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RESUMO 
 

 

 Foi utilizado o método de Ketchum para a resolução de uma coluna de 

destilação genérica e multicomponente. Por ser este baseado no método de Newton 

Global, necessita de estimativas iniciais próximas à solução. Para a obtenção de 

valores iniciais de temperatura, composição e vazões satisfatórios, foi implementada 

uma modificação do método de “bubble point”. Para se aumentar a estabilidade e 

melhorar a convergência do método, foi utilizada a busca unidimensional no cálculo 

do fator de amortecimento. Foi escolhida uma coluna depropanizadora para a 

simulação e validação do modelo e posterior otimização econômica. A função 

objetivo minimizada representa os custos operacionais gerados pelo consumo 

energético. O algoritmo de otimização utilizado foi o do Gradiente Reduzido 

Generalizado. As propriedades termodinâmicas foram calculadas a partir da 

equação de estado de Peng-Robinson. 

 
 
 
 
 
 
 
 



ABSTRACT 
 

 

The Ketchum method was implemented to solve a general and 

multicomponent distillation column. Because this is based on the Global Newton 

method, it requires good initial estimates. In order to obtain such values for the 

temperatures, compositions and flows, it was implemented a modified bubble point 

method. To improve convergence and stability, an unidirectional search algorithm 

was used in the calculation of the damping factor. It was chosen a depropanizer 

column in order to validate the developed model and further optimization. The 

minimized objective function represents the operational costs generated by the 

energy consumption. The optimization algorithm used was the Generalized Reduced 

Gradient. The thermodynamics properties were calculated from the Peng-Robinson 

equation of state. 
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1. INTRODUÇÃO 

 
 

A destilação é o método de separação baseado na diferença de composição 

entre uma fase líquida em ebulição e o vapor formado por ela. Essa diferença de 

composição é resultante da diferença entre as pressões de vapor, ou volatilidades, 

dos componentes da mistura. (Fair, R. J., 2005).  

Os primeiros estudos do processo de destilação datam da Idade Média (por 

volta do ano 800) e foram realizados pelo criador do alambique, o alquimista islâmico 

Abu Musa Jabir ibn Hayyan. 

Os sistemas de separação modelados prato a prato começaram a ser 

estudados na década de 30. Porém apenas nos anos 70, com o advento de 

computadores digitais, é que se puderam desenvolver os modelos rigorosos.  

 É interessante a busca pela otimização das condições operacionais das 

colunas de destilação pois esta operação é, provavelmente, o método de separação 

mais utilizado nas indústrias químicas e petroquímicas de todo o mundo e, devido às 

necessidades de condensação e vaporização de misturas, o gasto energético e os 

custos operacionais envolvidos nesse processo são elevados.  

A realização de testes em plantas industriais de operação contínua é 

normalmente inviável e, assim, faz-se necessário o desenvolvimento de um modelo 

matemático que represente o processo com fidelidade. 

Este trabalho consiste na modelagem de uma coluna de destilação genérica, 

contínua e multicomponente através de um método rigoroso. O equipamento foi 

também otimizado a fim de se obter menor custo operacional. 
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2. REVISÃO BIBLIOGRÁFICA 

 

 

2.1. Processos de Destilação 

 

 

Uma coluna de destilação é um equipamento projetado para a separação de 

componentes de uma mistura e que permite o contato entre as fases líquida e vapor 

da mesma. A vazão de líquido através dos pratos é descendente e a de vapor é 

ascendente, de tal maneira que existe contato entre as fases e ocorre transferência 

de massa e de energia entre elas (Holland, C.D., 1981). 

As dimensões das colunas usadas industrialmente são impressionantes: 

podem alcançar 103 m de comprimento e ter diâmetros de até 50 ft. As pressões de 

operação variam desde, aproximadamente 2000 até 3,5.106 Pa. (Holland, C.D., 

1981). 

O vapor que deixa o primeiro prato entra em um condensador onde pode ser 

parcial ou totalmente condensado. O líquido resultante é coletado em um 

acumulador de onde se obtém o refluxo e o produto de topo. Quando o vapor é 

totalmente condensado e o destilado é totalmente líquido, o condensador é total. 

Quando o vapor é parcialmente condensado, existe um refluxo líquido e o destilado 

está na fase vapor, o condensador é parcial. O líquido que se obtém no fundo da 

coluna passa por um refervedor onde é parcialmente vaporizado. A fase vapor 

retorna ao equipamento em fluxo ascendente e o líquido, chamado de produto de 

fundo, é removido da coluna (Holland, C.D., 1981). 

 

 

2.2. Propriedades Termodinâmicas 

 

 

O projeto de equipamentos para operações de separação envolve o cálculo 

do equilíbrio e das entalpias das fases. A termodinâmica clássica utiliza-se de 

relações entre pressão, volume e temperatura para a obtenção das propriedades 
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necessárias.  Essas relações são chamadas de equações de estado (Henley, E. J., 

Seader, J. D., 1968).  

A equação de estado recomendada para descrever o comportamento de 

substâncias apolares em condições próximas às de saturação é a de Peng-

Robinson, que é equivalente à de Soave para vapores saturados (Prausnitz, J. M. et 

al, 1988).  

A variação nas propriedades termodinâmicas (entalpia, entropia, energia 

interna, fugacidade, energia livre de Gibbs, etc) está relacionada às variáveis de 

operação da coluna de destilação modelada. Portanto, é de extrema importância a 

análise das variações nessas propriedades com mudanças na temperatura, pressão 

e outras variáveis independentes de um sistema (Prausnitz, et al, 1988).   

As entalpias de cada fase são calculadas a partir das funções de afastamento 

desta propriedade.  A função de afastamento é obtida a partir da equação de estado 

e é definida como sendo a diferença entre o valor de uma propriedade 

termodinâmica nas condições do estado de gás ideal com relação à mesma 

substância ou composição de mistura em determinadas condições de temperatura e 

pressão (Prausnitz, et al, 1988).   

 

 

2.3. Modelagem da coluna 

 

 

 As equações dos balanços de massa e de energia referentes à coluna 

(incluindo-se o condensador e o refervedor) podem ser resolvidas através de 

métodos rigorosos como, por exemplo, o Método de Thiele and Geddes, o Método 

da Relaxação, o Método de Newton-Raphson e o Método de Ketchum. 

Método de Thiele and Geddes: as temperaturas de cada estágio são 

consideradas variáveis independentes (Holland, C.D., 1981).  

O Método da Relaxação consiste em se determinar a solução de uma coluna 

considerando que esta opere em regime transiente. Neste método, a coluna tem sua 

partida com líquido em todos os estágios e alimentação no ponto de bolha. O 

equipamento é levado ao estado estacionário através de aproximações sucessivas 

das equações no regime não estacionário (Kister, H. Z., 1992). Este é um método 
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bastante estável independentemente da complexidade da coluna, da dependência 

composição com os valores de K e dos valores iniciais escolhidos. Porém, a 

convergência torna-se muito lenta a medida que se aproxima da solução, o que 

torna impraticável a sua utilização para o uso comum. 

O método de Newton Global utiliza-se de uma quasi-linearização do sistema 

de equações da coluna para corrigir simultaneamente as variáveis e minimizar os 

erros nas equações dos balanços de massa global, por componente, de entalpia e 

da equação da soma. Para a resolução de problemas de destilação, normalmente o 

método de Newton-Raphson deve ser amortizado para que a convergência seja 

atingida de forma mais estável. Porém, quando os valores iniciais são muito 

diferentes da solução, a convergência não pode ser garantida mesmo com a 

amortização.   

 O Método de Ketchum consiste em uma combinação entre os métodos da 

Relaxação e de Newton-Raphson e será posteriormente explicado. 

 

 

2.4. Otimização 

 

 

A otimização de processos é utilizada, dentre outros, para os seguintes fins: 

- aumentar rendimento de processos; 

- reduzir custos operacionais; 

- diminuir a geração de poluentes; 

- aumentar a taxa de geração de produtos; 

- reduzir a necessidade de manutenção; 

- ajustar parâmetros de modelos matemáticos de simulação. 

-  

As etapas a serem seguidas para a resolução de um problema de otimização 

são: 

1) Definição das variáveis a serem manipuladas e determinação das 

restrições do processo ou do produto; 
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2) Definição de uma função objetivo que pode estar relacionada, por exemplo, 

ao custo do processo, ao lucro, ao consumo de energia e às 

especificações dos produtos; 

3) Desenvolvimento de um modelo matemático que represente o processo e 

as restrições com fidelidade. As restrições podem ser escritas na forma de 

igualdades ou desigualdades; 

4) Aplicação de um algoritmo de otimização adequado ao problema; 

5) Verificar a coerência das respostas e a sensibilidade dos resultados à 

mudanças nas hipóteses adotadas. 

Existem vários algoritmos de otimização que se utilizam de programação linear e 

não linear que podem ser utilizados para a resolução de problemas de engenharia. 

Dentre os mais utilizados estão: 

- Simplex: busca, através da programação linear, o ponto ótimo sobre as 

intersecções das restrições com a função objetivo.  

- Gradiente Reduzido Generalizado (GRG): Através da linearização das 

funções (expansão de Taylor) em cada iteração, busca o mínimo (ou o 

máximo) da função objetivo através da substituição das restrições no 

gradiente desta função, reduzindo o número de variáveis independentes (daí 

o nome de gradiente reduzido). 

- Programação Quadrática Sucessiva (SQP): Aproximação da função objetivo 

por uma função quadrática e as restrições por equações lineares, de forma a 

encontrar o mínimo (ou máximo) da função objetivo. 
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3. MODELAGEM 

 

 

3.1. Modelos para obtenção das propriedades termodinâmicas 

 

 

Para a resolução de problemas de destilação envolvendo misturas 

multicomponentes, são necessários dados sobre o equilíbrio líquido-vapor e sobre a 

entalpia. Essas propriedades podem ser obtidas através da utilização de uma única 

equação de estado ou da combinação desta com correlações empíricas (Holland, 

C.D., 1981).  

  Para o desenvolvimento deste trabalho, optou-se por utilizar a equação de 

estado de Peng-Robinson, que é adequada para se avaliar o comportamento de 

misturas de hidrocarbonetos. 
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Equação 1: Equação de Estado de Peng-Robinson 
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Tabela 1:  Parâmetros da equação de estado (Peng-Robinson) 

 

    

07780,0  45724,0  

Tabela 2: Parâmetros   e   da equação de estado (Peng-Robinson) 

 
 Considerando-se a regra clássica de misturas (kij = 0), tem-se: 
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ji aaaij .  


i
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
i
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j

i axxa  

Tabela 3: Regra de misturas 

 

Cálculo do Volume Molar 

 

Para um dado par de pressão e temperatura, a equação de estado de Peng-

Robinson tem três raízes, que são os volumes molares. O menor valor encontrado 

corresponde ao volume do líquido saturado, o maior, ao do vapor saturado e o valor 

intermediário não tem sentido físico, pois, para um aumento de pressão, ocorre um 

aumento de volume, o que contraria os dados experimentais. 

 Os volumes molares foram calculados através de um algoritmo de resolução 

de polinômios cúbicos.  

032

2

1

3  CVCVCV  

Equação 2: Equação de Estado na forma polinomial 

 
Onde, 
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bbbC iii

.
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iii 
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
  

iiii babTRbPC ........ 23

3    

Tabela 4: Parâmetros da Equação de Estado na forma polinomial 

  

 

    

21  21  

Tabela 5: Parâmetros   e   da equação de estado (Peng-Robinson) 
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Cálculo da  fugacidade 
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Equação 3: Equação para o calculo da fugacidade  
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Tabela 6: Regra de misturas 
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Tabela 7: Parâmetros da equação da fugacidade  

 

 Observação: para o cálculo da entalpia da fase líquida faz-se z = x e, para o 

cálculo da fase vapor faz-se z = y. 

 
Cálculo da entalpia 

 

 A função de afastamento da entalpia é dada por: 

)1(
414,0
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Equação 4: Calculo da função afastamento 
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),,(),(),,( zPTHdTCzPTHzzPTH R
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i     

Equação 5: Equação para o calculo da entalpia 
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2.26992,0.54226,137464,0 iiif    

2.26992,0.54226,137464,0 jjjf  
 

45724,0a  

Tabela 8: Parâmetros para o calculo da entalpia 

 

Observação: para o cálculo da entalpia da fase líquida faz-se z = x e, para o cálculo 

da fase vapor faz-se z = y. 

 

Para a obtenção do Cp, utilizou-se:  

 

32 ... TCTCTCCC pDpCpBpAp 
 

Equação 6: Calculo do Cp 
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Equação 7: Integral da equação de Cp 
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Estimativa das pressões de vapor 
 

Antoine 

 

CT

B
APvp


)ln(  

Equação 8 - Equação de Antoine 

 

Saul e Wagner 

 

 635,1 )1()1()1()1(
1

)ln( RRRR

R

vpR TDTCTBTA
T

P   

Equação 9 - Equação de Saul e Wagner 

 

 

3.2. Equilíbrio Líquido-Vapor 

 

 

Como a destilação é um processo de separação baseado no equilíbrio das 

fases líquida e vapor, faz-se necessário a modelagem deste equilíbrio. 

 

 Para uma fase líquida em equilíbrio com uma gasosa, vale a seguinte relação: 

 

^^
V

i

L

i ff   

Pxf L
ii

L
i ..
^

  

Pyf V
ii

V
i ..
^

  

Equação 10: Relação de equilíbrio 

Portanto: 

V

ii

L

ii yx  ..  

Equação 11: Relação de equilíbrio  

 

Rearranjando, tem-se que: 
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iii xKy .  

Onde: 

V

i

L

i
iK




  

 

 

A partir das relações acima, foram modelados três casos de equilíbrio líquido 

vapor (ELV): Ponto de bolha dada a temperatura (BOL P); Ponto de bolha dada a 

pressão (BOL T) e Cálculo Flash PT. 

 

Ponto de bolha P 

 

São especificados a composição da fase líquida (xi) e a temperatura do 

sistema e se calcula a pressão e a composição da fase vapor (yi). 

Sendo Nc o número de componentes, este sistema tem (Nc + 1) incógnitas: P 

e yi. Assim, são necessárias (Nc + 1) equações para resolvê-lo. 

 

V

ii

L

ii yx  ..  (Nc equações) 

1
i

iy             (1 equação) 

 

Este sistema de equações foi resolvido pelo método de Newton-Raphson 

(ANEXO A). Como este método de resolução exige boas estimativas iniciais, foi 

utilizada a lei de Raoult para se calcular yi e P iniciais.  

 

sat

iii PxPy ..   

Sendo que: 

 


i

sat

ii PxP .  

 

As pressões de saturação para cada componente foram calculadas através 

das leis de Antoine e de Saul e Wagner. 

O algoritmo de cálculo é explicitado a seguir: 
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Fim

Obtém-se 

y  , Pi

X  , Ti

Estimativas iniciais pela lei de Raoult.

Obtém-se y  , P 0 0
i

Resolução das equações do ELV por 

Newton-Raphson

 

Figura 1 - Diagrama de blocos para cálculo do Ponto de Bolha P 

 

Ponto de bolha T 

 

São especificados a composição da fase líquida (xi) e a pressão do sistema e 

se calcula a temperatura e a composição da fase vapor (yi). 

Sendo Nc o número de componentes, este sistema tem (Nc + 1) incógnitas: T 

e yi. Assim, são necessárias (Nc + 1) equações para resolvê-lo. 

 

V

ii

L

ii yx  ..  (Nc equações) 

1
i

iy             (1 equação) 

 

Este sistema de equações foi resolvido pelo método de Newton-Raphson 

(ANEXO A). Como este método de resolução exige boas estimativas iniciais. 

Diferentemente do caso anterior, não é possível a utilização da lei de Raoult 

diretamente, pois para a determinação da pressão de saturação de cada 

componente, é necessária a temperatura do sistema. Assim, foi definida a seguinte 

equação para a estimativa inicial da temperatura: 

 

 


i

sat

ii TxT .  
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Sendo que sat

iT  foi calculada para cada componente na pressão da coluna. 

A partir da temperatura anteriormente estimada, calcularam-se as pressões 

de saturação de cada componente e obteve-se a composição da fase vapor através 

da lei de Raoult. 

 

sat

iii PxPy ..   

 

As pressões de saturação para cada componente foram calculadas através 

das leis de Antoine e de Saul e Wagner. 

O algoritmo de cálculo é explicitado a seguir: 

 

Estimativas iniciais de T

Resolução das equações do ELV por 

Newton-Raphson

Fim

Obtém-se 

y  , Ti

Dados de entrada

X  , Pi

0

Estimativas iniciais pela lei de Raoult.

Obtém-se yi
0

 

Figura 2 - Diagrama de blocos para cálculo do Ponto de Bolha T 
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Flash PT 

  

 

Uma corrente parcialmente vaporizada 

(F) é alimentada em um tambor flash, no qual 

ocorre a separação das fases vapor e líquida. 

Através das relações de ELV, é possível se 

calcular a composição das duas fases que 

deixam o tambor e a fração vaporizada da 

corrente de alimentação. 

O equacionamento do tambor de flash é dado por: 

 

Balanço material por componente: 

 

iii xFyFzF .).1(...    

 

Relação de equilíbrio: 

 

iii xKy .  

 

Equação da somatória: 

 

1
i

i

i

i xy  

 

Da combinação destas três equações obtém-se a equação Rachford-Rice: 

 

 
 

0
1.1

1.
)( 




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i i

ii

K

Kz
f


  

 

Deve-se, então, resolver esta equação pelo método de Newton-Raphson 

(Anexo A). A derivada desta equação, que será utilizada no método, tem forma 

analítica: 
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 

  
0

1.1
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2

2

' 



 
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f


  

 

A estimativa inicial do algoritmo é obtida fazendo-se ii zx   e utilizando-se a 

lei de Raoult para o calculo da composição da fase vapor. 

O algoritmo de resolução do flash PT é apresentado a seguir: 

 

Z, P e T fixados

Estimativa de Ki

(Lei de Raoult)

Calculo de      estimado

Calculo de xi e yi 

estimados

Calculo do volume molar

através da EOS (liq. e vap.)

Calculo das fugacidades

(liq. e vap.)

Calculo de Ki

Calculo de         pela equação

de Rachford-Rice

1k

Calculo de xi e yi    

?1 kk  
Não

, xi e yi calculados

Sim

 

Figura 3 - Diagrama de blocos para o cálculo do Flash PT 

 

 

3.3. Coluna 

  

 

A modelagem de colunas de destilação é feita através de balanços materiais, 

balanços de energia e condições de equilíbrio para cada componente em cada 

estágio de equilíbrio.  
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A partir do seguinte esquema de uma coluna de destilação genérica: 

 

 

Figura 4 -  Esquema de uma coluna de destilação 

 

Foram feitas as seguintes simplificações: 

 

 Estágios de equilíbrio ideais; 

 Não há retiradas laterais (Uj e Wj); 

 Condensador total; 

 Pressão constante ao longo da coluna; 

 Estágios adiabáticos (Qj = 0). 

 

Logo, a partir destas simplificações, um estágio de equilíbrio j pode 

representado por: 
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Figura 5 - Esquema de um estágio de equilíbrio 

 

Há diversos algoritmos de resolução de problemas de destilação, tais como: 

Método inside out, matriciais, Newton global, bubble-point, Relaxação, entre outros. 

Optou-se por utilizar o método de Ketchum, que é uma variação do método de 

Newton global e da relaxação. 

 
3.3.1. Método de Ketchum 

  

O método de proposto por Ketchum (Ketchum, 1979) combina os algoritmos 

da Relaxação e de Newton-Raphson, eliminando as dificuldades e problemas 

encontrados no seu uso separado.  Segue abaixo a aplicação do método de 

Ketchum para a modelagem de uma coluna genérica e multicomponente. 

A coluna a ser resolvida possui NP estágios de equilíbrio e um número de 

alimentações que pode variar entre 1 e NP. Não são consideradas injeções laterais 

de vapor. A mistura a ser separada é composta por Nc componentes e a fase líquida 

uma solução ideal. 

As variáveis a serem determinadas para cada prato são: temperatura (T), 

vazões de líquido e de vapor (L e V, respectivamente) e concentrações dos 

componentes na fase líquida (xi).  Além destas, são incógnitas a corrente de refluxo 

(LD) e a vazão de destilado. O número total de variáveis a serem determinadas é, 

portanto, 

 

VC NNNP  2)3.(  
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Segue abaixo, as equações da soma e o equacionamento dos balanços de 

massa global e por componente e de energia. 

 
Equacionamento  
 
- Primeiro prato 
 
Balanço de massa global: 

dt

Ud
FVLVLM D

~

1
1
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1   

Equação 12 - Balanço de massa global para o primeiro prato (transiente) 

 
 
Balanço de massa por componente: 

dt
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Equação 13 - Balanço de massa por componente para o primeiro prato (transiente) 

 
 
Balanço de energia: 

dt
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Equação 14 - Balanço de energia para o primeiro prato (transiente) 

 
 
Equação da soma: 

1
1

~

1,1 


c

i

ixS  

Equação 15 - Equação da soma para o primeiro prato 

 
- Pratos intermediários (1<j<N) 
 
Balanço de massa global: 

dt

Ud
FVLVLM

j
D
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Equação 16 - Balanço de de massa global para pratos intermediários (transiente) 

 
Balanço de massa por componente: 

dt
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Equação 17 - Balanço de massa por componente para pratos intermediários (transiente) 

 
Balanço de energia: 

dt

dT
UCphFHVhLHVhLE

j
jjjjjjjjjjj ....... 1

~

1

~~~~~~~

1

~

1

~

1

~

1

~

   

Equação 18 - Balanço de energia para pratos intermediários (transiente) 
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Equação da soma: 

1
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Equação 19 - Equação da soma 

 
- Refervedor (Prato N) 
 
Balanço de massa global: 

dt

Ud
FVLLM N
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Equação 20 - Balanço de massa global para o último prato (transiente) 

 
Balanço de massa por componente: 

dt
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Equação 21 - Balanço de massa por componente para o último prato (transiente) 

 
Balanço de energia: 

dt

dT
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Equação 22 - Balanço de energia para o último prato (transiente) 

 
Equação da soma: 
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Equação 23 - Equação da soma 

 
 De forma a resolver estas equações, foi utilizado o método de Euler implícito, 
segundo o qual: 
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Equação 24 - Método de Euler implícito (composição) 
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Equação 25 - Método de Euler implícito (temperatura) 

 
Sendo, também, o fator de relaxação definido por:  

~

U

t
  

 Considerando que o volume de liquido de cada prato (
~

U ) é independente do 

tempo, tem-se que 0

~


dt

Ud j
. 
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 Substituindo a Equação 24 e a Equação 25 na Equação 12 a Equação 23, 
obteve-se: 
 

- Primeiro prato 
 
Balanço de massa global: 
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Equação 26 - Balanço de massa para o primeiro prato (Ketchum) 

 
Balanço de massa por componente: 
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Equação 27 - Balanço de massa por componente para o primeiro prato (Ketchum) 

 
Balanço de energia: 
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Equação 28 - Balanço de energia para o primeiro prato (Ketchum) 

 
Equação da soma: 
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Equação 29 - Equação da soma (Ketchum) 

 
- Pratos intermediários (1<j<N) 
 
Balanço de massa global: 
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Equação 30 - Balanço de massa global para pratos intermediários (Ketchum) 

 
Balanço de massa por componente: 
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 Equação 31 - Balanço de massa por componente para pratos intermediários (Ketchum) 
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Balanço de energia: 
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Equação 32 - Balanço de energia para pratos intermediários (Ketchum) 

 
Equação da soma: 
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Equação 33 – Equação da soma para pratos intermediários (Ketchum) 

 
- Refervedor (Prato N) 
 
Balanço de massa global: 
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Equação 34 - Balanço de massa global para o último prato (Ketchum) 

 
Balanço de massa por componente: 
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Equação 35 - Balanço de massa por componente para o último prato (Ketchum) 

 
 
Balanço de energia: 
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Equação 36 - Balanço de Energia para o último prato (Ketchum) 

 
Equação da soma: 
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Equação 37 - Equação da soma para o último prato (Ketchum) 

 
Em cada prato, há Nc + 3 equações a serem resolvidas, totalizando 

3(  CNNP ) equações para a coluna. Calculando o número de graus de liberdade 

deste sistema: 
 

  
Equações

C

Variáveis

C NNPNNPGL )3(2)3(   

2GL  
 

Portanto, devem-se especificar duas variáveis para a coluna, sendo que o 

equacionamento deve ser escrito de maneira diferente de acordo com esta escolha. 
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No caso apresentado neste trabalho, escolheu-se especificar a razão de refluxo 

(LD/D) e a vazão de destilado (D). O valor da vazão de fundo (B) é encontrado 

através de um balanço global na coluna. A consequência de se ter estas variáveis 

especificadas, é a de que o valor de V1 e LNP estão determinados. 

 

)1(11  DRVDLV D  

BLNP   

 
Para este caso, a equação do balanço global do primeiro prato (Equação 26) foi 

substituída pela especificação de V1 e o balanço de energia do último prato (Equação 

36) pela especificação de LNP. 

O sistema de equações formado acima é resolvido pelo método de Ketchum, 

descrito no Item 3.3.2.  

O incremento de tempo é representado pelo valor atribuído ao fator de 

relaxação e quanto menor for o intervalo de tempo escolhido, menores são as 

mudanças nos perfis de temperatura, vazão e composição e mais exata torna-se a 

simulação do estado não-estacionário. Independentemente do valor escolhido para o 

intervalo de tempo, porém, é realizada apenas uma iteração do método de Newton-

Raphson. 

Este método é eficiente por duas razões principais (Ketchum, 1979): 

 

- Asalterações em uma variável influenciam e são influenciadas pelas alterações de 

todas as outras variáveis; 

- A combinação dos dois métodos possibilita o amortecimento do método de 

Newton-Raphson e evita sua instabilidade particularmente quando os valores iniciais 

não são próximos à solução. 

 

Para que essa estabilidade fosse garantida, também foi necessário que se 

limitassem as taxas de variação dos perfis de vazão, composição e temperatura, o 

que também fez com que o grau de amortização do método não fosse tão elevado 

quanto seria para a implementação do Método de Newton-Raphson não combinado 

ao da Relaxação. As faixas adotadas para a variação dos perfis foram: 

 

inicialinicial LLL .5,1.5,0   
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inicialinicial VVV .5,1.5,0   

KTTKT inicialinicial 2020   

1,01,0  inicialinicial xxx  

 

 Caso os valores encontrados estejam acima das faixas determinadas, são 

utilizados os limites superiores das restrições. Caso estejam abaixo, são utilizados 

os limites inferiores. 

 

3.3.2. Algoritmo 
 

Na figura Figura 6 está apresentado o algoritmo de resolução da coluna de 

destilação pelo método de Ketchum. 

Dados de entrada

Chute inicial

Cálculo das equações

Cálculo do jacobiano

Atualização do perfil

Convergiu ?

IIFeq(p)II<tol ?

Fim

Sim

Não

 

Figura 6 - Diagrama de blocos do método de Ketchum 

 

 O detalhamento de cada uma das etapas é descrito a seguir:  

 

Dados de entrada 
 

 Os seguintes dados de entrada são lidos: 

 

- componentes do sistema; 
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- pressão da coluna; 

- número de estágios; 

- razão de refluxo; 

- vazão de destilado; 

- correntes de alimentação;  

- pratos de alimentação. 

 

Para cada corrente de alimentação é, primeiramente, realizado um cálculo Flash 

PT na pressão da coluna e temperatura da própria corrente. A fração líquida é 

adicionada ao prato de alimentação e a fração de vapor é alimentada no prato 

imediatamente acima. 

  

Estimativa Inicial 
 

 O método de Ketchum é baseado no algoritmo de Newton-Raphson e, 

portanto, para se garantir a convergência, é necessária a utilização de uma 

estimativa inicial próxima à solução. 

 Para esta etapa, será utilizado o equacionamento convencional para um 

estágio de equilíbrio (estado estacionário): 

 

Balanço por componente: 
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Equação 38 - Balanço por componente para o primeiro prato (Estimativa inicial) 
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Equação 39 - Balanço por componente para pratos intermediários (Estimativa inicial) 

 

Último prato: 0
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Equação 40 - Balanço por componente para o último prato (Estimativa inicial) 

 

Balanço de massa global: 
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1o prato: 0
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Equação 41 - Balanço de massa global para o primeiro prato (Estimativa inicial) 

 

2o prato até NP-1: 0
~~~~
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Equação 42 - Balanço de massa global para pratos intermediários (Estimativa inicial) 

 

Último prato: 0
~~~~

1  NPNPBNP FVLL  

Equação 43 - Balanço de massa global para o último prato (Estimativa inicial) 

 

Balanço de energia: 
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Equação 44 - Balanço de energia para o primeiro prato (Estimativa inicial) 
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Equação 45 - Balanço de energia para pratos intermediários (Estimativa inicial) 
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Equação 46 - Balanço de energia para o último prato (Estimativa inicial) 

 

 O diagrama de blocos que ilustra as etapas a serem realizadas para a 

determinação da estimativa inicial estão apresentados na Figura 7. 
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Com a pressão da coluna, calcular 

Kij

   T            T 
topo fundo

Método “bubble point”: 

T j

Calcular K  para o primeiro e último 

estágios através do modelo rigoroso e 

ajustar equação simplificada

ij

Calcular as entalpias e resolver 

balanços de energia e de massa global:

 L   ,V      j j

Convergiu ?

Normalizam-se os valores de xij

Com os balanços molares por 

componente, calcular x ij

Da hipótese de vazões molares 

constantes, calcular L  ,V jj

Estimam-se 

T  através de interpolação linearj

Calcular P    através de correlações
sat
Ij

Fim

Sim

Cálculo de  

K   através do modelo simplificado 

(linearidade com a temperatura)
ij

  tolTT
i

k

j

k

j 
 21

Atualização das temperaturas de topo e 

de fundo através do calculo de BOL T

ij

Não

 

Figura 7 - Diagrama de blocos da estimativa inicial 

 

 As temperaturas do topo e do fundo iniciais são, respectivamente, as de 

ebulição do componente mais volátil e do componente mais pesado. As 

temperaturas dos outros estágios são determinadas a partir de uma interpolação 

linear (perfil linear de temperatura):  

 

1
1





 j

topofundo

j T
NP

TT
T , para 2 < j < NP 

 

 Através das equações de Antoine e Saul e Wagner (Item 3.1), calcula-se a 

pressão de saturação de cada componente na temperatura de cada prato. A razão 

entre esses valores e a pressão da coluna representa o valor da constante de 

equilíbrio (K) para cada componente em cada prato. 
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P

P
K

sat

ji
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,
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 Da hipótese de que as vazões molares são constantes (“constant molar 

overflow”), obtém-se os valores de L e V de cada estágio. Através dos balanços 

molares por componente e dos valores de L, V e K, podem ser determinadas as 

composições de cada prato (Equações 38, 39 e 40), resolvendo-se o sistema linear 

tridiagonal formado. 
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Resolver bxA  para cada i componente. 

 

O sistema linear pode ser resolvido por métodos como, por exemplo, 

fatoração LU ou eliminação gaussiana. No caso do programa desenvolvido em 

linguagem C++, foi utilizada a fatoração LU. 
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 Este perfil inicial (x, L, V e T) não é suficientemente próximo à resposta para 

que seja garantida a convergência e, portanto, essa estimativa deve ser refinada 

através de um método “bubble point” modificado. 

Neste método, calculam-se as temperaturas de cada estágio através da 

solução direta da equação descrita no método BOL T (Item 3.2). Em seguida, são 

calculadas as composições de cada prato (balanços molares por componentes), L e 

V (balanços de energia e de massa global em cada prato).  

Para a convergência da temperatura, esse método exige grandes esforços 

devido à não-linearidade das equações rigorosas da constante de equilíbrio. Porém, 

como nesta etapa da resolução é desejado apenas um perfil estimado da coluna, 

adota-se a hipótese de que a variação de K entre os estágios é linear com a 

temperatura. 

Equação de K simplificada: jjijiji TBAK  ,,, , onde A e B são constantes 

ajustadas para a coluna. Este ajuste é feito através do calculo do Ki para o primeiro e 

último estágios, através de um modelo rigoroso e posterior interpolação linear. 

 

Equação de bubble point: 1,, 
i

jiji xK  

Substituindo a equação de K simplificada:   1,,, 
i

jijjiji xTBA  

Simplificando: 










i

jiji

i

jiji

j
xB

xA

T
,,

,,1

 

Com os valores de T calculados, calcula-se as entalpias do líquido e vapor de 

cada estágio, e resolver os balanços de massa global e de energia, em termos de L j 

e Vj. Como já descrito no equacionamento do método de Ketchum, especificou-se a 

taxa de refluxo e a vazão de destilado sendo necessário, portanto, a substituição de 

alguma equação para forçar o valor de V1. Novamente, optou-se por substituir o 

balanço de massa global do primeiro prato. Estas equações irão formar um sistema 

linear, sendo resolvidos para obter Lj e Vj. 

 Após o calculo dos valores de Lj e Vj, calculam-se os valores de Kij em cada 

prato a partir da equação simplificada encontrada anteriormente e se recomeça o 

processo iterativo, com a resolução dos balanços de massa por componente. 
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 Como critério de convergência deste algoritmo, adotou-se que a somatório 

dos erros ao quadrado das temperaturas de cada prato devem ser menores que uma 

tolerância pré-especificada. 

 

  7
21

10


i

k

j

k

j TT  

 

Calculo das equações 
 

 Com os valores de x e T da última interação, calculam-se os valores de Kij, hj 

e Hj através dos modelos rigorosos (Item 3.1). Com estes valores, calculam-se os 

valores das equações de cada prato (Equações 26 a 37), e os armazena em um 

vetor )( kPF .  

 

Fim

X  , T, L, Vi

Calculam se os valores de K
ij

Calculam se os valores de H  e hj j

Calcula-se:

- balanço de massa por componente

- balanço de massa global

- balanço de energia 

- equação da soma

Preenche-se o vetor das equações

 

 

O agrupamento das equações e das incógnitas (se por prato, por tipo, etc) 

influência na forma do sistema a ser resolvido. O agrupamento por tipo de equações 

é computacionalmente mais eficiente para colunas com poucos pratos e muitos 

componentes. Já para colunas com muitos pratos e poucos componentes, o 

agrupamento por pratos é mais eficiente (Goldstein e Stanfield, 1970). Neste 

trabalho, portanto, optou-se por agrupar as equações por pratos. 
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 Como as ordens de grandeza das equações diferem muito, é necessário 

normalizá-las, de forma a evitar instabilidade numérica. Para isso, na modelagem 

apresentada neste relatório, as equações dos balanços de massa global e por 

componente e de energia foram escritas de tal maneira que resultaram em uma 

fração cujo valor é igual a 1. A equação de soma não necessita de normalização, já 

que seu valor é 1. Seguem, para ilustração, as equações resultante para um prato 

qualquer j. 

 

Balanço de massa global: 
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Equação 47 - Balanço de massa global normalizado 

 

Balanço de massa por componente: 
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Equação 48 - Balanço de massa por componente normalizado 



45 

 

Balanço de energia: 
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Equação 49 - Balanço de Energia normalizado 

  

Cálculo do Jacobiano 
 

 O agrupamento das equações por estágios faz com que a matriz Jacobiana 

tenha a forma tridiagonal em blocos, pois as variáveis de um estágio (x, T, L e V) 

influenciam as equações do próprio estágio e a do logo acima e logo abaixo. 
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Onde [..]  representa a sub-matriz das derivadas das equações de um prato pelas 

variáveis deste ou dos pratos vizinhos. 
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 Neste trabalho, as derivadas foram calculadas através da diferenciação 

numérica central.  

 

2

)()(2)(

h

hxfxfhxf

x

f 





, onde o passo é definido por: 710 xh  

 

O cálculo do Jacobiano é a etapa da iteração que mais requer poder 

computacional, pois considerando que há )3(  cNNP  variáveis, serão necessários 

o calculo de  2)3(  cNNP  derivadas. Além disso, derivadas de balanços por 

componente dependem do valor de K, que requer um loop de convergência para o 

seu cálculo. Portanto, para um alto número de pratos ou componentes este cálculo 

torna-se impraticável.  

Pode-se aproveitar o fato de grande parte da matriz jacobiana ser zero. Como 

um prato só irá afetar o prato acima e abaixo, pode-se reduzir o número de 

derivadas a serem calculadas. Outra maneira de agilizar o cálculo da matriz 

Jacobiana é utilizar o método de Broyden (ANEXO 2). Esse método atualiza os 

valores do Jacobiano, não sendo necessário recalculá-lo a cada passo da interação. 

No entanto, o método de Broyden admite que as funções são lineares no intervalo 

considerado, o que instabiliza o método de Newton-Raphson nas iterações iniciais. 

De forma a garantir a convergência, adotou-se como critério a atualização do 
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Jacobiano por Broyden quando a norma do erro for menor que a raiz da tolerância 

absoluta escolhida (10-7). 

 

Atualização do perfil 

 

 Com o Jacobiano calculado, utiliza-se a fórmula do método de Newton-

Raphson para calcular o valor das variáveis da próxima iteração. 

 

)())(( kkk xFppJ   

 

 Resolvendo este sistema linear, obtém-se o perfil da próxima iteração. 

 

kkk ppp  1 , onde   é o fator de amortecimento 

 

O critério de convergência do algoritmo é: 

 

710)( kpF  

 

De forma a acelerar e melhorar a estabilidade da convergência, pode-se 

utilizar um algoritmo de busca unidimensional para se encontrar um valor de   que 

reduza ao mínimo a norma do vetor de funções em cada passo da iteração. Este 

procedimento está descrito no Anexo 3. 

Com o valor do fator de amortecimento calculado, obtém-se o perfil para a 

próxima iteração, reiniciando as etapas do algoritmo. 
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4. SIMULAÇÃO 

 

 

4.1. Programa 

 

Os algoritmos descritos no Item 3 foram implementados em linguagem C++. 

Para a manipulação de matrizes, vetores e a soluções de algumas equações, 

utilizou-se a biblioteca GSL1 (GNU Scientific Library), um software livre contendo 

uma grande gama de funções matemáticas. 

 

4.2. Equação de estado de Peng-Robinson 

 

A Figura 8 ilustra as isotermas calculadas pelo modelo de Peng-Robinson 

para a mistura 0,5 propano, 0,3 n-butano e 0,2 n-hexano. 

 

 

Figura 8 - Isotermas (Peng-Robinson) 

 

Como pode ser observado nesta figura, para cada temperatura, existem três 

volumes molares para a pressão de 16 bar. O menor volume corresponde a fase 

                                                 
1
 http://www.gnu.org/software/gsl/ 
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líquida e o maior, a fase vapor. O volume intermediário não tem sentido físico e é 

descartado. 

É interessante ressaltar que gases reais a baixas pressões têm 

comportamentos semelhantes à de gases ideais. No caso do gás real, modelado por 

Peng-Robinson, este comportamento pode ser observado na Figura 10. 

 

 

Figura 9 - Gás Ideal X Gás Real 

 

4.3. Equilíbrio Liquido-Vapor 

 

 

Com o objetivo de se validar o modelo desenvolvido para representar o 

equilíbrio líquido-vapor, os gráficos gerados pelo modelo (BOL P) foram comparados 

os dados experimentais registrados no (Kay, 1970). Obteve-se, para a mistura de 

propano e n-butano a 353,15 e 363,15 K:  
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Figura 10 - Modelagem do ELV por Peng-Robinson (T = 353,15 K) 

 

 

Figura 11 - Modelagem do ELV por Peng-Robinson (T = 363,15 K) 

 

Como pode ser observado nas figuras acima, os modelos programados 

representam fielmente a realidade. 
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4.4. Coluna 

 

 

 A coluna escolhida para ser simulada foi uma depropanizadora cujas 

características são apresentadas a seguir: 

 

Número de estágios de equilíbrio 31 

Prato de Alimentação 16 

Razão de Refluxo 4,6 

 

Composição Alimentação 

Componente Fração molar (%) 

propeno 27,9428 

propano 15,9014 

isobutano 14,6235 

isobuteno 18,4701 

n-butano 9,1254 

trans-buteno 13,9368 

 

Alimentação 

Vazão 966258 mol/h 

Temperatura 75 
o
C 

Pressão  19 kgf/cm
2
_g 

 
 Os resultados referentes à alguns pratos, obtidos através da simulação, estão 

registrados na tabela a seguir juntamente com os fornecidos pelo software comercial 

AspenPlus®. 

 

Tabela 9 - Resultados da simulação 

 Prato 1 Prato 8 

 Modelo AspenPlus® Desvio (%) Modelo AspenPlus® Desvio (%) 

propeno 0,578415 0,578428 0,00 0,247558 0,247404 0,06 

propano 0,367130 0,366946 0,05 0,200874 0,199921 0,48 

isobutano 0,035410 0,035363 0,13 0,280241 0,278498 0,63 

isobuteno 0,016653 0,016598 0,33 0,200400 0,198583 0,92 

n-butano 0,001042 0,001025 1,69 0,029568 0,029129 1,51 

trans-buteno 0,001350 0,001641 17,73 0,041359 0,046466 10,99 

T (K) 326,18 326,20 0,01 349,25 349,36 0,03 

L x 10-4 (mol/h) 197,94 197,87 0,03 177,07 177,67 0,33 

V x 10-4 (mol/h) 243,50 243,50 0,00 221,74 223,23 0,67 
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 Prato 24 Prato 31 

 Modelo AspenPlus® Desvio (%) Modelo AspenPlus® Desvio (%) 

propeno 0,010513 0,010788 2,55 0,000487 0,000506 3,84 

propano 0,014478 0,014664 1,27 0,001127 0,001147 1,76 

isobutano 0,314810 0,312817 0,64 0,250706 0,250739 0,01 

isobuteno 0,346794 0,343905 0,84 0,329189 0,329214 0,01 

n-butano 0,125317 0,124281 0,83 0,165556 0,165562 0,00 

trans-buteno 0,188088 0,193544 2,82 0,252936 0,252831 0,04 

T (K) 376,53 376,37 0,04 379,34 379,09 0,07 

L x 10-4 (mol/h) 287,43 285,84 0,56 53,14 53,14 0,00 

 233,61 232,04 0,68 234,29 232,52 0,76 

  

Cargas térmicas  

 Modelo AspenPlus® Desvio (%) 

Condensador (Wx10-4) -818,23 -816,55 0,21 

Refervedor (Wx10-4) 861,75 860,73 0,12 

 
 Como pode ser observado nas tabelas acima, tanto as cargas térmicas 

quanto os perfis de temperatura, composição e vazão obtidos pelo modelo estão 

bastante próximos aos fornecidos pelo software AspenPlus®, o que comprova a 

validade do programa desenvolvido. As diferenças podem ser explicadas por 

pequenas diferenças nos valores de pressão e temperatura críticas utilizadas pelo 

software. 

 

4.4.1. Avaliação dos perfis de temperatura, composição e vazão. 
 

Seguem abaixo algumas análises importantes com relação aos perfis de 

temperatura, composição e vazão. 
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Temperatura  

 

 

Figura 12 - Perfis de Temperatura 

 

 O perfil estimado é o referente à estimativa inicial e é obtido a partir do linear 

e do método bubble point modificado. Como pode ser observado na Figura 12, este 

perfil é bastante próximo ao calculado, o que evidencia a consistência das hipóteses 

adotadas de que a variação da constante de equilíbrio de cada componente é linear 

com a temperatura (Figura 13). Esta variação linear é devido a proximidade ao ideal 

da fase líquida e vapor. 

 

 

Figura 13 - Linearidade da Constante de Equilíbrio 
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Composição e vazão 

 

 

Figura 14 - Perfil de composição 

 

 O perfil de composição calculado através da pressão de saturação é 

consideravelmente diferente do real. Isso pode ser explicado pela linearidade do 

perfil da temperatura adotado para esta etapa da determinação da estimativa inicial. 

 

 

Figura 15 - Perfil de vazão de líquido 

 

 Há uma pequena diferença entre os perfis calculado e obtido pela hipótese de 

vazão constante (L CMO). Essa hipótese é resultado das considerações de que a 
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mistura tem calor sensível e de vaporização praticamente constante por todo o 

equipamento e de que o calor de mistura é desprezível (Kister, 1992). 

 

Como o sistema em estudo é composto por uma mistura (propanos e 

butanos) com : 

- massas moleculares e natureza dos componentes parecidas; 

- entalpias de vaporização dos componentes parecidas; 

 

Era esperado que a diferença observada fosse realmente pequena. 

 

Figura 16 - Perfil de vazão de vapor 

 

 Assim como observado no perfil de vazão de líquido (Figura 15), os valores 

estimados e o calculados tem comportamento similar. No entanto, o valor calculado 

a partir da hipótese de vazão constante (V CMO) não representa o real. Isto pode 

ser explicado pelo fato de que essa hipótese não leva em consideração o efeito da 

alimentação líquida no prato 16, que perturba o perfil da vazão de vapor como 

observado na Figura 16. 

 

4.4.2. Estudo dos parâmetros θ e η 
 

O parâmetro θ é o fator de relaxação e os valores a ele atribuídos controlam o 

incremento de tempo, ou seja, controla o passo para a integração das equações no 

estado transiente. Quanto menor o seu valor, menores são as alterações nos perfis 
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de temperatura, vazão e composição e mais estável é a convergência. Porém, o 

número de iterações e o tempo necessário para a resposta ser alcançada são 

maiores. Maiores valores de teta resultam em uma convergência mais rápida e 

instável, aproximando-se do método de Newton Global (Ketchum, 1979). 

 

 

Figura 17 - Comportamento do erro 

 

Como pode ser observado no gráfico, para um pequeno valor de teta (5), o 

método requer mais iterações para convergir e, que, com um aumento do valor deste 

parâmetro, o número de iterações diminui. No entanto, para valores altos, a 

diferença na velocidade do método é muito pequena, pois, como descrito acima, o 

método vai aproximando-se do método de Newton Global. 

O parâmetro η é o fator de amortecimento ou aceleração do algoritmo de 

Newton-Raphson para a resolução de sistemas. Para a aceleração do método de 

Ketchum, foi implementada a busca unidimensional deste parâmetro conforme 

descrito no Item 3.3.2. 
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Figura 18 - Estudo da busca unidimensional 

A busca unidimensional, além de diminuir o número de iterações pela metade, 

evitou o aparecimento de grandes erros no método de Ketchum, já que, a cada 

passo é determinado um valor de η que minimiza a função erro e impede a variação 

brusca das variáveis. 
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5. OTIMIZAÇÃO 

 

 

5.1. Método 

 

 

O método utilizado para a otimização foi o Método Generalizado do Gradiente 

Reduzido (“Generalized Reduced Gradient” - GRG). 

 Basicamente, este método utiliza-se de restrições lineares ou linearizadas 

(através da expansão de Taylor de 1a ordem), define novas variáveis normais às 

restrições e expressa o gradiente (ou outra direção de busca do ponto ótimo) em 

termos dessa base normal (Edgar e Himmelblau, 1988). 

 Neste método, o problema a ser resolvido é: 

Minimizar F(x) x=[x1 x2 ... xn]T 

Sujeita a  hj(x)=0 j = 1, ..., m   

 Li xiUi i = 1, ..., m   

 

onde Li e Ui são os limites respectivamente, inferior e superior de xi.  

 Li e Ui são considerados vetores separados pois são tratados diferentemente 

na determinação do tamanho do passo em uma direção de busca.   

 As restrições determinadas por desigualdades devem ser transformadas em 

igualdades através da soma ou subtração do quadrado de variáveis auxiliares. 

Assim, tem-se: 

0)()( 2  jjj xgxh   

  

 A existência de m restrições lineares ou linearizadas reduz o número de graus 

de liberdade associados a xi de n para n-m. Essa redução implica na redução do 

gradiente da função objetivo. Por exemplo, para o problema: 

  

Minimizar F(x1, x2) 

Sujeita a  hj(x1, x2) = 0 

  
 Tem-se: 
 



59 

2

2

1

1

)()(
)( dx

x

xf
dx

x

xf
xdf









  

 

0
)()(

)( 2

2

1

1










 dx

x

xh
dx

x

xh
xdh  

 

 Considerando-se x2 como a variável independente e se fazendo as devidas 

substituições, tem-se: 
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Equação 50 - Equação do gradiente reduzido 

 

 

 A Equação 50 corresponde ao chamado gradiente reduzido.  

 Neste caso, o gradiente reduzido contém apenas um elemento (é um escalar) 

pois existe apenas uma variável independente. Mas o número de elementos do 

gradiente reduzido depende do número de variáveis da função que se deseja 

otimizar e do número de restrições do problema. 

 

5.2. Aplicação 

 

 

 Os custos envolvidos nas operações de destilação (consumo de energia no 

condensador e no refervedor) são bastante elevados devido à necessidade de 

vaporização e condensação da carga da coluna.  

Para a coluna apresentada no item 4.4, foi proposto o aquecimento da 

corrente de entrada e a busca pelo refluxo e pela temperatura de alimentação 

ótimos. 

Sendo: 

 

QT = carga térmica do trocador de calor da alimentação; 

QR = carga térmica do refervedor; 
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QC = carga térmica do condensador; 

CV = custo do vapor = 14,19 $ / J (Turton, 2002) 

CA = custo da água de refrigeração = 4,43 $ / J (Turton, 2002) 

Cop = custo operacional. 

 

Escolheu-se a seguinte função objetivo para ser minimizada: 

 

ACVRTop CQCQQC .).(   

 

Sujeita a:  

Pureza do destilado   97%; 

Temperatura da alimentação: 300 <Tf < 350 K; 

Restrição de refluxo: 1,5 < R < 5,5.  

 

A pureza do destilado foi definida como sendo a fração molar de propano e 

propeno na corrente de topo da coluna. 

A restrição superior da temperatura da corrente de entrada foi definida  com 

base na temperatura de ebulição desta corrente. A ebulição da corrente de entrada 

modifica os perfis da coluna e prejudica a pureza do destilado, assim, escolheu-se 

uma temperatura limite na qual a fração da corrente de alimentação vaporizada é 

pequena e aceitável para a operação do equipamento. 

Estão ilustrados abaixo os comportamentos da pureza do produto final e da 

função objetivo de custo em função da temperatura da corrente de entrada e do 

refluxo: 
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Figura 19 - Pureza do produto 

 

 

Figura 20 – Função objetivo de custo 

 

Observação: os pontos representados com a cor verde mostram as condições 

normais de operação da coluna. Os pontos vermelhos são os viáveis (pureza acima 

da especificada) e os azuis os possíveis (domínio). 
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 O gráfico da função objetivo (Cop) em função da temperatura da alimentação 

(Tf) e do refluxo (R) foi aproximado por um plano cuja equação é: 

 

fOP TRC 673860.26862633270589231   

 

A restrição de pureza, se projetada no plano da função objetivo, pode ser 

aproximada por uma reta, como mostra a Figura 21. 

 

Figura 21 - Restrição de pureza 

Em termos do refluxo (R) e da temperatura de alimentação (Tf), a equação da 

reta desta restrição é: 

453,73.201,73  RT f  

 Esta aproximação é satisfatória, visto a sua alta correlação (R2 = 98,49%). 

 Portanto, com estas aproximações, a função objetivo a ser minimizada e as 

restrições ficam: 

 

 f
TR

TRf
f

673860.26862633270589231min
,

  

 Sujeita à: 

 0453,73.201,73  fTR ; 
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300 <Tf < 350; 

1,5 < R < 5,5.  

 

 Foi utilizado o Solver do Microsoft Excel©, que é baseado no método do 

gradiente reduzido generalizado (GRG). 

 

 A Figura 22 mostra as curvas da função objetivo e as restrições. 

 

Figura 22 - Curvas de nível e restrições da função objetivo 

 

 Como a função objetivo e as restrições são lineares, o ponto ótimo estará 

localizado em uma das restrições ou nos vértices do polígono formado por algumas 

restrições (Edgar e Himmelblau, 1988), o que pode ser visto na Figura 22. Por 

inspeção o ponto ótimo está próximo do ponto R = 3,8 e Tf = 350 K.  

 Utilizando o solver do Excel, o ponto ótimo encontrado para a operação da 

coluna foi: 

 

R 3,78 

Tf 350 



64 

 

 Através da simulação da operação da coluna nessas novas condições através 

do modelo programado, obtiveram-se os valores reais das cargas térmicas. Segue 

abaixo uma tabela comparativa entre a situação normal de operação e as condições 

otimizadas: 

 

Tabela 10 - Resultados da otimização 

  Carga (GJ/h) Custo ($/h) Custo ($/ano) 

Operação Otimizada 

Alimentação 0,38 5,34 42721 

Condensador -25,17 111,50 891997 

Reboiler 26,35 373,93 2991422 

Total - - 3926140 

Operação Normal 

Alimentação 0,00 0,00 0 

Condensador -29,46 130,49 1043932 

Reboiler 31,02 440,22 3521730 

Total - - 4565661 

  

 Ou seja, a otimização proposta gera uma economia de, aproximadamente, 

640 M$/ano. 
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6. CONCLUSÕES 

 

 

O método de Ketchum utilizado para a modelagem de colunas de destilação 

genérica e multicomponente mostrou-se bastante adequado ao caso escolhido para 

simulação e otimização, uma vez que sua convergência foi bastante satisfatória.  

A modelagem das propriedades termodinâmicas também foram consistentes uma 

vez que os perfis de temperatura, vazão e composição obtidos através do modelo 

desenvolvido em linguagem C++ são muito próximos aos fornecidos pelo software 

Aspen Plus®.  

Foi possível a comparação entre os perfis calculado com o modelo rigoroso e o 

obtido pela estimativa inicial, o que contribuiu para a melhor compreensão da 

influência das hipóteses e simplificações adotadas no processo.  

Dado o modelo rigoroso de colunas genéricas e multicomponentes, foi possível a 

aplicação da otimização para o caso de uma coluna depropanizadora. Foi escolhida 

uma função objetivo de custo operacional cujas variáveis independentes eram o 

refluxo e a temperatura da corrente de alimentação da coluna. O método utilizado foi 

o do Gradiente Reduzido Generalizado e as condições de operação ótimas obtidas 

geraram uma redução de 14% nos custos operacionais do processo. 
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Anexo 1 – Método de Newton-Raphson 

 
 O Método de Newton-Raphson multidimensional é um método numérico 

iterativo que tem o objetivo de encontrar as raízes de um sistema de m equações 

não lineares. 

 A partir de uma estimativa próxima à raiz real do sistema, o método é iterado 

e converge para a solução procurada.  

Neste método, recai-se em um sistema linear da forma bxA . com nmRA  para o 

vetor das incógnitas kk xx 1 . Tem-se: 

 

0))(()( 1   kkkFk xxxJxF  

)())(( 1 kkkkF xFxxxJ   

 

onde F é a matriz dos coeficientes das funções mn RRF : , FJ  é a matriz 

jacobiana nm

F RJ  . 

 

 A convergência do método é fortemente dependente de uma estimativa inicial 

próxima à solução procurada. 
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Anexo 2 - Método de Broyden 

 

O método de Broyden é um método de quasi-Newton utilizado para a 

determinação da solução de um sistema de equações não-lineares.  

Como o método de Newton exige o cálculo da matriz jacobiana a cada 

iteração e isso exige um grande esforço computacional, a idéia base do método de 

Broyden é a de se calcular a matriz jacobiana apenas na primeira iteração e, nas 

demais, se atualizar os valores dessa matriz de forma recursiva segundo a seguinte 

equação: 

T

kTkk SSJY

SS

JJ







 )...(

.

1
1 1  

Sendo que: 

)()( 1



 kk PFPFY  

1



 kk PPS  

Onde: 

K = número da iteração; 

J = matriz jacobiana; 



p = vetor das incógnitas a cada iteração; 

F =matriz das funções. 
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Anexo 3 – Busca Unidimensional 

 
 Do método de Newton-Raphson: 

 

)())(( kkk pFppJ   

 

kkk ppp  1  

 

 De forma a aumentar a estabilidade e a velocidade da convergência do 

método de Newton-Raphson, pode-se utilizar a busca unidimensional para encontrar 

o valor do fator de amortecimento ( ) que minimize a norma de )( 1kpF . 

 

)()(min 1 kkk ppFpF    

 

 Para encontrar o valor de   que minimize a função, será utilizado um método 

de Quasi-Newton. A fórmula de recorrência deste método é: 

 

 
  2)()(2)(

)()(1






hffhf

hhfhf
mmm

mm
mm




  

 

)()( kmkm ppFf    

 

001,0h  

 

 O valor de   convergiu quando 0001,01  mm  . 


