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RESUMO

JERONYMO, P. Sistema de Sensoriamento para Localização de Robô Móvel
Autônomo. 2019. 79p. Monografia (Trabalho de Conclusão de Curso) - Escola de
Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2019.

O objetivo deste TCC é iniciar o desenvolvimento de um sistema de localização para um
Robô Móvel Autônomo. Através do projeto de um sistema de sensoriamento para o robô e
da coleta de dados, foi realizada a análise de duas estratégias para resolver esse problema. A
primeira estratégia é a implementação de um Sistema de Navegação Inercial, que independe
de um modelo cinemático do robô. No entanto, essa estratégia se mostrou inviável, devido
à rápida acumulação de erros sensoriais e ruído. A segunda estratégia utiliza um modelo
cinemático do robô. Com dados odométricos e de orientação espacial, implementou-se
o chamado Dead Reckoning, com resultados melhores, porém agora sofrendo de outra
fonte de erros: a derrapagem das rodas. Com o desenvolvimento futuro de um sistema
de movimentação para o robô que evite derrapagens, e utilizando-se fusão sensorial com
outra fonte de localização, como um sensor de ultrassom, os erros na localização podem
ser reduzidos e um sistema completo de localização pode ser implementado.

Palavras-chave: Sensoriamento, Robô Móvel Autônomo, Localização, Sistema de Nave-
gação Inercial, Dead Reckoning, Fusão sensorial.





ABSTRACT

JERONYMO, P. Sensing System for Autonomous Mobile Robot Localization.
2019. 79p. Monografia (Trabalho de Conclusão de Curso) - Escola de Engenharia de São
Carlos, Universidade de São Paulo, São Carlos, 2019.

The goal of this work is to start the developmente of a localization system for a Autonomous
Mobile Robot. Through the design of a sensing system for the robot and data gathering,
a analysis of two strategies for solving this problem was conducted. The first strategy is
the implementation of a Inertial Navigation System, that is independent of a kinematic
model for the robot. However, this strategy showed to be impracticable, due to the rapid
accumulation of sensorial erros and noise. The second strategy uses a kinematic model for
the robot. With odometric and spacial orientation data, Dead Reckoning was implemented,
with better results, although now suffering from a new error source: wheel slipping. In the
future, with the development of a motion system for the robot that avoids wheel slipping,
and using sensor fusion with another localization system, such as a ultrasound sensor, the
erros in localization can be reduced and a full locatization system can be implemented.

Keywords: Sensing, Autonomous Mobile Robot, Localization, Inertial Navigation System,
Dead Reckoning, Sensor fusion.
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1 INTRODUÇÃO

Robôs móveis são aqueles que tem a capacidade de locomoção. Eles tem a capacidade
de se mover por seu ambiente e não são fixos a uma localização física fixa. Podem ser
autônomos (RMA - Robô Móvel Autônomo) o que significa que são capazes de navegar em
um ambiente não controlado, sem a necessidade de dispositivos físicos ou eletromecânicos
de guia. (Wikipedia contributors, 2019b)

Robôs Móveis tem se tornado mais comuns em cenários comerciais e industriais.
Hospitais tem usado RMAs para mover materiais. RMAs são também atualmente um foco
de pesquisa em quase todas as grandes universidades. (Wikipedia contributors, 2019b) A
multinacional Amazon utiliza RMAs em seus armazéns, que cumprem um papel importante
em suas operações. A automação completa não acontecerá por no mínimo 10 anos, pois
ainda é necessário muito trabalho e descobertas a serem feitas. (HUMPHRIES, 2019), o
que justifica o estudo e o desenvolvimento de RMAs melhores.

No intuito de navegar autonomamente e realizar tarefas úteis, como mapear seu
ambiente, um RMA precisa de saber sua posição e orientação exatas. Localização é
portanto um problema chave em prover capacidades autônomas a um robô móvel (GOEL
P.; ROUMELIOTIS, 1999).

No contexto desse projeto, a navegação de RMAs será discutida através da imple-
mentação de um sistema de localização e orientação para um RMA que se move sobre
uma superfície bidimensional plana. Uma foto do robô utilizado nesse trabalho pode ser
vista na Fig. 1.

O robô é equipado com um Sistema de Direção Diferencial, sistema utilizado por
muitos robôs que é essencialmente o mesmo arranjo usado em uma cadeira de rodas
(LUCAS, 2000). Quando uma das rodas tem velocidade superior à outra, o robô faz curvas.
Caso as velocidades das rodas sejam próximas, o robô anda em linha reta.

No plano de projeto, foi proposto resolver a questão da localização e orientação do
robô através da implementação de um Sistema de Navegação Inercial (SNI) (WOODMAN,
2007). Navegação inercial é um uma técnica de navegação em que medidas providas por
acelerômetros e giroscópios são utilizadas para acompanhar a posição e orientação de um
objeto relativo a uma posição, uma orientação e uma velocidade iniciais. (WOODMAN,
2007)

A Navegação Inercial tem um equacionamento simples em um cenário ideal, mas
complexidades surgem devido à erros sensoriais e ruídos no sistema (STOVALL, 1997).
Devido à essa complexidade ser maior do que inicialmente imaginada, optou-se por outra
estratégia: Dead Reckoning (DR), que utiliza dados de odometria e um modelo cinemático
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Figura 1: Foto do robô desenvolvido neste trabalho.

para o robô para cumprir a mesma tarefa (GOEL P.; ROUMELIOTIS, 1999).

Utilizando-se Dead Reckoning, foram obtidos resultados melhores aos da Navegação
Inercial, porém ainda não suficientes para localização e orientação do robô, devido à outros
erros sensoriais e ruídos no sistema.

Como será discutido em 2.3, 5 e 6, com a fusão dos dados de ultrassom com o
sistema proposto nesse TCC, e realizando as melhorias necessárias na movimentação do
robô, um sistema completo de navegação pode ser desenvolvido futuramente.

Sobre a execução do projeto, o primeiro passo foi definir o conjunto de sensores a
serem utilizados, então foi projetado um sistema de coleta dos dados fornecidos por esses
sensores. O sistema de sensoriamento é discutido em 3.3.

Os sensores escolhidos foram codificadores de roda para realizar a odometria e o
sensor de orientação absoluta BNO055 (BNO055, ). Esse sensor é capaz de fornecer a sua
orientação espacial em relação ao norte magnético da terra, através da fusão sensorial de
magnetômetros, giroscópios e acelerômetros. Ele também fornece outros dados sofisticados,
discutidos na seção 2.2.

Para realizar uma trajetória previsível para testes, foi implementado um sistema de
seguidor de linha (CANDIDO, 2018), discutido em 3.2. Enquanto os sinais de controle das
rodas são enviados pelo sistema seguidor de linha, o sistema de sensoriamento armazena
em um cartão SD as leituras dos sensores.
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Figura 2: Foto da pista de teste, confeccionada para sensoriamento e validação das estra-
tégias de estimativa de trajetória do robô, com o robô sobre ela.

Com os dois sistemas funcionando simultaneamente, o robô realizou algumas voltas
em uma pista de teste confeccionada utilizando uma folha A2 e fita isolante para o trajeto.
A Fig. 2 mostra uma foto da pista com o robô sobre ela.

Para validar cada estratégia (SNI e DR), a estimativa da posição e orientação do
robô em função do tempo foi realizada a partir dos dados coletados. A trajetória estimada
computacionalmente foi comparada com a trajetória esperada. Os critérios de decisão
foram a distância percorrida e a aderência visual do trajeto estimado ao trajeto esperado.

Alguns problemas na movimentação do robô foram observados, sendo o mais crítico
a derrapagem das rodas, que foi contornada nas estimativas, mas tem que ser resolvida
para a locomoção e estimativa de localização correta do robô.

O texto dessa monografia é dividido em cinco capítulos, sendo o primeiro este.
O capítulo 2 discute os aspectos teóricos do trabalho, mas já abordando questões de
implementação. O capítulo 3 aborda como foi implementada a teoria apresentada, a fim
de se obter os resultados, apresentados no capítulo 4. Então, os resultados são discutidos
no capítulo 5. Por fim, o capítulo 6 apresenta a conclusão desse TCC.
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2 TEORIA

2.1 Amostragem

A operação de amostragem gera um sinal discreto no tempo de um sinal contínuo
no tempo. A amostragem de sinais contínuos é frequentemente realizada para que o sinal
possa ser manipulado em um computador ou microprocessador (HAYKIN S.; VEEN,
2002).

A amostragem de um sinal contínuo x(t) é realizada aferindo o valor de x(t) em
instantes regulares de tempo t = kTs, em que k = 0, ..., N − 1 e Ts é o período de
amostragem. O sinal resultante xk é uma representação digital de x(t = kTs) em cada
instante de amostragem k, para N instantes de amostragem.

Para que não haja perda de informação no processo de amostragem, deve-se
respeitar o Teorema da Amostragem.

Teorema da Amostragem Se um sinal x(t) não contém frequências
maiores que B hertz, ele é completamente determinado dados os seus
valores em uma série de pontos espaçados em (1/2B) segundos. Uma
taxa de amostragem Fs suficiente é portanto qualquer uma maior que 2B
amostras por segundo: Fs > 2B (Wikipedia contributors, 2019c).

2.2 Sensores

Fusão sensorial é a combinação de dados sensoriais ou dados de fontes diferentes
de maneira que a informação resultante apresenta menos incerteza do que seria possível
ao se utilizar cada uma dessas fontes individualmente (Wikipedia contributors, 2019f).

Os sensores utilizados nesse projeto são o sensor de orientação absoluta BNO055
(BNO055, ) e um codificador óptico incremental (INCREMENTAL. . . , ) para cada roda
do robô.

O BNO055 usa como referência o norte magnético, por isso é chamado de sensor
de orientação absoluta. Ele possui três acelerômetros, três giroscópios e três magnetôme-
tros. Acelerômetros medem aceleração em seu referencial inerente, giroscópios medem
velocidade angular e magnetômetros medem intensidade do campo magnético ao seu
redor. O BNO055 vem integrado a um shield, que facilita a sua conexão ao Arduino,
chamado 9 Axis Motion Sensor (9AMS).

Com um de cada tipo desses sensores para cada direção espacial (x,y,z) o BNO055
é capaz de realizar fusão sensorial e fornecer informações sofisticadas como:

• Orientação espacial em relação ao Norte Magnético da Terra em dois formatos:
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Ângulos de Euler e Quaternião;

• Retornar a aceleração em cada direção espacial, descontando a influencia da gravidade,
chamadas de acelerações lineares;

• Retornar apenas um vetor representando a aceleração gravitacional.

Um codificador óptico incremental (INCREMENTAL. . . , ) provê um meio de
se medir a posição de uma roda ou motor através da codificação de pulsos em um disco
com furos igualmente espaçados utilizando um sensor infravermelho. Conforme a roda
gira, um trem de pulsos é formado com frequência proporcional à velocidade angular da
roda. Cada pulso representa um passo dado pela roda.

Através do quaternião de orientação espacial, pode-se obter o ângulo θ entre o
referencial do robô (ou dos sensores) e o referencial inercial do observador; definidos na
subseção 2.3.1. As acelerações lineares são utilizadas no Sistema de Navegação Inercial
proposto em 2.4.

O quaternião de orientação espacial fornecido pelo BNO055 tem como referência
o norte magnético da terra. Como pode ser visto na Fig. 9, na seção de resultados, o
ângulo inicial do robô em cada volta é próximo de zero pois a pista foi convenientemente
posicionada em alinhamento com o norte magnético.

Os codificadores são utilizados em 2.5. São contadas as quantidades de pulsos (ou
passos dados pela roda) nd,k e ne,k, para as rodas direita e esquerda respectivamente,
ocorridas entre os instantes de amostragem k − 1 e k.

2.3 Localização

As técnicas diferentes para se resolver o problema da localização podem ser classifi-
cadas em duas categorias principais (GOEL P.; ROUMELIOTIS, 1999):

• Localização Relativa (local): avaliar a posição e orientação baseado em informa-
ção fornecida por sensores embarcados (codificadores, giroscópios, acelerômetros,
etc);

• Localização absoluta (global): obter a posição absoluta usando guias, pontos de
referência ou sinais geoestacionários (GPS).

SNIs e Dead Reckoning são da primeira categoria. O erro na localização cresce
com o tempo. Os métodos absolutos, como GPS conseguem medidas independentes das
anteriores, portanto, o erro não acumula de uma medida para a próxima, porém muitas
vezes não é possível se utilizar GPS, especialmente para pequenas distâncias ou portas a
dentro. (GROVES, 2008)
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Figura 3: Sistemas de Coordenadas do Robô Didático Móvel - O sistema sem linha (x-y)
descreve o referencial inercial à qual as coordenadas do robô são estimadas.
O sistema com linha (x’-y’) é inerente às medidas realizadas pelos sensores
embarcados no robô.

Um sensor de ultrassom possui características de um sistema absoluto de orien-
tação, pois mede a distância entre o robô e os objetos ao seu redor, sendo cada medida
independente da anterior. Com Dead Reckoning provendo correções à localização obtida
através do sensor de ultrassom, cuja integração entre os sistemas podendo ser realizada
por um Filtro de Kalman (LEVY, ), é possível se construir uma solução completa de
localização. (GROVES, 2008).

2.3.1 Referenciais para Localização

Um robô móvel, ou veículo, possui 6 graus de liberdade (GDL) expressados pela
pose: (x, y, z,Roll,Pitch,Yaw). Informalmente, Roll pode ser definido como sendo a rotação
lateral e Pitch a rotação para frente e para trás. Yaw, comumente denominado de Heading
ou Orientação, refere-se à direção a qual o robô se move no plano x-y. Para um robô em
uma superfície bidimensional, a pose 2D (x, y, θ), em que θ denota Orientação, é suficiente
para descrever seu movimento. (HELLSTRöM, 2011) Ou seja, a movimentação espacial se
restringe a 3 GDL.

A Fig. 3 descreve os sistemas de coordenadas presentes no problema. O sistema
de coordenadas sem linha (x-y) descreve o referencial inercial à qual as coordenadas do
robô são estimadas, esse é o sistema de interesse. O sistema com linha (x’-y’) é inerente
às medidas realizadas pelos sensores embarcados no robô (acelerômetros, giroscópios,
magnetômetros, codificadores para rodas).
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2.3.2 Quaterniões

Quaterniões são uma extensão dos números complexos, geralmente representados
na forma:

q = (qw, qx, qy, qz) = (a, b, c, d) = a+ bi + cj + dk

A aritmética dos quaterniões é similar à dos números complexos. A soma de
q1 = a + bi + cj + dk e q2 = e + f i + gj + hk é (a + e) + (b + f)i + (c + g)j + (d + h)k.
O conjugado de q = a + bi + cj + dk é q−1 = a − bi − cj − dk. E a multiplicação entre
quaterniões é também como a dos números complexos mas seguindo a tabela 1. Nota-se
que, diferentemente dos complexos, a multiplicação de quaterniões não é comutativa.

Tabela 1: Tabela multiplicativa dos quaterniões.

× 1 i j k
1 1 i j k
i i -1 k -j
j j -k -1 i
k k j -i -1

2.3.3 Quaterniões para orientação espacial

Um quaternião é dito unitário quando seu módulo igual 1:

|q| = q2
w + q2

x + q2
y + q2

z = 1

Quaterniões unitários fornecem uma notação matemática conveniente para repre-
sentar orientações e rotações de objetos em três dimensões.

Neste projeto, um quaternião qk = (qw,k, qx,k, qy,k, qz,k) é fornecido a cada instante
de amostragem k, representando a rotação em θk graus entre (x-y) e (x’-y’) naquele instante.
Como a movimentação é restrita à uma superfície bidimensional plana, as componentes qx
e qy são aproximadamente zero.

Para que seja possível realizar a estimativa de posição do robô, deseja-se transformar
as leituras feitas no referencial (x’-y’) para o referencial (x-y). Realiza-se isso aplicando o
procedimento a seguir.

Seja u′ = (u′x, u′y) um vetor no referencial (x’-y’), transforma-se suas coordenadas
para o vetor equivalente u = (ux, uy) no referencial (x-y) através da fórmula:

ux
uy

 =
cos(θ) − sin(θ)

sin(θ) cos(θ)

u′x
u′y

 (2.1)
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em que sin(θ) = 2qwqz e cos(θ) = qwqw − qzqz.

Utilizou-se quaterniões para se evitar problemas de mudança brusca de ângulo
quando o robô cruza os 180°, como pode ser notado na Fig. 9, mostrada nos resultados. Mais
detalhes sobre quaterniões e suas aplicações em rotação espacial podem ser encontrados em
(Wikipedia contributors, 2019d), (Wikipedia contributors, 2019e) e (Wikipedia contributors,
2019a).

2.4 Sistema de Navegação Inercial

A partir do sensor de posição absoluta BNO055 embarcado no robô, é possível,
em teoria, desenvolver um Sistema de Navegação Inercial (SNI) utilizando os dados de
orientação espacial e aceleração linear fornecidos pelo sensor.

A partir o quaternião de orientação espacial qk e das acelerações lineares a′x,k e a′y,k
medidos a cada instante de amostragem k, pode-se estimar a posição e velocidade do robô
seguindo o procedimento:

1. Transformar a′x,k e a′y,k medidos no referencial (x’-y’) nos vetores equivalentes em
(x-y) ax,k e ay,k utilizando a transformação linear 2.1.

2. Integrar ax,k e ay,k em função do tempo para se obter as velocidades vx,k e vy,k.

3. Integrar vx,k e vy,k em função do tempo para se obter as coordenadas xk e yk do
robô.

A integração dos vetores de aceleração e velocidade são realizadas através da
aproximação discreta de uma integral, que é um somatório:

F (t) =
∫ t

0
f(τ)dτ ∼ Fk =

j=k∑
j=0

fj∆tj

2.5 Dead Reckoning

Essa seção discute o desenvolvimento das equações de movimento implementadas
neste projeto, que modelam um robô com Sistema de Direção Diferencial.

Partindo de equações de movimento que utilizam apenas as leituras nd,k e ne,k dos
codificadores de roda, inclui-se as informações de orientação espacial fornecidas pelo sensor
BNO055. Por fim, modela-se a derrapagem, incluindo-a também nas equações, até se
obter o modelo cinemático final.
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2.5.1 Equações cinemáticas apenas com dados de odometria

Considerando o sistema de coordenadas apresentado, se temos no instante k a pose
(xk, yk, θk), para se estimar a pose (xk+1, yk+1, θk+1), utilizamos as equações de movimento
do robô, cuja derivação pode ser encontrada em (HELLSTRöM, 2011).

• Seja ∆tk o tempo corrido entre o instante k − 1 e o instante k;

• Seja nd,k e ne,k o número de passos contados pelos codificadores das rodas direita e
esquerda, respectivamente, entre os instantes k − 1 e k;

• Seja step o tamanho do passo do robô;


xk

yk

θk

 =


cos(ωk∆tk) − sin(ωk∆tk) 0
sin(ωk∆tk) cos(ωk∆tk) 0

0 0 1



xk−1 − ICCx,k
yk−1 − ICCy,k

θk−1

+


ICCx,k

ICCy,k

ωk∆tk

 (2.2)

em que

Rk =
(
L

2

)
nd,k + ne,k
nd,k − ne,k

(2.3)

ωk∆tk = (nd,k − ne,k)step
L

(2.4)

ICCk = [xk −Rk sin(θk), yk +Rk cos(θk)] (2.5)

2.5.2 Equações cinemáticas com odometria e orientação espacial

As equações de movimento descritas em (HELLSTRöM, 2011) (2.2, 2.3, 2.4 e 2.5)
estimam a pose do robô baseando-se apenas nas leituras dos codificadores de roda. Para uma
melhor estimativa, pode-se utilizar o quaternião de orientação espacial q = (qw, qx, qy, qz)
fornecida pelo BNO055 para se obter cos(θ), sin(θ) como discutido na subseção 2.3.3, e
∆θ como discutido a seguir.

A derivada de sin(∆θ) em relação a ∆θ é cos(∆θ). No caso discretizado, pode ser
aproximada por:

(sin(∆θk−1))′ = cos(∆θk−1) ≈ sin(∆θk)− sin(∆θk−1)
θk − θk − 1 = sin(∆θk)− sin(∆θk−1)

∆θk
(2.6)
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Logo, aproxima-se ∆θk o isolando na equação 2.6:

∆θk ≈
sin(∆θk)− sin(∆θk−1)

cos(∆θk−1) (2.7)

Para se incluir 2.7 nas equações de movimento, deve-se notar que:

• ωk∆tk = ∆θk

• A partir de 2.3, 2.4 e da relação anterior pode-se chegar em: Rk =
(
step

2

)
nd,k+ne,k

∆θk

Com essas substituições, simplifica-se as equações de movimento para:

xk
yk

 =
cos(∆θk) − sin(∆θk)

sin(∆θk) cos(∆θk)

xk−1 − ICCx,k
yk−1 − ICCy,k

+
ICCx,k
ICCy,k

 (2.8)

em que

∆θk = sin(θk)− sin(θk−1)
cos(θk−1) (2.9)

Rk =
(
step

2

)
nd,k + ne,k

∆θk
(2.10)

ICCk = [xk −Rk sin(θk), yk +Rk cos(θk)] (2.11)

2.5.3 Equações cinemáticas modelando derrapagem

Para se contornar o problema da derrapagem, optou-se por uma solução simples,
ad hoc e baseada na intuição. Apesar de não ter respaldo acadêmico, acabou obtendo
resultados congruentes com o esperado se não houve-se derrapagem.

Modelou-se a velocidade angular observada da roda (Ω̂ = step·n̂
∆t ) como sendo

diretamente proporcional à velocidade angular esperada caso não houvesse derrapagem
(Ω). Tem-se que:

Ω ∝ Ω̂⇒ step · n
∆t ∝ step · n̂

∆t ⇒ n ∝ n̂

Seja γ o coeficiente de proporcionalidade, que chamaremos de coeficiente de derra-
pagem, tem-se que

nd = γn̂d
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ne = γn̂e

Logo,

⇒ Rk =
(
step

2

)
nd,k + ne,k

∆θk
=
(
step

2

)(γ ˆnd,k) + (γ ˆne,k)
∆θk

Portanto,

Rk = γ
(
step

2

) ˆnd,k + ˆne,k
∆θk

(2.12)

Para estimar γ, utilizou-se o comprimento do trajeto realizado por cada roda
durante a volta. E então, fez-se a razão entre o comprimento de trajeto esperado para
cada roda e o comprimento registrado. γ foi considerado a média dessas duas razões.

O comprimento de trajeto esperado para a roda direita é de 236 cm, pois é o
comprimento da pista. Se considerarmos que a roda esquerda idealmente fica parada
durante as quatro curvas presentes no trajeto, cada uma com 10 cm, o comprimento
esperado para a roda esquerda é de 236− 4× 10 = 196 cm.

Os comprimentos dos trajetos das rodas são dados por:

Ld = step ·
k=N−1∑
k=0

nd, Le = step ·
k=N−1∑
k=0

ne (2.13)

A fórmula para γ é:
γ =

(1
2

)(236
Ld

+ 196
Le

)
(2.14)

As equações cinemáticas do robô modelando derrapagem são as equações 2.8, 2.9 e
2.11, apresentadas na subseção 2.5.2, com a utilização da equação 2.12 em vez da equação
2.10.

2.6 Sistema de Navegação Inercial vs Dead Reckoning

SNIs são autocontidos (WOODMAN, 2007), ou seja, independem de um modelo
cinético de movimentação veículo em que estão embarcados. Já Dead Reckoning depende
de um modelo cinético.

Dead reckoning, assim como um SNI, não podem ser usados por longas distâncias,
porque sofrem com várias desvantagens. O modelo cinético sempre sofre de inacurárias,
codificadores tem precisão limitada e existem diversas fontes externas de erro afetando a
movimentação que não sao observáveis pelos sensores, por exemplo derrapagem das rodas.
O erro de localização cresce com o tempo (GOEL P.; ROUMELIOTIS, 1999).
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No caso de um SNI é simples ver que o erro na velocidade cresce linearmente com
o tempo e o erro na posição cresce de forma quadrática. Seja δa o erro na medida da
aceleração a(t). Seja ā(t) a aceleração observada na prática.

Logo,
ā(t) = a(t) + δa

Ao se integrar ā(t) em relação ao tempo, obtém-se:

v̄(t) =
∫ t

0
ā(τ) dτ =

∫ t

0
a(τ) + δa dτ = v(t) + δa · t

Ao se integrar v̄(t) em relação ao tempo temos:

x̄(t) =
∫ t

0
v̄(τ) dτ =

∫ t

0
v(τ) + δa · τ dτ = x(t) + δa · t2
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3 IMPLEMENTAÇÃO

3.1 Eletromecânica

O funcionamento eletromecânico do robô se da a partir de sinais de controle
enviados por um Arduino (Arduino. . . , ) à uma Ponte-H (WIKIPéDIA, 2019) que envia
corrente aos atuadores das rodas, fazendo-as rodar conforme os sinais de controle. Cada
roda tem quatro estados de operação: para frente, reverso, parada rápida do motor e parada
livre do motor.

Para alimentar a Ponte-H, uma bateria 9V fixada na parte inferior do robô foi
utilizada. Para alimentar o Arduino e o microcontrolador foi usada outra bateria 9V fixada
na lateral do robô, esse arranjo pode ser vistos na Fig. 1.

Figura 4: Foto mostrando a parte de baixo do robô, em que pode-se ver a bateria que
alimenta a Ponte-H, os discos furados para codificação do giro das rodas e os
atuadores que movimentam as rodas.

Na Fig. 4, pode-se ver as rodas, que tem 65mm de diâmetro, os atuadores, e os
discos codificadores das rodas, com 20 furos cada. Além disso, pode-se ver a bateria que
alimenta a Ponte-H.

Na Fig. 5 pode-se ver o Arduino com o shield que contém o sensor BNO055 na
parte esquerda. Ao meio, pode-se ver a Ponte-H e à esquerda os sensores infravermelhos,
que junto aos discos compõem os codificadores ópticos incrementais, como discutido na
seção 2.2.
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Figura 5: Foto mostrando a parte interior do robô, aonde estão localizados o Arduino com
o shield que contém o sensor BNO055, a Ponte-H e os sensores infravermelhos
do codificador de roda.

3.2 Seguidor de linha

Um microcontrolador ATMEGA328PU (MEGAAVR. . . , ), mesmo microcotrolador
presente no Arduino (Arduino. . . , ), foi utilizado para implementar um seguidor de linha.
Optou-se por se utilizar apenas o microcontrolador, em vez do Arduino completo , por
conveniência. O código para o seguidor de linha está no apêndice B. O esquemático do
seguidor de linha está na Fig. 6.

Figura 6: Esquemático do seguidor de linha, mostrando as ligações feitas no microcontro-
lador ATMEGA328PU.
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Dois sensores infravermelhos para seguidor de linha (inserir modelo) foram fixados
na frente do robô, com 6,5 cm de distância entre eles. O sensor possui um receptor e um
emissor de infravermelho, lado a lado, que podem ser vistos na Fig. 4. O sensor é ativo
quando a luz refletida pelo emissor de infravermelho atinge o receptor de infravermelho,
ou seja, quando a superfície é branca ou reflexiva. Quando a superfície é escura, ou pouco
reflexiva, o sensor é inativo. A Fig. 7 ilustra os estados possíveis do segue linha aqui
descritos.

Figura 7: Fotos ilustrando os estados possíveis do Seguidor de Linha. No estado 1, o robô
anda para frente. No estado 2, o robô fica parado sobre a linha de chegada. Os
estados 3 e 4 mostram as curvas para a direita e esquerda respectivamente.

Enquanto ambos os sensores estão ativos, o robô caminha para frente. Quando o
sensor direito fica inativo, o robô vira para a direita, até ambos os sensores ficarem ativos
novamente. Quando o sensor esquerdo fica inativo, o comportamento é espelhado. Dessa
forma, o robô segue o trajeto traçado na pista confeccionada para testes, com papel A2 e
fita isolante. Quando ambos os sensores ficam inativos, ou seja, quando encontra com a
linha de chegada, o robô para.

3.3 Sistema de sensoriamento

O código para o sistema de sensoriamento está no apêndice A. A cada 10 ms
foram coletadas as seguintes informações detalhadas na tabela 2, salvas em um arquivo
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Tabela 2: Detalhamento das informações coletadas pelo sistema de sensoriamento.

Nome Tipo Fonte Descrição
Tempo corrente Inteiro Arduino Tempo corrente desde o início da execução do programa
Calibração Acc Categórico BNO055 Status de calibração dos acelerômetros (0-3)
Calibração Mag Categórico BNO055 Status de calibração dos magnetômetros (0-3)
Calibração Gir Categórico BNO055 Status de calibração dos giroscópios (0-3)
Calibração Sys Categórico BNO055 Status de calibração do sistema (0-3)
linAccX Real BNO055 Aceleração Linear em X
linAccY Real BNO055 Aceleração Linear em Y
linAccZ Real BNO055 Aceleração Linear em Z
quatW Real BNO055 Componente W do quaternião de orientação espacial
quatX Real BNO055 Componente X do quaternião de orientação espacial
quatY Real BNO055 Componente Y do quaternião de orientação espacial
quatZ Real BNO055 Componente Z do quaternião de orientação espacial
Num. Dir. Inteiro Codificador Número de pulsos entre a amostragem anterior e agora da roda direita
Num. Esq. Inteiro Codificador Número de pulsos entre a amostragem anterior e agora da roda esquerda

binário no cartão SD. Usando o código C, os dados foram convertidos para o formato
Comma-separated values para mais fácil importação nos demais códigos em Python.

O esquemático do coletor de dados, suprimento as ligações do shield 9AMS, está
na Fig. 8. Os sensores de codificação das rodas não estão representados, por simplicidade,
apenas os pinos de conexão no microcontrolador estão presentes.

A escolha do período amostral Ts = 10 ms se deu devido à frequência máxima de
saída de dados do BNO055, que é de 100 Hz para as saídas de fusão de dados utilizadas.
Assume-se que essa taxa de amostragem respeita o Teorema da Amostragem (2.1), pois o
sensor foi projetado para esse tipo de aplicação (BNO055, ).

Figura 8: Esquemático do sistema de sensoriamento, suprimindo as ligações do shield
9AMS.



37

4 RESULTADOS

Esse capítulo apresenta os resultados experimentais do projeto. Para as Figs. com
as trajetórias estimadas, se incluiu uma representação digital da pista confeccionada para
testes, além de duas pistas tracejadas. Como a distância entre os sensores infravermelhos
do seguidor de linha é de 6,5 cm, as pistas tracejadas demarcam para dentro e para fora
essa margem. Com os códigos disponíveis nos apêndices, calculou-se que o cumprimento
da trajetória mínima é de 188 cm e o comprimento da trajetória máxima é de 284 cm.
Lembrando que o comprimento nominal é de 236 cm.

Além das trajetórias estimadas, são incluídos alguns gráficos com a evolução
temporal do ângulo de orientação espacial θ, das coordenadas, velocidades e acelerações
relevantes para a discussão. Há uma análise do intervalo de tempo entre uma amostra e
outra, ou seja, sobre a variação na prática do período amostral.
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Figura 9: Evolução temporal do ângulo de orientação espacial θ para cada volta realizada
pelo robô.
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4.1 Intervalo de tempo entre amostras

A Fig. 10 mostra um histograma do intervalo de tempo entre as amostras coleta-
das, com o eixo vertical em escala logarítmica para melhor visualização. O período de
amostragem nominal é de 10 ms, porém, como pode-se observar, esse tempo variou devido
a fatores aleatórios discutidos no capítulo 5.

A mediana do tempo entre amostras é de 10 ms, e 95% das vezes o tempo foi menor
que 14 ms, ou seja, em 5% das vezes houve atraso maior que 4 ms. O código que gerou a
Fig. 10 e as estatísticas apresentadas se encontra no apêndice D.

Figura 10: Histograma do intervalo de tempo entre as amostras coletadas, com o eixo
vertical em escala logarítmica para melhor visualização.

4.2 SNI com Dados de Aceleração e Orientação

A partir do código apresentado no apêndice F que implementa as equações apre-
sentadas na subseção 2.4 obteve-se as Figs. 11 e 12. A Fig. 11 mostra o trajeto estimado
e a Fig. 12 mostra a evolução temporal da velocidade estimada em X, tendo como base
a aceleração em X, para cada volta realizada pelo robô. As trajetórias são mostradas
parcialmente, para permitir a visualização da pista.

4.3 Dead Reckoning

As Figs. 13, 14 e 15 foram obtidas através do código G.
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Figura 11: Trajetórias estimadas para cada volta realizada pelo robô,utilizando SNI. As
trajetórias são mostradas parcialmente, para permitir a visualização da pista.

A trajetória com derrapagem representa o resultado da utilização dos dados cole-
tados nas equações apresentadas na subseção 2.5.2. A trajetória sem derrapagem utiliza
as equações da subseção 2.5.3. A Fig. 15 mostra a evolução das coordenadas do robô em
função do tempo, juntamente com a velocidade em cada coordenada, para cada volta
realizada pelo robô.
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Figura 12: Evolução temporal da velocidade estimada em X, tendo como base a aceleração
em X, para cada volta realizada pelo robô, utilizando a estratégia SNI.
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Figura 13: Trajetórias estimadas para cada volta realizada pelo robô, sem modelagem de
derrapagem, utilizando Dead Reckoning.
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Figura 14: Trajetórias estimadas para cada volta realizada pelo robô, com modelagem de
derrapagem, utilizando Dead Reckoning.
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Figura 15: Evolução das coordenadas do robô em função do tempo, juntamente com a
velocidade em cada coordenada, para cada volta realizada pelo robô.
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5 DISCUSSÃO

Esse capítulo discute os resultados experimentais obtidos, a partir da análise
computacional dos dados coletados em laboratório. O robô realizou três voltas na pista
confeccionada para testes. A partir das equações apresentadas no capítulo 2, implementadas
como descrito no capítulo 3, obteve-se os resultados apresentados no capítulo 4.

Primeiramente, pode-se observar que a escolha de quaterniões é fortuita, pois se o
ângulo θ fosse utilizado diretamente para calcular sin(θ), cos(θ) e ∆θ haveriam problemas
com saltos em ∆θ quando θ passa pela região dos 180°, oscilando entre -180° e 180°, como
pode-se observar na Fig. 9.

Sobre as variações no período amostral, apresentados na seção 4.1. Essas variações
ocorrem pois ocorrem interrupções no processamento do microcontrolador (MEGAAVR. . . ,
) de duas fontes. A primeira são as operações de escrita no cartão SD, que para ser efetuadas
demandam processamento. A segunda são as interrupções geradas pelo codificador óptico,
que realiza contagem de pulsos conforme as rodas giram. Para se contornar tais variações,
um microcontrolador mais potente, com maior frequência de operação, deve ser utilizado.

Como pode-se observar no histograma da Fig. 10, o valor mais comum, e como
dito em 4.1, a mediana dos valores, é o valor nominal para o período amostral, 10 ms. O
segundo valor mais frequente é mais que 10 vezes menos comum. Caso as variações no
período amostral prejudiquem demasiadamente as estimativas, o que não pode ser aferido
devido à incompletude do sistema de navegação, deve-se utilizar um microcontrolador
mais rápido, porém possivelmente de maior custo.

A trajetória estimada utilizando o método apresentado em 2.4, mostrada parcial-
mente na Fig. 11, diverge rapidamente devido à uma acumulação rápida dos erros sensoriais
e ruídos presentes na leitura da aceleração linear fornecida pelo BNO055.

Como pode-se observar na Fig. 12, a aceleração é muito ruidosa, fazendo a velocidade
se divergir rapidamente do valor real. Filtros digitais foram tentados para se filtrar o ruído,
porém não foi obtido sucesso. Por essa razão, optou-se pelo Dead Reckoning na esperança
de que os erros se acumulassem mais devagar.

Implementou-se o DR e de fato, os erros se acumulam mais devagar, havendo
deformações muito grandes na trajetória mais ao final do trajeto, como pode-se observar
na Fig. 14. Porém, teve-se que se modelar uma nova fonte de erros que vem com essa
estratégia: a derrapagem.

Na Fig. 13 pode-se observar o efeito severo que a derrapagem teve no comprimento
do trajeto estimado, chegando a quase 10 vezes o comprimento nominal de 236 cm na
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terceira volta. A modelagem de derrapagem foi totalmente ad hoc e intuitiva, porém
obteve-se resultados que aproximam o trajeto nominal, desviando inicialmente pouco dele,
e dentro das faixas de tolerância de 6,5 cm para mais ou para menos tracejadas nas Figs.
13 e 14.

A Fig. 15 mostra que a trajetória estimada é bem suave nas coordenadas, porém
houveram grandes variações na velocidade, que são compatíveis com o observado na
prática e também com a forma com que o seguidor de linha foi programado, justamente na
tentativa de manter a movimentação em passos pequenos e evitar derrapagem ou escapada
da trilha.

A derrapagem pode ser corrigida melhorando os sinais de controle do robô, criando
um sistema de movimentação robusto, que evita derrapagens. Principalmente quando o
robô parte da inercia para o início do movimento, momento em que foi observada a maior
derrapagem.
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6 CONCLUSÃO

O trabalho realizado nesse TCC é o início de um processo de desenvolvimento de
um sistema de localização espacial de um robô móvel autônomo (RMA). A contribuição
desse projeto foi a escolha de uma estratégia para se realizar a estimativa de localização,
descartando-se SNI em prol do Dead Reckoning.

Os sistemas de seguidor de linha e sensoriamento podem ser aperfeiçoados futura-
mente. Com um sistema mais robusto de controle de movimentação, evitando derrapagem,
a fusão sensorial com um sensor de ultrassom pode providenciar dados suficientes para um
sistema de navegação completo, como discutido na seção 2.3.

O ultrassom, por medir a distância entre o robô e os objetos ao seu redor, fornece
uma medida direta de posicionamento do robô em seu ambiente. Essa medida pode ser
refinada utilizando os dados de odometria e orientação espacial para se construir um
Filtro de Kalman (LEVY, ), que melhore a precisão das estimativas e provenha localização
suficientemente precisa para as funções desejadas ao robô.
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APÊNDICE A – CÓDIGO DE SENSORIAMENTO

/* Codigo de sensoriamento (coleta de dados) para o robô
* utilizando o sensor inercial BNO055 presente no shield 9 Axis Motion
* Autor: Pedro V. B. Jeronymo
* 03/2019
*/

/* Bibliotecas */
#include <SPI.h>
#include <SD.h>
#include "NAxisMotion.h"
#include <Wire.h>

/* Variaveis globais */
File myFile;
NAxisMotion mySensor; //sensor inercial BNO055 (9 Axis Motion Shield)
unsigned long lastStreamTime = 0; //armazenar ultimo timestamp transmitido
const int streamPeriod = 10; //taxa de amostragem

// Estrutura que contem os dados coletados
struct readings_t {

// 4 bytes - tempo corrente
unsigned long lastStreamTime;
// 1 byte - status de calibracao dos acelerometros
uint8_t accelCalibStatus;
// 1 byte - status de calibracao dos magnetometros
uint8_t magCalibStatus;
// 1 byte - status de calibracao dos giroscopios
uint8_t gyroCalibStatus;
// 1 byte - status de calibracao do sistema
uint8_t sysCalibStatus;

// 4 bytes - Aceleracao Linear no eixo X
float linAccX;
// 4 bytes - Aceleracao Linear no eixo Y
float linAccY;
// 4 bytes - Aceleracao Linear no eixo Z
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float linAccZ;

// 2 bytes Quaternion de orientacao espacial
int16_t quatW;
// 2 bytes - q = (qW, qX, qY, qZ)
int16_t quatX;
int16_t quatY; // 2 bytes
int16_t quatZ; // 2 bytes
// 2 bytes - contagem de pulsos na roda direita
int16_t rightWheel;
// 2 bytes - contagem de pulsos na roda esquerda
int16_t leftWheel;

};
readings_t readings;

// Definicao dos pinos do led e o botao
const int LED_PIN = 8;
const int SWITCH_PIN = 7;

// Estado do botao (0 = aberto, 1 = em curto)
int state = 0;

// Contatores de pulsos das rodas
unsigned int counterD = 0;
unsigned int counterE = 0;

/* Funcoes auxiliares */
void docountD() // funcao auxiliar para contagem de pulsos da roda direita
{

counterD++;
}

void docountE() // funcao auxiliar para contagem de pulsos da roda esquerda
{

counterE++;
}

void blink_led() { //pisca o led para debug e indicar funcionamento
int i;
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for (i = 0; i < 5; i++) {
digitalWrite(LED_PIN, HIGH);
delay(100);
digitalWrite(LED_PIN, LOW);
delay(100);

}
}

/* Funcao de inicializacao do Arduino */
void setup() {

//Configuracao dos pinos
pinMode(LED_PIN, OUTPUT);
pinMode(SWITCH_PIN, INPUT);

// Led desligado por padrao
digitalWrite(LED_PIN, LOW);

// Abre comunicação serial
Serial.begin(115200);

// Inicializacao do cartao SD
Serial.print("Initializing SD card...");
if (!SD.begin(4)) {

Serial.println("initialization failed!");
return;

}
Serial.println("initialization done.");

//Abertura do arquivo onde sao armazenados os dados sensoriados
myFile = SD.open("READINGS.DAT", FILE_WRITE);
if (!myFile) {

Serial.println("Error opening file!");
digitalWrite(LED_PIN, HIGH);
while(1);

}

// Aguarda usuario apertar botao para continuar
while(state == LOW) {

state = digitalRead(SWITCH_PIN);
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}
blink_led();
// Acende o led para indicar que a leitura comecou
digitalWrite(LED_PIN, HIGH);
// Inicializacao e configuracao do sensor inercial
I2C.begin();
mySensor.initSensor();
mySensor.setOperationMode(OPERATION_MODE_NDOF);
mySensor.setUpdateMode(MANUAL);

//Anexa interrupcoes as funcoes de contagem de pulsos das rodas
attachInterrupt(0, docountE, RISING);
attachInterrupt(1, docountD, RISING);

}

/* Loop do Arduino*/
void loop() {

//Quando o botao for apertado novamente, finaliza a leitura
state = digitalRead(SWITCH_PIN);
if(state == HIGH) {

blink_led();
digitalWrite(LED_PIN, LOW);
myFile.close();
while(1); //espera ocupada ate ser desligado/reiniciado

}

// Leitura de dados caso tenha se passado o tempo de amostragem
if ((millis() - lastStreamTime) >= streamPeriod)
{

// leitura do tempo corrente
lastStreamTime = millis();
readings.lastStreamTime = lastStreamTime;

//Leituras do sensor inercial
mySensor.updateQuat();
mySensor.updateLinearAccel();
mySensor.updateCalibStatus();

readings.accelCalibStatus = mySensor.readAccelCalibStatus();
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readings.magCalibStatus = mySensor.readMagCalibStatus();
readings.gyroCalibStatus = mySensor.readGyroCalibStatus();
readings.sysCalibStatus = mySensor.readSystemCalibStatus();

readings.linAccX = mySensor.readLinearAccelX();
readings.linAccY = mySensor.readLinearAccelY();
readings.linAccZ = mySensor.readLinearAccelZ();

readings.quatW = mySensor.readQuatW();
readings.quatX = mySensor.readQuatX();
readings.quatY = mySensor.readQuatY();
readings.quatZ = mySensor.readQuatZ();

//Leitura dos pulsos de cada roda
detachInterrupt(0);
detachInterrupt(1);
readings.rightWheel = counterD;
readings.leftWheel = counterE;
counterD = 0;
counterE = 0;
attachInterrupt(0, docountE, RISING);
attachInterrupt(1, docountD, RISING);

//Escrita no SD da estrutura contendo as leituras
myFile.write((const char*)&readings, sizeof(readings_t));

}
}
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APÊNDICE B – CÓDIGO SEGUIDOR DE LINHA

/* Codigo de robo seguidor de linha com Arduino (chassi carrinho de Arduino)
* Autor: Pedro V. B. Jeronymo
* 03/2019
*/

//Pinos de controle do sentido de rotacao do motor direito
#define MotorD_sentido1 16
#define MotorD_sentido2 17
//Pinos de controle do sentido de rotacao do motor esquerdo
#define MotorE_sentido1 18
#define MotorE_sentido2 19
//Pinos de controle de ativacao dos motores
#define MotorD_atividade 9
#define MotorE_atividade 10
//Pinos dos sensores infravermelhos
#define Sensor_direita 14
#define Sensor_esquerda 15

//Estado dos sensores infravermelhos
bool direita, esquerda;

/* Funcao de inicializacao do Arduino */
void setup() {

//Inicializa comunicação serial para debug
Serial.begin(115200);
//Inicializacao dos pinos
pinMode(MotorD_sentido1, OUTPUT);
pinMode(MotorD_sentido2, OUTPUT);
pinMode(MotorE_sentido1, OUTPUT);
pinMode(MotorE_sentido2, OUTPUT);
pinMode(MotorD_atividade, OUTPUT);
pinMode(MotorE_atividade, OUTPUT);
pinMode(Sensor_direita, INPUT);
pinMode(Sensor_esquerda, INPUT);

}
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/* Loop do Arduino*/
void loop() {

//Define o sentido de ambos os motores de forma que permita
//o carrinho andar para frete
digitalWrite(MotorD_sentido1, LOW);
digitalWrite(MotorD_sentido2, HIGH);
digitalWrite(MotorE_sentido1, HIGH);
digitalWrite(MotorE_sentido2, LOW);

//Leituras dos Sensores infravermelhos
direita = digitalRead(Sensor_direita);
esquerda = digitalRead(Sensor_esquerda);
//Saida serial para debug
Serial.print(direita);
Serial.print(" || ");
Serial.println(esquerda);

/*Rodando os motores dependendo das leituras */

//Para frente
if(direita == false && esquerda == false){

digitalWrite(MotorD_atividade, HIGH);
digitalWrite(MotorE_atividade, HIGH);

//Para a direita
} else if(direita == false && esquerda == true){

digitalWrite(MotorD_atividade, HIGH);
digitalWrite(MotorE_atividade, LOW);

//Para a esquerda
}else if(direita == true && esquerda == false){

digitalWrite(MotorD_atividade, LOW);
digitalWrite(MotorE_atividade, HIGH);

//Parar
}else if(direita == true && esquerda == true){

digitalWrite(MotorD_atividade, LOW);
digitalWrite(MotorE_atividade, LOW);

}
//Mantem ativados por 5 ms e entao entra em parada em rotacao livre por 5 ms
delay(5);
// Alterar ambos para HIGH para parada forcada
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digitalWrite(MotorD_atividade, LOW);
digitalWrite(MotorE_atividade, LOW);
//Executa a parada forcada quando ativada
digitalWrite(MotorD_sentido1, LOW);
digitalWrite(MotorD_sentido2, LOW);
digitalWrite(MotorE_sentido1, LOW);
digitalWrite(MotorE_sentido2, LOW);
delay(5);

}
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APÊNDICE C – CÓDIGO DE CONVERSÃO DO ARQUIVO DE DADOS
BINÁRIO PARA FORMATO CSV

from struct import unpack

msgsize = 32 # 32+4

fout = open(’readings.csv’,’w’)

with open("READINGS.DAT", ’rb’) as f:
s = f.read(msgsize)
try:

while s != b’’:
tup = unpack(’IBBBBfffhhhhhh’, s)
line = ",".join([str(x) for x in tup])+’\n’
fout.write(line)
s = f.read(msgsize)

except:
pass

fout.close()
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APÊNDICE D – CÓDIGO DE ANÁLISE DO INTERVALO ENTRE AMOSTRAS

############################################
# Análise do intervalo intra-amostral
# Autor: Pedro V. B. Jeronymo
# Data: 2019-05-06
############################################
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

# Carrega os dados em um Pandas DataFrame
df = pd.read_csv(’../data/readings_2019-03-26__11-45.csv’, header=None, names=[

"lastStreamTime",
"accelCalibStatus",
"magCalibStatus",
"gyroCalibStatus",
"sysCalibStatus",

"linAccX",
"linAccY",
"linAccZ",

"quatW",
"quatX",
"quatY",
"quatZ",

"rightWheel",
"leftWheel"
])

# Calcula histograma do intervalo de tempo entre amostras
dt = df.lastStreamTime.diff().values[1:]
hist, bins = np.histogram(dt, bins=100)

# Estatísticas
print(’Mediana:’, np.median(dt))
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print(’95%:’, np.percentile(dt, 95))

# Gráfico com o histograma
plt.semilogy(bins[:-1], hist, ’k’, marker=’x’)
plt.xlabel(’Intervalo de tempo entre amostras (dt)’)
plt.ylabel(’Frequência de ocorrência’)
plt.title(’Histograma do intervalo de tempo entre amostras’)
plt.show()
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APÊNDICE E – CÓDIGO DE UTILIDADES PARA SNI E DR

##############################################################
# Utilidades
# Autor: Pedro V. B. Jeronymo
# Data: 2019-05-06
##############################################################

import numpy as np
import matplotlib.pyplot as plt

def quatToYaw(qw, qz):
"""
Convert orientation quaternion into Yaw (euler angle) given as input
qw and qz, where q = (qw, qx, qy, qz) and qx and qy are discarded in this
estimation.
"""
return np.arctan2(2*qw*qz, 1-2*qz*qz)

class Track():
def __init__(self):

track_x = [0, 52, 60, 60, 52, -10, -18, -18, -10, 0]
track_y = [0, 0, 6, 42, 48, 48, 42, 6, 0, 0]
self.track_ref = np.array([*zip(track_x, track_y)])
scalex_o = (78+6.5*2)/78
scaley_o = (48+6.5*2)/48
scale_o = np.array([[scalex_o, 0], [0, scaley_o]])
track_outer = self.track_ref.dot(scale_o)
self.track_outer = self.translate(track_outer, self.track_ref)
scalex_i = (78-6.5*2)/78
scaley_i = (48-6.5*2)/48
scale_i = np.array([[scalex_i, 0], [0, scaley_i]])
track_inner = self.track_ref.dot(scale_i)
self.track_inner = self.translate(track_inner, self.track_ref)
self.start_line_x = [0, 0]
self.start_line_y = [-4.5, 4.5]

def get_center(self, track):
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center = []
for k in range(2):

liminf = track[:,k].min()
limsup = track[:,k].max()
center.append(liminf+(limsup-liminf)/2)

return np.array(center)

def translate(self, track, track_ref):
center = self.get_center(track)
center_ref = self.get_center(track_ref)
dc = center-center_ref
return track-dc

def get_track_len(self, track):
x = track[:,0]
y = track[:,1]
d = 0
for k in range(1, x.shape[0]):

dx = x[k]-x[k-1]
dy = y[k]-y[k-1]
d += np.sqrt(dx*dx+dy*dy)

return d

def plot_paths(self, paths, title):
fig = plt.figure()
ax = fig.add_subplot(111)

ax.plot(self.track_ref[:,0], self.track_ref[:,1], ’k’, alpha=0.7)
ax.plot(self.start_line_x, self.start_line_y, ’k’, alpha=0.7)
ax.plot(self.track_outer[:,0], self.track_outer[:,1], ’k--’, alpha=0.7)
ax.plot(self.track_inner[:,0], self.track_inner[:,1], ’k--’, alpha=0.7)

marker = [’o’, ’v’, ’s’]

for path in paths:
x, y, t, d, i = path
ax.plot(x[::20], y[::20], label=’Volta {}: {:.0f} cm’.format(i+1, d), \

alpha=0.6, marker=marker[i], c=’k’)
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ax.set_title(title)
ax.xaxis.set_label_text(’(cm)’)
ax.yaxis.set_label_text(’(cm)’)
ax.legend()
ax.set_aspect(’equal’)
plt.show()
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APÊNDICE F – CÓDIGO SNI

##############################################################
# Estimativas de trajetória a partir de Navegação Inercial
# Autor: Pedro V. B. Jeronymo
# Data: 2019-05-06
##############################################################
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import scipy.signal as signal
from util import Track

# Carrega os dados em um Pandas DataFrame
df = pd.read_csv(’../data/readings_2019-03-26__11-45.csv’, header=None, names=[

"lastStreamTime",
"accelCalibStatus",
"magCalibStatus",
"gyroCalibStatus",
"sysCalibStatus",

"linAccX",
"linAccY",
"linAccZ",

"quatW",
"quatX",
"quatY",
"quatZ",

"rightWheel",
"leftWheel"
])

# Normaliza quaternions
df.quatW /= (1<<14)
df.quatX /= (1<<14)
df.quatY /= (1<<14)
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df.quatZ /= (1<<14)

# Separa dados em voltas
loop = []
loop.append(df.iloc[:2200])
loop.append(df.iloc[3000:5500])
loop.append(df.iloc[7000:10750])

# Para cada volta, computa velocidade e posição
paths = []
other = []
for i in range(3):

# Tempo corrente
t = loop[i].lastStreamTime.values*1e-3
t = t-t[0]
# Intervalo intra-amostral
dt = np.diff(t)

# Transformação entre o referencial (x’-y’) e o referencial (x-y)
qw = loop[i].quatW.values
qz = loop[i].quatZ.values

sin_theta = 2*qw*qz
cos_theta = qw*qw-qz*qz

Rot = np.array([[cos_theta, -sin_theta], [sin_theta, cos_theta]])
A_ = loop[i][[’linAccX’, ’linAccY’]].values

a = []
for k in range(A_.shape[0]):

a.append(Rot[:,:,k].dot(A_[k,:]))
a = np.array(a)*1e2 # converte p/ cm/s^2

# Determinação da velocidade
vx = np.cumsum(a[1:,0]*dt)
vy = np.cumsum(a[1:,1]*dt)

# Determinação da posição
x = np.cumsum(vx*dt)
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y = np.cumsum(vy*dt)

# Comprimento da trajetória
d = 0
for k in range(1, x.shape[0]):

dx = x[k]-x[k-1]
dy = y[k]-y[k-1]
d += np.sqrt(dx*dx+dy*dy)

paths.append((x, y, t, d, i))
other.append((a, vx, vy, t, i))

# Gráfico Trajetórias
track = Track()
track.plot_paths(paths, "Trajetórias estimadas SNI")

# Gráficos de posição e velocidade
for tup in other:

a, vx, vy, t, i = tup
fig = plt.figure()
ax = fig.add_subplot(211)
ax.set_title(’Volta {} SNI’.format(i+1))
ax.plot(t, a[:,0], ’k’)
ax.xaxis.set_ticks(np.arange(0, t.max(), 2))
ax.xaxis.set_label_text(’Tempo (s)’)
ax.yaxis.set_label_text(’Aceleração em X (cm/s^2)’)
ax = fig.add_subplot(212)
ax.plot(t[1:], vx, ’k’)
ax.xaxis.set_ticks(np.arange(0, t.max(), 2))
ax.xaxis.set_label_text(’Tempo (s)’)
ax.yaxis.set_label_text(’Velocidade em X (cm/s)’)
plt.show()
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APÊNDICE G – CÓDIGO DEAD RECKONING

###########################################################
# Estimativas de trajetória a partir de Dead Reckoning
# Autor: Pedro V. B. Jeronymo
# Data: 2019-05-06
###########################################################
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from util import Track, quatToYaw

# Parâmetros físicos do Robô
step = 6.5*np.pi/20 # cm/hole - tamanho do passo
l = 15 # Tamanho do eixo (separação entre rodas)

# Pistas e comprimentos
track = Track()

track_ref_len = track.get_track_len(track.track_ref)
track_outer_len = track.get_track_len(track.track_outer)
track_inner_len = track.get_track_len(track.track_inner)

print(’Comprimento trajetória mínima: {:.0f} cm’.format(track_inner_len))
print(’Comprimento nominal da pista: {:.0f} cm’.format(track_ref_len))
print(’Comprimento trajetória máxima: {:.0f} cm’.format(track_outer_len))
print(’Num. passos nomimal (esq/dir): {:.0f}/{:.0f}’.format(196/step, 236/step))

# Carrega dados em um Pandas DataFrame
df = pd.read_csv(’../data/readings_2019-03-26__11-45.csv’, header=None, names=[

"lastStreamTime",
"accelCalibStatus",
"magCalibStatus",
"gyroCalibStatus",
"sysCalibStatus",

"linAccX",
"linAccY",
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"linAccZ",

"quatW",
"quatX",
"quatY",
"quatZ",

"rightWheel",
"leftWheel"
])

# Normaliza quaternions
df.quatW /= (1<<14)
df.quatX /= (1<<14)
df.quatY /= (1<<14)
df.quatZ /= (1<<14)

# Separa dados em voltas realizada pelo robô
loop = []
loop.append(df.iloc[:2000]) # 1st run
loop.append(df.iloc[3000:5500]) # 2nd run
loop.append(df.iloc[7000:10800]) # 3rd run

# Gráfico da orientação em relação ao tempo
for i in range(3):

yaw = quatToYaw(loop[i].quatW.values, loop[i].quatZ.values)
t = loop[i].lastStreamTime.values
t = (t-t[0])*1e-3
plt.plot(t, np.rad2deg(yaw), ’k’)
plt.title(’Orientação em função do tempo (Volta {})’.format(i+1))
plt.xlabel(’Tempo (s)’)
plt.ylabel(’Orientação em graus’)
plt.yticks(np.arange(-180, 181, 30))
plt.show()

# Estimativa de trajetória com correção de derrapagem
paths = []
max_step = 4
for i in range(3):
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print(’-’*10, ’Volta {}’.format(i+1), ’-’*10)
## Set initial time to 0
t = loop[i].lastStreamTime.values
t = (t-t[0])*1e-3
t = t[1:]

nr = loop[i].rightWheel.values[1:]
nl = loop[i].leftWheel.values[1:]
r_total = nr.sum()
l_total = nl.sum()
print(’Num. passos (esq/dir): {}/{}’.format(l_total, r_total))

#slipping_correction = 236/(step*r_total)
#slipping_correction = 196/(step*l_total)
slipping_correction = 0.5*(236/(step*r_total)+196/(step*l_total))

qw = loop[i].quatW.values
qz = loop[i].quatZ.values

sin_theta = 2*qw*qz
cos_theta = qw*qw-qz*qz
dtheta = np.diff(sin_theta)/cos_theta[:-1]
sin_theta = sin_theta[1:]
cos_theta = cos_theta[1:]

x0, y0 = (0, 0)
theta0 = 0
x = []
y = []

x.append(x0)
y.append(y0)

for k in range(t.shape[0]):
R = 0
ICCx = 0
ICCy = 0
if (nr[k] or nl[k]):
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if (nr[k] != nl[k]) and dtheta[k]:
R = slipping_correction*0.5*(nr[k]+nl[k])*step/dtheta[k]
ICCx = x[-1]-R*sin_theta[k]
ICCy = y[-1]+R*cos_theta[k]

x_ = (x[-1]-ICCx)*1-(y[-1]-ICCy)*dtheta[k]+ICCx
if np.abs(x_-x[-1]) > max_step:

x_ = x[-1]
x.append(x_)
y_ = (x[-1]-ICCx)*dtheta[k]+(y[-1]-ICCy)*1+ICCy
if np.abs(y_-y[-1]) > max_step:

y_ = y[-1]
y.append(y_)

else:
ICCx = x[-1]
ICCy = y[-1]
x_ = (x[-1]-ICCx)*1-(y[-1]-ICCy)*dtheta[k]+ICCx
x.append(x_)
y_ = (x[-1]-ICCx)*dtheta[k]+(y[-1]-ICCy)*1+ICCy
y.append(y_)

else:
x.append(x[-1])
y.append(y[-1])

x = np.array(x)
y = np.array(y)

d = 0
for k in range(1, x.shape[0]):

dx = x[k]-x[k-1]
dy = y[k]-y[k-1]
d += np.sqrt(dx*dx+dy*dy)

print(’Comprimento da trajetória: {:.0f} cm’.format(d))
paths.append((x, y, t, d, i))

# Gráfico trajetória com correção de derrapagem
track.plot_paths(paths, ’Trajetórias estimadas com correção de derrapagem’)

# Gráficos de posição e velocidade
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for path in paths:
x, y, t, d, i = path
x = x[1:]
y = y[1:]
vx = []
vy = []
tv = []
W = 15
for k in range(2*W, x.shape[0]-2*W):

vx.append((-x[k+2*W]+8*x[k+W]-8*x[k-W]+x[k-W])/(3*(t[k+2*W]-t[k-2*W])))
vy.append((-y[k+2*W]+8*y[k+W]-8*y[k-W]+y[k-W])/(3*(t[k+2*W]-t[k-2*W])))
tv.append(t[k])

fig = plt.figure()
ax = fig.add_subplot(211)
ax.set_title(’Volta {}’.format(i+1))
ax.plot(t, x, ’k’, label=’Coordenada X’)
ax.plot(t, y, ’k--’, label=’Coordenada Y’)
ax.xaxis.set_ticks(np.arange(0, t.max(), 2))
ax.legend()
ax.xaxis.set_label_text(’Tempo (s)’)
ax.yaxis.set_label_text(’Posição (cm)’)
ax = fig.add_subplot(212)
#ax.set_title(’Velocidade vs tempo (Volta {})’.format(i+1))
ax.plot(tv, vx, ’k’, label=’Velocidade em X’, alpha=1.0)
ax.plot(tv, vy, ’k:’, label=’Velocidade em Y’, alpha=0.9)
ax.xaxis.set_ticks(np.arange(0, t.max(), 2))
ax.xaxis.set_label_text(’Tempo (s)’)
ax.yaxis.set_label_text(’Velocidade (cm/s)’)
ax.legend()
plt.show()

# Estimativa de trajetória sem correção de derrapagem
paths = []
for i in range(3):

print(’-’*10, ’Volta {}’.format(i+1), ’-’*10)
## Set initial time to 0
t = loop[i].lastStreamTime.values
t = (t-t[0])*1e-3
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t = t[1:]

nr = loop[i].rightWheel.values[1:]
nl = loop[i].leftWheel.values[1:]
r_total = nr.sum()
l_total = nl.sum()
print(’Num. passos (esq/dir): {}/{}’.format(l_total, r_total))

#slipping_correction = 236/(step*r_total)
#slipping_correction = 196/(step*l_total)
#slipping_correction = 0.5*(236/(step*r_total)+196/(step*l_total))
slipping_correction = 1.0

qw = loop[i].quatW.values
qz = loop[i].quatZ.values

sin_theta = 2*qw*qz
cos_theta = qw*qw-qz*qz
dtheta = np.diff(sin_theta)/cos_theta[:-1]
sin_theta = sin_theta[1:]
cos_theta = cos_theta[1:]

x0, y0 = (0, 0)
theta0 = 0
x = []
y = []

x.append(x0)
y.append(y0)

for k in range(t.shape[0]):
R = 0
ICCx = 0
ICCy = 0
if (nr[k] or nl[k]):

if (nr[k] != nl[k]) and dtheta[k]:
R = slipping_correction*0.5*(nr[k]+nl[k])*step/dtheta[k]
ICCx = x[-1]-R*sin_theta[k]
ICCy = y[-1]+R*cos_theta[k]
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x_ = (x[-1]-ICCx)*1-(y[-1]-ICCy)*dtheta[k]+ICCx

x.append(x_)
y_ = (x[-1]-ICCx)*dtheta[k]+(y[-1]-ICCy)*1+ICCy

y.append(y_)
else:

ICCx = x[-1]
ICCy = y[-1]
x_ = (x[-1]-ICCx)*1-(y[-1]-ICCy)*dtheta[k]+ICCx
x.append(x_)
y_ = (x[-1]-ICCx)*dtheta[k]+(y[-1]-ICCy)*1+ICCy
y.append(y_)

else:
x.append(x[-1])
y.append(y[-1])

x = np.array(x)
y = np.array(y)

d = 0
for k in range(1, x.shape[0]):

dx = x[k]-x[k-1]
dy = y[k]-y[k-1]
d += np.sqrt(dx*dx+dy*dy)

print(’Comprimento da trajetória: {:.0f} cm’.format(d))
paths.append((x, y, t, d, i))

# Gráfico trajetória sem correção de derrapagem
track.plot_paths(paths, ’Trajetórias estimadas sem correção de derrapagem’)


