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RESUMO

Foi utilizado o método de Ketchum para a resolucdo de uma coluna de
destilacdo genérica e multicomponente. Por ser este baseado no método de Newton
Global, necessita de estimativas iniciais proximas a solugdo. Para a obtencdo de
valores iniciais de temperatura, composicao e vazdes satisfatorios, foi implementada
uma modificagdo do método de “bubble point”’. Para se aumentar a estabilidade e
melhorar a convergéncia do método, foi utilizada a busca unidimensional no calculo
do fator de amortecimento. Foi escolhida uma coluna depropanizadora para a
simulacdo e validagcdo do modelo e posterior otimizacdo econdmica. A funcéo
objetivo minimizada representa 0s custos operacionais gerados pelo consumo
energético. O algoritmo de otimizacdo utilizado foi o do Gradiente Reduzido
Generalizado. As propriedades termodinamicas foram calculadas a partir da
equacao de estado de Peng-Robinson.



ABSTRACT

The Ketchum method was implemented to solve a general and
multicomponent distillation column. Because this is based on the Global Newton
method, it requires good initial estimates. In order to obtain such values for the
temperatures, compositions and flows, it was implemented a modified bubble point
method. To improve convergence and stability, an unidirectional search algorithm
was used in the calculation of the damping factor. It was chosen a depropanizer
column in order to validate the developed model and further optimization. The
minimized objective function represents the operational costs generated by the
energy consumption. The optimization algorithm used was the Generalized Reduced
Gradient. The thermodynamics properties were calculated from the Peng-Robinson

eguation of state.
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1. INTRODUCAO

A destilacdo é o método de separacédo baseado na diferenca de composicao
entre uma fase liqguida em ebulicdo e o vapor formado por ela. Essa diferenca de
composicdo é resultante da diferenca entre as pressdes de vapor, ou volatilidades,
dos componentes da mistura. (Fair, R. J., 2005).

Os primeiros estudos do processo de destilacdo datam da ldade Média (por
volta do ano 800) e foram realizados pelo criador do alambique, o alquimista islamico
Abu Musa Jabir ibn Hayyan.

Os sistemas de separacdo modelados prato a prato comecaram a ser
estudados na década de 30. Porém apenas nos anos 70, com o advento de
computadores digitais, € que se puderam desenvolver os modelos rigorosos.

E interessante a busca pela otimizacdo das condicdes operacionais das
colunas de destilacédo pois esta operacao é, provavelmente, o método de separagao
mais utilizado nas industrias quimicas e petroquimicas de todo o mundo e, devido as
necessidades de condensacao e vaporizacdo de misturas, 0 gasto energético e os
custos operacionais envolvidos nesse processo sao elevados.

A realizacdo de testes em plantas industriais de operagdo continua é
normalmente inviavel e, assim, faz-se necessario o desenvolvimento de um modelo
matematico que represente o processo com fidelidade.

Este trabalho consiste na modelagem de uma coluna de destilacdo genérica,
continua e multicomponente através de um meétodo rigoroso. O equipamento foi

também otimizado a fim de se obter menor custo operacional.
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2. REVISAO BIBLIOGRAFICA

2.1. Processos de Destilacdo

Uma coluna de destilagcdo é um equipamento projetado para a separacdo de
componentes de uma mistura e que permite o contato entre as fases liquida e vapor
da mesma. A vazdo de liquido através dos pratos € descendente e a de vapor é
ascendente, de tal maneira que existe contato entre as fases e ocorre transferéncia
de massa e de energia entre elas (Holland, C.D., 1981).

As dimensbGes das colunas usadas industrialmente sdo impressionantes:
podem alcancar 103 m de comprimento e ter didmetros de até 50 ft. As pressdes de
operacdo variam desde, aproximadamente 2000 até 3,5.10° Pa. (Holland, C.D.,
1981).

O vapor que deixa o primeiro prato entra em um condensador onde pode ser
parcial ou totalmente condensado. O liquido resultante é coletado em um
acumulador de onde se obtém o refluxo e o produto de topo. Quando o vapor é
totalmente condensado e o destilado é totalmente liquido, o condensador é total.
Quando o vapor € parcialmente condensado, existe um refluxo liquido e o destilado
esta na fase vapor, o condensador é parcial. O liquido que se obtém no fundo da
coluna passa por um refervedor onde é parcialmente vaporizado. A fase vapor
retorna ao equipamento em fluxo ascendente e o liquido, chamado de produto de

fundo, é removido da coluna (Holland, C.D., 1981).

2.2. Propriedades Termodinamicas

O projeto de equipamentos para operacdes de separacdo envolve o calculo
do equilibrio e das entalpias das fases. A termodinamica classica utiliza-se de

relacbes entre pressédo, volume e temperatura para a obtencdo das propriedades
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necesséarias. Essas relacfes sdo chamadas de equacdes de estado (Henley, E. J.,
Seader, J. D., 1968).

A equacdo de estado recomendada para descrever o comportamento de
substancias apolares em condi¢cdes proximas as de saturacdo € a de Peng-
Robinson, que € equivalente a de Soave para vapores saturados (Prausnitz, J. M. et
al, 1988).

A variacdo nas propriedades termodinamicas (entalpia, entropia, energia
interna, fugacidade, energia livre de Gibbs, etc) esta relacionada as variaveis de
operacdo da coluna de destilacdo modelada. Portanto, é de extrema importancia a
andlise das variacGes nessas propriedades com mudancas na temperatura, pressao
e outras variaveis independentes de um sistema (Prausnitz, et al, 1988).

As entalpias de cada fase sao calculadas a partir das funcfes de afastamento
desta propriedade. A funcéo de afastamento € obtida a partir da equacao de estado
e é definida como sendo a diferenca entre o valor de uma propriedade
termodindmica nas condicbes do estado de gas ideal com relacdo a mesma
substancia ou composicédo de mistura em determinadas condicfes de temperatura e

presséo (Prausnitz, et al, 1988).

2.3. Modelagem da coluna

As equacbes dos balancos de massa e de energia referentes a coluna
(incluindo-se o condensador e o refervedor) podem ser resolvidas através de
métodos rigorosos como, por exemplo, o Método de Thiele and Geddes, o Método
da Relaxacgéo, o Método de Newton-Raphson e o Método de Ketchum.

Método de Thiele and Geddes: as temperaturas de cada estagio séo
consideradas variaveis independentes (Holland, C.D., 1981).

O Método da Relaxacéo consiste em se determinar a solugdo de uma coluna
considerando que esta opere em regime transiente. Neste método, a coluna tem sua
partida com liqguido em todos os estagios e alimentacdo no ponto de bolha. O
equipamento € levado ao estado estacionario através de aproximacdes sucessivas

das equacgbes no regime ndo estacionario (Kister, H. Z., 1992). Este é um método
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bastante estavel independentemente da complexidade da coluna, da dependéncia
composicdo com os valores de K e dos valores iniciais escolhidos. Porém, a
convergéncia torna-se muito lenta a medida que se aproxima da solucdo, o que
torna impraticavel a sua utilizacdo para o uso comum.

O método de Newton Global utiliza-se de uma quasi-linearizagdo do sistema
de equacgbes da coluna para corrigir simultaneamente as varidveis e minimizar os
erros nas equacdes dos balancos de massa global, por componente, de entalpia e
da equacédo da soma. Para a resolucéo de problemas de destilacdo, hormalmente o
método de Newton-Raphson deve ser amortizado para que a convergéncia seja
atingida de forma mais estavel. Porém, quando os valores iniciais sdo muito
diferentes da solucdo, a convergéncia ndo pode ser garantida mesmo com a
amortizacao.

O Método de Ketchum consiste em uma combinacdo entre os métodos da

Relaxacado e de Newton-Raphson e seré posteriormente explicado.

2.4. Otimizacéo

A otimizacao de processos ¢€ utilizada, dentre outros, para os seguintes fins:

aumentar rendimento de processos;

- reduzir custos operacionais;

- diminuir a geracao de poluentes;

- aumentar a taxa de geracao de produtos;

- reduzir a necessidade de manutencao;

- ajustar parametros de modelos matematicos de simulagéo.

As etapas a serem seguidas para a resolugcdo de um problema de otimizacao
séo:

1) Definicdo das variaveis a serem manipuladas e determinacdo das

restricbes do processo ou do produto;
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2) Definicdo de uma funcgéo objetivo que pode estar relacionada, por exemplo,
ao custo do processo, ao lucro, ao consumo de energia e as
especificacdes dos produtos;

3) Desenvolvimento de um modelo matematico que represente 0 processo e
as restricdes com fidelidade. As restricbes podem ser escritas na forma de
igualdades ou desigualdades;

4)  Aplicacdo de um algoritmo de otimizacdo adequado ao problema;

5)  Verificar a coeréncia das respostas e a sensibilidade dos resultados a
mudancas nas hipéteses adotadas.

Existem varios algoritmos de otimizacdo que se utilizam de programacéo linear e
nao linear que podem ser utilizados para a resolucdo de problemas de engenharia.
Dentre os mais utilizados estéo:

- Simplex: busca, através da programacédo linear, o ponto étimo sobre as

interseccdes das restricdes com a funcao objetivo.

- Gradiente Reduzido Generalizado (GRG): Através da linearizacdo das
funcdes (expansdo de Taylor) em cada iteracdo, busca o minimo (ou o
maximo) da funcdo objetivo através da substituicdo das restricdes no
gradiente desta funcdo, reduzindo o niumero de varidveis independentes (dai
0 nome de gradiente reduzido).

- Programacdo Quadrética Sucessiva (SQP): Aproximacao da funcdo objetivo
por uma funcdo quadratica e as restricbes por equacdes lineares, de forma a

encontrar o minimo (ou maximo) da fungéo objetivo.
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3. MODELAGEM

3.1. Modelos para obtencdo das propriedades termodinamicas

Para a resolugcdo de problemas de destilacdo envolvendo misturas
multicomponentes, sdo necessarios dados sobre o equilibrio liquido-vapor e sobre a
entalpia. Essas propriedades podem ser obtidas através da utilizacdo de uma Unica
equacdo de estado ou da combinacdo desta com correlacdes empiricas (Holland,
C.D., 1981).

Para o desenvolvimento deste trabalho, optou-se por utilizar a equagao de
estado de Peng-Robinson, que é adequada para se avaliar o0 comportamento de

misturas de hidrocarbonetos.

_ RT a
TV -=b (V+eb).(V+oh)

Equacdo 1: Equacédo de Estado de Peng-Robinson

a.R*T}
a(T)= WP—
QRT,
bi — Cl
P

cl

a(T,, @) =[1+(0,37464 +1,54226.0— 0,2699.0°.(L- TN

Tabela 1: Par@metros da equacéo de estado (Peng-Robinson)

Q 4
0,07780 0,45724

Tabela 2: Parametros Q) e i daequacéo de estado (Peng-Robinson)

Considerando-se a regra classica de misturas (kj = 0), tem-se:



aij = \/a;.,
b=> xb,

a=2 > XX
i

Tabela 3: Regra de misturas

Célculo do Volume Molar

21

Para um dado par de presséo e temperatura, a equacdo de estado de Peng-

Robinson tem trés raizes, que s&o os volumes molares. O menor valor encontrado

corresponde ao volume do liquido saturado, o maior, ao do vapor saturado e o valor

intermediario ndo tem sentido fisico, pois, para um aumento de pressao, ocorre um

aumento de volume, o que contraria 0s dados experimentais.

de polinémios cubicos.

Onde,

V®+C,-V?+C,-V+C,=0

Equacédo 2: Equacédo de Estado na forma polinomial

C,=ab, +eb —b, —%

RT.ob RTeb, a
- - +

C,=¢cob’—ob?-eb’
P P P

C,=—¢.Pob’-RT.cob’ —a, b,

Tabela 4: Pardmetros da Equacéo de Estado na forma polinomial

(o2 &

1++/2 1-+/2

Tabela 5: Parametros o e & daequacéo de estado (Peng-Robinson)

Os volumes molares foram calculados através de um algoritmo de resolucéo
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Céalculo da fugacidade

L_E s ooy A [2A° B, (Z+@+42)BP
Moy =g (2 -BP) 2\/5.5'[ AZ B}In(ZHl\/E).B.PJ

Equacédo 3: Equacéo para o calculo da fugacidade

Tabela 6: Regra de misturas

A=D 7.7
B=Zzi..Bi
A=A zA

, _PV,
RT

Tabela 7: Pardmetros da equacéo da fugacidade

Observacgdao: para o céalculo da entalpia da fase liquida faz-se z = x e, para o

calculo da fase vapor faz-se z = y.

Célculo da entalpia

A funcédo de afastamento da entalpia € dada por:

T aa).ln(2—0,4l4-8*

— - |-R-T(Z-1
2by2 oT Z+o,414-Bj (-1

HO(TREF,P,Z)—HO',P,Z)=[——2b6:/§+

Equacéo 4: Calculo da funcéo afastamento
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H(T,P,Z)zzzi 'HO(TREF’P)+ZZi ‘ICP -dT -H*(T,P,2)

Equacéo 5: Equacao para o calculo da entalpia

_bP
RT

1 1 1
2 ai-TCj 2 aj-Tci 2
DI R ATIN NS + fui
— 2 P. P

¢j ci

B*

fa_-R.
oT 2

Qa
T
f . =0,37464 +1,54226.0, — 0,26992.c0°
f,; =0,37464 +154226.00; — 0,26992.60]-2

Q, =0,45724

Tabela 8: ParAmetros para o calculo da entalpia

Observacdo: para o célculo da entalpia da fase liquida faz-se z = x e, para o calculo

da fase vapor faz-se z = y.

Para a obtencéo do C,, utilizou-se:

C,=C,,+CyT+C T?+C,,T?

Equacéao 6: Calculo do Cp

CpB-(T2 _TRZEF) " Cpc-(T3 _TRSEF) " CpD-(T4 _TFfEF

)
[CodT =C Ly (T —Tee ) + ; . ;

TREF

Equacéo 7: Integral da equacéo de Cp
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Estimativa das pressdes de vapor

Antoine

B
n(P.)=A————
(Py) = A-——c

Equacéo 8 - Equacao de Antoine

Saul e Wagner

IN(P, ) = Ti[A- A-To)+B-(1-To)** +C-(1-T)* + D-(1—T,)°]

Equacédo 9 - Equacédo de Saul e Wagner

3.2. Equilibrio Ligquido-Vapor

Como a destilagdo é um processo de separacdo baseado no equilibrio das
fases liquida e vapor, faz-se necessario a modelagem deste equilibrio.

Para uma fase liquida em equilibrio com uma gasosa, vale a seguinte relacéo:

fLl—fV
fl=x,®" P
fiV =yi'q):'/'P

Equacgdo 10: Relacdo de equilibrio
Portanto:
x.®; =y, o/

Equacédo 11: Relacéo de equilibrio

Rearranjando, tem-se que:
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yi = Ki X

A partir das relacdes acima, foram modelados trés casos de equilibrio liquido
vapor (ELV): Ponto de bolha dada a temperatura (BOL P); Ponto de bolha dada a
pressdo (BOL T) e Calculo Flash PT.

Ponto de bolha P

Sédo especificados a composicdo da fase liquida (x) e a temperatura do
sistema e se calcula a pressao e a composicao da fase vapor (y;).
Sendo Nc o nimero de componentes, este sistema tem (Nc + 1) incognitas: P

e y;. Assim, sdo necessarias (Nc + 1) equacles para resolvé-lo.

XD =y,.® (Nc equacdes)

Dy =1 (1 equacéo)

Este sistema de equacbes foi resolvido pelo método de Newton-Raphson
(ANEXO A). Como este método de resolucdo exige boas estimativas iniciais, foi

utilizada a lei de Raoult para se calcular y; e P iniciais.

y;.P=x.P*

Sendo que:
P — ZXI .F)isat

As pressdes de saturacdo para cada componente foram calculadas através
das leis de Antoine e de Saul e Wagner.

O algoritmo de calculo é explicitado a seguir:
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Estimativas iniciais pela lei de Raoult.
Obtém-se y?, pO

v

Resolucéo das equagdes do ELV por
Newton-Raphson

v

Obtém-se
yi. P

Fim

Figura 1 - Diagrama de blocos para calculo do Ponto de Bolha P

Ponto de bolha T

Séo especificados a composicao da fase liquida (x;) e a pressédo do sistema e
se calcula a temperatura e a composicao da fase vapor (y;).
Sendo Nc o nimero de componentes, este sistema tem (Nc + 1) incognitas: T

e y;. Assim, sdo necessarias (Nc + 1) equacles para resolvé-lo.

X. O =y,.D (Nc equacdes)

Dy =1 (1 equacao)

Este sistema de equacOes foi resolvido pelo método de Newton-Raphson
(ANEXO A). Como este método de resolucdo exige boas estimativas iniciais.
Diferentemente do caso anterior, ndo € possivel a utilizacdo da lei de Raoult
diretamente, pois para a determinacdo da pressdo de saturacdo de cada
componente, € necessaria a temperatura do sistema. Assim, foi definida a seguinte

equacgao para a estimativa inicial da temperatura:

T=>%T™
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Sendo que T.** foi calculada para cada componente na pressédo da coluna.

A partir da temperatura anteriormente estimada, calcularam-se as pressoes
de saturacdo de cada componente e obteve-se a composicdo da fase vapor através

da lei de Raoult.
y,.P=x.P*
As pressdes de saturacdo para cada componente foram calculadas através

das leis de Antoine e de Saul e Wagner.

O algoritmo de calculo é explicitado a seguir:

Estimativas iniciais de TO

v

Estimativas iniciais pela lei de Raoult.
Obtém-se )P

v

Resolucéo das equacgdes do ELV por
Newton-Raphson

v

Obtém-se
yi, T

Fim

Figura 2 - Diagrama de blocos para calculo do Ponto de Bolha T



Flash PT

zi

1-w
Xi

Uma corrente parcialmente vaporizada
(F) é alimentada em um tambor flash, no qual
ocorre a separacado das fases vapor e liquida.
Através das relacdes de ELV, é possivel se
calcular a composicdo das duas fases que
deixam o tambor e a fracdo vaporizada da

corrente de alimentacao.

O equacionamento do tambor de flash é dado por:

Balanco material por componente:

Fz, =w.Fy, +(1-

v).F.x

Relacéo de equilibrio:

i =KX

Equacédo da somatoéria:

ZYi :Zi:xi =1

Da combinacao destas trés equagfes obtém-se a equacédo Rachford-Rice:

fly) = Z

1+l//

7K -1)
—1)

Deve-se, entéo, resolver esta equacao pelo método de Newton-Raphson

(Anexo A). A derivada desta equacao, que sera utilizada no método, tem forma

analitica:

28
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Lo 7 (K, -1
DY e

A estimativa inicial do algoritmo é obtida fazendo-se x;, = z; e utilizando-se a

lei de Raoult para o calculo da composicéo da fase vapor.

O algoritmo de resolucéo do flash PT é apresentado a seguir:

[ Z, Pe T fixados ] Calculo do volume molar
atravésda EOS (lig. e vap.)
v
Estimativa de Ki Calculodasfugacidades
(Lei de Raoult) (lig. e vap.)
v
Calculode \I;estimado Calculo de Ki
v - Calculode ‘{Jk*bela equacéo
Calculo de xie yi de Rachford-Rice
estimados
Calculode xie yi

N&o phit o ko

Sim
A 4

[ Y |, xieyicalculados ]

Figura 3 - Diagrama de blocos para o célculo do Flash PT

3.3. Coluna

A modelagem de colunas de destilacdo é feita através de balancos materiais,
balancos de energia e condi¢cdes de equilibrio para cada componente em cada
estagio de equilibrio.
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A partir do seguinte esquema de uma coluna de destilacdo genérica:

CQcond

Qreb

Figura 4 - Esquema de uma coluna de destilagcéo

Foram feitas as seguintes simplificacdes:

Estagios de equilibrio ideais;

e Na&o ha retiradas laterais (Uj e W));

e Condensador total,

¢ Presséo constante ao longo da coluna;

e Estagios adiabaticos (Q; = 0).

Logo, a partir destas simplificacbes, um estagio de equilibrio j pode

representado por:
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A
L v,
i1 ¥ij
;. H
Fj Y
D EE——— Estagioj
Zij Hrj gio] i
¥ Vi
Xij Yij+
hlj Hj+'
L ]

Figura 5 - Esquema de um estagio de equilibrio

Ha diversos algoritmos de resolucédo de problemas de destilacédo, tais como:
Método inside out, matriciais, Newton global, bubble-point, Relaxacéo, entre outros.
Optou-se por utilizar o método de Ketchum, que é uma variacdo do método de
Newton global e da relaxag&o.

3.3.1. Método de Ketchum

O método de proposto por Ketchum (Ketchum, 1979) combina os algoritmos
da Relaxacdo e de Newton-Raphson, eliminando as dificuldades e problemas
encontrados no seu uso separado. Segue abaixo a aplicacdo do método de
Ketchum para a modelagem de uma coluna genérica e multicomponente.

A coluna a ser resolvida possui NP estagios de equilibrio e um namero de
alimentagdes que pode variar entre 1 e NP. Nao sdo consideradas injecdes laterais
de vapor. A mistura a ser separada € composta por Nc componentes e a fase liquida
uma solugéo ideal.

As variaveis a serem determinadas para cada prato sdo: temperatura (T),
vazbes de liquido e de vapor (L e V, respectivamente) e concentracdes dos
componentes na fase liquida (x;). Além destas, séo incégnitas a corrente de refluxo
(Lp) e a vazéo de destilado. O numero total de variaveis a serem determinadas €,

portanto,

NP.(N. +3)+2=N,



Segue abaixo, as equacdes da soma e 0 equacionamento dos balancos de
massa global e por componente e de energia.

Equacionamento

- Primeiro prato

Balanco de massa global:

du,

dt
Equacéo 12 - Balan¢o de massa global para o primeiro prato (transiente)

M, = Lo+Vo—Li—Vi+F1 =

Balanco de massa por componente:

Oi, = ;(i,D .LD+ ;(i,Z 'Ki,z-\} 2— ;(i,l.Ll— ;(i,l -Kiyl.\}l‘F |51 .Ei,l =L]1 d;(ti’l

Equacéo 13 - Balango de massa por componente para o primeiro prato (transiente)

Balanco de energia:

T TN 1
ElZLD.hD+V2.H2—L1.h1-V1.H1+F1.h1=Cp1.U1.d—tl

Equacédo 14 - Balanc¢o de energia para o primeiro prato (transiente)

Equacédo da soma:

S, = ZC: x;l =1
i=1

Equacdo 15 - Equacdo da soma para o primeiro prato
- Pratos intermediarios (1<j<N)

Balanco de massa global:

~ -~ - = - dU;
Ml =Lp+V2-Li—-Vi+F: 2?
Equacédo 16 - Balan¢co de de massa global para pratos intermediarios (transiente)

Balanco de massa por componente:

Vj+1—Xi’j.Lj—Xi,j.Ki'j.Vj+Fj.Zi,j:Uj dtvj

Equacédo 17 - Balan¢o de massa por componente para pratos intermediarios (transiente)

0;; = Xija1.LiatXiju K

i,j+1°

Balanco de energia:

Ej =Lj71.hj_1+Vj+1.Hj+1—Lj .hj—Vj Hi+F; .hj =Cpl.U1.d—tJ
Equacédo 18 - Balanco de energia para pratos intermedidrios (transiente)

32
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Equacéo da soma:

S, :Z‘Xi’j =1

Equacédo 19 - Equagédo da soma
- Refervedor (Prato N)

Balanco de massa global:

du,

dt
Equacéo 20 - Balan¢co de massa global para o Gltimo prato (transiente)

M :LN—l_LN—\}N+IEN =

Balanco de massa por componente:

Oin = ;(i,N—l.LN—l—;(i,N -LN—;(i,N .Ki’N.\}N‘F 'EN .Ei,N :L] N d zj(,I[N

Equacéo 21 - Balan¢o de massa por componente para o Ultimo prato (transiente)

Balanco de energia:
dT,

dt
Equacéo 22 - Balanc¢o de energia para o Ultimo prato (transiente)

(= ZLNfl.HN—l—LN .F\N_\}N .|:|N+|EN .HN+QR =(5pN .L]N.

Equacao da soma:

Sy :chx;N =1
i=1

Equacéo 23 - Equacdo da soma

De forma a resolver estas equacdes, foi utilizado o método de Euler implicito,
segundo o qual:

t+At - t+At _t+At _t
t+At t
~ ~ dX, dX' X',' _X','
Xi,j = Xij+At d'[l ! dtl ! = %

Equacédo 24 - Método de Euler implicito (composicao)

t+At _ t+At ~ t+At -t

_teAt _t s _ T
T; =T;+At T, —dTJ Z—TJ T
dt dt At

Equacédo 25 - Método de Euler implicito (temperatura)

Sendo, também, o fator de relaxacéo definido por:

0=

U

Considerando que o volume de liquido de cada prato (L] ) é independente do

du,
tempo, tem-se que " =0.
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Substituindo a Equacao 24 e a Equacédo 25 na Equacao 12 a Equacéo 23,
obteve-se:

- Primeiro prato

Balanco de massa global:

~ t+At ~ t+At ~ t+At ~ t+At ~ t+At
|V|1=LD +V, —-Li -Vi +F1 =0
Equagdo 26 - Balango de massa para o primeiro prato (Ketchum)
Balanco de massa por componente:
AL L t4AL ~t+AL ~ t+At AL tH+AL ~ At ~ t+At ~ AL _t+At ~ AL .t
Ji1 =0 Xip .Lo +Xip .K:’;At.Vz —Xi1 L1 —Xia .Kit’IAt.Vl +F1 .zZia |—Xiz +%Xi1=0
Equacédo 27 - Balanco de massa por componente para o primeiro prato (Ketchum)

Balanco de energia:

Lo .hp +V>, .H, -L: .hy -V: .H: +F: .h _Cpl . 1HAt_T1t)=O

~ t+AL _t+AL ~ AL t+AL ~t+AL _t+AL ~ AL t+AL ~ At _t+AL ~ [+At
E,=0

Equacédo 28 - Balanc¢o de energia para o primeiro prato (Ketchum)

Equacédo da soma:

¢ -
Sl = ZX;IM =1
i=1
Equacéo 29 - Equacéo da soma (Ketchum)
- Pratos intermediarios (1<j<N)

Balango de massa global:

~ t+At ~ t+At ~ t+At ~ t+At ~ t+At
MjZLj—l+Vj+1—Lj -V; +F; =0
Equacédo 30 - Balango de massa global para pratos intermediarios (Ketchum)

Balanco de massa por componente:

Xijja.Lija +Xi s KNV —Xij .Lj —Xij .KitjAt.Vj +Fji .zij |=Xij +Xij=0

~t+AL _t+AL ~ t+At ~ t+At _t+AL L t+AL ~ t+At ~ t+At ~ t+At _t+At ~ t+At _t
g i,j = 0 i, j+1

Equacgdo 31 - Balango de massa por componente para pratos intermediarios (Ketchum)
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Balanco de energia:

AL _t+AL ~ AL AL ~ AL _t+AL ~ AL L AL ~ +At _t+AL ~ t+At
E; =0|:Lj—l hja+Vija Hja-L; hy =V Hj +F; .h; |-Cp, .(Ttht—Tjt):O
Equacéo 32 - Balanc¢o de energia para pratos intermediérios (Ketchum)
Equacéo da soma:
% t-At
J— + J—
S, _ZI:XU =1
i=!
Equacédo 33 — Equacdo da soma para pratos intermediérios (Ketchum)
- Refervedor (Prato N)
Balanco de massa global:

~ t+At ~ t+At - t+At - t+At
MN =Lna—-Ln =Vn +Fn =0
Equacédo 34 - Balan¢o de massa global para o dltimo prato (Ketchum)
Balanco de massa por componente:

_t+At ~ T+At ~t+At _ t+AL ~ t+At ~ t+At ~ +AL  _t+At ~ t+At ~t
t+At
Oin =0 Xina.Lna=Xin .Ln =Xin Kig"Vn +Fn .Zin [=Xin +Xin =0

Equacédo 35 - Balan¢o de massa por componente para o Ultimo prato (Ketchum)

Balanco de energia:

~t+AL _t+At ~t+AL _t+AL ~ AL t+AL ~ t+AL _t+AL ~ [+At
EN=0|:LN1.hN_1—LN .hyh =V .Hn +Fn hy +QR:|—CpN .(T,\t‘+At—T,\t‘):O
Equacédo 36 - Balan¢o de Energia para o ultimo prato (Ketchum)

Equacao da soma:
Sy =2 X' =1
i=1

Equacédo 37 - Equacdo da soma para o ultimo prato (Ketchum)

Em cada prato, ha Nc + 3 equacbes a serem resolvidas, totalizando
NP - (N, +3) equagbes para a coluna. Calculando o numero de graus de liberdade

deste sistema:

GL=NP-(N. +3)+2—-NP-(N. +3)
Variéveis Equagdes

GL=2

Portanto, devem-se especificar duas variaveis para a coluna, sendo que o

equacionamento deve ser escrito de maneira diferente de acordo com esta escolha.
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No caso apresentado neste trabalho, escolheu-se especificar a razédo de refluxo
(Lo/D) e a vazdo de destilado (D). O valor da vazédo de fundo (B) é encontrado
através de um balanco global na coluna. A consequéncia de se ter estas variaveis

especificadas, € a de que o valor de V; e Lyp estdo determinados.

V,=L,+D=V,=R-(D+1)
Ly =B

Para este caso, a equacao do balanco global do primeiro prato (Equacéo 26) foi
substituida pela especificacdo de V; e o balanco de energia do ultimo prato (Equagéo
36) pela especificagédo de Lyp.

O sistema de equacdes formado acima é resolvido pelo método de Ketchum,
descrito no Item 3.3.2.

O incremento de tempo é representado pelo valor atribuido ao fator de
relaxacdo e quanto menor for o intervalo de tempo escolhido, menores sé&o as
mudancas nos perfis de temperatura, vazao e composicdo e mais exata torna-se a
simulacdo do estado ndo-estacionario. Independentemente do valor escolhido para o
intervalo de tempo, porém, € realizada apenas uma iteracdo do método de Newton-
Raphson.

Este método € eficiente por duas razdes principais (Ketchum, 1979):

- Asalterac6es em uma variavel influenciam e sao influenciadas pelas alteracées de
todas as outras variaveis;

- A combinagéo dos dois métodos possibilita 0 amortecimento do método de
Newton-Raphson e evita sua instabilidade particularmente quando os valores iniciais

nao sao proximos a solucéao.

Para que essa estabilidade fosse garantida, também foi necessario que se
limitassem as taxas de variacdo dos perfis de vazdo, composicao e temperatura, o
gue também fez com que o grau de amortizacdo do método nao fosse téo elevado
guanto seria para a implementacdo do Método de Newton-Raphson ndo combinado

ao da Relaxacgao. As faixas adotadas para a variagao dos perfis foram:

05.L,..., <L<15L

inicial



O’5'\/inicial <V < 1'5'\/inicial
Tiniciar — 20K <T <T, i + 20K
Xinicial — O'1< X < Xjpicial + 0’1

Caso os valores encontrados estejam acima das faixas determinadas, sdo
utilizados os limites superiores das restricdes. Caso estejam abaixo, sao utilizados

os limites inferiores.

3.3.2. Algoritmo

Na figura Figura 6 est& apresentado o algoritmo de resolu¢éo da coluna de

Dados de entrada

Chute inicial

v

—% Célculo das equagbes ‘

Calculo do jacobiano

v

Atualizacdo do perfil

destilacao pelo método de Ketchum.

Convergiu ?
IIFeq(p)li<tol ?

Figura 6 - Diagrama de blocos do método de Ketchum

O detalhamento de cada uma das etapas € descrito a seguir:

Dados de entrada

Os seguintes dados de entrada sao lidos:

- componentes do sistema;

37
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- presséo da coluna;

- numero de estégios;

- razao de refluxo;

- vazdao de destilado;

- correntes de alimentacao;
- pratos de alimentagéo.

Para cada corrente de alimentacdo €, primeiramente, realizado um calculo Flash
PT na pressdo da coluna e temperatura da prépria corrente. A fracdo liquida é
adicionada ao prato de alimentacdo e a fracdo de vapor € alimentada no prato

imediatamente acima.

Estimativa Inicial

O método de Ketchum é baseado no algoritmo de Newton-Raphson e,
portanto, para se garantir a convergéncia, € necessaria a utilizacdo de uma
estimativa inicial proxima a solugéo.

Para esta etapa, sera utilizado o equacionamento convencional para um

estagio de equilibrio (estado estacionario):

Balango por componente:

1° prato: X;,D' |:D +\;2‘ Kiz X2~ X;,j' |:1+\;1' Kis - Xigt IE1' z;, =0

Equacédo 38 - Balan¢o por componente para o primeiro prato (Estimativa inicial)

2° prato até NP - 1: xiiH- Lia+Vi K X=X L}+V}- Ki,| -x;j+ F}zLj =0

Equacédo 39 - Balan¢o por componente para pratos intermediarios (Estimativa inicial)

Ultimo prato: X; yp_,- Lyp_— X

B’ LB _VNP' Ki,NP “Xine T I:NP' Zinp = 0

Equacédo 40 - Balango por componente para o ultimo prato (Estimativa inicial)

Balanco de massa global:



39

1° prato: I:D+\]2— I:1+\;1+ IEl =0

Equacédo 41 - Balan¢o de massa global para o primeiro prato (Estimativa inicial)

2° prato até NP-1: L, +V,,—L;+V,;+F, =0

Equacédo 42 - Balanco de massa global para pratos intermediarios (Estimativa inicial)

Ultimo prato: LN~P_1— I:B—V;,P+ F;qp =0

Equacédo 43 - Balan¢o de massa global para o Gltimo prato (Estimativa inicial)

Balanco de energia:

1° prato: h~D~ I:D+ I—iz~\fz— Hl. |:1+ Hl.\]1+ He, |El -0

Equacéo 44 - Balanco de energia para o primeiro prato (Estimativa inicial)

2°prato até NP-1: h, -L,+H .-V, ,—h;-L;+H,-V,+H-F, =0

j+l

Equacédo 45 - Balanc¢o de energia para pratos intermediérios (Estimativa inicial)

Ultimo prato: hN;,_l- Lypy—hg-Lg— H~NP-V;,P+ H ;NP- Fup =0

Equacdo 46 - Balan¢o de energia para o ultimo prato (Estimativa inicial)

O diagrama de blocos que ilustra as etapas a serem realizadas para a

determinacao da estimativa inicial estdo apresentados na Figura 7.
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topo
T p Tfundo

Estimam-se

Tj através de interpolagao linear

v

Calcular Kjipara o primeiro e dltimo
estagios através do modelo rigoroso e
ajustar equacéo simplificada

Calcular Psuatatravés de correlacdes Método bLJprIe point’:
$ J
Com a pressdo dlgcoluna, calcular Calcular as entalpias e resolver
1) balangos de energia e de massa global:
Li,V;
|
Da hipétese de vaz6es molares ¢
constantes, calcular L j,Vj

Atualizagdo das temperaturas de topo e

i de fundo através do calculo de BOL T
Com os balancos molares por
componente, calcular xjj #
Calculo de
Kijj atravésijplo modelo simplificado
Normalizam-se os valores de Xjj (linearidade com a temperatura)

Convergiu ?
S -1 <tol

Figura 7 - Diagrama de blocos da estimativa inicial

As temperaturas do topo e do fundo iniciais sdo, respectivamente, as de
ebulicdo do componente mais volati e do componente mais pesado. As
temperaturas dos outros estagios sdo determinadas a partir de uma interpolacéo

linear (perfil linear de temperatura):

T

1= T Tomo a2 << NP
NP

Através das equacOes de Antoine e Saul e Wagner (Item 3.1), calcula-se a
pressédo de saturacdo de cada componente na temperatura de cada prato. A razao
entre esses valores e a pressao da coluna representa o valor da constante de

equilibrio (K) para cada componente em cada prato.
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I,] P

Da hipdtese de que as vazdes molares sdo constantes (“constant molar
overflow”), obtém-se os valores de L e V de cada estagio. Através dos balancos
molares por componente e dos valores de L, V e K, podem ser determinadas as

composicdes de cada prato (Equacdes 38, 39 e 40), resolvendo-se 0 sistema linear

tridiagonal formado.

Lo X, —L -V Kiy V,-Ki, 0 0 0
A= 0 L, -L; =V, K Via Kija 0

0 Lyps —Lyp Vi Ki,NP

Resolver A-x =Dbpara cada i componente.

O sistema linear pode ser resolvido por métodos como, por exemplo,
fatoracdo LU ou eliminagdo gaussiana. No caso do programa desenvolvido em

linguagem C++, foi utilizada a fatoragéo LU.
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Este perfil inicial (x, L, V e T) ndo é suficientemente préximo a resposta para
gue seja garantida a convergéncia e, portanto, essa estimativa deve ser refinada
através de um método “bubble point” modificado.

Neste método, calculam-se as temperaturas de cada estagio através da
solucdo direta da equacdo descrita no método BOL T (Item 3.2). Em seguida, sdo
calculadas as composic¢des de cada prato (balangos molares por componentes), L e
V (balancos de energia e de massa global em cada prato).

Para a convergéncia da temperatura, esse método exige grandes esforcos
devido a ndo-linearidade das equacdes rigorosas da constante de equilibrio. Porém,
como nesta etapa da resolucdo € desejado apenas um perfil estimado da coluna,
adota-se a hipotese de que a variacdo de K entre os estagios é linear com a
temperatura.

Equacdo de K simplificada: K;;=A ;+B;;-T;, onde A e B sdo constantes

ajustadas para a coluna. Este ajuste € feito através do calculo do K; para o primeiro e

ultimo estagios, através de um modelo rigoroso e posterior interpolacéo linear.

Equagéo de bubble point: > K; x,; =1

Substituindo a equacéo de K simplificada: Z(AH. +B;; T, ) X,; =1

1_ZALJ' "X,
DB X

Simplificando: T; =

Com os valores de T calculados, calcula-se as entalpias do liquido e vapor de
cada estagio, e resolver os balangos de massa global e de energia, em termos de L;
e V. Como ja descrito no equacionamento do metodo de Ketchum, especificou-se a
taxa de refluxo e a vazéo de destilado sendo necessario, portanto, a substituicdo de
alguma equacgao para forcar o valor de Vi;. Novamente, optou-se por substituir o
balanco de massa global do primeiro prato. Estas equacgdes irao formar um sistema
linear, sendo resolvidos para obter L e V.

Apos o calculo dos valores de L; e Vj, calculam-se os valores de K; em cada
prato a partir da equacdo simplificada encontrada anteriormente e se recomeca 0

processo iterativo, com a resolucdo dos balancos de massa por componente.
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Como critério de convergéncia deste algoritmo, adotou-se que a somatorio
dos erros ao quadrado das temperaturas de cada prato devem ser menores que uma

tolerancia pré-especificada.

(-1, <107

Calculo das equacodes

Com os valores de x e T da Ultima interagéo, calculam-se os valores de Kj, h;
e H; através dos modelos rigorosos (Item 3.1). Com estes valores, calculam-se os
valores das equacdes de cada prato (Equacdes 26 a 37), e 0s armazena em um

vetor E(ﬁk) :

Calculam se os valores de Kij
Calculam se os valores de Hj e hj
Calcula-se:

- balanco de massa por componente
- balan¢o de massa global

- balango de energia
- equacgéo da soma

v

Preenche-se o vetor das equacoes

Fim

O agrupamento das equacgles e das incognitas (se por prato, por tipo, etc)
influéncia na forma do sistema a ser resolvido. O agrupamento por tipo de equacgdes
€ computacionalmente mais eficiente para colunas com poucos pratos e muitos
componentes. Ja para colunas com muitos pratos e poucos componentes, O

agrupamento por pratos € mais eficiente (Goldstein e Stanfield, 1970). Neste

trabalho, portanto, optou-se por agrupar as equacdes por pratos.
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Como as ordens de grandeza das equacdes diferem muito, € necessario

normaliza-las, de forma a evitar instabilidade numérica. Para isso, na modelagem

apresentada neste relatério, as equacGes dos balancos de massa global e por

componente e de energia foram escritas de tal maneira que resultaram em uma

fracdo cujo valor é igual a 1. A equacdo de soma nao necessita de normalizacéo, ja

gue seu valor é 1. Seguem, para ilustracdo, as equacdes resultante para um prato

qualquer j.

Balanco de massa global:

_tHAL _tHAt L t+AL
Lo +V2: +F:
- _tHAt _ t+At

L. +V:

~1=0

Ml

Equacédo 47 - Balan¢go de massa global normalizado

Balanco de massa por componente:

At _teAt _teAt JteAt L teAt _teAt
t+At
Xij1.Lja +Xi,j+a1 . K55 Vi +Fj .2
_ i,j+1 1=0
gi,j = _tHAt Lt o
teAt _teAt _teAt _ teAt

Xij .Lj +Xij .Kit;At.Vj Sul 2l

Equacédo 48 - Balan¢o de massa por componente normalizado



Balanco de energia:

~ t+At AL ~ t+At _ t+AL ~ t+At _t+AL

Liw2 .hja+Via . Hju+F; .hj
E;= _ At -1=0
AU AU teAt At Cp. o (THAC T
Lj .hj +Vj .Hj pJ (ré J)

Equacéo 49 - Balango de Energia normalizado

Céalculo do Jacobiano
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O agrupamento das equacdes por estagios faz com que a matriz Jacobiana

tenha a forma tridiagonal em blocos, pois as variaveis de um estagio (x, T, L e V)

influenciam as equac6es do proprio estagio e a do logo acima e logo abaixo.

Tl L] o o - . 0
L1 LI L] o - - o0

o LI L1l - - o
J=| . . . . . . .
(1 [ [ O

(1 [ L[]

i 0 0 [ [

Onde [..] representa a sub-matriz das derivadas das equacdes de um prato pelas

variaveis deste ou dos pratos vizinhos.
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09, ; 09,; 09,; 09y, 09y |
OXy | h OXye; 0T, oL, oV,
ag Nc, j ag Nc, j ag Nc, j ag Nc, j ag Nc, j

L]= OXq OXne. oT; oL, v,

" OE | OE | OE | OE | OE |
OXy ; Xyej 0T, oL, v,
oM, oM; M, M, oM,
OXy | - OXye; 0T, oL, oV,
35, 35, 35, 3s, as,

L oxy; Xy OTp AL av |

Neste trabalho, as derivadas foram calculadas através da diferenciacao

numeérica central.

of  f(x+h)—2f()+ f(x—h)
X h?

, onde o passo é definido por: h=x-10""

O célculo do Jacobiano € a etapa da iteracdo que mais requer poder

computacional, pois considerando que ha NP-(N. +3) variaveis, ser8o necessarios

o calculo de [NP-(NC+3)]2 derivadas. Além disso, derivadas de balangcos por

componente dependem do valor de K, que requer um loop de convergéncia para o
seu calculo. Portanto, para um alto nimero de pratos ou componentes este calculo
torna-se impraticavel.

Pode-se aproveitar o fato de grande parte da matriz jacobiana ser zero. Como
um prato sO ira afetar o prato acima e abaixo, pode-se reduzir 0 numero de
derivadas a serem calculadas. Outra maneira de agilizar o calculo da matriz
Jacobiana é utilizar o método de Broyden (ANEXO 2). Esse método atualiza os
valores do Jacobiano, ndo sendo necessario recalcula-lo a cada passo da interagéo.
No entanto, o método de Broyden admite que as funcbes séo lineares no intervalo
considerado, o que instabiliza o método de Newton-Raphson nas iteragdes iniciais.

De forma a garantir a convergéncia, adotou-se como critério a atualizacdo do
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Jacobiano por Broyden quando a norma do erro for menor que a raiz da tolerancia

absoluta escolhida (107).

Atualizacdo do perfil

Com o Jacobiano calculado, utiliza-se a formula do método de Newton-

Raphson para calcular o valor das variaveis da proxima iteracao.
J(p“)(Ap*) =—-F(x")
Resolvendo este sistema linear, obtém-se o perfil da préxima iteracéo.
p“! = p* +7-Ap*, onde n é o fator de amortecimento

O critério de convergéncia do algoritmo é:
[F(p*)| <107

De forma a acelerar e melhorar a estabilidade da convergéncia, pode-se

utilizar um algoritmo de busca unidimensional para se encontrar um valor de n que

reduza ao minimo a norma do vetor de funcbes em cada passo da iteracdo. Este
procedimento esta descrito no Anexo 3.
Com o valor do fator de amortecimento calculado, obtém-se o perfil para a

proxima iteracédo, reiniciando as etapas do algoritmo.
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4. SIMULACAO

4.1. Programa

Os algoritmos descritos no Item 3 foram implementados em linguagem C++.
Para a manipulacdo de matrizes, vetores e a solucbes de algumas equacoes,
utilizou-se a biblioteca GSL* (GNU Scientific Library), um software livre contendo

uma grande gama de fungBes mateméticas.

4.2. Equacdo de estado de Peng-Robinson

A Figura 8 ilustra as isotermas calculadas pelo modelo de Peng-Robinson

para a mistura 0,5 propano, 0,3 n-butano e 0,2 n-hexano.

Isotermas (Peng-Robinson)

80 T

60 +—

40 +— t
\/—\ —345K
20 A 1 375K

P {bar)

| —_—-—-__
—
/ 405K
0 - T T T P=16har
/ 0,0005 0,001 0,0015 0,002

20 /
-40

Vm (m3/mol)

Figura 8 - Isotermas (Peng-Robinson)

Como pode ser observado nesta figura, para cada temperatura, existem trés

volumes molares para a pressdo de 16 bar. O menor volume corresponde a fase

! http://ww.gnu.org/software/gsl/
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liquida e o maior, a fase vapor. O volume intermediario ndo tem sentido fisico e é
descartado.

E interessante ressaltar que gases reais a baixas pressfes tém
comportamentos semelhantes a de gases ideais. No caso do gas real, modelado por

Peng-Robinson, este comportamento pode ser observado na Figura 10.

Gas Ideal X Gas Real

@
D

\ ——Peng-Rohinson
k ——Gas |deal

T T T 1
’1’7 0,002 0,004 0,006 0,008

=)
D

I
D

P {bar)
o5
D

D

m

M
D,

S
D

Vm (m3/mol)

Figura 9 - Gas Ideal X Gas Real

4.3. Equilibrio Liguido-Vapor

Com o objetivo de se validar o modelo desenvolvido para representar o
equilibrio liquido-vapor, os graficos gerados pelo modelo (BOL P) foram comparados
os dados experimentais registrados no (Kay, 1970). Obteve-se, para a mistura de

propano e n-butano a 353,15 e 363,15 K:
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ELV: propano e n-butano (T=353,15 K)

-
0,9
0,8 /

0,7 /!/
0,6

0,5
04 / —+—Nodelagem Peng-Robinson
0,3 / B Dechema

/
0,2
0,1 /

0 0,2 0,4 0,6 0,8 1

Figura 10 - Modelagem do ELV por Peng-Robinson (T = 353,15 K)

ELV: propano e n-butano (T=363,15 K)
0,9 /"r
o Pl

=< 0,5
04 / —+—Nodelagem Peng-Robinson

0,3 / B Dechema
/

0,2

0,1 /

0] 0,2 0,4 0,6 0,8 1

Figura 11 - Modelagem do ELV por Peng-Robinson (T = 363,15 K)

Como pode ser observado nas figuras acima, os modelos programados

representam fielmente a realidade.
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A coluna escolhida para ser simulada foi uma depropanizadora cujas

caracteristicas sdo apresentadas a seguir:

Numero de estagios de equilibrio 31
Prato de Alimentac&o 16
Razé&o de Refluxo 4,6

Composicdo Alimentagéo
Componente Fracdo molar (%)

propeno 27,9428
propano 15,9014
isobutano 14,6235
isobuteno 18,4701
n-butano 9,1254

trans-buteno 13,9368

Alimentacdo
Vazdo 966258 mol/h
Temperatura 75 °C

Press&o 19 kgflem® g

Os resultados referentes a alguns pratos, obtidos através da simulacao, estdo

registrados na tabela a seguir juntamente com os fornecidos pelo software comercial

AspenPlus®.
Tabela 9 - Resultados da simulacéo
Prato 1 Prato 8
Modelo  AspenPlus® Desvio (%) Modelo  AspenPlus® Desvio (%)
propeno 0,578415 0,578428 0,00 0,247558  0,247404 0,06
propano 0,367130  0,366946 0,05 0,200874  0,199921 0,48
isobutano 0,035410 0,035363 0,13 0,280241  0,278498 0,63
isobuteno 0,016653  0,016598 0,33 0,200400  0,198583 0,92
n-butano 0,001042  0,001025 1,69 0,029568  0,029129 1,51
trans-buteno  0,001350  0,001641 17,73 0,041359  0,046466 10,99
T (K) 326,18 326,20 0,01 349,25 349,36 0,03
L x 10-4 (mol/h) 197,94 197,87 0,03 177,07 177,67 0,33
V x 10-4 (mol/h) 243,50 243,50 0,00 221,74 223,23 0,67
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Prato 24 Prato 31

Modelo AspenPlus® Desvio (%) Modelo AspenPlus® Dpesvio (%)
propeno 0,010513  0,010788 2,55 0,000487 0,000506 3,84
propano 0,014478 0,014664 1,27 0,001127 0,001147 1,76
isobutano 0,314810 0,312817 0,64 0,250706 0,250739 0,01
isobuteno 0,346794 0,343905 0,84 0,329189 0,329214 0,01
n-butano 0,125317  0,124281 0,83 0,165556 0,165562 0,00
trans-buteno  0,188088 0,193544 2,82 0,252936 0,252831 0,04
T (K) 376,53 376,37 0,04 379,34 379,09 0,07
L x 10-4 (mol/h) 287,43 285,84 0,56 53,14 53,14 0,00
233,61 232,04 0,68 234,29 232,52 0,76

Cargas térmicas
Modelo AspenPlus® Desvio (%)

Condensador (Wx10-4) -818,23 -816,55 0,21
Refervedor (Wx10-4) 861,75 860,73 0,12

Como pode ser observado nas tabelas acima, tanto as cargas térmicas
quanto os perfis de temperatura, composicdo e vazdo obtidos pelo modelo estao
bastante proximos aos fornecidos pelo software AspenPlus®, o que comprova a
validade do programa desenvolvido. As diferencas podem ser explicadas por
pequenas diferencas nos valores de pressao e temperatura criticas utilizadas pelo

software.

4.4.1. Avaliacdo dos perfis de temperatura, composicio e vazao.

Seguem abaixo algumas analises importantes com relacdo aos perfis de

temperatura, composicao e vazao.



Temperatura

Temperatura (K)

400
390
380
370
360
350
340
330
320
310
300

Perfis de temperatura

Linear

== Estimado

—a— (Calculado

10 20 30 40

Prato

Figura 12 - Perfis de Temperatura
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O perfil estimado € o referente a estimativa inicial e é obtido a partir do linear

e do método bubble point modificado. Como pode ser observado na Figura 12, este

perfil € bastante préximo ao calculado, o que evidencia a consisténcia das hipoteses

adotadas de que a variacdo da constante de equilibrio de cada componente € linear

com a temperatura (Figura 13). Esta variagéo linear é devido a proximidade ao ideal

da fase liquida e vapor.

Constante de equilibrio

= propeno

== propano

= isobutano

= isohuteno

f=n-hutano

= trans-buteno
330 340 350 360 370 380 390

T(K)

Figura 13 - Linearidade da Constante de Equilibrio
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Composicao e vazao

Composicao: propeno+propano

1,2

—t Psat

—a—Estimado

Fracdo Molar

Calculado

Prato

Figura 14 - Perfil de composicéo

O perfil de composicdo calculado através da pressdo de saturacdo é
consideravelmente diferente do real. Isso pode ser explicado pela linearidade do

perfil da temperatura adotado para esta etapa da determinacdo da estimativa inicial.

Perfil de vazao de liquido

350

300 GBS e
250

200

== |_estimado

150
Lcalc

100

L x 10”~-4 {mol/h)

== CMO

50

Prato

Figura 15 - Perfil de vazao de liquido

Ha uma pequena diferenca entre os perfis calculado e obtido pela hipdtese de
vazao constante (L CMO). Essa hip6tese é resultado das consideracdes de que a
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mistura tem calor sensivel e de vaporizacdo praticamente constante por todo o

equipamento e de que o calor de mistura é desprezivel (Kister, 1992).

Como o sistema em estudo € composto por uma mistura (propanos e
butanos) com :
- massas moleculares e natureza dos componentes parecidas;

- entalpias de vaporizacdo dos componentes parecidas;

Era esperado que a diferenca observada fosse realmente pequena.

Perfil de vazao de vapor

250
245
240
235
230
225
220
215
210 . . . ]

a\
!

—8=—\/ estimado

=== \/Calc

V x 107-4 {mol/h)

VvV CMO

Prato

Figura 16 - Perfil de vazao de vapor

Assim como observado no perfil de vazéo de liquido (Figura 15), os valores
estimados e o calculados tem comportamento similar. No entanto, o valor calculado
a partir da hipétese de vazao constante (V CMO) nao representa o real. Isto pode
ser explicado pelo fato de que essa hipotese nao leva em consideracéo o efeito da
alimentacdo liquida no prato 16, que perturba o perfil da vazdo de vapor como

observado na Figura 16.

4.4.2. Estudo dos parametros 6 e n

O parametro 0 é o fator de relaxacao e os valores a ele atribuidos controlam o
incremento de tempo, ou seja, controla 0 passo para a integragao das equacdes no

estado transiente. Quanto menor o seu valor, menores sédo as alteracdes nos perfis
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de temperatura, vazao e composicdo e mais estavel é a convergéncia. Porém, o
namero de iteracdes e o tempo necessario para a resposta ser alcancada séo
maiores. Maiores valores de teta resultam em uma convergéncia mais rapida e

instavel, aproximando-se do método de Newton Global (Ketchum, 1979).

Comportamentodo erro

teta=5

20 teta=50

teta= 100

log (Erro)
N

——=teta= 1000

w—pe=teta = 10000

----- TOL= 107

Iteracio

Figura 17 - Comportamento do erro

Como pode ser observado no grafico, para um pequeno valor de teta (5), o
método requer mais iteracdes para convergir e, qgue, com um aumento do valor deste
parametro, o numero de iteracbes diminui. No entanto, para valores altos, a
diferenca na velocidade do método € muito pequena, pois, como descrito acima, o
método vai aproximando-se do método de Newton Global.

O parametro n é o fator de amortecimento ou aceleracdo do algoritmo de
Newton-Raphson para a resolucdo de sistemas. Para a aceleracdo do método de
Ketchum, foi implementada a busca unidimensional deste parédmetro conforme
descrito no Item 3.3.2.



log (Erro)

Estudodo parametro eta

20 wt=Com busca
unidimensional

—m=Sembusca
unidimensional

----- TOL= 107

Iteracdo

Figura 18 - Estudo da busca unidimensional
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A busca unidimensional, além de diminuir o nimero de iteracGes pela metade,

evitou o0 aparecimento de grandes erros no método de Ketchum, ja que, a cada

passo € determinado um valor de n que minimiza a funcéo erro e impede a variagao

brusca das variaveis.
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5. OTIMIZACAO

5.1. Método

O meétodo utilizado para a otimizacdo foi o Método Generalizado do Gradiente
Reduzido (“Generalized Reduced Gradient” - GRG).

Basicamente, este método utiliza-se de restricdes lineares ou linearizadas
(através da expansdo de Taylor de 1% ordem), define novas varidveis normais as
restricbes e expressa o gradiente (ou outra direcdo de busca do ponto 6timo) em
termos dessa base normal (Edgar e Himmelblau, 1988).

Neste método, o problema a ser resolvido é:

Minimizar F(x) x=[x1 x2 ... xn]"
Sujeitaa h(x)=0 j=1,..,m
Li<xi<Ui i=1,..,m

onde L; e U; sdo os limites respectivamente, inferior e superior de X;.

Li e U;sdo considerados vetores separados pois sao tratados diferentemente
na determinacao do tamanho do passo em uma direcao de busca.

As restricbes determinadas por desigualdades devem ser transformadas em
igualdades através da soma ou subtracdo do quadrado de variaveis auxiliares.

Assim, tem-se;:

h(x)=9;(X)—o; =0

A existéncia de m restrigdes lineares ou linearizadas reduz o nimero de graus
de liberdade associados a xi de n para n-m. Essa reducédo implica na reducédo do
gradiente da fungéo objetivo. Por exemplo, para o problema:

Minimizar F(X1, X2)
Sujeitaa hj(xs, X2) =0

Tem-se:
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df (x) = afa)((x)

dx, + aty dx,

1 2

dh(x) = ag(x) dx, + 62()‘) dx, =0
X X

1 2

Considerando-se x2 como a variavel independente e se fazendo as devidas

substituicdes, tem-se:

o oheyox, |
Yooh(x)/ox, -

- A0 Jera {00, [0

Equacéo 50 - Equacgéo do gradiente reduzido

A Equacéao 50 corresponde ao chamado gradiente reduzido.

Neste caso, o gradiente reduzido contém apenas um elemento (é um escalar)
pois existe apenas uma variavel independente. Mas o numero de elementos do
gradiente reduzido depende do numero de variaveis da funcdo que se deseja

otimizar e do numero de restricbes do problema.

5.2. Aplicacéo

Os custos envolvidos nas operacdes de destilagdo (consumo de energia no
condensador e no refervedor) sdo bastante elevados devido a necessidade de
vaporizacao e condensacao da carga da coluna.

Para a coluna apresentada no item 4.4, foi proposto o aquecimento da
corrente de entrada e a busca pelo refluxo e pela temperatura de alimentacdo
otimos.

Sendo:

Qr

carga térmica do trocador de calor da alimentacéo;

O
Py
I

carga térmica do refervedor;
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Qc = carga térmica do condensador;
Cv = custo do vapor = 14,19 $/ J (Turton, 2002)
Ca = custo da agua de refrigeracao = 4,43 $/ J (Turton, 2002)

Cop = custo operacional.

Escolheu-se a seguinte fungao objetivo para ser minimizada:

Cop = (QT +QR)'CV _Qc 'CA

Sujeita a:
Pureza do destilado > 97%;
Temperatura da alimentacg&o: 300 <T; < 350 K;

Restricdo de refluxo: 1,5 <R <5,5.

A pureza do destilado foi definida como sendo a fragdo molar de propano e
propeno na corrente de topo da coluna.

A restricdo superior da temperatura da corrente de entrada foi definida com
base na temperatura de ebulicdo desta corrente. A ebulicdo da corrente de entrada
modifica os perfis da coluna e prejudica a pureza do destilado, assim, escolheu-se
uma temperatura limite na qual a fracdo da corrente de alimentacdo vaporizada é
pequena e aceitavel para a operacao do equipamento.

Estéo ilustrados abaixo os comportamentos da pureza do produto final e da
funcdo objetivo de custo em funcdo da temperatura da corrente de entrada e do

refluxo:
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Fureza do topo

nos ..

oo,

Pureza topo

300
Tk ! Refluxno

Figura 19 - Pureza do produto

Fungio objetivo

% 10

Cop ()

Refluxo
Figura 20 — Funcéo objetivo de custo
Observacgao: os pontos representados com a cor verde mostram as condi¢cdes

normais de operacdo da coluna. Os pontos vermelhos s&o os viaveis (pureza acima

da especificada) e os azuis os possiveis (dominio).
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O grafico da funcéo objetivo (Cop) em funcdo da temperatura da alimentacéo
(Ts) e do refluxo (R) foi aproximado por um plano cuja equacao é:

Cop = 270589231+ 26862633.R —673860T,

A restricdo de pureza, se projetada no plano da funcdo objetivo, pode ser

aproximada por uma reta, como mostra a Figura 21.

Funcgéo objetivo

x 10

Tf (K) 2

Refluxo

Figura 21 - Restricdo de pureza
Em termos do refluxo (R) e da temperatura de alimentacao (T;), a equacédo da
reta desta restrigéo €:
T, =73,201.R + 73,453

Esta aproximacgéo é satisfatoria, visto a sua alta correlagéo (R? = 98,49%).
Portanto, com estas aproximacoes, a funcéo objetivo a ser minimizada e as

restricbes ficam:

min f = 270589231+ 26862633.R — 673860T,

RT¢
Sujeita a:
73,201.R+73,453-T, >0;
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300 <T; < 350;
1,5<R<55.

Foi utilizado o Solver do Microsoft Excel©, que € baseado no método do

gradiente reduzido generalizado (GRG).

A Figura 22 mostra as curvas da funcéo objetivo e as restri¢des.
Fungdo objetivo

f=12x10° f=1,4x10® f=16x10® f=1,8x10°

350 = - -

330 4

310

Temperatura (K)

290

Regiaoviavel

250 +

Refluxo
*—Pureza —+—TemperaturaInferior —&—TemperaturaSuperior

Figura 22 - Curvas de nivel e restricdes da funcéo objetivo

Como a funcdo objetivo e as restricbes sao lineares, o ponto 6timo estara
localizado em uma das restricdes ou nos vértices do poligono formado por algumas
restricbes (Edgar e Himmelblau, 1988), o que pode ser visto na Figura 22. Por
inspecédo o ponto Otimo esta proximo do ponto R = 3,8 e Ty = 350 K.

Utilizando o solver do Excel, o ponto 6timo encontrado para a operagédo da
coluna foi:

R 3,78
Tf 350
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Através da simulacdo da operacao da coluna nessas novas condicfes através
do modelo programado, obtiveram-se os valores reais das cargas térmicas. Segue
abaixo uma tabela comparativa entre a situacdo normal de operacao e as condicdes

otimizadas:

Tabela 10 - Resultados da otimizac&o

Carga (GJ/h) Custo ($/h) Custo ($/ano)

Alimentacédo 0,38 5,34 42721

Operagdo Otimizada Condengador -25,17 111,50 891997
Reboiler 26,35 373,93 2991422
Total - - 3926140

Alimentacgéo 0,00 0,00 0

~ Condensador -29,46 130,49 1043932
Operagao Normal o oiler 31,02 440,22 3521730
Total - - 4565661

Ou seja, a otimizacdo proposta gera uma economia de, aproximadamente,
640 M$/ano.
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6. CONCLUSOES

O método de Ketchum utilizado para a modelagem de colunas de destilagdo
genérica e multicomponente mostrou-se bastante adequado ao caso escolhido para
simulacéo e otimizacdo, uma vez que sua convergéncia foi bastante satisfatoria.

A modelagem das propriedades termodinamicas também foram consistentes uma
vez que os perfis de temperatura, vazdo e composi¢cdo obtidos através do modelo
desenvolvido em linguagem C++ sdo muito proximos aos fornecidos pelo software
Aspen Plus®.

Foi possivel a comparacédo entre os perfis calculado com o modelo rigoroso e o
obtido pela estimativa inicial, o que contribuiu para a melhor compreensdo da
influéncia das hipoteses e simplificacdes adotadas no processo.

Dado o modelo rigoroso de colunas genéricas e multicomponentes, foi possivel a
aplicagcéo da otimizag&o para o caso de uma coluna depropanizadora. Foi escolhida
uma funcdo objetivo de custo operacional cujas varidveis independentes eram o
refluxo e a temperatura da corrente de alimentacéo da coluna. O método utilizado foi
o do Gradiente Reduzido Generalizado e as condi¢des de operacdo 6timas obtidas

geraram uma reducdo de 14% nos custos operacionais do processo.
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Anexo 1 — Método de Newton-Raphson

O Método de Newton-Raphson multidimensional € um método numérico
iterativo que tem o objetivo de encontrar as raizes de um sistema de m equacoes

nao lineares.
A partir de uma estimativa proxima a raiz real do sistema, o método é iterado

e converge para a solugéo procurada.
Neste método, recai-se em um sistema linear da forma Ax=bcom AeR™"para o

vetor das incognitas x,,, — X, . Tem-se:

F(Xk)+‘]F(Xk)(Xk+l _Xk) =0

‘]F (Xk)(xk+1 - Xk) = _F(Xk)

onde F é a matriz dos coeficientes das fun¢bes F:R" —R™, J. é a matriz

jacobiana J. e R™".

A convergéncia do método é fortemente dependente de uma estimativa inicial

préxima a solucao procurada.
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Anexo 2 - Método de Broyden

O método de Broyden € um método de quasi-Newton utilizado para a
determinacao da solugéo de um sistema de equagdes néo-lineares.

Como o método de Newton exige o calculo da matriz jacobiana a cada
iteracdo e isso exige um grande esforco computacional, a idéia base do método de
Broyden é a de se calcular a matriz jacobiana apenas na primeira iteracdo e, nas
demais, se atualizar os valores dessa matriz de forma recursiva segundo a seguinte
equacao:

1 -

o= —1+——(Y-3,,.5).8
S .S

Sendo que:
? = F(Bk) — F(kal)

S = Py—Piu
Onde:
K = nimero da iteracao;

J = matriz jacobiana;

N
p = vetor das incognitas a cada iteracao;

F =matriz das func¢des.
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Anexo 3 — Busca Unidimensional

Do método de Newton-Raphson:
J(p*)(Ap*) =—F(p“)
pk+1 — pk +77'Apk

De forma a aumentar a estabilidade e a velocidade da convergéncia do

método de Newton-Raphson, pode-se utilizar a busca unidimensional para encontrar

o valor do fator de amortecimento (7) que minimize a norma de F(p*™).

minHF(pk*l)

=|F(p* +n-ap")|

Para encontrar o valor de » que minimize a fungéo, sera utilizado um método

de Quasi-Newton. A férmula de recorréncia deste método é:

vt om [t " +h) = f(r" —h)]-h
T g ey —2f (") + T (" —h)]-2

fn™) =|F(p* +n" - Ap")
h =0,001

O valor de 7 convergiu quando "™ —7"| < 0,0001.



