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RESUMO

JERONYMO, P. Sistema de Sensoriamento para Localizacado de Robd Médvel
Auténomo. 2019. 79p. Monografia (Trabalho de Conclusao de Curso) - Escola de
Engenharia de Sao Carlos, Universidade de Sao Paulo, Sao Carlos, 2019.

O objetivo deste TCC ¢ iniciar o desenvolvimento de um sistema de localizacao para um
Robo Mével Autonomo. Através do projeto de um sistema de sensoriamento para o robo e
da coleta de dados, foi realizada a analise de duas estratégias para resolver esse problema. A
primeira estratégia ¢ a implementacao de um Sistema de Navegacgao Inercial, que independe
de um modelo cinemético do robd. No entanto, essa estratégia se mostrou inviavel, devido
a rapida acumulagao de erros sensoriais e ruido. A segunda estratégia utiliza um modelo
cinematico do rob6. Com dados odométricos e de orientacdo espacial, implementou-se
o chamado Dead Reckoning, com resultados melhores, porém agora sofrendo de outra
fonte de erros: a derrapagem das rodas. Com o desenvolvimento futuro de um sistema
de movimentagao para o robd que evite derrapagens, e utilizando-se fusao sensorial com
outra fonte de localizacdo, como um sensor de ultrassom, os erros na localizagao podem

ser reduzidos e um sistema completo de localizagao pode ser implementado.

Palavras-chave: Sensoriamento, Robé Mével Autonomo, Localizagao, Sistema de Nave-

gacao Inercial, Dead Reckoning, Fusao sensorial.






ABSTRACT

JERONYMO, P. Sensing System for Autonomous Mobile Robot Localization.
2019. 79p. Monografia (Trabalho de Conclusao de Curso) - Escola de Engenharia de Sao
Carlos, Universidade de Sao Paulo, Sao Carlos, 2019.

The goal of this work is to start the developmente of a localization system for a Autonomous
Mobile Robot. Through the design of a sensing system for the robot and data gathering,
a analysis of two strategies for solving this problem was conducted. The first strategy is
the implementation of a Inertial Navigation System, that is independent of a kinematic
model for the robot. However, this strategy showed to be impracticable, due to the rapid
accumulation of sensorial erros and noise. The second strategy uses a kinematic model for
the robot. With odometric and spacial orientation data, Dead Reckoning was implemented,
with better results, although now suffering from a new error source: wheel slipping. In the
future, with the development of a motion system for the robot that avoids wheel slipping,
and using sensor fusion with another localization system, such as a ultrasound sensor, the

erros in localization can be reduced and a full locatization system can be implemented.

Keywords: Sensing, Autonomous Mobile Robot, Localization, Inertial Navigation System,

Dead Reckoning, Sensor fusion.






Figura 1 —
Figura 2 —

Figura 3 —

Figura 4 —

Figura 5 —

Figura 6 —

Figura 7 —

Figura 8 —

Figura 9

Figura 10 —

Figura 11 —

Figura 12 —

Figura 13 —

Figura 14 —

LISTA DE FIGURAS

Foto do robd desenvolvido neste trabalho. . . . . . .. ... ... ... 20
Foto da pista de teste, confeccionada para sensoriamento e validagao
das estratégias de estimativa de trajetéria do robo, com o robd sobre ela. 21
Sistemas de Coordenadas do Robd Didatico Mével - O sistema sem linha
(x-y) descreve o referencial inercial & qual as coordenadas do robo sao
estimadas. O sistema com linha (x’-y’) é inerente as medidas realizadas
pelos sensores embarcados no robo. . . . . .. ... L 25
Foto mostrando a parte de baixo do robd, em que pode-se ver a bateria
que alimenta a Ponte-H, os discos furados para codificagao do giro das
rodas e os atuadores que movimentam as rodas. . . . . ... ... ... 33
Foto mostrando a parte interior do robo, aonde estao localizados o
Arduino com o shield que contém o sensor BNOO055, a Ponte-H e os
sensores infravermelhos do codificador de roda. . . . . . . .. ... .. 34
Esquematico do seguidor de linha, mostrando as ligacoes feitas no
microcontrolador ATMEGA328PU. . . . . . ... .. .. ... ..... 34
Fotos ilustrando os estados possiveis do Seguidor de Linha. No estado
1, o rob6 anda para frente. No estado 2, o robo fica parado sobre a
linha de chegada. Os estados 3 e 4 mostram as curvas para a direita e
esquerda respectivamente. . . . .. .. ... 35
Esquematico do sistema de sensoriamento, suprimindo as ligacoes do
shield OAMS. . . . . . 36
Evolugao temporal do angulo de orientagao espacial 6 para cada volta
realizada pelorobo. . . . . . ... 38
Histograma do intervalo de tempo entre as amostras coletadas, com o
eixo vertical em escala logaritmica para melhor visualizacao. . . . . . . 39
Trajetorias estimadas para cada volta realizada pelo robo,utilizando SNI.
As trajetérias sao mostradas parcialmente, para permitir a visualizacao
dapista. . . . ..o 40
Evolugao temporal da velocidade estimada em X, tendo como base
a aceleracao em X, para cada volta realizada pelo robd, utilizando a
estratégia SNI. . . . . . . .o 41
Trajetorias estimadas para cada volta realizada pelo robd, sem modela-
gem de derrapagem, utilizando Dead Reckoning. . . . . . . . . . . ... 42
Trajetorias estimadas para cada volta realizada pelo robd, com modela-

gem de derrapagem, utilizando Dead Reckoning. . . . . . . . . . . . .. 43



Figura 15 — Evolucao das coordenadas do rob6 em funcao do tempo, juntamente

com a velocidade em cada coordenada, para cada volta realizada pelo



LISTA DE TABELAS

Tabela 1 — Tabela multiplicativa dos quaternices. . . . . . . . . .. .. ... ... 26

Tabela 2 — Detalhamento das informagoes coletadas pelo sistema de sensoriamento. 36






EESC

USP

TCC

RMA

GDL

9AMS

SNI

DR

GPS

LISTA DE ABREVIATURAS E SIGLAS

Escola de Engenharia de Sao Carlos
Universidade de Sao Paulo
Trabalho de Conclusao de Curso
Rob6 Mével Autonomo

Graus De Liberdade

9 Azis Motion Sensor

Sistema de Navegacao Inercial
Dead Reckoning

Global Positioning System






2.1
2.2
2.3
23.1
2.3.2
2.3.3
2.4
2.5
25.1
252
253
2.6

3.1
3.2
3.3

4.1
4.2
4.3

SUMARIO

INTRODUCAO . . . . . .ttt e e 19
TEORIA . . . . e e e e e e e e e e 23
Amostragem . . . . . . L 23
Sensores . . . ... 23
Localizacao . . . . . . . . .. ... 24
Referenciais para Localizacdo . . . . . . . . . . ... ... ... ... .. 25
Quaternides . . . . .. 26
Quaternides para orientacdo espacial . . . . . . ... ... 26
Sistema de Navegacado Inercial . . . . . . ... ... ... ... ... .. 27
Dead Reckoning . . . . . . . . . .. ... 27
EquacGes cinematicas apenas com dados de odometria . . . . . . . .. .. 28
EquacGes cinematicas com odometria e orientacdo espacial . . . . . . . .. 28
Equacdes cinematicas modelando derrapagem . . . . . . . ... ... 29
Sistema de Navegacao Inercial vs Dead Reckoning . . . . . . . . .. 30
IMPLEMENTACAO . . . . . . . ittt e et e et e 33
Eletromecanica . . . . . . . . .. . ... 33
Seguidor de linha . . . . . . .. ... 0oL 34
Sistema de sensoriamento . . . . . . ... ... 35
RESULTADOS . . . . . . . e e e e e e e e e e e s 37
Intervalo de tempo entre amostras . . . . . . ... ... ... .. .. 39
SNI com Dados de Aceleracao e Orientacdao . . . . . . ... ... .. 39
Dead Reckoning . . . . . . . . . . ... ... ... ... ... ... 39
DISCUSSAO . . . . . . e 45
CONCLUSAO . . . . ..t e e e a7
REFERENCIAS . . . . . . . e 49
APENDICE A - CODIGO DE SENSORIAMENTO . ... ..... 51
APENDICE B - CODIGO SEGUIDOR DE LINHA .. ... .... 57

APENDICE C - CODIGO DE CONVERSAO DO ARQUIVO DE
DADOS BINARIO PARA FORMATO CSV . ... 61



APENDICE D - CODIGO DE ANALISE DO INTERVALO ENTRE

AMOSTRAS . . . . . e e e e i 63
APENDICE E - CODIGO DE UTILIDADES PARA SNIEDR. .. 65
APENDICE F-CODIGOSNI. . . . . . o i e i i e ii e 69

APENDICE G - CODIGO DEAD RECKONING . . . ........ 73



19

1 INTRODUCAO

Robos méveis sao aqueles que tem a capacidade de locomogao. Eles tem a capacidade
de se mover por seu ambiente e nao sao fixos a uma localizacao fisica fixa. Podem ser
autonomos (RMA - Rob6 Mével Auténomo) o que significa que sdo capazes de navegar em
um ambiente nao controlado, sem a necessidade de dispositivos fisicos ou eletromecéanicos
de guia. (Wikipedia contributors, 2019b)

Robos Moveis tem se tornado mais comuns em cendrios comerciais e industriais.
Hospitais tem usado RMAs para mover materiais. RMAs sao também atualmente um foco
de pesquisa em quase todas as grandes universidades. (Wikipedia contributors, 2019b) A
multinacional Amazon utiliza RMAs em seus armazéns, que cumprem um papel importante
em suas operacoes. A automagao completa nao acontecera por no minimo 10 anos, pois
ainda é necessario muito trabalho e descobertas a serem feitas. (HUMPHRIES, 2019), o

que justifica o estudo e o desenvolvimento de RMAs melhores.

No intuito de navegar autonomamente e realizar tarefas teis, como mapear seu
ambiente, um RMA precisa de saber sua posi¢ado e orientagao exatas. Localizacao é

portanto um problema chave em prover capacidades auténomas a um robé mével (GOEL
P.; ROUMELIOTIS, 1999).

No contexto desse projeto, a navegacao de RMAs sera discutida através da imple-
mentacao de um sistema de localizacdo e orientagao para um RMA que se move sobre
uma superficie bidimensional plana. Uma foto do robo utilizado nesse trabalho pode ser

vista na Fig. 1.

O robd é equipado com um Sistema de Direcao Diferencial, sistema utilizado por
muitos robos que é essencialmente o mesmo arranjo usado em uma cadeira de rodas
(LUCAS, 2000). Quando uma das rodas tem velocidade superior a outra, o robd faz curvas.

Caso as velocidades das rodas sejam proximas, o robd anda em linha reta.

No plano de projeto, foi proposto resolver a questao da localiza¢ao e orientacao do
rob6 através da implementagao de um Sistema de Navegacao Inercial (SNI) (WOODMAN,
2007). Navegacgao inercial é um uma técnica de navegagdo em que medidas providas por
acelerometros e giroscopios sao utilizadas para acompanhar a posicao e orientagdo de um
objeto relativo a uma posigao, uma orientacao e uma velocidade iniciais. (WOODMAN,
2007)

A Navegacao Inercial tem um equacionamento simples em um cendrio ideal, mas
complexidades surgem devido a erros sensoriais e ruidos no sistema (STOVALL, 1997).
Devido a essa complexidade ser maior do que inicialmente imaginada, optou-se por outra

estratégia: Dead Reckoning (DR), que utiliza dados de odometria e um modelo cinematico
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Figura 1: Foto do robd desenvolvido neste trabalho.

para o robo para cumprir a mesma tarefa (GOEL P.; ROUMELIOTIS, 1999).

Utilizando-se Dead Reckoning, foram obtidos resultados melhores aos da Navegacao
Inercial, porém ainda nao suficientes para localizacao e orientagao do robo, devido a outros

erros sensoriais e ruidos no sistema.

Como sera discutido em 2.3, 5 e 6, com a fusao dos dados de ultrassom com o
sistema proposto nesse TCC, e realizando as melhorias necessarias na movimentagao do

robo, um sistema completo de navegacao pode ser desenvolvido futuramente.

Sobre a execugao do projeto, o primeiro passo foi definir o conjunto de sensores a
serem utilizados, entao foi projetado um sistema de coleta dos dados fornecidos por esses

sensores. O sistema de sensoriamento é discutido em 3.3.

Os sensores escolhidos foram codificadores de roda para realizar a odometria e o
sensor de orientagao absoluta BNOO055 (BNOO055, ). Esse sensor é capaz de fornecer a sua
orientacao espacial em relagdo ao norte magnético da terra, através da fusao sensorial de
magnetometros, giroscopios e acelerometros. Ele também fornece outros dados sofisticados,

discutidos na secao 2.2.

Para realizar uma trajetéria previsivel para testes, foi implementado um sistema de
seguidor de linha (CANDIDO, 2018), discutido em 3.2. Enquanto os sinais de controle das
rodas sao enviados pelo sistema seguidor de linha, o sistema de sensoriamento armazena

em um cartdo SD as leituras dos sensores.
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Figura 2: Foto da pista de teste, confeccionada para sensoriamento e validacao das estra-
tégias de estimativa de trajetoria do robd, com o robd sobre ela.

Com os dois sistemas funcionando simultaneamente, o robo realizou algumas voltas
em uma pista de teste confeccionada utilizando uma folha A2 e fita isolante para o trajeto.

A Fig. 2 mostra uma foto da pista com o rob6 sobre ela.

Para validar cada estratégia (SNI e DR), a estimativa da posigao e orientagao do
robd em funcao do tempo foi realizada a partir dos dados coletados. A trajetéria estimada
computacionalmente foi comparada com a trajetéria esperada. Os critérios de decisao

foram a distancia percorrida e a aderéncia visual do trajeto estimado ao trajeto esperado.

Alguns problemas na movimentagao do robd foram observados, sendo o mais critico
a derrapagem das rodas, que foi contornada nas estimativas, mas tem que ser resolvida

para a locomocao e estimativa de localizacao correta do robo.

O texto dessa monografia é dividido em cinco capitulos, sendo o primeiro este.
O capitulo 2 discute os aspectos tedricos do trabalho, mas ja abordando questoes de
implementacao. O capitulo 3 aborda como foi implementada a teoria apresentada, a fim
de se obter os resultados, apresentados no capitulo 4. Entao, os resultados sao discutidos

no capitulo 5. Por fim, o capitulo 6 apresenta a conclusao desse TCC.
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2 TEORIA

2.1 Amostragem

A operacao de amostragem gera um sinal discreto no tempo de um sinal continuo
no tempo. A amostragem de sinais continuos é frequentemente realizada para que o sinal
possa ser manipulado em um computador ou microprocessador (HAYKIN S.; VEEN;,
2002).

A amostragem de um sinal continuo z(t) é realizada aferindo o valor de x(t) em
instantes regulares de tempo t = kT,, em que k = 0,..., N — 1 e T's é o periodo de
amostragem. O sinal resultante x; é uma representacao digital de z(t = kT,) em cada

instante de amostragem k, para N instantes de amostragem.

Para que nao haja perda de informacgao no processo de amostragem, deve-se
respeitar o Teorema da Amostragem.

Teorema da Amostragem Se um sinal z(¢) ndo contém frequéncias

maiores que B hertz, ele é completamente determinado dados os seus

valores em uma série de pontos espacados em (1/2B) segundos. Uma

taxa de amostragem Fj suficiente é portanto qualquer uma maior que 2B

amostras por segundo: Fy > 2B (Wikipedia contributors, 2019c).
2.2 Sensores

Fusao sensorial é a combinacao de dados sensoriais ou dados de fontes diferentes
de maneira que a informagao resultante apresenta menos incerteza do que seria possivel

ao se utilizar cada uma dessas fontes individualmente (Wikipedia contributors, 2019f).

Os sensores utilizados nesse projeto sao o sensor de orientagao absoluta BNO055
(BNOO055, ) e um codificador 6ptico incremental (INCREMENTAL. .., ) para cada roda

do robo.

O BNOO055 usa como referéncia o norte magnético, por isso é chamado de sensor
de orientagao absoluta. Ele possui trés acelerémetros, trés giroscopios e trés magnetome-
tros. Acelerémetros medem aceleracao em seu referencial inerente, giroscopios medem
velocidade angular e magnetémetros medem intensidade do campo magnético ao seu
redor. O BNOO055 vem integrado a um shield, que facilita a sua conexao ao Arduino,
chamado 9 Azis Motion Sensor (9AMS).

Com um de cada tipo desses sensores para cada dire¢ao espacial (x,y,z) o BNOO055

é capaz de realizar fusao sensorial e fornecer informagdes sofisticadas como:

» Orientagdo espacial em relacao ao Norte Magnético da Terra em dois formatos:
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Angulos de Euler e Quaternido;

« Retornar a aceleragao em cada direcao espacial, descontando a influencia da gravidade,

chamadas de aceleracoes lineares;

« Retornar apenas um vetor representando a aceleracao gravitacional.

Um codificador 6ptico incremental (INCREMENTAL. .., ) prové um meio de
se medir a posicao de uma roda ou motor através da codificacao de pulsos em um disco
com furos igualmente espagados utilizando um sensor infravermelho. Conforme a roda
gira, um trem de pulsos é formado com frequéncia proporcional a velocidade angular da

roda. Cada pulso representa um passo dado pela roda.

Através do quaternido de orientagao espacial, pode-se obter o angulo 6 entre o
referencial do rob6 (ou dos sensores) e o referencial inercial do observador; definidos na
subsec¢ao 2.3.1. As aceleracoes lineares sao utilizadas no Sistema de Navegacao Inercial

proposto em 2.4.

O quaterniao de orientagao espacial fornecido pelo BNOO055 tem como referéncia
o norte magnético da terra. Como pode ser visto na Fig. 9, na secao de resultados, o
angulo inicial do rob6 em cada volta é proximo de zero pois a pista foi convenientemente

posicionada em alinhamento com o norte magnético.

Os codificadores sao utilizados em 2.5. Sao contadas as quantidades de pulsos (ou
passos dados pela roda) ngx € ney, para as rodas direita e esquerda respectivamente,

ocorridas entre os instantes de amostragem k£ — 1 e k.

2.3 Localizacao

As técnicas diferentes para se resolver o problema da localizacao podem ser classifi-
cadas em duas categorias principais (GOEL P.; ROUMELIOTIS, 1999):

« Localizagdao Relativa (local): avaliar a posicao e orientacao baseado em informa-
¢ao fornecida por sensores embarcados (codificadores, giroscépios, acelerémetros,
ete);

« Localizagdo absoluta (global): obter a posigao absoluta usando guias, pontos de

referéncia ou sinais geoestaciondarios (GPS).

SNIs e Dead Reckoning sao da primeira categoria. O erro na localizagao cresce
com o tempo. Os métodos absolutos, como GPS conseguem medidas independentes das
anteriores, portanto, o erro nao acumula de uma medida para a préxima, porém muitas

vezes nao ¢ possivel se utilizar GPS, especialmente para pequenas distancias ou portas a
dentro. (GROVES, 2008)
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Figura 3: Sistemas de Coordenadas do Rob6 Didatico Mével - O sistema sem linha (x-y)
descreve o referencial inercial a qual as coordenadas do robo sdo estimadas.
O sistema com linha (x-y’) é inerente as medidas realizadas pelos sensores
embarcados no robo.

Um sensor de ultrassom possui caracteristicas de um sistema absoluto de orien-
tagao, pois mede a distancia entre o robo e os objetos ao seu redor, sendo cada medida
independente da anterior. Com Dead Reckoning provendo corregoes a localizagdao obtida
através do sensor de ultrassom, cuja integracao entre os sistemas podendo ser realizada
por um Filtro de Kalman (LEVY, ), é possivel se construir uma solu¢ao completa de
localizagao. (GROVES, 2008).

2.3.1 Referenciais para Localizacao

Um robd moével, ou veiculo, possui 6 graus de liberdade (GDL) expressados pela
pose: (x,y, z, Roll, Pitch, Yaw). Informalmente, Roll pode ser definido como sendo a rotacao
lateral e Pitch a rotagdo para frente e para tras. Yow, comumente denominado de Heading
ou Orientacdo, refere-se a direcao a qual o robo se move no plano x-y. Para um rob6 em
uma superficie bidimensional, a pose 2D (x,y, ), em que 6 denota Orientacao, ¢ suficiente
para descrever seu movimento. (HELLSTROM, 2011) Ou seja, a movimentagao espacial se
restringe a 3 GDL.

A Fig. 3 descreve os sistemas de coordenadas presentes no problema. O sistema
de coordenadas sem linha (x-y) descreve o referencial inercial a qual as coordenadas do
robd sao estimadas, esse é o sistema de interesse. O sistema com linha (x’-y’) é inerente
as medidas realizadas pelos sensores embarcados no robo (acelerémetros, giroscopios,

magnetometros, codificadores para rodas).
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2.3.2 Quaternioes

Quaternioes sdo uma extensao dos numeros complexos, geralmente representados

na forma:

q:(Qw7Qx7qy7QZ) = (a,b,c,d) :a+bl+Cj+dk

A aritmética dos quaternides é similar a dos nimeros complexos. A soma de
qu=a+bi+cj+dkeq=e+ fi+gj+hké(a+e)+ b+ fli+(c+9)j+ (d+h)k.
O conjugado de q = a +bi +cj+dk é 7! = a — bi — ¢j — dk. E a multiplicacdo entre
quaternides ¢ também como a dos niimeros complexos mas seguindo a tabela 1. Nota-se

que, diferentemente dos complexos, a multiplicagao de quaternioes nao é comutativa.

Tabela 1: Tabela multiplicativa dos quaternides.

x 1 i j k
1 1 i j &
i i -1 k -
i G -k -1
k k j - -1

2.3.3 Quaternioes para orientagdo espacial

Um quaternidao é dito unitario quando seu modulo igual 1:

lal=d¢, +@+q +¢ =1

Quaternioes unitarios fornecem uma notacao matemética conveniente para repre-

sentar orientagoes e rotagoes de objetos em trés dimensoes.

Neste projeto, um quaterniao qx = (Gu ks ¢u ks 9y.k» 9=,x) € fornecido a cada instante
de amostragem k, representando a rotagao em 6 graus entre (x-y) e (x’-y’) naquele instante.
Como a movimentagao é restrita a uma superficie bidimensional plana, as componentes ¢,

e g, sao aproximadamente zero.

Para que seja possivel realizar a estimativa de posicao do robd, deseja-se transformar
as leituras feitas no referencial (x’-y’) para o referencial (x-y). Realiza-se isso aplicando o

procedimento a seguir.

Seja u' = (ul,, u;) um vetor no referencial (x’-y’), transforma-se suas coordenadas

para o vetor equivalente u = (uy, u,) no referencial (x-y) através da férmula:

(ux) _ (C?S(@) —sin(@)) (u;) (2.1)
Uy sin(f)  cos(6) u,
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em que sin(f) = 2q,q, € cos(0) = quGw — ¢=9--

Utilizou-se quaternioes para se evitar problemas de mudanca brusca de angulo
quando o rob6 cruza os 180°, como pode ser notado na Fig. 9, mostrada nos resultados. Mais
detalhes sobre quaternides e suas aplicagoes em rotagao espacial podem ser encontrados em
(Wikipedia contributors, 2019d), (Wikipedia contributors, 2019e) e (Wikipedia contributors,
2019a).

2.4 Sistema de Navegacao Inercial

A partir do sensor de posicao absoluta BNOO055 embarcado no robo, é possivel,
em teoria, desenvolver um Sistema de Navegagao Inercial (SNI) utilizando os dados de

orientacdo espacial e aceleracdo linear fornecidos pelo sensor.

: o . . . R p p
A partir o quaternido de orientagao espacial gi. e das aceleragoes lineares a;, ;€ aj
medidos a cada instante de amostragem k, pode-se estimar a posi¢cao e velocidade do robo

seguindo o procedimento:

1. Transformar a;,; e a;; medidos no referencial (x-y’) nos vetores equivalentes em

(x-y) agk € ayy utilizando a transformacao linear 2.1.
2. Integrar a, e a, ) em funcao do tempo para se obter as velocidades v, i € vy .

3. Integrar v, e vy, em funcao do tempo para se obter as coordenadas zj e y; do

robo.

A integracao dos vetores de aceleracao e velocidade sao realizadas através da

aproximacao discreta de uma integral, que ¢ um somatorio:

t j=k
Fit) = | fr)dr ~ Fo= 3 fiat
j=0

2.5 Dead Reckoning

Essa secao discute o desenvolvimento das equagoes de movimento implementadas

neste projeto, que modelam um rob6 com Sistema de Direcao Diferencial.

Partindo de equagoes de movimento que utilizam apenas as leituras ngy e n.j dos
codificadores de roda, inclui-se as informacoes de orientacao espacial fornecidas pelo sensor
BNOO055. Por fim, modela-se a derrapagem, incluindo-a também nas equacgoes, até se

obter o modelo cinematico final.
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2.5.1 Equacoes cineméticas apenas com dados de odometria

Considerando o sistema de coordenadas apresentado, se temos no instante k£ a pose
(g, Yk, Ok ), para se estimar a pose (Tpi1, Ykt1,0kr1), utilizamos as equagoes de movimento
do robd, cuja derivagdo pode ser encontrada em (HELLSTRo6M, 2011).

o Seja At o tempo corrido entre o instante k — 1 e o instante k;

e Seja ngy e ne o numero de passos contados pelos codificadores das rodas direita e

esquerda, respectivamente, entre os instantes k — 1 e k;

e Seja step o tamanho do passo do robo;

Tk cos(wpAty) —sin(wipAtg) 0\ (21 — ICCyy ICC,
Y | = | sin(wpAty)  cos(wpAty) O | yom1 —ICCyi | + | ICCyp (2.2)
ek 0 0 1 ‘gk—l katk
em que
LN\ nap + ne
= (=) === 2.3
Rk (2 ) Nar — Nek ( )
welty = 1k Z@“St@p (2.4)
[OCk = [SEk — Rk; Sin(ek), Yk + Rk; COS(Qk)] (25)

2.5.2 Equacgoes cineméticas com odometria e orientacao espacial

As equagoes de movimento descritas em (HELLSTRoOM, 2011) (2.2, 2.3, 2.4 e 2.5)
estimam a pose do robd baseando-se apenas nas leituras dos codificadores de roda. Para uma
melhor estimativa, pode-se utilizar o quaterniao de orientacao espacial q = (qu, ¢u» 9y ¢2)
fornecida pelo BNOO55 para se obter cos(#), sin(f) como discutido na subsecao 2.3.3, e

A6 como discutido a seguir.

A derivada de sin(A#) em relagdo a Af é cos(Af). No caso discretizado, pode ser

aproximada por:

sin(Afy) — sin(Ab_1)  sin(Aby) — sin(Ab_1)

: ;L N
(sin(Afy_1))" = cos(Aby_1) ~ o T— = A6,

(2.6)
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Logo, aproxima-se Afy o isolando na equacao 2.6:

sin(Afy,) — sin(Af_1)

A, ~ 2.
g cos(Ab_1) 27)
Para se incluir 2.7 nas equagoes de movimento, deve-se notar que:
. katk = Aek
o A partir de 2.3, 2.4 e da relacdo anterior pode-se chegar em: R, = (St;p ) "d‘fé:e"“
Com essas substituigoes, simplifica-se as equagoes de movimento para:
T . COS(AQk) — sin(A@k) Lh—1 — IOCr’k 4 IOOL]C (2 8)
Yk sin(Ady)  cos(Aby) Yp—1 — 1CCy ICC, .
em que
sin(&k) — sin(@k,l)
Af, = 2.9
k cos(fx_1) (2.9)
step\ g g + Ne k
= ’ ’ 2.1
B ( 2 ) A, (2.10)
ICCk = [:Z'k — Rk sin(&k), Yk + Rk cos(&k)] (211)

2.5.3 Equacoes cineméticas modelando derrapagem

Para se contornar o problema da derrapagem, optou-se por uma solugao simples,
ad hoc e baseada na intuicdo. Apesar de nao ter respaldo académico, acabou obtendo

resultados congruentes com o esperado se nao houve-se derrapagem.

stepn
At

diretamente proporcional a velocidade angular esperada caso nao houvesse derrapagem

Modelou-se a velocidade angular observada da roda (Q =

) como sendo
(). Tem-se que:

A step-n  step-n
Qx Q=
= At AL

=>nxn

Seja v o coeficiente de proporcionalidade, que chamaremos de coeficiente de derra-

pagem, tem-se que

Ng = YNq
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Ne = 77776
Logo,
- (Step) Nag + Nek (Step) (vnak) + (yner)
= R, = =
Portanto,

step) Nak + Nek (2.12)

Rk:”( 2 N

Para estimar ~, utilizou-se o comprimento do trajeto realizado por cada roda
durante a volta. E entao, fez-se a razao entre o comprimento de trajeto esperado para

cada roda e o comprimento registrado. v foi considerado a média dessas duas razoes.

O comprimento de trajeto esperado para a roda direita é de 236 cm, pois é o
comprimento da pista. Se considerarmos que a roda esquerda idealmente fica parada
durante as quatro curvas presentes no trajeto, cada uma com 10 c¢m, o comprimento

esperado para a roda esquerda ¢ de 236 — 4 x 10 = 196 cm.

Os comprimentos dos trajetos das rodas sao dados por:

k=N—1 k=N—1
Lg=step- > ng, Le=step- > ne (2.13)
k=0 k=0
A férmula para v é:
1\ /236 196
=(=){— 2.14
! <2>(Ld+Le> (2.14)

As equagoes cinematicas do rob6 modelando derrapagem sao as equagoes 2.8, 2.9 e
2.11, apresentadas na subsecao 2.5.2, com a utilizagdo da equacao 2.12 em vez da equagao
2.10.

2.6 Sistema de Navegacao Inercial vs Dead Reckoning

SNIs sao autocontidos (WOODMAN, 2007), ou seja, independem de um modelo
cinético de movimentacao veiculo em que estao embarcados. J& Dead Reckoning depende

de um modelo cinético.

Dead reckoning, assim como um SNI, ndo podem ser usados por longas distancias,
porque sofrem com varias desvantagens. O modelo cinético sempre sofre de inacurarias,
codificadores tem precisao limitada e existem diversas fontes externas de erro afetando a
movimentagao que nao sao observaveis pelos sensores, por exemplo derrapagem das rodas.
O erro de localizagao cresce com o tempo (GOEL P.; ROUMELIOTIS, 1999).
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No caso de um SNI é simples ver que o erro na velocidade cresce linearmente com
o tempo e o erro na posigao cresce de forma quadréatica. Seja da o erro na medida da

aceleracao a(t). Seja a(t) a aceleracdo observada na pratica.
Logo,
a(t) = a(t) + da

Ao se integrar a(t) em relagdo ao tempo, obtém-se:

v(t) :/OtC_L(T)dT:/ta(T)+5adT:U(t)+5a-t

0

Ao se integrar v(t) em relagao ao tempo temos:

z(t) :/Otz_J(T)dT:/Otv(7)+(5a-TdT:x(t)+(5a~t2
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3 IMPLEMENTACAO

3.1 Eletromecanica

O funcionamento eletromecanico do robo se da a partir de sinais de controle
enviados por um Arduino (Arduino. .., ) a uma Ponte-H (WIKIPéDIA, 2019) que envia
corrente aos atuadores das rodas, fazendo-as rodar conforme os sinais de controle. Cada
roda tem quatro estados de operagao: para frente, reverso, parada rapida do motor e parada

livre do motor.

Para alimentar a Ponte-H, uma bateria 9V fixada na parte inferior do robd foi
utilizada. Para alimentar o Arduino e o microcontrolador foi usada outra bateria 9V fixada

na lateral do robo, esse arranjo pode ser vistos na Fig. 1.

Figura 4: Foto mostrando a parte de baixo do robd, em que pode-se ver a bateria que
alimenta a Ponte-H, os discos furados para codificacao do giro das rodas e os
atuadores que movimentam as rodas.

Na Fig. 4, pode-se ver as rodas, que tem 65mm de diametro, os atuadores, e os
discos codificadores das rodas, com 20 furos cada. Além disso, pode-se ver a bateria que

alimenta a Ponte-H.

Na Fig. 5 pode-se ver o Arduino com o shield que contém o sensor BNOO055 na
parte esquerda. Ao meio, pode-se ver a Ponte-H e a esquerda os sensores infravermelhos,
que junto aos discos compdem os codificadores épticos incrementais, como discutido na

secao 2.2.
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Figura 5: Foto mostrando a parte interior do rob6, aonde estao localizados o Arduino com
o shield que contém o sensor BNOO055, a Ponte-H e os sensores infravermelhos
do codificador de roda.

3.2 Seguidor de linha

Um microcontrolador ATMEGA328PU (MEGAAVR..., ), mesmo microcotrolador

presente no Arduino (Arduino. .., ), foi utilizado para implementar um seguidor de linha.

Optou-se por se utilizar apenas o microcontrolador, em vez do Arduino completo , por

conveniéncia. O cédigo para o seguidor de linha estd no apéndice B. O esquematico do

seguidor de linha esta na Fig. 6.

VCC

]

sT
Uz
PCBHRESET) peojancy |22 SENSOR_INFRA_D
PC1ADC]) |24 SENSOR_INFRAE
AT PCADCY |—25  SEMTIDO_MOTOR_D_1
WCC PCHADCH |28 SEMTIDO_MOTOR_D_Z2
PCAADCHSOA) |22 SENTIDO_MOTOR_E_1
PCsaDCsscL) |28 SENTIDO_MOTOR E_2
2L L aRrerF
PDORXD) |—2—
PBE(TALLTOSCL)  PDLTHD) |—2—
po2(NTD |-+ PULSO_RODA_E
PBPXTALZTOSC2)  PDAINTY) |2 PULSO_RODA_D
POHCKTE |
posTy 2
POGAING |12
POTAING |12
PBOJCP) L
PELOCIA] |13 EMABLE MOTOR_D
PE2(55i0C1R) |18 ENABLE_MOTOR_E
GND PE3MOSIOCZ) =L
GND PRAMISO] |12
pES(SCK) |2
328P

Figura 6: Esquematico do seguidor de linha, mostrando as ligacoes feitas no

lador ATMEGA328PU.

microcontro-
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Dois sensores infravermelhos para seguidor de linha (inserir modelo) foram fixados
na frente do robd, com 6,5 cm de distancia entre eles. O sensor possui um receptor e um
emissor de infravermelho, lado a lado, que podem ser vistos na Fig. 4. O sensor é ativo
quando a luz refletida pelo emissor de infravermelho atinge o receptor de infravermelho,
ou seja, quando a superficie é branca ou reflexiva. Quando a superficie é escura, ou pouco
reflexiva, o sensor é inativo. A Fig. 7 ilustra os estados possiveis do segue linha aqui

descritos.

Figura 7: Fotos ilustrando os estados possiveis do Seguidor de Linha. No estado 1, o robo
anda para frente. No estado 2, o robo fica parado sobre a linha de chegada. Os
estados 3 e 4 mostram as curvas para a direita e esquerda respectivamente.

Enquanto ambos os sensores estao ativos, o robé caminha para frente. Quando o
sensor direito fica inativo, o robd vira para a direita, até ambos os sensores ficarem ativos
novamente. Quando o sensor esquerdo fica inativo, o comportamento é espelhado. Dessa
forma, o rob6 segue o trajeto tracado na pista confeccionada para testes, com papel A2 e
fita isolante. Quando ambos os sensores ficam inativos, ou seja, quando encontra com a

linha de chegada, o robd para.

3.3 Sistema de sensoriamento

O cédigo para o sistema de sensoriamento estd no apéndice A. A cada 10 ms

foram coletadas as seguintes informacgoes detalhadas na tabela 2, salvas em um arquivo
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Tabela 2: Detalhamento das informacoes coletadas pelo sistema de sensoriamento.

‘ Nome ‘ Tipo ‘ Fonte ‘ Descricao ‘
Tempo corrente | Inteiro Arduino Tempo corrente desde o inicio da execuc¢do do programa
Calibragdo Acc | Categérico | BNO055 Status de calibragao dos acelerémetros (0-3)
Calibragdo Mag | Categérico | BNO055 Status de calibragdo dos magnetémetros (0-3)
Calibragao Gir | Categérico | BNO055 Status de calibragao dos giroscépios (0-3)
Calibragao Sys | Categérico | BNO055 Status de calibragao do sistema (0-3)
linAceX Real BNOO055 Aceleragao Linear em X
linAccY Real BNOO055 Aceleragdo Linear em Y
linAccZ Real BNO055 Aceleragéo Linear em Z
quatW Real BNO055 Componente W do quaternido de orientagido espacial
quatX Real BNOO055 Componente X do quaternido de orientagao espacial
quatyY Real BNOO055 Componente Y do quaternido de orientagio espacial
quatZ Real BNOO055 Componente Z do quaternido de orientacdo espacial
Num. Dir. Inteiro Codificador | Numero de pulsos entre a amostragem anterior e agora da roda direita
Num. Esq. Inteiro Codificador | Numero de pulsos entre a amostragem anterior e agora da roda esquerda

binario no cartao SD. Usando o cédigo C, os dados foram convertidos para o formato

Commoa-separated values para mais facil importacao nos demais cédigos em Python.

O esquematico do coletor de dados, suprimento as ligagoes do shield 9AMS, esta

na Fig. 8. Os sensores de codificacdo das rodas nao estao representados, por simplicidade,

apenas os pinos de conexao no microcontrolador estao presentes.

A escolha do periodo amostral T, = 10 ms se deu devido a frequéncia méaxima de
saida de dados do BNOO055, que ¢ de 100 Hz para as saidas de fusao de dados utilizadas.

Assume-se que essa taxa de amostragem respeita o Teorema da Amostragem (2.1), pois o

sensor foi projetado para esse tipo de aplicacao (BNOO55, ).
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Figura 8: Esquematico do sistema de sensoriamento, suprimindo

VCC
31

-
i

9AMS.

VCC

SWITCH-5PST-PTH-6.8MM ]

GMD

Bl
AD RE
Al ™ |-
Az
A3 D2
Ad D3
A5 o4
o5 | U531
o8 |— vee CARD-MICRO-SD-ADAPTER
IOREF o7 @]
RES Da
YN 0y |— !csz SEE cs
S 0le |— sCK
3.3 D11 RIOSTS ml%% MOSI MICRO
AREF DLz LESS e M1so | sD CARD
GND D13 &5 veo
GND soa |— GND
GND scL |-

ARDUINO_UND_R3_SHIELDBASIC GND

as ligagoes do shield



37

4 RESULTADOS

Esse capitulo apresenta os resultados experimentais do projeto. Para as Figs. com
as trajetoérias estimadas, se incluiu uma representacao digital da pista confeccionada para
testes, além de duas pistas tracejadas. Como a distancia entre os sensores infravermelhos
do seguidor de linha é de 6,5 cm, as pistas tracejadas demarcam para dentro e para fora
essa margem. Com os cddigos disponiveis nos apéndices, calculou-se que o cumprimento
da trajetoria minima é de 188 cm e o comprimento da trajetoria maxima é de 284 cm.

Lembrando que o comprimento nominal é de 236 cm.

Além das trajetérias estimadas, sao incluidos alguns graficos com a evoluc¢ao
temporal do angulo de orientagao espacial €, das coordenadas, velocidades e aceleragoes
relevantes para a discussao. H4 uma analise do intervalo de tempo entre uma amostra e

outra, ou seja, sobre a variacao na pratica do periodo amostral.
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Orientagao em fungao do tempo (Volta 1)
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Figura 9: Evolucao temporal do angulo de orientagao espacial 6 para cada volta realizada

pelo robd.
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4.1 Intervalo de tempo entre amostras

A Fig. 10 mostra um histograma do intervalo de tempo entre as amostras coleta-
das, com o eixo vertical em escala logaritmica para melhor visualizacao. O periodo de
amostragem nominal é de 10 ms, porém, como pode-se observar, esse tempo variou devido

a fatores aleatorios discutidos no capitulo 5.

A mediana do tempo entre amostras é de 10 ms, e 95% das vezes o tempo foi menor
que 14 ms, ou seja, em 5% das vezes houve atraso maior que 4 ms. O cddigo que gerou a

Fig. 10 e as estatisticas apresentadas se encontra no apéndice D.

Histograma do intervalo de tempo entre amostras
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10T P Y

10 15 20 25 30 35 40 45 50
Intervalo de tempo entre amostras (dt)

Figura 10: Histograma do intervalo de tempo entre as amostras coletadas, com o eixo
vertical em escala logaritmica para melhor visualizagao.

4.2 SNI com Dados de Aceleracao e Orientacao

A partir do codigo apresentado no apéndice F' que implementa as equagoes apre-
sentadas na subsecao 2.4 obteve-se as Figs. 11 e 12. A Fig. 11 mostra o trajeto estimado
e a Fig. 12 mostra a evolugao temporal da velocidade estimada em X, tendo como base
a aceleracdo em X, para cada volta realizada pelo rob6. As trajetérias sao mostradas

parcialmente, para permitir a visualizacao da pista.

4.3 Dead Reckoning

As Figs. 13, 14 e 15 foram obtidas através do codigo G.
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Trajetorias estimadas SNI
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—500 —400 —-300 —200 —100 0 100
{cm)

Figura 11: Trajetérias estimadas para cada volta realizada pelo robo,utilizando SNI. As
trajetorias sdo mostradas parcialmente, para permitir a visualizagao da pista.

A trajetoria com derrapagem representa o resultado da utilizagdo dos dados cole-
tados nas equacoes apresentadas na subsecao 2.5.2. A trajetéria sem derrapagem utiliza
as equagoes da subsec¢ao 2.5.3. A Fig. 15 mostra a evolugao das coordenadas do rob6 em
funcao do tempo, juntamente com a velocidade em cada coordenada, para cada volta

realizada pelo robo.
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Volta 1 SNI
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Figura 12: Evolucao temporal da velocidade estimada em X, tendo como base a aceleragao
em X, para cada volta realizada pelo robd, utilizando a estratégia SNI.
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Trajetorias estimadas sem correcao de derrapagem
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Figura 13: Trajetérias estimadas para cada volta realizada pelo robo, sem modelagem de
derrapagem, utilizando Dead Reckoning.
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Trajetorias estimadas com correcao de derrapagem
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Figura 14: Trajetérias estimadas para cada volta realizada pelo robd, com modelagem de
derrapagem, utilizando Dead Reckoning.
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Figura 15: Evolucao das coordenadas do rob6 em funcao do tempo, juntamente com a
velocidade em cada coordenada, para cada volta realizada pelo robo.
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5 DISCUSSAO

Esse capitulo discute os resultados experimentais obtidos, a partir da andlise
computacional dos dados coletados em laboratorio. O robd realizou trés voltas na pista
confeccionada para testes. A partir das equagoes apresentadas no capitulo 2, implementadas

como descrito no capitulo 3, obteve-se os resultados apresentados no capitulo 4.

Primeiramente, pode-se observar que a escolha de quaternides é fortuita, pois se o
dngulo 0 fosse utilizado diretamente para calcular sin(6), cos(f) e Af haveriam problemas
com saltos em Af quando 6 passa pela regiao dos 180°, oscilando entre -180° e 180°, como

pode-se observar na Fig. 9.

Sobre as variacoes no periodo amostral, apresentados na secdo 4.1. Essas variagoes
ocorrem pois ocorrem interrupgoes no processamento do microcontrolador (MEGAAVR. . .|
) de duas fontes. A primeira sdo as operagoes de escrita no cartao SD, que para ser efetuadas
demandam processamento. A segunda sao as interrupgoes geradas pelo codificador dptico,
que realiza contagem de pulsos conforme as rodas giram. Para se contornar tais variagoes,

um microcontrolador mais potente, com maior frequéncia de operagao, deve ser utilizado.

Como pode-se observar no histograma da Fig. 10, o valor mais comum, e como
dito em 4.1, a mediana dos valores, é o valor nominal para o periodo amostral, 10 ms. O
segundo valor mais frequente é mais que 10 vezes menos comum. Caso as variagdes no
periodo amostral prejudiquem demasiadamente as estimativas, o que nao pode ser aferido
devido a incompletude do sistema de navegacao, deve-se utilizar um microcontrolador

mais rapido, porém possivelmente de maior custo.

A trajetoria estimada utilizando o método apresentado em 2.4, mostrada parcial-
mente na Fig. 11, diverge rapidamente devido a uma acumulagao rapida dos erros sensoriais

e ruidos presentes na leitura da aceleracao linear fornecida pelo BNOO055.

Como pode-se observar na Fig. 12, a aceleracao ¢ muito ruidosa, fazendo a velocidade
se divergir rapidamente do valor real. Filtros digitais foram tentados para se filtrar o ruido,
porém nao foi obtido sucesso. Por essa razao, optou-se pelo Dead Reckoning na esperanca

de que os erros se acumulassem mais devagar.

Implementou-se o DR e de fato, os erros se acumulam mais devagar, havendo
deformagoes muito grandes na trajetéria mais ao final do trajeto, como pode-se observar
na Fig. 14. Porém, teve-se que se modelar uma nova fonte de erros que vem com essa

estratégia: a derrapagem.

Na Fig. 13 pode-se observar o efeito severo que a derrapagem teve no comprimento

do trajeto estimado, chegando a quase 10 vezes o comprimento nominal de 236 cm na
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terceira volta. A modelagem de derrapagem foi totalmente ad hoc e intuitiva, porém
obteve-se resultados que aproximam o trajeto nominal, desviando inicialmente pouco dele,
e dentro das faixas de tolerancia de 6,5 cm para mais ou para menos tracejadas nas Figs.
13 e 14.

A Fig. 15 mostra que a trajetéria estimada é bem suave nas coordenadas, porém
houveram grandes variagoes na velocidade, que sao compativeis com o observado na
pratica e também com a forma com que o seguidor de linha foi programado, justamente na
tentativa de manter a movimentagao em passos pequenos e evitar derrapagem ou escapada
da trilha.

A derrapagem pode ser corrigida melhorando os sinais de controle do rob6, criando
um sistema de movimentacao robusto, que evita derrapagens. Principalmente quando o
robd parte da inercia para o inicio do movimento, momento em que foi observada a maior

derrapagem.
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6 CONCLUSAO

O trabalho realizado nesse TCC é o inicio de um processo de desenvolvimento de
um sistema de localizagao espacial de um robd mével auténomo (RMA). A contribuigao
desse projeto foi a escolha de uma estratégia para se realizar a estimativa de localizagao,

descartando-se SNI em prol do Dead Reckoning.

Os sistemas de seguidor de linha e sensoriamento podem ser aperfeicoados futura-
mente. Com um sistema mais robusto de controle de movimentacao, evitando derrapagem,
a fusdo sensorial com um sensor de ultrassom pode providenciar dados suficientes para um

sistema de navegacao completo, como discutido na secao 2.3.

O ultrassom, por medir a distancia entre o rob6 e os objetos ao seu redor, fornece
uma medida direta de posicionamento do rob6 em seu ambiente. Essa medida pode ser
refinada utilizando os dados de odometria e orientagao espacial para se construir um
Filtro de Kalman (LEVY ), que melhore a precisao das estimativas e provenha localizagao

suficientemente precisa para as func¢oes desejadas ao robo.
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APENDICE A - CODIGO DE SENSORIAMENTO

/* Codigo de sensoriamento (coleta de dados) para o robd

* utilizando o sensor inercial BNOO55 presente no shield 9 Axis Motion
* Autor: Pedro V. B. Jeronymo

* 03/2019

*/

/* Bibliotecas */
#include <SPI.h>
#include <SD.h>
#include "NAxisMotion.h"

#include <Wire.h>

/* Variaveis globais */

File myFile;

NAxisMotion mySensor; //sensor inercial BNOO55 (9 Axis Motion Shield)
unsigned long lastStreamTime = 0; //armazenar ultimo timestamp transmitido

const int streamPeriod = 10; //taxa de amostragem

// Estrutura que contem os dados coletados

struct readings t {
// 4 bytes - tempo corrente
unsigned long lastStreamTime;
// 1 byte - status de calibracao dos acelerometros
uint8_t accelCalibStatus;
// 1 byte - status de calibracao dos magnetometros
uint8_t magCalibStatus;
// 1 byte - status de calibracao dos giroscopios
uint8_t gyroCalibStatus;
// 1 byte - status de calibracao do sistema

uint8_t sysCalibStatus;

// 4 bytes - Aceleracao Linear no eixo X
float linAccX;
// 4 bytes - Aceleracao Linear no eixo Y
float linAccY,;

// 4 bytes - Aceleracao Linear no eixo Z
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float linAccZ;

// 2 bytes Quaternion de orientacao espacial
intl6_t quatW;

// 2 bytes - q = (qW, 9X, qY, qZ)

intl6_t quatX;

int16_t quatY; // 2 bytes

int16_t quatZ; // 2 bytes

// 2 bytes - contagem de pulsos na roda direita
int16_t rightWheel;

// 2 bytes - contagem de pulsos na roda esquerda
intl6_t leftWheel;

I

readings_t readings;

// Definicao dos pinos do led e o botao
const int LED_PIN = 8;
const int SWITCH_PIN = 7;

// Estado do botao (0 = aberto, 1 = em curto)

int state = O;

// Contatores de pulsos das rodas
unsigned int counterD = O0;

unsigned int counterE = 0;

/* Funcoes auxiliares */

void docountD() // funcao auxiliar para contagem de pulsos da roda direita

{

counterD++;

void docountE() // funcao auxiliar para contagem de pulsos da roda esquerda

{

counterkE++;

void blink led() { //pisca o led para debug e indicar funcionamento

int 1i;
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for (i = 0; i < 5; i++) {
digitalWrite(LED_PIN, HIGH);
delay(100);
digitalWrite(LED_PIN, LOW);
delay(100);

/* Funcao de inicializacao do Arduino */
void setup() {

//Configuracao dos pinos

pinMode (LED_PIN, QUTPUT);

pinMode (SWITCH_PIN, INPUT);

// Led desligado por padrao
digitalWrite(LED_PIN, LOW);

// Abre comunicagdo serial
Serial.begin(115200);

// Inicializacao do cartao SD

Serial.print("Initializing SD card...");

if (!SD.begin(4)) {
Serial.println("initialization failed!");
return;

by

Serial.println("initialization done.");

//Abertura do arquivo onde sao armazenados os dados sensoriados
myFile = SD.open("READINGS.DAT", FILE WRITE);
if (!'myFile) {

Serial.println("Error opening file!");

digitalWrite (LED_PIN, HIGH);

while(1);

// Aguarda usuario apertar botao para continuar
while(state == LOW) {
state = digitalRead(SWITCH_PIN);
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+

blink led();

// Acende o led para indicar que a leitura comecou
digitalWrite(LED_PIN, HIGH);

// Inicializacao e configuracao do sensor inercial
I12C.begin();

mySensor.initSensor();

mySensor . setOperationMode (OPERATION_MODE_NDOF) ;
mySensor . setUpdateMode (MANUAL) ;

//Anexa interrupcoes as funcoes de contagem de pulsos das rodas
attachInterrupt(0, docountE, RISING);
attachInterrupt(l, docountD, RISING);

/* Loop do Arduinox*/
void loop() {
//Quando o botao for apertado novamente, finaliza a leitura
state = digitalRead(SWITCH_PIN);
if (state == HIGH) {
blink led();
digitalWrite(LED_PIN, LOW);
myFile.close();

while(1); //espera ocupada ate ser desligado/reiniciado

// Leitura de dados caso tenha se passado o tempo de amostragem
if ((millis() - lastStreamTime) >= streamPeriod)
{

// leitura do tempo corrente

lastStreamTime = millis();

readings.lastStreamTime = lastStreamTime;

//Leituras do sensor inercial
mySensor.updateQuat () ;
mySensor.updateLinearAccel();

mySensor.updateCalibStatus();

readings.accelCalibStatus = mySensor.readAccelCalibStatus();



readings.magCalibStatus = mySensor.readMagCalibStatus();
readings.gyroCalibStatus = mySensor.readGyroCalibStatus();
readings.sysCalibStatus = mySensor.readSystemCalibStatus();

readings.linAccX = mySensor.readLinearAccelX();

readings.linAccY = mySensor.readlLinearAccelY();

readings.linAccZ = mySensor.readLinearAccelZ();

readings.quatW = mySensor.readQuatW() ;

readings.quatX = mySensor.readQuatX();

readings.quatY = mySensor.readQuatY();

readings.quatZ = mySensor.readQuatZ();
//Leitura dos pulsos de cada roda
detachInterrupt(0);
detachInterrupt(1);
readings.rightWheel = counterD;
readings.leftWheel = counterkE;
counterD = 0;

counterE = 0;

attachInterrupt (0, docountE, RISING);
attachInterrupt(l, docountD, RISING);

//Escrita no SD da estrutura contendo as leituras

myFile.write((const char*)&readings, sizeof(readings t));
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APENDICE B - CODIGO SEGUIDOR DE LINHA

/* Codigo de robo seguidor de linha com Arduino (chassi carrinho de Arduino)
* Autor: Pedro V. B. Jeronymo

*  03/2019

*/

//Pinos de controle do sentido de rotacao do motor direito
#define MotorD_sentidol 16

#define MotorD sentido2 17

//Pinos de controle do sentido de rotacao do motor esquerdo
#define MotorE_sentidol 18

#define MotorE_sentido2 19

//Pinos de controle de ativacao dos motores

#define MotorD_atividade 9

#define MotorE_atividade 10

//Pinos dos sensores infravermelhos

#define Sensor_direita 14

#define Sensor_esquerda 15

//Estado dos sensores infravermelhos

bool direita, esquerda;

/* Funcao de inicializacao do Arduino */
void setup() {
//Inicializa comunicagdo serial para debug
Serial.begin(115200) ;
//Inicializacao dos pinos
pinMode (MotorD_sentidol, QUTPUT);
pinMode (MotorD_sentido2, OUTPUT);
pinMode (MotorE_sentidol, QUTPUT);
pinMode (MotorE_sentido2, QUTPUT);
pinMode (MotorD_atividade, OUTPUT);
pinMode (MotorE_atividade, OUTPUT);
pinMode (Sensor_direita, INPUT);
pinMode (Sensor_esquerda, INPUT);
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/* Loop do Arduinox*/

void loop() {
//Define o sentido de ambos os motores de forma que permita
//o carrinho andar para frete
digitalWrite(MotorD_sentidol, LOW);
digitalWrite(MotorD_sentido2, HIGH);
digitalWrite(MotorE_sentidol, HIGH);
digitalWrite(MotorE_sentido2, LOW);

//Leituras dos Sensores infravermelhos
direita = digitalRead(Sensor_direita);
esquerda = digitalRead(Sensor_esquerda);
//Saida serial para debug
Serial.print(direita);

Serial.print(" || ");

Serial.println(esquerda) ;

/*Rodando os motores dependendo das leituras */

//Para frente

if (direita == false && esquerda == false){
digitalWrite(MotorD_atividade, HIGH);
digitalWrite(MotorE_atividade, HIGH);

//Para a direita

} else if(direita == false && esquerda == true){
digitalWrite(MotorD_atividade, HIGH);
digitalWrite (MotorE_atividade, LOW);

//Para a esquerda

telse if(direita == true && esquerda == false){
digitalWrite (MotorD_atividade, LOW);
digitalWrite(MotorE_atividade, HIGH);

//Parar

telse if(direita == true && esquerda == true){
digitalWrite(MotorD_atividade, LOW);
digitalWrite(MotorE_atividade, LOW);

}

//Mantem ativados por 5 ms e entao entra em parada em rotacao livre por 5 ms

delay(5);

// Alterar ambos para HIGH para parada forcada
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digitalWrite(MotorD_atividade, LOW);
digitalWrite(MotorE_atividade, LOW);
//Executa a parada forcada quando ativada
digitalWrite (MotorD_sentidol, LOW);
digitalWrite(MotorD_sentido2, LOW);
digitalWrite(MotorE_sentidol, LOW);
digitalWrite (MotorE_sentido2, LOW);
delay(5);
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APENDICE C - CODIGO DE CONVERSAO DO ARQUIVO DE DADOS
BINARIO PARA FORMATO CSV

from struct import unpack
msgsize = 32 # 32+4
fout = open(’readings.csv’,’w’)

with open("READINGS.DAT", ’rb’) as f:

s = f.read(msgsize)

try:
while s !=Db’’:
tup = unpack(’IBBBBfffhhhhhh’, s)
line = ",".join([str(x) for x in tupl)+’\n’
fout.write(line)
s = f.read(msgsize)
except:

pass

fout.close()
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APENDICE D - CODIGO DE ANALISE DO INTERVALO ENTRE AMOSTRAS

2
# Andlise do intervalo intra-amostral

# Autor: Pedro V. B. Jeronymo

# Data: 2019-05-06
s
import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

# Carrega os dados em um Pandas DataFrame
df = pd.read_csv(’../data/readings_2019-03-26__11-45.csv’, header=None, names=[
"lastStreamTime",
"accelCalibStatus",
"magCalibStatus",
"gyroCalibStatus",
"sysCalibStatus",

"linAccX",
"linAccY",

"linAccZ",

"quatW",
"quatX",
"quatY",
"quatzZ",

"rightWheel",
"leftWheel"
D

# Calcula histograma do intervalo de tempo entre amostras
dt = df.lastStreamTime.diff () .values[1:]
hist, bins = np.histogram(dt, bins=100)

# Estatisticas

print(’Mediana:’, np.median(dt))
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print(’95%:’, np.percentile(dt, 95))

# Grafico com o histograma

plt
plt
plt
plt
plt

.semilogy(bins[:-1], hist, ’k’, marker=’x’)
.xlabel(’Intervalo de tempo entre amostras (dt)’)

.ylabel (’Frequéncia de ocorréncia’)

.title(’Histograma do intervalo de tempo entre amostras’)
.show ()
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APENDICE E - CODIGO DE UTILIDADES PARA SNI E DR

S s
# Utilidades

# Autor: Pedro V. B. Jeronymo

# Data: 2019-05-06
g

import numpy as np

import matplotlib.pyplot as plt

def quatToYaw(qw, gz):
Convert orientation quaternion into Yaw (euler angle) given as input
qw and qz, where q = (qw, gx, qy, qz) and gx and qy are discarded in this
estimation.

return np.arctan2(2*qu*xqz, 1-2*qz*qz)

class Track():
def _init (self):
track x = [0, 52, 60, 60, 52, -10, -18, -18, -10, 0]
[0, 0, 6, 42, 48, 48, 42, 6, 0, 0]
self .track_ref = np.array([*zip(track_x, track_y)])
scalex o = (78+6.5%2)/78
scaley_o = (48+6.5%2)/48

scale_o = np.array([[scalex_o, 0], [0, scaley_o]l]l)

track_y

track _outer = self.track ref.dot(scale_o)

self.track_outer = self.translate(track outer, self.track ref)
scalex i = (78-6.5%2)/78

scaley_i = (48-6.5%2)/48

scale i = np.array([[scalex_i, 0], [0, scaley_ill)

track_inner = self.track _ref.dot(scale_i)

self.track inner = self.translate(track inner, self.track ref)
self.start_line x = [0, O]

[-4.5, 4.5]

self.start_line_y

def get_center(self, track):



center = []

for k in range(2):
liminf = track[:,k].min()
limsup = track[:,k].max()
center.append(liminf+(limsup-liminf)/2)

return np.array(center)

def translate(self, track, track ref):
center = self.get_center(track)
center_ref = self.get_center(track_ref)
dc = center-center ref

return track-dc

def get_track_len(self, track):

x = track[:,0]
y = track[:,1]
d=20
for k in range(1l, x.shape[0]):
dx = x[k]-x[k-1]
dy = y[k]-y[k-1]
d += np.sqrt(dx*dx+dy*dy)
return d

def plot_paths(self, paths, title):
fig = plt.figure()
ax = fig.add_subplot(111)

ax.plot(self.track_ref[:,0], self.track ref[:,1], ’k’, alpha=0.7)
ax.plot(self.start_line x, self.start_line_ y, ’k’, alpha=0.7)

ax.plot(self.track _outer[:,0], self.track outer[:,1], ’k--’, alpha=0.7)
ax.plot(self.track_inner[:,0], self.track_inner[:,1], ’k--’, alpha=0.7)
marker = [’0’, ’v’, ’s’]

for path in paths:
X, ¥y, t, d, 1 = path
ax.plot(x[::20], y[::20], label=’Volta {}: {:.0f} cm’.format(i+1, d), \

alpha=0.6, marker=marker[i], c=’k’)
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ax.

ax.

ax.

ax.

ax.

set_title(title)
xaxis.set_label text(’(cm)’)
yaxis.set_label_text(’(cm)’)
legend ()

set_aspect(’equal’)

plt.show()
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APENDICE F - CODIGO SNI

S S s
# Estimativas de trajetdéria a partir de Navegacdo Inercial

# Autor: Pedro V. B. Jeronymo

# Data: 2019-05-06
g s
import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import scipy.signal as signal

from util import Track

# Carrega os dados em um Pandas DataFrame
df = pd.read_csv(’../data/readings_2019-03-26__11-45.csv’, header=None, names=[
"lastStreamTime",
"accelCalibStatus",
"magCalibStatus",
"gyroCalibStatus",
"sysCalibStatus",

"linAccX",
"linAccY",

"linAccZ",

"quatW",
"quatX",
"quatY",
"quatzZ",

"rightWheel",
"leftWheel"
D

# Normaliza quaternions
df .quatW /= (1<<14)
df .quatX /= (1<<14)
df .quatY /= (1<<14)
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df .quatZ /= (1<<14)

# Separa dados em voltas

loop = []
loop.append(df.iloc[:2200])
loop.append(df.iloc[3000:5500])
loop.append(df.iloc[7000:10750])

# Para cada volta, computa velocidade e posigdo
paths = []
[]

for i in range(3):

other

# Tempo corrente

t = loop[i].lastStreamTime.values*le-3
t = t-t[0]

# Intervalo intra-amostral

dt = np.diff(t)

# Transformagdo entre o referencial (x’-y’) e o referencial (x-y)

qw = loopl[i].quatW.values
gz = loopli].quatZ.values
sin_theta = 2*quw*qz

cos_theta = quw*qw—-qz*qz

Rot = np.array([[cos_theta, -sin_thetal, [sin_theta, cos_thetal])
A_ = loop[i] [[’1linAccX’, ’linAccY’]].values

a =[]
for k in range(A_.shape[0]):
a.append(Rot[:,:,k].dot(A_[k,:]1))

a = np.array(a)*le2 # converte p/ cm/s"2

# Determinagdo da velocidade

VX

vy

np.cumsum(a[1:,0]*dt)

np.cumsum(al1l:,1]*dt)

# Determinagdo da posigdo

x = np.cumsum(vx*dt)
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y = np.cumsum(vy*dt)

# Comprimento da trajetéria

d=20

for k in range(1, x.shapel[0]):
dx = x[k]-x[k-1]
dy = ylk]-y[k-1]

d += np.sqrt(dx*dx+dy*dy)

paths.append((x, y, t, 4, i))
other.append((a, vx, vy, t, i))

# Grafico Trajetédrias
track = Track()
track.plot_paths(paths, "Trajetdrias estimadas SNI")

# Graficos de posigdo e velocidade

for tup in other:
a, vx, vy, t, 1 = tup
fig = plt.figure()
ax = fig.add_subplot(211)
ax.set_title(’Volta {} SNI’.format(i+1))
ax.plot(t, al:,0], ’k’)
ax.xaxis.set_ticks(np.arange(0, t.max(), 2))
ax.xaxis.set_label text(’Tempo (s)’)
ax.yaxis.set_label text(’Aceleragdo em X (cm/s72)’)
ax = fig.add_subplot(212)
ax.plot(t[1:], vx, ’k’)
ax.xaxis.set_ticks(np.arange(0, t.max(), 2))
ax.xaxis.set_label text(’Tempo (s)’)
ax.yaxis.set_label text(’Velocidade em X (cm/s)’)

plt.show()
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APENDICE G - CODIGO DEAD RECKONING

s S s
# Estimativas de trajetéria a partir de Dead Reckoning

# Autor: Pedro V. B. Jeronymo

# Data: 2019-05-06
g s s
import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from util import Track, quatToYaw
# Pardmetros fisicos do Robd
step = 6.5%np.pi/20 # cm/hole - tamanho do passo

1 = 15 # Tamanho do eixo (separagdo entre rodas)

# Pistas e comprimentos
track = Track()

track_ref_len = track.get_track_len(track.track_ref)

track_outer_len = track.get_track len(track.track outer)

track_inner len = track.get track len(track.track_inner)

print (’Comprimento trajetdédria minima: {:.0f} cm’.format(track_inner_len))
print (’Comprimento nominal da pista: {:.0f} cm’.format(track ref len))
print (’Comprimento trajetdria maxima: {:.0f} cm’.format(track outer_len))

print (’Num. passos nomimal (esq/dir): {:.0f}/{:.0f}’.format(196/step, 236/step))

# Carrega dados em um Pandas DataFrame
df = pd.read_csv(’../data/readings_2019-03-26__11-45.csv’, header=None, names=[
"lastStreamTime",
"accelCalibStatus",
"magCalibStatus",
"gyroCalibStatus",
"sysCalibStatus",

"linAccX",

"linAccY",
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"linAccZ",

"quatW",
"quatX",
"quatY",
"quatzZ",

"rightWheel",
"leftWheel"
1

# Normaliza quaternions
df .quatW /= (1<<14)
df .quatX /= (1<<14)
df .quatY /= (1<<14)
df .quatZ /= (1<<14)

# Separa dados em voltas realizada pelo robd
loop = []

loop.append(df.iloc[:2000]) # 1st run
loop.append(df.iloc[3000:5500]) # 2nd run
loop.append(df.iloc[7000:10800]) # 3rd run

# Grafico da orientagdo em relagdo ao tempo

for i in range(3):
yaw = quatToYaw(loop[i].quatW.values, loopl[i].quatZ.values)
t = loop[i].lastStreamTime.values
t = (t-t[0])*1e-3
plt.plot(t, np.rad2deg(yaw), ’k’)
plt.title(’Orientagio em fungio do tempo (Volta {})’.format(i+1))
plt.xlabel(’Tempo (s)’)
plt.ylabel (’Orientagdo em graus’)
plt.yticks(np.arange(-180, 181, 30))
plt.show()

# Estimativa de trajetdéria com correcgdo de derrapagem
paths = []
max_step = 4

for i in range(3):



75

print(’-’*10, ’Volta {}’.format(i+1), ’-’*10)
## Set initial time to O

t = loop[i].lastStreamTime.values

t = (t-t[0])*1le-3

t = t[1:]

nr = loop[i].rightWheel.values[1:]

nl = loop[i].leftWheel.values[1:]

r _total = nr.sum()
1 total = nl.sum()
print (’Num. passos (esq/dir): {}/{}’.format(l_total, r_total))

#slipping correction = 236/ (step*r_total)

#slipping_correction = 196/ (step*l_total)

slipping correction = 0.5%(236/(step*r_total)+196/(step*1l_total))

qw = loopl[i].quatW.values
qz = loopli].quatZ.values
sin_theta = 2xqu*qz

cos_theta = quw*qw-qz*qz

dtheta = np.diff(sin_theta)/cos_thetal[:-1]

sin_theta = sin_thetal1l:]
cos_theta = cos_thetall:]
x0, yo = (0, 0)

thetal = 0

x = []

y = [

x.append (x0)
y . append (y0)

for k in range(t.shape[0]):

R=0
ICCx = 0
ICCy = 0

if (arl[k] or nl([k]):
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if (nr[k] !'= nl[k]) and dthetalk]:
R = slipping correction*0.5%(nr[k]+nl[k])*step/dtheta[k]
ICCx = x[-1]-R*sin_thetalk]
ICCy = y[-1]+R*cos_thetal[k]

x_ = (x[-1]-ICCx)*1-(y[-1]1-ICCy)*dtheta[k]+ICCx
if np.abs(x_-x[-1]) > max_step:
x_ = x[-1]
x.append(x_)
y_ = (x[-1]-ICCx)*dthetal[k]+(y[-1]-ICCy)*1+ICCy
if np.abs(y_-y[-1]) > max_step:
y_ = y[-1]
y.append(y_)
else:
ICCx = x[-1]
ICCy = yl[-1]
x_ = (x[-1]-ICCx)*1-(y[-1]-ICCy)*dthetal[k]+ICCx

x.append(x_)
y_ = (x[-11-ICCx)*dtheta[k]+(y[-1]1-ICCy)*1+ICCy
y.append(y_)
else:
x.append (x[-1])
y.append(y[-1]1)

x = np.array(x)

y = np.array(y)

d=20

for k in range(1, x.shape[0]):
dx = x[k]-x[k-1]
dy = ylk]-y[k-1]

d += np.sqrt(dx*dx+dy*dy)
print (’Comprimento da trajetdria: {:.0f} cm’.format(d))

paths.append((x, y, t, d, i))

# Grafico trajetdéria com corregdo de derrapagem

track.plot_paths(paths, ’Trajetdérias estimadas com corregdo de derrapagem’)

# Graficos de posicdo e velocidade



77

for path in paths:
X, y, t, d, 1 = path

x = x[1:]
y = yli:]
vx = []
vy = []
tv = []
W =15

for k in range(2*W, x.shape[0]-2*W):
vx .append ( (-x [k+2*W] +8%x [k+W] -8*x [k-W] +x [k-W] ) / (3% (t [k+2*W] -t [k-2%W] )))
vy . append ( (-y [k+2xW] +8xy [k+W] -8*y [k-W] +y [k-W] ) / (3* (t [k+2*W] -t [k-2xW]) ) )
tv.append (t [k])

fig = plt.figure()

ax = fig.add_subplot(211)

ax.set_title(’Volta {}’.format(i+1))

ax.plot(t, x, ’k’, label=’Coordenada X’)

ax.plot(t, y, ’k--’, label=’Coordenada Y’)
ax.xaxis.set_ticks(np.arange(0, t.max(), 2))

ax.legend ()

ax.xaxis.set_label text(’Tempo (s)’)

ax.yaxis.set_label text(’Posigdo (cm)’)

ax = fig.add_subplot(212)

#ax.set_title(’Velocidade vs tempo (Volta {3})’.format(i+1))
ax.plot(tv, vx, ’k’, label=’Velocidade em X’, alpha=1.0)
ax.plot(tv, vy, ’k:’, label=’Velocidade em Y’, alpha=0.9)
ax.xaxis.set_ticks(np.arange(0, t.max(), 2))
ax.xaxis.set_label text(’Tempo (s)’)

ax.yaxis.set_label text(’Velocidade (cm/s)’)

ax.legend ()

plt.show()

# Estimativa de trajetdéria sem corregdo de derrapagem
paths = []
for i in range(3):

print(’-’*10, ’Volta {}’.format(i+1), ’-’%10)

## Set initial time to O

t = loop[i] .lastStreamTime.values

t = (t-t[0])*1e-3
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t = t[1:]

nr

nl

loop[i] .rightWheel.values[1:]

loop[i] .leftWheel.values[1:]

r_total = nr.sum()

1 total = nl.sum()

print (’Num. passos (esq/dir): {}/{}’.format(1l_total, r_total))

#slipping correction = 236/ (step*r_total)
196/ (step*1l_total)

0.5%(236/ (step*r_total)+196/(step*1l_total))

#slipping_correction

#slipping correction

slipping_correction = 1.0

qw = loopl[i].quatW.values

qz

loop[i] .quatZ.values

sin_theta = 2*qu*qz

qQw*qQw—-qz*qz

dtheta = np.diff(sin_theta)/cos_thetal[:-1]
sin_thetall:]

cos_thetal1l:]

cos_theta

sin_theta

cos_theta

x0, yo = (0, 0)

thetalO = 0
x = []
y = []

x .append (x0)
y . append (y0)

for k in range(t.shape[0]):

R=0
ICCx = 0
ICCy = 0

if (nr[k] or nl[k]):
if (nr[k] '= nl[k]) and dthetalk]:
R = slipping_correction*0.5%(nr [k]+nl [k])*step/dtheta[k]
ICCx = x[-1]-R*sin_thetal[k]
ICCy = y[-1]+R*cos_thetal[k]
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x_ = (x[-1]-ICCx)*1-(y[-1]1-ICCy)*dtheta[k]+ICCx

x.append (x_)
y_ = (x[-1]-ICCx)*dtheta [k]+(y[-1]-ICCy)*1+ICCy

y.append(y_)
else:
ICCx = x[-1]
1cCy = y[-1]
x_ = (x[-1]-ICCx)*1-(y[-1]1-ICCy)*dthetal[k]+ICCx

x.append(x_)
y_ = (x[-1]1-ICCx)*dtheta[k]+(y[-1]-ICCy)*1+ICCy
y.append(y_)
else:
x.append(x[-11)
y.append (y[-11)

X = np.array(x)

y = np.array(y)

d=20

for k in range(1l, x.shape[0]):
dx = x[k]-x[k-1]
dy = ylk]-y[k-1]

d += np.sqrt(dx*xdx+dy*dy)
print (’Comprimento da trajetdria: {:.0f} cm’.format(d))

paths.append((x, y, t, d, i))

# Grafico trajetdéria sem corregdo de derrapagem

track.plot_paths(paths, ’Trajetdérias estimadas sem correcgdo de derrapagem’)



