camada Grossberg.

Se a rede neural utilizar apenas um neurénio vencedor para a camada Kohonen, apenas
um elemento do vetor k ¢ nfio nulo, resultando num processo de calculo bastante
stmples de ser realizado. De fato, a Gnica acdo de cada neurdnio Grossberg ¢ gerar um
vetor de saida que corresponde ao vetor de pesos que conecta a camada Grossberg ao

neurdnio vencedor.

6.4 Treinamento da Camada Kohonen

A camada Kohonen classifica os vetores de entrada em grupos semelhantes. Isto faz
com que os ajustes dos pesos da camada Kohonen sejam tais que vetores de entrada
semelthantes disparem sempre o mesmo neurénio Kohonen (vencedor). Posteriormente,

a camada Grossberg se responsabilizard por produzir as saidas desejadas.

O treinamento Kohonen € um algoritmo que se auto-organiza, ou seja, € um
treinamento nfo-supervisionado. Por esta razdo, existe a dificuldade (além de nio
necessidade) de se prever qual neurdnio Kohonen especifico sera ativado para uma dada
entrada. E apenas necessario que se assegure que o treinamento separe vetores de

entrada ndo similares.

36

6.4.1 Pré-processamento dos vetores de entrada

E altamente aconselhdvel, mas néio obrigatdrio, que todos os vetores de entrada sejam
normalizados antes de serem aplicados na rede neural. A normalizagio pode ser

€Xpressa por:

X

i

_x' =
' \/(xf+xj+...+x:)

A Figura 17 representa alguns vetores de entrada bi-dimensionais que estdo em um
circulo unitario. Nesta situagiio, tem-se apenas duas entradas para a rede neural. Esta
idéia pode se estendida para um numero arbitrario de entradas, gerando um vetor

unitario de dimensdes maiores contidos em uma hiper-esfera.

Figura 17- Vetores de entrada normalizados contidos em um circulo unitdrio

6.4.2 Competicéio dos neurdnios e ajuste dos pesos

Para treinar a camada Kohonen, um vetor de entradas ¢ aplicado e sua distincia
euclidiana ¢ calculada em relagfio ao vetor de pesos associado a cada neurdnio
Kohonen. O neurdnio que tiver a menor distdncia euclidiana ¢ declarado vencedor

(winner) € seus pesos sdo ajustados. A distdncia euclidiana ¢ dada por:

37

i

d= ‘/(xl - coJ +(x2 - a)2i)2+...+(xm -)2

Desta forma, estara se procurando o neurdnio cujo vetor de pesos mais se assemelha ao
vetor de entradas. O vetor de pesos deste neurénio vencedor sera ajustado de modo a
tong-lo ainda mais similar & entrada. £ importante frisar que este treinamento ¢ no-
supervisionado, ou seja, a rede se auto-organiza para que a resposta de um dado

neurdnio Kohonen seja maxima para um dado vetor de entradas.

O ajuste dos pesos para um neurdnio vencedor j ¢ feito seguindo a seguinte equagdo:

a):::vo — a);mtgo+ a(xj _ a);n-'igo)

1
onde: o ¢ o coeficiente de aprendizagem Kohonen
x; € acomponente i/ do vetor de entradas.

Cada peso w; associado ao neurdnio vencedor j ¢ ajustado com uma parcela
proporcional a diferenga entre seu valor e o respectivo valor da entrada x;. .O objetivo
deste ajuste ¢ minimizar a distdncia entre os pesos e as entradas.

A Figura 18 mostra o processo de treinamento de um caso de apenas duas entradas (bi-

vehho

dimenstonal). Inicialmente, € encontrado a diferenga (x - @) para construir um vetor

que partira da ponta do vetor @ até o vetor x. Em seguida, este vetor tem seu
comprimento ajustado com a multiplicagio de um escalar « (cujo valor € menor do que

novo

1), produzindo um vetor de ajuste 8. Finalmente, o novo vetor ® ¢ o segmento
orientado que sai da origem ¢ vai até a ponta de 8. Desta forma, o efeito do treinamento

¢ rotacionar o vetor de pesos em direg¢dio ao vetor de entradas.

38

aHiigo
& 8

Figura 18 - Ajuste de pesos no treinamento Kohonen

A variavel « é o coeficiente de aprendizagem que usualmente inicia-se com o valor de
aproximadamente 0,7 e pode se reduzido gradualmente durante o treinamento para uma

melhor convergéncia para o valor final.

Normalmente, os vetores de entrada contidos nos dados para treinamento sdo agrupados
de acordo com suas similaridades. Estes grupos irdo ativar o0 mesmo neurdnio Kohonen.
Neste caso, 0 vetor de pesos para este neurénio serd a média dos vetores de entrada que

lhe serfio aplicados para dispara-lo.

Ao utilizar-se um valor de « baixo, os efeitos decorrentes das etapas do treinamento
serdio diminuidos, ou seja, 0s pesos associados a cada neurdnio irfio assumir um valor
préximo ao “central” dos valores dos vetores de entrada para os quais o neurdnio foi

considerado vencedor.

39

6.4.3 Inicializacdo dos pesos

Todos os pesos da rede neural devem ser inicializados com determinados valores antes
de se iniciar o treinamento. E comum a escolha de valores aleatérios pequenos para os
pesos, entretanto, esta escolha para os pesos da camada Kohonen pode causar sérios
problemas no treinamento. Os vetores de entrada ndo estio normalmente dispostos de
modo a serem facilmente agrupados em partes diferentes da hiper-esfera. Isto faz com
que muitos dos vetores de pesos estejam tenham uma grande distdncia euclidiana tal

que nio sejam considerados 0s mais similares para a ativagio do neurénio vencedor.

A conseqiiéncia deste problema ¢ a perda dos neurdnios que sempre irfo ter a saida
zero. Além disso, os vetores restantes que podem ser ativados serdo tdo poucos em
quantidade que ndo possibilitarfio a distingiio dos vetores de entrada que estardo
dispostos em uma mesma por¢io da hiper-esfera. Este fendmeno pode ser visto na

Figura 19.

) grupo | de
£ -4 5 . .
Lt iig omos entradas similares
s K o8
/ : —] tinico neuronio vencedor
grupo 2 de

eniradas similares

Figura 19 - Problema de inicializagdo aleatéria dos pesos da camada Kohonen

40

A solugfio mais apropriada seria o de analisar a densidade de distribui¢do dos vetores de
entrada, observando-se entdio em que regides da hiper-esfera ocorrem as maiores
incidéncias dos vetores pesos. A partir dai, os pesos seria distribuidos aleatoriamente
nesta regido. Entretanto, esta implementagfio ¢ impraticavel diretamente, mas existem

diversas técnicas que aproximam os seus efeitos.

A primeira solugfio, chamada de método de combinagdo convexa, assume que todos os
pesos tenham os pesos iniciais iguais a (///n), onde n ¢ o nimero de entradas e,
portanto, o nimero de componentes do vetor de pesos. Isto faz com que os vetores de
pesos sejam unitarios ¢ todos coincidentes. Além disso, a entrada ¢ ajustada da seguinte

forma:
x=(1-a)x+ ! -a
' ' ;n

Inicializa-se «, com valores grandes (o que gera proximidade com (/ Jn)) para
depois se diminuir seu valor (proximidade com x;). Os vetores de pesos irdo seguir um
ou um pequeno grupo de vetores de entradas e, no fim do treinamento, poderfio produzir
os padrdes de saida desejados. Este procedimento aumenta de forma bastante
significativa do tempo de treinamento, j& que os vetores de pesos t8m que seguir um

alvo movel.

Uma outra solugfio seria o de atribuir a cada neurdénio Kohonen uma “consciéncia”.
Este método foi proposto por DiSieno (1988) e consiste em se penalizar os neurénios
que vencem a competicio muito freqilentemente. Considerando-se que p; seja a

freqiiéncia em que o neurdnio i venga a competi¢do, pode-se definir:

prr=p+bfy —p™*) onde b é uma constante entre O e 1.

i

41

Se z; representar o neurdnio vencedor, entdo um valor de bias B; deve ser adicionado
para modificar a competigdo de tal forma que:

I se(lw—-x-B)<(o-x-B) comi=j

(¢ caso contrario

onde o valor da penalidade B, é dado por:

p=c(L-)
n

onde C é um fator de bias e n é 0 nimero de neurdnios da camada Kohonen.

Finalmente, pode-se ajustar os pesos do neurbnio vencedor de acordo com:

ajjmvo - a}:mrfgo + - (x . a):nligo) . z'

4

O método de “consciéncia” descrito € muito eficaz no desenvolvimento de
caracteristicas equiprovéaveis das entradas. E comprovado que a sua aplica¢do melhora
o desempenho do treinamento de diferentes redes neurais que utilizam o treinamento

competitivo.

6.4.4 Modo interpolativo (mais de um @nico vencedor)

Até agora, fo1 descrito o algoritmo de treinamento competitivo onde apenas um
neuronio Kohonen ¢ considerado vencedor. Este algoritmo tem uma preciséo limitada,

ja que a sua saida ¢ determinada apenas pelo neurdnio vencedor.

Um modo de melhorar a precisdo ¢ utilizando-se um método interpolativo, onde os
neurdnios de maiores atividades sdo agrupados para serem apresentados a camada

Grossberg. Estes grupos de neurdnios vencedores ndo tém tamanho definido, variando

de aplicagdo para aplicagdo. Uma vez que o grupo ¢ determinado, as saidas dos

42

neurdnios vencedores da camada competitiva sdo normalizados para valores unitarios.

Os demais neurdnios que nio pertencem a este grupo t&m em suas saidas o valor nulo.

O modo interpolativo ¢ mais capaz de representar mapeamentos mais complexos ¢
produz resultados mais precisos. Entretanto, nfo existe nenhuma evidéncia para se

avaliar os dois modos citados anteriormente.

6.5 Treinamento da camada Grossberg

A camada Grossberg € relativamente simples de ser treinada. Um vetor de entradas ¢
aplicado na rede, a saida da camada Kohonen ¢ obtida, € a saida da camada Grossberg é
entdo calculada numa operagiio normal. Posteriormente, cada peso que estad conectado
ao neurdnio vencedor € ajustado. O ajuste & proporcional a diferenga entre 0 peso € a

saida desejada, ou seja:

lf!ovo - L);nﬁga + ﬁ(yj . E);nrigo)k‘

:
onde: &; é a saida do neurdnio Kohonen i;

v; ¢ a componente ; do vetor de saidas desejadas;

/3 ¢ o coeficiente de aprendizagem da camada Grossberg.

Inicialmente, o valor de f é de aproximadamente 0,1 e é gradualmente reduzido ao

longo do processo de treinamento.

A partir do que foi apresentado, nota-se que os pesos da camada Grossberg irdo
convergir para os valores médios das saidas desejadas, apesar dos pesos da camada
Kohonen serem treinados para os valores médios das entradas. O treinamento Grossberg

¢ supervisionado, sendo que o algoritmo se utiliza da saida desejada. O treinamento

43

ndo-supervisionado da camada Kohonen produz saidas em posi¢des indeterminadas;

estas saidas serfio mapeadas para produzir as saidas desejadas na camada Grossberg.

6.6 Resumo do treinamento da rede counterpropagation

> aplicagiio de um vetor de entradas <
céleulo da distincia euclidiana entre os vetores de
TRIE(I)PII—I%NIEEEE:ITO entrada ¢ os vetores de pesos para cada neurdnio Tléirg;g\éggéo
da camada Kohonen
X
determinagfio do neurdnic vencedor
ajuste de pesos da camada Kohonen para o ajuste de pesos da camada Grossberg para o
neurdnio vencedor a partir das entradas neurdnio vencedor a partir das saidas

Figura 20 - Treinamento da rede counterpropagation

44

7. IMPLEMENTACAO DA REDE BACKPROPAGATION

7.1 Introducdo

A implementagio da rede neural foi feita utilizando-se a programacfo orientada a

objetos na linguagem C++. As principais rotinas sfo:

sRotina principal. controla o fluxo de processamento das outras rotinas recebendo

todos os pardmetros da simulag#o;

eRotina de construcdo da rede: cria ou abre uma rede neural com a inicializagdo dos

neurdnios, dos pesos ¢ das entradas;

sRotina de treinamento: a rede recebe os padrdes de treinamento de forma seqgiiencial e

se adequa para a obtengfio das saidas desejadas;

*Rotina de teste: a rede recebe os padrdes de teste e obtém o erro das respostas cabendo

a0 usuario decidir ou ndo utilizar a rede ou realizar outro treinamento;

*Rotina de execugdo: a rede recebe os padrdes de entrada ¢ obtém a resposta que serd

utilizada em reconhecimento de padrdes;

eBiblioteca de rotinas: demais fungdes relevantes como: procedimentos especificos

para a treinamento, entrada, saida e outros.

O black-box da rede neural implementada € dado a seguir na Figura 21

45

ENTRADA

e pardmetros para defini¢do de uma nova rede
e rede ja existente gravada em arquivo

* padres de treinamento para a rede

» padrdes de teste para rede

e entradas para a execuco (simulacfo)

PROCESSAMENTO

e criacdo de uma nova rede

e utilizagdo de uma rede ja existente
e treinamento da rede

* teste da rede

e execucdo (simulagdo) da rede

SAIDA

e rede neural treinada e testada
¢ resultados do teste
* resultados da simulacio

Figura 21 - Black-box da rede neural

7.2 Descricao do programa implementado

A implementacio da rede neural ¢ ferta através das matrizes w/ e w2 que representam

0s pesos, e dos vetores s/, 82 e 3 que representam 0s sinais sinapticos.

A inicializacdo de um rede neural foi feita criando-se as matrizes w/ e w2 (através de
alocagio dindmica) dados o numero de entradas, de saidas e de neurdnios. Os pesos

iniciais foram atribuidos aleatoriamente dentro do programa.

A abertura de uma rede consistiu em criar-se as matrizes w/ € w2 a partir de um arquivo

cuja extensfio € .sz (onde sfo fornecidos o niunero de entradas, de saidas e de

46

neurdnios). Para a leitura dos pesos, utilizaram-se os arquivos de extensio .wl e .w2

definido-se entdo a rede.

Para o calculo das saidas, deve-se igualar s3 a entrada. Percorre-se a rede através dos
sinais sinapticos, aplicando-se os pesos de tal forma que pode-se obter entdo a saida
dado pelo vetor s/. Para o treinamento, utilizou-se o célculo das saidas e comparou-se
com as safdas desejadas (encontradas no arquivo de treinamento cuja extensdo € .frn).
Com isso, pdde-se corrigir os pesos iterativamente até que o erro quadrético fosse
menor do que um valor admissivel, ou entio até que o numero maximo de iteragGes
fosse atingido. Durante o treinamento, houve a alteragio dos coeficientes de
aprendizado e de momento segundo parametros solicitados pelo programa. A alteragio
¢ feita de acordo com o numero de iteragdes para escalonamento. Se esse nimero for
atingido, corrige-se os coeficientes e zera-se novamente a contagem. Existe uma barra
de erro (Figura 22) que indica o comportamento do erro durante o programa. O erro ¢
representado pela parte central da barra, aumentado e diminuindo conforme o
desenvolvimento do treinamento. Inicialmente, o menor unidade de erro corresponde a
1% mas quando o erro é menor do que este valor, a escala da barra de erro se altera. Isto
pode ser observado a partir da mudanga de cores nas partes laterais da barra. Além
disso, o fator multiplicativo na escala aparece logo abaixo da barra de erro, como pode

ser observado na Figura 22.

47

CIro

indicativo para a
escala adotada

Existe mudancga de cores
quando a escala ¢ alterada

Figura 22 - Barra de ervo do programa backpropagation durante treinamento

Para o teste, o procedimento inicial ¢ andlogo ao do treinamento, porém, nio hi a
corre¢io dos pesos. Apresenta-se apenas o erro quadratico resultante de aplicagdes

utilizando-se 30% dos padrSes de teste contidos em um arquivo (definido pelo usuario).

A execugdo da rede neural (calculo de ume saida dada a entrada) ¢ feita simplesmente
chamando o mesmo procedimento utilizado no treinamento e no teste. O céalculo do
erTo € a corregdo dos pesos ndo sdo efetuados e a entrada € dada através do teclado de

um arquivo.

A arquitctura do software € apresentada a seguir mostrando a hierarquia ¢ a relagfio

entre as partes funcionais do sistema.

7.3 Arquitetura do Programa

A hierarquia entre as rotinas € os objetos estdio descritas logo a seguir:

‘&
PROGRAMA PRINCIPAL ,
abrir_rede
menuy
Definir nova rede neural .
/i treinar_rede
Abrir rede neural
Treinar rede neural
testar rede
Testar rede neural
. Executar do teclado
executar_teclado
Executar de arquivo
Sair .
executar arquivo

destruir I

N R W N~

Figura 23 - Arquitetura principal do programa backpropagation

verifica_inicializag8o I
‘ nova rede I pega tempo I
inicializar (matrizes e vetores I

Figura 24 - Programa Backpropagation: Rotina nova_ rede

49

verifica_inicializagdo I
I abrir rede !
inicializar (vetores ¢ matrizes) I

Figura 25 - Programa Backpropagation: Rotina abrir rede

| abre_arquivo I

fecha arquivo I

le dados I

pega_tempo I

saidas I

' dativ I
‘ treinar rede I

acha_erro l

imprime_resultado parcial I

barra_erro I

imprime_resultado final I

imprime arquivo I

inicializar e destruir (vetores e matrizes) I

Figura 26 - Programa Backpropagation: Rotina treinar rede

testar rede l

50

abre_arquivo I
fecha_arquivo I

le dados

pega tempo

saidas I

imprime
) — N —

acha_erro I

inicializar e destruir (vetores e matrizes) I

Figura 27 - Programa Backpropagation: Rotina testar rede

executar teclado H

executar arquivo I*

verifica_inicializagio I

leitura_dados

|

saldas i

imprime_resultado_parcial I

imprime_resultado_final I

imprime arquivo

g saidas I
R
"$
| destruir (vetores e matrizes) I
inicializar (matriz de dados) I
g ativ I
> escrever I
L escrever I
WO

confirma

ST

Figura 28 - Programa Backpropagation: Qutras rotinas

51

tela_fundo I

Fungdo de tela como por quadro J
exemplo: tela principal,

tela_sobregavar, erro_leitura *
escrever I
centro I

Figura 29 - Programa Backpropagation: Fungdes bdsicas de tela

7.4 Os objetos utilizados

A implementagdo do programa foi feita utilizando-se objetos. Na programag¢io
orientada 4 objetos, tem-se que cada objeto ¢ uma “caixa preta” onde existe o
processamento de dados utilizando-se fungdes que somente alteram varidveis relativas a

ele, ou entéio a outros objetos.

Os objetos utilizados neste programa sdo os seguintes;

e vector: ¢ um objeto que representa um vetor de tamanho # e que contém rotinas
de inicializag@o (desde que # seja dado anteriormente) e destruigiio (desde que ele

14 esteja inicializado).

» mairix: ¢ um objeto que representa uma matriz de dimensdes mxn, dados por lin e
col, e que contém rotinas de inicializa¢do (desde que /in e col sejam dados

anteriormente) e destruicfio (desde que ele ja esteja inicializado).

¢ screen: € um objeto que contém as principais rotinas graficas do programa como,

por exemplo, as rotinas de limpar a tela, de fazer quadros, de apresentar a tela

52

principal, de apresentar mensagens de erro, etc... Este objeto servira de base para

o0s outros relacionados as telas graficas.

tela define: ¢ um objeto que apresenta todas as telas graficas durante a definigio
de uma nova rede. Neste objeto serdo utilizados todas as func¢des basicas de tela,

ou s¢ja, ele ¢ um objeto derivado do screen.

tela abrir: € um objeto que apresenta todas as telas graficas durante a abertura de
uma rede contida em um arquivo. Assim como o anterior, ele € um objeto

derivado do screen.

fela treino: é um objeto que apresenta todas as telas graficas durante o
treinamento de uma rede neural. Analogamente, ele ¢ um objeto derivado do

SCreen.

tela execucdo: ¢ um objeto que apresenta todas as telas grificas durante a
execucdo (simulagdo) de uma rede neural. Analogamente, ele € um objeto

derivado do screen.

impress@o: ¢ um objeto que apresenta todas as telas graficas durante a impressfio

dos pesos da rede neural. Analogamente, ele € um objeto derivado do screen.

tela teste: € um objeto que apresenta todas as telas graficas durante o teste de uma

rede neural. Analogamente, ele é um objeto dertvado do screen.

treino: € um objeto relacionado ao treinamento da rede neural. Ele cria variaveis
auxiliares (para os dados, por exemplo), além de possuir todo um conjunto de

subrotinas que manipulam os pesos até que a rede esteja treinada. Entre essas

53

subrotinas pode-se destacar as fungdes ativ e dativ que representam as fungdes de
ativagio (sigmoidal) e sua derivada. Outras rotinas como a leitura dos pardmetros
de treinamento e impressdo da rede treinada em um arquivo também estio

contidas neste objeto.

e feste: ¢ um objeto relacionado ao teste da rede neural. Ele cria as variaveis

relacionadas ao teste € possui uma rotina de impressdo do resultado do teste.

e net: € um objeto que representa a rede neural. Nele estdo contidos os pesos, 0s
sinals singpticos da rede e as subrotinas que o manipulam. Dentro destas
subrotinas podem-se destacar a subrotina gue verifica a inicializagfo, a que define
uma nova rede, a de abertura de uma rede, a de treinamento e a de teste. Ele
também possui uma rotina de destruigiio de todas as varidveis utilizadas quando
se finaliza o programa. O objeto net é a base deste programa, tendo contato com
qualquer objeto quando necessdrio sem que afete a integridade da estrutura

hierarquica do programa.

54

7.5 O relacionamento entre os objetos

O objeto nef possul em sua parte privada dois objetos matrix e trés objetos vector. Este
¢ o objeto principal, porque contém a propria rede (representada pelos pesos e sinais
sinapticos) e chama todos os outros objetos no decorrer do programa. O objeto € melhor

representado na Figura 30:

vector s2

matrix w2
vector 53

vector I screen I tela abrir I tela execugdo I teste I

matrix I tela define I tela treino I tela teste I treino I
mnpressio I

Objefo net
Parte Privada Parte Pablica
matrix w/ J vector s/ I

Figura 30 - Relacionamento entre objetos no programa da rede backpropagation

Os objetos de tela (tela define, tela abrir, tela treino, tela execucdo, tela teste ¢
impressdo) sdo derivados do objeto screen. Portanto, esses objetos contém todas as

funcdes que screen encerra em sua parte publica.

A listagem do programa da rede neural backpropagation encontra-se no apéndice 1,
assim como os diagramas de Nassi Schneidermann ¢ a descrigdo detalhada das rotinas

mais importantes.

55

56

8. IMPLEMENTACAO DA REDE COUNTERPROPAGATION

8.1 Introduc¢édo

A implementagio da rede neural counterpropagation foi feita de forma andloga a rede
counterpropagation. Utilizou-se também a programacdio orientada a objetos na

linguagem C++. As rotinas principais sio semelhantes s da rede backpropagation

8.2 Descricdo do programa implementado

A implementacfo da rede neural é feita através das matrizes weight koh e weight gross
que representam os pesos da camada Kohonen e da camada Grossberg respectivamente,
Os vetores enirada e saida sdo utilizados para todo o processamento da rede (teste,

treino e execugdo).

A inicializa¢do de um rede neural foi feita criando-se as matrizes weight koh e
weight gross (através de alocagfo dindmica). As dimensdes das matrizes sdo dadas pelo
numero de entradas, de saidas e de neurdnios da camada intermediaria. Os pesos
iniciais da camada Grossberg foram atribuidos aleatoriamente, enquanto que os pesos
da camada Kohonen foram atribuidos segundo os pesos iniciais do método de
combinacdo convexa. O método de combinagio convexa inicializa os pesos com 0
valor de]/\/E . Ndo foi utilizado o resto deste método por ele necessitar de um
tratamento de entradas ao longo do treinamento, o que faz com que o tempo de
processamento aumente devido ao fato dos pesos serem ajustados em relagio a um alvo

movel

57

A abertura de uma rede ¢ feita a partir de um arquivo cuja extensdo € .sz (onde sdo
fornecidos o numero de entradas, de saidas e de neurdnios). Para a leitura dos pesos,

utilizaram-se os arquivos de extensdo .wkh e .wgr definido-se entdo a rede.

Para o calcule das saidas, utiliza-se o vetor enfrada e a matriz weight koh para a
obtengdo do neurdnio vencedor. Processa-se entfio a camada Grossberg, atribuindo ao
vetor saida o valor encontrado na coluna correspondente ao neurdnio vencedor da
matriz de pesos weight gross. Isto s0 pode ser feito porque estd sendo utilizado apenas

um neurdnio vencedor que emite um sinal sinaptico de valor “1”.

Para o treinamento, utilizou-se um arquivo de extensfio é .frn. Foram realizados as
leituras dos vetores enmfrada e saida para um par de treinamento. O vetor entrada ¢
processado pela rtotina freino kohonen, obtendo-se o vencedor winner. Na rotina
treino kohonen os pesos da camada Kohonen sdo ajustados com uma outra rotina
ajusta kohonen. Apods o treinamento Kohonen (competitivo), processa-se a rotina
treino grossberg, que utiliza o vetor saida € o winner. Na rotina treino grossberg, 0s
pesos sdo ajustados com uma outra rotina ajusta grossberg. Ao contrario do
treinamento da rede backpropagation, o treinamento desta rede ¢ feito em duas etapas.
Em cada etapa ¢ perguntado ao usuério os pardmetros de treinamento (coeficiente de
aprendizagem, numero de iteragdes e erro). Os coeficientes de aprendizagem sofrem
decaimento exponencial automaético para melhorar a convergéncia na diregéio de
diminuir o erro. O erro no treinamento Kohonen corresponde a distincia euclidiana
média das entradas em relagfo aos pesos da camada Kohonen. Analogamente, o erro no
treinamento Grossberg corresponde a distdncia euclidiana média das saidas em relagio

aos pesos da camada Grossberg.

58

Apos o treinamento Kohonen o programa pergunta ao usudrio se que imiciar o

treinamento Grossberg. Caso ndo se queira continuar, o programa volta a tela principal.

Com isso, foi possivel corrigir os pesos iterativamente até que o erro fosse menor do
que um valor admissivel, ou entfio até que o nlimero maximo de iteragdes fosse

atingido.

No treinamento Kohonen, para que o tempo de treinamento fosse reduzido e a
convergencia fosse aumentada, optou-se por diversas solugdes. A primeira seria o de
inicializar os peses da rede através da média dos arquivos de treinamento. Isto foi
possivel utilizando-se o programa de geragdo e tratamento de sinais para a rede
counterpropagation, que cria arquivos proprios para possibilitar a abertura na rede no
programa de rede neural. Este método diminui o tempo inicial de treinamento, mas ndo

garante a sia convergéncia.

Existe uma outra opglo bastante similar que ¢ o “treinamento Kohonen
supervisionado”. Neste treinamento, as entradas sdo apresentadas 4 rede neural e,
utilizando-se da saida, obriga-se¢ um certo neurdnio a ser o vencedor. A partir disso, os
pesos conectados a este neurdnio sfo ajustados. Este método nfio aumenta muito a
eficiéncia do treinamento e sé pode ser aplicado quando utiliza-se apenas uma saida

binaria (“0” ou “1”) e quando tem-se apenas dois neurénios na camada Kohonen,

Em uma outra alternativa, tem-se o vetor winners do objeto treino que faz o papel
similar ao conceito de “consciéncia” proposto por Di Sieno (1988). O vetor winners
marca quantas vezes cada neurdnio foi considerado vencedor. Durante o treinamento

Kohonen, se algum neurdnio ndo foi considerado vencedor (valor “0” para o elemento

59

do vetor winners), corrige-se os pesos conectados a este neurdnio atribuindo-lhes os
valores dos pesos correspondentes ao neurdnio que mais vezes foi vencedor. Isto foi
feito para que o vetor de pesos ser aproximasse mais da regido da hiper-esfera onde

estdo concentrados os vetores das entradas.

Para o teste, o procedimento inicial € analogo ao do treinamento, porém, nfo hi a
corregdo dos pesos. Por esta razio, os objetos utilizados no teste s3o os mesmos que o

do treinamento.

A execucdo da rede neural (célculo de ume saida dada a entrada) é feita simplesmente
chamando 0 mesmo procedimento utilizado no treinamento e no teste. O calculo do
erro e a corre¢do dos pesos ndo sfo efetuados e a entrada € dada através do teclado de

um arquivo.

A arquitetura do software ¢ apresentada a seguir mostrando a hierarquia e a relagéo

entre as partes funcionais do sistema.

8.3 Arquitetura do Programa

A hierarquia entre as rotinas e os objetos estdo descritas logo a seguir:

nova rede I
PROGRAMA PRINCIPAL .
abrir_rede
menu
Definir nova rede neural]
treinar_rede
Abrir rede neural
Treinar rede neural
testar rede
Testar rede neural
. Executar do teclado
executar_teclado
Executar de arquivo
Sair)
executar arquivo

destruir I

T N S S N

Figura 31 - Arquitetura principal do programa counterpropagation

verifica inicializacfo I
l nova_rede I pega tempo I

inicializar (matrizes e vetores)

Figura 32 - Programa Counterpropagation. Rotina nova rede

\ abrir_rede I

61

verifica_inicializagio I

inicializar (vetores e matrizes)

Figura 33 - Programa Counterpropagation: Rotina abrir rede

l treinar rede I

abre arquivo

I

fecha arquivo

le_dados

pede arq dados

saidas

L_LLL

reconhecimento

|

leitura_pardmetros_koh _I

treino_kohonen I

resultado parcial koh I

--— e
continua I
leitura_pardmetros_gross I

resultado parcial _gross

|

treino_grossberg

imprime_arquivo

Figura 34 - Programa Counterpropagation: Rotina treinar rede

testar rede I

62

abre arquivo I
g I —

fecha arquivo I
le_dados I
pede_arg dados _I

saidas

feste imprime

Figura 35 - Programa Counterpropagation: Rotina testar rede

treino_kohonen I

pega_tempo I
abre arquivo I
tratar_pesos I

le dados]

acha winner I

ajusta_kohonen I

| dist_euclid |

corrige pesos I

mprime_resultado koh I

fecha arquivo I

Figura 36 - Programa Counterpropagation: Rotina treino kohonen

63

pega_tempo I
abre arquivo I

tratar_pesos I

le dados I

acha_winner

treino_grossberg I

ajusta_kohonen

ajusta_grossberg

dist euchd

cotrige pesos I
mmprime _resultado_gross I
_ fecha arquivo I

Figura 37 - Programa Counterpropagation: Rotina treino grossberg

acha_winner > dist_euchd

executar_teclado Ly saidas

executar_arquivo saidas

verifica_inicializago # destruir (vetores e matrizes)

e besser’ fnevwer’ femerme S
h

sajdas oy acha winner
confirma
imprime_arquivo I
pesos

Figura 38 - Programa Counterpropagation: Qutras rotinas

64

tela_fundo I
— .
~ quadro
Fungfio de tela como por exemplo:
tela_principal, tela_sobregavar,
erro_leitura
escrever I
centro I

Figura 39 - Programa Counterpropagation: Fungdes bdsicas de tela

8.4 Os objetos utilizados

A implementac¢fio do programa counterpropagation foi feita tomando-se como base o
programa da rede backpropagation. Portanto, varios objetos descritos anteriormente
foram reutilizados nfo necessitando de maiores esclarecimentos. Estes objetos sdo:
vector, matrix, screen, tela abrir, tela define, tela treino, tela execucdo e impressdo.
Os demais objetos que s&o préprios do programa de rede neural counterpropagation séio

0s seguintes:

e {reino: é um objeto relacionado ao treinamento e ao teste da rede neural. Ele cria
variavets auxiliares, como por exemplo o velor winners que representa a
“consciéncia”, e possui todo um conjunto de subrotinas que manipulam os pesos
até que a rede esteja treinada. Entre essas subrotinas pode-se destacar as fungdes
abre arquivo, 1é dados, leitura parametros koh, leitura parametros gross e

feste imprime.

65

* et ¢ um objefo que representa a rede neural. Nele estdo contidos os pesos, os
sinais de entrada e saida da rede, o neurfnio vencedor e as subrotinas que o
manipulam. Dentro destas subrotinas podem-se destacar a subrotina que verifica a
inicializagfio, a que define uma nova rede, a de abertura de uma rede, a de
treinamento (Kohonen e Grossberg) e a de teste. Ele também possui uma rotina de
destruic@o de todas as varidveis utilizadas quando se finaliza o programa. I neste
objeto que estdo contidos as subrotinas de manipulagdo dos pesos durante o
treinamento e também de determinacfo do neurénio vencedor. O objeto ner é a
base deste programa, tendo contato com qualquer objeto quando necessdrio sem

que afete a integridade da estrutura hierdrquica do programa.

8.5 O relacionamento entre os objetos

66

O objeto net possui em sua parte privada dois objetos matrix e trés objetos vector. Este

¢ o objeto principal, porque contém a propria rede (representada pelos pesos e sinais

sinapticos) € chama todos os outros objetos no decorrer do programa. O objeto é melhor

representado na Figura 40:

Objeto net

Parte Privada

matrix weight kok

matrix weight gross

winner

+

entrada

saida

Parte Publica

iniciqlizado

altera _pesos

|

vector I

screen

tela abrir I

tela execucio

treino

v

matrix I

tela define I

tela treino I

tela exec_arq

impresséo

Figura 40 - Relacionamento entre objetos no programa da rede counterpropagation

Os objetos de tela (rela define, tela abrir, tela treino, tela execugdo, tela exec arg ¢

impressdo) sio derivados do objeto screen. Portanto, esses objetos contém todas as

fungdes que screen encerra em sua parte publica.

A listagem do programa da rede neural counterpropagation encontra-se no apéndice 2,

assim como os diagramas de Nassi_Schneidermann e a descrigio detalhada das rotinas

mais importantes.

67

9. PRE-PROCESSAMENTO DOS SINAIS DE ENTRADA

Com o intuito de fazermos com que as redes neurais implementadas fossem as mais
genericas possiveis, foi implementado um pré-processamento dos sinais de entrada para
que fosse possivel a aplicago das redes no reconhecimento de sinais (objetivo do

projeto).

Inicialmente dois sinais sfo obtidos em uma amostragem da aplicagdo. A freqiiéncia de
amostragem deve ser maior do que duas vezes a freqliéncia do sinal para que o Teorema
da Amostragem seja atendido e a leitura seja correta. Os pontos de cada sinal sdo
gravados sequencialmente em um arquivo texto (*.txt) e, a partir destes dois arquivos,

foram implementados duas abordagens diferentes.

A primeira abordagem seria o de gerar arquivos para o treinamento da rede
backpropagation, considerando-se que as entradas da rede estariam atrasadas uma em
relacdo as outras. A segunda seria a de um tratamento do sinal transformando a sua
dindmica em uma imagem ftridimensional para que possa ser utilizada na rede
counterpropagation. Listas abordagens serfio detalhadas logo a seguir € 0 motivo da
aplica¢@o nas respectivas arquiteturas de redes neurais sera discutido no capitulo de

testes e resultados da rede neural backpropagation.

9.1 Entradas da rede neural atrasadas uma em relacdo as outras

O conceito de atraso nas entradas da rede neural € uma tentativa de se capturar uma
dindmica utilizando-se a rede backpropagation na sua forma mais simples. O conceito é

melhor representado pela Figura 41, onde a entrada x; representa a entrada em um

68

instante de amostragem £, x; representa a amostragem no instante seguinte £+ /, ¢ assim

por diante até £-+» (onde n é 0 nimero de amostragens realizadas).

camada de camada camada de
entrada escondida saida erro,
X = k) Vi alvo,
- e p—

Figura 41 - Rede Backpropagation com entradas atrasadas

Os dados do arquivo do sinal foram lidos e colocados em um vetor. Iniciou-se entdio a
distor¢o do sinal mantendo-se o fator de poténcia. Com um namero razoavel de
entradas distorcidas, pode-se construir um arquivo de treinamento (*.trn) adequado a
rede neural. A construgdo deste arquivo de treinamento foi uma simples gravacgio dos
pontos com distorcio de forma seqiencial, garantindo-se apenas que os pontos

correspondam as respectivas entradas.

Um exemplo dos sinais de entrada para o arquivo de treinamento é dado na Figura 42.

(a) (b)

Figura 42 - Entrada para a rede Backpropagation: (a)senoidal; (b)senoidal com distor¢do

69

O programa de geragdio do arquivo de treinamento para a rede backpropagation foi
implementado de forma bastante simples na linguagem C (ver tela inicial na Figura 43)

e pode ser encontrado no apéndice 3.

= MS3-DOS Prompt il B

== .1 RATAMENTO DE SINAIS PARA I.!i‘lfi}i[’li-(]] AGATION
Nome do arquive do sinal 1: sin4dfAS5A
Nome do arquivo do sinal 2: sin4478@

. Distorcao: 15
Namero de dados para treinamento: 188
Nome do arquivo de treinamento: teste

Figura 43 - Tela principal do programa de geragdo de entradas para a rede Backpropagation

9.2 Transformacdo da dindmica do sinal em uma superficie

Com o intuito de melhorar a convergéncia do treinamento da rede neural
counterpropagation ¢ o correspondente desempenho na classificagdo, o sinal é pré-
processado antes de ser aplicado nas entradas da rede. Com os sinais contidos em dois
vetores (lidos dos arquivos *.txt), procede-se 0 mapeamento segundo a funcfio caos

modificada, que pode ser representada pela Figura 44,

70

y()=f{i+1)

x(t)=1{t)

L 4

x(H)=f()
y(gy=f{+1)
() =z(6) +1

Figura 44 - Mapeamento da dindmica do sinal

A modificagio da fungfio caos estd no incremento de z(%). Isto foi aplicado para que
pontos com freqiliéncias mais comuns ndo sejam desprezados. Entretanto, com esta
aplicagdio, pode-se ter picos em algumas regides que fazem com que o efeito dos
trechos de menor freqii€ncia sejam desprezados. Para evitar este problema, utilizou-se
uma compressio-expansdo dos sinais com o auxilio de uma progressio geométrica de

razdo Q.5:

[-0,5""

EN="03

Com esta aplicagdo, a matriz fica limitada a valores entre 0 e 2 tendo duas vantagens
sobre outras fung¢des (como log ou sigmoidal):

e ¢ computacionalmente mais simples a determinag@o do valor

e oferece maior controle no comportamento assintotico.

Com este tratamento, pode-se obter a Figura 45, que representa uma onda senoidal,

71

1.5 = sin(x)

farivarararara il elummaf'"%m““"’”ﬂ"

o 0.002 0.004 0.006 0.008 0.01
Time (second)

Figura 45 - Tratamento de um sinal senoidal

Aplicando a mesma distor¢do que a praticada no pré-processamento das entradas da
rede backpropagation, pode-se obter a Figura 46 que corresponde a um sinal senoidal

com 40% de distorcéo.

\ o T
1 f=sin(x) com 40% de distor¢iio

osl——f—4h /A\ | p
o nnmnuﬂ'
G \\V/ \]I \v/ \.L \V'l \V[||| M “' “ﬂ b

0.002 0.004 0.006 0.008 G.01
Time (second)

Figura 46 - Tratamento de um sinal senoidal com 40% de distor¢do

O programa de tratamento de sinal e geragdo do arquivo de treinamento para a rede
counterpropagation foi implementado de forma bastante simples na linguagem C (ver
tela principal na Figura 47) e sua listagem pode ser encontrado no apéndice 4. Existe
uma opgdo de inicializagio de pesos que cria uma rede neural com a média dos pesos

(melhora o treinamento da rede).

72

== MS-DOS Prompt e i3

= TRATAMENTO DE SINAIS ==

Nome do arquive do sinal 1: sindA56
Nome do arquivo do sinal 2: g
Grade:
Distorcao:
Nimero de dados para treinamento:
Nome do arquivo de treinamen
Inicializacao de pesos? <{s/n):

Figura 47 - Tela do programa de tratamento de sinais para a rede Counterpropagation

73

10. VALIDACAO E VERIFICACAO - FORMULACAO

10.1 Introducao

Antes de ser utilizado, um sistema computacional deve ser avaliado em varios aspectos.
Com 1isso, a validag@io do desempenho pode ser o mais significante. A validagido refere-
se a determinar se o sistema tem um certo desempenho em um nivel aceitavel de
precisfio e eficiéncia. A verificagfio, que € um passo anterior a validagfo, refere-se a
determinar se o sistema foi corretamente implementado. Por isso, um sistema precisa

ser verificado primeiro para depois ser validado.

10.2 Verificacdo

De forma resumtida, a verificagdo de um sistema computacional de redes neurais deve

englobar os seguintes aspectos:

o Propriedades da rede: arquitetura (camada Unica ou multiplas camadas), fluxo de
informagdes (alimentagdo positiva ou realimentagdo/recorrente), ¢ padrdes de

interconexdes (totalmente ou parcialmente conectadas).

e Propriedades da célula: conexdes de entrada e saida e ndo linearidades (fungdes de

ativagéio logistica ou tangente-hiperbdlica).

e Propriedades neurodindmicas: inicializagdo dos pesos, cdlculo das ativagdes, e

ajuste dos pesos.

74

Um modelo de rede neural é usualmente caracterizada por um conjunto de equagdes
matematicas. A verificagdo da implementagio correta destas equagdes é de extrema
importincia.

Sob o ponto de vista dos procedimentos, ¢ importante a verificagdo das seguintes

propriedades:
e Convergéncia: verificar se a rede converge para um valor ap9s iteracdes.

e Estabilidade: verificar se sucessivas iteragdes produzem menores oscilagdes na

saida.

10.3 Validacédo

A definigdo de “desempenho™ varia com a natureza das aplicagdes. Para aplicagtes de
classificagéio, o desempenho pode ser definido em termos de uma taxa de acertos sobre

o total de casos testados.

O’Keefe, Balci € Smith (1987) separaram metodologia de validagio em métodos
quantitativos e qualitativos. Métodos qualitativos adotam comparagdes subjetivas de
desempenho, enquanto que métodos quantitativos empregam as técnicas estatisticas
para comparar desempenho. Definindo de outra maneira, validagio qualitativa refere-se
avaliagio de resultados como respostas categéricas, enquanto que a validagio

quantitativa envolve resultados numéricos.

Em validagOes quantitativas, os métodos como testes de hipoteses sdo amplamente
aplicados de forma satisfatéria. Utiliza-se usualmente o teste t-Student ou o Qui-
quadrado para a validagdo, entretanto, no caso do reconhecimento de sinais estes testes

ndo podem ser aplicados.

75

10.3.1 Teste de validacdo

Na aplicagé@o deste projeto, deve-se considerar o arranjo em pares de possibilidades de
respostas, ou seja, (sim sim), (nfo nfo), (sim ndo) ¢ (ndo sim). Deve-se utilizar a
estimativa de quantas vezes estes eventos ocorrem. nos diferentes grupos.

Para simplificar o calculo das varidveis inerentes ao teste de aplicagdo, pode-se utilizar

um teste de propor¢do considerando-se que os erros de classificagio encontram-se

distribuidos uniformemente.
Para comprovar a validagiio da rede neural aplicada no reconhecimento de sinais,
considera-se o seguinte teste:
e Assume-se a hipotese:
Hy: p=pyp
onde p representa a proporgdo de classificagdo errada do sistema e py a

proporgio de classificagfio errada maxima desejada.

Caso ndo haja evidéncias de se rejeitar a hipotese Hy, aceito-a como verdadeira,
ou s¢ja, a rede classifica de maneira satisfatoria. O teste a ser realizado deve ser
unilateral, que confirma que o sistema tem no maximo um erro de classificagio

dado por p, .

e Estipular um nivel de significdncia o (probabilidade do erro tipo I, ou seja,

probabilidade de se rejeitar a hipdtese H, sendo ela verdadeira).

e Dado o nivel de significincia o, calcula-se o valor de z,, pela tabela da distribuigio

normal reduzida,

76

e Para que a hipétese H, nfo seja rejeitada (rede satisfatéria) deve-se ter

obrigatoriamente:

|(p_po)i1/2n[-
\o.(-p)in| ™

e Portanto, pode-se ter um valor maximo de p que, quando comparada com os

resultados das amostras obtidas, torna possivel concluir a validade desta rede.

10.3.2 Tamanho da amostra a ser utilizada

Dado um grau de significancia o, uma precisdo e, e a proporgdo a ser considerada p,

pode-se calcular o tamanho da amostra a partir de;

n =[5-J p(1-p)
eﬂ

Para se verificar a probabilidade de se cometer o erro tipo 11, para isso deve-se calcular

B a partir de:

. =(:ﬂ/p.,(l—pu) +zﬂ/p(1-p)}’

PP

onde p ¢ o valor da proporgio populacional além do qual é fixado em, no méximo, B a

probabilidade de se cometer o erro tipo 1l (aceitar a hipétese H, sendo ela falsa).

77

11. TESTES E RESULTADOS

Para comprovar-se a validade da aplicagio de redes neurais no reconhecimento dos

sinais acusticos, foram realizados diversos testes de verificagio e validago.

Alguns testes simples de verificagio dos programas foram realizados para verificar-se o
sistema. As propriedades mais observadas no programa foram a convergéncia,
estabilidade e robustez do sistema. Observou-se também a generalidade do sistema. Os
testes realizados para a rede backpropagation foi o simulagdo de langamento de projétil,

enquanto que o da rede counterpropagation foi o de classificagfio simples.

Portanto, serd ressaltado os testes de validagdo da rede aplicados ao escopo do

problema. Os procedimentos adotados serfio descritos logo a seguir.

11.1 Calculo da proporc¢édo de erros maxima desejada

A propor¢io de erros méaxima admissivel serd calculada, admitindo-se que existem

quatro classificagdes possiveis:

saida obtida saida desejada classificagfio proporg¢des de erro
sim sim correta 0.25
néo ndo correta 0.25
sim néo incorreta 0.25
nio sim incorreta 0.25

78

Outra restri¢éo serd imposta & proporgdo de 0,25 de erros obtida. Considerando-se uma
rede counterpropagation de 20 neurdnios, a probabilidade de que um deles classifique

errado € de:

1
p=—:10,25 = p=0,0125
20 :

Esta propor¢io de 0,0125 sera utilizado nos testes a serem realizados posteriormente

por se tratar tornar o teste mais rigoroso do que o real, ja que serd utilizado redes com

menos de 20 neurdnios.

11.2 Célculo da proporgcédo de erros maxima permitida
Fixado um nivel de significincia o de 1%, obtém-se:
o - =2,325 (obtido pela tabela normal)

o calculando-se o tamanho da amostra:

n=(2630215)0,0125(1—0,0125) = n=667

5

Sera utilizado um tamanho de amostra »=/000 para que se tenha uma margem de

seguranga.

. | (p-0,0125)x1/(2-1000) |

<2,325 = p=0,0212
4/0,0125(1-0,0125) /1000 |

Portanto, obtém-se que a proporgio de erro maxima permitida é de 0,0212.

79

11.3 Testes de validag&o realizados para a rede backpropagation

11.3.1 Sinais com degradacio

Para a rede neural backpropagation, utilizou-se o programa de geragio de sinais,
obtendo-se arquivos de treinamento com 10, 15, 20, 25 e 30% de degradagio,
nomeando-os como RN1, RN2, RN3, RN4 e RN5. Estes arquivos continham 50 padrdes
de treinamento dos dois tipos de sinais. Para que nfio houvesse a hipotese do vicio da
rede neural em relagfio aos dados de treinamento, foram criados 10 amostras contendo
1000 conjuntos de entradas cada para cada tipe de degradagdo. As redes neurais foram

criadas segundo os pardmetros:

e numero de entradas: 256

¢ numero de saidas: |

e numero de neurdnios na camada intermediaria: 6

As redes foram treinadas segundo os seguintes pardmetros:

coeficiente de aprendizagem: 0.7

e coeficiente de momento: 0.01

e escalonamento a cada 250 iteracgdes

e fator de escalonamento para o coeficiente de aprendizagem: 0.99
e fator de escalonamento para o coeficiente de momento: 0.99

e nlmero maximo de itera¢des: 5000

e erro quadratico maximo: 0.001

80

A tela do programa encontra-se na Figura 48.

TREINAMENTO DE UMA REDE NEURAL

inicial:
i icial:

vlonamento ¢
» para o es lonamnento de
Erro -'[ih'n‘f!'.l‘ 1GC O -[]rn}'-.'||

Numero maximo de iteracoes:

Figura 48 - Treinamento da rede backpropagation para os testes

Obteve-se resultados de treinamento como pode ser observado na Figura 49.

MS-DOS Prompt
DES NEURAIS - 199

TREINAMENTO DE UMA HEDE NEUBRAL

Numero de iteracoes: 2900
Erro gquadratico globhal n. - H.888%66289

s]

Numero de iteracoes realizadas: 2968
Erro maximo nas ultimas iteracoes: B.88B%66

Figura 49 - Resultado do treinamento da rede backpropagation

A média de tempo de treinamento é de 2 minutos.

81

Foram criadas e treinadas 5 redes neurais diferentes. Com os padrdes de 1000 conjunto

de dados cada, as redes foram submetidas aos testes de validagio. Os resultados foram:

Proporcdio dos erros no teste de validacdo da rede backpropagation

para 10 a 50% de degradacio

grau de degradacéo
Rede neural 10% 20% 30% 40% 50%
RN1 0.001 0.001 0.001 0.002 0.002
RN2 0.001 0.001 0.001 0.001 0.002
RN3 0.001 0.001 0.001 0.001 0.001
RN4 0.000 0.000 0.001 0.001 0.000
RNS 0.000 0.000 0.000 0.000 0.000

Obs: valores obtidos com a média de 10 amostras de 1000 dados cada.

Observa-se que a rede neural ¢ satisfatéria para todos os casos, pois para todos os
arquivos de teste a proporgdo de erros manteve-se abaixo do valor de 0.0212

admissiveis.

11.3.2 Sinais com harmdénicas

Foram realizados também testes com a terceira e quinta harmodnica do sinal. Novas
redes foram treinadas incluindo-se os dados relativos ds harmonicas no arquivo de
treinamento. As redes neurais RN6 e RN7 correspondem as redes treinadas com 10% e
30% de degradac@io do sinal com 3a. harménica, enquanto que as redes RN8 e RN9
correspondem a 10 % e 30% de degradagdo do sinal com 3a. e Sa. harmonica Os

resultados do teste sfo;

82

Proporcdo dos erros no teste de validacdo da rede backpropagation

para 3q. e Sa. harmdnicas

grau de degradacio
Rede 15% 30% 15% 30%
neural (3a. harm) (3a. harm) (3a. € 5a. harm) (3a. e 5a. harm)
RN6 0.001 0.002 0.167 0.211
RN7 0.001 0.001 0.141 0.207
RNS 0.001 0.002 0.001 0.002
RN9 0.000 0.001 0.000 0.001

Obs: valores obtidos com a média de 10 amostras de 1000 dados cada.

Constata=se que ap6s o treinamento da rede neural com a 3a. € 5a. harmoénica, obtém-se

um bom reconhecimento dos sinais do arquivo de testes.

11.3.3 Perda dos pontos iniciais do sinal

Foram realizados testes para o caso de se perder os pontos inicials do sinal. Neste caso,
tendo perdidos 4 pontos, a entrada x, € o valor f{%), ou seja, a primeira entrada j4 estd
atrasada de &, fazendo com que as outras também esteja. O numero de pontos para
serem colocados nas entradas deve ser o suficiente para que todas as entradas
contenham seus respectivos pontos. Esta perda de pontos iniciais corresponderia a um

adiantamento ou atraso de fase huma onda senoidal.

Para que fosse realizado o teste, foram retirados os 10 primeiros pontos dos sinais que
foram amostrados do sistema. Foram amostrados 320 pontos, do qual serd utilizado
apenas 256, ou seja, a perda de 10 pontos ainda mantém todas as entradas preenchidas,

mas com o atraso de 10/(freqiiéncia de amostragem em Hz) segundos.

83

A figura abaixo mostra os pontos iniciais que foram retirados.

Figura 50 - Problema de perda de pontos iniciais do sinal amostrado

Aplicando-se as redes neurais ja treinadas e testadas na validag@io do item 11.3.1 e
treinando-as novamente com a inclusfio de novos padrdes de treinamento obtidos com a
perda dos pontos iniciais do sinal, obtém-se os seguintes resultados utilizando-se

arquivos de teste contendo padrBes com e sem perda de pontos iniciais.

Proporcdo dos erros no teste de validacdo da rede backpropagation

para 10 a 50% de degradacdo com perda dos pontos iniciais ro sinal amostrado

grau de degradagdo do sinal (com perdas nos pontos iniciais)
Rede neural 10% 20% 30% 40% 50%
RN1 0.221 0.301 0.275 0.189 0.359
RN2 0.134 0.124 0.136 0.216 0.278
RN3 0.133 0.128 0.138 0.145 0.241
RN4 0.126 0.131 0.132 0.142 0.244
RNS 0.145 0.135 0.145 0.161 0.196

Obs: valores obtidos com a média de 10 amostras de 1000 dados cada.

Portanto, observa-se que os resultados ndo estdo satisfatérios, ja que as proporgdes de

erros estdo acima de 0.0212.

84

11.3.4 Discussfo sobre os resultados obtidos pela rede backpropagation

De acordo com os resultados obtidos anteriormente, foi possivel constatar que a rede
backpropagation possui um alto poder de classificagfio para um tempo de treinamento
pequeno. Entretanto, isto pode ser aplicado apenas nos casos mais simples. Para o caso
da perda de pontos iniciais do sinal, o erro de classificagdo aumenta de tal forma que
torna a rede inadequada para a aplicacio. Como a possibilidade de ocorréncia deste
problema ¢ alta, a interpretacfio dos resultados pode ser errbnea. Portanto, outras

abordagens devem ser consideradas para esta aplicagfo.

85

11.4 Testes de validacédo realizados para a rede counterpropagation

11.4.1 Redes neurais treinadas com os sinais com degradacio

Para a rede neural counterpropagation, utilizou-se o programa de geragio e tratamento
de sinais, obtendo-se arquivos de treinamento com 10, 15, 20, 25 ¢ 30% de degradagio,
nomeando-os como RN1, RN2, RN3, RN4 ¢ RNS5. Estes arquivos continham 50 padrfes
de treinamento dos dois tipos de sinais. Para que ndo houvesse a hipotese do vicio da
rede neural em relagdo aos dados de treinamento, foram criados outras 10 amostras
contendo 1000 conjuntos de entradas cada para cada tipo de degradagio. As redes

neurais foram criadas segundo os pardmetros:

s numero de entradas; 1024

e numero de saidas: 1

e nimero de neurénios na camada intermedidria; 2

Para diminuir o tempo de treinamento das redes neurais, utilizou-se a opgio de
inicializar os pesos da rede a partir da média dos dados do sinal. No programa de
geragdo de arquivos de treinamento existe a opgdo de criar arquivo de pesos para a rede.
Este arquivo contém a média das entradas que serfio apresentadas & rede durante o
treinamento. Com a geragdo dos arquivos de treinamento (50 superficies) e a
inicializagdo dos pesos pela média, foi possivel iniciar o treinamento com coeficiente

de aprendizado bastante baixo, ja que necessita-se apenas de um ajuste mais preciso.

86

As redes foram treinadas segundo os seguintes pardmetros:
Treinamento Kohonen

s coeficiente de aprendizagem inicial: 0.005

coeficiente de aprendizagem final: 0.0001

erro (média da distincia euclidiana): 0.001

e numero maximo de iteragies: 50

Treinamento Grossberg

o coeficiente de aprendizagem inicial: 0.2

e coeficiente de aprendizagem final: 0.001

e crro (média da distdncia euclidiana): 0.001

¢ namero maximo de iteragdes: 50

Nio foi utilizado o modo supervisionado do tretnamento Kohonen.

A tela do programa da rede counterpropagation no treinamento Kohonen encontra-se na

Figura 51.

87

1998 OUNT

TREINAMENTO KOHONEN DE UMA REDE NEURAL

Alfa inicial: @.8A5
Alfa final: . @Al
Erro maximo en cada camada: 8.801
Numero maximo de iteracoes: I‘”..,

Figura 51 - Treinamento Kohonen da rede counterpropagation

Obteve-se resultados de treinamento como pode ser observado na Figura 52.

MS-DOS Prompt 2

NEURAIS

TREINAMENI O KOHONEN DE UMA REDE NEURAL

Numeroe de iteracoes:
{dist. euclid.):
Alfa:

de treinamento: B h 2 min

Continuar com treinamento Grossberg?

Figura 52 - Resultado do treinamento Kohonen da rede counterpropagation

A média de tempo de treinamento competitivo é de 3 minutos.

88

A tela do treinamento Grossberg do programa ¢é apresentado na figura

IREINAMENIO GROSSBERG DE UMA REDE NEURAL

Beta inicial: 8.2
Beta final: @.481
Erro maximo en cada camada: B._.@41

Mumero maximo de iteracoes: H8_

Figura 53 - Treinamento Grossberg da rede counterpropagation

Obteve-se resultados de treinamento como pode ser observado na Figura 54.

MS-DOS Prompt

[REINAMENTIO GRH »BERG DE UMA REDE NEURAL

Humero de : b 1
maximo (dist. euwu 1 b 4 A . iBaRARHA
- B.17989898332!
y de t = B h B nin

|L FIM DO TREINAMENTO

Figura 54 - Resultado do treinamento Grossberg da rede counterpropagation

O tempo de treinamento da camada Grossberg é em média 5 segundos.

89

Foram criadas e treinadas 4 redes neurais diferentes. Estas redes foram nomeadas como
RNI, RN2, RN3 e RN4 sendo treinadas com 2%, 15%, 30% e 45% de degradacfio do

sina, respectivamente.

Com os padrdes de 1000 comjuntos de dados cada, as redes foram submetidas aos testes

de validago. Os resultados foram:

Proporcdo dos erros no teste de validacdo da rede counterpropagation
para 10 a 50% de degradacio

grau de degradacéo
Rede neural 10% 20% 30% 40% 50%
RNI1 0.000 0.001 0.001 0.002 0.002
RN2 0.000 0.000 0.001 0.001 0.002
RN3 0.000 0.000 0.000 0.000 0.001
RN4 0.000 0.000 0.000 0.000 0.000

Obs: valores obtidos com a média de 10 amostras de 1000 dados cada.

Observa-se que a rede neural € satisfatéria para todos os casos, pois para todos os
arquivos de teste a proporcio de erros manteve-se abaixo do valor de 0.0212

admissiveis.

Utilizando-se estas mesmas redes, observa-se que estas nfo captam a dindmica do sinal

quando submetidas 4 sinais com 3a. ¢ 5a. harmdnica.

Proporcdo dos erros no teste de validacdo da rede counterpropagation

sinqis com 3a. e Ja. harménica e treinadas apenas para degradacdo simples
. grau de degradagfio
Rede neural 15% 30% 15% 30%
(3a. harm) (3a. harm) (3a. e 5a. harm) | (3a. e 5a. harm)
RN1 0.500 0.500 0.501 0.500
RN2 0.499 0.500 0.499 0.500
RN3 0.498 0.501 0.501 0.500
RN4 0.447 0.500 0.499 0.485

Obs: valores obtidos com a média de 10 amostras de 1000 dados cada.

90

11.4.2 Sinais com harmodnicas

Foram realizados também testes com a terceira e quinta harmdnica do sinal. Novas
redes similares as anteriormente citadas foram treinadas incluindo-se os dados relativos
as harmonicas no arquivo de treinamento. As redes neurais RN6 ¢ RN7 correspondem
as redes treinadas com 10% e 30% de degradagdo do sinal com 3a. harmoénica,
enquanto que as redes RN8 e RN9 correspondem & 10 % e 30% de degradagfio do sinal

com 3a. e 5a. harménica Os resultados do teste sdo;

Proporcdo dos erros no teste de validagdio da rede counterpropagation
para 3a. e 5a. harmbnicas com rede Ireinada para 3a. e Ja. harmonicas

grau de degradacfio
Rede 15% 30% 15% 30%
neural (3a. harm) (3a. harm) (3a. e 5a. harm) (3a. e 5a. harm)
RN6 0.001 0.002 0.499 0.499
RN7 0.000 0.000 0.500 0.499
RNS8 0.499 0.501 0.000 0.001
RN9 0.500 0.500 0.000 0.000

Obs: valores obtidos com a média de 10 amostras de 1000 dados cada.

Observa-se que as redes treinadas para reconhecer a 3a. harmdnica néio reconhecem 0s
sinais com 3a. e 5a. harmonicas ¢ vice-versa. Aplicando os sinais de degradagdo de um

sinal sem harménicas obtém-se:

Proporcio dos erros no teste de validacdo da rede counterpropagation

para teste com 10 a 50% de degradacdo do sinal sem harménicas

e com redes treinadas para 3a. e 5a. harmdnicas

grau de degradacgéio
Rede neural 10% 20% 30% 40% 50%
RN1 0.500 0.504 0.501 0.500 0.500
RN2 0.500 0.503 0.502 0.499 0.501
RN3 0.499 0.500 0.500 0.498 0.499
RN4 0.502 0.500 0.501 0.499 0.499

Obs: valores obtidos com a média de 10 amostras de 1000 dados cada.

91

A partir destes resultados, conclui-se que, para cada freqiéncia, tem-se 3 padrdes
distintos de entradas que a rede tenta agrupar em um neurdnio sé durante o treinamento

competitivo. Estes trés padrdes sdo:

s sinal sem harmdnica,

* sinal com 3a. harménica e

o gsinal com 3a. € 5a. harmodnica.

Como foi utilizado uma rede com apenas 2 neurdnios na camada competitiva, a rede

néo teve a capacidade de agrupar os trés padrdes em um so neurénio vencedor.

92

11.4.3 Soluciio do preblema das harménicas

Para resolver o problema do reconhecimento das freqiiéncias quando o sinal possui
interferéncia das harmonicas, foi criada uma nova rede neural com 6 neurOnios. As
redes criadas foram depominadas RN-A e RNB, e foram treinadas com sinais com,
respectivamente, 10% e 30% de degradagdo de cada tipo (sem harmonicas + com 3a.

harménica + com 3a. ¢ Sa. harmdnica).

Os resultados obtidos com arquivos de testes contendo 1000 padrdes sem harmonicas,

1000 com 3a. harmoénica e 1000 com 3a. ¢ 5a. harménica so apresentados a seguir:

Proporcdo dos erros no teste de validacdo da rede counterpropagation
para redes neurais com 6 neurdnios na camada competitiva

Rede neural
Tipo de arquivo teste RN-A RN-B
10% de degradagfio com e sem harmonicas 0.000 0.000
20% de degradagfio com e sem harmonicas 0.001 0.001
30% de degradagiio com e sem harmdnicas 0.001 0.000
40% de degradacido com ¢ sem harmonicas 0.001 0.001

Obs: valores obtidos com a média de 10 amostras de 3000 dados cada.

Portanto, constata-se que a solucfio de adicionar neurdnios na camada competitiva faz

com que a rede ficasse satisfatoria, ja que a proporgio de erro ¢ bastante pequena.

11.4.4 Perda dos pontos iniciais do sinal

O tratamento de sinais transformando-os em superficies faz com que a rede ndo sofra
um efeito muito grande. Isto ¢ devido & compressdo que € feita quando se aplica a
transformagfio que utiliza a progressfio geoméirica de razdo 0,5. Esta situagio foi

testada e os resultados obtidos foram também bastante satisfatorios.

93

11.4.5 Discussao sobre os resultados obtidos pela rede counterpropagation

De acordo com os resultados obtidos anteriormente, foi possivel constatar que a rede
counterpropagation possui um alto poder de classificagdo para um tempo de
treinamento pequeno. Isto é devido as técnicas utilizadas para melhorar a eficiéncia do
treinamento, que sdo: inicializagdo dos pesos pela média e conceito adaptado de

“consciéncia”.

Em uma rede neural com poucos neurénios na camada competitiva pode ter o seu poder
de reconhecimento de padrdes comprometido, principalmente se as entradas aplicadas
na rede serem muito proximas. Isto foi claramente observade nos resultados obtidos

com a inser¢do de mais neurdnios para se poder classificar as harmonicas.

Conclui-se que o pré-processamento de sinais foi aplicado com sucesso nas entradas da
rede, ja que a rede neural capturou a dindmica do sinal e reconheceu as freqiiéncias com

SUcesso.

Deve-se ressaltar que a ndo aplicagio da rede neural com o pré-processamento do sina
em superficies ¢ devido ao fato do treinamento backpropagation ser centenas de vezes
mais lento do que o counterpropagation. Nos resultados, nota-se que o tempo de
treinamento para o backpropagation ¢ menor, porém os dados de entrada possuem

dimensdes diferentes, o que influi na velocidade de processamento dos pesos.

94

12. DISCUSSAO SOBRE AS DIFICULDADES DO PROJETO

De acordo com a metodologia adotada para este projeto, serfio citadas a seguir as
dificuldades que foram encontradas no decorrer do projeto. As suas possiveis solugdes

serdo discutidas e sera feita uma andlise critica sobre a decisfo tomada.

Inicialmente, constatou-se que a literatura sobre redes neurais € bastante restrita, sendo
que os livros mencionam sempre o aspecto tedrico do problema. Na pratica, aparecem
dificuldades que ndo podem ser encontradas na literatura, ou ent3o, sdo muito
superficialmente abordadas. Isto ¢ devido ao fato de que as redes neurais artificiais s3o,

de certa forma, conceitos recentes.

Apesar das vanas arquiteturas de redes neurais existentes, a avaliacio da melhor
arquitetura depende da implementagfio da rede no problema proposto. Diversos autores
tentam classificar as redes mais adequadas para cada tipo de problema, ou entio,

generalizar uma arquitetura para varios tipos de problemas.

Foram utilizadas duas arquiteturas muito conhecidas: a backpropagation ¢ a
counterpropagation. Inicialmente, estas redes neurais foram implementadas na sua
forma mais simples, ou seja, sem que fossem verificados critérios como convergéncia,
robustez ou velocidade de treinamento. A partir destas implementagdes notou-se que a
rede backpropagation tem aplicagfo mais genérica, mas o seu tempo de treinamento €
muito maior do que o da rede counterpropagation. Isto foi observado na literatura e no
proprio fluxograma de treinamento da rede (onde todos os pesos da rede

backpropagation devem necessariamente ser processados).

05

Ao pesquisar-se sobre a rede counterpropagation, encontrou-se diversas formas de se
representar esta rede. Por exemplo, alguns autores consideram o neurbnio vencedor
aquele que tiver o maior produto escalar entre os seus pesos e o vetor de entrada. Outros
consideram o vencedor aquele que tiver a menor distincia euclidiana entre o vetor d
pesos € o de entrada. Ambas as abordagens estdo corretas quando os dados sdo

normalizados.

Outro conceito pouco abordado na literatura € o treinamento da camada competitiva.
Como fo1i explicado durante o trabalho, podem existir neurénios que nunca serdo
vencedores porque o seu vetor de pesos estd contido em uma parte isolada da hiper-
esfera, longe dos vetores de entrada. A literatura cita dois métodos de solugfo do
problema: o método da combinagdo convexa, que ndo costuma ser aplicada porque
aumenta bastante o tempo de treinamento; € o estabelecimento de uma consciéncia, que
faz com a probabilidade de que um neurdnio seja vencedor seja igual para todos. Este
estabelecimento da consciéncia depende de constantes que sdo obtidos pela experiéncia
da pessoa que ird implementar a rede. Devido a este fato, optou-se por uma solugdo
alternativa, j4 que se ocorresse algum erro, muito tempo seria gasto para se descobrir se

o erro era proveniente do programa ou da escolha de constantes.

A solugfio alternativa para o problema do treinamento consistiu em utilizar o conceito
de “consciéncia”, fazendo-se a andlise das freqii€éncias com que os neurdnios sdo
vencedores. A partir dai, se algum neurdnio nfo era vencedor apos a aplicagio de todo
o conjunto de entradas, isto significaria que os seus pesos estariam numa regido isolada
da hiper-esfera. Entdo, a solugfio adotada foi a de igualar o vetor de pesos do neurdnio

isolado com o que foi mais vezes vencedor, ou seja, 0 vetor de pesos estaria na regido

96

em que os vetores de entrada sdo mais freqiientes. A classificagfio, a partir dai, seria

mais refinada, com a utilizacéo de todos os neurdnios.

Outro ponto importante ¢ relativo ao niimero de neurdnios necessarios para a camada
competitiva. Como foi visto nos resultados, o nimero de neurdnios pode influir de
maneira decisiva no resultado. Entretanto, as entradas desta aplicagdo sfo bastante

préximas e com dimensdes bastante grandes, ndo favorecendo este tipo de andlise.

A literatura sobre a validagéio e verificagdo da rede neural implementada ¢ bastante
escassa. Alguns autores citaram sobre o fratamento estatistico dos resultados, mostrando
alguns exemplos bem vagos. Os testes de validagfio aplicados neste relatorios foram

baseados nas citacdes destes autores ¢ em livros de estatistica basica.

Durante a implementag@o do pré-processamento do sinal, notou-se a peculiaridade
ocorrida com a superficie resultante da aplicagdo do sinal com 3a. e 5a. harmdnicas.

Este fato podera ser melhor explorado futuramente para varias outras aplicagdes.

Para concluir esta discussfio, deve-se ressaltar que o tema “redes neurais artificiais™ esta
em um estagio de amadurecimento ainda. Muitos topicos ainda deverfo ser estudados
para que se possa generalizar as aplicagdes das redes neurais, assim como analisar a sua

eficiéncia frente a outros sistemas.

97

13. RESULTADOS DO PROJETO

Este projeto resultou em:

um estudo detalhado sobre duas arquiteturas de redes neurais

e implementagio de uma rede neural backpropagation em C++ cuja aplicagiio pode ser

estendida para problemas genéricos

¢ 1mplementacéo de uma rede neural counterpropagation em C++ cuja aplicagdo pode

ser estendida para problemas genéricos
e avaliagio da validade das redes implementadas

e implementagfio de um pré-processador de sinais que geram arquivos de treinamento

¢ teste

¢ documentagiio detathada dos programas de redes neurais implementados

98

14. PROPOSTAS PARA DESENVOLVIMENTO FUTURO

Seguem-se abaixo alguns topicos que pode ser desenvolvidos no futuro.

e melhoria do algoritmo relativo & consciéncia de forma que ele possa ter aplicagio

mais abrangente;
¢ reconhecimento da componente fundamental a partir de suas harmdnicas,

» reconhecimento das componentes harmdnicas de uma sinal para, por exemplo,

identificar distirbios em sistemas elétricos e acionar os compensadores adequados.

99

15. CONCLUSAO E CONSIDERACOES FINAIS

No reconhecimento de sinais aclisticos para monitoramento de condigdes de um pogo
de extragdo petrolifera, podem ser aplicadas redes neurais artificiais de maneira
bastante satisfatéria. Neste trabalho, foi possivel observar que, com um pré-
processamento de sinais, as redes neurais conseguem aliar o poder de captura da
dindmica de uma sinal ao poder de classificagdo e reconhecimento de padrdes. Este
resultado foi atingido de maneira simples, com a geragfo de dois programas em C++
devidamente documentados. A solugio de se utilizar redes neurais pode ser
implementada a um custo muito mais baixo em relacdio ao custo operacional que seria

gasto caso fosse utilizado fios para a comunicagio entre o sensor ¢ o receptor.

Para concluir este trabalho, deseja-se que as aplicagdes das redes neurais artificiais
sejam estendidas ds outras dreas da engenharia ¢ que a nova geragfio de estudantes
percebam, desde jd, o poder que esta ferramenta tem para a solugdo de problemas,

ferramenta esta criada pelo Homem.

100

16. REFERENCIAS BIBLIOGRAFICAS

HAYKIN, Simon S.; Neural Networks: a Comprehensive Foundation. New York,

Macmillan, 1994.

HERTZ, John;, Introduction to the theory of neural computation, by J. Hertz, A.

Krogh and R.G. Palmer. Addison-Wesley, 1991.

WASSERMAN, Philip D.; Nearal Computing: theory and practice. New York, Van

Nostrand Reinhold, 1989.

CICHOCKI, Andrzej; Neural Networks for optimization and signal processing. John

Wiley & Sons, 1993.

WASSERMAN, Philip D.; Advanced methods in nearal computing. New York, Van

Nostrand Reinhold, 1989.

PAO, Yoh-Han; Adaptative pattern recognition and neural metworks. Addison-

Wesley, 1989.
FU, Limin; Neural Networks in computer intelligence. Florida, MacGraw-Hill, 1994.
PATTERSON, Dan W.; Artificial Neural Networks. Pingapore, Prentice-Hall, 1996.

COSTA NETO, Pedro L. de O.; Estatistica. Sdo Paulo, Edgard Blicher, 1977

A. APENDICE 1 - A REDE BACKPROPAGATION EM C++

A.1 Detalhamento dos objetos

Nesta secdo, serfio detalhados todos os objetos da rede backpropagation explicando-se a

finalidade de todas as variaveis e fun¢des que os compdem.

e vector: este objeto representa um vetor de ntmeros reais de tal forma que o
tamanho deste vetor estd em seu campo size. Existem fungbes que o inicializam e
o destroem (inicializar e destruir) sem afetar outros objetos. A alocagio de
memorna e a desalocagfio ¢ feita de maneira dindmica utilizando-se ponteiros.

Pode-se atribuir um valor para os elementos na inicializacdo do vetor.

» mairix: este objeto representa uma matriz de nimeros reais de tal forma que o
tamanho desta matriz esta em seus campos /in € col (niimero de linhas e colunas
respectivamente). Existem fungdes que o inicializam ¢ o destroem (inicializar e
destruir) sem afetar outros objetos. A alocagfio de memoria e a desalocagio é
feita de maneira dindmica utilizando-se ponteiros. Pode-se atribuir um valor para

os elementos na inicializa¢do da matriz.
e screen: 0 objeto contém as seguintes fungdes de tela:
+ limpa tela: como o préprio nome diz, esta fungdo limpa a tela atual.

+ quadro: desenha um quadro dados as coordenadas dos vértices de sua

diagonal e as cores de texto ¢ de fundo.

+ centro: ceniraliza um texto na tela dado a linha e as cores de texto e de

fundo.

+ escrever: escreve um texto na tela dado as coordenadas do ponto de

partida e as cores de texto e de fundo.
¢+ tela fundo: cria a tela de fundo deste programa.
+ tela principal: cria a tela principal deste programa.

+ opgdo: cna o quadro de opgdes para a tela principal deste programa.

+ tela sobregravar: cria o quadro de aviso quando existe a possibilidade

da rede neural ser sobregravada.

» impossivel abrir: cria o quadro de aviso quando for impossivel abrir o

arquivo especificado.

+ erro leitura: cria o quadro de aviso quando ha um erro na leitura de um

arquivo.

+ néo definida: cria um quadro de aviso quando a rede neural ndo foi

inicializada antertormente.

o tela define: além das fungdes de screen possui fungdes proprias para a defini¢do

de uma nova rede. Essas fungdes séo as seguintes:

« principal: cria a tela principal para esta parte do programa.

¢ entradas: cria o quadro pedindo o niimero de entradas da rede neural.

+ saidas: cria o quadro pedindo o nimero de saidas da rede neural.

s neurdnios: cria o quadro pedindo o nimero de neurdnios da rede neural.

+ aviso: cria um aviso informando que a rede estd definida.

o fela_abrir: além das fungdes de screen possui fungdes proprias para a abertura de

uma nova rede. Essas fungdes sdo as seguintes:
+ principal: cria a tela principal para esta parte do programa.
+ pede arquivo: cria o quadro pedindo o arquivo que contém a rede neural.

+ aviso: cria um aviso informando que a rede est4 definida.

e fela treino: além das fungdes de screen possui fungdes proOprias para o

treinamento de uma nova rede. Essas fungdes séio as seguintes:
+ principal: cria a tela principal para esta parte do programa.
s pede dados: cria o quadro pedindo o arquivo de dados para o treinamento.

+ pede pardmetros: cria o quadro pedindo os pardmetros do treinamento

(coeficiente de aprendizado, de momento, niimero de iteragdes, erro, etc.).

+ em treinamento; cria o quadro informando que a rede neural estd em

treinamento.

+ resultado parcial: cria o quadro informando os resultados parciais ao longo do

treinamento.
+ resultado final: cria o quadro informando os resultados finais do treinamento.

+ barra erro: cria uma barra de erro de acordo com o erro dado em cada etapa
do treinamento. O erro ¢ indicado pela parte central ¢ a mudanga de escala ¢

percebida quando hd a mudanga de cores nas partes laterais desta barra.

+ aviso: cria um aviso informando que a rede esté treinada.

tela_execugdio: além das fungdes de screen possui uma fungfio propria para a
execucdo (simulagio) da rede neural. A fungfio cria a tela principal para esta

parte do programa.

tela_teste: além das fungdes de screen possui fungdes proprias para o teste da

rede neural. Essas fungfes sfo as seguintes:
+ principal: cria a tela principal para esta parte do programa.

+ pede arquivo: cria o quadro pedindo o arquivo de dados para o teste da rede

neural.

+ resultado: cria um quadro de resultados ao final do teste.

impressdo: além das fungdes de screen possui fungdes proprias para a impressio

da rede em um arquivo. Essas fungdes sdo as seguintes:
+ confirma: cria o quadro onde se pede a confirmagio para a impresséo.

+ pesos. cria o quadro pedindo o nome do arquivo onde a rede neural serd

guardada.

treino: objeto que contém todas as fungdes necessirias para o treinamento da
rede neural. Além disso, possui variaveis que auxiliam esta parte do programa. A
matriz dados contém os padrdes de treinamento; as matrizes deltal e delta sio

as corregOes para os pesos, ¢/ e e2 sio os vetores das ativagSes de entrada; e ens

e sai s30 0s vetores que contém as entradas e saidas respectivamente. As fungdes

deste objeto sdo:

+ leitura pardmetros. faz a leitura dos pardmetros do treinamento e os passa por
referéncia. Os pardmetros sdo: o coeficiente de aprendizado, o de momento, o
nimero de iteracBes para escalonamento, os fatores para a corregdo dos

coeficientes, o erro quadratico admissivel e o numero de itera¢des maximo.

+ ativ: fungiio ativagio que, dado um numero, retorna o resultado obtido com a

fungdo sigmoidal.
+ dativ: derivada da fungdo de ativagéo.

+ imprime resultado parcial: como o proprio nome diz, faz a impressio dos

resultados parciais durante o treinamento.

o+ imprime resultado final: faz a impressiio dos resultados definitivos apds o

tremamento.
+ imprime arquivo: faz a impressdo da rede neural para um arquivo.

o selegdo dados: faz a selegdo e quais dados do arquivo do EMTP serdo

utilizados no treinamento da rede neural.

+ normalizar dados: faz a normalizagdo dos dados coletados, sendo que essa
normalizagio ¢ feita por coluna, isto ¢, cada varidvel ¢ normalizada pelo seu

valor maximo.

feste: objeto que contém todas as fungdes necessarias para o teste da rede neural.
Além disso, possui varidveis que auxiliam esta parte do programa. A matriz
dados contém os padrdes de teste (mas utiliza apenas 30% deles); e/ ¢ e2 sio os
vetores das ativacdes de entrada; ¢ ent e sai sdo os vetores que contém as
entradas ¢ saidas respectivamente. Para o teste, a Uinica ungfio necessdria € a

imprime que faz a impressdo do resultado do teste realizado.

net: objeto contém os pesos, dados pelas matrizes w/ e w2, € os sinais sinapticos,
dados pelos vetores s/, s2 e s3. Possui um flag para indicar se a rede neural ja foi
ou nio inicializada e um nimero inteiro fipo para indicar que tipo de treinamento

foi realizado (a pertir do EMTP ou nfio). Além disso, possui um vetor de nimeros

reais fator normal que contém os fatores normalizantes obtidos no treinamento

ou no teste. As fungdes deste objeto sdo:

+ pega tempo: pega o tempo e retorna os centésimos de segundo para a geragéo

dos randdémicos.
+ espera_tecla: cria o quadro para esperar uma tecla ser pressionada.
+ verifica_inicializacdo: verifica se a rede ja foi ou nfio inicializada.
+ nova rede: cria uma nova rede.
+ abrir rede: abre uma rede existente em arquivo.

+ leitura dados: realiza a leitura de dados tanto para o treinamento como para o

teste da rede neural.

+ acha erro: dado o vetor de saida desejada, retorna o erro quadratico gerado a

partir da saida obtida.
+ treinar rede: realiza o treinamento de uma rede neural ja inicializada.
+ testar rede: realiza o teste de uma rede neural j4 inicializada.
+ satdas: dadas as entradas, acha as saidas através da rede neural.

+ destruir: destroi a rede neural desalocando da memoria os vetores s/, sZ2 e s3 ¢

as matrizes wi e w2.

Deve-se ressaltar que os objetos de tela sdo chamados ao longo de todo o programa e também

por outros objetos.

A.2 Diagramas de Nassi-Schneidermann

Agora que os objetos foram definidos e detalhados, havera uma breve apresentagio do
algoritmo implementado através dos diagramas de Nassi-Schneidermann. As fungdes de telas
ndo irfo ser apresentadas por ndio serem relevantes ao programa. Apenas a rotina que cria a

barra de erro devera ser esquematizada a seguir.

Objeto: vector - subrotina inicializar
pardmetros: val (valor dos elementos sendo nulo caso nfo seja referido)
variaveis auxiliares. / (contador)

aloca vetor v do tamanho size

para i de zero a size

vfif = val

Objeto: vetor - subrotina destruir
pardmetros: nenhum
variaveis auxiliares: nenhuma

desaloca v

aterra o ponteiro v (v = NULL)

Objeto: matrix- subrotina inicializar
pardmetros; val (valor dos elementos sendo nulo caso nio seja referido)
variaveis auxiliares: i e j {contadores)

aloca ponteiro para o vetor m do tamanho /in

para i de zero a lin

para cada elemento do vetor anterior, alocar outro vetor de tamanho co/

para j de zero a col

mfilfi] — val

Objeto: screen - subrotina barra_erro
pardmetros: erro (nimero real)
varidveis auxiliares: i, a, b e tipo (inteiros); nivel max (real) e txt (vetor de caracteres)

para 7 de zero 50

guarda caracter 178 no vetor de texto (cor da parte central da barra)

tipo recebe o caracter 177

o0 erro ¢ multiplicado por 100 (conversdo para erro %)

T se erro for maior que 50 /

enquanto erro for menor do que 1 (1%)

multiplica erro por 10 (para mudar a escala)

a recebe 1 e b recebe 49 divide nivel por 10 (para indicar mudanga)

(SRHEHORi0) troca-se o tipo de caracter de tipo de

176 para 177 ou vice-versa)

a recebe 25 - erro/2 (extremo esquerdo)

b recebe 25 + erro/2 (extremo direito)

para i de zero até a

txt[i] recebe tipo (parte lateral esquerda)

para i de 50 até 4 (decrementando)

txt[if recebe tipo (parte lateral direita)

imprime txf na tela

imprime escala utilizada com nivel max

Objeto: net - subrotina verifica_inicializacio
pardmetros: nenhum (utiliza o campo inicializado deste objeto)
variaveis auxiliares: ¢ (caracter)

se inicializado for igual a sim

T F
dd mensagem de sobregravar
1& ¢
T se ¢ for ‘N ou ‘n F retorna 0
T se ¢ for s’ ou ‘S’
ir para end
destroawl, w2, 51,52 ¢es3
retorna |

enquanto n for diferente de ‘s’, ’S’, "'n’ou ‘N’

end: retorna 0

Objeto: net - subrotina nova_rede
pardmetros: nenhum (utiliza os campos de nef)
varidveis auxiliares: i e j (contadores) e objeto tefa (do tipo tela_define)

chama principal de tela

se verifica inicializa¢do retornar 0

ir para end

chama as telas de entradas, saidas e neurdnios para a leitura dos
numeros de entradas, de saidas e de neurdnios

chama pega tempo para a semente para a geragdo de randémicos

inicializa w/ dado seus campos: /in=smax e col=nmax+ 1

para i de O a smax

paraj de 0 a nmax

wl[if{j] recebe um randdémico inteiro até no maximo 1000

divide wifi]/j] por 1000 e soma 0.2

chama pega tempo para a semente para a geragio de randémicos

inicializa w2 dado seus campos: /in-=nmax e col =emax—~1

para i de 0 a nmax

paraj de 0 a emax

w2{i][j] recebe um randdmico inteiro até no maximo 1000

divide w2{if{j} por 1000 ¢ soma 0.1

inicializado = sim

inicializar s/ dado seu campo: size—smax+ { atribuindo valor diferente de zero (0.7)

inicializar s2 dado seu campo: size - nmax~ 1 atribuindo valor diferente de zero (0.4)

inicializar s3 dado seu campo: size—emax+ [atribuindo valor diferente de zero (0.6)

end:

Objeto: net - subrotina acha_erro
pardmetros: sai {objeto vector)
variaveis auxiliares / (contador); erro (nimero real)

Zera erro

para i de zero a smax

erro & acrescido da metade de (saifi/-s1/i]} ao quadrado

retorna erro

Objeto: net - subrotina abrir_rede
parametros: nenhum (utiliza os campos de nef)
varidaveis auxiliares: i e / (contadores); ¢ (caracter); s, nomel, nome2, nome3 ¢
nomearyq (string); arquivol, arquivo2, arquivo3 (arquivos) e objeto tela (tela_abrir)

chamar tela principal

se verifica_inicializacdio retornar 0 ir para end

alocar memoria para nomearg, nomel, nome2, nome3 e s (de tamanho 20)

imprime tela pedindo arquivo e 1€ o nome do arquivo em nomearg

copia nomearq para nomel, nome2 e nome3 e adiciona as extensdes .w/, . w2e.sza
nomel, nome2 e nome3 respectivamente

Na arquivol, arquivo2 e arquivo3 retornarem NULL ao tentar abri-los

apresentar mensagem de impossivel abrir, fazer com que inicializado receba ndo ¢ ir para erro

enquanto nfio atingir o fim de arquivo3

T se ao ler emax, smax e nmax retornar valor NULL

imprimir mensagem de erro de leitura € ir para erro

fechar arquivo3

inicializar w/ dado seus campos: /in=smax & col=nmax+1

enquanto nfo atingir o fim de arquivol

para i de zero a smax

paraj de zero a nmax

se ao ler wifi][j] retornar valor NULL

imprimir mensagem de erro de leitura e it para erro

fechar arquivol

inicializar w2 dado seus campos: /in=nmax e col=emax-+1

enquanto nfo atingir o fim de arquivo2

para ¢ de zero a nmax

para j de zero a emax

T se ao ler w2/fi][j] retornar valor NULL

imprimir mensagem de erro de leitura e ir para erro

inicializar s/, s2 e s3 dados que size s8o smax+ 1, nmax+1 e emax+ I respectivamente

inicializado recebe sim

desaloca e aterra nomearq, nomel, nome2, nome3 e s € imprime aviso de OK

erro: fecha arquivol, arquivo2 e arquivo3; desaloca ¢ aterra nomeary,
nomel , nome2, nome3 e s, e espera_tecla

end:

Objeto: treino - subrotina imprime_resultado_parcial
parimetros: iter, erro max, beta ini, lamb ini
variaveis auxiliares: conv (ponteiro para caracteres); scr (objeto screen)

inicializa conv com tamanho 20

grava iter em conv

chama escrever (de screen) com conv para uma certa posi¢io e cores

grava erre max em conv

chama escrever (de screen) com conv para uma certa posicio e cores

grava beta ini em conv

chama escrever (de screen) com conv para uma certa posi¢io e cores

grava lamb ini em conv

chama escrever (de screen) com conv para uma certa posigio € cores

desaloca conv

Objeto: treino - subrotina leitrua_pardmetros
pardmetros: beta ini, lamb ini, n escf, beta pos, lamb_pos, errod, n_max
variaveis auxiliares: fela (tela_treino)

val para a posigio certa e 1€ beta ini

vai para a posigdo certa ¢ 1€ lamb ini

vai para a posigio certac 1& n escf

enquanto # escf <0

val para a posigéo certa ¢ 1€ befa pos

vai para a posigio certa ¢ 1& lamb pos

vai para a posi¢do certa ¢ € errod

enquanto errod < ()

val para a posi¢éo certa e 1€ n max

enquanto n max <0

Objeto: net - subrotina leitura_dados
parametros: caso (teste ou treino); dados (matrix)
variaveis auxiliares: argdad (string); i, j e n_dados(inteiros); fdados (arquivo);
telal (tela_teste); e tela? (tela_treino)

= feste
T se caso E

imprime tela pedindo arquivo para teste | imprime tela pedindo arquivo para treino

inicializa argdad com tamanho 20 ¢ 1& argdad

adiciona extenso ./rn 4 arqdad

T se ao tentar abrir fdados com argdad retornar valor NULL

T se a leitura de » dados retornar NULL

imprimir mensagem

: . : imprimir erro leitura de tela2 e ir para erro
de impossivel abrir

inicializar dados com os campos /in -n dados e col—(emax-+smax)

enquanto ndo atingir o fim de fdados

paraide O an dados

espera tecla e ir para j de 0 a (emax-+smax)

para erro se ao ler dados{i][j] retornar NULL, imprimir

mensagem erro leitura e ir para erro

fechar arquivo fdados

desalocar argdad e retornar 1

erro: fechar arquivo fdados; desalocar argdad, e retornar 0

Objeto: treino - subrotina imprime_resultado _final
pardmetros: ifer € erro max
varigveis auxiliares: conv (ponteiro para caracteres), scr (screen); fela (tela_treino)

inicializa conv com tamanho 20

imprime tela com resuitado final (de tela)

grava ifer em cony

chama escrever (de screen) com conv para uma certa posi¢io € cores

grava erro max em conv

chama escrever (de screen) com conv para uma certa posi¢o e cores

desaloca conv

Objeto: treino - subrotina ativ

pardmetros; x (nmero real)
variaveis auxiliares: nenhuma

se x for maior que 50 /

retorna 1

T se x for menor que -50 E
retorna O retorna 1/(1+exp(-x))
(sigmoidal)

Objeto: treino - subrotina dativ

pardmetros: x (mhmero real)
varigveis auxiliares: nenhuma

retorna x¥*(1-x)

Objeto: net - subrotina treinar_rede
pardmetros: caso (inteiro)
variaveis auxiliares: aprf=1000; erro, errod, erro max, max, beta ini,
lamb ini, beta pos, lamb pos (reais); i,j, n esc, n escf, apr, gdad, n max,
iter (inteiros);femp (matrix), tela (tela_treino); trn (treino); key (char)

T se caso for 0 /

imprime tela pincipal imprime tela pincipal para o EMTP
com principal de fela com principal FMTP de tela
T se inicializado for ndo tipo recebe 1
imprimir mensagem de rede ndo T se inicializado for ndo

inicializada; esperar uma tecla e ir para end

imprimir mensagem de rede ndo

se ao chamar leifura dados para inicializada; esperar uma tecla ¢ ir para end
T o treino retornar zero
se ao chamar dados EMTP
ir para end T retornar (/
ir para end

executar selecdo dados de trn dados temp,
varidveis (de trn) e padrdes (de trn)

executar normalizar dados de trn dados
dados (de trn) e fator normal

destruir femp

inicializar deltal, delta2, el, e2, ent € sai dados 0s seus respectivos tamanhos

chamar leitura pardmetros do objeto trn passando-se os pardmetros necessarios

n esc recebe n escf

imprime tela para resultado parcial (resultado parcial de tela)

imprime mensagem em treinamento (de tela)

apr recebe aprf

chama pega tempo para a semente para a geragio de randdmicos

gdad recebe um valor randdmico menor do que /in (campo de dados de frn)

incrementa ifer e decrementa n esc e apr

se n esc for zero
T \)

n esc recebe n escf; corrige beta ini e lamb ini com beta_pos e lamb pos

pegar um conjunto de dados qualquer (dado por gdad) ¢ atribuir & enf e sai os seus valores

chamar a rotina saidas dado ent

| continua na poxima pagina [

para i de 0 a smax

calcula el/fi]

para j de O até n max

calcula deltal[i}[j]

corrige wifil[j]

para i de 0 a nmax

para j de 0 até n max

calcula e2/fi]

calcula delta2fi][j]

corrige w2/[ilfj]

erro recebe o valor retornado de acha erro

se erro for maior que erro max

erro max recebe erro

se iter for maior que n max

key recebe p’

se apr for nulo

apr recebe aprf

chamar imprime resultado parcial de trn

chamar barra erro de tela

sc¢ erro_max for menor que errod

key recebe p’

se key for diferente de p’

erro max recebe 0

se alguma tecla foi pressionada

key recebe a tecla pressionada

enquanto key for diferente de ‘p’ou P’

chamar imprime resultado final de trn

esperar tecla

chamar imprime arquivo de trn

destruir ent, sai, el, e2, deltal, delta? e dados

end:

Objeto: net - subrotina festar_rede
pardmetros: nenbum (utiliza campos de net)
variaveis auxiliares: erro, erro max (reais); i, gdad, iter (inteiros);
tela (tela_teste); fest (teste)

imprime tela principal (principal de tela)

\ se inicializado for ndo

imprimir mensagem de rede ndo definida; esperar tecla e ir para end

T se ao chamar leitura dados para o caso do teste retornar NULL

ir para end

inicializar ent e sai

chama pega tempo para a semente para a geragio de randémicos

enquanto ifer for menor do que 0,3*dados.lin (utiliza apenas 30% dos dados)

qdad recebe um numero aleatério menor que o campo /in de dados

incrementa iter

ent recebe o0s valores de entrada para o conjunto de dados referido por gdad

sai recebe os valores de saida para o conjunto de dados referido por gdad

chama saidas dado ent

erro recebe acha erro dado sai

T se erro for maior que erro max

Erro max = erro

chama imprime de test para a impressdo dos resultados

destroi dados, ent e sai

espera tecla

Objeto fest - subrotina imprime
parametros: iter (inteiro), erro max (real)
variavels auxiliares: conv (string), scr (screen) e fela (tela_teste)

alocar conv com tamanho 20

imprimir tela para resultados

guardar iter em conv

chamar escrever de scr para imprimir conv na posicio correta

guardar erro em conv

chamar escrever de scr para imprimir conv na posigio correta

deslocar conv

Objeto: net - subrotina saidas
pardmetros: ent (vector) € os campos de net
variaveis auxiliares: 7, j (contadores) e f7n (treino)

zerar todos os elementos de s/

zerar todos os elementos de 52

1gualar 3 ao vetor ent

fazer s3/emax] receber -1

para i de 0 até nmax

paraj de 0 até emax

calcular 52 a partir de 53 e de w2 (usando também a funcéio de ativagio)

s2{nmax] recebe 1

para i de 0 até smax

para j de 0 até nmax

calcular s/ a partir de s2 e de w/ (usando também a funcfo de ativagio)

Objeto: net - subrotina destruir
parametros: nenhum (utiliza campos do objeto net)
variaveis auxiliares: nenhum

desaloca da memdaria as variaveis: wi, w2, si, s2 e 53

Objeto: net - subrotina executar_teclado
pardmetros: nenhum (utiliza os campos de ner)
varidveis auxiliares: / (inteiro), conv (string), tela (tela_execucio),
scr (screen), enf (vector)

imprime a tela principal desta parte do programa

se inicializado for ndo

imprimir mensagem de rede ndo definida; esperar tecla e ir para end

alocar conv com tamanho 40

inicializar ent

para i de zero até emax

ler entfi]

chamar saidas dado ent

para i de zero até smax

imprimir s/ i} na posi¢io correta

espera_tecla; destruir ent; desalocar conv

end:

PROGRAMA PRINCIPAL

variaveis: scr (screen); J, opgdo(inteiros); ¢ (caracter); pdra (flag); rede (net)

o campo inicializado de rede recebe ndo

de novo:

chamar tela principal de scr

ler opgdo na posigio correta

pdara recebe ndo

se opgdo for menor do que 1 ou maior do que 6

T se opgdo for menor do que 6 T

caso apgdo tenha valor:

it para 1 chamar nova rede de rede

de novo pdra recebe

chamar abrir rede de rede sim

chamar treinar rede de rede

chamar testar rede de rede

Wi | W] o

chamar executar teclado de rede

enquanto para for igual a ndo

se 0 campo inicializado de rede for sim

chamar destruir de rede

chamar /impa tela

A.3 Listagem do Programa

/J" ff/
// REDES NEURAIS - BACKPROPAGATION //
i //

/! Trabalho de Formatura - 1998 /H

/{ CHANG CHIH WEI - No. USP 185014 //

// Reconhecimento de sinais H

I/ {f

#inchude <stdio.h>
#include <math.h>
#include <string.h>
#include <conio.h>
#include <stdlib.h>
#include <dos.h>

fidefine SL 81
enum flag { nao, sim };
/* DEFINICAO DE CLASSES */

class vector /fclasse de vetores com suas principais rotinas
{
public:
double *v;
int size;
void inicializar(double val=0);
void destruir(veid);

I

class matrix #classe de matrizes com suas principais rotinas
{
public:
double **m;
imt lin,col;
void inicializar{double val=0);
void destruir{void);

s

class screen // objeto contendo todas as funcoes de tela
{
public;
virtual void limpa_tela(void);
virtual void quadro(int X1,int Y1,int X2,int Y2,int C1,int C2);
virtual void centro{char TXT(],int Y,int Ci,nt C2);
virtual void escrever(char txt[].int x,int y,int ¢1,int ¢Z);
virtuat void tela_fundo(void),
virtual void tela_principal(void);
virtual void opcao(void);
virtual void tela_sobregravar{void);
virtual void impossivel_abrir(void);
virtual void erro_leitura{void);

virtual void nao_definida(void);

b
class tela_define:public screen // objeto contendo todas as funcoes de tela
{ // necessarias para a definicao da nova rede
public:
void principal(void),
void entradas(void);
void saidas(void);
void neuronios(void),
void aviso(void);
3
class tela_abrirpublic screen // objeto contendo todas as funcoes de teta
{ // necessarias para abrir uma rede
public:
void principal{void),
void pede_arquivo(void);
void aviso(void);
I
class tela_treino:public screen // objeto contendo todas as funcoes de tela
{ // necessarias para treinar a rede
public;
void principal{void),

void pede_dados(void);

void pede parametros(voidy,
void em_treinamento(void),
void resultado_parcial(void);
voud resultado_final{void);
void barra_erro{double erro);
void aviso(void);

I

class tela_execucao:public screen // objeto contendo todas as funcoes de tela
{ // necessarias para a execucao da nova rede
public:
void principal(int emax);

153

class tela_exec_arg:public screen // objeto contendo todas as funcies de tela
{ // necessarias para o teste da rede
public:
void principal{void), // tela principal
void pede_arquivo(void); // tela que pede arquivo de dados para execuc£o da rede
void fim_da_execucao({void), // tela indicando fim da execuc&Eo

5

class impressao:public screen // objeto contendo as funcoes para a impressao
{ /f da rede em arquivo
public:
void confirma(void),
void pesos(void);

b

class tela_teste:public screen // objeto contendo todas as funcoes de tela
{ {/ necessarias para o teste da rede
public:

void pede_arquivo(void);
void resultado{void);
void principal{void),

5

class treino // objeto contendo todas as funcoes e variaveis
{ /{ necessarias para o treinamento da rede
public:
vectorel,
e2,
ent,
sai,
dados;
matrixdelial,
delta?;
FILE *arqdad;
void espera_fecia(void); // funco que espera uma tecla ser pressionada
int abre_arquivo{char *arqdad); // func&o que abre o arquivo de dados
void fecha arquivo{void); // func/Ea que fecha o arquivo de dados para treinamento
int le_dados(int emax, int smax, vector &entrada, vector &saida); // funcHo que I os dados de
treinamento do arquivo
void leitura_parametros(double &beta_ini,double &lamb_ini,int &n_escf,double &beta pos,
double &lamb_pos,double &errod,unsigned long int &n max),
double ativ{double x);
double dativ(double x);
void imprime_resultado_parcial(unsigned long int iter,double erro_max,double beta_ini,double lamb_ini);
vold imprime_resultado_final(unsigned long int iter,double erro_max);
void imprime_arquivo(int emax, int smax, int nmax, matrix w1, matrix w2);

b
class teste // objeto contendo todas as funcoes e variaveis
{ /! necessarias para o teste da rede
public:
vectorel,
e2,
ent,
sai;
matrixdados;
void imprime(int iter, double erro_max),
S
class net /f Objeto que representa a rede neural.
¢ /i As variaveis € as principais subrotinas da
// rede estao incluidas neste objeto
private;
vectorsl,
52,
s3;
matrixwl,
w2;
public;
flag inicializado;

SCTeenscr,

int pega_tempo(void);// Pega o tempo para gerar os randomicos
int emax smax nmax;

void espera_tecla(void);

int pede_arq dados(char *(&arqdad));

int verifica_inicializacao(void); // Verifica inicializacao da rede

void nova_rede{void);// Cria nova rede

void abrir_rede(void);// Abre rede ja existente

int leitura_dados(int caso, matrix &dados); // Leitura de dados para treino e teste
double acha erro(vector sai), // Acha o erro referente ao treino

void treinar_rede(void); // Treina a rede

void testar_rede{void), // Testa a rede

void saidas{vector ent), // Acha as saidas

void destruir(void), // Destroi (desaloca) as variaveis utilizadas

void executar teclado{void); // Calcula a saida dada as entradas via teclado
void executar_arquivo(void); // Calcula a saida dada as entradas via arquivo

/* DEFINICAQ DAS FUNCOES MEMBRO DE CADA CLASSE */

void vector;:inicializar{double val)
/* Inicializa um vetor atribuindo a seus elementos um valor inicial */

{

int i;

v = new double [size];
for(i=0;i<size;i++)
v[i]=val;
}

void vector::destruir(void)
/* Destroi {desaloca) o vetor existente */
{
delete v,
v=NULL;
H

void matrix:inicializar({double val)
/* inicializa matriz atribuindo a seus elementos um valor inicial */

{

int i,j;

m = new double *{lin];
for(i=0;i<lin;i++)
i
mfi] = new double {col];
for(i=0;j<col;j++)
m[i]fjj=val,
}

}

void matrix;:destruir(void)
/* destroi (desaloca) matrix existente */

{

int i;

for(i=0;i<lin;i++)
delete m[i];
delete m;
m=NULL,;
}

void screen::limpa_tela(void)
/*Limpa a tela */

{

clrser();

}

void screen::quadro(int X1,int Y1,int X2,int Y2,int Cl,int C2)

/*Funcao de tela que desenha um quadro dados os extremos de sua diagonal
e as cores do texto e do fundo *f

{
char T[SL];
int ¥,

for(F=0;F<SL;F++)
T[F]=0,
textbackground(C2);
textcolor(C1);
T[0}=201,
for(F=X1-+1,F<X2;F+t)
T[F-X1]=205;
T[X2-X11=187;
gotoxy(X1,Y1);
cprintf{T),
T[0}=186;
for(F=X1+1F<X2;F++)
TIF-X1]=32;
T[X2-X1]=186;
for(F=Y |+1,F<Y2;F++)
{
gotoxy(X1,F);
cprintf{T}),
}
T[0]=200;
for(F=X1+1,F<X2;F++)
T[F-X1]=205;
TEX2-X1]=188;
gotoxy(X1,Y2);
cprntf(T);
textcolor(7);
textbackground(0);
for(F=X1;F<=X2;F+)
T[F-X1]=176,
gotoxy(X1+1,Y2+1),
cprintf(T),
T{0]=176;
T[1]=0;
for(F=Y 1+1,F<=Y2;F++)
{
gotoxy(32+1,F);
cprintRT),
}
textbackground(0);
textcolor{15);

}

void screen::centro(char TXT([],int Y,int Cl,int C2)
f*funcao que centraliza um texto dado a linha e as cores do texto e de fundo */

{

int X;

X=(80-strlen(TXT))/2;

textcolor(C1);
textbackground(C2},
gotoxy(X,Y),
cprimtf{ TXT),
textcolor(15);
textbackground(0);

}

void screen:.escrever{char txt[],int x,int y,int ¢cl,int ¢2)
/* escreve um texto na posicao (x,y) dado as cores de texto e de fundo */
{

textcolor(cl),

textbackground(c2);

gotoxy(x.y);

cprintf{txt);

textcolor(13);

textbackground(0);

}

void screen::tela_fundo(void)
/*Cria a tela de fundo deste programa */
{

char TXT[SL];

int F;

limpa_tela(),

textbackground(0);

textcolor(15);

for (F=0;F<80;F++)
TXT[F]=32;

TXT[80]=0;

cprintf{ TXTY;

sprintf{ TXT,"REDES NEURAIS-1998 = BACKPROPAGATION NEURAL NETWORK"),

centro(TXT,1,15,0);

gotoxy(1,2),

textcolor(7);

for (F=0;F<80;F++)
TXT[F]=178;

TXT[80]=0;

for (F=0;F<23;F++)
cprintf{TXTY,

}

void screen::tela principal{void)

/*Cria a tela principal com o seu memu */

{
tela_fundo(),
quadro(14,4,66,15,14,1);
centro("MENU PRINCIPAL" 5,15,1);
escrever(" 1. DEFINIR NOVA REDE NEURAL",17,7,15,1);
escrever("2. ABRIR REDE NEURAL"17.8,15,1);
escrever("3. TREINAR REDE NEURAL EXISTENTE",17,9,15,1),
escrever("4. TESTAR A REDE NEURAL",17,10,15,1);
escrever("S. EXECUTAR REDE COM DADGS DO TECLADO",17,11,15,1);
escrever("6. EXECUTAR REDE COM ARQUIVO",17,12,15,1);
escrever("7.SAIR",17,13,15,1);
quadro(25,20,55,22,14,1);

escrever("Digite a sua opcao: ¥,27,21,15,1);

}

void net::espera_tecla(void)
/*Cria a tela esperando que uma tecla seja pressionada */

{

SCTeEenscr;

ser.quadro(20,21,60,23,14,4);
scr.escrever("Tecle algo para prosseguir: ",23,22,15,4);
getch();

}

void screen::opcao(void)
/*Cria o quadro onde se deve digitar a opcao desejada */
{
quadro(30,18,50,20,14, 1);
escrever("Opcao: ",34,19,15,1);
}

void screen::tela_sobregravar(void)
/*Cria o quadro que pergunta se ira sobregravar os dados ja existentes */
{

quadro(14,12,66,14,14,4);

escrever("Dados ja existentes!!! Sobregravar (s/n)? ",17,13,15,4);

}

void screen::impossivel abrir(void)
/* Apresenta um aviso deerro ¥/
{
quadro(10,12,70,14,14.4);
escrever("ERRQ: NAO FOI POSSIVEL CRIAR OS ARQUIVOS ESPECIFICADOS!H" 12,13,15,4),

}

void screen:;erro_leitura(void)
/* Apresenta um aviso para um erro de leitura ¥/
{
quadro(10,12,70,14,14 4);
escrever{"ERRO NA LEITURA DOS ARQUIVOS ESPECIFICADOS!!".14,13,15,4);
}

void screen::nao_definida(void)
* Apresenta o aviso quando a rede neural nao esta definida */
{
quadro(10,12,69,14,14,4);
escrever("ERRO: REDE NEURAL NAO DEFINIDAI!!" 23.13,15,4);
3

void tela_define::principal(void)

/*Cria a tela principal na definicao de uma nova rede neural */

{
tela_fiindo();
quadro(14,4,66,9,14,1),
escrever("O programa cria uma rede neural de 3 camadas com”,16,5,15,1),
escrever("no de polarizacao.”,16,6,15,1);
escrever("Esta rede sera definida pelos arquivos de *,16,7,15,1);
escrever("extensoes: .wl, w2 e 52",16,8,15,1);

void tela_define: entradas(void)
/* Cria o quadro pedindo as entradas */
{
quadro(14,12,66,14,14,1),
escrever{ "Numero de entradas: ",17,13,15,1);

}

void tefa_define::sardas(void)

/*Cria 0 quadro pedindo as saidas */

{
quadro(14,12,66,14,14,1Y;
escrever("Numero de saidas: ",17,13,15,1)

}

void tela_define: :neuronios(void)
/*Cria 0 quadro pedindo op numero de neuronios da rede */

quadro(14,12,66,14,14,1);
escrever("Numero de neuronios: *,17,13,15,1);

}

void tela_define; aviso{void)
/* Apresenta um aviso dizendo gue os arquivos foram criados */
{
quadro(9,12,71,14,14 4);
escrever("Rede definida. Tecle algo para voltar ao menu principal”,11,13,15,4);

}

void tela_abrir::principal{void)
/*Cria a tela principal na abertura de uma rede neural ja existente */
{
tela_fundo(};
quadro(14,4,66,8,14,1);
escrever("O programa abre uma rede neural ja existente.”,18,5,15,1);

escrever("Estes arquivos devem possuir extensoes: .wl, *,18,6,15,1);
escrever(" w2 e sz" 18.7,15,1);

}

void tela_abrir::pede_arquivo(void)
/*Cria o quadro onde se pede o nome do arquivo da rede */
{

quadro(14,12,66,14,14,13;

escrever("Rede a ser aberta (sem extensao): ",17,13,15,1);

}

void tela_abrir:;aviso(void)
/* Apresenta o aviso de que os dados foram coletados */
{
quadro(24,16,56,18,14,1);
escrever("Dados Coletados",32,17,15,1);
}

void tela_treino::principal{void)
/*Cria a tela principal no treinamento da rede neural */
{
tela_fundo();
quadro(14,4,66,7,14,1);
escrever("(programa treina uma rede neural.” 24.5,15,1);
escrever("E necessario que a rede neural esteja predefinida”, 16,6,15,1);

}

void tela_treino.:pede dados(void)
/*Cria um quadro pedindo o arquivo de dados #/
{
quadro(14,12,66,14,14,1);
escrever("Arquivo de dados (sem extensao): ",17,13,15,1);

}

void tela_treino::pede_parametros{void)

f*Cria tela para a coleta dos parametros */

{
tefa_fundo(},
quadro(10,4,70,15,14,1);
escrever(" - TREINAMENTO DE UMA REDE NEURAL - "32,5,14,1);
escrever(" Beta inicial: ",12,7,14,1);
escrever(" Lambda inicial: ",12,8,14,1);
escrever(" No. de iteracoes para escalonamenio: ",12,9,14,1);
escrever(" Fator para o escalonamento de beta: ",12,10,14,1);
escrever("Fator para o escalonamento de lambda: ",12,11,14,1);
escrever(" Erro quadratico global maximo: ",12,12,14,1);
escrever(" Numero maximo de iteracoes: ",12,13,14,1);

}

void tela_treino:;em_treinamento({void)
/*Cria o aviso durante o treinamento */
{
quadro(14,21,66,23,14,2);
escrever("EM TREINAMENTOQ... Pressione P para interromper.”, 16,22, 143,2),

}

void tela_treino::resultado parcial(void)
/* Apresenta os resultados parciais do treinamento */
{
tela_fundo(};
quadro(10,4,70,16,14,1);
escrever(” - TREINAMENTO DE UMA REDE NEURAL - ",20,5,14,1);

escrever(" Numero de iteracoes: ",12,7,14,1);
escrever("Erro quadratico global maximo: ",12,8,14,1);
escrever(" Beta: ")12.9,14,1);
escrever(" Lambda: ,12,10,14,1);

}

void tela_treino::resultado_final(void)

1* Apresenta o resultado final do treinamento */

{
quadro(10,18,70,23,14,4);
escrever(" - FIM DO TREINAMENTO - ",28,19,14,4);
escrever(" Numero de iteracoes realizadas: ",14,21,15,4);
escrever("Erro maximo nas ultimas iteracoes: ",14,22,15,4);

}

void tela_treino::barra_erro(double erro)
/*Cria uma barra onde o erro e apresentado. Quando a barra fica estatica
nao ocorre maig variacao do erro &/

char TXT[SL}];
int i,a,b,tipo;
double nivel max=1.0,

for (i=0,i<51;i++)
TXT[i]=178;
TXT[51}=0;

tipo = 177,
erro *= 100;
iff erro>=50) // Acima de 50% de erro a barra fica no maximo
{
a=1;
b=49;
}
else
{
while(erro <= 1)
{
erro *= 10; /f Varia-se a escala da barra e a cada
nivel max /= 10; // variacao altera-se a cor da barra
ifltipo==176)
tipo = 177;
else
tipo = 176;
}

iff erro >=50)
{
a=1;
b=49;
}
else
{
a =23 - (int)(erro/2);
b =25 + (int}{erro/2),

}
}
for(i=0;i<a;i++)
TXT([i] = tipo;

for(i=50;i>b;i--)
TXT[i] = tipo;
gotoxy(15,12);
cprintf{ TXTY;
gotoxy(15,13),
cprintf{TXTY,
gotoxy(15,143,
cprintf{ TXTY,
gotoxy(32,15);
textcolor(14),
textbackground(1);
cprintf{"escala; %I %", nivel max),

i

void tela_treino: aviso(void)
/* Apresenta um aviso apos a criacao dps arquivos */
{
guadro(9,12,71,14,14,4);
escrever("Arquivos Criados. Tecle algo para voltar ao menu principal”,11,13,15,4);

}

void tela_execucao: principal{int emax)
/*Cria a tela principal na execucao(calculo) na rede neural */

char *conv;
conv = new char {20];

tela_fundo();

quadro(14,3,66,6,14,1);

escrever(” - EXECUCAOQO DA REDE NEURAL - ",26,4,14,1);
sprintf{conv, "Numeroc de entradas: %d", emax);
escrever(conv,30,5,15,1);

quadro(8,8,38,19,14.1);

escrever("- ENTRADAS -",17,9,14,1);
quadro(40,8,71,19,14,1);

escrever("- SAIDAS -",50,9,14,1);

delete conv,

}

void tela_exec_arq::pede_arquivo(void)
/*Cria um quadro pedindo o arquivo de execucao */

quadro(14,8,66,12,14,1%;
escrever("Obtencao das saidas a partir de um arquivo *.ent",17,9,15,1);
escrever("Arquivo de entradas (sem exiensao). ",17,11,15,1);

}

void tela_exec_arq::fim da_execucao(void)
/* Apresenta o fim da execucao */
{
quadro(10,16,70,18,14,4);
escrever(" - FIM DA EXECU L CO - ",28,17,14,4);
}

void tela_exec_arq::principai(void)
/*Cria a tela principal na execucao da rede neural com um arquivo de entradas */

tela_fundo();

quadro(14,3,66,5,14,1);

escrever(" - EXECU/CO DA REDE NEURAL - ",27,4,14.1);
}

void tela_teste::pede_arquivo(void)
/*Cria um quadro pedindo o arquivo de teste */
{
quadro(14,8,66,10,14,1);
escrever("Arquivo de teste (sem extensao); ",17,9,15,1);

}

void tela_teste::resultado(void)

/* Apresenta a tela de resultados do teste */

{
quadro(10,14,70,19,14,4);
escrever(" - RESULTADOQ DO TESTE - ",28,15,14,4);
escrever{ "Numero de dados utilizados: ",18,17,15,4);
escrever(" Erro maximo obtido: *,18,18,15,4);

}

void tela_teste::principal(void)
/*Cria a tela principal no teste da rede neural */

{

tela fundo();

quadro(14,3,66,5,14,1);

escrever(" - TESTE DA REDE NEURAL -"27 4,14, 13,
}

void impressao::confirma(void)
/*Cria o quadro onde voce diz se quer ou nao imprimir em arquivo®/

tela_fundo();
quadro(i4,12,66,14,14,1);
escrever("Deseja guardar a rede em um arquivo (s/n)? *,17,13,15,1);

}

void impressao: pesos(void)

/* Cria a tela de para a impressao dos pesos em arquivo */

{
tela_fundo();
quadro(14,12,66,14,14,1);
escrever{"Entre nome para o arquivo da rede; ",17,13,15,1);
quadro(14,6,66,9,14,1);
escrever("IMPRESSAQ DOS PESOS DA REDE EM UM ARQUIVO*",20,7,15,1),
escrever{"Os arquivos terao extensoes: .wl, .w2 e .sz",16,8,151);
quadro(14,12,66,14,14,1);
escrever("Entre nome para o arguivo da rede: ",17,13,15,1);

}

int net::pega_tempo(void)
/*Pega o tempo para & utilizacao dos randomicos */

{

struct dostime t t;

_dos_gettime(&t);
return t.hsecond;

}

int net::verifica_inicializacao(void)
[*Verifica a inicializacao das variaveis a serem utilizadas */

{

char ¢;

if{inicializado==sim)

{

do
{
scr.tela_sobregravar(};
c=getchar({);
if{ c=="N'||c=="n")
goto end,
else
iflc="8"{c="%)
¢

wl.destruir();
w2.destruir(),
s1.destruir(};
s52.destruir();
s3.destruir();

return 1;

Iwhile(¢c =N && c!=n'&& c |="§ && c1='¢');
3
eclse
return 1
end:
return O,

}

void net::nova_rede(void}
/*Cria uma nova rede */
{ - "

int ij;

tela_define tela;

tela.principal(};

iff !(verifica_inicializacao()))
goto end;

tela.entradas();
scanf{"%d",&emaxy);
tela.saidas();
scanf("%d",&smax);
tela. neuronios();
scanf("%d" &nmax),

srand(pega_tempo(});
w] .lin=smax;
wl.col=nmax+1;

wl inicializar();
for(i=0;i<smax;i++)

for(j=0;j<=nmax;j+-+)
{
wl.mlil[j]= random(1001);
wl.m[i][j] /~=1000;
wl.mfi]fj] +=0.2;
!
}

srand(pega_tempo());
w2 .lin=nmax;
w2.col=emax+1;

w2 inicializar();
for(i=0;i<nmax;i++)

for(j=0;j<=emax;j++)
{
w2.m[i}{j]J=random(1001});
w2.m[i]{j}/=1000;
w2.m[il[ij]+=0.1;
}
}
inicializado = siny;
51 size = smax+1;
s2.s5ize = nmax+1i;
s3.size = emax+1;
s1.inicializar(0.7);
s2 inicializar{0.4},

83 inicializar(0.6);

end:

}

void net;:abrir_rede(void)
/* Le (abre) uma rede de um dado arquivo */
{ . e
int ij;
char ¢, *nomel=NULL, *nome2=NULL, *nome3=NULL,
*nomearq=NULL, *s=NULL, palavra{12];
FILE *arquivol=NULL, *arquivo2Z=NULL,*arquivo3=NULL,
tela_abrir tela;

tela.principal();

ifl !(verifica_inicializacao()))
goto end;

nomearq = new char [15];
nomel = new char [15];
nome2 = new char [15];
nome3 = new char {15];

s = new char [15];

tela.pede_arquivo();
scanf{"%s",nomearq);
strepy(nomel ,nomearq);
strepy(nome2, nomearq);
strepy(nome3,nomearq);
strcat(nomel,”.w1"),
strcat(nome2," . w2"),
strcat(nome3,".sz");

if ({(arquivo 1=fopen(nomel,"rt")}==NULL)j|({(arquivo2=fopen(nome2, "rt")}==NULL)
[({arquivo3=fopen(nome3,"rnt"=—NULL))
¢
tela.impossivel abrir();
inicializado = nao;
£0Lo erro;

!
while(feof{arquivo3))
if (!fscanf{arquivo3, "%d %d %d", &emax, &smax, &nmax))

tela.erro_leitura();
goto erro;

}
}

felose(arquivo3),

w1 lin=smax;
wl.col=nmax+];
wl.inicializar(};

while(!feof(arquivol})
{

for(i=0;i<smax;i++)

for(j=0;j<=nmax;j++)
ifi Hscanf{arquivol, "%lf", &wl.m[i][]))
{
tela.erro_leitura(),
goto erro;
}
}

fclose(arquivol),

w2 lin=nmax;
w2.col=emax+1,
w2.inicializar(};

while(eof{arquivo2))
{
for(i=0;i<nmax;i++)
for(j=0;j<=emax;j-++)
iff fscanflarquivo2, "%lf", &w2.m[i}{i]))
{
tela.erro_leituraf),
goto erro;
}
}

felose(arquivo?2),

sl .size = smax+1;
52 size = nmax+1;
83 size = emax+1;
si inicializar(0.3);
s2.inicializar{0.4Y,
s3.iniciatizar{0.6);
inicializado = sim;

delete nomearq;
delete nomel;
delete nome?2;
delete nome3;
nomearq = NULL;
nomel = NULL;
nome2 = NULL;
nome3 = NULL,;
delete s;

s =NULL;
tela.aviso();

Cro;

felose(arquivol);
felose(arquivo?),
fclose{ arquivo3);
delete nomearq;
delete nomel;
delete nome2;
delete nome3;

nomearq = NULL;
nomel = NULL;
nome2 = NULL;
nome3 = NULL.;

delete s;

s = NULL,;
espera_tecla(};

end:

}

double net:;acha_erro(vector sai)
/*Calcula o erro obtido com as entradas e saidas */
{

double erro;

int i

erro =1,
for(i=0;i<smax;i++)
{
erro += pow({sai.v[i]-s1.v[i]},2);
}
erro /= 2;
return erro;

}

int net::leitura_dados{int caso, matrix &dados)
/*Funcao que faz a leitura dos dados para treinamento(0) e teste(1) */
{

char *arqdad;

int i, j, n_dados;

FILE *fdados=NULL,

tela teste telal;

tela_treinotela2;

if{caso)
telal.pede_arquivo();/ pede arquivo de dados para o teste
else
tela2.pede_dados(), // pede arquivo de dados para o treinamento

arqdad = new char [201];

scanf("%s" argdad),

strcat(arqdad,”.tr"); /! extensao .tm para arq de dados
if (fdados=fopen(arqdad,"nt"))==NULL)

{

telaZ.impossivel abrir(},
espera_tecla();
goto erro;

3

else

if{Hfscanf{fdados,"%d",&n_dados))
{
tela2.erro_leitura(};
goto erro;
h
dados lin =n_dados;
dados.col = emax-+smax;
dados.inicializar();
while(!feof{fdados))
{
for(i=0;i<n_dados;i++)
for(j=0;j<(emax+smax},j++)
if(!fscanf{fidados, " %elf",&dados.m{i]{j]))

{

tela2 erro_leitura();
£oto erro;

}

}
felose{fdados);
delete arqdad;
return 1;

}

eTo!
felose(fdados);
delete argdad;
return 0;

}

void treino::espera_tecla(void)
/*Tela esperando que uma tecla seja pressionada */

{

SCreenscr;

scr.quadro(20,21,60,23,14.4),
scr.escrever({"Tecle algo para prosseguir: ",23,22,15,4),
getch();

1

int treino::abre_arquivo(char *nome_arqdad)
/* Abre arquivo de dados para treinamento e retorna o numero de dados para treinamento ¥/
{

int 1,j, n_dados;

tela_treinotela;

if{ (arqdad=fopen{nome_arqdad,"rt"))==NULL) // abre arquivo

tela.impossivel _abriz();
espera_tecla();
fclose(arqdad);

retum 0,

}

else

{
if{ {fscanf{argdad, "%d",&n_dados)) /1" numero de dados

{
tela.erro_leitura();
felose{argdad),
espera_tecla();
return O;

}

else

rewind(argdad);
return n_dados;
}
'
}

void treino::fecha_arquivo(void)

/*Fecha arquivo de dados para treinamento ¥/

fclose(argdad);
}

int treino::le_dados(int emax, int smax, vector &entradas, vector &saidas)
/*Realiza a leitura dos dados para treinamento e retorna zero caso isso nao seja possivel ¥/
L

mt

double norma=0.0;

tela_treinotela;

for(j=0;j<emax;j++)
{
if(1fscanf{arqdad,"%6lf" &entradas. v{j]})
{
tela.erro_leitura();
felose(argdad);
return O,

}

norma += entradas.v[j]*entradas.v{j];

norma=sqri{fabs(norma)y;
for(j=0;j<emax;ji++)
entradas. v[j] /= norma;

for(i=0;j<smax;j++)
if(ifscanf{arqdad, "%if" & saidas v[i]))

tela.erro_leitura(),
felose(arqdad);
return O,

}

return 1;

}

void treino::leitura_parametros{double &beta_ini,double &lamb_ini,int &n_escf,double &beta_pos,
double &lamb_pos,double &errod,unsigned long int &n_max)
/*Realiza a ieitura dos parametros do treino */

{

tela_treinotela;

tela.pede parametros(); // tela dando pedindo todos os parametros
gotoxy(50,7);
scanf{"%If", &beta_ini),
gotoxy(50,3);
scanf("%lf" &lamb _ini);
do
{
gotoxy(50,9);
scanf("%d",&n_escf);

}

while(n_escf<0);
gotoxy(50,10);
scanf{"%lf",&beta_pos);
gotoxy(50,11);

scanf{"%lf" &lamb_pos);
do
{
gotoxy(50,12);
scanf{"%lf", &errod);
}
while{errod<0);
gotoxy(50,13);
scanf{"%ld",&n_max);
}

void treino::imprime _resultado_parcial{unsigned long int iter,double erro_max,double beta_ini,double lamb_ini)
/*Imprime resultados parciais para o treinamento */
{

char *conv;

SCreenscr;

conv = new char [20];
sprintf{conv,” %old " iter),
scr.escrever{conv,42,7,14,13;
sprintf{conv," %12 8If " erro_max};
scr.escrever(conv 42.8.14,1);
sprintf{conv," %12.8If " beta_ini};
scr.escrever(conv,42,9,14,1);
sprintf{conv,” %12 8If " lamb_ini);
scr.escrever{conv,42,10,14,1);
delete conv;

}

void treino::imprime_resultado_final{unsigned long int iter,double erro_max)
/*Imprime o resultado final do treinamento */
{

char *conv,

tela_treinotela;

SCreenscr;

conv = new char [20];

tela.resultado final(); // Indica fim de treinamento e cria quadro
/f para impressao dos resultados

sprintf{conv," %ld “,iter),

scr.escrever(conv,50,21,14,4);

sprintflconv,” %lf ", erro_max);

scr.escrever(conv,50,22,14,4);

delete conv,

}

void treino:imprime_arquivo(int emax, int smax, int nmax, matrix wl, matrix w2)
/* Tmprime nos arquivos ((wl, w2, sz) a rede neural */
{ - -9
intij;
char ¢, *nomel=NULL, *nome2=NULL, *nome3=NULL, *nomearq=NULL;
FILE *arquivol = NULL,*arquivo2 = NULL,*arquivo3 = NULL;
impressao impr;
tela_treinotela;

do
{

impr.confirmaf);

c=getchar();
if{lc=N|c==""
goto end;
twhile(c =N &&ci=n && c!="S'&&c!="%"),

nomearq = new char [15];
nomel = new char {15];
nome2 = new char [15];
nome3 = new char [15];

impr.pesos(};
scanf{"%s",nomearq);
strepy(nomel,nomearq);
strcat(nomel,".w1"),
strepy{nome2, nomearq);
strcat(nome2,".w2");
strepy{nome3,nomearq);
strcat(nome3,".sz");

if (({(arquivol=fopen(nomel,"wt"))==NULL)||((arquivo2=fopen(nome2, "wt"))==NULL)
[i{(arquivo3=fopen(nome3,"wt"})==NULL))

{
tela.impossivel abrir(};

}

else

{
fprintfarquivo3,"\n%d" ,emax),
fprintf{arquivo3,"\n%d",smax),
fprintf{arquivo3,"\n%d",nmax),
felose(arquivo3);

for(i=0;i<smax;i++)
for(}=0;j<=nmax;j++)

{
fprintf{arquivol," %10.61" , wl.mil[]),
ifj=nmax)
fprintf{arquivol,"\n"},
fclose(arquivol);

for(i=0;i<nmax;i++)
for(j=0;j<=emax;j++)
{
forintf{arquivo2," %10.6H",w2.m[1f]),
if(j==emax)
fprintflarquivo2,\n"),
}

fclose(arquivo?2);
tela.aviso();
h
delete(nomearg);
delete(nomel),
delete(nome2);
delete(nome3);

end:

double treino:;ativ(double x)
/* Funcao de ativacao */
{
if{(x>50.0)
return 1.0;
else

if(x<-50.0)
return 0.0;
else
return 1.0/(1.0+exp(-x));

}
}

double treino::dativ{double x)
/* derivada da funcaoc de ativacao */
{

return x*(1-x);

}

int net::pede_arq_dados(char *(&arqdad))
/*Funcao que faz a leitura dos dados para treinamento e teste */
{

tela_treinotela,

FILE *{ argdad;

tela.pede dados(), !/ pede arquivo de dados para o treinamento

argdad = new char [20];
scanf{"%s", arqdad);
streat(argdad," trn™);, /7 arquivo de extensao .trn para dados de treinamento

ifi (f arqdad=fopen(arqdad,"rt"))==NULL) // verifica se este arquivo existe. Em
{ /f caso negativo, retorna o valor zero.
tela.impossivel_abrir(};
espera_tecla();
felose(f argdad),
return O;

}

else

felose(f arqdad);
return 1;

}
}

void net::ireinar_rede{void)
/*Treina a rede neural */
{
const aprf=1060;
char key, *nome argdad;
double erro, errod, erro_max=0, max,
beta ini, lamb_ini, beta_pos, lamb_pos;
unsigned long int n_max. iter =0;
int i,], n_esc, qdad, n_escf, apr, quant_dados;
treino trn;
tela_treinotela;

tela.principal(); //tela inicial

iff inicializado = nao)

{
tela.nao_definida(); / tela: rede nao inicializada
espera_tecla{);
goto end;

}

if{!pede_arq_dados(nome_arqdad)) // tela pedindo arquivo de dados para treinamento
goto end;

trn.deltal lin = smax;
trn.deltal col = nmax+1;
trn.el size = smax;
trn.e2 size = nmax+1;
trn.delta2 lin = nmax;
trn.delta2.col = emax+1;
trn.ent.size = emax;
trn.sai size = smax;
trn.ent.inicializar();
trn.sai.inicializar();
trr.el inicializar();

trn.e2 inicializar(),
trn.deltal inicializar(),
trn.delta2 inicializar();

trn.leitura_parametros(beta_ini,lamb_ini,n_escfbeta_pos,lamb_pos,errod,n_max);

n_esc=n_escf;
tela.resultado_parcial(); // Indica o numero de iteracoes
// o erro global maximo, o beta e o lambida
tela.em_treinamento(); // Mensagem: Em treinamento. Pressione P para interromper
apr = aprf,
srand(pega_tempo(});

quant_dados = trn.abre_arquivo(nome_arqdad}, // abre arquive de dados e recebe o
if !quant_dados) // numero de dados para treinamento
goto end;

do
{ -
iter++;
n_esc--;
apr--,
fscanf(tm.arqdad,"%d",&quant_dados);
if{feof{trn argdad))
{
rewind(trn.arqdad),
fscanf{trn.arqdad,"%ed", &quant_dados);
H

if{ 'n_esc)

{
n_esc =n_escf;
beta_ini*=beta pos;
lamb_ini*=lamb pos;

h

trm.le_dados(emax smax.trn.ent,trn.sai), /7 leitura de um conjunto de dados de treinamento

saidas(trn.ent);
for(i=0;i<smax;i++)

trn.el.v{i} = (trn.sai. v[il-s) .v[i])*trn.dativ(s 1. v[i]);

for(j=0;i<=nmax;j++)

{
tmn.deltal . mfi]{j] = beta_ini*trn.el.v[i]*s2.v[j] + lamb_ini*trn deltal.m[i][j];
wl.m[i][j] += trn.deital. m[i}[j];

}
}
for(i=0;i<nmax;i++)
{
for(j=0;j<sma;j++)
trn.e2.v[i] +=tm.el.v[j]*w1l.mlj]{i];
trn.e2.v[i] *= tron.dativ(s2.vfil);
for(j=0;j<=emax;j++)
{
trn.deltaZ m(i]fj] = beta_ini*trn.e2 v[iT*s3.v[i] + lamb_ini*trn.delta2. m[i][j];
w2.mli][j] += tm.delta2. m[i]{j];
}
)

erro = acha_erro{tm.sai);

if{erro>erro_max)
erro_IMax = erro;

if(iter>=n_max)

key ='p"
if(tapr)
{

apr = aprf,

trn.imprime_resultado_parcial(iter,erro_max beta inijamb_ini);
tela.barra_erro(erro_max);
ifferro_max<errod)
key ='p';
iftkey!="p")
erro_max = 0;
}
if{kbhit(})
key = getch();

H
while((key!='p") && (key!=P" });

trnimprime_resultado_final(iter,erro_maxy);

geteh();
trnimprime_arquivo{emax,smax,nmax,wl,w2);

trn.ent, destruir(),
trn.sat. destruir(};
trn.e!. destruir();
trn.e2 . destruir();
trn.deltal . destruir();
tro.delta2 destruir();

end:

}

void net::testar_rede(void)
/*Subrotina que faz o teste de uma rede neural ja treinada ou nao */
{

int i,iter=0,quant_dados;

double erro=0;

char *nome_argdad,

tela_teste tela;

teste test;

treino tm;

tela.principal();

iff inicializado == nao)

{
tela.nao_definida(}; // tela: rede nao inicializada
espera_tecla();
goto end;

}

if(lpede_arq_dados(nome _argdad)) // tela pedindo arquivo de dados para treinamento
goto end;

test.ent.size = emax;
test.sai.size = smax;
test.ent.inicializar();
test.sai.inicializar();
srand{pega_tempo()};

guant_dados = trn.abre_arquivo(nome_arqdad), // abre arquivo de dados e recebe o
if{ lquant_dados) // numero de dados para treinamento

goto end;
fscanfitrn.argdad,"%d" ,&quant_dados);

erro=0;
while(iter <= quant_dados)

{ .
Her++,
iftfeof{(trn.arqdad))
{

rewind(trn.argdad);
fscanf{trn.arqdad,"%d" &quant_dados),

}

trn.le dados(emax,smax,test.ent,test.sai); // leitura de um conjunto de dados de treinamento

saidas(test.ent);
for(i=0;i<smax;i++)

{
if(s1.v[i}>=0.5)
sl.vfi]= 1,
else
s1.v[i]=0;
}

erro += acha_erro(test.sai);

}

erro /= quant_dados;
test.imprime(iter-1,erro};

test.ent.destruir();
test.sai.destruir();
espera_tecla();

end:

}

void teste: imprime(int iter, double erro_max)
/*Imprime os resultados do teste realizado */
{

char *conv,

SCreen scr;

tela_teste tela;

conv = new char [20];

tela.resultado(); // Tela onde os resultados do teste sao impressos
sprintf{conv," %od "iter);

scr.escrever{conv,48,17,14,4);

sprintf{conv,”" %lf *,erro_max};

scr.escrever(conv,48,18,14,4);

delete conv;

void net::destruir(void)
/*Destroi as variaveis ainda alocadas na memoria */
{

wl destrur();

w2.destruir();

s1.destruir(};

s2.destruir();

83 .destruir();

}

void net::saidas(vector ent)
/* Acha as saidas dada as entradas */

g
int ij;
treine trn;

for(i=0;i<smax;i++)

s51.v[i]=0;
for(i=0;i<nmax;i++)
s2.v[i]=0;

for(i=0;i<emax;i++)
83 v[iJ=ent.v[i];
s3.vlemax]=-1;

for(i=0;i<nmax;i++)
{
for(j=0;j<=emax;j++)
s2.v[i] += s3.v[j1*w2.m{il{i};
s2.v[i] = trn.ativ(s2.v{i]);

}
s2.v[nmax]=1,
for(i=0;i<smax;i++)
{
for(j=0;j<=nmax;j++)
sl.vfi] += s2.v[iP*wl.mfil[i];
s1.v[i} = trn.ativ(s1.v[i]),
}
!

void net: executar_teclado(void)
/*Calcula a saida a ser obtida em uma rede previamente treinada atraves
do teclado */
{ . *
int i;
char *conv;
tela_execucao tela;
screen scr;
vector ent;

tela.principal{emax);
i{ inicializado == nao)

tela.nao_definida(); // tela: rede nao inicializada
espera_tecla(),
goto end,;

}

conv = new char [40];
ent.size = emax;
ent.inicializar();

for(i=0;i<emax;i++)

{
sprintf{conv, "Entrada %2d: " i),
scr.escrever(conv,10,11+,15,1);
gotoxy(23,11-+),
scanf{"%alf", &ent. v[i]);

}

saidas(ent);

for(i=0;i<smax;i++)

{
sprintf{conv,"Saida %2d:; %11.618",1,51.v]i]);
scr.escrever(conv,42, 11-+,15,1);

}

espera_tecla();

ent. destruir(};

delete conv;

end:

void net:executar arquivo(void)
/*Calcula as saidas a partir das entradas contidas em um arquivo */

{

char *arql, *arqZ;

int i, j, n dados;

FILE *arq_ent=NULL, *arq_sai=NULL;
tela_exec arq tela;

vector ent,

tela. principal();

ent.size = emax;
ent.inicializar();

if{ inicializado == nao)

{
tela.nao definida(), // tela: rede nao inicializada
espera_tecla(});
goto end;

}

tela.pede_arquivo(); // pede arquivo de dados para a execucao

arql = new char [20];
arq2 = new char [20];
scanf{"%s",arq1);

strepy(arg2,argl);

streat(argl,".ent"), /f extensao *.ent para arq de entradas

strcat(arg2," sai"); // extensao *.sai para arq de saidas

iff ((arq_ent=fopen(argl,"rt"))==NULL)} || {(arq_sai=fopen{arq2,"wt")}==NULL))
{

tela. impossivel abrir();
espera_tecla();
goto erro;
H
else
{
if{!fscanf{arq_ent,"%d".&n_dados))
{
tela.erro_leitura();
goto erro;
)
for(i=0;(i<n_dados)&&{(!feof{arq_ent));i++)
{
for(j=0;j<emax;j++)
it{!fscanf{arq_ent,"%If",&ent v[j])) // leitura de arquivo

tela.erro_leitura(},
goto erro,
}
saidas(ent), // calculo das saidas
for(j=0;j<smax;j++)
{
if(s1.v[j]>=0.5)
stvfjl=1;
else
slvfj]=0;
fprintflarq_sai," %lf *,s1.v[j]);// impressac em arquivo
}
fprintflarq_sai,"\n"},
}

}

tela.fim_da_execucao(),
espera_tecla();

erro:
fclose(arq_ent);
folose{arq_sai);
delete arql;
delete arq2;

end:
ent.destruir(};

A PROGRAMA PRINCIPAL */

void main (void}
{
screen Scr;
int i,0pcao;
char ¢;
flag para,
net rede;

rede.inicializado = nao;

do
{

de_novo!

scr.tela_principal();

gotoxv(48,21);

if { !scanf{"%d".&opcao)) goto de_novo;
para = nao,

if (opcao < 1| opcae > 7) goto de_novo;
else

{
if (opcao<7)

switch (opcao)

case [:
rede.nova_rede(};
break;

case 2:
rede.abrir_rede();
break;

case 3:
rede.treinar_rede();
break;

case 4
rede.testar_rede();
break;

case 5:
rede executar_teclado();
break;

case 6;
rede.executar_arquivo(),
break;

}
}

else para = sim;
}
t while (Ipara);

if(rede inicializado==sim)
rede.destruir();
sor.limpa_tela(),

}

B. APENDICE 2 - A REDE COUNTERPROPAGATION EM C++

B.1 Detalhamento dos objetos

Nesta segdo, serdo apenas os objetos mais importantes da rede counterpropagation,

explicando-se a finalidade de todas as variaveis e fungdes que os compdem.

freino: objeto que contém todas as fungdes necessarias para o treinamento da

rede neural. Além disso, possui varidveis que auxiliam esta parte do programa. O

vetor winners indica a frequiéncia que um neudnio foi vencedor;, o arquivo

arqdad contém os padres de treinamento, os inteiros ¢ ini € ¢ fim marcam os

instantes iniciais ¢ finais do treinamento; e ¢ kok e ¢ gross marcam a duragdio do

treinamento kohonen e grossberg respectivamente. As fungdes deste objeto sdo:

*

+

*

leitura_pardmetros koh e leitura pardmetros gross: faz a leitura dos
pardmetros dos treinamentos kohonen e grossberg, ¢ os passa por referéncia.
Os parametros s@o: o coeficiente de aprendizado inicial e final, o erro
admissivel e o nimero de iterages maximo.

abre arquivo: fungfo que abre o arquivo de dados para treinamento e retorna o
namero de padrdes de treinamento,

fecha arquivo: fungiio que fecha o arquivo de dados para treinamento.
le dados: fungfio que 1€ os dados o arquivo de treinamento.

imprime_resultado parcia koh e imprime resultado parcia gross: como o
proprio nome diz, faz a impressdo dos resultados parciais durante o
treinamento kohonen e grossberg,

confinua: funglo que pergunta ser que continuar com o treinamento Grossberg.
imprime arquivo: faz a impresséio da rede neural para um arquivo.

teste imprime: imprime os resultados do teste realizado

net: objeto contém os pesos, dados pelas matrizes weight koh e weight gross, e

as entradas e saidas, dadas pelos vetores entrada e saida. Possui um flag para

indicar se a rede neural ja foi ou ndo inicializada € um nimero inteiro winner

para indicar qual o neurdnio vencedor. As fungdes deste objeto sio:

4

pega tempo: pega 0 tempo e retorna os centésimos de segundo para a geracio

dos randoémicos.

¢ espera tecla: cria o quadro para esperar uma tecla ser pressionada.
+ verifica inicializacdo: verifica se a rede ja foi ou nfio inicializada.
+ nova rede: cria uma nova rede.

+ abrir rede: abre uma rede existente em arquivo.

s pede arq dados: pede arquivo de dados tanto para o treinamento como para o

teste da rede neural.

+ acha_erro: dado o vetor de saida desejada, retorna o erro quadratico gerado a

partir da saida obtida.
s+ treinar rede: realiza o treinamento de uma rede neural j4 inicializada.
s+ testar rede: realiza o teste de uma rede neural ja inicializada.
+ saidas: dadas as entradas, acha as saidas através da rede neural.

¢ destruir: destroi a rede newral desalocando da memoéria todos os vetores e

matrizes.
+ executar teclado: calcula a saida dadas as entradas via teclado.
+ executar arquivo: calcula a saida dadas as entradas via arquivo.

s dist euclid: calcula a distdncia euclidiana entre um vetor e a coluna ou linha

de uma matriz de pesos.
+ acha winner: acha 0 neurbnio vencedor.
¢ ajusta kohonen: ajusta os pesos da camada kohonen.
+ ajusta grossberg: ajusta os pesos da camada grossberg.
+ fratar pesos. trata os pesos para melhorar o treinamento
¢ Ccorrige pesos: COrrige os pesos para melhorar o treinamento
+ treino kohonen: chama todo o treinamento kohonen
+ treino grossberg: chama todo o treinamento grossberg

Deve-se ressaltar que os objetos de tela sdo chamados ao longo de todo o programa e também

por outros objetos.

B.2 Diagramas de Nassi-Schneidermann

Agora que os objetos foram definidos e detalhados, haverd uma breve apresentagdo do
algoritmo implementado através dos diagramas de Nassi-Schneidermann. As funcoes de telas
nfo irfo ser apresentadas por ndo serem relevantes ao programa. Apenas a rotina que cria a

barra de erro devera ser esquematizada a seguir.

Objeto: net - subrotina treinar_rede

imprime tela pincipal
com principal de tela

T se inicializado for néo

imprimir mensagem de rede néo inicializada; esperar uma tecla e ir para end

se ao chamar leitura dados para
T o treino retornar zero

Ir para end

chama leitura parametros koh

chama resultado parcial koh

chama freino kohonen

se continua for ndo

chama /eitura parametros gross

chama resultado parcial gross

chama freino grossberg

chama tela fim de treino

chama imprime arquivo

Objeto: net - subrotina treino_kohonen

inicializa winners

! ini chama pegua tempo

quant dados chama abre arquivo

se quant dados for nulo

ir para end

se altera pesos for aliera

chamar tratar pesos

inicializa vetor winners

paraide 0 a quant dados

chama je dados

chama acha winner

incrementa vefor winners

chama ajusta kohonen

voltar arquivo argdad ao inicio

calculo do erro

se ndofor a primeira iteragio

chamar corrige pesos

ajustar alfa

! ini chama pega tempo

t fim recebe pega tempo

imprimir tela de treinamento parcial

[T

se a tecla “p” for pressionada

L1]

key recebe “p

L4

enquanto key for diferente de “p

chama fecha arguivo

destruir winners

Objeto: net - subrotina treino_grossherg

¢ ini chama pega tempo

quant dados chama abre arquivo

se quant dados for nuio

ir para end

para i de 0 a quant dados

chama /e dados

chama acha winner

chama ajusta kohonen

chama gjusta grossherg

voltar arquivo argdad ao inicio

calculo do erro

ajustar bera

t fim recebe pega tempo

imprimir tela de treinamento parcial

ce_ %

se a tecla “p” for pressionada

o P8

key recebe “p

enquanto key for diferente de “p”

chama fecha arguivo

Objeto: net - subrotina testar_rede

inicializar saida desejada

se inicializado for nfo

imprime tela de néo inicializacdo e vai para end

chama pede arg dados e se retornar O

val para end

quant dados recebe a chamada de abre arquivo

se quant dados for nulo

ir para end

paraide 0 a quant dados

chama le dados

iguala saida desejada a saida

chama saidas

acha erro

divide erro por quant dados para achar erro médio

chama teste imprime para os resultados

destruir saida desejada

chamar fecha arquivo para fechar arqdad

Objeto: net - subrotina dist_euclid

inicializar dist-—0

se quant dados for nulo

F
para i de 0 a weight.col para i de O a weight.lin
incrementar dist com quadrado da incrementar dist com quadrado da
diferenga de v com a linha dada por diferenga de v com a coluna dada por
winner winner

retorna dist

Objeto: net - subrotina acha_winner

inicializar min_dist=0 e winner=0

aux recebe a distdncia euclidiana das entradas em relagfo aos pesos
chamando dist_euclid

com i de O a weight koh.lin

aux recebe a distdncia euclidiana das entradas em relagfio aos pesos
chamando dist euclid

se aux for menor que min dist

min dist recebe aux e winner recebe

Objeto: net - subrotina safdas

zerar todos os elementos de saida

chamar acha winner

igualar saida ao vetor de pesos weight gross correspondente ao neurdnio vencedor

Objeto: net - subrotina destruir

desaloca da memoria as varidveis: weight koh, weight gross, entrada e saida

PROGRAMA PRINCIPAL

variaveis: scr (screen); i, opgdo{inteiros); c {caracter); para (flag); rede (net)

o campo inicializado de rede recebe ndo

de novo:

chamar tela principal de scr

ler opg¢do na posigio correta

pdra tecebe ndo

se opgdo for menor do que 1 ou maior do que 7

T se opgdio for menor do que 7 T

caso op¢do tenha valor:

ir para 1 chamar rova rede de rede

de novo padra recebe

chamar abrir rede de rede sim

chamar treinar rede de rede

chamar festar rede de rede

chamar executar teclado de rede

(o 0 IR V. T R N S U) B)

chamar executar arquivo de rede

enquanto pdra for igual a ndo

se 0 campo inicializado de rede for sim

chamar destruir de rede

chamar limpa tela

B.3 Listagem do Programa

1 1/
// REDES NEURAIS - COUNTERPROPAGATION //
ff ==/

// Trabalho de Formatura - 1998 1/

/I CHANG CHIH WEI - No, USP 185014 //

// Reconhecimento de sinais H

{f 1f

#include <stdio h>
#include <math.h>
#include <string. h>
#include <conio.h>
#include <stdlib.h>
#include <dos.h>

#define SL 81
#define EPS 1E-5

enum flag { nao, sim };
enum tipo { KOHONEN, GROSSBERG }; // tipo de treinamento

enuin t_pesos { altera, nao_altera }; // indica se vai haver tratamento de pesos

/* DEFINIOCO DE CLASSES */

class vector /fclasse de vetores com suas principais rotinas
{
pubtic:
double *v; // valor dos elementos do vetor

int size; //tamanho do vetor
void inicializar(int n, double val=0); // inicializacao do vetor
void destruir(void); // destruicac do vetor

};

class matrix //classe de matrizes com suas principais rotinas
{
public:
double **m; // valor dos elementos da matriz
int lin,col; // dimensoes da matriz
void inicializar(int |, int ¢, double val=0); // inicializacao da matriz
void destruir(void); // destruicao da matriz

|

class screen // objeto contendo todas as funcoes de tela
{
public:

virtual void limpa_tela(void);, // limpa a tela
virtuai void quadro(int X1,int Y'1,int X2,int Y2,int C1,int C2); // desenha quadro
virtual void centro(char TXT[1,int Y,int Cl.int C2); // escreve no centro de uma linha da tela
virtual void escrever(char txtf],int x int y,int cl,int ¢2); / escreve um texto dada a posicao
virtual void tela_fundo(void), // cria tela de fundo
virtual void tela_principal(void);// cria tela principal
virtual void opcao{void); /f cria quadro de opcoes
virtual void tela_sobregravar(void); // cria a tela perguntando se ira sobregravar a rede existente

virtual void impossivel abrir(void); // cria a tela informando que e impossivel abrir
virtual void erro_leitura{void), // cria a tela avisando que houve erro de leitura
virtual void nao_definida(void); // cria a tela avisando que a rede n/Eo fot definida

3
class tela_define:public screen // objeto contendo todas as funcoes de tela
{ /{ necessarias para a definicac da nova rede

public:

void principal(void); // tela principal

void entradas(void); // tela pedindo numero de entradas

void saidas(void), // tela pedindo numero de saidas

void neuronios(void); // tela pedindo numerc de neuronios da camada intermediaria
void aviso(void), // tela avisando que a rede foi criada

)
class tela_abrir:public screen // objeto contendo todas as funcoes de tela
{ // necessarias para abrir uma rede
public;
void principal(void); // tela principal
void pede_arquivo(void); // tela pedindo nome do arquive que contem a rede
void aviso(void); // tela avisando que a rede foi lida a partir do arquivo
1
class tela_treino:public screen // objeto contendo todas as funcoes de tela
{ /! necessarias para treinar a rede
public;
void principai(void); / tela principal
void pede_dados(void); // tela que pede o arquivo de dados para treinamento
void continua(void); /f tela que pergunta se ira continuar com o treinamento GROSSBERG

void pede_parametros koh(void); //tela pedindo parfmetros para treinamento KOHONEN

void pede parametros_gross(void); // tela pedindo parfmetros para treinamento GROSSBERG

void em_treinamento(void), // tela indicando que a rede esta em treinamento

void resultado_parcial_koh(void); // tela que apresenta resultados parciais do treinamento KOHONEN
void resultado_parcial_gross(void); // tela que apresenta resultados parciais do treinamento GROSSBERG
void fim_treino{void); // tela indicando fim de treinamento

void aviso{void); // tela avisando o fim do treinamento

void reconhecimento(char &resp}); // tela perguntando se e ou n&£o reconhecimento de 2 padroes

IR

class tela_execucao:public screen // objeto contendo todas as funcoes de tela
{ // necessarias para a execucao da nova rede
public:
void principal{int emax), // tela principal para execucao por teclado

b

class impressao:public screen // objeto contendo as funcoes para a impress&o
{ // da rede em arquivo
public:
void confirma(void); // tela perguntando se confirma a impressFo em arquivo
void pesos(void);, // tela para impressZ£o dos pesos em arquivo

|8
class tela_teste:public screen // objeto contendo todas as funcoes de tela
{ /l necessarias para o teste da rede

public:

void principal{void); // tela principal

void pede_arquive{void); // tela que pede arquive de dados para teste da rede

void resultado(void), // tela indicando resultados do teste realizado

int quantas vezes(void); // tela pedindo e retornando o no.de vezes se e testado o conjunto de dados

void em_teste(void); //tela indicando que a rede esta em treinamento

b

class tela_exec_arq:public screen // objeto contendo todas as funcoes de tela
{ // necessarias para o teste da rede
public:
void principal{void);, // tela principal
void pede_arquivo(void); // tela que pede arquivo de dados para execucao da rede
void fim_da_execucao(void), // tela indicando fim da execucao

h

class treino /f objeto contendo todas as funcoes e variaveis
H /{ necessarias para o treinamento da rede
public:
vector winners; // vetor que indica se o neuronio foi ou n o vencedor; /{ vetor de dados para
treinamento
FILE *arqdad, // arquivo com dados para treinamento
long t ini, t fim, //instantes iniciais e finais do treinamento
t_koh, t_gross, //tempos de treinamento Kohonen e Grossberg
void espera_tecla(void), //funcao que espera uma tecla ser pressionada
long pega_tempo(void), // funcao que pega os instantes iniciais e finais de treinamento
int abre_arquivo(char *arqdad), // funcao que abre o arquivo de dados
void fecha arquivo(void); // funcao que fecha o arquivo de dados para treinamento
int le_dados(int emax, int smax, vector &entrada, vector &saida); // funcao que 1" os dados de treinamento
do arquivo
void leitura_parametros koh{double &alfz_ini,double &alfa_fim, // 1" os parfm. de trein. KOHONEN
double &errod,unsigned long int &n_max);
void leitura_parametros gross{double &beta_ini,double &beta_fim,// 1" os parfm. trein. GROSSBERG
double &errod,unsigned long int &n_max);
int continua(void), //funcao que pergunta se ira continuar o treinamento GROSSBERG
void imprime_resultado parcial koh(unsigned long int iter koh, //imprime os resultados par-
double erro_max_koh,double alfa, long tempo); // ciais do treinamento KOHONEN
void imprime_resultado_parcial_gross(unsigned long int iter_gross, //imprime os resultados par-
double erro_max_gross,double beta, long tempo), // ciais do treinamento GROSSBERG
void imprime arquivo(int emax, int smax, int nmax, matrix weight gross, matrix weight_koh);
// imprime as matrizes dos pesos em um arquivo
void teste imprime(int iter, double erro), // imprime os resultados do teste realizado

5

class net /f Objeto que representa a rede neural,
{ // As variaveis e as principais subrotinas da
/ rede est Ao incluidas neste objeto
private;
int winner; //indica o neuronio vencedor
vectorentrada, // vetor de entradas da rede
saida; // vetor de saidas da rede
matrixweight gross, // matriz com os pesos da camada KOHONEN
weight_koh; // matriz com os pesos da camada GROSSBERG
char reconhec; // indica se e ou nZEo reconhecimento de 2 padroes com saidas 0 ou 1
public:
flag inicializado; // indica se houve ou n&o inicializacao da rede neural
t_pesos altera_pesos; //indica se vai haver alteracao dos pesos para melhorar o treinamento
int pega_tempo(void); // pega o tempo para gerar os randomicos
int emax,smax,nmax, // numero de entradas, saidas e neuronios respectivamente
void espera_tecla(void);// espera uma tecla ser pressionada
int verifica_inicializacao(void), // Verifica inicializacao da rede
void nova_rede(void);// Cria nova rede
void abrir_rede(void);// Abre rede ja existente
int pede arq dados(char *(&arqdad)); // pede arquivo de dados para treinamento e teste

void treinar rede(void); // Treina a rede

void testar rede(void), // Testaarede

void saidas(void); // Acha as saidas a partir do vetor de entradas e dos pesos

void destruir{veid), /] Destré¢i (desaloca) as variaveis utilizadas

void executar_teclado(void); // Calcula a saida dada as entradas via teclado

double dist euclid(int winner, matrix w, vector v, tipo treino); // Calcula a distancia euclidiana

void acha winner(void);// Acha o neuronio vencedor e retorna erro

void ajusta_kohonen(double alfa); // Ajusta pesos da rede Kohonen

void ajusta_grossberg(double beta), // Ajusta pesos da rede Grossherg */

void tratar_pesos(FILE *arqdad); //trata os pesos para melhorar o treinamento

void corrige pesos(vector winners, FILE *argdad); // corrige os pesos para melhorar o treinamento

void treino_kohonen{double alfa_ini,double alfa_fim,double erro_max, // treinamento KOHONEN
double &erro,int n_max,char *nome_arqdad);

void {treino_grossberg(double beta_ini,double beta_fim,double erro_max, // treinamento GROSSBERG
double &erro,int n_max, double alfa, char *nome_argdad),

void executar_arquivo(void), // acha as saidas a partir de entradas dadas em um arquivo

/* DEFINICAO DAS FUNCOES MEMBRO DE CADA CLASSE */

void vector::inicializar(int n, double val)
/* Inicializa um vetor atribuindo a seus elementos um valor inicial */

{

nti;

size = n;

v = new double [size];

for(i=0;i<size;i++)
v[iJ=val;

}

void vector::destruir(void)
/* Destroi (desaloca) o vetor existente */
{
delete v;
v =NULL;
}

void matrix; inicializar(int |, int ¢, double val)
/* inicializa matriz atribuindo a seus elementos um valor inicial */

{

int ij;

lin=1;

col =

m = new double *[lin];

for(i=0;i<lin;i++)

{
m{i] = new double [coll;
for(j=0;j<col;j++)

mfi][j]=val;
J
}

void matrix::destruir(void)
/* destroi (desaloca) matrix existente */

{

int i;

for(i=0;i<lin;i++)
delete m[i];
delete m,
m=NULL;
)

void screen::limpa_tela(void)
/*Limpa a tela */
{

clrser();

j

void screen::quadro(int X1,int Y1,int X2,int Y2,int C1,int C2)

/*¥uncao de tela que desenha um quadro dados os extremos de sua diagonal
¢ as cores do texto e do fundo ¥

{
char T[SL];
int F;

for(F=0;F<SL;F++)
T{F]=0;
textbackground(C2);
textoolor(C1);
T[0]=201;
for(F=X1+1;F<X2;F++)
T[F-X11=205;
T[X2-X1]=187;
gotoxy(X1,Y1);
cprintf(T);
T[0]=186;
for(F=X1+1;F<X2;F++)
T[F-X1]=32:
T[X2-X11=186;
for(F=Y 1+1;FF<Y2;F++)
{
gotoxy(X1,F),
cprintf{T);
}
T[0]=200;
for(F=X1+1;F<X2;F++)
T[F-X1]=205;
T[X2-X1]=188;
gotoxy(X1,Y2),
cprintf{T);
textcolor(7),
textbackground(0);
for(F=X1;F<=X2:F++)
T[F-X1]=176;
gotoxy(X1+1,¥2+1);
cprintf{T);
T[0]=176;
T[1]=0;
for(F=Y1+1,F<=Y2F++)
{
gotoxy(X2+1,F),
cprintf(T);

textbackground(Q);

textcolor(15),

}

void screen::centro(char TXT[],int Y,int C1,int C2)
/*funcao que centraliza um texto dado a linha e as cores do texto e de fundo */

{

int X;

X=(80-strlen(TXT))/2;
textcolor(C1);
textbackground(C2);
gotoxy(X,Y),
cprintf{TXT);
textcolor(15);
textbackground(0);

}

void screen::escrever(char txt[],int x,int y,int ¢1,int ¢2)
/*escreve um texto na posicao (x,y) dado as cores de texto e de fundo */
{
textcolor(cl),
textbackground(c2);
gotoxy(x,y);
cprintf{txt);
textcolor(15);
textbackground(0);
1

void screen::tela_fundo(void)
/*Cria a tela de fundo deste programa */
{

char TXT[SL];

int F;

limpa_tela();

textbackground(0);

textcolor(15);

for (F=0,F<80;F++)
TXT[F]=32:

TXT[80}=0;

cprintf(TXT);

sprintf{ TXT,"REDES NEURAIS-1998 = COUNTERPROPAGATION NEURAL NETWORK"),

centro(TXT, 1,15,0);

gotoxy(1,2);

texteolor(7);

for (F=0,F<80;F++)
TXT[F]=178,;

TXT[80]=0;

for (F=0;F<23;F++)
cprintf(TXTY;

¥

void screen::tela_principal(void)
/*Cnia a tela principal com o seu menu */
{
tela fundo();
quadro(14,4,66,15,14,1);

centro("MENU PRINCIPAL" 5/15,1);

escrever(" 1 DEFINIR NOVA REDE NEURAL",17,7,15,1);

escrever("2. ABRIR REDE NEURAL",17,8,15,1);

escrever("3. TREINAR REDE NEURAL EXISTENTE",17,9,15,1);
escrever("4. TESTAR A REDE NEURAL",17,10,15,1);

escrever("5. EXECUTAR REDE COM DADOS DO TECLADO" 17,11,15,1),
escrever("6. EXECUTAR REDE COM ARQUIVO",17,12,15,1);
escrever("7.8AIR",17,13,15,1);

quadro(25,20,55,22,14,1);

escrever("Digite a sua opcao: ",27,21,15,1);

}

void net: espera_tecla(void)
/*Cria a tela esperando que uma tecla seja pressionada */

{

SCTEEnsCer;

scr.quadro(14,21,66,23,14,4);
scr.escrever("Tecle algo para prosseguir: ",23,22,15,4);
getch();

3

void screen::opcao(void)
/*Cria o quadro onde se deve digitar a opcao desejada */
{
quadro(30,18,50,20,14,1);
escrever("Opcao; ",34,19,15,1);
}

void screen::tela_sobregravar(void)
/*Cria o quadro que pergunta se ira sobregravar os dados ja existentes */

quadro(14,12,66,14,14.4);
escrever("Dados ja existentes!!! Sobregravar (s/n)? *,17,13,15.4);

}

void screen::impossivel abrir(void)
/* Apresenta um aviso de erro ¥/

quadro(10,12,70,14,14,4);
escrever{"ERRQ: NCO FOI POSSOVEL CRIAR 08 ARQUIVOS ESPECIFICADOS!H" 12,13,15.4);

}

void screen::erro_leitura(void)
/* Apresenta um aviso para um erro de leitura %/
{
quadro(10,12,70,14,14,4);
escrever("ERRO NA LEITURA DOS ARQUIVOS ESPECIFICADOS!!",14,13,15,4);

}

void screen::nao_definida(void)
/* Apresenta o aviso quando a rede neural nao esta definida */
d
quadro(10,12,69,14,14 4),
escrever("ERRO: REDE NEURAL NCO DEFINIDAI" 23,13,15,4);
}

void tela_define: ;principal(void)
/*Cria a tela principal na definicao de uma nova rede neural */

tela_fundo();

quadro(i12,4,66,8,14,1);

escrever("O programa cria uma rede neural counterpropagation”,14,5,15,1),
escrever("Esta rede sera definida pelos arquivos de extensoes”,14,6,15,1);
escrever("* wgr, * wkh e *.52",16,7,15,1);

}

void tela_define: entradas(void)
/* Cria o quadro pedindo as entradas */

quadro(14,12,66,14,14,1);
escrever("Numero de entradas: ",17,13,15,1);

}

void tela_define::saidas(void)

/*Cria o quadro pedindo as saidas */

{
quadro(14,12,66,14,14.1);
escrever("Numero de saidas: ",17,13,15,1);

}

void tela_define: neuronios(void)
/*Cria o quadro pedindo o numero de neuronios da rede */
{

quadro(14,12,66,14,14,1);

escrever("Numero de neuronios: ",17,13,15,1);

}

void tela_define::aviso(void)
/* Apresenta um aviso dizendo que os arquivos foram criados */
{
quadro(9,12,71,14,14,4),
escrever("Rede definida. Tecle algo para voltar ao menu principal”,11,13,15.4),

}

void tela_abrir::principal(void)

/*Cria a tela principal na abertura de uma rede neural ja existente */

{
tela_fundo();
quadro(12,4,68,9,14,1);
escrever(" O PROGRAMA ABRE UMA REDE NEURAL Jp EXISTENTE" 14,5,15,1);
escrever("Extens&o: *. wgr - pesos da camada KOHONEN",14,6,15,1);
escrever("ExtensAo: * wkh - pesos da camada GROSSBERG",14,7,15,1);
escrever("Extens&o: *.5z - no. de entradas, saidas e neuronios",14,8,15,1);

}

void tela_abrir::pede_arquivo{void)
/*Cria o quadro onde se pede o nome do arquivo da rede */
{
quadro{14,12,66,14,14,1};
escrever("Rede a ser aberta (sem extensZo): ", 17,13,15,1);

}

void tela_abrir::aviso{void)
/* Apresenta o aviso de que os dados foram coletados */
{

quadro(24,16,56,18,14,1},

escrever("Dados Coletados",32,17,15,1);

}

void tela_treino;:principal(void)
/*Cria a tela principal no treinamento da rede neural */
{
tela_fundo();
quadro(12,4,68,7,14,1);
escrever("TREINAMENTO DE UMA REDE NEURAL COUNTERPROPAGATION",15,5,15,1);
escrever(" O arguivo de dados deve conter a extensAo *.tin",15,6,15,1);

}

void tela_treino::pede_dados(void)
/*Cria um quadro pedindo o arquivo de dados */
{
quadro(14,12,66,14,14,1);
escrever("Arquivo de dados (sem extensEo): ",17,13,15,1);
}

void tela_treino::continua(void)
/*Cria tela perguntando se continua com o treinamento Grossberg */

quadro(10,20,70,22,14.4);
escrever{"Continuar com treinamento Grossberg? (S/N): ",18,21,14.4);

}

void tela_treino::pede parametros koh{void)
/*Cria tela para a coleta dos parametros de treinamento Kohonen */
{
tela_fundo(};
quadro(16,4,64,12,14.1);
escrever(" - TREINAMENTO KOHONEN DE UMA REDE NEURAL - ",18,5,14,1);
escrever(” Alfa inicial: ",22,7,14,1);
escrever(" Alfa final: ",22,8,14,1);
escrever("Erro maximo em cada camada: ",22.9,14,1),
escrever("Numero maximo de iteracoes: ",22,10,14,1);

}

void tela_treino:;pede parametros gross(void)
/*Cria tela para a coleta dos parametros de treinamento Grossberg */
{
tela_fundo();
quadro(16,4,64,12,14,1);
escrever(" - TREINAMENTO GROSSBERG DE UMA REDE NEURAL - *,18,5,14,1);
escrever(” Beta inicial; ",22,7,14,1);
escrever(" Beta final: ",22.8,14.1);
escrever("Erro maximo em cada camada: ",22,9,14,1);
escrever("Numero maximo de iteracoes: ",22,10,14,1);

}

void tela_treino::em_treinamento(void)
/*Cria o aviso durante o treinamento */
{
quadro(14,21,66,23,14,2);
escrever("EM TREINAMENTO... Presstone P para interromper.”,16,22,143,2);

}

void tela_treino::resultado_parcial_koh(void)
/* Apresenta os resultados parciais do treinamento Kohonen */

{

tela_fundo();
quadro(10,4,70,12,14,1);
escrever(" - TREINAMENTO KOHONEN DE UMA REDE NEURAL - *,18,5,14,1);

escrever(" Numero de iteracoes: ",12,7,14,1);
escrever(" Erro maximo (dist. euclid.): ",12,8,14,1);
escrever(" Alfa: "12.9.14,1);
escrever(" Tempo de treinamento; ",12,10,14,1);

}

void tela_treino::resultado_parcial_gross(void)
/* Apresenta os resultados parciais do treinamento Grossberg */
t
tela_fundo(),
quadro(10,4,70,12,14,1);
escrever(" - TREINAMENTO GROSSBERG DE UMA REDE NEURAL - ",16,5,14,1);

escrever(" Numero de iteracoes: ",12,7,14,1);
escrever(" Erro maximo (dist. euclid.}: ",12,8,14,1);
escrever(" Beta: ",12,9,14,1);
escrever(" Tempo de treinamento: *,12,10,14,1);

void tela_treino::fim_tretno(void)
/* Apresenta o resultado final do treinamento */
{
quadro(10,16,70,18,14 4);
escrever(" - FIM DO TREINAMENTO - "28,17,14,4);
}

void tela_treino::aviso{void)
/* Apresenta um aviso apos a criacao dos arquivos */
{
quadro(9,12,71,14,14 4);
escrever("Arquivos Criados. Tecle algo para voltar ao menu principal”,11,13,15,4);

;

void tela_treino::reconhecimento{char &resp)
/*Verifica se € reconhecimento de 2 padroes cujas saidas sZ£o 0 ou 1%/
{
quadro(8,12,72,14,14,1);
escrever("Rede neural com 2 neuronios com saidas O ou 1 7 {(S/N). *,11,13,15.1);
do
{
gotoxy(66,13);
scanf{"%c", &resp);

}
while({resp!=n"&&(resp!=N")& & (respl='s")&&(resp!="S"));
}

void tela_execuicao::principal(int emax)
/*Cria a tela principal na execucao(calculo) na rede neural */
{

char *conv;

conv = new char [20];

tela_fundo();

quadro(14,3,66,6,14,1);

escrever(" - EXECULCO DA REDE NEURAL - ",26,4,14,1);
sprintf{conv,"Numero de entradas: %od",emax);

escrever(conv,30,5,15,1);
quadro(8,8,38,19,14,1);

escrever("- ENTRADAS -",17,9,14,1);
quadro(40,8,71,19,14.1);

escrever("- SAQGDAS -",50,9,14,1);
delete conv;

}

void tela_teste::principal(void)
/*Cria a tela principal no teste da rede neural */

tela_fundo();
quadro(14,3,66,5,14,1);
escrever(" - TESTE DA REDE NEURAL - ",27.4,14,1);

}

void tela_teste::pede arquivo(void)
/*Cria um quadro pedindo o arquivo de teste */
{
quadro(14,8,66,10,14,1);
escrever(" Arquivo de teste (sem extens/Eo). ",17,9,15,1),

}

void tela_teste: resultado{void)

/* Apresenta a tela de resultados do teste */

{
quadro(10,12,70,17,14,4),
escrever(" - RESULTADO DO TESTE - ",28,13,14,4);
escrever(” Numeroc de dados utilizados; ",14,15,15.4),
escrever("Erro quadratico por conj. de entradas: ",14,16,15,4);

}

int tela_teste: quantas_vezes(void)
/*Cria um quadro e retorna quantas vezes se e testado o conjunto de dados */

{

int n;

quadro(12,12,68,14,14,1);
escrever("Quantas vezes deseja testar o conjunto de dados? ",15,13,15,1);
do
{

gotoxy(65,13);

scanf{"%d",&n);
}
while(n<1};

return n;

}

void tela_teste::em teste(void}
/*Cria o aviso durante o teste */
{
quadro(25,21,55,23,14,2);
escrever("EM TESTE!!! AGUARDE. .",29,22 143,2);

}

void tela_exec_arq::pede arquive{void)
/*Cria um quadro pedindo o arquivo de execucao */

{

quadro(14,8,66,12,14,1);
escrever("Obtencao das saidas a partir de um arquivo *.ent",17,9,15,1),
escrever("Arquivo de entradas (sem extens&o): ",17,11,15,1);

}

void tela_exec_arq::fim da execucao(void)
/* Apresenta o fim da execucao */
{
quadro{10,16,70,18,14.4);
escrever(" - FIM DA EXECUICO - ",28,17,14 4,
}

void tela_exec arq::principal(void)
/*Cria 2 tela principal na execucao da rede neural com um arquive de entradas */
{

tela_fundo();

quadro(14,3,66,5,14,1);

escrever(" - EXECUUICO DA REDE NEURAL - ",27,4,14,1);

}

void impressac:;confirma(void)
/*Cria o quadro onde voce diz se quer ou nao imprimir em arquivo*/
{

tela_fundo(};

quadro(14,12,66,14.14,1);

escrever("Deseja guardar a rede em um arquivo (s/n)? ",17,13,15,1);

}

void impressao::pesos(void)

/* Cria a tela de para a impressao dos pesos em arquivo */

{
tela fundo{);
quadro(14,12,66,14,14,1};
escrever("Entre nome para o arquivo da rede: ",17,13,15,1),
quadro(14,6,66,9,14,1);
escrever("IMPRESSCO DOS PESOS DA REDE EM UM ARQUIVO",20,7,15,1);
escrever("Os arquivos terEo extensoes: .wer, .wkh e .52",16,8,15,1);
quadrof14,12,66,14,14,1),
escrever("Entre nome para o arquivo da rede: ",17,13,15,1),

}

int net::pega_tempo(void)
/*Pega o termpo para a utilizacao dos randomicos */

{

struct dostime t t;

_dos_gettime(&t),
return t.hsecond;

}

int net::verifica_inicializacao(void)

/*Verifica a inicializacac das vanaveis a serem utilizadas */
char c;
screen Scr;

H{(inicializado==sim)
{
do

scr.tela_sobregravar(); // pergunta se quer sobregravar a rede ja existente
c=getchar(};
f{lc==N'|c=="n)
goto end; // em caso negativo, vai para o fim e retorna 0
else
le=="8"]¢c=="%")
{
weight gross.destruir(); // em caso afirmativo, destréi-se as matrizes
weight_koh.destruir(); /e vetores alocados para a nova inicializacao
saida.destruir(), // com as funcoes nova_rede e abrir_rede
entrada.destruir();
return 1;

)
lwhile{ ¢ =N && cl=n"&& ¢ !="§' &&c 1="");
}
else
return I;
end;
return 0,

}

void net::nova_rede(void)
/*Cria uma nova rede */
{ . - -

int 1,j;

tela_define tela;

tela. principal();

if{ Wverifica_inicializacao())) // se a rede n/Eo estiver inicializada, vai para o final
goto end;

tela.entradas();// tela pedindo o numero de entradas
scanf{"%d" ,&emax);

tefa.saidas(); //tela pedindo o numero de saidas
scanf{"%d" & smax);

tela.neuronios(); // tela pedindo o numero de neuronios
scanfl"%d",&nmax);

srand(pega_tempo());
weight_gross.inicializar(smax,nmax), // inicializa matriz de pesos Grossberg
for(i=0;i<smax;i-++) /{ com valores aleat¢rios
{
for(j=0;j<nmax;j++)
{
weight_gross.m[i){j]= random(100);
weight_gross.m[i][j] /=100,
}
}

srand(pega_tempo());
weight_koh.inicializar(nmax,emax); // inicializa matriz de pesos Kohonen
for(i=0;i<nmax;i++) // com valores aleatgrios
for(j=0;j<emax;j++)
weight_koh.m[i][j1=(1.0/sqrt{fabs(nmax}});

inicializado = sim,

saida.inicializar(smax,0.7),
entrada.inicializar(emax,0.6);

winner=0;
altera_pesos = altera; // indica que os pesos foram ditribuidos aleatoriamente, sem previo tratamento,
/! o que faz com que os pesos necessitern de alteracoes para melhorar o treinamento

end:

}

void net::abrir_rede(void)
/% " (abre) uma rede de um dado arquivo */
{ . Py
int ij;
double norma;
char ¢, *nomel=NULL, *nome2=NULL, *nome3=NULL,
*nomearg=NULL, *s=NULL, palavra[12];
FILE *arquivo]l=NULL,*arquivo2=NULL, *arquivo3=NULL,
tela_abrir tela;

tela. principal();

if(M(verifica_inicializacao()}) // se a rede nABo estiver inicializada, vai para o final
goto end;

nomearq = new char [15];
nomel} = new char [15];
nome2 = new char [15];
nome3 = new char [15];

s = new char [15];

tela.pede arquivo(); // tela pedindo o nome do arquivo que contem a rede neural
scanf("%s",nomearq);

strepy(nome!,nomearq);

strepy(nome2 nomearg),

strepy(nome3,nomearq);

strcat(nomel," wgr");

streat{nome2," wkh");

strcat(nome3,".sz");

if { {(arquivol=fopen(nomel,"rt"))==NULL)}{{arquivo2=fopen{nome2,"rt"))==NULL)
[i((arquivo3=fopen(nome3,"rt"})==NULL))
{
tela.impossivel_abrir(),
inicializado = nao;
goto erro;

}

while(!feof{arquivo3))// leitura do numero de entradas, saidas € neuronios
if ('fscanf{arquivo3, "%d %d %d", &emax, &smax, &nmax))

tela.erro _leitura();
goto erro;

}
;

felose(arquivo3);

weight _gross.inicializar(smax nmax);

while(Ifeof{arquivol))// leitura dos pesos da camada Grossberg
{
for(i=0;i<smax;i++)
for(j=0;j<nmax;j++)
if{ fscanf{arquivol, "%lf", &weight_gross.mfi][i]))

tela.erro leitura();
goto erro;
}
}

fclose(arquivol);
weight_koh.inicializar(nmax, emax);

while(!feof{arquivo2))/ leitura dos pesos da camada Kohonen
{
for(i=0;i<amax;i++)
for(j=0;j<emax;j++)
if{ |fscanf{arquivo2, "%lf", &weight koh.mfil[i]))

tela.erro_leitura();
goto erro,
1
}

felose(arquivo2);

for(i=0;i<nmax;i++)
{
norma = 0.0;
for(j=0;j<emaxj++}
normat+=weight koh m{i]{jj*weight_koh.mfi][j};
norma=sqrt(fabs(norma));
for(j=0;j<emax;j++)
weight_koh.m[i][j}/=norma,
}

saida.inicializar(smax,0.3);
entrada inicializar(emax, (1.0/sqrt(nmax)));
winner = (;

inicializado = sim;

delete nomearq;
delete nomel;
delete nome2;
delete nome3;
nomearq = NULL;
nomel = NULL;
nome2 = NULL;
nome3 = NULL;
delete s,
s=NULL;
tela.aviso();

erro:

felose(arquivol);
felose(arquivo2 };

felose(arquivo3);
delete nomearyq;
delete nomel;
delete nome?2;
delete nome3;
nomearq = NULL;
nomel = NULL,;
nome2 = NULL,;
nome3 = NULL;
delete s;
s=NULL;
espera_tecla();

end;

}

int net::;pede_arq_dados{char *(&arqdad))
{*Funcao que faz a leitura dos dados para treinamento e teste */
{

tela_treinotela;

FILE *f arqdad;

tela.pede_dados(}; /f pede arquivo de dados para o treinamento

arqdad = new char [20];
scanf{"%s",arqdad);
strcat(arqdad,".trn"); // arquivo de extens/Fo .trn para dados de treinamento

if{ (f argdad=fopen{arqdad,"rt")y==NULL) // verifica se este arquivo existe. Em
{ // caso negativo, retorna o valor zero.

tela impossivel _abrir();

espera_tecla();

felose(f arqdad);

return O,

}

else
{
fclose(f arqdad);
return 1;
}
}

void treino::espera_tecla(void)
/*Tela esperando que uma tecla seja pressionada */

{

scTeenscr,

scr.quadro{20,21,60,23,14 4);
scr.escrever("Tecle algo para prosseguir; ",23,22,15,4);
getch();

}

long treino::pega_tempo(void)
/*Pega os instantes iniciais e finais do treinamento */

{
long int tempo;
struct time t;

gettime(&1);

tempo = (int)t.ti_hund;

tempo += 100*{(int)t.ti_sec;

tempo += (long)6000*(long)t.ti_min;
tempo += (long)360000*(long)t.ti_hour,
return tempo;

}

int treino::abre_arquivo(char *nome_arqdad)
/* Abre arquivo de dados para treinamento e retorna o numero de dados para tretnamento */
{

int i,j, n_dados;

tela_treinotela;

if({argdad=fopen(nome_argdad,"rt"})==NULL) // abre arquivo
{

tela.impossivel_abrir();
espera_tecla();
fclose(arqdad);

return 0;

}

else

if{fscanflarqdad,"%d",&n_dados)) /1" numere de dados
{

tela.erro_leitura(y;

felose(arqdady;

espera_tecla();

return O;

}

else

rewind(arqdad);
return n_dados;
}
3
i

void treino::fecha_arquivo(void)
/*Fecha arquivo de dados para treinamento */
{
fclose(argdad);
i

int treino::le_dados(int emax, int smax, vector &entradas, vector &saidas)
/*Realiza a leitura dos dados para treinamento e retorna zero caso isso nAo seja possivel */
{ v .

int j;

double norma=0.0;

tela_treinotela;

for(j=0;j<emax;j++)
{
if{ Hscanf{arqdad, "%l{", &entradas.v[j]))
{
tela.erro leitura();
fclose(arqdad);
return 0;

}

norma += entradas. v[jT*entradas.v[j];

norma=sqri(fabs(norma)y;
for(j=0;<emax;j++)
entradas. v[j] /= norma;

for(j=0;1<smax;jt++)
if(!fscanfiarqdad, "Yolf*, &saidas. v[j]))

tela.erro_leitura();
felose(arqdad);
return 0;

}

return 1,

3

void treino:lettura_parametros_koh{double &alfa ini,double &alfa fim,
double &errod,unsigned long int &n_max)
/*Realiza a leitura dos parametros do treino Kohonen */

{

tela_treinotela;

tela.pede parametros_koh(); // tela pedindo os parametros de treinamento Kohonen

do
{
gotoxy(50,7);
scanf{"%lf",&alfa_ini), //leitura do coeficiente de aprendizagem inicial

}
while((alfa_ini>1) || {alfa ini<0)); /alfaentreOel

do
{
gotoxy(50,8),
scanf("%lf" &alfa fim), // leitura do coeficiente de aprendizagem final

}
while((alfa_fim>1) || (alfa_fim<0)); // alfa entre 0 e 1

do
{
gotoxy(50,9);
scanf{"%lf", &errod), // leitura do erro maximo desejado
;
while(errod<0}, // apenas valores positivos para erro
do
{

gotoxy(50,10);
scanf{"%ld",&n_max), //leitura do numero maximo de iteracoes

while{n max=<1);

}

void treino;;leitura_parametros_gross(double &beta_ini,double &beta_fim,
double &errod,unsigned long int &n max)
/*Realiza a leitura dos parametros do treino grossberg ¥/

{

tela_treinotela,

tela.pede_parametros_gross(); // tela pedindo os parametros de treinamento Grossberg

do

{
gotoxy(50,7);
scanf{"%lf",&beta ini), //leitura do coeficiente de aprendizagem inicial

}
while((beta_ini>1) {| (beta_ini<0)),

do

{
gotoxy(50,8);
scanf("%lf" &beta_fim); // leitura do coeficiente de aprendizagem final

3
while((beta_fim>1) || (beta_fim<0});

do
{

gotoxy(50,9);

scanf("%lf" &errod); // leitura do erro maximo desejado
}
while(errod<0); // apenas valores positivos para erro
do
{

gotoxy(50,10);

scanf{"%Ild",&n_max},; //leitura do numero maximo de iteracoes
h
while(n_max<1);

H

int treino::continua(void)
/*Verifica se continua com o treinamento Grossberg */
{

char resposta;

tela_treinotela;

tela.continua(), // pergunta se continua treino grossberg

do

{
gotoxy(63,21);
scanf{("%c",&resposta);

}
while((respostal='s") && (respostal='n"} && (respostal='S") && (resposta!=N)Y,

if(resposta=="s' || resposta=='8")
return 1;

else
return O

void treino::imprime_resultado_parcial_koh{unsigned long int iter_koh,double erro_max_koh,
double alfa, long tempo)
/*Imprime resultados parciais para o treinamento Kohonen */

int horas=0, minutos=0, segundos=0, centesimos=0;
char *conv;

SCTeenscr;
conv = new char [20];

centesimos = tempo%100; // Tratamento do tempo de treinamento
tempo /= 100,

segundos = tempo%e60;

tempo /=60;

minuios = tempo %60;

tempo /=60,

horas = tempo%24;

sprintf{conv," %ld ",iter_koh);

scr.escrever(conv,42,7,14,1);

sprintf{conv,"%16.121f ", erro_max_koh);

scr.escrever(conv,42,8,14,1);

sprintf{conv,"%16.121f " alfa),

scr.escrever(conv,42,9,14,1);

sprintf{conv," %2d h %2d min %2d.%24d s" horas,minutos,segundos,centesimos);
scr.escrever(conv,42,10,14,1);

delete conv;

}

void treino: imprime_resultado_parcial_gross(unsigned long int iter_gross,double erro_max_gross,
double beta, long tempo)
/* Imprime resultados parciais para o treinamento Grossberg ¥/
{
int horas=0, minutos=0, segundos=0, centesimos=0;
char *conv,
SCTeenscr,

conv = new char [20];

centesimos = tempo%100; // Tratamento do tempo de treinamento
tempo /= 100;

segundos = tempo%e60;

tempo /=60,

minutos = tempo %60,

tempo /=60;

horas = tempo%24;

sprintf{conv,” %ld "iter_gross);

scr.escrever{conv,42,7,14,1);

sprintf{cony,"%16.12if “ erro_max_gross);

scr.escrever{conv,42.8,14,1);

sprintf{conv,"%16.12If " beta);

scr.escrever(conv,42,9,14,1);

sprintf{conv," %2d h %2d min %2d.%2d s" horas,minutos,segundos,centesimos),
scr.escrever(conv,42,10,14.1);

delete cony;

void treino; imprime _arquivo(int emax, int smax, inf nmax, matrix weight_gross, matrix weight_koh)
/* Imprime nos arquivos (.wgr, .wkh, .sz) a rede neural */

{

int ij;

char ¢, *nomel= L, *nome2=NULL, *nome3=NULL, *nomearg=NULL;
FILE *arquivol = NULL,*arquivo2 = NULL, *arquivo3 = NULL,;

impressao impr;

tela_treinotela;

do
{
impr.confirma(); // confirma a impressZ&o
c=getchar(};
iflc=Nic==""
goto end; // em caso negativo vai para o final da funcao
jwhile(c!=N'&&cl=n&&c!="§ &&c =),

nomearq = new char [157;
nomel = new char [15];
nome?2 = new char [15];
nome3 = new char [15];

impr.pesos();
scanf{"%s", nomearq);
strepy(nomel nomearq),
strcat(nomel,".war");
strepy(nome2, nomearq);
streat(nome2." wkh"};
strepy(nome3, nomearg);
strcat{nome3,".sz");

if (((arquivol=fopen(nomel,"wt"})==NULL)}|((arquivo2=fopen(nome2,"wt")}==NULL)
[{(arquivo3=fopen(nome3,"wt")}==NULL))

{
tela.impossivel abrir();

}

else

{
fprintf{arquivo3,"\n%d" emax); // impress/Eo das dimensoes da rede neural
fprintfarquivo3, "\n%d",smax),
fprintf{arquivo3,"\n%d", nmax},

fclose(arquivo3);
for(i=0;i<smax;i++) /f impress Ao dos pesos da camada Grossberg
for(j=0;j<nmax;j++)
{
fprintf{arquivol," %10 61", weight _gross.m[i][i]);
ifj==(nmax-1))
fprintflarquivol,"\n"),
felose(arquivoly;
for(i=0;i<nmax;i++) /f impress/ZEo dos pesos da camada Kohonen
for(j=0;j<emax;j++)
{
fprintf{arquivo2." %10.61f", weight_koh.m[i][j1);
if(j==(emax-1)}
fprintflarguivo2,™\n"),
}
felose(arquivo2);

tela.aviso(),

delete(nomearq);
delete(nomel);
delete(nome2);
delete(nome3),

end:

}

void treino::teste_imprime(int iter, double erro)
/*Imprime os resultados do teste realizado */
{

char *conv;

screen scr;

tela teste tela;

conv = new char [20];

tela.resultado(); // Tela onde os resultados do teste sao impressos
sprintf(conv," %d " iter);

scr.escrever{conv,52,15,14.4);

sprintf{conv," %12.8If " erro);

scr.escrever(cony,52,16,14,4);

delete conv;

}

double net::dist_euchd(int winner, matrix w, vector v, tipo treino)
/* Calcula a distancia euclidiana entre a i-esima linha da matriz w e o vetor v */
{
int i;
double dist=0.0;
if{treino==KOHONEN)
for(i=0;i<w.col;i++)
dist+=pow({w.m[winner][i]-v.v[i]),2);
else
for(i=0;i<w.lin;i++)
dist+=pow{(w.m[i][winner]-v.v]i]),2);
return dist;

}

void net;;acha winner{void)
/* Acha o neuronio vencedor e a distfncia euclidiana (erro) */
{ . .

int i;

double aux=0.0, min_dist=0.0;

winner=0;

aux = dist_euclid(D,weight_koh,entrada, KOHONEN),
min_dist = aux;
for(i=1;i<weight koh.lin;i++)
{
aux = dist_euclid(i,weight _koh,entrada, KOHONEN};
iflaux<min_dist)
{
min_dist = qux;
winner = i;
}
}
}

void net::ajusta_kohonen{double alfa)
/* Ajusta pesos da camada Kcohonen */
{ - .

inti;

double norma;

for(i=0;i<weight_koh.col;i++)
weight_koh.m[winner][i] += alfa*(entrada.v{i] - weight_koh.m[winner][i]);

norma = 0.0;
for(i=0;i<emax;i++)
norma+=weight koh.m[winner][i]*weight koh.m[winner][i];
norma=sqgrt({fabs{norma));
for(i=0;i<emax;i++)
weight_koh.m{winner][i]/=norma;

}

void net::ajusta_grossberg{double beta)
/* Ajusta pesos da camada Grossberg */
{ - -
int i;
for(i=0;i<weight gross.lin;i++)
weight_gross.m[ij[winner] += beta*(saida.v[i] - weight gross.m([i]{winner]),

}

void net:tratar_pesos(FILE *arqdad)
/* Tratamento dos pesos utilizando randomicos dentro de uma faixa de valores (dados pelo arquivo de dados)
para uma nova rede {cujos pesos estEo inicializados aleatoriamente sem faixa de valores) xf
{
int i, j, quant_dados;
double min=0.0, max=0.0, aux, norma=0.0;
tela_treino tela;

srand(pega_tempo(});
rewind(arqdad);
if{ fscanf{arqdad,"%d",&quant_dados))
{
tela.erro leitura();
felose(arqdad);
goto erro;
}
else
{
for(i=1; i<quant_dados; i++)

{

for(j=0;j<emax;j++)
if{Ifscanfi{arqdad,"%lf", & aux))
{

tela.erro_leitura();
fclose(arqdad);
goto erro,

}

else
{
ifaux>max)
max = aux,
else

if(aux<min)
min = aux;
!
¥
for(j=0;j<smax;}++)
if{ifscanf{arqdad, "%elf" &aux))
{
tela.erro_leitura();
fclose(argdad),
goto erro;
}
}
h

if{max==min)
min = max/1.1;

for(i=0;i<weight koh.lin;i++)
for(j=0;j<weight_koh.col;jt+)
weight_koh.m(i][j] = (({double)(rand ()% 1000))/1000)*(max-min)-+min;

for(i=0;i<nmax;i++)
{
norma = 0.0;
for(j=0;j<emaxj++)
norma+=weight_koh.mi]{j1*weight koh m{i][j];
norma=sqrt{fabs(norma));
for(j=0;j<emax;j++)
weight_koh.m[i]fj]/=norma;

rewind(arqdad};

erTo;

}

void net::corrige_pesos(vector winners, FILE *arqdad)

/* Correcao dos pesos utilizando randomicos dentro de uma faixa de valores (dados pelo arquivo de dados)
para meihorar o treinamento. A correcao s¢ e feita com os neurcnios que n&o foram vencedores (estes
neuronios constituiriam uma redundfncia da rede caso continuassem nZEo vencedores). *f

{
int i, j, k, quant_dados, max_winner;
double aux, norma=0.0;
tela_treino tela;

srand(pega_tempo()),

for(i=0;i<winners.size;i++)
if{winners.v[i]=—0) / verifica gual neuronio n&o foi vencedor
{
max_winner = 0;
aux = winners.v[0];
for(j=1;j<winners.size;j++)
if{winners.v{j]>aux)
{
aux = winners.vfjl;
max_winner = j;

}

for(j=0;j<weight_koh.colj++)
weight koh.m[i][j] = weight koh.m[max_winner]]j];
}

rewind(argdad);

QITO!

}

void net::treino_kohonen(double alfa_ini,double alfa_fim,double erro_max,double &erro,
int n_max,char *nome_arqdad)
/*Realiza o treinamento da camada Kohonen - "winmer takes all"*/
{
const aprf=1; // numero de iteracoes para exibicao dos resultados parciais
char key, *conv;
double erro_anterior, alfa, fraction;
unsigned long int iter=0;
int 1, j, quant_dados, apr;
treino trn;
tela_treinotela;

trn. winners.inicializar(nmax,0);, // inicializacao do vetor que indica se o neuronio e ou n&Eo vencedor

trn.t_ini = trn.pega_tempo(), // pega instante em que se iniciou o treinamento
trn.t_koh = 0;

tela.em_treinamemo(), / Mensagem: Em treinamento. Pressione P para interromper
apr = aprf,

fraction = (double)pow((alfa fim/alfa ini), 1.0/(n_max)), / fator para decaimento exponencial
/! do coeficiente de aprendizagem

alfa=alfa_ini;

erro_anterior = 0,

iter =0

quant_dados = trn.abre_arquivo(nome_arqdad); // abre arquivo de dados e recebe o
if{ tquant_dados) // numero de dados para treinamento
goto end;

if{altera_pesos == altera) // altera pesos quando a rede foi inicializada com valores quaisquer
tratar_pesos(trn.arqdad); // ¢ trata com faixa de valores contidos no arquivo de dados

do
{ -
iter++;
apr--;
fscanf{trn.arqdad, "%d",&quant_dados);
for(i=0;i<trn.winners.size;i++) // inicializa vetor que indica se os neuronios sEo vencedores
trie.winnters.v{i] = 0O,

for(i=0;i<quant dados;i++)

{
trn.le_dados(emax,smax entrada,saida), // leitura de um conjunto de dados de treinamento
if{(reconhec=="n"}]|(reconhec=="N")) // caso nZEo seja reconhecimento de padroes {caso geral)

acha_winner(); // obtencao do neuronio vencedor
trn.winners. v winner]++;

i

else

winner = (int)saida.v[0], //indica qual deve ser o neuronio vencedor (para reconheci-
// mento de padroes forca-se a competicao a partir da saida)
ajusta_kohonen(alfa); // ajuste dos pesos da camada Kohonen

}

rewind(trn.arqdad);
fscanf(trn.arqdad,"%ed" &quant_dados);

erro_anterior = erro;
erro = 0.0;

for(i=0;i<quant_dados;i++) // calculo do erro (distfncia euclidiana media)

trn.le_dados(emax smax entrada saida),
acha_winner();
errot=dist_euclid{winner,weight_koh,entrada, KOHONENY};

rewind(trn.arqdad);
erro/=quant_dados;

if{ (reconhec=="n")||(reconhec==N"})
if((iter!=1))

corrige_pesos(trn. winners, trn.arqdad); // correcao dos pesos p/ neuronios nAo vencedores

alfa*=fraction; //correcao do coef de aprend.

if{lapr)
{

apr = aprf,

trn.t_fim = trn.pega_tempo(),

trt_koh = abs(trn.t_fim - trmt_ini); // imprime resultados parciais do treinamento
tro.imprime_resultado_parcial koh(iter,erro,alfa,trn.t_koh),

}

if{kbhit(})
key = getch(),

iff (iter>=n_max) || (erro<erro_max) }

trn.t_fim = trn.pega_tempo(), // imprime resultados final do treinamento
trn.t_koh = abs(trn.t_fim - ten t_ini);
tr.imprime_resultado_parcial_koh(iter,erro,alfatrn.t_koh),
key ='p',

H

b
while((key!="p") && (key!=P"),

trn.fecha_arquivo();
trn. winners.destruir(};

end:

3

void net::treino_grossberg(double beta_ini,double beta_fim,double erro_max double &erro,int n_max,
double alfa, char *nome_arqdad)
/*Realiza o treinamento da camada Grossberg */

{
const aprf=1;

char key, *conv;

double beta, fraction;
unsigned long int iter=0;
int i, j, quant_dados, apr,
treino trn;

tela_tireinotela;

trn.t_ini = trn.pega_tempo();

trn.t_gross =0,

tela.em_treinamento(); // Mensagem: Em treinamento. Pressione P para interromper

apr = aprf;

iter =0;

fraction = (double)pow((beta fim/beta ini), 1.0/(n max)), // fator para decaimento exponecial
beta=beta ini; /f do coeficiente de aprendizagem

quant_dados = trn.abre_arquive(nome_arqdad); // abre arquivo de dados
if(!quant_dados)
goto end;

do

{ .
ier++;
apr-~,
fscanf{trn.arqdad,"%d",&quant_dados};
for(i=0;i<quant_dados;i++)

trnle_dados(emax,smax,entrada,saida), // leitura de um conjunto de dados de treinamento
acha_winner(); // obtencao do neuronio vencedor
ajusta_kohonen(alfz), // pequeno ajuste dos pesos da camada Kohonen
ajusta_prossberg(beta), // ajuste dos pesos da camada Grossberg

)

rewind(trn.arqdad},

fscanf{trn.arqdad,"%d",&quant_dados);

erro = 0.0;
for(i=0;i<quant_dados;i++) // calculo do erro (distfncia euclidiana media)
{

trn.le dados(emax,smax,entrada,saida);
acha_winner();
erro+=dist_euclid{winner,weight_gross,saida, GROSSBERG);

}

rewind(trn.arqdad),

erro/=quant_dados,

beta*=fraction, /lcorrecao do coeficiente de aprendizagem
if{lapr)
{
apr = aprf;
trn.t_fim = trn.pega_tempo(); // imprime resultados parciais do treinamento

trn.t_gross = abs{trn.t_fim - trn.t_ini);
tro.imprime_resultado_parcial gross(iter,erro,beta,trn.t_gross);

}

if{kbhit(})
key = getch(};

iff (iter>n_max) || (erro<erro_max))
d
trnt_fim = trn.pega_tempo(); // imprime resultados finais do treinamento
trn.t_gross = abs(trn.t_fim - trn.t_ini);
tri.imprime_resultado_parcial _gross(iter,erro,beta,trnt_gross);
key o !p!;
}

}
while((key!="p') && (key!='P"));

trn.fecha_arquivo(),

end:

}

void net: treinar_rede(void)
{*Treina a rede neural */
{
char key, *conv, *nome_arqdad,
double erro, erro_max=0.0,alfa, beta, alfa_ini, beta_ini, alfa fim, beta_fim;
unsigned long int n_max;
int i, j, quant_dados, apr;
treino trn;
tela tremotela;

tela.principal(); //tela inicial

if{ inicializado = nao)

{
telanao_definida(); // tela: rede nao inicializada
espera_tecla();
goto end;

}

if{'pede_arq dados(nome_argdad)) // tela pedindo arquivo de dados para treinamento
goto end;

tela.reconhecimento(reconhec); // pergunta se e ou r/Eo reconhecimento de 2 padroes com saidas 0 ou |
trn.leitura_parametros koh(alfa_ini,alfa_fim,erro _max,n max), //leitura dos parfmetros de treinamento

tela.resultado_parcial_koh(); // Tela para indicar 0 numero de iteracoes realizado
/f o erro obtido, o alfa final e o tempo de treinamento

treino_kohonen(alfa_ini,alfa_fim,erro_max,erro,n_max, nome arqdad);/ realiza o treinamento Kohonen

if{trn.continual()) // caso se deseje continuar com o treinamento Grossberg
{
reconhec = 's;
trn.leitura_parametros_gross(beta_ini,beta_fim,erro_max,n_max);//leitura dos parfmetros de treinamento

teta.resultado parcial gross(); // Tela para indicar o numero de iteracoes realizado
!l o erro obtido, o alfa final e o tempo de treinamento
treino_grossberg(beta_ini,beta_fim,erro_max,erro,n_max,alfa_fim,nome_arqdad); //treinamento Grossberg
}
tela fim_treino();
espera_tecla();

trn.imprime_arquivo{emax, smax,nmax, weight_gross,weight_koh);//imprime a rede para o arquivo caso
necessario

delete nome_arqdad;

end;

}

void net::testar_rede(void)
/*Subrotina que faz o teste de uma rede neural ja treinada ou nfo */

{

int i,j,iter=0,qual dado, quant dados,n_vezes,
double erro=0.0;

char *nome_arqdad,;

vector saida_desejada;

tela_teste tela,

treino trn;

tela principal();
saida_desejada inicializar(smax);
if{ inicializado == nao)

tela.nao_defimida(); // tela: rede nao inicializada
espera_tecla();
goto end;

}

if('pede_arq dados{nome arqdad)) // tela pedindo arquivo de dados
goto end;

quant_dados = trn.abre_arquivo(nome_argdad); // abre arquivo de dados
if{!quant_dados)
goto end;

tela.em teste();

tter = 0,
fscanf{trn arqdad,"%d" ,&quant_dados);
while(iter <= quant_dados)
{ .
iter++;
trnle dados{emax, smax,entrada, saida);
for(i=0;i<smax;i++)
saida_desejada.v{i] = saida.v[i];
saidas(); // acho as saidas a partir das entradas
for(i=0;i<smax;i++)
errot=pow(saida_desejada.v[i]-saida.v[i],2);

rewind(trn.arqdad);

erro/=quant_dados,

trn.teste_imprime(iter-1,erro); // imprime resultado do teste na tela
espera_tecla();

saida_desejada.destruir();

trn.fecha_arquivo();

delete nome_arqdad;

end:

}

void net::destruir(void)
/*Destréi as variaveis ainda alocadas na memgria */
{

weight_gross.destruir();

weight_koh,destruir();

saida. destruir(},

entrada.destruir();

}

void net::saidas(void)
/* Acha as saidas a partir das entradas */

{

int 1j;

for(i=0;i<smax;i++)
saida.v[i] = 0;

acha_winner();// acha o neuronio vencedor

for(i=0;i<smax;i++)
saida. v[i}=weight gross.mfi}[winner], // calculo das saidas

}

void net::executar_teclado(void)
/*Calcula 2 saida a ser obtida em uma rede previamente treinada atraves
do teclado */
{ - -
int
char *conv,
tela_execucao tela;
SCreef 5Cr;

tela.principal(emax);

if{ inmicializado == nao)

{
tela.nao_definida(), // tela: rede nao inicializada
espera_tecla();
goto end,

}

conv = new char [40];

for(i=0;i<emax;i++)

{
sprintf{conv, "Entrada %2d: " i);
scr.escrever{conv,10,11-+,15,1);
gotoxy(23,11+),
scanf{"%lf" &entrada.v[i}]);

}

saidas();

for(i=0;i<smax;i++)

{
sprintf{conv,"Saida %e2d: %11.61f",1,saida. v[i]);
scr.escrever(conv,42, 11+,15,1);

espera_tecla();
delete conv,

end:

1

void net::executar_arquivo(void)
f*Calcula as saidas a partir das entradas contidas em um arquivo */
{

char *arql, *arq2;

int 1i,], n_dados;

double norma=0.0;

FILE *arq_ent=NULL, *arq_sai=NULL,

tela exec arq tela;

tela principal();

if iniciglizado == nao)

{
tela.nao_definida(); // tela: rede nao inicializada
espera_tecla();
goto end;

}

tela.pede_arquivo(); // pede arquivo de dados para a execucao

arql = new char |20];
arq2 = new char [20];
scanf{"%s",arq1);

strecpy(arg2,arql};

streat(arql,"” ent"); /f extens/Eo *.ent para arq de entradas

strcat(arq2," sai"); // extenso *.sai para arq de saidas

if{ ({arq_ent=fopen(arql,"rt"))==NULL) || ({(arq_sai=fopen(arq2,"wt"))==NULL))
{

tela.impossivel_abrin();
espera_tecla(};
goto erro;
}
else
{
if(!fscanf{arq_ent,"%d",&n_dados))
{
tela.erro_leitura(};
20to erro;
}
for(i=0;(i<n_dados)&&(Ifeof{arq ent));i++)
{
norma = 0.0;
for(7=0;j<emax;j++)

{

if(!fscanflarq_ent,"%lf" &entrada.v[j])) / leitura de arquivo
{

tela.erro_leitura();

goto erro;

}

norma += entrada.v[j]*entrada. v[j];
}
norma = sqri(fabs(norma));
for(j=0;j<emax;j++)

entrada.v[j} /= norma;

saidas(},// calculo das saidas

for(j=0;j<smax;j++)
fprintflarg_sai," %lf ",saida v{j]); // impress/Eo em arquivo
fprintf{arg _sai,"\n"),
}

tela.fim da execucao();
espera_tecla();

erro:
fclose(arq ent);
fclose(arq_sai);
delete arql;
delete arg2;
end:

1

#PROGRAMA PRINCIPAL */

void main (void)
{
screen scr;
int i,opcao;
char ¢;
flag para;
net rede;

rede.inicializado = nao;

do
{

de novo:

scr.tela_principal();
gotoxy(48,21);
if (!scanf{"%d",&opcao)) goto de novo,

para = nao,
if (opcao < 1 || opcao > 7) goto de_novo;
else

if (opcao <7)
h

switch (opcao)

{

case 1:

rede.nova_rede();
break;

case 2:
rede.abrir rede();
break;

case 3:
rede.treinar_rede();
break;

case 4:
rede.testar_rede();
break;

case 5;
rede.executar_teclado(),
break;

case 6:
rede.executar_arquivo(),
break;

H
}

else para = sim;
H
} while (lpara);

if(rede.inicializado==stm)
rede.destruir();
scr limpa_tela(};

}

C. LISTAGEM DO PROGRAMA PARA GERACAO DOS

ARQUIVOS DE TREINAMENTO PARA O BACKPROPAGATION

#include <stdio.h>
#include <math.h>
#include <string.h>
#include <conio.h>
#include <dos h>
#include <stdiib h>

#define SIZE 256

enum flag { TREINAMENTO, PESOS, ENTRADAS };
enum resposta { SIM, NAQ };
enum inclui { NORMAL, H3 , H5 };

int VAR:

void limpa_tela(void)
/*Limpa a tela */
{

clrser(};

}

void quadro(int X1int Y1,int X2int Y2,int C1,int C2)

/*Funcao de tela que desenha um quadro dados os extremos de sua diagonal
e as cores do texto e do fundo &l

{
char T[81],
int F;

for(F=0;F<81;F++)
T[F]=0;
textbackground(C2),
textcolor(Cl);
T[0]=201;
for(F=X1+1,F<X2;F++)
T[F-X1]=205,
T[X2-X11=187,
gotoxy(X1,Y1);
cprintf{T);
T[0]=18¢;
for(F=X1-+1,F<X2;F++)
T[F-X1]=32;
T[X2-X1]=186;
for(F=Y1+1;F<Y2;F++)
{
gotoxy(X 1,F);
cprintf{T);
}
T[0]=200;
for(F=X1-+1;F<X2;F++)

T[F-X1]=205;
T[X2-X1}=188;
gotoxy(X1,Y2);
cprintf{T);
textcolor(7);
textbackground(0);
for(F=X1;F<=X2;F++)

T[F-X1]=176;
textbackground(0);
textcolor(15);

}

void escrever(char txt[],int x,int y,int ¢1,int ¢2)
/*escreve um texto na posicao (x,y) dado as cores de texto ¢ de fiundo */
{

textcolor{cl),

textbackground(c2);

gotoxy(x,y),

cprintf{txt);

textcolor(15);

textbackground(0);

}

void centro{char TXT[],int Y,int C1.int C2)
*funcao que centraliza um texto dado a linha e as cores do texto e de fundo */

{
int X;

X=(80-strlen(TXT))/2;
textcolor{C1);
textbackground(C2);
gotoxy(X,Y);

cprintf{ TXT);
textcolor{15);
textbackground(0);

}

void tela_fundo(void)
/*Cria a tela de fundo deste programa */
{

char TXT[81],

int F;

limpa_tela();

textbackground(0);
textcolor(15);
for (F=0;F<80;F++)
TXT[F]=32;
TXT[80}=0;
cprintf{TXT),
sprintf{ TXT,"= TRATAMENTO DE SINAIS =");
centro{TXT,1,14,0);
printf{"\n");
}

int le_dados(char *nomel, char *nome2, double *(&vetorl), double *(vetor2))
/*Faz a leitura dos dados do arquivo e coloca-os em vetores */

{

int i,j;
double aux;
FILE *argl, *arq2;

if ((arql=fopen{nomel,"rt"y)==NULL)

quadro(14,6,66.8,14,4);
escrever("IMPOSS+VEL ABRIR ARQUIVO!I" 20,7,15,4);
return 0;

}

else
if ((arq2=fopen(nome2,"rt"))==NULL)
{
quadro(14,6,66,8,14,4);
escrever("IMPOSS+VEL ABRIR ARQUIVO!!" 20,7,15,4);
return 0;

}
for(i=0;i<SIZE;i++)
if (fscanflarql, "%lIf", &vetorl[i]))

quadro(14,6,66,8,14,4);
escrever("ERRO NA LEITURA DE ARQUIVOIN" 20,7,15,4);
return O;

}
for(i=0;i<SIZE;it++)
if (Uscanf{arg2, "%, &vetor2{i]))

quadro(14,6,66,8,14,4);
escrever("ERRO NA LEITURA DE ARQUIVOI!!" 20,7,15,4);
return 0,

H

}
felose(arql);
fclose(arq2);

returnt 1:

}

void tratamento{double *{&wvetor), double *vec)
/*Faz o tratamento dos sinais transformando-os em superficies a partir de um vetor */

{

int 1j, aux}, aux2, aux3, auxd;
double temp;
struct fime t;

aux3=SIZE-1:
aux4=VAR;

for(i=0,i<SI1ZE;i++)
vetor[i]=vec[i];

for(i=0;i<(int)}(aux3/200*aux4);i++)

aux1 = rand()%e(aux3-1);
aux2 = rand()%(aux3-1);
temp = vetor[aux1j;

vetor[aux1]=vetorfaux2];
vetor[aux2]=temp;
}
temp = 0.0; /f Normalizaglo da matriz

for(i=0,i<(SIZE};i++)
temp+=pow(vetor[i},2};

temp = sqrt(fabs(temp));

for(i=0;i<(SIZE);i++)
vetor[i]/=temp;

}

void gera_arq(int n, char *nome, double *vetor1, double *vetor2,
double saidal, double saida2, flag tipo, inclui resp)
/f Funglo que gera arquivos. O flag indica qual o tipo de arquivo esta sendo criado.

int i,j,k,aux;
FILE *arg;
double *matriz;

matriz = new double [SIZE];
for(i=0;i<(SIZE);i++)
matriz[i]=0.0;

if{resp=NORMAL)

if ({(arqg=fopen(nome,"wt"))==NULL)
{
quadro(14,6,66,8,14,4);
escrever("ERRO NA CRIAC!O DE ARQUIVO!!!" 20,7,15,4),
goto end;
}
h

else

i
if ((arq=fopen(nome,"at"})==NULL)

quadro(14,6,66,8,14 4),
escrever("ERRO NA CRIAC!CO DE ARQUIVO!!" 20,7,15,4);
goto end;

}
}

if{tipol=PESOS)
if{ resp=NORMAL)
forintf{arg, "%ed\n\n",2*n); // para arquivos de treinamento e entrada

for(k=0;k<n;k++)
{
printf{*.");
for(i=0;i<(SIZE);i++)
matriz[i]=0.0;
tratamento({matriz,vetorl); //tratamento dos sinais
for(i=0;i<(SIZE);i-++)
fprintf{arg,” %68.61f", matriz[i]); // impressic das matrizes

if{ tipo == TREINAMENTOQ)
fprintf{arq,"\n %8.6lf\n",saidal); // impressjo das saidas para

else /{ 0s arquivos de treinamento
fprintf{arg,"\a");
}
for(k=0k<n;k++)
{
pfintﬂ" . ");
for(i=0;i<(SIZE};1++)
matriz[ij=0.0;

tratamento(matriz,vetor2), // tratamento dos sinais
for(i=0;1<(SIZE);i++)
fprintf{arg," %68.61", matriz[i]}; // impressio das matrizes
if{ tipo == TREINAMENTO)
fprinti{arg,"\n %8 .6f\n" saida2);, // impressio das saidas para
else // os arquivos de treinamento
fprintf{arg,"\n");

end:

delete matriz;
matriz=NULL;
fclose(arg);

if{resp==H3 || resp==HS5)
if { (arqg=fopen{nome,"r+t"}}=—=NULL)

quadro{14,6,66,8,14,4),
escrever("ERRO NA CRIAC|O DE ARQUIVO!I",20,7,15,4);
3
else
if{tipo!=PESQS)
{
fscanf{arq,"%ed", &aux),
rewind(arg);
fprintf{arg,” %d\n", aux+2*n};
}
felose(arq);
}
}

void main{void})
{
inti, n_dados, n;
double *vetorl, *vetor2;
char *nomearql,*nomearq2, *nome_trn, *nome_tst, resp;
FILE *arg;
resposta h3=NAQO, h5=NAO,

nomearql = new char [15];
nomearq2 = new char [15];
nome_trn = new char [15];
nome _tst = new char [15];

vetor! = new double [SIZE];
vetor2 = new double [SIZE];

for(i=0,i<SIZE;i++)
{
vetorl[i] = 0.0;
vetor2fi] = 0.0;
}

do
{ erro:

limpa_tela();
quadro(14,4,66,14,14,1);
centro("== TRATAMENTO DE SINAIS PARA BACKPROPAGATION =" 5,14,1Y;

if(h5==NAQ)

{
if(h3==NAOQ)
{

escrever(" Nome do arquivo do sinal 1: *,17,7,15,1);
escrever(" Nome do arquive do sinal 2: ”,17,8,15,1);
}
else
{
escrever(" Arquivo da 3a. harm. do sinal 1: *,17,7,15,1);
escrever(" Arquivo da 3a. harm. do sinal 2: ",17,8,15,1);

}

}

else

{
escrever(" Arquivo da 5a. harm. do sinal 1: ",17,7,15,1,
escrever{" Arquivo da 5a. harm. do sinal 2: *,17.8,15,1);

}

escrever(” Distorcao: ",17,10,15,1);
escrever("Numero de dados para treinamento: ",17,11,15,1);

escrever(" Nome do arquivo de treinamento: ",17,12,15,1);
gotoxy(51,7);

scanf{"%s",nomearql);

gotoxy(51,8);

scanfl"%s", nomearq2);

do

{
gotoxy(51,10);
scanf{"%d" &VAR);

}

while{ VAR<0);

do

{
gotoxy(51,11);
scanf{"%d",&n_dados);

}
while(n_dados<0);

if(h3==NAO&&h5=NAQ)
{
gotoxy(51,12),
scanf{"%s",nome_trn);
}

else

escrever(nome_trn,51,12,15,1);

strcat(nomeargl,”.txt");
strcat(nomearq2," txt");

printf{"n\n\n\n\nAgunarde...");

if(| le_dados{nomearql,nomearq2,vetorl,vetor2) } // leitura do arquivo

{
getch();
20t0 erro;

}

if(h3==NAO&&h5==NAQ)

{
strepy(nome_tst,nome trn},
strcat(nome_trn," trn");
strcat(nome_tst," ent");

}

n=n_dados/2;

if{ hS==NAO)
{
il h3==NAO)
{

gera_arq{n,nome_trn vetorl,vetor2,0,1 TREINAMENTO, NORMALY), // gera arquivo de treinamento
gera_arq(n,nome_tst,vetorl,vetor2,0,1, ENTRADAS, NORMAL); // gera arquivo de entrada
}

else

{
gera_arq(n,nome_trn,vetor],vetor2,0,1, TREINAMENTO,H3); // gera arquivo de treinamento

gera_arg(n,nome_tst,vetorl,vetor2,0,1, ENTRADAS, H3),// gera arquivo de entrada
}
}
else

{
gera_arg(n,nome_trm,vetorl,vetor2,0,1, TREINAMENTO,HS5); // gera arquivo de treinamento

gera_arq(n,nome_tst,vetorl,vetor2,0,1, ENTRADAS HS5);// gera arquivo de entrada
}

iflh3==NAQ)
{
quadro(18,17,60,19,14,4);
escrever("Incluir 3a. Harmdnica? (S/N): ",24,18,15,4);
gotoxy(54,18);
do

{
scanf{"%c" &resp);

3
while((resp!=n")&& (resp!=MN")&&(resp!="s"W&&(resp!='S"),

if(resp=="s)|(resp=="8'))
{
h3 = SIM;
goto erro,
3
}

else

if(h5==NAO)
{
quadro(18,17,60,19,14,4);
escrever("Incluir 5a. Harménica? (S/N): ",24,18,15.4);
gotoxv(54,18);
do
{
scanf("%c",&resp);

}
while((respi="n"}&&(resp! ="N")& & (resp!="s"N&&(resp!='8");

i{f((resp=='S')Ii(resp='S‘))

hs = SIM;
goto erro;
}
}

limpa_tela();
quadro(14,6,66,8,14,1);
escrever({"Todos os arquivos foram criados com sucesso!",18,7,15,1);

quadro(16,12,64,14,14,4);
escrever("Deseja continuar no programa? (S/N): ",22,13,15,4);
do
{
gotoxv(59,13),
scanf{"%c¢" &resp);
}
while((resp!="n")&&(respl="N"}&&(resp!='s"& & (resp!='S");
if{(resp!="s")|i(resp!='S")
{

h3 = NAQ;
h5 =NAQO,
¥

}
while((resp!="n")&&(resp!=N");
end:

delete nomearql;
delete nomearq2;
delete nome_trn;
delete nome tst;
delete vetorl;
delete vetor2;

nomearql = NULL;
nomearqg2 = NULL,;
nome_trn = NULL;
nome_tst = NULL;
vetor]l = NULL;
vetor2 = NULL,

D. LISTAGEM DO PROGRAMA PARA GERACAO DOS
ARQUIVOS DE TREINAMENTO (PRE-PROCESSAMENTO DOS

SINAIS) PARA O COUNTERPROPAGATION

#include <stdio h>
#include <math.h>
#include <string h>
#include <conio.h>
#include <dos.h>
#include <stdlib.h>

#define SIZE 2048

enum flag { TREINAMENTO, PESOS, ENTRADAS };
enurm resposta { SIM, NAO };
enum inclui { NORMAL, H3 , H5 }:

int VAR;

void limpa_tela(void)
*Limpa a tela */
{

clrser();

}

void quadro(int X1,int Y1,int X2,int Y2,int C1,int C2)

/*Funcao de tela que desenha um quadro dados os extremos de sua diagonat
e as cores do texto ¢ do fundo */

{
char T[81];
int F;

for(F=0,F<81;F++)
T{F]=0;
textbackground(C2);
textcolor(C1),
T[01=201;
for(F=X1+1;F<X2;F++)
T[F-X1]=205;
T[X2-X1]=187,
gotoxy(X1,Y1);
cprintfT);
T[0]=186;
for(F=X1+1,F<X2;F++)
T[F-X1]=32;
T[X2-X1]=186;
for(F=Y1+1;F<Y2;F++)
{
gotoxy(X1,F);
cprintf(T);
¥

T[0]=200;
for(F=X1+1,F<X2;F++)
TIF-X1]=205;
T[X2-X1]=188;
gotoxy(X1,Y2);
cprintf{T);
textcolor(7);
textbackground(0);
for(F=X1,F<=X2;F++)
T[F-X1]=176;
textbackground(0);
textcolor(15);

}

void escrever(char txt{],int x,int y,int ¢1,int ¢2)
/* escreve um texto na posicao {x,y) dado as cores de texto ¢ de fundo */
{

textcolor(cl);

textbackground(c2),

gotoxy(x,y);

cprintfitxt);

textcolor(15);

textbackground(();

}

void centro{char TXT(],int Y,int C1,int C2)
*funcao que centraliza um texto dado a linha e as cores do texto e de findo */

{
int X;

X=(80-strien(TXT)/2;
textcolor(Cl1);
textbackground(C2);
gotoxy(X,Y),
cprimtf{TXT);
textcolor(15),
textbackground(0),

}

void tela_findo(void)
f*Cria a tela de fundo deste programa */
{

char TXT[81F;

int F;

limpa_tela();

textbackground(0);
textcolor(15);
for (F=0;F<80;F++)
TXT[F]=32;
TXT[80]=0;
cprintf{ TXTY,
sprintf{ TXT,"== TRATAMENTO DE SINAIS ="},
centro(TXT,1,14,0);
printf{"\n");
3

int le_dados(char *nomel, char *nome2, double *(&vetorl), double *(vetor2))

/*Taz a leitura dos dados do arquivo e coloca-os em vetores */
{

nt ij;

double aux;

FILE *arql, *arq2;

if ((arql=fopen{nomel,"rt"))==NULL)
{
quadro(14,6,66,8,14.4);
escrever("IMPOSS+VEL ABRIR ARQUIVOI!!!" 20,7,15 4);
return 0;
}
else
if ((arq2=fopen(nome2, "rt"})==NULL)

quadro(14,6,66,8,14,4);
escrever("IMPOSS+VEL ABRIR ARQUIVO!!!",20,7,15,4),
return Q;

}

for(i=0;i<8I1ZE;i++)
{
if (Mscanf{arql, "%If", &vetorl[i]))
{
quadro(14,6,66,8,14,4);
escrever{"ERRO NA LEITURA DE ARQUIVOII" 20,7,15 4),
return 0;
}
¥
for(i=0;i<SIZE;i++)
{
if (fscanf{arq2, "%lIf", &vetor2[i]))
{
quadro(14,6,66,8,14,4);
escrever("ERRO NA LEITURA DE ARQUIVOII" 20,7,15,4),
return 0,
¥
1
fclose(arql);
fclose(arq2);

aux = fabs(vetor1[0]);
for(i=1;i<SIZE;i++)
if{vetori[iJ>aux)
aux = fabs(vetor1[i});
for(i=0,i<SIZE;i++)
vetorl[i]/=aux;

aux = fabs(vetor2[0]);
for(i=1;i<8IZE;i++)
if{vetor2[i]>aux)
aux = fabs(vetor2[i]):
for(i=0;i<8I1ZE;i++)
vetor2[i]/=aux;

return 1;

void tratamento(double **(&matriz), double *vec, int grade)
/*Faz o tratamento dos sinais transformando-os em superficies a partir de um vetor */
{

int 1,j, posicao_ini, posicac_pos, auxi, aux2, aux3, aux4;

double data_ini, data_pos, temp, *vetor;

struct time t;

aux3=SIZE-1;
aux4=VAR;

vetor = new double [SIZE];

for(i=0;i<SIZE;i++)
vetor[i]=vec/[i];

data ini = vetor[0];
posicao_ini = (int)((data_ini+1)*(grade)/2), // posigio de um ponto no instante k

for(1=0;i<(int}(aux3/200*aux4);i++)

aux! = rand()%(aux3-1),
aux2 = rand()%(aux3-1);
temp = vetor[aux1];
vetorfaux1]=vetorfaux2|;
vetor{aux2]=temp;

}

for(i=1,i<SIZE;i++)

{
data_pos = vetor[i];
posicao_pos=(int)({(data_pos+1)*(grade)/2); // posiglo de wm ponto no instante k+1
matriz[posicao_ini][posicac_pos}t+; //incrementa a matriz na linha fik) ¢ na coluna fk+1)
data_ini=data_pos;
posicao_ini = posicao_pos;

}

for(i=0;i<(grade+1);i++)
for(j=0;j<(grade+1);j++)
matriz[i][j]=(1-pow(0.5,matriz[il[j1}); // faz tratamento de amplitude por uma PG

delete vetor;
vetor = NULL;
}

void gera_arq(int n, char *nome, int grade, double *vetor1, double *vetor2,
double saidal, double saida2, flag tipo, inclui resp)
// Fungjo que gera arquivos. O flag indica qual o tipo de arquivo esta sendo criado.
{
int i,j,k,aux;
FILE *arg;
double **matriz,

matriz = new double *{grade+1];
for(i=0;i<(grade+1);i++)

matriz[i] = new double [grade+1];
for(j=0<(grade+1);j++)
matriz[i][jJ=0.0;

if{lresp==NORMAL)

{
if ((arqg=fopen(nome,"wt")}==NULL)
{

quadro(14,6,66,8,14,4);
escrever("ERRO NA CRIACIO DE ARQUIVOII® 20,7,15,4),
goto end;
1
J
else
{
if ((arg=fopen(nome,"at"))==NULL)
{
quadro(14,6,66,8,14,4);
escrever("ERRO NA CRIACO DE ARQUIVO!!', 20,7,15,4),
goto end;
}
}

if{tipo!=PESOS)
if{ resp=—=NORMAL.)
forintf{arg,"%d\n\n",2*n); // para arquivos de treinamento e entrada

for(k=0;k<n;k-++)
{
printf(".");
for(i=0;i<(grade+1);i++)
for(=0;j<(grade+1)j++)
matriz[i}[j]=0.0;
tratamento(matriz,vetorl,grade); //tratamento dos sinails
for(1=0;i<(grade+1);i++)
for(j=0;j<(grade+1);j++)
{
fprintflarq," %8.61", matriz[i][j1); // impressic das matrizes
if(j==(grade))
fprintf{arg,"\n");
}

if{ tipo = TREINAMENTO)

fprintfarg,” %8.6lf\n\n",saidal);, // impressio das saidas para
else /! 08 arquivos de treinamento

fprintflarg,"” \n\n");

j
for(k=0;k<n;k++)
{

printf‘("- |l);

for(i=0;i<(grade+1);i++)
for(j7=0;j<(grade+1);j++)
matriz[i]fjj=0.0;
tratamento(matriz,vetor2,grade); // tratamento dos sinais
for(i=0;i<(grade+1);i++)
Tor(j=0;j<(grade+1);j++)

fprintf(arg,” %8.61f", matriz[i][j]); // impresslo das matrizes
ifij=(grade))
fprintfarq,"\n");
H

iff tipo = TREINAMENTO)
fprintf{arg,” %8.61f\n\n",saida2); // impressio das saidas para

else /f 0s arquivos de treinamento
fprintf{arq," \n\n");
}

end:

for(i=0;i<(grade+1);i++)
delete matriz[ij;

delete matriz,

matriz=NULL;

fclose(arg);

if(resp==H3 | resp==HS5)
if ((arg=fopen{nome,"r-+"))=NULL)

quadro(14,6,66,8,14,4),
escrever("ERRO NA CRIAC|O DE ARQUIVOH!I" 20,7,15,4);
}
else
if(tipo!=PESOS)
{
fscanf{arq,"%d",&aux);
rewind(arq),
fprintf{arg,” Yd\n" aux+2%n),

felose(arq);
}
}

void main{void)
{
int i,grade, n_dados, n;
double *vetorl, *vetor2,saidal, saida2;
char *nomearql,*nomearq2, *nome_trn, *nome_tst, *nome_wkh, *nome_wgr, *nome sz,
resp, inicia_pesos;
FILE *arq, *arq_wkh, *arq_wgr, *arq sz,
resposta h3=NAQ, h5=NAQ,

nomeargl = new char [15];
nomearq2 = new char [15];
nome_trn = new char [15];
nome_tst = new char [15];
nome_wkh = new char [15];
nome_wgr = new char [15];
nome sz = new char [15];

vetorl = new double [SIZE];
vetor2 = new double [SIZE];

for(i=0,i<SIZE;i++)
{
vetori[i] = 0.0;
vetor2[i] = 0.0;
!

do
{ erro:

limpa_tela();
quadro(14,4,66,15,14,1);
centro{"== TRATAMENTO DE SINAIS =="5,14,1);

if(h5=—=NAO)

{
if(h3==NAO)
{

escrever(" Nome do arquivo do sinal 1: ",17,7,15,1);
escrever(" Nome do arquivo do sinal 2: ",17,8,15,1);

}

else
{
escrever(™ Arquive da 3a, harm. do sinal 1: ",17,7,15,1),
escrever(" Arquivo da 3a. harm. do sinal 2: ",17,8,15,1};
}
}
else
{
escrever(" Arquivo da 5a. harm, do sinal 1: ",17,7.15,1);
escrever(" Arquivo da 5a. harm. do sinal 2: ",17,8,15,1);

4

escrever(" Grade: ",17,9,15,1};
escrever(" Disgtorcao: ",17,10,15,1);
escrever{"Numero de dados para treinamento: ",17,11,15,1);

escrever{" Nome do arquivo de treinamento: ",17,12,15,1);
escrever(" Inicializacao de pesos? (s/n): ",17,13,15,1);
gotoxy(51,7);
scanf{"%s" nomearg1);
gotoxy(51,8);
scant{"%s",nomearg2);
if{h3=NAO&&h5==NAQ)
do
{
gotoxy(51,9);
scanf{"%d", &grade);

grade = grade - 1;
3
while(grade<0 {| grade>50),
else

{
gotoxy(51,9);
printf{"%ed" grade+1);
}

do

{
gotoxy(51,10);
scanf{"%d" & VAR);

t

while{ VAR<0);

do

{
gotoxy(51,11);
scanf{"%d".&n_dados),

}
while(n_dados<0);

if(h3==NAO&&h5==NAO)

gotoxy(51,12);
scanf{"%s",nome_trny,

}

else
escrever(nome_trm,51,12,15,1);

if{h3=—=NAQ&&hS==NAQO)
do

gotoxy(51,13);
scanf{"%c", &inicia_pesos);

}
while((inicia_pesos!=n")&&(inicia_pesos!=N"}&&(inicia_pesos!="s")&&(inicia_pesos!='S"));

else
iffinicia_pesos=s' || inicia_pesos=='S")
escrever("sim",51,13,15,1);
else
escrever{"nlo",51,13,15,1);

strcat{nomearql," txt"};
strcat(nomearg2,” txt");

printf{"\n\n\n\mnAguarde...");

iff | le_dados(nomearq1,nomearq2,vetor,vetor2)) // leitura do arquivo
{

getch(),

ZOto erro;

}

ifh3==NAO&&h5=—=NAQ)

{
strepy{nome_wkh,nome_trny);
strepy(nome wgr,nome_trm);
strepy(nome sz nome_trn},
strepy(nome_tst,nome_trm);
strcat(nome_trn,".trn"),
strcat(nome_wkh," wkh");
streat(nome_wgr," . wer");
streat(nome_sz,".sz");
strcat(nome_tst," ent");

}
n=n_dados/2;

ifl h5==NAO)
{
i{ h3==NAQO)
{
gera_arg(n,nome_trn,grade, vetorl,vetor2,0,1, TREINAMENTO, NORMALY), // gera arquivo de
treinamento
if(inicia_pesos=="¢' [| inicia_pesos='S")
gera_arq(1,nome_wkh,grade,vetorl,vetor2,0,1, PESOS, NORMALY); // gera arquivo de pesos
I gera_arg{n,nome_tst,grade,vetorl,vetor2,0,1, ENTRADAS, NORMALY); // gera arquivo de entrada
7 gera_arg(l,nome_wkh,grade, vetorl,vetor2,0,1,PESOS, NORMALY);, // gera arquivo de pesos

#

=

H

}

else

{
gera_arg(n,nome_trn,grade,vetorl,vetor2,0,|, TREINAMENTO,H3); // gera arquivo de treinamento

if{inicia_pesos=='s' || inicia_pesos=='8")
gera_arq(l,nome_wkh,grade,vetorl,vetor2,0,1,PESOS H3), // gera arquivo de pesos

gera_arq(n,nome _tst,grade,vetorl,vetor2,0,1, ENTRADAS H3), // gera arquivo de entrada

gera_arq(l,nome_wkh grade,vetori,vetor2,0,1,PESOS H3); // gera arquivo de pesos

}

3

else

{ 3
gera_arg({n,nome_trn,grade vetorl,vetor2,0,1, TREINAMENTO,HS5); // gera arquivo de treinamenio
ifinicia_pesos=='¢' | inicia_pesos=='8")

gera_arq(1,nome_wkh,grade vetorl vetor2,0,1, PESOS H5);, // gera arquivo de pesos

gera_arq(n,nome_tst,grade,vetor],vetor2,0,} ENTRADAS, HS); // gera arquivo de entrada
gera_arq(l,nome_wkh,grade,vetorl,vetor2,0,1, PESOS,H5); // gera arquivo de pesos

}

if{h3=NAQ)
{
quadro(18,17,60,19,14,4);
escrever("Incluir 3a. Harménica? (S/N): *,24,18,15.4);
gotoxy(54,18);
do

scanf{"%c", &resp);

}
while((resp!='n)&&(resp!=NN& & (resp!="s& &(resp!='8");

i{ﬂ(re5p=‘8')ll(resp='S‘))

h3 = SiM;
goto erro;
¥
}

else

if(h5=NAQ)

{
quadro(18,17.60,19,14, 4);
escrever("Incluir 5a. Harménica? (S/N): ",24,18,15,4);
gotoxy(54,18};
do
{

scanf{"%c",&resp);

H
while((resp!="n)&&(resp!="N"&& (resp!="s"&&(resp!='S");

i{ﬂ(resp='5‘)ﬂ(resp='S’))

h3 = SIM;
goto erro,
}
}

n = (grade+1)*(grade+1);

i{inicia_pesos='s' || inicia_pesos=="3'}

{

if { (arq_sz=fopen{nome_sz,"wt"))==NULL)}

{
quadro(14,6,66,8,14,4);
escrever("ERRO NA CRIAC!O DE ARQUIVO!!" 20,7,15,4);
goto end;

}

if(h3==NAO&&h5=NAO)
fprintflarq_sz," %d\n %d\n %d”, n, 1, 2);
else
if(h3==SIM&&h5==NAQ)
fprintfarg sz," %d\n %d\n %d", n, 1, 4);
eise
iflh3==SIM&&h5==8IM)
fprintflarq_sz." %d\n %dn %d", n, 1, 6),

fclose(arg sz),

saidal=0;
saida2=1;

if { (arg_wgr=fopen{nome_wgr,"wt"))}==NULL)

{
quadro(14,6,66.8,14.4);
escrever("ERRO NA CRIAC!O DE ARQUIVO!!Y,20,7,15,4),
goto end;

}

iflh3==NAQO&&h3==NAO)

fprintf{arq_wer," %8.61f %8 6Mn",saidal, saida2);
else

f(h3==8IM&&h5==NAO)

forintflarq_wgr," %8.61f %8.61f %8.6If %8.61\n" saidal,saida2,saidatl, saida2);

else
if{h3==SIM&&h5==SIM)
fprintflarg_wegr," %8.6lf %8.6If %8.6If %8.61f %38.6lf
%8.61f\n",saidal,saida2, saidal,saida2,saidal,saida2);

felose(arq_wegr);
}

limpa_tela();
quadro(14,6,66,8,14,1);
escrever("Todos os arquivos foram criados com sucesso!",18,7,15,1);

quadro(16,12,64,14,14.4);
escrever("Deseja continuar no programa? (S8/N): ",22,13,15,4);
do
{
gotoxy(59,13);
scanf{"%c" &resp);

while((resp!="n")&& (resp!=N")&&(resp!='s")&&(resp!='S")};
if{(resp!="s")i|(resp!='S"))
{
h3 = NAO;
h5 = NAQ;
}

}
while{(resp!="n")&&((resp!="N");
end:

delete nomearqgl,;
delete nomearq2;
delete nome_trn;
delete nome _tst;
delete nome_wkh;
delete nome_waer;
delete nome_sz;
delete vetorl;
delete vetor2;

nomeargl = NULL,;
nomearg2 = NULL,
nome_trn = NULL;
nome_tst = NULL,
nome wkh =NULL,;
nome_wgr = NULL;
vetori = NULL,
vetor2 = NULL;

