
UNIVERSIDADE DE SÃO PAULO

ESCOLA POLITÉCNICA

YURI MISSIMA DIAS

MÉTODOS DE MACHINE LEARNING APLICADOS A RISCO E RECUPERAÇÃO
DE CRÉDITO

SÃO PAULO

2022

YURI MISSIMA DIAS (10432522)

MÉTODOS DE MACHINE LEARNING APLICADOS A RISCO E RECUPERAÇÃO
DE CRÉDITO

Relatório final da disciplina PTC 3531 - Laboratório

de Projeto de Automação e Controle II, da Escola

Politécnica da Universidade de São Paulo

Orientador: Prof. Dr. Felipe Miguel Pait

SÃO PAULO

2022

SUMÁRIO

1 INTRODUÇÃO 4

2 BREVE DISCUSSÃO SOBRE LGPD E TRATAMENTO DE DADOS NO BRASIL 6

3 REVISÃO TEÓRICA 9

3.1 Regressão 10
3.1.1 Regressão logística 10
3.1.2 Regressão linear 11

3.2 KNN (K-Nearest Neighbors) 12

3.3 Árvores de decisão 12

3.4 Métodos Ensemble 14
3.4.1 Random Forest 16
3.4.2 Adaboost 16
3.4.3 Gradient Boosting 18
3.4.4 XGBoost 19

3.5 Tuning de hiperparâmetros 19

3.6 Validação cruzada 20

3.7 Métricas de validação 21
3.7.1 AUROC 21
3.7.2 RMSE 22
3.7.3 Análise de ordenação de score 23

3.8 Painéis de validação 25

4 METODOLOGIA 27

4.1 Base de dados 27

4.2 Modelos PD 31
4.2.1 Regressão logística para PD 31
4.2.2 KNN para PD 32
4.2.3 Árvores de Decisão para PD 34
4.2.4 Random forest para PD 35
4.2.5 Adaboost para PD 36
4.2.6 Gradient Boosting para PD 38
4.2.7 XGBoost para PD 39

4.3 Modelos LGD 40
4.3.1 Regressão linear para LGD 40
4.3.2 KNN para LGD 42
4.3.3 Árvores de decisão para LGD 43

4.3.4 Random forest para LGD 44
4.3.5 Adaboost para LGD 46
4.3.6 Gradient Boosting para LGD 47
4.3.7 XGBoost para LGD 48

5 RESULTADOS 50

6 CONCLUSÃO 56

REFERÊNCIAS 57

APÊNDICE - HIPERPARÂMETROS 59

4

1 INTRODUÇÃO

O ciclo de crédito é composto pelas fases de relacionamento entre uma

instituição financeira que concede empréstimos e financiamentos, e seus clientes.

São elas: prospecção de novos clientes, análise e concessão de crédito,

gerenciamento da carteira e por último, cobrança de clientes em atraso.

Figura 1 – O ciclo de crédito.

Fonte: Forti, 2018.

Em um primeiro momento, após a prospecção de novos clientes adequados a

um determinado produto, são aplicados modelos de credit score, que avaliam o risco

de inadimplência no momento da concessão do crédito. Modelos chamados de

behavior score estimam o risco para os já clientes e ajudam a fazer a manutenção

da carteira de crédito.

Para os clientes que por acaso se encontrem em atraso, são aplicados os

chamados modelos de collection score, que os classificam segundo sua propensão

de pagamentos, ou seja, atribuem uma probabilidade à recuperação dos valores dos

contratos em atraso.

5

As instituições financeiras, como os bancos, têm como foco os modelos de

credit score, dado que espera-se que bons modelos de concessão de crédito levem

a uma baixa inadimplência. Por outro lado, dados recentes mostram que 65 milhões

de brasileiros têm algum tipo de dívida em atraso (Serasa, 2022), o maior nível

registrado em 12 anos, o que explica a relevância dos modelos pós-concessão de

crédito.

Além disso, o volume e a complexidade crescentes de informações

disponíveis nos dias atuais exige a aplicação de técnicas mais sofisticadas como

machine learning para a tomada de decisões mais assertivas. Conhecer melhor o

comportamento dos consumidores é um diferencial competitivo para as empresas,

porque permite uma melhor alocação de recursos, tem o potencial de redução de

custos entre 20%-25%, e ajuda a melhorar a aquisição e retenção de novos

consumidores (Lee e Shin, 2020).

Estimativas mais precisas de risco de crédito também são necessárias para o

cumprimento de regulações internacionais como os Acordos de Basileia, que

dispõem sobre regras de capital econômico, capital regulatório e provisionamento.

Os Acordos de Basileia III, versão mais recente das regulações, surgiram como

resposta à crise financeira de 2007-2008 para reforçar a capacidade do setor

financeiro em absorver choques, sendo essenciais para o tratamento e redução do

risco sistêmico (Schwerter, 2011).

Mais especificamente, o objetivo deste trabalho é fazer um estudo

comparativo das capacidades preditiva e interpretativa de técnicas de machine

learning aplicadas ao risco e à recuperação de crédito, utilizando dados reais para

construir modelos de PD (probability of default) e LGD (loss given default).

6

2 BREVE DISCUSSÃO SOBRE LGPD E TRATAMENTO DE DADOS NO
BRASIL

Para treinamento de modelos de machine learning de crédito são necessárias

informações sobre o comportamento passado de relacionamento entre

consumidores e empresas que são por sua natureza dados pessoais. Por este

motivo, no Brasil, seu tratamento está sob o escopo da LGPD (Lei Geral de

Proteção de Dados Pessoais) e é feito pelos birôs de crédito (Serasa, SPC, Quod e

Boa Vista).

Em um contexto de aumento exponencial do volume e complexidade dos

dados disponíveis, e evolução tecnológica de hardware e software, que permite que

empresas e governos extraiam informações sobre o comportamento de indivíduos, a

lei surgiu “com o objetivo de proteger e garantir os direitos fundamentais de

liberdade e de privacidade e o livre desenvolvimento da personalidade da pessoa

natural" (Lei nº 13.709). É fundamentada em regulamentos internacionais como o

RGPD (Regulamento Geral sobre a Proteção de Dados), da União Europeia, que

possui os países mais adequados neste sentido.

Figura 2 – Proteção de dados pessoais no mundo.

Fonte: Comissão Nacional de Informática e Liberdade (CNIL/França).

7

Para garantir a proteção dos dados, a lei se apoia em diversos princípios. Em

geral, esses princípios exigem que os dados sejam tratados com uma finalidade

específica e legítima e que o seu uso seja limitado de acordo com a necessidade.

Além disso, o titular deve ter o direito de consulta sobre a forma e a duração do

tratamento dos seus dados. Estabelece também medidas de segurança para evitar

acessos não autorizados, medidas de prevenção para evitar danos em virtude de

tratamento não adequado e proíbe o uso dos dados para fins discriminatórios, sob

pena de multa e até mesmo suspensão das atividades de quem faz o tratamento dos

dados, caso haja descumprimento.

A LGPD estabeleceu dez bases legais, ou hipóteses, para tratamento dos

dados (Lei nº 13.709, Art. 7º). Os birôs de crédito, empresas autorizadas no Brasil a

tratar o tipo de dado que é objeto de estudo deste trabalho, são parceiras e recebem

dados, por exemplo, de bancos ou lojas que vendem a prazo (chamados

controladores dos dados) e podem utilizar os dados pelas hipóteses da lei de:

proteção ao crédito; execução de contratos de clientes e parceiros; e cumprimento

de obrigação regulatória/legal (que não precisam do consentimento do titular).

A lei prevê também a possibilidade de tratamento “para a realização de

estudos por órgão de pesquisa, garantida, sempre que possível, a anonimização dos

dados pessoais”, hipótese que também não precisa do consentimento do titular.

Instituições de ensino superior e pesquisa como a USP se enquadram na hipótese.

Mesmo assim, o compartilhamento dos dados depende do consentimento do

controlador dos dados. Foram solicitadas amostras de dados anonimizados aos

quatro birôs. Um deles respondeu que não compartilha dados em “conformidade

com as finalidades previstas na legislação”, mesmo anonimizados, outro respondeu

que ainda estavam revisando processos internos devido à LGPD, e por hora o

compartilhamento de bases para estudos estava pausado sem previsão de

retomada. Um deles ofereceu serviços apenas para empresas, e o último não

retornou o contato.

É importante ressaltar que o órgão regulatório responsável pela fiscalização

da lei, a ANPD (Autoridade Nacional de Proteção de Dados), era de criação recente

no momento da escrita deste trabalho e os procedimentos e formas de atuação da

8

mesma ainda estavam sendo definidos, e as empresas e instituições de ensino e

pesquisa estavam adequando seus procedimentos internos à nova lei. Assim, não

existia nitidez sobre a interpretação da lei no contexto de pesquisa e isso

impossibilitou o acesso aos dados e o desenvolvimento do trabalho no contexto que

foi inicialmente idealizado do mercado de crédito brasileiro. Os dados que foram

utilizados no trabalho são dados do mercado de crédito norte-americano e foram

obtidos mais facilmente.

Ainda há muitas questões a serem discutidas. Existem estudos que mostram

que é possível reidentificar indivíduos usando atributos de datasets, como mostrou

Roscer (2019) e escândalos de vazamento de dados são frequentes. Isso gera

questionamentos sobre privacidade e dificulta a pesquisa científica. A própria ANPD

divulgou um estudo técnico em abril de 2022 com o intuito de promover um debate

público sobre essas questões (ANPD, 2022).

9

3 REVISÃO TEÓRICA

A PD (probability of default) é uma estimativa da probabilidade de um tomador

de crédito descumprir as obrigações legais do seu contrato de empréstimo (o que é

chamado de default), como por exemplo não fazer um pagamento da sua hipoteca.

Dado que houve um default, a LGD (loss given default) é uma estimativa do

percentual de perda do valor total em exposição no momento do default. Ambas são

parâmetros essenciais para o cálculo de perdas esperadas, capital econômico e

capital regulatório sob as regras dos Acordos de Basileia.

O objetivo do trabalho é ajustar modelos de PD e LGD a uma base real de

contratos de hipotecas americanas (mortgages) utilizando as técnicas:

● Regressão Logística e Regressão Linear

● K-Nearest Neighbors

● Árvores de Decisão

● Random Forest

● Adaboost

● Gradient Boosting

● XGBoost

A principal diferença entre os modelos de PD e LGD é que os primeiros são

modelos de classificação binária (variável categórica) e os últimos são modelos de

regressão (variável contínua).

O dataset é dividido em subconjuntos de treino e de teste para averiguação

da eficácia dos modelos.

Abaixo se encontra uma revisão dos principais conceitos de cada uma das

técnicas. Um detalhamento maior da teoria por trás das técnicas e algoritmos pode

ser encontrado em Hastie et al. (2017) e/ou publicações originais que os descrevem.

10

3.1 Regressão

3.1.1 Regressão logística

A regressão logística é a técnica utilizada como referência para comparar

resultados em relação às outras técnicas de machine learning de classificação, por

ser a técnica mais tradicional e de fácil interpretação de parâmetros. Também é a

mais aceita por órgãos regulatórios. O objetivo é predizer resultados em que a

variável dependente é categórica e para modelos de PD, existem apenas duas

categorias: default e não default. Além do mais, é assumido que os contratos

seguem uma distribuição binomial, ou seja, cada resultado é um experimento ou

variável independente de Bernoulli, com mesma probabilidade de default a priori.π

Dado uma amostra de d contratos com resultados conhecidos (default ou não

default), a PD é estimada através da maximização da função de verossimilhança

(minimização da função de custo) a seguir, onde indica ocorrência de default𝑑
𝑖

= 1

no contrato :𝑖

𝐿(π | 𝑑) =
𝑖

𝑛

∏ 𝑓(𝑑
𝑖
 | π) =

𝑖

𝑛

∏ π
𝑑

𝑖 (1 − π)
1−𝑑

𝑖

Como o objetivo é estimar a probabilidade como uma combinação linearπ

das features x e essa combinação linear produz valores fora do intervalo de

probabilidade [0,1], é aplicada a Transformação Logit:

π = 𝑓(β, 𝑥) = 𝑒𝑥𝑝(β𝑥)
1+𝑒𝑥𝑝(β𝑥)

Logo, as probabilidades estimadas ficam dentro do intervalo [0,1].

11

Figura 3 – Regressão logística.

Fonte: Oliveira, 2021.

Os modelos podem apresentar um ajuste muito bom para o conjunto de

dados de treino mas apresentar baixa acurácia para novos dados, ou seja,

desempenho ruim para o conjunto de testes. Esse comportamento é referido como

overfitting (ou sobreajuste, em português), e pode ser atenuado em modelos de

regressão através da regularização.

A regularização é uma forma de reduzir os coeficientes em direção a zero β

através de uma penalização adicional ao minimizar a função de custo. Na

regularização chamada de , essa penalização é aplicada ao valor absoluto dos𝐿
1

coeficientes e na regularização chamada de , ela é aplicada ao quadrado dos𝐿
2

coeficientes.

3.1.2 Regressão linear

Para modelos de LGD, a variável dependente é contínua (uma taxa de perda

contínua). Nesse caso, o modelo utilizado como referência é a regressão linear. O

ajuste dos dados é feito através do método dos mínimos quadrados, no qual o

melhor ajuste é encontrado minimizando-se a soma dos quadrados dos resíduos

entre os valores observados e previstos.

Para a regressão linear, o método de regularização chamado de LASSO é

análogo ao método e o método Ridge é análogo ao método .𝐿
1

𝐿
2

12

3.2 KNN (K-Nearest Neighbors)

A técnica K-Nearest Neighbors (ou K-Vizinhos Mais Próximos, em português)

parte da ideia de classificar uma nova observação de acordo com a proximidade dos

seus vizinhos. Essa proximidade é medida mais comumente em relação à distância

euclidiana no espaço p-dimensional de um dataset com p features. Por exemplo,

para modelos de PD, se é escolhido como 4, e três dos vizinhos mais próximos𝑘

apresentarem como resultado default, o modelo classifica esse novo contrato com

75% de probabilidade de default. Matematicamente, dado o conjunto de treino com𝑥

respostas :𝑦

𝐺(𝑥) = 1
𝑘

𝑥
𝑖
 ∈ 𝑁

𝑘
(𝑥)

∑ 𝑦
𝑖

Onde é a vizinhança de definida pelas observações mais próximas 𝑁
𝐾

(𝑥) 𝑥 𝑘

no subconjunto de treino.𝑥
𝑖

Modelos com valores de k pequenos são muito sensíveis a variações, ou

seja, apesar de apresentarem pouco viés (ou bias, em inglês), têm muita variância e

não são flexíveis para novos dados. O ideal, não só para esse tipo de modelo, mas

para todos os outros, é encontrar um meio termo entre viés e variância, o que é

chamado na literatura de bias-variance tradeoff.

3.3 Árvores de decisão

Em uma árvore de decisão (decision tree, em inglês), divide-se

recursivamente o espaço de variáveis (features) em partições, selecionando uma

variável e um ponto de divisão. Essas divisões são feitas minimizando-se uma

função de custo para que sejam ótimas, como por exemplo a Impureza de Gini ou

entropia para modelos de classificação e erro quadrático médio para modelos de

regressão.

13

Figura 4 – Árvores de decisão. O painel à esquerda mostra uma partição de um espaço de variáveis

bidimensional e o painel à direita mostra a árvore de decisão correspondente.

Fonte: Hastie et al., 2017.

Por exemplo, na figura acima, a primeira divisão é feita em . A região𝑋
1

= 𝑡
1

é então dividida em e a região é dividida em , e assim𝑋
1

≤ 𝑡
1

𝑋
2

= 𝑡
2

 𝑋
1

> 𝑡
1

𝑋
1

= 𝑡
3

sucessivamente até algum critério de parada, resultando em regiões (ou nós)

terminais , ,..., . Cada divisão gera o que são chamados de ramos (branches) e𝑅
1

𝑅
2

𝑅
5

os nós terminais são chamados de folhas (leaves). O algoritmo faz, portanto, uma

divisão binária recursiva do espaço de variáveis.

No caso de PD, novas observações são classificadas de acordo com a

proporção de defaults e não defaults das observações de treino das folhas

correspondentes. No caso de LGD, os valores estimados para novas observações

são dados pela média dos valores das observações de treino da respectiva folha

resultante.

14

Figura 5 – Exemplo de árvore de decisão gerada com a biblioteca scikit-learn.

Fonte: de autoria própria.

As árvores de decisão tem a vantagem de serem fáceis de interpretar, mas

possuem baixa acurácia (Hastie et al., 2017).

3.4 Métodos Ensemble

Os métodos anteriores são métodos independentes. Isso significa que após

inicializado o modelo, o ajuste (fit) dos dados é feito uma única vez. Uma extensão

disso é o ajuste com tuning de hiperparâmetros e validação cruzada, já que envolve

várias estimativas. No entanto, para isso é utilizada uma classe fixa de modelo. Após

o ajuste dos hiperparâmetros, o fit é feito uma única vez e os resultados são

computados.

Uma alternativa são os métodos chamados de ensemble (ou conjunto, em

português). A ideia por trás desses métodos é combinar vários estimadores mais

simples e com menor poder preditivo para gerar modelos mais complexos e com

maior acurácia. Dentre as classes de modelos ensemble, as mais utilizadas e que

são abordadas neste trabalho são: Bagging e Boosting.

15

Na metodologia Bagging (junção dos termos bootstrapping e aggregation), os

estimadores base são treinados separadamente a partir de amostras com reposição

(bootstrapping) do conjunto de dados de treino. Os resultados desses estimadores

então são agregados de alguma forma, como por exemplo a maioria dos votos para

modelos de classificação ou a média dos resultados para modelos de regressão.

A ideia é combinar estimadores com alta variância e baixo viés, e assim

reduzir a variância do estimador final. A técnica funciona especialmente bem para

procedimentos como as árvores de decisão, como destaca Hastie et al. (2017).

Matematicamente, a variância da média de B estimadores, considerando que cada

árvore de decisão é identicamente distribuída e não independente (e logo tem uma

correlação ⍴ com as demais), é dada por:

ρσ2 + 1−ρ
𝐵 σ2

Se os estimadores forem relativamente descorrelacionados, à medida que B

aumenta, o segundo termo tende a zero e a variância do estimador final é tão mais

baixa quanto mais baixo for a correlação ⍴.

Já na metodologia Boosting, os preditores são treinados sequencialmente,

com os sucessores tentando melhorar o resultado dos antecessores. O algoritmo é

aplicado até que se atinja algum critério de parada, sempre observando o princípio

de bias-variance tradeoff para que não ocorra o overfitting dos dados de treino.

Os estimadores base são estimadores “fracos”, e são ligeiramente melhores

que um palpite aleatório. Esses estimadores são então combinados através de uma

votação ponderada para gerar o estimador final, na qual cada estimador tem um

peso que é tão maior quanto maior for sua acurácia. Para classificação, porα

exemplo, o estimador final é dado por:

𝐺(𝑥) = 𝑠𝑖𝑔𝑛 (
𝑚=1

𝑀

∑ α
𝑚

𝐺
𝑚

(𝑥))

16

3.4.1 Random Forest

O método Random Forest consiste na aplicação dos conceitos de bagging a

árvores de decisão. A variância do conjunto é melhorada reduzindo a correlação

entre as árvores. Isso é feito no processo de crescimento das árvores através de

seleção aleatória das variáveis de entrada, escolhendo a cada divisão um número

de variáveis . Tipicamente é menor ou igual a (Hastie et al., 2017).𝑚 <= 𝑝 𝑚 𝑝

3.4.2 Adaboost

O algoritmo Adaboost, introduzido por Freund e Schapire (1997), foi o

primeiro do tipo boosting.

A principal ideia do algoritmo é que os estimadores base treinados

sequencialmente compensam os erros dos estimadores anteriores. Isso é feito

aumentando o peso das amostras de treino com maior erro e diminuindo caso

contrário, o que faz com que os próximos estimadores dêem um foco maior para as

amostras com maior erro. A importância (ou peso) de um estimador base no

estimador final depende do seu desempenho.

Figura 6 – Esquemático do algoritmo AdaBoost.

Fonte: Hastie et al., 2017.

17

Na prática, os estimadores base utilizados são árvores de decisão,

geralmente árvores com somente uma variável, ou seja, que possuem somente um

nó e duas folhas. São também chamadas de “toco” (ou stump, em inglês).

O algoritmo usado para problemas de classificação, descrito por Freund e

Schapire (1997), é chamado de “AdaBoost.M1” e é dado pelo seguinte

pseudocódigo:

Algoritmo AdaBoost.M1.

1. Dadas: N observações de treino (𝑥
𝑖
, 𝑦

𝑖
),..., (𝑥

𝑁
, 𝑦

𝑁
)

2. Inicialize os pesos 𝑤
𝑖

= 1/𝑁, 𝑖 = 1, 2,..., 𝑁

3. Para até faça:𝑚 = 1 𝑀
(a) Treine um classificador usando os pesos𝐺

𝑚
(𝑥) 𝑤

𝑖

(b) Calcule o erro do classificador:

𝑒𝑟𝑟
𝑚

= 𝑖=1

𝑁

∑ 𝑤
𝑖
 𝐼(𝑦

𝑖
≠𝐺

𝑚
(𝑥

𝑖
)

𝑖=1

𝑁

∑ 𝑤
𝑖

(c) Calcule o peso do classificador:

α
𝑚

= 𝑙𝑛(
1−𝑒𝑟𝑟

𝑚

𝑒𝑟𝑟
𝑚

)

(d) Atualize os pesos das observações:

𝑤
𝑖

← 𝑤
𝑖
 𝑒

α
𝑚, 𝑠𝑒 𝑦

𝑖
≠ 𝐺

𝑚
(𝑥

𝑖
)

𝑤
𝑖

← 𝑤
𝑖
 𝑒

−α
𝑚, 𝑠𝑒 𝑦

𝑖
= 𝐺

𝑚
(𝑥

𝑖
)

4. Output:

𝐺(𝑥) = 𝑠𝑖𝑔𝑛
𝑚=1

𝑀

∑ α
𝑚

𝐺
𝑚

(𝑥)⎡⎢⎢⎣

⎤⎥⎥⎦

O algoritmo adaptado para problemas de regressão, chamado de

“AdaBoost.R2”, é análogo ao algoritmo de classificação, e é descrito com detalhes

em Drucker (1997).

18

3.4.3 Gradient Boosting

O algoritmo Gradient Boosting, introduzido por Friedman (2001), é uma

generalização dos algoritmos de boosting. O nome “gradiente” vem do fato da

técnica calcular o gradiente descendente da função de perda a cada iteração, com o

objetivo de minimizá-la.

Em contraste com o algoritmo de Adaboost, que implicitamente minimiza uma

função de perda exponencial, o Gradient Boosting permite qualquer função de perda

diferenciável. Ambos os algoritmos dão um foco maior aos maiores erros a cada𝐿

iteração, mas no algoritmo Adaboost isso é feito através do rebalanceamento dos

pesos das amostras e no algoritmo Gradient Boosting as amostras com maior erro

são identificadas por meio dos maiores pseudo-resíduos calculados. Outra diferença

é que o primeiro utiliza stumps como estimadores base e o segundo utiliza árvores

de decisão com profundidade um pouco maior.

O algoritmo generalizado é dado pelo seguinte pseudocódigo:

Algoritmo Gradient Tree Boosting

1. Dadas: N observações de treino (𝑥
𝑖
, 𝑦

𝑖
),..., (𝑥

𝑁
, 𝑦

𝑁
)

2. Inicialize o modelo com um valor constante: 𝐹
0
(𝑥) = 𝑎𝑟𝑔𝑚𝑖𝑛

γ

𝑖=1

𝑁

∑ 𝐿(𝑦
𝑖
, γ)

3. Para até faça:𝑚 = 1 𝑀
(a) Para i = 1,...,N calcule:

𝑟
𝑖𝑚

=−
∂𝐿(𝑦

𝑖
,𝐹(𝑥

𝑖
))

∂𝐹(𝑥
𝑖
)

⎡⎢⎣
⎤⎥⎦𝐹= 𝐹

𝑚−1

(b) Ajuste uma árvore de decisão os pseudo-resíduos e crie regiões𝑟
𝑖𝑚

terminais ,𝑅
𝑗𝑚

𝑗 = 1,..., 𝐽
𝑚

(c) Para até calcule:𝑗 = 1 𝐽
𝑚

γ
𝑗𝑚

= 𝑎𝑟𝑔𝑚𝑖𝑛
γ

𝑥
𝑖
∊𝑅

𝑗𝑚

∑ 𝐿(𝑦
𝑖
, 𝐹

𝑚−1
(𝑥

𝑖
) + γ)

(d) Atualize 𝐹
𝑚

(𝑥) = 𝐹
𝑚−1

(𝑥) + α
𝑗=1

𝐽
𝑚

∑ γ
𝑗𝑚

𝐼(𝑥∊𝑅
𝑗𝑚

)

4. Output:
𝐹

𝑀
(𝑥)

19

Como destaca Forti (2018), um fator importante para a aplicação é a escolha

dos hiperparâmetros, em especial: o número de iterações M, a taxa de

aprendizagem , a profundidade das árvores e o número de indivíduos por nó.α

3.4.4 XGBoost

Recentemente, um algoritmo que vem ganhando muita popularidade por ser a

escolha de muitas equipes vencedoras em competições de machine learning

(Github, 2022) é o algoritmo XGBoost introduzido por Chen e Guestrin (2016). É

uma implementação de Gradient Boosting projetada para velocidade e desempenho.

A biblioteca de software por trás do método traz várias características como

processamento em paralelo, otimização de memória e cache, formas de tratar

valores faltantes (missing values), regularizações, entre outras, que fazem o

algoritmo seja considerado do estado da arte.

3.5 Tuning de hiperparâmetros

Hiperparâmetros são parâmetros de um modelo de machine learning que não

podem ser estimados a partir dos dados. Eles controlam o aprendizado dos

modelos. Tuning refere-se ao conjunto de procedimentos realizados para encontrar

os hiperparâmetros que produzem os melhores desempenhos nos modelos.

Uma das abordagens para realizar o tuning é a busca exaustiva, chamada de

Grid Search. Nesse tipo de busca testa-se exaustivamente combinações de

parâmetros para se encontrar a combinação com a melhor pontuação segundo uma

métrica de avaliação. Apesar do conceito ser simples, cada novo parâmetro inserido

na busca causa um aumento exponencial no número de combinações a serem

testadas, como destaca Pellicer et al (2019).

Outra abordagem é a busca aleatória, chamada de Random Search. Nesse

tipo de busca são testadas combinações de parâmetros selecionadas de alguma

forma de distribuição pré-definida.

20

Essas duas abordagens são utilizadas no trabalho. Existem diversos outros

tipos de abordagem, como o algoritmo desenvolvido por Pellicer et al. (2019) que

utiliza as propriedades da equação do baricentro para otimizar os hiperparâmetros.

3.6 Validação cruzada

Para treinamento de um modelo a base de dados deve ser sempre dividida

em subconjuntos de treino e teste. Assim, o modelo é treinado utilizando os dados

de treino e seu desempenho é avaliado utilizando os dados de teste, que são dados

não vistos anteriormente e que simulam o poder de predição em um ambiente de

produção com novos dados. Caso contrário aconteceria overfitting já que o modelo

conseguiria prever apenas resultados já vistos.

Figura 7 – Fluxograma de treinamento de modelos utilizando validação cruzada.

Fonte: Scikit Learn.

Além disso, quando avalia-se diferentes conjuntos de hiperparâmetros

através do tuning, ainda existe o risco de overfitting se forem utilizados apenas os

subconjuntos de treino e teste, pois os hiperparâmetros podem ser ajustados até

que o modelo tenha um bom desempenho para treino e teste, mas não

necessariamente terá um bom desempenho para novos dados.

Para solucionar esse problema, pode-se utilizar o procedimento de validação

cruzada (cross-validation). Nessa abordagem, o subconjunto de treino é dividido

aleatoriamente em k partes iguais. Utiliza-se partes para treinamento e a𝑘 − 1

21

k-ésima parte restante, chamada de parte de validação, é utilizada para avaliação do

desempenho. Isso é feito iterativamente k vezes selecionando a cada iteração uma

nova parte para validação. O desempenho de um conjunto de hiperparâmetros é

então calculado como a média dos valores calculados nas iterações.

Figura 8 – Divisão dos subconjuntos de treino e teste na modelagem com validação cruzada.

Fonte: Scikit Learn.

3.7 Métricas de validação

Existem diversas métricas que podem ser utilizadas para avaliar o

desempenho dos modelos e compará-los entre si. Neste trabalho foram utilizadas:

● AUROC para modelos de PD

● RMSE para modelos de LGD

● Análise de ordenação de score para modelos de PD e LGD

3.7.1 AUROC

Uma matriz de confusão é uma tabela que mostra as frequências de

classificação para cada classe do modelo:

22

Figura 9 – Matriz de confusão.

Fonte: Forti, 2018.

A área sob a curva ROC (AUROC ou AUC) conceitualmente é a área sobre o

gráfico da taxa de verdadeiros positivos (também conhecida como sensibilidade)

contra a taxa de falsos positivos (também chamada de 1-especificidade) plotados

variando-se o threshold (PD) de 0 a 1. Quanto mais esse número for próximo de 1,

melhor é o poder de discriminação do modelo.

Figura 10 – Curva ROC.

Fonte: Statology.org.

3.7.2 RMSE

O raiz quadrada do erro quadrático médio é uma medida da diferença entre o

valor previsto pelo modelo e o valor observado:

𝑅𝑀𝑆𝐸 = ∑
(𝑦

𝑝𝑟𝑒𝑑
−𝑦

𝑜𝑏𝑠
)2

𝑁

23

3.7.3 Análise de ordenação de score

Além das duas métricas citadas anteriormente, uma outra análise foi

desenvolvida para comparação entre os modelos: a análise de ordenação de score e

avaliação de pontos de corte.

Para modelos de PD, a construção segue os seguintes passos:

1. Ordenação da base de dados pela probabilidade (score), considerando a

ordenação do pior para o melhor, ou seja, da maior probabilidade de default

para a menor.

2. Cálculo das seguintes métricas para cada ponto de corte: % não default, %

não default acumulado e % default acumulado.

A tabela abaixo apresenta um exemplo de análise. Para os 40% classificados

com a maior probabilidade de default, temos uma porcentagem de não default de

94,2% para o modelo 1 e 93,6% para o modelo 2, uma porcentagem acumulada de

não default de 39,2% para o modelo 1 e 39% para o modelo 2 e uma porcentagem

acumulada de default de 62,1% para o modelo 1 e 68,4% para o modelo 2. Os

números são indicativos que a ordenação do modelo 2 é superior à do modelo 1, ou

seja, o modelo 2 é superior na identificação de contratos que têm maior

probabilidade de inadimplência.

24

Tabela 1 – Exemplo de análise de ordenação de score para modelos de PD.

Fonte: de autoria própria.

Já para os modelos de LGD, a construção segue os seguintes passos:

1. Ordenação da base de dados pela perda estimada, considerando a

ordenação da menor perda estimada para a maior perda estimada.

2. Cálculo das seguintes métricas para cada ponto de corte: recuperação (em $

MM, valores reais), e % de recuperação do total

Nesse tipo de avaliação, calcula-se como uma aproximação para valores

recuperados o saldo do contrato no momento do default multiplicado por

.1 − 𝐿𝐺𝐷
𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑑𝑎

A tabela abaixo mostra um exemplo de análise. Para os 20% com menor

perda estimada, temos uma recuperação de $80,2 MM ou 23,4% do risco total da

base para o modelo 1 e uma recuperação de $88 MM ou 25,7% do risco total da

base para o modelo 2. Pode-se pensar na ordenação como uma ação de cobrança

para os 20% da base em default que têm a menor perda estimada, que se traduz em

uma maior chance de recuperação. Nesse caso, o modelo 2 proporcionaria um

ganho financeiro de $7,8 MM em relação ao modelo 1.

25

Tabela 2 – Exemplo de análise de ordenação de score para modelos de LGD.

Fonte: de autoria própria.

3.8 Painéis de validação

Com o intuito de facilitar a visualização e comparação dos resultados, criou-se

para cada modelo painéis com as principais métricas de validação e gráficos, como

sugerido por Rösch e Scheule (2020). Como exemplo, para um determinado modelo

são apresentados os seguintes painéis:

26

Figura 11 – Exemplo de painéis de validação

Fonte: de autoria própria.

● painel superior esquerdo: tabela com resumo das principais métricas de

validação;

● painel superior direito: média dos valores observados (outcome) e valores

ajustados (fit) da variável alvo ao longo do tempo;

● painel inferior esquerdo: histograma dos valores ajustados (fit);

● painel inferior direito: curva de calibração do modelo.

27

4 METODOLOGIA

4.1 Base de dados

No trabalho foi utilizado um dataset contendo 50.000 hipotecas (mortgages)

americanas, observadas trimestralmente por 60 períodos, desde o começo dos anos

2000 e englobando a crise financeira de 2008. O dataset é fornecido pelo órgão

International Financial Research, e contém mais de 15.000 inadimplentes (default), o

que é adequado para ajuste de modelos de risco e recuperação de crédito.

O dataset possui 28 atributos (features). São eles:

● id: identificação do contrato

● time: período de observação

● orig_time: período de origem do contrato

● first_time: primeira observação do contrato

● mat_time: período de vencimento do contrato

● res_time: período de resolução do contrato

● balance_time: saldo devedor no período

● LTV_time: loan-to-value ratio no período

● interest_rate_time: taxa de juros do contrato

● rate_time: taxa de juros livre de risco no período

● hpi_time: house price index no período

● gdp_time: crescimento do PIB no período

● uer_time: taxa de desemprego no período

● REtype_CO_orig_time: tipo de imóvel - condominium: 1

● REtype_PU_orig_time: tipo de imóvel - planned urban developments: 1

● REtype_SF_orig_time: tipo de imóvel - single family home: 1

● investor_orig_time: investor borrower: 1

● balance_orig_time: saldo devedor no momento da originação

● FICO_orig_time: FICO score no momento da originação

● LTV_orig_time: loan-to-value ratio no momento da originação

● interest_rate_orig_time: taxa de juros no momento da originação

● state_orig_time: estado no qual o imóvel está localizado

28

● hpi_orig_time: house price index no momento da originação

● default_time: indicador de default no período

● payoff_time: indica se o contrato foi quitado no período

● status_time: 0:não default/não payoff; 1: default, 2: payoff

● ldg_time: loss given default

● recovery_res: soma de todos os fluxos de caixas recebidos nos

períodos de resolução (após default)

O dataset é organizado da seguinte forma. Cada contrato tem um resultado,

que é observado 1 período após as features: survival (sobrevivência), default

(inadimplência), payoff (pagamento), maturity (vencimento). Os três últimos são

eventos de encerramento, ou seja, o contrato deixa de ser observado caso ocorra

um deles. Variáveis como lgd_time e recovery_res são observadas na mesma linha

do evento de encerramento.

Foram selecionadas 12 features relevantes para os modelos de PD e 8

features mais variáveis indicadoras do estado de origem para os modelos de LGD

para ajuste dos modelos, incluindo algumas features calculadas a partir das

originais.

Para os modelos de PD, o dataset foi dividido em subconjuntos até o período

27 para treino e do período 27 ao 40 para teste, observando que a crise financeira

de 2007-2008 começou aproximadamente do período 27 com término

aproximadamente no período 40. Essa divisão é indicada pelos próprios

pesquisadores que disponibilizaram o dataset, porque assim o desempenho dos

modelos pode ser testado no cenário mais adverso possível. Nota-se no gráfico

abaixo, que a partir do período 27 há um aumento rápido da taxa de default. Até o

período 27 a média era de 1,1% e entre o período 27 e o período 40 a média era de

3,5%.

29

Figura 12 – Taxa de default do dataset por períodos

Fonte: de autoria própria.

Para modelos de LGD, o dataset foi dividido em subconjuntos até o período

40 para treino e até o período 60 (último período) para testes. A diferença da divisão

da base para PD e LGD tem o intuito de garantir um número suficiente de defaults

para ajuste dos modelos de LGD (aproximadamente 11.000 para treino e 4000 para

testes).

Em um primeiro momento foi utilizado uma amostra de 5.000 contratos com a

mesma representatividade de defaults do dataset completo para estudo das

técnicas, por questões de tempo de processamento para gerar os modelos.

Posteriormente foi utilizada a base completa com os 50.000 contratos. Para o tuning

de hiperparâmetros o dataset de treino foi dividido recursivamente usando validação

cruzada em 5 partes para treino dos modelos.

Como exemplo de modelagem utilizando os datasets de treino e teste, o

modelo de regressão logística, sem regularização e tuning de hiperparâmetros

apresentou os seguintes resultados para o subconjunto de treino:

30

Figura 13 – Modelo Regressão logística de PD, sem regularização e sem tuning de hiperparâmetros -

subconjunto de treino.

Fonte: de autoria própria.

No painel superior esquerdo observa-se um AUROC alto pois os dados são

de treino. No painel superior direito percebe-se que o ajuste (fit) é próximo do

observado (outcome) ao longo do tempo. No canto inferior esquerdo o histograma

apresenta concentração próxima de 0%, pois no período pré-crise os contratos

apresentaram probabilidade baixa de default. No canto inferior direito a curva de

calibração mostra uma boa calibração.

Este primeiro modelo apresentou bom fit para o subconjunto de treino mas

subestimou as probabilidades de default para o subconjunto de teste, como pode ser

visto nos painéis abaixo, tanto na série temporal quanto na curva de calibração,

apresentando um AUROC menor.

31

Figura 14 – Modelo Regressão logística de PD, sem regularização e sem tuning de hiperparâmetros -

subconjunto de teste.

Fonte: de autoria própria.

Para os próximos modelos serão apresentados apenas os painéis utilizando a

base completa e subconjunto de teste. As bibliotecas scikit-learn (Pedregosa et. al,

2011) e xgboost (Chen e Guestrin, 2016) foram utilizadas para implementar os

modelos. A lista de hiperparâmetros considerados nos modelos com tuning e suas

respectivas descrições e valores podem ser consultados no Apêndice.

4.2 Modelos PD

4.2.1 Regressão logística para PD

A regressão logística é implementada através da classe LogisticRegression

do pacote scikit-learn. O tuning de hiperparâmetros foi feito através de busca

exaustiva com GridSearchCV, procurando o melhor desempenho para os

hiperparâmetros: tipo de regularização, força da regularização e número máximo de

iterações.

32

Figura 15 – Modelo Regressão logística de PD, com regularização e tuning de hiperparâmetros.

Fonte: de autoria própria.

4.2.2 KNN para PD

O algoritmo KNN é implementado pela classe KNeighborsClassifier. Para

, o ajuste apresenta overfitting (sobreajuste) e não apresenta bons resultados𝑘 = 5

com os dados de teste:

Figura 16 – Modelo KNN de PD, sem tuning de hiperparâmetros - k = 5.

Fonte: de autoria própria.

33

Modelo com :𝑘 = 100

Figura 17 – Modelo KNN de PD, sem tuning de hiperparâmetros - k = 100.

Fonte: de autoria própria.

Modelo com , hiperparâmetro otimizado encontrado utilizando𝑘 = 2048

GridSearchCV:

Figura 18 – Modelo KNN de PD, com tuning de hiperparâmetros - k = 2048.

Fonte: de autoria própria.

34

4.2.3 Árvores de Decisão para PD

As árvores de classificação são implementadas através da classe

DecisionTreeClassifier. Modelo sem tuning:

Figura 19 – Modelo Árvore de decisão de PD, sem tuning de hiperparâmetros.

Fonte: de autoria própria.

Modelo com tuning, utilizando GridSearchCV para encontrar os

hiperparâmetros: profundidade máxima da árvore, número máximo de features

consideradas a cada divisão e porcentagem de amostras do nó necessárias para

que seja feita uma nova divisão:

35

Figura 20 – Modelo Árvore de decisão de PD, com tuning de hiperparâmetros.

Fonte: de autoria própria.

4.2.4 Random forest para PD

O estimador random forest é implementado através da classe

RandomForestClassifier. Modelo sem tuning:

Figura 21 – Modelo Random forest de PD, sem tuning de hiperparâmetros.

Fonte: de autoria própria

36

Modelo com tuning, utilizando RandomizedGridSearch com 50 combinações

para encontrar os hiperparâmetros otimizados de número de árvores, profundidade

máxima das árvores, número máximo de features consideradas a cada divisão,

porcentagem de amostras do nó necessárias para que seja feita uma nova divisão e

se é utilizado o bootstrapping na construção das árvores:

Figura 22 – Modelo Random forest de PD, com tuning de hiperparâmetros.

Fonte: de autoria própria.

4.2.5 Adaboost para PD

O algoritmo AdaBoost é implementado por meio da classe

AdaBoostClassifier. Modelo sem tuning de hiperparâmetros e utilizando como

estimadores base árvores de decisão com profundidade igual a 1 (stump):

37

Figura 23 – Modelo AdaBoost de PD, sem tuning de hiperparâmetros.

Fonte: de autoria própria.

Modelo com tuning, com hiperparâmetros otimizados de taxa de

aprendizagem e número de estimadores base encontrados com GridSearchCV:

Figura 24 – Modelo AdaBoost de PD, com tuning de hiperparâmetros.

Fonte: de autoria própria.

38

4.2.6 Gradient Boosting para PD

O modelo é implementado através da classe GradientBoostingClassifier.

Modelo sem tuning:

Figura 25 – Modelo Gradient Boosting de PD, sem tuning de hiperparâmetros.

Fonte: de autoria própria.

Modelo com tuning, com hiperparâmetros otimizados de taxa de

aprendizagem, número de estimadores, profundidade máxima das árvores, número

máximo de features consideradas a cada divisão, porcentagem de amostras para

ajuste de cada estimador e critério de parada antecipada por não melhora da métrica

de validação:

39

Figura 26 – Modelo Gradient Boosting de PD, com tuning de hiperparâmetros.

Fonte: de autoria própria.

4.2.7 XGBoost para PD

O modelo XGBoost é implementado através da classe XGBClassifier da

biblioteca xgboost. Modelo sem tuning de hiperparâmetros:

Figura 27 – Modelo XGBoost de PD, sem tuning de hiperparâmetros.

Fonte: de autoria própria.

40

Modelo com tuning de hiperparâmetros, considerando: profundidade máxima

das árvores, taxa de aprendizagem, gamma (parâmetro relacionado à pruning das

árvores), e regularização:

Figura 28 – Modelo XGBoost de PD, com tuning de hiperparâmetros.

Fonte: de autoria própria.

4.3 Modelos LGD

4.3.1 Regressão linear para LGD

A regressão linear é implementada através da classe LinearRegression.

Regressão linear sem regularização:

41

Figura 29 – Modelo Regressão linear de LGD, sem regularização.

Fonte: de autoria própria.

Regressão com regularização Ridge, com hiperparâmetro de regularização

encontrado com GridSearchCV:

Figura 30 – Modelo Regressão linear de LGD, com regularização Ridge.

Fonte: de autoria própria.

42

Regressão LASSO, com hiperparâmetro de regularização encontrado com

GridSearchCV:
Figura 31 – Modelo Regressão linear de LGD, com regularização LASSO.

Fonte: de autoria própria.

4.3.2 KNN para LGD

O algoritmo KNN é implementado pela classe KNeighborsRegressor. Modelo

com :𝑘 = 100
Figura 32 – Modelo KNN de LGD, sem tuning de hiperparâmetros - k = 100.

Fonte: de autoria própria.

43

Modelo com , encontrado utilizando GridSearchCV:𝑘 = 48

Figura 33 – Modelo KNN de LGD, com tuning de hiperparâmetros - k = 48.

Fonte: de autoria própria.

4.3.3 Árvores de decisão para LGD

As árvores de classificação são implementadas através da classe

DecisionTreeRegressor. Modelo sem tuning de hiperparâmetros:

Figura 34 – Modelo Árvore de decisão de LGD, sem tuning de hiperparâmetros.

Fonte: de autoria própria.

44

Modelo com tuning, utilizando RandomizedGridSearch com 50 combinações

para encontrar os hiperparâmetros otimizados de profundidade máxima da árvore,

número máximo de features consideradas a cada divisão e porcentagem de

amostras do nó necessárias para que seja feita uma nova divisão:

Figura 35 – Modelo Árvore de decisão de LGD, com tuning de hiperparâmetros.

Fonte: de autoria própria.

4.3.4 Random forest para LGD

O estimador random forest é implementado através da classe

RandomForestRegressor. Modelo sem tuning:

45

Figura 36 – Modelo Random forest de LGD, sem tuning de hiperparâmetros.

Fonte: de autoria própria.

Modelo com tuning, utilizando RandomizedGridSearch com 50 combinações

para encontrar os hiperparâmetros otimizados de número de árvores, profundidade

máxima das árvores, número máximo de features consideradas a cada divisão,

porcentagem de amostras do nó necessárias para que seja feita uma nova divisão e

se é utilizado o bootstrapping na construção das árvores:

46

Figura 37 – Modelo Random forest de LGD, com tuning de hiperparâmetros.

Fonte: de autoria própria.

4.3.5 Adaboost para LGD

O algoritmo AdaBoost é implementado por meio da classe

AdaBoostRegressor. Modelo sem tuning:

Figura 38 – Modelo Adaboost de LGD, sem tuning de hiperparâmetros.

Fonte: de autoria própria.

47

Modelo com tuning, com hiperparâmetros otimizados de taxa de

aprendizagem e número de estimadores base encontrados com GridSearchCV:

Figura 39 – Modelo Adaboost de LGD, com tuning de hiperparâmetros.

Fonte: de autoria própria.

4.3.6 Gradient Boosting para LGD

O modelo é implementado através da classe GradientBoostingRegressor.

Modelo sem tuning:
Figura 40 – Modelo Gradient Boosting de LGD, sem tuning de hiperparâmetros.

Fonte: de autoria própria.

48

Modelo com tuning dos hiperparâmetros: taxa de aprendizagem, número de

estimadores, profundidade máxima das árvores, número máximo de features

consideradas a cada divisão, porcentagem de amostras para ajuste de cada

estimador e critério de parada antecipada por não melhora da métrica de validação:

Figura 41 – Modelo Gradient Boosting de LGD, com tuning de hiperparâmetros.

Fonte: de autoria própria.

4.3.7 XGBoost para LGD

O modelo XGBoost é implementado através da classe XGBClassifier da

biblioteca xgboost. Modelo sem tuning de hiperparâmetros:

49

Figura 42 – Modelo XGBoost de LGD, sem tuning de hiperparâmetros.

Fonte: de autoria própria.

Modelo com tuning de hiperparâmetros, considerando: profundidade máxima

das árvores, taxa de aprendizagem, gamma (parâmetro relacionado à pruning das

árvores), e regularização:

Figura 43 – Modelo XGBoost de LGD, com tuning de hiperparâmetros.

Fonte: de autoria própria.

50

5 RESULTADOS

Sumarizando os resultados e analisando o AUROC dos modelos de PD,

considerando a base completa (50.000 contratos), o melhor modelo foi o XGBoost

com tuning de hiperparâmetros e o pior foi o modelo KNN com .𝑘 = 5

Tabela 3 – Resultados dos modelos de PD: AUROC

Fonte: de autoria própria.

Em relação aos modelos de LGD, o que apresentou melhor desempenho ao

analisar a métrica RMSE foi o modelo KNN com e o pior foi o modelo𝑘 = 100

XGBoost.

51

Tabela 4 – Resultados dos modelos de LGD: RMSE

Fonte: de autoria própria.

Percebe-se que nem sempre utilizar a base completa proporcionou um

resultado melhor (resultados piores que os da base parcial são destacados em

vermelho nas tabelas), o que pode ser explicado em parte por um fator aleatório na

seleção dos contratos para a base parcial (5.000 contratos), mesmo que ambas as

bases tenham a mesma representatividade em termos de percentual de default.

O tuning de hiperparâmetros também não garante um AUROC melhor: os

modelos Random Forest e Gradient Boosting sem tuning apresentaram melhores

resultados. Uma explicação para isso é que a busca exaustiva pelos melhores

hiperparâmetros utilizando validação cruzada considera apenas o conjunto de dados

de treino, sendo o conjunto de dados de teste reservado para avaliar o desempenho

do modelo.

Apesar de essa ser a metodologia correta, os dados de teste, da forma como

foi feita a divisão, são dados relativos ao período da crise de 2007-2008 e

apresentam características que não estão contidas no conjunto de dados de treino.

Previsões para risco de crédito em geral apresentam desafios adicionais em relação

às outras aplicações “tradicionais” de machine learning como reconhecimento de

52

imagens, em que queremos reconhecer coisas já vistas pelo modelo. Em risco de

crédito, tipicamente mudanças estruturais e crises não estão contidas no conjunto de

dados de treino, como destaca Rösch e Scheule (2020), o que torna mais difícil fazer

previsões. Ainda assim, vários modelos apresentaram resultados superiores quando

comparados às técnicas tradicionais como regressão, o que mostra que as técnicas

de machine learning são muito úteis para esse tipo de previsão.

A análise de ordenação é uma alternativa para avaliação dos modelos. Nesse

caso optou-se por comparar os modelos com tuning de hiperparâmetros e ajustados

com a base completa. Para os modelos de PD a base é ordenada da maior

probabilidade de default para a menor e são calculadas as porcentagens para cada

ponto de corte: % não default, % não default acumulado, % default acumulado.

Tabela 5 – Ordenação de score para modelos de PD: % não default por faixa de corte.

Fonte: de autoria própria.

53

Tabela 6 – Ordenação de score para modelos de PD: % não default Acumulado por faixa de corte.

Fonte: de autoria própria.

Tabela 7 – Ordenação de score para modelos de PD: % default acumulado por faixa de corte.

Fonte: de autoria própria.

O melhor resultado foi o do modelo XGBoost, identificando 70,9% de todos os

defaults da base para o ponto de corte 40%, 8,8% a mais que o modelo de

regressão logística. Todos os modelos ensemble apresentaram resultado superior

que o modelo de regressão logística segundo essas métricas, e os modelos KNN e

Árvores de Decisão por sua vez apresentaram resultados piores.

Para os modelos de LGD a análise de ordenação de score também foi feita

comparando-se os modelos com tuning de hiperparâmetros e ajustados com a base

54

completa. Nessa avaliação a base é ordenada da menor perda estimada para a

maior perda estimada e são calculadas para cada ponto de corte a recuperação em

valores monetários e porcentagem do total.

Tabela 8 – Ordenação de score para modelos de LGD: recuperação em $MM por faixa de corte.

Fonte: de autoria própria.

Tabela 9 – Ordenação de score para modelos de LGD: recuperação em % do total por faixa de corte.

Fonte: de autoria própria.

O melhor resultado foi o do modelo XGBoost. com uma recuperação estimada

de $93,4 MM para o ponto de corte 20%, um ganho de $13,2 MM em relação à

55

regressão linear. Todos os modelos ensemble com exceção do modelo AdaBoost

apresentaram resultados melhores que os da regressão linear, e os modelos KNN e

Árvores de Decisão por sua vez apresentaram resultados piores.

56

6 CONCLUSÃO

O objetivo principal do trabalho foi criar modelos de predição de default e

perdas de crédito utilizando técnicas de machine learning aplicadas a uma base real

de dados, pois além da importância da utilização de modelos mais precisos para

controle de riscos sistêmicos no sistema financeiro, o uso dos mesmos pode ser um

diferencial competitivo para as empresas, na medida em que permite conhecer

melhor o comportamento dos seus clientes e reduzir custos.

Foram exploradas várias técnicas: Regressão, K-vizinhos mais próximos,

Árvores de Decisão, Random Forest, Adaboost, Gradient Boosting e XGBoost.

Modelos mais complexos como o XGBoost provaram-se úteis para fazer previsões

mais precisas em relação a modelos mais tradicionais como os de Regressão,

identificando com maior acurácia os contratos com default e estimando mais

precisamente as perdas dos mesmos. Através da análise de ordenação de score

dos modelos de LGD, propôs-se como aplicação prática uma possível ação de

recuperação, na qual os modelos ensemble apresentaram um ganho financeiro em

relação ao modelo de Regressão Linear.

Por fim, a melhora no poder preditivo ao utilizar modelos mais complexos vem

ao custo da interpretabilidade dos mesmos. Essa relação inversamente proporcional

entre acurácia e interpretabilidade pode ser um problema por causa da necessidade

de cumprir regulações e controles internos, nos quais os tomadores de decisão que

utilizam os modelos precisam interpretá-los em certo nível.

Em trabalhos futuros, seria interessante explorar mais a questão da LGPD e

tratamento de dados no Brasil e criar modelos utilizando dados reais do mercado

brasileiro, visto que existe uma pequena quantidade de trabalhos publicados sobre

esses temas. Sugere-se também a utilização de outras técnicas de machine

learning, a utilização de outras técnicas de tuning diferentes da busca exaustiva e

explorar técnicas de seleção de features como o método stepwise.

57

REFERÊNCIAS

FORTI, M. Técnicas de machine learning aplicadas na recuperação de crédito do

mercado brasileiro (Dissertação de Mestrado em Economia). Escola de Economia de

São Paulo da Fundação Getúlio Vargas, 2018.

SERASA. Mapa da inadimplência e renegociação de dívidas no Brasil. Disponível

em

<https://www.serasa.com.br/limpa-nome-online/blog/mapa-da-inadimplencia-e-renog

ociacao-de-dividas-no-brasil/>. Acesso em: nov. de 2022.

LEE, I. e SHIN, Y. J. Machine learning for enterprises: Applications, algorithm

selection, and challenges. Business Horizons, v. 63, n. 2, p. 157-170, 2020.

SCHWERTER, S. Basel III's ability to mitigate systemic risk. Journal of financial

regulation and compliance, 2011.

BRASIL. Lei nº 13.709, de 14 de agosto de 2018. Lei Geral de Proteção de Dados

Pessoais (LGPD). Disponível em:

<https://www.planalto.gov.br/ccivil_03/_ato2015-2018/2018/lei/l13709.htm>. Acesso

em novembro de 2022.

ROCHER, L; HENDRICKX, J. M.; DE MONTJOYE, Y. Estimating the success of

re-identifications in incomplete datasets using generative models. Nature

communications, v. 10, n. 1, p. 1-9, 2019.

ANPD. A LGPD e o tratamento de dados pessoais para fins acadêmicos e para a

realização de estudos por órgãos de pesquisa. Estudo técnico. Disponível em:

<https://www.gov.br/anpd/pt-br/documentos-e-publicacoes/sei_00261-000810_2022_

17.pdf>. Acesso em junho de 2022.

HASTIE T. et al. The Elements of Statistical Learning: Data Mining, Inference, and

Prediction . 2. ed. New York City: Springer, 2017.

58

OLIVEIRA, E. L. Técnicas de aprendizado de máquina aplicadas na previsão de

desempenho de operadores de centros de teleatendimento (Tese de Doutorado)..

Universidade Fernando Pessoa, 2021.

FREUND, Y e SCHAPIRE, R. E. A decision-theoretic generalization of on-line

learning and an application to boosting. Journal of computer and system sciences, v.

55, n. 1, p. 119-139, 1997.

DRUCKER, H. Improving regressors using boosting techniques. Proc. of the 14th Int.

Conf. on Machine Learning, . p. 107–115, 1997.

FRIEDMAN, J. H. Greedy function approximation: a gradient boosting machine.

Annals of statistics, p. 1189-1232, 2001.

CHEN, T. e GUESTRIN, C. Xgboost: A scalable tree boosting system. In:

Proceedings of the 22nd acm sigkdd international conference on knowledge

discovery and data mining, p. 785-794, 2016.

GITHUB. Machine learning winning solutions. Disponível em

<https://github.com/dmlc/xgboost/tree/master/demo#machine-learning-challenge-win

ning-solutions>. Acesso em: outubro de 2022.

PELLICER, L. F. e PAIT, F. M. BarySearch: Algoritmo de tuning de Modelos de

Machine Learning com o Método do Baricentro. 8th Brazilian Conference on

Intelligent Systems (BRACIS), p.99, 2019.

PEDREGOSA, F. et al. Scikit-learn: Machine learning in Python. the Journal of

machine Learning research, v. 12, p. 2825-2830, 2011.

RÖSCH, D e SCHEULE, H. Deep credit risk: Machine learning with python. Fulda:

Independently published, 2020

INTERNATIONAL FINANCIAL RESEARCH. International Financial Research.

Página inicial. Disponível em: <http://www.internationalfinancialresearch.org/>.

Acesso em 07 de nov. de 2022.

59

APÊNDICE - HIPERPARÂMETROS

60

__

