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1 INTRODUGAO

O ciclo de crédito é composto pelas fases de relacionamento entre uma
instituicdo financeira que concede empréstimos e financiamentos, e seus clientes.
Sao elas: prospeccao de novos clientes, analise e concessao de crédito,

gerenciamento da carteira e por ultimo, cobranga de clientes em atraso.

Figura 1 — O ciclo de crédito.
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Fonte: Forti, 2018.

Em um primeiro momento, apds a prospeccao de novos clientes adequados a
um determinado produto, séo aplicados modelos de credit score, que avaliam o risco
de inadimpléncia no momento da concessdo do crédito. Modelos chamados de
behavior score estimam o risco para os ja clientes e ajudam a fazer a manutengao

da carteira de crédito.

Para os clientes que por acaso se encontrem em atraso, sdo aplicados os
chamados modelos de collection score, que os classificam segundo sua propensao
de pagamentos, ou seja, atribuem uma probabilidade a recuperagao dos valores dos

contratos em atraso.



As instituigdes financeiras, como os bancos, tém como foco os modelos de
credit score, dado que espera-se que bons modelos de concessao de crédito levem
a uma baixa inadimpléncia. Por outro lado, dados recentes mostram que 65 milhdes
de brasileiros tém algum tipo de divida em atraso (Serasa, 2022), o maior nivel
registrado em 12 anos, o que explica a relevancia dos modelos pds-concessao de

crédito.

Além disso, o volume e a complexidade crescentes de informacgdes
disponiveis nos dias atuais exige a aplicagao de técnicas mais sofisticadas como
machine learning para a tomada de decisbes mais assertivas. Conhecer melhor o
comportamento dos consumidores € um diferencial competitivo para as empresas,
porque permite uma melhor alocacdo de recursos, tem o potencial de reducao de
custos entre 20%-25%, e ajuda a melhorar a aquisicdo e retencdo de novos

consumidores (Lee e Shin, 2020).

Estimativas mais precisas de risco de crédito também sao necessarias para o
cumprimento de regulagdes internacionais como os Acordos de Basileia, que
dispéem sobre regras de capital econémico, capital regulatério e provisionamento.
Os Acordos de Basileia lll, versao mais recente das regulagdes, surgiram como
resposta a crise financeira de 2007-2008 para reforgar a capacidade do setor
financeiro em absorver choques, sendo essenciais para o tratamento e reducao do

risco sistémico (Schwerter, 2011).

Mais especificamente, o objetivo deste trabalho é fazer um estudo
comparativo das capacidades preditiva e interpretativa de técnicas de machine
learning aplicadas ao risco e a recuperagao de crédito, utilizando dados reais para
construir modelos de PD (probability of default) e LGD (loss given default).



2 BREVE DISCUSSAO SOBRE LGPD E TRATAMENTO DE DADOS NO
BRASIL

Para treinamento de modelos de machine learning de crédito sdo necessarias
informagcbes sobre o comportamento passado de relacionamento entre
consumidores e empresas que sao por sua natureza dados pessoais. Por este
motivo, no Brasil, seu tratamento estd sob o escopo da LGPD (Lei Geral de
Protecéo de Dados Pessoais) e é feito pelos birés de crédito (Serasa, SPC, Quod e
Boa Vista).

Em um contexto de aumento exponencial do volume e complexidade dos
dados disponiveis, e evolugao tecnoldgica de hardware e software, que permite que
empresas e governos extraiam informagdes sobre o comportamento de individuos, a
lei surgiu “com o objetivo de proteger e garantir os direitos fundamentais de
liberdade e de privacidade e o livre desenvolvimento da personalidade da pessoa
natural" (Lei n° 13.709). E fundamentada em regulamentos internacionais como o
RGPD (Regulamento Geral sobre a Protegdao de Dados), da Uniao Europeia, que

possui 0s paises mais adequados neste sentido.

Figura 2 — Protec&o de dados pessoais ho mundo.
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Fonte: Comissao Nacional de Informatica e Liberdade (CNIL/Franca).



Para garantir a protecdo dos dados, a lei se apoia em diversos principios. Em
geral, esses principios exigem que os dados sejam tratados com uma finalidade
especifica e legitima e que o seu uso seja limitado de acordo com a necessidade.
Além disso, o titular deve ter o direito de consulta sobre a forma e a duragdo do
tratamento dos seus dados. Estabelece também medidas de seguranga para evitar
acessos nao autorizados, medidas de prevencdo para evitar danos em virtude de
tratamento ndo adequado e proibe o uso dos dados para fins discriminatérios, sob
pena de multa e até mesmo suspensao das atividades de quem faz o tratamento dos

dados, caso haja descumprimento.

A LGPD estabeleceu dez bases legais, ou hipéteses, para tratamento dos
dados (Lei n® 13.709, Art. 7°). Os birés de crédito, empresas autorizadas no Brasil a
tratar o tipo de dado que € objeto de estudo deste trabalho, sdo parceiras e recebem
dados, por exemplo, de bancos ou lojas que vendem a prazo (chamados
controladores dos dados) e podem utilizar os dados pelas hipéteses da lei de:
protecdo ao credito; execugao de contratos de clientes e parceiros; e cumprimento

de obrigacao regulatéria/legal (que nao precisam do consentimento do titular).

A lei prevé também a possibilidade de tratamento “para a realizagdo de
estudos por 6rgao de pesquisa, garantida, sempre que possivel, a anonimizagao dos
dados pessoais”, hipétese que também n&o precisa do consentimento do titular.
Instituicobes de ensino superior e pesquisa como a USP se enquadram na hipotese.
Mesmo assim, o compartihamento dos dados depende do consentimento do
controlador dos dados. Foram solicitadas amostras de dados anonimizados aos
quatro birds. Um deles respondeu que ndo compartilha dados em “conformidade
com as finalidades previstas na legislagdo”, mesmo anonimizados, outro respondeu
que ainda estavam revisando processos internos devido a LGPD, e por hora o
compartilihamento de bases para estudos estava pausado sem previsdao de
retomada. Um deles ofereceu servicos apenas para empresas, € o ultimo nao

retornou o contato.

E importante ressaltar que o érgdo regulatério responsavel pela fiscalizacéo
da lei, a ANPD (Autoridade Nacional de Prote¢cdo de Dados), era de criagéo recente

no momento da escrita deste trabalho e os procedimentos e formas de atuagao da



mesma ainda estavam sendo definidos, e as empresas e instituicdes de ensino e
pesquisa estavam adequando seus procedimentos internos a nova lei. Assim, nao
existia nitidez sobre a interpretacdo da lei no contexto de pesquisa e isso
impossibilitou o acesso aos dados e o desenvolvimento do trabalho no contexto que
foi inicialmente idealizado do mercado de crédito brasileiro. Os dados que foram
utilizados no trabalho sdo dados do mercado de crédito norte-americano e foram

obtidos mais facilmente.

Ainda ha muitas questdes a serem discutidas. Existem estudos que mostram
que é possivel reidentificar individuos usando atributos de datasets, como mostrou
Roscer (2019) e escéndalos de vazamento de dados sdo frequentes. Isso gera
questionamentos sobre privacidade e dificulta a pesquisa cientifica. A propria ANPD
divulgou um estudo técnico em abril de 2022 com o intuito de promover um debate

publico sobre essas questdes (ANPD, 2022).



3 REVISAO TEORICA

A PD (probability of default) € uma estimativa da probabilidade de um tomador
de crédito descumprir as obrigacdes legais do seu contrato de empréstimo (o que é
chamado de default), como por exemplo ndo fazer um pagamento da sua hipoteca.
Dado que houve um default, a LGD (loss given defaultf) é uma estimativa do
percentual de perda do valor total em exposicdo no momento do default. Ambas sao
parametros essenciais para o calculo de perdas esperadas, capital econbmico e

capital regulatério sob as regras dos Acordos de Basileia.

O objetivo do trabalho é ajustar modelos de PD e LGD a uma base real de

contratos de hipotecas americanas (mortgages) utilizando as técnicas:

e Regressao Logistica e Regresséao Linear
e K-Nearest Neighbors

e Arvores de Decisdo

e Random Forest

e Adaboost

e Gradient Boosting

e XGBoost

A principal diferenga entre os modelos de PD e LGD é que os primeiros sao
modelos de classificagdo binaria (variavel categdrica) e os ultimos sdo modelos de

regressao (variavel continua).

O dataset € dividido em subconjuntos de treino e de teste para averiguagao

da eficacia dos modelos.

Abaixo se encontra uma revisao dos principais conceitos de cada uma das
técnicas. Um detalhamento maior da teoria por tras das técnicas e algoritmos pode

ser encontrado em Hastie et al. (2017) e/ou publica¢des originais que os descrevem.
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3.1 Regressao

3.1.1 Regresséo logistica

A regressao logistica é a técnica utilizada como referéncia para comparar
resultados em relagdo as outras técnicas de machine learning de classificagao, por
ser a técnica mais tradicional e de facil interpretacdo de parametros. Também ¢é a
mais aceita por 6rgaos regulatérios. O objetivo é predizer resultados em que a
variavel dependente é categorica e para modelos de PD, existem apenas duas
categorias: default e nao default. Além do mais, € assumido que os contratos
seguem uma distribuicdo binomial, ou seja, cada resultado € um experimento ou

variavel independente de Bernoulli, com mesma probabilidade de default  a priori.

Dado uma amostra de d contratos com resultados conhecidos (default ou ndo
default), a PD é estimada através da maximizagdo da fungdo de verossimilhancga

(minimizagao da funcéo de custo) a seguir, onde di = 1 indica ocorréncia de default

no contrato i :
d

Lnld) = TIf@,|m =[n" 1 -m

Como o objetivo € estimar a probabilidade m como uma combinagao linear
das features x e essa combinagao linear produz valores fora do intervalo de

probabilidade [0,1], é aplicada a Transformacgao Logit:

— _ _exp(Bx)
n= f(B’ X) " 1+exp(Bx)

Logo, as probabilidades estimadas ficam dentro do intervalo [0,1].
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Figura 3 — Regresséo logistica.
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Fonte: Oliveira, 2021.

Os modelos podem apresentar um ajuste muito bom para o conjunto de
dados de treino mas apresentar baixa acuracia para novos dados, ou seja,
desempenho ruim para o conjunto de testes. Esse comportamento é referido como
overfitting (ou sobreajuste, em portugués), e pode ser atenuado em modelos de

regressao através da regularizagao.

A regularizagdo € uma forma de reduzir os coeficientes 8 em diregao a zero
através de uma penalizagdo adicional ao minimizar a funcdo de custo. Na

regularizacdo chamada de Ll, essa penalizacdo € aplicada ao valor absoluto dos
coeficientes e na regularizagdo chamada de LZ, ela é aplicada ao quadrado dos

coeficientes.
3.1.2 Regresséo linear

Para modelos de LGD, a variavel dependente é continua (uma taxa de perda
continua). Nesse caso, o modelo utilizado como referéncia é a regressao linear. O
ajuste dos dados é feito através do método dos minimos quadrados, no qual o
melhor ajuste é encontrado minimizando-se a soma dos quadrados dos residuos

entre os valores observados e previstos.

Para a regresséao linear, o método de regularizagdo chamado de LASSO é

analogo ao método L1 e 0 método Ridge € analogo ao método Lz.
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3.2 KNN (K-Nearest Neighbors)

A técnica K-Nearest Neighbors (ou K-Vizinhos Mais Proximos, em portugués)
parte da ideia de classificar uma nova observacao de acordo com a proximidade dos
seus vizinhos. Essa proximidade € medida mais comumente em relagéo a distancia
euclidiana no espaco p-dimensional de um dataset com p features. Por exemplo,
para modelos de PD, se k é escolhido como 4, e trés dos vizinhos mais proximos
apresentarem como resultado default, o modelo classifica esse novo contrato com
75% de probabilidade de default. Matematicamente, dado o conjunto de treino x com

respostas y:

1
GxX) =5 X
xiENk(x)

Onde NK(x) € a vizinhanga de x definida pelas k observacdes mais proximas

X N0 subconjunto de treino.

Modelos com valores de k pequenos sdo muito sensiveis a variagdes, ou
seja, apesar de apresentarem pouco viés (ou bias, em inglés), tém muita variancia e
nao sao flexiveis para novos dados. O ideal, ndo s para esse tipo de modelo, mas
para todos os outros, € encontrar um meio termo entre viés e variancia, o que é

chamado na literatura de bias-variance tradeoff.

3.3 Arvores de decisao

Em wuma arvore de decisdo (decision ftree, em inglés), divide-se
recursivamente o espaco de variaveis (features) em particbes, selecionando uma
variavel e um ponto de divisdo. Essas divisdbes sao feitas minimizando-se uma
funcdo de custo para que sejam 6timas, como por exemplo a Impureza de Gini ou
entropia para modelos de classificacdo e erro quadratico médio para modelos de

regressao.
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Figura 4 — Arvores de decisdo. O painel & esquerda mostra uma particdo de um espaco de variaveis

bidimensional e o painel a direita mostra a arvore de decisao correspondente.

Xy =1
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Fonte: Hastie et al., 2017.

Por exemplo, na figura acima, a primeira divisdo é feita em X1 =t. A regiao
X st é entdo dividida em X,=t ea regiao X > tlé dividida em X =t,e assim
sucessivamente até algum critério de parada, resultando em regides (ou noés)

terminais R1’Rz""’R5' Cada divisado gera o que sdo chamados de ramos (branches) e

0s nos terminais sdo chamados de folhas (leaves). O algoritmo faz, portanto, uma

divisdo binaria recursiva do espaco de variaveis.

No caso de PD, novas observagdes sao classificadas de acordo com a
propor¢cdo de defaults e nao defaults das observagbes de treino das folhas
correspondentes. No caso de LGD, os valores estimados para novas observacoes
sdo dados pela média dos valores das observacdes de treino da respectiva folha

resultante.
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Figura 5 — Exemplo de arvore de deciséo gerada com a biblioteca scikit-learn.

Fonte: de autoria prépria.

As arvores de decisdo tem a vantagem de serem faceis de interpretar, mas

possuem baixa acuracia (Hastie et al., 2017).

3.4 Métodos Ensemble

Os métodos anteriores sdo métodos independentes. Isso significa que apds
inicializado o modelo, o ajuste (fit) dos dados é feito uma unica vez. Uma extenséo
disso € o ajuste com tuning de hiperparametros e validagéo cruzada, ja que envolve
varias estimativas. No entanto, para isso € utilizada uma classe fixa de modelo. Apés
o ajuste dos hiperparametros, o fit é feito uma Unica vez e os resultados sao

computados.

Uma alternativa sdo os métodos chamados de ensemble (ou conjunto, em
portugués). A ideia por tras desses métodos € combinar varios estimadores mais
simples e com menor poder preditivo para gerar modelos mais complexos e com
maior acuracia. Dentre as classes de modelos ensemble, as mais utilizadas e que

sdo abordadas neste trabalho sdo: Bagging e Boosting.
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Na metodologia Bagging (juncao dos termos bootstrapping e aggregation), os
estimadores base sao treinados separadamente a partir de amostras com reposi¢cao
(bootstrapping) do conjunto de dados de treino. Os resultados desses estimadores
entdo sdo agregados de alguma forma, como por exemplo a maioria dos votos para

modelos de classificagdo ou a média dos resultados para modelos de regressao.

A ideia € combinar estimadores com alta variancia e baixo viés, e assim
reduzir a variancia do estimador final. A técnica funciona especialmente bem para
procedimentos como as arvores de decisdo, como destaca Hastie et al. (2017).
Matematicamente, a variancia da média de B estimadores, considerando que cada
arvore de decisdo € identicamente distribuida e ndo independente (e logo tem uma

correlagdo p com as demais), é dada por:

2 + 1—p 2
po —g5 O
Se os estimadores forem relativamente descorrelacionados, a medida que B
aumenta, o segundo termo tende a zero e a variancia do estimador final é tdo mais

baixa quanto mais baixo for a correlagéo p.

Ja na metodologia Boosting, os preditores sao treinados sequencialmente,
com os sucessores tentando melhorar o resultado dos antecessores. O algoritmo &
aplicado até que se atinja algum critério de parada, sempre observando o principio

de bias-variance tradeoff para que nao ocorra o overfitting dos dados de treino.

Os estimadores base sao estimadores “fracos”, e séo ligeiramente melhores
que um palpite aleatoério. Esses estimadores sdo entdo combinados através de uma
votacdo ponderada para gerar o estimador final, na qual cada estimador tem um
peso o que é tdo maior quanto maior for sua acuracia. Para classificacdo, por

exemplo, o estimador final é dado por:

M
G(x) = sign( ) (mem(x))

m=1
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3.4.1 Random Forest

O método Random Forest consiste na aplicagao dos conceitos de bagging a
arvores de decisdo. A variancia do conjunto € melhorada reduzindo a correlagao
entre as arvores. Isso é feito no processo de crescimento das arvores através de

selecao aleatodria das variaveis de entrada, escolhendo a cada divisdo um numero

de variaveis m <= p. Tipicamente m € menor ou igual a \/E (Hastie et al., 2017).
3.4.2 Adaboost

O algoritmo Adaboost, introduzido por Freund e Schapire (1997), foi o

primeiro do tipo boosting.

A principal ideia do algoritmo é que os estimadores base treinados
sequencialmente compensam os erros dos estimadores anteriores. Isso é feito
aumentando o peso das amostras de treino com maior erro e diminuindo caso
contrario, o que faz com que os préximos estimadores déem um foco maior para as
amostras com maior erro. A importancia (ou peso) de um estimador base no

estimador final depende do seu desempenho.

Figura 6 — Esquematico do algoritmo AdaBoost.

FINAL CLASSIFIER

, . M ,
G(x) = sign [Zm 1 @ G ()

4

—- Grlz)

— = s s

Gi(x)

e Gafz)
T

Fonte: Hastie et al., 2017.
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Na pratica, os estimadores base utilizados sdo arvores de decisédo,
geralmente arvores com somente uma variavel, ou seja, que possuem somente um

no e duas folhas. Sdo também chamadas de “toco” (ou stump, em inglés).

O algoritmo usado para problemas de classificacdo, descrito por Freund e
Schapire (1997), é chamado de “AdaBoost.M1” e €& dado pelo seguinte

pseudocodigo:

Algoritmo AdaBoost.M1.

1. Dadas: N observagdes de treino (xl_, yi),..., (xN, yN)
2. Inicialize os pesos w, = 1/N,i=12.,N

3. Param = 1 até M faga:
(a) Treine um classificador Gm(x) usando o0s pesos w,

(b) Calcule o erro do classificador:
N
Xw i(y#G (x)
_ =1
err =——w%
Tw,
i=1
(c) Calcule o peso do classificador:
l—errm
(xm - ln( ETTm )

(d) Atualize os pesos das observagdes:

04
wewe”, sey * Gm(xi)

(04
m j—
wewe U sey = Gm(xl,)

4. Output:

M
G(x) = Sign[ > ame(x)]

m=1

O algoritmo adaptado para problemas de regressdao, chamado de
“‘AdaBoost.R2”, é analogo ao algoritmo de classificagao, e é descrito com detalhes
em Drucker (1997).
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3.4.3 Gradient Boosting

O algoritmo Gradient Boosting, introduzido por Friedman (2001), € uma
generalizagao dos algoritmos de boosting. O nome “gradiente” vem do fato da
técnica calcular o gradiente descendente da fungao de perda a cada iteragdo, com o

objetivo de minimiza-la.

Em contraste com o algoritmo de Adaboost, que implicitamente minimiza uma
funcdo de perda exponencial, o Gradient Boosting permite qualquer fungédo de perda
L diferenciavel. Ambos os algoritmos dao um foco maior aos maiores erros a cada
iteracdo, mas no algoritmo Adaboost isso é feito através do rebalanceamento dos
pesos das amostras e no algoritmo Gradient Boosting as amostras com maior erro
sao identificadas por meio dos maiores pseudo-residuos calculados. Outra diferenca
€ que o primeiro utiliza stumps como estimadores base e 0 segundo utiliza arvores

de decisao com profundidade um pouco maior.

O algoritmo generalizado é dado pelo seguinte pseudocdédigo:

Algoritmo Gradient Tree Boosting

1. Dadas: N observagdes de treino (xi, yi),..., (xN, yN)

N

2. Inicialize o modelo com um valor constante: Fo(x) = argminy > L(yl_, Y)
i=1

3. Param = 1 até M faga:
(a) Parai=1,...,N calcule:

[ Fe)
Tim =7 | oF )
F=F

m—1

(b) Ajuste uma arvore de decisdo os pseudo-residuos r. e crie regides
terminais ij’] = 1,...,]m

(c)Paraj = 1 até J calcule:

Y. = argmin Y L(yi,Fm_l(xl,) + v)

Jm Y x€R.
i jm

J

(d) Atualize F (x) =F (x)+ O(j§1 yjml(xeij)
4. Output.

F@)
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Como destaca Forti (2018), um fator importante para a aplicagéo € a escolha
dos hiperparametros, em especial: 0o numero de iteragdbes M, a taxa de

aprendizagem «, a profundidade das arvores e o numero de individuos por no.

3.4.4 XGBoost

Recentemente, um algoritmo que vem ganhando muita popularidade por ser a
escolha de muitas equipes vencedoras em competicbes de machine learning

(Github, 2022) é o algoritmo XGBoost introduzido por Chen e Guestrin (2016). E

uma implementacao de Gradient Boosting projetada para velocidade e desempenho.

A biblioteca de software por tras do método traz varias caracteristicas como
processamento em paralelo, otimizacdo de memodria e cache, formas de tratar
valores faltantes (missing values), regularizagdes, entre outras, que fazem o

algoritmo seja considerado do estado da arte.

3.5 Tuning de hiperparametros

Hiperparametros sdo parametros de um modelo de machine learning que nao
podem ser estimados a partir dos dados. Eles controlam o aprendizado dos
modelos. Tuning refere-se ao conjunto de procedimentos realizados para encontrar

os hiperparametros que produzem os melhores desempenhos nos modelos.

Uma das abordagens para realizar o tuning é a busca exaustiva, chamada de
Grid Search. Nesse tipo de busca testa-se exaustivamente combinacdes de
parametros para se encontrar a combinagdo com a melhor pontuagado segundo uma
meétrica de avaliagdo. Apesar do conceito ser simples, cada novo parametro inserido
na busca causa um aumento exponencial no numero de combinagcbes a serem

testadas, como destaca Pellicer et al (2019).

Outra abordagem € a busca aleatoéria, chamada de Random Search. Nesse
tipo de busca sio testadas combinagdes de parametros selecionadas de alguma

forma de distribuicdo pré-definida.
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Essas duas abordagens sao utilizadas no trabalho. Existem diversos outros
tipos de abordagem, como o algoritmo desenvolvido por Pellicer et al. (2019) que

utiliza as propriedades da equagao do baricentro para otimizar os hiperparametros.

3.6 Validagao cruzada

Para treinamento de um modelo a base de dados deve ser sempre dividida
em subconjuntos de treino e teste. Assim, o modelo é treinado utilizando os dados
de treino e seu desempenho é avaliado utilizando os dados de teste, que sdo dados
nao vistos anteriormente e que simulam o poder de predigdo em um ambiente de
producdo com novos dados. Caso contrario aconteceria overfitting ja que o modelo

conseguiria prever apenas resultados ja vistos.

Figura 7 — Fluxograma de treinamento de modelos utilizando validagao cruzada.

Fonte: Scikit Learn.

Além disso, quando avalia-se diferentes conjuntos de hiperparametros
através do tuning, ainda existe o risco de overfitting se forem utilizados apenas os
subconjuntos de treino e teste, pois os hiperparametros podem ser ajustados até
que o modelo tenha um bom desempenho para treino e teste, mas néao

necessariamente tera um bom desempenho para novos dados.

Para solucionar esse problema, pode-se utilizar o procedimento de validagao
cruzada (cross-validation). Nessa abordagem, o subconjunto de treino & dividido

aleatoriamente em k partes iguais. Utiliza-se k — 1 partes para treinamento e a
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k-ésima parte restante, chamada de parte de validacao, é utilizada para avaliagao do
desempenho. Isso é feito iterativamente k vezes selecionando a cada iteracdo uma
nova parte para validacdo. O desempenho de um conjunto de hiperparametros é

entdo calculado como a média dos valores calculados nas iteragdes.

Figura 8 — Divisao dos subconjuntos de treino e teste na modelagem com validagao cruzada.

| All Data

| Training data Test data

|FOId1 Fold2 || Fold3 | Folda | Folds

Splitl | Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Split 2 | Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

> Finding Parameters

Split 4 | Foldl || Fold2 | Fold3 | Foldd4 | Folds

|
|
split 3 | Fold 1 | Fold2 || Fold3 | Fold4 | Fold5
|
|

Splits | Fold 1 Fold 2 Fold 3 Fold 4 Folds /

Final evaluation { Test data

Fonte: Scikit Learn.

3.7 Métricas de validagao

Existem diversas métricas que podem ser utilizadas para avaliar o

desempenho dos modelos e compara-los entre si. Neste trabalho foram utilizadas:

e AUROC para modelos de PD
e RMSE para modelos de LGD

e Analise de ordenacéao de score para modelos de PD e LGD

3.7.1 AUROC

Uma matriz de confusdo é uma tabela que mostra as frequéncias de

classificagao para cada classe do modelo:
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Figura 9 — Matriz de confuséo.

Valor Observado
Valor Previsto Positivos Negativos
) Posiivos VP - Verdadeiro Positivo  FP - Falso Positivo
Negativos FN - Falso Negativo WN - Verdadeiro Negativo

Fonte: Forti, 2018.

A area sob a curva ROC (AUROC ou AUC) conceitualmente € a area sobre o
grafico da taxa de verdadeiros positivos (também conhecida como sensibilidade)
contra a taxa de falsos positivos (também chamada de 1-especificidade) plotados
variando-se o threshold (PD) de 0 a 1. Quanto mais esse numero for proximo de 1,

melhor é o poder de discriminagado do modelo.

Figura 10 — Curva ROC.

ROC Curve

14 14 o
B o =]

True Positive Rate (Sensitivity)

e
o

0 0.2 0.4 0.6 08 1
False Positive Rate (1 - Specificity)

Fonte: Statology.org.

3.7.2 RMSE

O raiz quadrada do erro quadratico médio € uma medida da diferenca entre o

valor previsto pelo modelo e o valor observado:

2

RMSE — Z (yered_yobs)

N
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3.7.3 Analise de ordenacéo de score

Além das duas métricas citadas anteriormente, uma outra analise foi
desenvolvida para comparagao entre os modelos: a analise de ordenagao de score e

avaliacdo de pontos de corte.

Para modelos de PD, a construgao segue 0s seguintes passos:

1. Ordenacédo da base de dados pela probabilidade (score), considerando a
ordenacgéo do pior para o melhor, ou seja, da maior probabilidade de default
para a menor.

2. Calculo das seguintes métricas para cada ponto de corte: % nao default, %

nao default acumulado e % default acumulado.

A tabela abaixo apresenta um exemplo de analise. Para os 40% classificados
com a maior probabilidade de default, temos uma porcentagem de nao default de
94,2% para o modelo 1 e 93,6% para o modelo 2, uma porcentagem acumulada de
nao default de 39,2% para o modelo 1 e 39% para o modelo 2 e uma porcentagem
acumulada de default de 62,1% para o modelo 1 e 68,4% para o modelo 2. Os
numeros sao indicativos que a ordenagcdao do modelo 2 é superior a do modelo 1, ou
seja, o modelo 2 € superior na identificagdo de contratos que tém maior

probabilidade de inadimpléncia.



Tabela 1 — Exemplo de analise de ordenagéo de score para modelos de PD.

Corte % Ndo default LR (% Nao default acum| % Default acum

M1 M2 M1 M2 M1 M2
1,0% 92,9% 92,1% 1,0% 1,0% 1,9% 2,1%
5,0% 93,7% 91,5% 4,9% 4 8% 8,5% 11,1%
10,0% 93,6% 91, 7% 9,7% 9,6% 17,1% 21,8%
20,0% 93,7% 92,5% 19,5% 19,3% 33,8% 39,8%
30,0% 94,0% 93,0% 29,3% 29,0% 48,1% 56,2%
40,0% 94,2% 593,6% 39,2% 39,0% 62,1% 68,4%
50,0% 94,5% 94,1% 49,1% 48,9% 73, 7% 79,9%
60,0% 94,9% 94,6% 59,2% 59,0% 82,9% 87,5%
70,0% 95,3% 95,1% 69,3% 69,1% 90,3% 93,8%
80,0% 95,6% 95,5% 79,4% 79,4% 95,2% 97,8%
90,0% 96,0% 96,0% 89, 7% 89, 7% 93,6% 99,5%
95,0% 96,2% 96,2% 94,8% 94, 8% 99,6% 99,9%
99,0% 96,3% 96,3% 99,0% 99,0% 100,0% 100,0%
100,0% 96,4% 96,4% 100,0% 100,0% 100,0% 100,0%

Ja para os modelos de LGD, a construgédo segue 0s seguintes passos:

Fonte: de autoria prépria.
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1. Ordenacdo da base de dados pela perda estimada, considerando a

ordenacdo da menor perda estimada para a maior perda estimada.

2. Calculo das seguintes métricas para cada ponto de corte: recuperagdo (em $

MM, valores reais), e % de recuperagao do total

Nesse tipo de avaliagdo, calcula-se como uma aproximagao para valores

recuperados o saldo do contrato no momento do default multiplicado por

1 —-LGD

realizada’

A tabela abaixo mostra um exemplo de analise. Para os 20% com menor

perda estimada, temos uma recuperagédo de $80,2 MM ou 23,4% do risco total da

base para o modelo 1 e uma recuperacdo de $88 MM ou 25,7% do risco total da

base para o modelo 2. Pode-se pensar na ordenagdo como uma ag¢ao de cobranca

para os 20% da base em default que tém a menor perda estimada, que se traduz em

uma maior chance de recuperacdo. Nesse caso, 0 modelo 2 proporcionaria um

ganho financeiro de $7,8 MM em relagdo ao modelo 1.



Tabela 2 — Exemplo de analise de ordenagao de score para modelos de LGD.

% recuperacio % recuperacio

corte M1 M2 M1 M2
1% 2,0 3,4 0,6% 1,0%
5% 18,0 19,6 5,3% 5, 7%
10% 35,5 41,7 10,4% 12,2%
20% 80,2 85,0 23,4% 25,7%
30% 1248 1277 36,5% 37,3%
A0% 1679 168,0 49,1% 49,1%
50% 205,0 203,5 59,9% 59,5%
60% 240,9 237,2 70,4% 69,3%
70% 271,77 271,0 79.4% 79,2%
B0% 299,5 298,06 87.5% B7,3%
90% 3239 321,6 94, 7% 94,0%
95% 334,5 3327 97.8% 97,2%
99% 341,2 341,1 99,7% 99,7%
100% 342,2 342,2| 100,0%| 100,0%

Fonte: de autoria prépria.
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3.8 Painéis de validagao

Com o intuito de facilitar a visualizacdo e comparacao dos resultados, criou-se
para cada modelo painéis com as principais métricas de validagéo e graficos, como
sugerido por Rdsch e Scheule (2020). Como exemplo, para um determinado modelo

sdo apresentados os seguintes painéis:



Frequéncia
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Figura 11 — Exemplo de painéis de validagao
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Fonte: de autoria prépria.

e painel superior esquerdo: tabela com resumo das principais métricas de
validacgao;

e painel superior direito: média dos valores observados (outcome) e valores
ajustados (fit) da variavel alvo ao longo do tempo;

e painel inferior esquerdo: histograma dos valores ajustados (fif);

e painel inferior direito: curva de calibragcdo do modelo.
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4 METODOLOGIA

4.1 Base de dados

No trabalho foi utilizado um dataset contendo 50.000 hipotecas (mortgages)
americanas, observadas trimestralmente por 60 periodos, desde o comeco dos anos
2000 e englobando a crise financeira de 2008. O dataset é fornecido pelo érgéo
International Financial Research, e contém mais de 15.000 inadimplentes (default), o

que é adequado para ajuste de modelos de risco e recuperacao de crédito.

O dataset possui 28 atributos (features). Sao eles:

e jd: identificacdo do contrato

e time: periodo de observagao

e orig_time: periodo de origem do contrato

e first_time: primeira observagao do contrato

e mat_time: periodo de vencimento do contrato

e res_time: periodo de resolugdo do contrato

e balance_time: saldo devedor no periodo

e [TV time: loan-to-value ratio no periodo

e interest _rate_time: taxa de juros do contrato

e rate_time: taxa de juros livre de risco no periodo

e hpi_time: house price index no periodo

e gdp time: crescimento do PIB no periodo

e vuer_time: taxa de desemprego no periodo

e REtype CO _orig_time: tipo de imével - condominium: 1

e REtype PU orig time: tipo de imovel - planned urban developments: 1
e REtype SF orig time: tipo de imovel - single family home: 1
e investor_orig_time: investor borrower: 1

e balance_orig_time: saldo devedor no momento da originagao
e FICO orig time: FICO score no momento da originagao

e [TV orig time: loan-to-value ratio no momento da originagao
e interest _rate orig_time: taxa de juros no momento da originagao

e state orig_time: estado no qual o imével esta localizado
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e hpi_orig_time: house price index no momento da originagao

e default_time: indicador de default no periodo

e payoff time: indica se o contrato foi quitado no periodo

e status_time: 0:ndo default/ndo payoff; 1: default, 2: payoff

e /dg time: loss given default

e recovery res. soma de todos os fluxos de caixas recebidos nos

periodos de resolucao (apds default)

O dataset € organizado da seguinte forma. Cada contrato tem um resultado,
que é observado 1 periodo apos as features: survival (sobrevivéncia), default
(inadimpléncia), payoff (pagamento), maturity (vencimento). Os trés ultimos sao
eventos de encerramento, ou seja, o contrato deixa de ser observado caso ocorra
um deles. Variaveis como Igd_time e recovery res séo observadas na mesma linha

do evento de encerramento.

Foram selecionadas 12 features relevantes para os modelos de PD e 8
features mais variaveis indicadoras do estado de origem para os modelos de LGD
para ajuste dos modelos, incluindo algumas features calculadas a partir das

originais.

Para os modelos de PD, o dataset foi dividido em subconjuntos até o periodo
27 para treino e do periodo 27 ao 40 para teste, observando que a crise financeira
de 2007-2008 comecgou aproximadamente do periodo 27 com término
aproximadamente no periodo 40. Essa divisdo € indicada pelos préprios
pesquisadores que disponibilizaram o dataset, porque assim o desempenho dos
modelos pode ser testado no cenario mais adverso possivel. Nota-se no grafico
abaixo, que a partir do periodo 27 ha um aumento rapido da taxa de default. Até o
periodo 27 a média era de 1,1% e entre o periodo 27 e o periodo 40 a média era de
3,5%.
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Figura 12 — Taxa de default do dataset por periodos
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Fonte: de autoria prépria.

Para modelos de LGD, o dataset foi dividido em subconjuntos até o periodo
40 para treino e até o periodo 60 (ultimo periodo) para testes. A diferenga da diviséo
da base para PD e LGD tem o intuito de garantir um numero suficiente de defaults
para ajuste dos modelos de LGD (aproximadamente 11.000 para treino e 4000 para

testes).

Em um primeiro momento foi utilizado uma amostra de 5.000 contratos com a
mesma representatividade de defaults do dataset completo para estudo das
técnicas, por questbes de tempo de processamento para gerar os modelos.
Posteriormente foi utilizada a base completa com os 50.000 contratos. Para o tuning
de hiperparametros o dataset de treino foi dividido recursivamente usando validagéo

cruzada em 5 partes para treino dos modelos.

Como exemplo de modelagem utilizando os datasets de treino e teste, o
modelo de regressao logistica, sem regularizacdo e tuning de hiperparametros

apresentou os seguintes resultados para o subconjunto de treino:
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Figura 13 — Modelo Regressao logistica de PD, sem regularizagcao e sem tuning de hiperparametros -

subconjunto de treino.
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Fonte: de autoria prépria.
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No painel superior esquerdo observa-se um AUROC alto pois os dados sao

de treino. No painel superior direito percebe-se que o ajuste (fif) € préximo do

observado (outcome) ao longo do tempo. No canto inferior esquerdo o histograma

apresenta concentragdo proxima de 0%, pois no periodo pré-crise os contratos

apresentaram probabilidade baixa de default. No canto inferior direito a curva de

calibragdo mostra uma boa calibragéo.

Este primeiro modelo apresentou bom fit para o subconjunto de treino mas

subestimou as probabilidades de default para o subconjunto de teste, como pode ser

visto nos painéis abaixo, tanto na série temporal quanto na curva de calibragao,

apresentando um AUROC menor.
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Figura 14 — Modelo Regressao logistica de PD, sem regularizagcao e sem tuning de hiperparametros -

subconjunto de teste.
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Fonte: de autoria prépria.

Para os proximos modelos serdo apresentados apenas os painéis utilizando a
base completa e subconjunto de teste. As bibliotecas scikit-learn (Pedregosa et. al,
2011) e xgboost (Chen e Guestrin, 2016) foram utilizadas para implementar os
modelos. A lista de hiperparametros considerados nos modelos com tuning e suas

respectivas descri¢coes e valores podem ser consultados no Apéndice.

4.2 Modelos PD

4.2.1 Regresséao logistica para PD

A regressao logistica é implementada através da classe LogisticRegression
do pacote scikit-learn. O tuning de hiperparametros foi feito através de busca
exaustiva com GridSearchCV, procurando o melhor desempenho para os
hiperparametros: tipo de regularizagéo, forga da regularizagdo e numero maximo de

iteracoes.
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Figura 15 — Modelo Regressao logistica de PD, com regularizacao e tuning de hiperparametros.
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Fonte: de autoria prépria.

O algoritmo KNN é implementado pela classe KNeighborsClassifier. Para

k = 5, o ajuste apresenta overfitting (sobreajuste) e ndo apresenta bons resultados

com os dados de teste:

Figura 16 — Modelo KNN de PD, sem tuning de hiperparémetros - k = 5.
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Fonte: de autoria prépria.
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Modelo com k = 100:

Figura 17 — Modelo KNN de PD, sem tuning de hiperparametros - k = 100.
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Fonte: de autoria prépria.

Modelo com k = 2048, hiperparametro otimizado encontrado utilizando
GridSearchCV:

Figura 18 — Modelo KNN de PD, com tuning de hiperparametros - k = 2048.
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Fonte: de autoria prépria.
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4.2.3 Arvores de Decisdo para PD

As arvores de classificacdo sdo implementadas através da classe

DecisionTreeClassifier. Modelo sem tuning:

Figura 19 — Modelo Arvore de decisdo de PD, sem tuning de hiperparametros.
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Fonte: de autoria prépria.

Modelo com tuning, utilizando GridSearchCV para encontrar o0s
hiperparametros: profundidade maxima da arvore, numero maximo de features
consideradas a cada divisdo e porcentagem de amostras do n6é necessarias para

que seja feita uma nova divisao:



Figura 20 — Modelo Arvore de deciséo de

Resumo
Métrica Valor
No. observacbes 274185.0
Média outcome 0.0351
Média fit 0.019
AURDC 0.6822
RMSE 0.1881
R-squared -0.0455
Histograma - Fit
15
i}
2
<10
(=2
14
-
5
0 + — - . -
0.0 0.2 0.4 0.6 0.8 1.0

Fit

PD, com tuning de hiperparametros.

Série Temporal - Outcome e Fit

Fonte: de autoria prépria.

4.2.4 Random forest para PD

O é

RandomForestClassifier. Modelo sem tuning:
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Figura 21 — Modelo Random forest de PD, sem tuning de hiperparametros.
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Modelo com tuning, utilizando RandomizedGridSearch com 50 combinag¢des
para encontrar os hiperparametros otimizados de numero de arvores, profundidade
maxima das arvores, nimero maximo de features consideradas a cada divisao,
porcentagem de amostras do nd necessarias para que seja feita uma nova divisédo e

se é utilizado o bootstrapping na construgédo das arvores:

Figura 22 — Modelo Random forest de PD, com funing de hiperparametros.
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Fonte: de autoria prépria.

4.2.5 Adaboost para PD

O algoritmo AdaBoost é implementado por meio da classe
AdaBoostClassifier. Modelo sem tuning de hiperparametros e utilizando como

estimadores base arvores de decisdo com profundidade igual a 1 (stump):
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tuning,

com hiperparametros otimizados de

taxa

aprendizagem e numero de estimadores base encontrados com GridSearchCV:
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Figura 24 — Modelo AdaBoost de PD, com tuning de hiperparametros.
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4.2.6 Gradient Boosting para PD

O modelo é implementado através da classe GradientBoostingClassifier.

Modelo sem tuning:

Figura 25 — Modelo Gradient Boosting de PD, sem tuning de hiperparametros.
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Modelo com tuning, com hiperparametros otimizados de taxa de
aprendizagem, numero de estimadores, profundidade maxima das arvores, numero
maximo de features consideradas a cada divisdo, porcentagem de amostras para
ajuste de cada estimador e critério de parada antecipada por ndo melhora da métrica

de validagao:



Figura 26 — Modelo Gradient Boosting de PD, com tuning de hiperparametros.
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4.2.7 XGBoost para PD
O modelo XGBoost € implementado através da classe XGBClassifier da

biblioteca xgboost. Modelo sem tuning de hiperparametros:

Figura 27 — Modelo XGBoost de PD, sem tuning de hiperparametros.
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Modelo com tuning de hiperparametros, considerando: profundidade maxima
das arvores, taxa de aprendizagem, gamma (parametro relacionado a pruning das

arvores), e regularizacao:

Figura 28 — Modelo XGBoost de PD, com tuning de hiperparametros.
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4.3 Modelos LGD

4.3.1 Regresséao linear para LGD

A regresséo linear é implementada através da classe LinearRegression.

Regressao linear sem regularizagéo:



Figura 29 — Modelo Regressao linear de LGD, sem regularizagao.
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Fonte: de autoria prépria.

Regressao com regularizagdo Ridge, com hiperparametro de regularizagao

encontrado com GridSearchCV:

Figura 30 — Modelo Regressao linear de LGD, com regularizagdo Ridge.
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Regressédo LASSO, com hiperparametro de regularizagdo encontrado com

GridSearchCV:

Figura 31 — Modelo Regressao linear de LGD, com regularizagdo LASSO.
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4.3.2 KNN para LGD

O algoritmo KNN & implementado pela classe KNeighborsRegressor. Modelo

com k = 100:
Figura 32 — Modelo KNN de LGD, sem tuning de hiperparametros - k = 100.
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Modelo com k = 48, encontrado utilizando GridSearchCV:

Figura 33 — Modelo KNN de LGD, com tuning de hiperparametros - k = 48.
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4.3.3 Arvores de decis&o para LGD

As arvores de classificacdo séao

implementadas através da

DecisionTreeRegressor. Modelo sem tuning de hiperparametros:

Figura 34 — Modelo Arvore de decisdo de LGD, sem tuning de hiperparametros.
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Modelo com tuning, utilizando RandomizedGridSearch com 50 combinag¢des
para encontrar os hiperparametros otimizados de profundidade maxima da arvore,
namero maximo de features consideradas a cada divisdo e porcentagem de

amostras do no necessarias para que seja feita uma nova divisao:

Figura 35 — Modelo Arvore de decisdo de LGD, com tuning de hiperparametros.
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4.3.4 Random forest para LGD

O estimador random forest ¢é implementado através da classe

RandomForestRegressor. Modelo sem tuning:
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Figura 36 — Modelo Random forest de LGD, sem tuning de hiperparametros.
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Modelo com tuning, utilizando RandomizedGridSearch com 50 combinagdes
para encontrar os hiperparametros otimizados de numero de arvores, profundidade
maxima das arvores, numero maximo de features consideradas a cada diviséo,
porcentagem de amostras do nd necessarias para que seja feita uma nova divisdo e

se é utilizado o bootstrapping na construcao das arvores:



Figura 37 — Modelo Random forest de LGD, com tuning de hiperparametros.
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é

implementado

Figura 38 — Modelo Adaboost de LGD, sem
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Modelo com

tuning,

47

com hiperparametros otimizados de taxa de

aprendizagem e numero de estimadores base encontrados com GridSearchCV:

Figura 39 — Modelo Adaboost de LGD, com tfuning de hiperparametros.
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4.3.6 Gradient Boosting para LGD

7

O modelo é implementado através da classe GradientBoostingRegressor.

Modelo sem tuning:

Figura 40 — Modelo Gradient Boosting de LGD, sem funing de hiperparametros.
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Modelo com tuning dos hiperparametros: taxa de aprendizagem, numero de
estimadores, profundidade maxima das arvores, numero maximo de features
consideradas a cada divisdo, porcentagem de amostras para ajuste de cada

estimador e critério de parada antecipada por ndo melhora da métrica de validagao:

Figura 41 — Modelo Gradient Boosting de LGD, com tuning de hiperparametros.
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4.3.7 XGBoost para LGD
O modelo XGBoost € implementado através da classe XGBClassifier da

biblioteca xgboost. Modelo sem tuning de hiperparametros:



Figura 42 — Modelo XGBoost de LGD, sem tuning de hiperparametros.
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Modelo com tuning de hiperparametros, considerando: profundidade maxima

das arvores, taxa de aprendizagem, gamma (parédmetro relacionado a pruning das
arvores), e regularizagao:

Figura 43 — Modelo XGBoost de LGD, com tuning de hiperparametros.
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5 RESULTADOS

Sumarizando os resultados e analisando o AUROC dos modelos de PD,
considerando a base completa (50.000 contratos), o melhor modelo foi o XGBoost

com tuning de hiperparametros e o pior foi o modelo KNN com k = 5.

Tabela 3 — Resultados dos modelos de PD: AUROC

gooo contratos | soooo0 contratos
Modelo AUROC AUROC
AGBoost com tuning 0,7224 0,7200
Random forest sem tuning 0,6921 0,7035
Gradient boosting sem tuning 0,6955 0,6981
Gradient boosting com tuning 0,684 0,6948
Random forest com tuning 0,7000 0,6018
Adaboost com tuning o,6820 o,6824
Decision tree com tuning 0,6552 0,682z
Regressao logistica sem reg e tuning 0,6049 0,6587
Regressao logistica com reg e tuning 0,6501 0,6587
Knn com tuning 0,6593 0,6575
Decision tree sem tuning 0,6392 0,6503
ACBoost sem tuning 0,6743 0,6422
Adaboost sem tuning 0,b435 0,b314
knn (k=100) o,6142 0,6233
Knn (k=5) 0,5623 0,5333

Fonte: de autoria prépria.

Em relagdo aos modelos de LGD, o que apresentou melhor desempenho ao
analisar a métrica RMSE foi o0 modelo KNN com k = 100 e o pior foi 0 modelo
XGBoost.
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Tabela 4 — Resultados dos modelos de LGD: RMSE

sooo contratos | soo000 contratos

Modelo RMSE RMSE
Knn (k=100) 0,227 0,2261
Knn com hiper. Tuning 0,224 0,2263
Gradient boosting 0,2282 0,2304
Adaboost 0,2363 0,2315
Random forest 0,2307 0,2325
Decision tree sem hiper. Tuning 0,2459 0,2347
Decision tree com hiper. Tuning 0,227 0,2347
Regressdo linear Lasso 0,2352 0,236
Adaboost com hiper. Tuning 0,2313 0,2372
Regressdo linear Ridge 0,2344 0,238
Regressdo linear 0,2458 0,2388
Gradient boosting com hiper. Tuning 0,259 0,2425
XGBoost com hiper. Tuning 0,2364 0,2505
Random forest com hiper. Tuning 0,2382 0,2508
ACBoost 0,287 0,31

Fonte: de autoria prépria.

Percebe-se que nem sempre utilizar a base completa proporcionou um
resultado melhor (resultados piores que os da base parcial sdo destacados em
vermelho nas tabelas), o que pode ser explicado em parte por um fator aleatorio na
selecdo dos contratos para a base parcial (5.000 contratos), mesmo que ambas as

bases tenham a mesma representatividade em termos de percentual de default.

O tuning de hiperparametros também nao garante um AUROC melhor: os
modelos Random Forest e Gradient Boosting sem tuning apresentaram melhores
resultados. Uma explicagdo para isso € que a busca exaustiva pelos melhores
hiperparametros utilizando validagdo cruzada considera apenas o conjunto de dados
de treino, sendo o conjunto de dados de teste reservado para avaliar o desempenho

do modelo.

Apesar de essa ser a metodologia correta, os dados de teste, da forma como
foi feita a divisdo, sdo dados relativos ao periodo da crise de 2007-2008 e
apresentam caracteristicas que néo estao contidas no conjunto de dados de treino.
Previsdes para risco de crédito em geral apresentam desafios adicionais em relagéo

as outras aplicagbes “tradicionais” de machine learning como reconhecimento de
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imagens, em que queremos reconhecer coisas ja vistas pelo modelo. Em risco de
crédito, tipicamente mudancgas estruturais e crises nao estdo contidas no conjunto de
dados de treino, como destaca Rosch e Scheule (2020), o que torna mais dificil fazer
previsdes. Ainda assim, varios modelos apresentaram resultados superiores quando
comparados as técnicas tradicionais como regressédo, o que mostra que as técnicas

de machine learning sao muito Uteis para esse tipo de previséo.

A analise de ordenagao € uma alternativa para avaliacdo dos modelos. Nesse
caso optou-se por comparar os modelos com tuning de hiperparametros e ajustados
com a base completa. Para os modelos de PD a base € ordenada da maior
probabilidade de default para a menor e sdo calculadas as porcentagens para cada

ponto de corte: % nao default, % nao default acumulado, % default acumulado.

Tabela 5 — Ordenacao de score para modelos de PD: % nao default por faixa de corte.

Corte % Nido Default
Regressdo Logistica KNN Decision Tree| Random Forest| AdaBoost |Gradient Boost| XGBoost

1% 92,9% 92,8% g0,0% 92,1% 90,3% go,1% 87,5%
5% Q3,7% Q3,4% 89,1% 91,5% 90,0% 91,3% 88,8%
10% 93,6% 93,5% 90,7 % 91,7% 91,4% g2,1% 90,5%
20% Q3,7% 93,9% 93,2% g2,5% g2,b6% 92,7% g1,3%
30% 04,0% 94,0% 94,2% 93,0% 93,5% 93,4% 92,6%
40% 94,2% 94,3% 94,4% 93,6% 94,0% 93,8% 93,4%
50% 94,5% 94,8% 95,0% 94,1% 94,4% 94,2% 94,0%
6o% 94,9% 94,9% 95,0% 94,6% 94,8% 94,6% 94,5%
70% 95,3% 95,2% 95,3% 95,1% 95,2% 95,1% 95,0%
8o% 95,6% 95,6% 95,6% 95,5% 95,6% 95,5% 95,5%
gof gb,0% gb,0% g96,0% gb,0% g6,0% g96,0% gb,0%
g5% gb,2% 96,2% 96,2% 96,2% 96,2% 9b,2% 9b,2%
99% 96,3% 96,3% 96,3% 96,3% 96,3% 96,3% 96,3%
100% g9b,4% 9b,4% g9b,4% 9b,4% 9b,4% g9b,4% 9b,4%

Fonte: de autoria prépria.
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Tabela 6 — Ordenacgao de score para modelos de PD: % nao default Acumulado por faixa de corte.

Corte % Ndo Default Acumulado
Regressdo Logistica KNN Decision Tree| Random Forest| AdaBoost |Gradient Boost| XGBoost
1% 1,0% 1,0% 0,9% 1,0% 0,9% 0,9% 0,9%
5% 4,9% 4,9% 4,7% 4,8% 4,7% 4,8% 4,7%
10% 9,7% 9,7% 9,5% 9,6% 9,5% 9,6% 9,5%
20% 19,5% 10,5% 10,4% 19,3% 19,3% 19,3% 19,2%
30% 2g,3% 29,3% 29,4% 29,0% 29,2% 29,2% 29,0%
40% 39,2% 39,2% 39,3% 39,0% 39,1% 39,0% 38,9%
50% 49,1% 49,2% 49,3% 48,9% 49,1% 49,0% 48,9%
6o% 50,2% 50,2% 59,2% 59,0% 59,1% 59,0% 59,0%
70% 6g,3% bg,2% 69,3% 69,1% 69,3% 69,1% 6g,1%
8ok 79,4% 79,4% 79,4% 79,4% 79,4% 79,4% 79,3%
9o% 8g,7% 8g,7% 89,7% 8g,7% 89,7% 8g,7% 8g,6%
95% 94,8% 94,8% 94,8% 94,8% 94,8% 94,8% 94,8%
99% 99,0% 99,0% 99,0% 99,0% 99,0% 99,0% 99,0%
100% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0%

Fonte: de autoria prépria.

Tabela 7 — Ordenacéo de score para modelos de PD: % default acumulado por faixa de corte.

Corte % Default Acumulado
Regressdo Logistica KNN Decision Tree| Random Forest| AdaBoost |Gradient Boost| XGBoost
17 1,9% 1,9% 2,6% 2,1% 2,5% 2,6% 3,2%
5% 8,5% 8,8% 14,1% 1,1% 13,0% 1,4% 14,3%
10% 17,1% 17,5% 24,3% 21,8% 22,6% 20,3% 24,7%
20% 33,8% 32,09% 36,3% 39,8% 39,5% 38,6% 43,1%
30% 48,1% 48,6% 46,8% 56,2% 52,6% 52,7% 58,6%
40% 62,4% 61,2% 60,6% 68,4% 64,6% 66,3% 70,0%
s50% 73, 7% 70,7% 68,3% 79,0% 75,1% 78,4% 80,3%
bo¥ 82,0% 82,7% 81,7% 87,5% 84,2% 87,68 88,8%
70% 90,2% 9o,7% go,4% 93,8% go,b6% 93,8% 94,9%
8ok 95,2% gb,b% g6,0% 97,8% 95,5% 97,8% g8,2%
9ok 98,6% 09,2% 99,1% 99,5% 98,5% 99,5% 99,7%
95% 99,6% 99,8% 99,7% 99,9% 99,4% 99,8% 99,9%
agi 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0%
100% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0%

Fonte: de autoria prépria.

O melhor resultado foi o do modelo XGBoost, identificando 70,9% de todos os

defaults da base para o ponto de corte 40%, 8,8% a mais que o modelo de

regressao logistica. Todos os modelos ensemble apresentaram resultado superior

que o modelo de regressao logistica segundo essas métricas, e os modelos KNN e

Arvores de Decis&o por sua vez apresentaram resultados piores.

Para os modelos de LGD a analise de ordenagao de score também foi feita

comparando-se os modelos com tuning de hiperparametros e ajustados com a base
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completa. Nessa avaliacdo a base € ordenada da menor perda estimada para a

maior perda estimada e s&o calculadas para cada ponto de corte a recuperacao em

valores monetarios e porcentagem do total.

Tabela 8 — Ordenagéo de score para modelos de LGD: recuperagdo em $MM por faixa de corte.

Corte Recuperacdo ($ MM)
Regressdo Linear | KNN |Decision Tree| Random Forest| AdaBoost| Gradient Boost | XGBoost

1% 2,0 4,1 3.4 3,4 4,3 3:5 3,4
5 18,0 17,2 22,5 19,6 17,2 18,7 18,5
10% 35,5 33,3 36,8 41,7 32,8 39,6 42,3
20% 30,2 73,4 76,6 83,0 67,9 81,7 93,4
J0% 124,8 123,2 102,7 127,7 15,3 123,4 134,6
40% 167,9 167,6 133,3 168,0 157,5 159,38 170,2
50% 205,0 212,2 184,3 203,5 194,7 198,0 206,38
BoR 240,9 248,56 239,3 237,2 235,9 231,5 242,1
70% 27,7 27945 279,4 71,0 274,7 270,4 276,2
So% 299,5 304,5 300,2 298,6 300,3 290,9 301,7
9ok 323,9 326,3 323,9 321,6 32,6 323,6 325,3
95% 334,5 334,9 334,1 332,7 331,1 333,8 3354
99% 341,2 340,8 340,4 341,1 340,2 34,4 34,2
100% 342,2 342,2 342,2 342,2 342,2 342,2 342,2

Fonte: de autoria prépria.

Tabela 9 — Ordenacéo de score para modelos de LGD: recuperagdo em % do total por faixa de corte.

Corte Recuperacdo (%)
Regressdo Linear | KNN |Decision Tree| Random Forest| AdaBoost|Gradient Boost | XGBoost

1% 0.6% 1,27% 1,0% 1,0% 1,3% 1,0% 1,0%
5% 5,3% 5,0% 6,6% 57 5,0% 5,5% 54
10% 10,4% 9,7% 10,8% 12,2% g,6% 11,6% 12,4%
20% 23,4% 21,4% 22,4% 25,7% 19,8% 23,0% 27,3%
0% 36,5% 36,0% 30,0% 37,3% 33,7% 36,1% 39,3%
40% 40,1% 49,0% 40,4% 40,1% 46,0% 46,7% 49,75
50% 59,9% 62,0% 53,9% 59,5% 56,9% 57,9% bo,4%
boX 70,4% 72,75 69,9% 6g,3% 63,9% 67,6% 70,75
70% 79,4% 81,7% 81,7% 70,2% 80,3% 79,0% 80,7%
8o 37,5% 3g,0% 37,7% 37,3% 87,8% 37,7% 88,2%
9ok 94,7% 95,4% 94,7% 94,0% 94,3% 94,6% 95,1%
95% 97,8% 97,9% 97,7% 97,2% 96,8% 97,6% 98,0%
99% 99,7% 99,6% 99,5% 99,7% 99,4% 99,8% 99,7%
100% 100,07 100,0% 100,08 100,07 100,0% 100,08 100,0%

Fonte: de autoria prépria.

O melhor resultado foi 0 do modelo XGBoost. com uma recuperacao estimada

de $93,4 MM para o ponto de corte 20%, um ganho de $13,2 MM em relagdo a
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regressao linear. Todos os modelos ensemble com exce¢do do modelo AdaBoost
apresentaram resultados melhores que os da regressao linear, e os modelos KNN e

Arvores de Decis&o por sua vez apresentaram resultados piores.



56

6 CONCLUSAO

O objetivo principal do trabalho foi criar modelos de predicdo de default e
perdas de crédito utilizando técnicas de machine learning aplicadas a uma base real
de dados, pois além da importancia da utilizagdo de modelos mais precisos para
controle de riscos sistémicos no sistema financeiro, 0 uso dos mesmos pode ser um
diferencial competitivo para as empresas, na medida em que permite conhecer

melhor o comportamento dos seus clientes e reduzir custos.

Foram exploradas varias técnicas: Regressao, K-vizinhos mais préximos,
Arvores de Decisdo, Random Forest, Adaboost, Gradient Boosting e XGBoost.
Modelos mais complexos como o XGBoost provaram-se Uteis para fazer previsdes
mais precisas em relagdo a modelos mais tradicionais como os de Regressao,
identificando com maior acuracia os contratos com default e estimando mais
precisamente as perdas dos mesmos. Através da analise de ordenacao de score
dos modelos de LGD, propbs-se como aplicagao pratica uma possivel acdo de
recuperacao, na qual os modelos ensemble apresentaram um ganho financeiro em

relagdo ao modelo de Regressao Linear.

Por fim, a melhora no poder preditivo ao utilizar modelos mais complexos vem
ao custo da interpretabilidade dos mesmos. Essa relagédo inversamente proporcional
entre acuracia e interpretabilidade pode ser um problema por causa da necessidade
de cumprir regulagdes e controles internos, nos quais os tomadores de decisédo que

utilizam os modelos precisam interpreta-los em certo nivel.

Em trabalhos futuros, seria interessante explorar mais a questdo da LGPD e
tratamento de dados no Brasil e criar modelos utilizando dados reais do mercado
brasileiro, visto que existe uma pequena quantidade de trabalhos publicados sobre
esses temas. Sugere-se também a utilizagdo de outras técnicas de machine
learning, a utilizagdo de outras técnicas de tuning diferentes da busca exaustiva e

explorar técnicas de selecao de features como o método stepwise.
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APENDICE - HIPERPARAMETROS

Modelo

Hiperparametro

Descricdo e valores otimizados

Regressio |logistica

Método de regularizacio

Adiciona um terme de regulzrizacdo, Os termos de
penzlidade possiveis 530 L1, L2 ou ambes, O melhor
hiperparémetro encontrado foi Lz,

Inverso da forga da regularizagdo

Cuanto menor for o valor, mais penalizados serdo os
coeficientes e menor 2 chance de overfitting dos dades. Os
valores variam de o aoinfinito. Foi encentrado um valor dtimo
de o0,

Mumere maximo de iteragdes

Mumers maximo de iteragdes rezlizadzs para os solvers
convergirem, O valor encontrado foi de 100,

Regressdo linesr Ridge/LASSO

Forga daregularizagdo

Cuanto maior for o valor, mais penalizedos serdoos
coeficientes e menor a chance de overfitting dos dados., Para
omodelo Ridge foi encontrado um valorigusl 2 100 e para
LASSO um valor de 500

Mumere maximo de iteragdes

Mumere maximo de iteragdes realizadas para os solvers
convergirem. Para ambos o valor 6time do hiperparémetro foi
de 100,

KMNHN

Nimero de vizinhos

0 numere de vizinhos mais proximes considerados pelo
glgoritmo. Para o modelo PD foi encontrado k=2048 e para
LGD k=48,

DT

Profundidade méxima dz érvore

Se o parémetro € vazio, entdo oz nés sdo expandidos sté
todas a5 folhas serem puras ou conterem menos amostras
gue o parametro "minimo de amostras por divisgc", Parao
modelo PD foi encontrado o valor 5 e para LGD o valor 4.

Namero minimo de amostras por divisgo

Mumere minime de emestras do né necessarizs parz gque sejs
feita uma nova divisio. Pode ser um numere inteiro ou uma
porcentzgem do total de amostras, Parz ambos oz modelos
foi encontrade o valor 5o

Numero maximo de festures & cada divisio

Se o parémetro € vazio, entdo 2 cada nd todas a5 festures sdo
consideradas para fazer a melhor divis#o, Para o modelo PD
foi encontrade o valor 11 & para o modelo LGD foi encontrado
o vzlor 6.

RF

Numero de érvores

Mumere de érvores zjustadas pelo modelo, O valor padric é
1oo. O valor otimo parz o modelo PD foide 371 e parao
modelo LGD foi de 326,

Prefundidade méxima das Zrvores

Se o parémetro € vazio, entdo os nds s#o expandidos sté
todas 25 folhas serem puras cu conterem menos amostras
que o parémetro "minimo de amostras por divisZo". Parao
modelo PO foi encontrado o valor 3 e para LGD o valor None.

Ndmero minimo de amostras por divisgo

MNdmeros minimo de amostras do nd necessérizs pars gue sejz
feita uma nova divis#o, Pode ser um numere inteire ou uma
porcentagem do total de amostras, Para ambos oz modelos
foi encontrade o valor1o0%.

Nimero maximo de festures & cada divisio

Se o parametro € vazio, entdo & cada no todas as festures séo
consideradas para fazer 2 melher divisdo, Parz o modelo PD
foi encontrade o valor 8 e para o medelo LGD foi encontrado

ovalorza,

Bootstrapping

Utilizar ou n#o o métedo bootstrapping na construcdo das
Zrvores, As buscas retornaram o velor True parz ambos os
modelos.
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ADA

Mumero de estimadores

Numero de estimadores para o boosting. O valor padrio é
100, Parz PD foi encontrado o valer de 50 e para LGD o valor
de1oo.

Taxz de sprendizeagem

Peso zplicado 2 cadz estimador 2 cada iteragdo, Um valor
maior acarreta um sumento da contribuicdo de cada
estimador 2o estimador finzl. Os valores variem de o 2o
infinite. Para ambos os modelos foi encontrado o valor de o,1.

GB

Mumero de estimadores

Mumero de estimadores para o boosting. O valor padrio é
100, Para ambos os modelos foi encontrado o valor sco.

Taxz de sprendizagem

Umaz taxs de sprendizagem maior suments & contribuigdo de
cadz érvore, Existe um trade-off entre z tanade
aprendizagem e o nimero de estimadores, Parz o modelo PD
foiencontrado o valor e 0,1 & para o modelo LGD foi
encontrado o valor de o,02.

Profundidade maxima das 2rvores

O valor padrio € 3. Para ambos os medelos foi encentrado o
valordes.
£

Numero méxime de festures a cada divisdo

Se o parametro & vazio, entdo a cada nd todas as festures sio
consideradas para fazer a melhor divisfo. Para omodelo PD
foi encontrade o valor 4 e para o modelo LGD foi encontrade

ovalor 3.

Subamostra

Porcentagem de amostras utilizadas parzs sjuste de cada
estimador base. Valores menores do que 1.0 resultam em
umz dimunide da varizncs do medelo e ele € chamade de
Stochastic Gradient Boosting . Para o modelo PD o valor
encontrado foi1,0 e para o modelo LGD o valor encontrado foi
oy 8

Critéric de parada antecipada

Hiperparémetro de critéric de parada antecipada se 2 fungo
z¢#0 ndo apresenta melhorz apds n iteragdes. Para o modelo
PD o valor encontrado foin=20 e parz omedelo LCD o valor

encontrado foin=s0.

XGBoost

Tzxz de zprendizagem

Hiperparémetro anilogo & taxa de aprendizagem de GB, Faz
com gque o modelo seja mais robusto 2o diminuir os pesos 2
cadaiteragdo, Pars ambos oz modelos foi encontrade o valer
de g,

Profundidade maxima das Srvores

O valor padréo € 6, Para ambos os modeles foi encontrado o
velorde s,

Minima redugico de perdz para divisdo

Hiperparémetro de critério de minima redugio necesséria da
fun¢io de perda para nova divisdo em um nd, O parémetro &
conhecdido como gammes e quanto maior for seu valor, mais
conservativo & o zlgoritmo. Para ambos os medelos foi
encontrado o valor o

Forga daregularizacio

Adiciona um terme de regulzrizagio Lz, O hiperparémetro &
conhecido como lambda. Para o modelo PO o valor
encontrado foi1o e para o medelo LGD o valor encontrado foi
o




