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Resumo

Este trabalho tem como foco a proposta de abordagens para a divulgação e o ensino de Topologia
para estudantes de Ensino Fundamental e Médio. Tais propostas são inspiradas no desenvolvimento
histórico dessa área da Matemática, tendo como ponto de partida as fórmulas de Euler e de Descartes
sobre poliedros. Para além da mera proposição, foi possível aplicá-las através de oficinas realizadas
em turmas de Ensino Fundamental e Médio de uma escola de São Paulo. Além da exposição de
tais oficinas e do embasamento matemático que a inspirou, o presente texto também apresenta uma
construção de uma bola cabeluda com o intuito de ilustrar o teorema que carrega o seu nome.
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Abstract

This work focus on presenting several approaches related to the divulgation and teaching of Topo-
logy for middle and high school students. These proposals are inspired on the historical development
of this branch of Mathematics, and use Euler’s and Descartes’ formulas about polyhedra as starting
points. Beyond simply proposing approaches, it was possible to apply them through workshops
which were done in middle and high school classes in a São Paulo school. Besides presenting the
aaplication of such workshops and the mathematical background which inspired it, this text also
presents a construction of a hairy ball with the intention of illustrating the theorem which carries its
name.
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Introdução

No Ensino Básico, a Geometria é vista como a parte mais visual da Matemática, mas, ainda assim,
muitas vezes é dado um enfoque bastante grande à aplicação mecânica de fórmulas. Isso pode acabar
por reduzir o caráter criativo que a Matemática e, em especial, a Geometria possuem. Por outro lado,
acreditamos que é importante mostrar aos estudantes a imensidade de possibilidades que existem nos
campos de estudo da Matemática. Assim, pensamos que um reino da Matemática consideravelmente
desconhecido para a sociedade em geral, mas que possui conceitos e ideias bastante visuais é o da
Topologia.

Mesmo assim, devemos lembrar que a grade curricular escolar já possui uma variedade de con-
teúdos, e que a inclusão de mais um tema necessita, no mínimo, de uma boa quantidade de bom
senso. Assim, para propor novos assuntos, torna-se necessário a realização de diálogos com conteú-
dos já previstos na grade curricular. Esse é o caso, por exemplo, da fórmula de Euler, que é genera-
lizada dentro da Topologia para qualquer superfície, mas que dialoga com a habilidade EF06MA17
da BNCC: “quantificar e estabelecer relações entre o número de vértices, faces e arestas de prismas e
pirâmides, em função do seu polígono da base, para resolver problemas e desenvolver a percepção
espacial”.

Em outro aspecto, acreditamos que o tema de Topologia seja propício para evidenciar a inter-
face entre Arte e Matemática. Com efeito, muitas superfícies topológicas, como modelos da faixa de
Möbius e da garrafa de Klein, são objetos de arte (veja [FS08] por exemplo). Desse modo, pode-se
abrir um campo para atividades interdisciplinares que tenham como principal objetivo estimular a
criatividade dos alunos.

O principal objetivo deste trabalho está em apontar caminhos para o ensino de Topologia de Su-
perfícies, com especial enfoque em estudantes de Ensino Fundamental e Médio. Tais caminhos são,
de certa forma, inspirados no próprio desenvolvimento histórico da área e têm como ponto de par-
tida as fórmulas de Euler (1750) e de Descartes (∼1630) sobre poliedros. A primeira delas afirma
que um poliedro convexo com F faces, A arestas e V vértices satisfaz a igualdade V − A + F = 2,
enquanto que a segunda afirma que a deficiência angular total de qualquer poliedro convexo é igual
a 720◦ (ou 4π). Como pode-se notar, tais resultados trazem à mente uma visão bastante geral sobre
o tipo de informação que é comum a uma diversidade de formas geométricas. Basicamente, essa é
a essência da Topologia, a área da Matemática que estuda as propriedades de objetos geométricos
preservadas quando são submetidos a deformações contínuas, como esticar, inflar, entortar ou enco-
lher. Com o passar dos anos, ao longo do século XIX, a fórmula de Euler foi analisada para poliedros
não-convexos e notou-se que existem tanto casos em que ela continua sendo válida (como um poli-
edro “com degraus”) como casos em que não (como um poliedro com buracos). Apenas no fim do
século, o trabalho de Poincaré pôde dar a resposta definitiva para tais estudos: um poliedro satisfaz
a fórmula de Euler quando ele é topologicamente equivalente a uma esfera. Atualmente, o número
dado por V −A+ F é comumente chamado de característica de Euler-Poincaré.

Na literatura, também puderam ser encontrados outros trabalhos que propõem atividades que vi-
sam o ensino de Topologia no Ensino Básico. Entre eles, elencamos as monografias de Ferron [Fer17],
Sugarman [Sug14] e Fiorotto [Fio20]. A principal diferença do presente trabalho em relação a esses é,
de fato, o uso da fórmula de Euler como ingrediente central e motivador.

Estrutura do texto: No primeiro capítulo, são apresentadas algumas das bases matemáticas que
justificam e esclarecem a relação que a fórmula de Euler possui com a Topologia. Também, é apresen-
tada a importância de tal fórmula para a Matemática, através da exposição de diferentes problemas
nos quais ela pode ser aplicada. No capítulo seguinte, é apresentado o processo de construção de um
objeto físico que visa ilustrar um importante resultado de Topologia, o teorema da bola cabeluda. Isso
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foi feito com o intuito de fornecer mais uma ferramenta para a divulgação de Topologia. No terceiro
capítulo, são apresentados os principais resultados do presente trabalho: oficinas de Topologia que
foram aplicadas com turmas de Ensino Fundamental e Médio. Assim, são descritas tanto as propos-
tas ideais das oficinas quanto as suas aplicações. Num capítulo final, são discutidos outros tópicos de
Topologia que não foram abordados aqui, mas que poderiam ser proveitosamente analisados tendo
como foco as suas didatizações.

Terminologia e notações matemáticas: Quando estivermos falando sobre um poliedro, as letras
maiúsculas V , A e F serão usadas para denotar, respectivamente, as suas quantidades de vértices,
arestas e faces. Além disso, as palavras “isomorfismo” ou “isomorfas” sempre serão utilizadas para
se referir a isomorfismos topológicos; em outras palavras, elas substituirão os usuais termos “home-
omorfismo” e “homeomorfas”.



Capítulo 1

Exposição teórico-matemática

Neste capítulo, apresentaremos aspectos teóricos de Topologia Algébrica que esclarecem o tratamento
topológico dado à fórmula de Euler. Vale ressaltar que, tendo em vista a clareza da exposição, o rigor
matemático adotado aqui é menor do que aquele geralmente encontrado em livros-texto de Matemá-
tica. Também, sempre que possível, serão apresentados comentários históricos sobre o desenvolvi-
mento e a descoberta dos tópicos apresentados.

As principais referências para a escrita desse capítulo são os livros de Richeson [Ric08], que apre-
senta o nascimento da Topologia através da fórmula de Euler, e o de Federico [Fed82, Parts I and II],
que apresenta uma tradução comentada de um manuscrito de Descartes sobre poliedros.

1.1 Poliedros e Superfícies

Um espaço topológico X nada mais é do que um conjunto munido de uma topologia, isto é, uma
escolha adequada dos subconjuntos de X para serem chamados de abertos. Equivalentemente, uma
topologia é determinada ao escolhermos quais subconjuntos podem ser considerados as vizinhanças
de seus pontos. Essas noções nos dão uma forma bastante interessante de pensar o conceito de con-
tinuidade de funções, sem a necessidade de utilizar os usuais “epsilons” e “deltas” da Análise Real.
Mais precisamente, temos o seguinte:

Definição 1.1.1. Uma função f : X → Y entre os espaços topológicos X e Y é contínua se, para todo
aberto A de Y , vale que f−1[A] é um aberto de X .

Também, definimos que dois espaços são topologicamente isomorfos quando existe uma função
que preserva suas topologias. Em outras palavras, temos que uma função f : X → Y é um isomorfismo
topológico se for uma função contínua cuja inversa também é contínua.

Vista do modo acima, a disciplina de Topologia pode ser estudada de um modo até mesmo des-
vinculado de aspectos geométricos. No entanto, no caso deste trabalho, focaremos nos aspectos mais
visuais dessa teoria. Por exemplo, os espaços topológicos que estudaremos são as superfícies, como
a esfera, o toro, a garrafa de Klein e tantas outros. Formalmente, a maneira mais usual de definir
uma superfície é como um espaço topológico localmente isomorfo a R2, enquanto que os espaços lo-
calmente isomorfos a Rn são chamados de variedades (topológicas) de dimensão n.

Essencialmente, podemos pensar que há quatro tipos de isomorfismos entre superfícies [Fio20, p.
33]:

1. Esticar ou inflar a superfície ou partes dela

2. Encolher a superfície ou partes dela

3. Entortar a superfície ou partes dela

4. Recorte e (re)colagem de partes da superfície, obedecendo algumas regras.

Um dos principais focos do presente trabalho está nas noções topológicas que são motivadas pela
fórmula de Euler. Desse modo, precisamos fornecer alguns esclarecimentos sobre os objetos centrais
do nosso estudo: os poliedros.

Primeiramente, definamos polígonos:
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8 CAPÍTULO 1. EXPOSIÇÃO TEÓRICO-MATEMÁTICA

Definição 1.1.2. Uma curva em R2 é poligonal se ela é formada pela união de finitos segmentos de
retas. Um polígono é a região em R2 compacta determinada por uma curva poligonal fechada e sem
autointerseções.

Com essa definição, temos que todo polígono é, em particular, isomorfo a um disco. Isso é uma
consequência do teorema de Jordan–Schoenflies por exemplo, veja [Wik23].

Agora, deve-se ficar claro que não há uma única forma universal de se definir poliedros, de modo
que cada uma depende do contexto e dos interesses de estudo de cada um. Para o nosso caso, é
desejável que todo poliedro seja, em particular, uma superfície topológica. Assim, um poliedro será
uma reunião de um número finito de polígonos (i.e. faces) satisfazendo certas regras, como:

• cada lado de um desses polígonos é, também, lado de exatamente um outro polígono. Em
outras palavras, cada aresta é adjacente a exatamente duas faces.

• não há singularidades, como as geradas quando colamos duas pirâmides através de seus vérti-
ces.

Uma outra condição que é muitas vezes exigida é a de que a interseção de duas faces é igual a
uma aresta, um vértice ou vazia. Aqui, não iremos pedir tal exigência tendo em mente que alguns
poliedros com auto-interseções, como modelos poliedrais do plano projetivo ou da garrafa de Klein
(figura 1.1), também merecem a nossa atenção.

Figura 1.1: À esquerda, um modelo poliedral da garrafa de Klein. À direita, um modelo poliedral da
superfície de Boy (que é isomorfa ao plano projetivo) conhecido como poliedro de Brehm; figura de
Laura Gay [Gay] (sob a licença CC BY-NC-SA 3.0 DEED).

1.2 A(s) fórmula(s) de Euler, Descartes e Poincaré

Em 1750, Euler inaugurou uma nova forma de estudar os poliedros (ou corpos sólidos na terminolo-
gia da época). Basicamente, ele notou que, para estudá-los, não se poderia ficar restrito ao estudo de
suas faces e de seus ângulos sólidos. Para tanto, um novo conceito se tornava necessário: as arestas.
Assim, ele notou que haveria três tipos de objetos: os vértices1, que são pontos, as arestas, que são
linhas, e as faces, que são superfícies. Com isso, uma interessante questão torna-se presente:

Questão 1.2.1. Quais características de um poliedro são determinadas pela sequência de números (V,A, F )?

Em outras palavras, o quão diferente dois poliedros com mesmos números de vértices, arestas e
faces podem ser? Por exemplo, é fácil encontrar dois poliedros que possuem mesma quantidade de
faces, mas números de vértices distintos, como uma pirâmide quadrangular e um prisma triangu-
lar. Para o caso de V , A e F coincidirem simultaneamente, é necessário pensar em poliedros menos
convencionais, como alguns sólidos arquimedianos. Por exemplo, tanto o cubo truncado quanto o

https://creativecommons.org/licenses/by-nc-sa/3.0/
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Figura 1.2: O cubo truncado, à esquerda, e o octaedro truncado, à direita, possuem as mesmas quan-
tidades de vértices, arestas e faces. Fonte: Wikimedia Commons (sob a licença CC BY-SA 3.0 DEED).

octaedro truncado (figura 1.2) possuem 24 vértices, 36 arestas e 14 faces; já o dodecadedro truncado e
o icosaedro truncado (i.e. a bola de futebol) possuem ambos 60 vértices, 90 arestas e 32 faces.

Tendo tais quantidades em mente, Euler descobriu a sua famosa fórmula: todo poliedro convexo
satisfaz a relação V +F = A+2. Provavelmente, o matemático chegou a essa conclusão através de um
pensamento indutivo, ou seja, ele notou que muitos poliedros, como pirâmides, prismas e os cinco
poliedros regulares, satisfaziam essa igualdade e inferiu que o mesmo se aplicava aos outros. De fato,
Euler enunciou sua fórmula em um artigo apresentado em 1750 [Eul58b], mas sua demonstração só
foi apresentada no ano seguinte [Eul58a].

A prova de Euler é baseada em reduzir sistematicamente um poliedro até que ele tenha uma forma
simples o suficiente para garantir que a igualdade seja válida (veja [Ric08, Chapter 7]). Apesar de ela
ter sido aceito por certos matemáticos na época, ela não atinge os padrões de rigor para a maioria dos
matemáticos hoje em dia. Nos anos seguintes, muitas outras provas e extensões do teorema foram
elaboradas, entre elas:

• a demonstração de Legendre (1794) [Leg94], que se baseia na projeção de um poliedro sobre
uma esfera e na utilização de fórmulas sobre áreas de polígonos esféricos. Com ela, pode-se
facilmente concluir que a fórmula é válida, mais geralmente, para qualquer poliedro estrelado,
ou seja, aqueles que possuem um ponto interno O de modo que todo segmento entre O e algum
outro ponto do poliedro está contido em seu interior. Veja [Ric08, Chapter 10].

• a demonstração de Cauchy (1813) [Cau09], que inicia retirando uma face do poliedro e, em
seguida, transportando (continuamente) as faces até obter uma figura plana com diversos polí-
gonos. Uma análise dessa prova e dos diversos poliedros aos quais ela pode ser aplicada pode
ser conferida no artigo de Elon [Lim85b]. Por exemplo, ela é válida ao considerar um poliedro
em forma de “U”.

• a demonstração de von Staudt (1847) [vS47, pp. 18-23], que é elegantemente elaborada através
de um simples argumento de grafos. Para tanto, ele elabora duas claras hipóteses essencial-
mente topológicas sobre os poliedros: que seja possível chegar de qualquer vértice a outro atra-
vés de um caminho de arestas; que qualquer ciclo (isto é, um caminho que começa e termina
no mesmo ponto) de arestas que não passa por um mesmo vértice duas vezes divida o poliedro
em duas partes. Veja [Ric08, pp. 152-155].

Referências de outros matemáticos que forneceram provas e extensões para o teorema de Euler
podem ser encontradas em [Fed82, 70-71].

Agora, veremos que a fórmula de Euler possui uma íntima conexão com outra fórmula, que foi
descoberta mais de 100 anos antes pelo filósofo e matemático francês Descartes. Tal resultado, no
entanto, não foi publicado na época e só veio a ser conhecido pela comunidade científica no ano
de 1860, quando um manuscrito de Descartes foi descoberto. Em mais detalhes, uma cópia dele foi
encontrada dentro de uma coleção de escritos de Leibniz até então não catalogados. Dado, ainda,
que o manuscrito original continua perdido, é difícil apontar uma data precisa para a descoberta da
fórmula de Descartes. Segundo Federico [Fed82, §4], pode-se afirmar que a escrita do manuscrito
ocorreu por volta do ano 1630.

1Vale ressaltar que esse termo ainda não era utilizado por Euler. Ele utilizava o termo “ângulos sólidos”.

https://creativecommons.org/licenses/by-sa/3.0/deed.en
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Um primeiro aspecto que nos permite aproximar o manuscrito de Descartes aos trabalhos de Euler
é a importância dada a entender os poliedros de maneira aritmética. Por outro lado, a principal
diferença é que o matemático francês não identificava de maneira explícita os conceitos de arestas
ou mesmo de vértices, de modo que os elementos de um poliedro que ele dava maior enfoque eram,
além das faces, os seguintes:

• os ângulos sólidos, isto é, os “ângulos tridimensionais” formados no encontro das faces em cada
vértice

• os ângulos planos, que estão presentes em cada face.

Note que o primeiro corresponde aos vértices e, dado que o número de ângulos em um polígono é
igual ao de lados, o segundo está conectado com as arestas. Desse modo, ele obteve fórmulas que re-
lacionavam a quantidade desses elementos dentro de um poliedro. Para enunciá-las mais claramente,
vejamos, agora, a seguinte definição.

Definição 1.2.2. A deficiência angular de um vértice é dada por 2π menos a soma dos ângulos adjacentes
a este vértice. A deficiência angular total de um poliedro é igual à soma das deficiências angulares de seus
vértices.

Intuitivamente, temos que a deficiência angular de um vértice é positiva quando ele forma um
“bico”. Com isso em mente, podemos formular a seguinte equivalência: um poliedro é convexo se, e
somente se, a deficiência angular de cada um de seus vértices é positiva.

A fórmula de Descartes nos diz que a deficiência angular total de qualquer poliedro convexo é igual
a 4π. A forma como Descartes descobriu essa fórmula foi através de um pensamento por analogia
com a soma dos ângulos externos de um polígono, que é igual a 2π. Nas palavras do matemático
francês:

“Assim como numa figura plana todos os ângulos externos, tomados juntos, são iguais
a quatro ângulos retos, em um corpo sólido todos os ângulos sólidos externos, tomados
juntos, são iguais a oito ângulos retos.” [Fed82, p.44; tradução nossa]

Também, vale apontar que Descartes esclarece que a medida de um ângulo sólido externo é igual,
dentro da nossa nomenclatura, à deficiência angular do seu vértice.

Abaixo, veremos como essa fórmula pode ser facilmente deduzida da fórmula de Euler e vice-
versa. Ou seja, ambas as fórmulas são equivalentes.

Proposição 1.2.3. A soma S de todos os ângulos planos de um poliedro satisfaz S = 2π(A− F ).

Demonstração. Utilize que a soma Si dos ângulos internos de uma face ni-agonal é dada por Si =
π(ni − 2) e realize a soma de tais igualdades considerando todas as faces do poliedro.

Corolário 1.2.4. A deficiência angular total de um poliedro é igual a 2π · (V − A + F ). Em particular, um
poliedro satisfaz a fórmula de Euler se, e somente se, satisfaz a fórmula de Descartes.

Demonstração. Note que a deficiência angular total é dada por 2πV −S e aplique a proposição acima.

Vale ressaltar que um enunciado equivalente ao da proposição 1.2.3 era conhecido por Descartes
(veja [Fed82, p. 54]). A grande diferença é que, não possuindo o conceito de arestas, ele focava na
contagem do número P de ângulos planos, de modo que a fórmula se tornaria S = πP − 2πF . Desse
modo, ele pôde deduzir a seguinte fórmula muito similar à de Euler: P = 2F + 2V − 4. A única
observação necessária para chegar exatamente à igualdade V −A+F = 2 é a de que P = 2A e, sobre
isso, o próprio matemático francês escreveu:

“Há sempre duas vezes mais ângulos planos na superfície de um corpo sólido do que
lados; pois um lado é sempre comum a duas faces.” [Fed82, p.54; tradução nossa]

Dada a simplicidade de se deduzir a fórmula de Euler a partir do manuscrito de Descartes, mui-
tos matemáticos passaram a afirmar que este a havia antecipado ou que já a conhecia, veja [Fed82,
Chapter 9].

Agora, apresentaremos o resultado crucial que permite enxergar que a fórmula de Euler, na ver-
dade, é um resultado que depende da topologia dos poliedros. Em outras palavras, responderemos a
seguinte questão fundamental: quais são os poliedros que satisfazem a igualdade V −A+ F = 2?
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Definição 1.2.5. Dado um poliedro P , chamamos a quantidade dada por V − A + F de característica
de Euler de P e a denotamos por χ(P ).

Teorema 1.2.6 (Poincaré). Dois poliedros isomorfos possuem a mesma característica de Euler.

Ideia da demonstração. Para provar este teorema, normalmente é utilizada uma poderosa ferramenta
da Topologia Algébrica, a Teoria de Homologia. Basicamente, para cada poliedro P , definimos os
chamados grupos de homologia de P , denotados por Hi(P ), i = 0, 1, · · · . Para defini-los, digamos
que P possui n2 faces, n1 arestas e n0 vértices. Com isso, constrói-se uma certa sequência de funções
di, chamadas de funções (ou mapas) de bordo2

0
d3−→ Rn2

d2−→ Rn1
d1−→ Rn0

d0−→ 0

e define-se:
Hi(M) = ker(di)/Im(di+1)

Através de tais espaços vetoriais, podemos definir os números de Betti bi (sobre R)3 como a dimen-
são de tais espaços, isto é, bi = dim(Hi(M)). Com isso, é possível provar que a característica de Euler
de uma superfície coincide com a soma alternada de seus números de Betti. De fato, temos que

bi = dim(ker(di))− dim(Im(di+1))

ni = dim(ker(di)) + dim(Im(di))

Assim, pode-se deduzir que χ(P ) =
∑

i(−1)ini =
∑

i(−1)ibi.
Desse modo, a prova é finalizada ao utilizar que os grupos de homologia são invariantes por

isomorfismos topológicos.
Para mais detalhes sobre os grupos de homologia, consulte o capítulo 2 do livro de Hatcher

[Hat01].

Histórico da demonstração. H. Poincaré [Poi93] mostrou que a característica de Euler é igual à soma
alternada dos números de Betti e, provavelmente, tomava por garantido que eles seriam invariantes
topológicos. Na exigência de maior rigor, J. W. Alexander [Ale15] forneceu uma prova para esse fato.

O resultado acima permite definir a característica de Euler de superfícies em geral:

Definição 1.2.7. Uma poligonização de uma superfície M é um poliedro que é isomorfo a M . A carac-
terística de Euler (ou de Euler-Poincaré) χ(M) é definida como a característica de Euler de (alguma de)
suas poligonizações.

Vale ressaltar que a definição acima não é muito usual, pois, geralmente, considera-se a caracterís-
tica de Euler de uma triangulação ou, mais geralmente, de uma estrutura de complexo CW associada
à superfície. Assim, podemos dizer que nossa definição se encontra num meio termo, pois uma tri-
angulação é um caso particular de uma poligonização, a qual é, por sua vez, um tipo de complexo
CW. Mesmo assim, vale notar que pode-se facilmente encontrar uma triangulação a partir de uma
poligonização: basta adicionar algumas arestas para as faces se tornarem triângulos. O mesmo não
ocorre para o caso de um complexo CW, pois nem sempre podemos fornecer-lhe uma poligonização.

Desse modo, podemos dizer, por exemplo, que a característica de Euler da esfera é igual a 2 e que
a do toro é igual a 0. Tendo essa ideia em mente, obtemos assim a versão definitiva da fórmula de
Euler:

Corolário 1.2.8. Todo poliedro isomorfo à esfera satisfaz a igualdade V −A+ F = 2.

Uma prova alternativa para o resultado acima também pode ser deduzida a partir da demonstra-
ção de Cauchy, como pode ser conferido no artigo de Elon L. Lima [Lim85b], no qual a hipótese de o
poliedro ser isomorfo à esfera é substituída por outras condições equivalentes.

O leitor poderia ainda se perguntar se não poderíamos generalizar ainda mais a hipótese desse
teorema. A resposta para tal questão é negativa, pois o teorema de classificação de superfícies (veja o
apêndice A) nos diz que há apenas três tipos de superfícies a menos de isomorfismos:

2Com efeito, esse nome é utilizado, pois tais funções são definidas através da borda de cada figura. Por exemplo, aplicando
d1 sobre uma face do poliedro nos devolve uma ”soma“ de seus lados.

3Aqui, vale notar que os números de Betti são considerados usualmente com coeficientes sobre Z (ao invés de sobre R), mas
pode-se mostrar que eles são iguais em ambos os casos
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• a esfera, cuja característica de Euler é igual a 2;

• uma soma conexa de g ⩾ 1 toros, cuja característica é igual a 2− 2g;

• uma soma conexa de m ⩾ 1 planos projetivos, cuja característica é igual 2−m.

Lembre que estamos assumindo aqui que todo poliedro é uma superfície topológica. No entanto,
se permitíssemos os poliedros de possuírem certas singularidades, como arestas adjacentes a mais de
duas faces, ainda poderíamos encontrar outros casos em que a igualdade V −A+ F = 2 é válida.

1.3 Consequências da fórmula de Euler

Nessa seção, buscaremos ver como a fórmula de Euler é capaz de ser aplicada em alguns contextos.
Basicamente, iremos utilizá-la para obter os seguintes:

• uma caracterização dos sólidos platônicos

• algumas formas de construir poliedros com algumas faces hexagonais

• o teorema das seis cores

• uma fórmula para o cálculo da área de polígonos

Em Matemática, é comum que os objetos de foco de estudo sejam aqueles que possuem maior
simetria. O estudo dos poliedros não é exceção. De fato, pode-se dizer que os sólidos que mais
chamaram a atenção dos matemáticos gregos são o tetraedro, o cubo, o octaedro, o dodecaedro e o
icosaedro. Por exemplo, eles estão presentes em alguns dos diálogos de Platão, nos quais o filósofo
os associa a elementos da natureza. Todos eles são extremamente simétricos: é possível perceber um
mesmo padrão reaparecer em diversos modos de olhá-los. Assim, uma pergunta que surge natural-
mente é: será que há outros poliedros que sejam simétricos do mesmo modo?

Figura 1.3: Os cinco sólidos platônicos representando elementos da natureza, da obra Harmonices
Mundi de J. Kepler.

Para responder a essa pergunta, comecemos com uma clarificação da terminologia a ser usada.

Definição 1.3.1. Um poliedro é chamado de sólido platônico ou de regular se satisfizer às três condições
seguintes: ser convexo; todas as suas faces serem polígonos regulares com mesmo número de lados;
em cada vértice, sempre encontrarem-se a mesma quantidade de faces.

A classificação dos sólidos platônicos é um dos grandes teoremas presentes n’Os Elementos de
Euclides, no livro XIII. Um resultado fundamental usado na demonstração (provado na proposição
21 do livro XI) é o de que a soma dos ângulos planos adjacentes a um certo vértice é sempre menor
do que 360◦ quando o poliedro é convexo. Assim, lembrando que cada vértice possui, pelo menos, 3
faces adjacentes, pode-se notar que ele não poderia ser formado por hexágonos, já que seus ângulos
internos são iguais a 120◦. Do mesmo modo, quatro quadrados não poderiam se encontrar em um
mesmo vértice nem mais do que cinco triângulos.

Agora, veremos um modo de deduzir isso através da fórmula de Euler. Assuma que um sólido
platônico é formado por polígonos de n lados e que se encontram m vezes em cada vértice. Assim, as
suas quantidades de vértices e arestas são dadas por

V =
nF

m
A =

nF

2
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Usando que V −A+ F = 2, pode-se concluir após alguns cálculos que

F =
4m

2n−mn+ 2m

Sabemos que o denominador deve ser positivo e vale que n ⩾ 3 e m ⩾ 3. Agora, supondo que n ⩾ 6,
temos que:

2n−mn+ 2m = (2−m)n+ 2m ⩽ (2−m) · 6 + 2m

⇒0 < (2−m) · 6 + 2m = 12− 4m

⇒m < 3

Com tal contradição, concluímos que n ⩽ 5 e, sem perda de generalidade, que o mesmo vale para
m. Com mais alguns cálculos, pode-se concluir que os únicos pares possíveis para (m,n) são (3, 3),
(3, 4), (4, 3), (3, 5) e (5, 3). Assim, com as fórmulas acima, obtemos a seguinte síntese:

Proposição 1.3.2. Para um sólido platônico, os únicos valores possíveis para (m,n) e (V,A, F ) são:

• (3, 3) e (4, 6, 4) (tetraedro)

• (3, 4) e (6, 12, 8) (cubo)

• (4, 3) e (8, 12, 6) (octaedro)

• (3, 5) e (20, 30, 12) (dodecaedro)

• (5, 3) e (12, 30, 20) (icosaedro)

Vale ressaltar que Descartes, em seu manuscrito, também notou que sua fórmula podia ser utili-
zada para deduzir o número de faces e vértices dos sólidos platônicos, veja [Fed82, p.50].

Uma consequência particular da discussão acima é que não é possível formar um sólido platônico
usando apenas hexágonos. Na verdade, também podemos ver que nenhum poliedro que satisfaz a
fórmula de Euler pode ser construído apenas usando hexágonos. De fato, se um poliedro possuir
apenas faces hexagonais, teremos que A = 6F

2 = 3F . Além disso, o número de ângulos planos
adjacentes em cada vértice é, no mínimo, 3, o que nos diz que V ⩽ 6F

3 = 2F . Desse modo, obtemos
que

V −A+ F ⩽ 2F − 3F + F = 0

Ou seja, sua característica de Euler deve ser, no máximo, zero. Assim, é natural perguntar se é possível
a construção de um poliedro isomorfo ao toro apenas com faces hexagonais. A resposta é afirmativa:
um exemplo é o poliedro de Szilassi, que é formado por sete faces hexagonais todas adjacentes entre
si, veja [Gar78]. Esse poliedro também é um importante exemplo para o teorema das cores aplicado
sobre o toro, como será explicado adiante.

A seguir, notaremos quantas faces e de quais tipo são necessárias para se construir um poliedro
convexo com faces hexagonais.

Proposição 1.3.3. Tome um poliedro cuja característica de Euler seja 2 e que possua, pelo menos, uma face
hexagonal.

• Se suas outras faces são triângulos, então há, pelo menos, 4 faces triangulares.

• Se suas outras faces são quadradas, então há, pelo menos, 6 faces quadradas.

• Se suas outras faces são pentagonais, então há, pelo menos, 12 faces pentagonais.

Tais quantidades mínimas são atingidas se assumirmos que todo vértice é adjacente a somente três arestas.

Demonstração. Para o primeiro caso, assuma que há H faces hexagonais e T faces triangulares. Desse
modo, pelos mesmos argumentos utilizados acima, temos que:

F = T +H A =
3T + 6H

2
=

3T

2
+ 3H V ⩽

3T + 6H

3
= T + 2H
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Com isso:

2 = V −A+ F ⩽ (T − 3T

2
+ T ) + (2H − 3H +H) =

T

2

Logo, T ⩾ 4. No caso em que todo vértice é adjacente a somente três arestas, temos a igualdade em
ambas as desigualdades acima.

Os outros casos podem ser provados de forma análoga.

O caso acima dos doze pentágonos é especialmente notável, pois podemos visualizá-lo através de
objetos físicos, como as bolas de golfe e de futebol (em sua versão clássica), ou através de moléculas
químicas, como os fulerenos.

Utilizando a técnica acima, pode-se ver também que todo poliedro (com característica de Euler
igual a 2) possui, pelo menos, quatro faces dadas por polígonos com menos de 6 lados. Além disso,
pode-se analisar diversas outras possíveis configurações para as faces de um poliedro, como de qua-
drados e pentágonos, triângulos e pentágonos, etc.

Outro famoso teorema em Matemática é o Teorema das Quatro Cores. Ele diz que é necessário,
no máximo, quatro cores para colorir um mapa plano de modo que dois territórios vizinhos possuam
cores distintas. Um fator que o torna notável é que, apesar de seu enunciado ser bastante simples,
a sua demonstração é consideravelmente complexa e até hoje só pode ser cumprida através do uso
de computadores. Aqui, mostraremos que uma versão mais fraca do teorema pode ser deduzida
utilizando alguns dos fatos que foram mostrados acima através da fórmula de Euler.

Proposição 1.3.4. Todo mapa pode ser colorido com seis cores ou menos.

Esboço da demonstração. Dado um mapa com alguns territórios, podemos realizar uma deformação
contínua para que cada um de seus territórios sejam polígonos satisfazendo que dois territórios vizi-
nhos tenham um, e somente um, lado em comum. Além disso, se um território estiver na borda do
mapa (por exemplo, um país que é banhado pelo oceano), então podemos assumir que um, e somente
um, dos lados desse território estará nessa borda. Em outras palavras, não há dois lados adjacentes
de um mesmo território banhados por um mesmo oceano. Para uma ilustração, veja a figura 1.4.
Levando em conta também a face exterior desse mapa poligonal, ele nos fornece uma poligonização
da esfera e, portanto, pela última proposição, deve haver pelo menos duas faces poligonais com 5
lados ou menos. Em outras palavras, há sempre um território que é vizinho de, no máximo, outros 5
territórios. Diremos que tal território é notável.

Figura 1.4: Representação poligonal do mapa da América do Sul. Repare, por exemplo, que o Para-
guai é um triângulo, pois ele possui apenas 3 vizinhos e não é banhado pelo oceano.
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Agora, assuma que a proposição seja falsa e tome um contraexemplo minimal, isto é, um mapa
que não pode ser colorido com seis cores e com o menor número de territórios possível. Assim, se
retirarmos desse mapa um território notável, sabemos que o mapa restante pode ser colorido com seis
cores. Isso nos gera uma contradição: como esse território tem, no máximo cinco vizinhos, pode-se
reinseri-lo de modo que o mapa-contraexemplo seja colorido com seis cores; de fato, basta colorir o
território notável com uma cor que seja diferente das cores dos seus cinco vizinhos.

Para aprimorar o teorema acima para o caso de cinco cores, é necessária a introdução de algumas
técnicas do estudo de grafos, o que foi feito, por exemplo, por A. Kempe em 1879. Já a prova do caso
das quatro cores se mostrou muito mais complicada e só veio a ser cumprida com a assistência de
computadores em 1976. Para mais detalhes, veja [Ric08, Chapter 14].

Teoremas análogos a esse podem ser estudados para mapas sobre outras superfícies (que não
são isomorfas à esfera). Por exemplo, se considerarmos mapas sobre um toro, pode-se provar que é
necessário sete cores ou menos para colori-lo e, de fato, sete cores são necessárias para colorir, por
exemplo, o poliedro de Szilassi.

Por fim, enunciamos mais um interessante resultado que pode ser deduzido através da fórmula
de Euler. Ele fornece um simples modo de calcular a área de certos polígonos, que possivelmente
podem ser bastante complicados.

Proposição 1.3.5 (Teorema de Pick). Tome um polígono sobre o plano cartesiano cujos vértices tenham coor-
denadas inteiras. Sendo I e B as quantidades de pontos com coordenadas inteiras, respectivamente, no interior
do polígono e na sua borda, então a área do polígono é igual a I +B/2− 1

Demonstração. Consulte [Ric08, pp. 126-127].

Figura 1.5: Com o teorema de Pick, podemos calcular rapidamente a área do polígono acima. Fonte:
Wikimedia Commons (sob a licença CC BY-SA 4.0 DEED).

1.4 Teoremas sobre a característica de Euler

Nesta seção, que tem como base o artigo de Elon Lima [Lim85a], descreveremos como a característica
de Euler aparece em diversos contextos dentro da Matemática. Começaremos mostrando qual a sua
relação com a presença de campos vetoriais — ou, de modo mais pitoresco, fios de cabelos — sobre
uma superfície.

Teorema 1.4.1 (Poicaré-Hopf). Tome um campo vetorial contínuo v : M → Rm tangente sobre uma varie-
dade M (de dimensão m e compacta) de modo que v seja zero apenas em um número finito de pontos P1, · · · , Pn

de M . A soma dos índices dos zeros4 de v é igual à característica de Euler de M , isto é

n∑
j=1

i(v;Pj) = χ(M)

4Intuitivamente, o índice de um zero p ∈ M de v é dado pelo número de voltas dadas por v(q) quando pontos q ∈ M
descrevem uma pequena curva em torno de p, veja [Lim85a, p.53]

https://creativecommons.org/licenses/by-sa/4.0/deed.en
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Histórico do teorema. Em 1881, Poincaré o demonstrou para a esfera S2, de dimenão 2, enquanto que
Brower generalizou, em 1911, para o caso das esferas de qualquer dimensão. Em 1925, Hopf provou
que o resultado é válido para qualquer variedade. Veja [Ric08, pp. 212-214].

Demonstração. Pode-se consultar Milnor [Mil65, §6] ou as notas de aula de Haffka [Hafa]. Na primeira
referência, é utilizada como ferramenta a aplicação normal de Gauss enquanto que, na segunda, a
demonstração é feita através da teoria de pontos fixos de Lefschetz.

Definição 1.4.2. Dizemos que uma superfície pode ser penteada se existe um campo vetorial contínuo
sobre ela que seja não-nulo em todos os pontos.

Como consequência direta do Teorema de Poincaré-Hopf, vemos que a característica de Euler
nos fornece uma condição necessária para que possamos pentear uma superfície. Em mais detalhes,
temos o seguinte:

Corolário 1.4.3 (Teorema das Superfícies Cabeludas). Se uma superfície M pode ser penteada, então sua
característica de Euler χ(M) é igual a 0.

Também pode-se provar que a recíproca do corolário acima é verdadeira. Por exemplo, no caso
de um toro cabeludo, podemos pentear todos os seus fios no sentido anti-horário, veja a figura 1.6.

Figura 1.6: O toro é uma superfície que pode ser penteada. Fonte: Wikimedia Commons.

Como a característica da esfera é igual a 2, obtemos a seguinte imediata conclusão.

Corolário 1.4.4 (Teorema da Bola Cabeluda). A esfera S2 não pode ser penteada.

Demonstração alternativa. Um modo mais direto de provar esse resultado é notando que a existência
de um campo vetorial não-nulo em S2 nos fornece uma homotopia entre as funções identidade e
antípoda em S2 (isto é, a função que leva um ponto ao seu diametralmente oposto). Através do uso
de ferramentas da teoria de homologia, pode-se mostrar que isso é um absurdo, veja [Hat01, pp.134-
135].

Outra forma de interpretar o teorema acima é dizendo que sempre há, pelo menos, um ponto da
superfície da Terra no qual nenhum vento é soprado horizontalmente.

Agora, apresentaremos um importante teorema de Geometria Diferencial, o teorema de Gauss-
Bonnet. Essencialmente, ele nos diz que a característica de Euler é uma medida para a curvatura glo-
bal de uma superfície. Antes de enunciá-lo, precisamos esclarecer o conceito de curvatura gaussiana.
Intuitivamente, ela nos fornece uma medida (dada por um número real) do quanto uma superfície se
curva em cada um de seus pontos e é dada pelo produto da menor e da maior curvatura (com sinal)
ao varrer todas as direções. Além disso, seu sinal nos dá algumas informações: quando a curvatura
é positiva em um certo ponto x, a superfície fica (localmente) em apenas de um do plano tangente
em x; nesse caso, o ponto é chamado elíptico. Tal propriedade não ocorre no caso de a curvatura ser
negativa e, assim, o ponto é chamado de hiperbólico.

Exemplo 1.4.5. Abaixo, apresentamos a curvatura gaussiana de algumas superfícies conhecidas:

1. A curvatura de qualquer ponto do plano é igual a zero. O mesmo vale para o cilindro, pois suas
seções verticais são retas.
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2. A curvatura de uma esfera de raio r é igual a 1/r2 em todo ponto.

3. A sela dada pelo gráfico z = xy possui curvatura igual a −4 no ponto 0.

4. Como pode ser visto na figura 1.7 do toro, sua região próxima ao anel interno possui curvatura
negativa e sua região próxima ao anel externo possui curvatura positiva.

Figura 1.7: Metade do toro possui curvatura positiva e metade possui curvatura negativa. Fonte:
Wikimedia Commons (sob a licença CC BY-SA 3.0 DEED).

Teorema 1.4.6 (Gauss-Bonnet). Sendo M uma superfície compacta (sem bordo) e K : M → R sua curvatura
gaussiana, temos que ∫

M

KdA = 2πχ(M),

onde dA representa que a integração é feita sobre a área da superfície.

O leitor é convidado a notar a validade da igualdade acima para os casos da esfera e do toro.
Tal resultado é extraordinário: ele nos diz que a curvatura total de uma superfície é determinada

pela sua topologia. Em outras palavras, não importa o quanto uma esfera seja entortada, sua curva-
tura total será sempre igual a 4π. Isso mostra um dos modos como a topologia de uma superfície pode
controlar sua geometria. Repare que esse mesmo paralelo pode ser traçado se pensarmos, por exem-
plo, na fórmula de Descartes. De fato, ela pode ser vista como uma versão particular, para poliedros,
do teorema de Gauss-Bonnet.

Outro ambiente em que a característica de Euler também está presente é na Teoria de Morse, cujo
foco reside no estudo de funções diferenciáveis da forma f : M → R. Pode-se mostrar que há uma
relação entre a característica de Euler e o tipo e a quantidade de pontos críticos de tais funções. Para
mais detalhes, consulte [Lim85a, §5].

https://creativecommons.org/licenses/by-sa/3.0/deed.en
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Capítulo 2

Construindo uma bola cabeluda

O teorema da bola cabeluda é um dos mais pictóricos teoremas de Matemática: não é possível pentear
uma bola cabeluda sem que haja pontos carecas, fios em pé ou descontinuidades. Assim, é bastante
sugestiva a proposição de uma peça física que possa servir como uma verificação visual e palpável do
teorema, de modo que possa ser utilizada para a divulgação matemática, especialmente em ambientes
como o da Matemateca do IME-USP. No entanto, encontramos apenas um modo de construção de
superfície cabeludas documentada na literatura, a qual foi realizada para o caso da garrafa de Klein
[CG19]. Aqui, apresentamos a construção de uma bola cabeluda a partir da colagem de tapete sobre
uma bola de isopor.

Figura 2.1: Bola cabeluda cuja construção é descrita neste capítulo.

2.1 Proposta e Material utilizado

Diversas foram as ideias que tivemos para a confecção de uma bola cabeluda. Algumas eram pouco
práticas, como a costura de uma infinidade de fios sobre uma bola previamente coberta por um te-
cido; já outras eram, digamos pouco ortodoxas: por exemplo, envolviam a decapitação de bonecos
cabeludos e, posteriormente, a colagens de suas meia-cabeças. Outras ainda passavam pelo uso de
limalha de ferro que pudessem ser “penteadas” com um ímã. De qualquer modo, uma das grandes
preocupações iniciais estava no formato dos fios: eles deveriam ser compridos e finos o suficiente
para serem penteadas, mas também curtos a ponto de não esconder descontinuidades.

Após a visita a certas lojas de tapetes, pude descobrir a existência de certos tapetes peludos que
podem transmitir, após alisá-lo com as mãos por exemplo, a sensação de pentear. Desse modo, pen-
samos que não haveria mais a necessidade de realizar o árduo trabalho de costurar fios, todos eles já
estavam posicionados sobre o tecido de base do tapete. Apenas um problema se tornava evidente: ta-
petes são planos e, portanto, não possuem geometria esférica. Assim, a questão central posta foi: qual
a melhor maneira de cortar uma figura plana a fim de preencher totalmente uma esfera e sem que
haja sobreposições? Ou, visto de modo inverso, qual é a melhor maneira de planificar uma esfera?

19
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A resposta matemática para tal questão é simples: não existe tal maneira. De fato, uma planifica-
ção perfeita da esfera nos forneceria uma isometria local entre o plano e a esfera e chegaríamos a uma
contradição, pois a curvatura do plano é diferente da da esfera. Assim, naturalmente, devemos pen-
sar numa planificação aproximada da esfera. Para tanto, diversos modelos puderam ser encontrados,
os quais são especialmente usados para a construção de globos terrestres; acesse, por exemplo, o site
www.3dgeography.co.uk/make-a-globe. Para um embasamento geométrico sobre o modo de
construir tais planificações, consulte a página de M. B. Barison [Bar].

Figura 2.2: Planificação de esfera a partir de seus fusos. Fonte: 3D Geography.

A planificação utilizada se baseia em definir uma quantidade de meridianos e planificar, sepa-
radamente, cada um dos fusos determinados por eles. Desse modo, os pontos mais problemáticos
dessa construção são aqueles onde todos os fusos se encontram, ou seja, os polos da esfera. É bas-
tante comum que ocorram imprecisões, como sobreposições ou buracos, nos lugares próximo a esses
pontos. Tendo isso em mente, tivemos como objetivo recortar a ponta de cada fuso planificado antes
da colagem na esfera e, ao final, o buraco gerado nos polos da esfera poderia ser preenchido com um
círculo, de modo semelhante ao feito numa bola de praia (figura 2.3).

Figura 2.3: A bola de praia nos fornece uma visualização do modo pelo qual buscamos realizar a
colagem do tapete sobre a esfera. Fonte: Wikimedia Commons.

Em essência, os materiais utilizados para a construção foram:

• uma bola de isopor oca de 350mm de diâmetro.

• um tapete retangular de pele de poliéster, com dimensões de 60cm x 120cm e fios medindo 2cm.

• um molde da planificação de um fuso correspondente a 1/18 da bola, ou seja, um fuso de 20◦.

• cola multiuso.

Não houve grandes dificuldades de se obter tais materiais, bastando a ida a lojas especializadas
em isopor e em tapetes.

www.3dgeography.co.uk/make-a-globe
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2.2 Confecção

Antes de iniciar, de fato, a construção da bola cabeluda, realizei um modelo inicial de teste com uma
bola menor (de 20 cm de diâmetro) e usando folhas de EVA no lugar do tapete. Com isso, pode-
se, além de adquirir algumas habilidades manuais, ter uma noção das principais dificuldades e dos
pontos que necessitam de maior cuidado. Em especial, verificou-se que as regiões próximas aos polos
da esfera acabaram por apresentar brechas, nas quais o isopor se tornava visível. Assim, tornou-se
mais evidente a necessidade da realização de cortes das pontas dos fusos seguida da colagem de
círculos para preencherem os polos.

Figura 2.4: As pontas dos fusos foram cortadas a fim de minimizar as brechas encontradas entre os
fusos.

Após o teste com EVA, passamos para a utilização da tapete. O primeiro passo foi a utilização do
molde de um meio-fuso planificado para ser demarcado sobre o verso do tapete — no qual, por sorte,
podia-se escrever até mesmo com canetas esferográficas. Para tanto, nas primeiras reproduções, eu
fixava um molde de papel sobre o verso do tapete e o delineava utilizando uma caneta. Em seguida,
recortava os pedaços de tapete tendo como linha ideal de corte a linha gerada pela borda interna da
caneta — mesmo assim, a diferença era provavelmente desprezível dado que ponta da caneta era
consideravelmente fina. Pensando em tornar o processo mais ágil, utilizei uma segunda técnica para
a demarcação do molde. Dessa vez utilizando um molde mais rígido, feito de cartolina, passei a
utilizá-lo como um carimbo: espalhava tinta sobre sua borda e, em seguida, pressionava-o contra o
verso do tapete. Nesse caso, o devido corte do tapete era feito considerando a borda externa gerada
pelo molde.

Figura 2.5: Visualização das duas técnicas utilizadas para a reprodução do molde sobre o tapete.

Durante o corte das partes do tapete, pudemos perceber que seria bastante importante ordená-los
do mesmo em que eram cortados. Desse modo, dois fusos que fossem adjacentes no tapete (antes de
ser cortado), de fato, seriam colados um ao lado do outro.

Em seguida, foi realizada a colagem dos fusos sobre a bola. Para isso, dois cuidados precisaram
ser tomados. O primeiro deles é referente à identificação do equador da esfera com a linha central de



22 CAPÍTULO 2. CONSTRUINDO UMA BOLA CABELUDA

Figura 2.6: Fusos de tapete cortados e alinhados logo antes da colagem sobre a bola.

cada fuso. Isso pode ser usado como referência para que os fusos fossem posicionados de maneira
adequada. Além disso, visto que os polos da bola podiam ser permutados de maneira despercebida
durante o seu manejo, se mostrou útil o desenho de símbolos sobre a bola de isopor para que se
tornasse claro a orientação escolhida para a colagem dos fusos.

Figura 2.7: Alguns dos cuidados tomados durante a colagem dos fusos sobre a bola.

Após a colagem de 17 fusos sobre a bola, notou-se que a lacuna faltante era consideravelmente
distinta do que, em teoria, deveria ser o formato de apenas mais um fuso de 20◦ (figura 2.8). Para se
ter uma noção, o comprimento da lacuna (sobre o equador) era de, aproximadamente, 13cm, o que
corresponde a um ângulo de mais de 40◦. Isso deve ter ocorrido devido a uma soma das imprecisões
realizadas durante os cortes e as colagens. Além disso, tal lacuna não era simétrica em relação ao
seu meridiano central. Desse modo, o décimo oitavo fuso foi feito à parte: busquei reproduzir o seu
formato em uma folha de papel sobreposta sobre o espaço para, em seguida, demarcá-la no tapete.

Figura 2.8: A lacuna para colagem do último fuso era irregular e maior do que o esperado.
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Finalmente, após todos os fusos serem fixados, a última etapa realizada foi a colagem das “tam-
pas” da bola, isto é, os círculos de preenchimento dos polos. Novamente, os espaços faltantes se
mostraram consideravelmente distintos do formato ideal proposto inicialmente, de círculos. Assim,
a seguinte estratégia foi adotada: cortou-se um pedaço circular do tapete que fosse maior do que a
lacuna; em seguida, ele era sobreposto sobre a lacuna para notar-se as partes que necessitavam ser
reduzidas; assim, se procedia até obter o formato ideal para ser encaixado. Veja a figura 2.9.

Figura 2.9: À esquerda, espaços vazios produzidos nos polos da bola. À direita, recortes dos pedaços
de tapete usados para preenchê-los.

2.3 Discussão

Antes de finalizarmos este capítulo, será apresentada aqui uma avaliação sobre o processo de con-
fecção da bola e seu resultado final. Em especial, buscaremos apresentar alguns pontos em que a
confecção apresentou sucessos ou falhas. Em outras palavras, apresentaremos alguns dos aprendiza-
dos obtidos durante a construção da bola.

Figura 2.10: Visualização do resultado final da bola cabeluda na qual é possível notar suas divisões
como numa bola de praia.

Primeiramente, devemos dizer que, diferentemente da bola feita com EVA, a bola com tapete não
apresentou buracos em que o isopor ficasse visível. Acredito que isso se deu, principalmente, pela
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maior flexibilidade que o tapete possuía em comparação com o EVA, o que permitia a justaposição
dos fusos através de pequenas movimentações. Além disso, outros fatores que contribuíram nesse
sentido foram a presença dos fios do tapete, que possibilitam esconder os buracos, e a melhoria das
técnicas de colagem e corte utilizadas — isto é, os pequenos aprendizados manuais obtidos com a
confecção da bola-teste puderam ser usados na bola final.

Por outro lado, um dos pontos negativos que se tornaram evidentes foram as divisões entre os
pedaços colados. Essa é uma das principais características a serem evitadas, pois ela dificulta a visua-
lização de um penteado contínuo dos fios, e que é tão fundamental para o entendimento do teorema.
Vale notar que essas divisões se tornavam menos claras próximas ao equador e entre dois fusos que
já eram adjacentes antes do tapete ser cortado. Desse modo, a ordem em que os fusos colados sobre
o tapete devem respeitar tacitamente a ordem com que eles surgem no tapete. Do mesmo modo,
deve-se evitar o corte de fusos como os encontrados no topo da figura 2.5 à direita.

Outra possibilidade para mitigar o efeito negativo acima está em reduzir o número de fusos uti-
lizados na planificação da esfera. Além de diminuir o número de divisões, isso também simplifica o
trabalho de modo geral. No entanto, isso deve ser feito levando em conta que a redução do número
de fusos leva a uma maior imprecisão da planificação, exigindo mais da plasticidade do material.
Além disso, foi possível notar que o último fuso colado sobre a bola, que representava um ângulo de
40◦, se mostrou maleável o bastante para ser devidamente colado. Desse modo, pensamos que um
bom número de fusos a ser considerado na planificação seria em torno de 9 — ao invés do utilizado
18.

As técnicas mencionadas acima também podem ajudar a atenuar outra limitação do uso do tapete,
a ausência de flexibilidade total de seus pelos. Com efeito, mesmo no tapete original, não era possível
mover de maneira ordenada cada um de seus fios em qualquer direção desejada. Por exemplo, a
sensação de pentear os pelos do tapete era mais clara apenas quando o fazíamos horizontalmente.
Isso nos motiva às seguintes questões: haveria outros modelos de tapetes que permitissem maior
liberdade dos fios? O uso de pelos um pouco mais compridos (do que 2cm) auxiliariam nesse sentido?

Finalmente, devemos lembrar que a Matemática é criada independentemente da sua existência na
realidade. Assim, não podemos pensar que a construção de um objeto que venha a ilustrar um teo-
rema matemático seja isento de falhas. Ainda assim, há casos em que objetos matemáticos (um cubo,
por exemplo) podem ser construídos de modo que suas imprecisões sejam menores do que as que
nossa percepção visual permite notar. Tendo isso em mente, acredito que a bola cabeluda construída
possa ser usada, além de um objeto que desperta a curiosidade das pessoas, para tornar evidente o
significado de pentear continuamente uma superfície, ainda mais quando forem explicadas as limi-
tações do objeto.

Além disso, o presente trabalho, talvez, possa servir como protótipo inicial para a realização de
outros trabalhos no sentido da divulgação dos teoremas das superfícies cabeludas. Em especial, pode
ser proveitoso analisar se as técnicas apresentadas aqui também poderiam ser utilizadas para a cria-
ção de um toro cabeludo1, o que mostraria um exemplo de superfície que pode ser penteada.

1Vale notar que toros podem são vendidos em lojas de isopor com os nomes de “guirlandas”, “boias” ou “argolas”.



Capítulo 3

Oficinas de Topologia para o Ensino
Básico

Neste capítulo, apresentaremos abordagens de ensino, configuradas através de oficinas, que buscam
tratar de tópicos de Topologia a partir da fórmula de Euler. Na primeira seção, encontram-se as
propostas de oficinas assim como a descrição, por exemplo, dos materiais necessários para realizá-
las. Na seção seguinte, será apresentado como se deu a aplicação de tais oficinas em algumas turmas
de uma escola estadual de São Paulo.

Acredito ser fundamental que os alunos sejam incentivados à ação, ao questionamento e à for-
mulação de hipóteses. Com isso em mente, as atividades foram elaboradas e aplicadas com o intuito
de levar os alunos a uma participação ativa, como com a construção de poliedros em papel e com
discussões que levem à reflexão de problemas.

3.1 Descrição das oficinas

A seguir, serão apresentadas propostas de quatro oficinas tendo como público-alvo alunos de Ensino
Fundamental II e Médio. Mesmo assim, não há nenhum impeditivo para aplicá-las com estudantes
de Ensino Superior, por exemplo. Na verdade, isso pode ser bastante proveitoso, visto que alguns
temas da oficina são desconhecidos até mesmo por professores de Matemática, pois geralmente são
apresentados apenas em cursos de Matemática “avançados”.

Elas foram pensadas para serem realizadas de modo sequencial e são iniciadas com um problema
elementar: a análise dos vértices, arestas e faces de poliedros. A partir disso, busca-se guiar os alu-
nos até o enunciado da fórmula de Euler. Na segunda oficina, busca-se traçar um paralelo com a
fórmula de Descartes, mostrando a conexão que a fórmula de Euler possui com os ângulos planos
dos poliedros. Em seguida, visa-se chegar na formulação definitiva da fórmula de Euler, de que
todo poliedro isomorfo à esfera satisfaz V − A + F = 2. Já na última oficina, é tratado do tema
de (não-)orientabilidade de superfícies a fim de observar que toda superfície pode ser caracterizada
simplesmente pela sua característica de Euler e sua orientabilidade.

Nota-se que tal sequência didática é similar ao caminho histórico percorrido durante o nascimento
da Topologia. Assim, pode ser bastante proveitosa a realização ao longo das oficinas de comentários
históricos, como os presentes na seção 1.2.

Ainda que a sequência das oficinas formem um todo coerente, também acreditamos que elas po-
dem ser encurtadas caso o interesse seja de apresentar certos tópicos de maneira mais direta. Por
exemplo, a realização da oficina 2 não é necessária para o cumprimento das seguintes. Além disso, as
partes iniciais das oficinas 3 e 4 também podem ser realizadas de maneira independente das demais.

Oficina 1: Característica de Euler de Poliedros

Objetivos: Calcular a característica de Euler de alguns poliedros e compará-las.

Conhecimentos prévios desejáveis: algum contato com poliedros; reconhecimento de vértices, ares-
tas e faces; alguma prática com colagens.

25
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Materiais necessários: uma planificação de um poliedro isomorfo à esfera (e.g. poliedros convexos
ou poliedros em formato de “L” [figura 3.1]) e uma de um poliedro isomorfo ao toro (veja o apêndice
B) para cada aluna/o; cola ou fita adesiva.

Roteiro:

1. Começar a aula introduzindo (ou relembrando) o conceito de poliedro e focar em suas três
principais características: faces (F), arestas (A) e vértices (F). Perguntar quais poliedros eles
conhecem e se eles conhecem a fórmula de Euler. Notar, também, que cada aresta é adjacente a
só 2 faces e cada vértice a pelo menos três faces.

2. Entregar para cada aluno as 2 planificações e pedir para eles montarem colando com cola ou
com fita adesiva disponibilizada em pedaços pela/o professor/a.

3. Pedir para eles contarem as faces, arestas e vértices e realizarem a conta V+F-A.

4. Após fazerem as contas colocarem na frente da sala em duas categorias: os poliedros que satis-
fazem V+F-A=0 e os que satisfazem V+F-A=2.

5. Incentivar uma discussão: vocês esperavam isso? Os poliedros de cada grupo são parecidos? O
que fazem eles serem agrupados desse jeito?

6. Finalizar dizendo que V+F-A=2 para poliedros convexos é conhecida como fórmula de Euler (e
traçar alguns comentários históricos) e que o valor V+F-A é conhecido como característica de
Euler.

Figura 3.1: À esuerda, uma planificação de um poliedro que possui a forma de um “L”, sendo não-
convexo e isomorfo à esfera. O segmento vermelho indica que a região deve ser dobrada de modo a
formar uma concavidade. À direita, planificações de poliedros isomorfos ao toro.

Oficina 2: Fórmula de Descartes

Objetivos: Calcular a deficiência angular de alguns poliedros, compará-las e traçar um paralelo
com a característica de Euler.

Conhecimentos prévios desejáveis: noções de ângulos (e.g. 360°=1 volta; 180°=meia-volta); é inte-
ressante o conhecimento de números negativos, mas a proposta pode ser adaptada para que não haja
suas ocorrência.

Materiais necessários: 1 poliedro do tipo esfera e 1 do tipo toro para cada aluno/a (e.g. da oficina
anterior).

Roteiro:

1. Começar a oficina introduzindo o conceito de deficiência angular de um vértice. Para tanto,
é útil usar um poliedro como exemplo. Também, pode ser necessário relembrar/introduzir
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medidas de ângulos internos de polígonos (em especial, de triângulos equiláteros, quadrados e
trapézios) e a soma de seus ângulos externos.

2. Entregar para cada aluno os dois poliedros e pedir para calcularem a deficiência angular de
cada vértice e, então, somá-las para obter a deficiência angular total dos poliedros.

3. Após fazerem as contas, colocarem na frente da sala em duas categorias: os poliedros que pos-
suem deficiência igual a 0° e os de igual a 720°.

4. Iniciar a discussão: vocês esperavam isso? Essa organização de poliedros é parecida com a da
atividade anterior?

5. Finalizar dizendo que a deficiência angular ser igual a 720 é chamada de fórmula de Descartes
(traçando alguns comentários históricos) e evidenciar a relação, por meio de uma tabela, entre
os dois conceitos: (deficiência angular)=720◦×(característica de Euler).

Oficina 3: Isomorfismo de Superfícies

Objetivos: Introduzir o conceito de isomorfismo topológico de superfícies e sua relação com a
característica de Euler.

Materiais necessários: folhas de atividade sobre identificação de figuras isomorfas para cada aluno
(veja a figura 3.2); projetor de vídeo ou TV; 1 bola de isopor (opcional).

Roteiro: Essa aula será consideravelmente expositiva e focada principalmente na introdução de
conceitos e terminologia.

1. Introduzir o conceito de superfícies como um papel deformado e apresentar por vídeo ou ima-
gem diversos exemplos visuais para os alunos: esfera oca, poliedros, toro oco ou rosquinha,
garrafa de Klein, superfícies quadráticas, como elipsoides, paraboloides, hiperboloides e selas
(como a usual e a do macaco), entre outras.

2. Introduzir através de exemplos a noção de superfície fechada (como superfícies “limitadas” e
sem bordo).

3. Apresentar as transformações de encolher, entortar, esticar ou inflar uma superfície (ou partes
dela) e dizer que elas são chamadas de isomorfismos.

4. Apresentar a seguinte terminologia: duas superfícies são ditas isomorfas quando podemos ob-
ter uma a partir da outra através de um isomorfismo. Ilustrar com exemplos visuais e vídeos
(como o isomorfismo entre o cubo e a esfera ou entre o toro e a xícara1). Se possível, contrastar
com as noções de figuras congruentes e semelhantes.

5. Entregar e pedir para os alunos realizarem uma atividade de identificação de superfícies iso-
morfas.

6. Enunciar a fórmula de Euler da seguinte maneira: todo poliedro isomorfo à esfera satisfaz V+F-
A=2. O mesmo acontece para a rosquinha e explicar que a característica de Euler não muda
para superfícies isomorfas.

7. (Opcional) O acima pode ser equivalentemente formulado como: toda poligonização da esfera
satisfaz V+F-A=2. Por exemplo, isso pode ser ilustrado apresentando algumas poligonizações
da esfera desenhando sobre uma bola de isopor.

8. Finalizar com a pergunta: se duas superfícies têm a mesma característica de Euler, será que elas
são isomorfas?

Oficina 4: Orientabilidade
1Nesse caso, uma boa visualização pode ser acessada em https://en.wikipedia.org/wiki/File:Mug_and_

Torus_morph.gif

https://en.wikipedia.org/wiki/File:Mug_and_Torus_morph.gif
https://en.wikipedia.org/wiki/File:Mug_and_Torus_morph.gif
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Figura 3.2: Exemplo de atividade de reconhecimento de figuras isomorfas.

Objetivos: Introduzir o conceito de (não-)orientabilidade de superfícies; observar que a caracterís-
tica de Euler vista junto à orientabilidade caracteriza as superfícies fechadas.

Materiais necessários: faixas de papel vegetal (com pelo menos 4cm de altura); fita crepe ou ade-
siva; modelos poliedrais da garrafa de Klein.

Roteiro:

1. Começar dando as faixas de papel para cada aluno e pedir para desenharem sobre ela um pac-
man se movimentando em uma direção. Com o uso do papel vegetal, deve ficar claro que o
pac-man pode ser visualizado em ambos os lados da faixa. Em seguida, pedir para formarem a
faixa de Möbius.

2. Notar algumas características da faixa: ela inverte a posição do pacman após 1 volta; se o seu
dedo (ou uma formiga) andar pela faixa, ele também vai ficar de ponta-cabeça (pode-se mostrar
o desenho de Escher de formigas andando sobre uma faixa de Möbius); a faixa possui apenas
um lado (isto é, não é possível colori-la com duas cores sem que as cores se cruzem).

3. Com o anterior, dizer que superfícies que satisfazem as características acima são ditas não-
orientáveis e, se necessário, explicar em mais detalhes, ao contrastar com exemplos de superfí-
cies orientáveis.

4. Apresentar, em seguida, a garrafa de Klein com o modelo físico usual e mostrar duas possíveis
construções matemáticas dela: tomando um cilindro e colando suas duas bases com orientação
invertida ou através de duas faixa de Möbius2.

5. (Opcional) Mostrar vídeos de outras superfícies não-orientáveis, como os três modelos do plano
projetivo: calota cruzada (em inglês, cross-cap), superfície romana e superfície de Boy3.

2Ambas podem ser visualizadas na excelente página online de Marianne Freiberger: plus.maths.org/content/
introducing-klein-bottle.

3Para tanto, recomendamos os vídeos disponíveis em: youtu.be/W-sKLN0VBkk; youtu.be/Op2TSnLgkuY; youtu.
be/uiq-EcQz_uU.

plus.maths.org/content/introducing-klein-bottle
plus.maths.org/content/introducing-klein-bottle
youtu.be/W-sKLN0VBkk
youtu.be/Op2TSnLgkuY
youtu.be/uiq-EcQz_uU
youtu.be/uiq-EcQz_uU
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6. Em seguida, usar o modelo poliedral da garrafa de Klein para que os alunos calculem a sua
característica de Euler, concluindo que sua característica de Euler é igual à do toro.

7. Enunciar o resultado de que duas superfícies fechadas são isomorfas se (e somente se) possuem
mesma orientação e mesma característica de Euler.

Comentários sobre a aplicação: A realização da oficina depende do uso de um modelo poliedral
da garrafa de Klein. Uma possibilidade é dada pela “caixa de Klein”, apresentada na figura 3.3 abaixo,
cuja planificação pode ser acessada através do seguinte link:

www.cs.cmu.edu/~kmcrane/Projects/ModelRepository/KleinBoxPattern.pdf
Assim, seria interessante que cada aluno (ou dupla de alunos) construísse tal poliedro e reali-

zasse o cálculo da característica. Nesse ponto, é necessário que o professor alerte que as faces de um
poliedro não podem possuir buracos, de modo que a parte superior do paralelepípedo que forma
a caixa de Klein não pode ser contado simplesmente como uma face. Para tanto, é necessário criar
novas arestas (e.g. que ligam o vértice do retângulo a um dos vértices do buraco) para formar faces
simplesmente conexas (i.e. sem buracos).

Uma maneira para evitar a inserção de tais arestas “artificiais” é utilizando outro modelo da gar-
rafa de Klein, como o apresentado anteriormente na figura 1.1. Nesse caso, cada aresta é adjacente
a duas faces que pertencem a planos concorrentes entre si. Infelizmente, não fornecemos aqui uma
planificação de tal modelo.

Figura 3.3: Modelo poliedral da garrafa de Klein. Fonte: Keenan’s 3D Model Repository.

3.2 Aplicação das oficinas

Apliquei algumas das oficinas acima em três diferentes turmas da Escola Estadual Dr. Octávio Men-
des, escola de tempo integral localizada na Zona Norte de São Paulo, no bairro de Santana. Em uma
turma de 3ª série do Ensino Médio , foram realizadas as oficinas 1 e 3. A oficina 1 também foi feita
com uma turma de 9º ano do Ensino Fundamental e a parte inicial da oficina 4 foi realizada com
uma turma de 8º ano. Durante todas as aulas, busquei construir o conhecimento junto aos alunos,
incentivando-os ao questionamento e à formulação de hipóteses. Abaixo, será relatado como se deu
a aplicação em cada uma das turmas, apontando algumas dos problemas encontrados e de como os
alunos reagiram às atividades.

Aplicação na 3ª série (oficinas 1 e 3)

Na turma de Ensino Médio, realizou-se as oficinas 1 e 3 em dois dias distintos, ambas durante um
período de 1h30 e que comprometia o tempo de duas aulas do “Itinerário Formativo de Exatas”. A
turma era consideravelmente pequena, composta por 7 alunos.

Primeiramente, foi realizada a oficina 1, que trata do cálculo da característica de Euler de diferen-
tes poliedros a partir da sua construção com papel e da contagem de seus vértices, arestas e faces.
Inicialmente, dado que não era certo se os alunos lembravam de temas relacionados a poliedros,
busquei começar a aula contrastando os conceitos de polígonos e poliedros e pedindo para os alunos

www.cs.cmu.edu/~kmcrane/Projects/ModelRepository/KleinBoxPattern.pdf
https://www.cs.cmu.edu/~kmcrane/Projects/ModelRepository/
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fornecerem alguns exemplos de cada. Também, evidenciei os três elementos dos poliedros que seriam
nosso foco: os vértices, as arestas e as faces.

Em seguida, forneci aos alunos quatro planificações (previamente recortadas) de poliedros iso-
morfos ao toro, sendo dois com seção triangular e dois com seção quadrangular, e quatro de isomor-
fos à esfera, sendo um tetraedro, um cubo, um prisma hexagonal e um poliedro em forma de “L” (o
único não-convexo). Assim, cada aluno ficou responsável pela montagem de um poliedro, enquanto
que o oitavo poliedro poderia ser construído espontaneamente por algum aluno que desejasse.

Enquanto os alunos dobravam as planificações, eu passava em cada mesa recortando e entregando
pedaços de fita adesiva para que os poliedros fossem fixados. Além disso, eu buscava fornecer algu-
mas orientações para as montagens, visto que eu não lhes forneci previamente nenhuma visualização
do resultado final dos poliedros do tipo toro. A facilidade na montagem foi variável: uma aluna, por
exemplo, montou rapidamente um poliedro toroidal triangular, enquanto outro aluno teve dificulda-
des de construir o tetraedro. Durante esse tempo, também surgiram alguns questionamentos sobre o
nome dos poliedros. Por exemplo, eles não lembravam o nome do prisma hexagonal, de modo que
pude relembrar alguns conceitos que lhes foram apresentados no ano anterior, e também queriam
saber os nomes dos poliedros do tipo toro, os quais decidi chamar de “rosquinhas” triangulares e
quadradas (a depender da sua seção horizontal).

Após a montagem, pedi para que cada um dos alunos contasse e registrasse as quantidades de
vértices, arestas e faces de seu poliedro. À medida que eles finalizavam, eles me forneciam suas
respostas, eu as registrava na lousa e dizia se estavam corretas ou não. Em muitos casos, os alunos
erraram a contagem na primeira tentativa, especialmente da quantidade de arestas. Por exemplo, o
aluno responsável pelo cubo disse, inicialmente, que havia 16 arestas; mas, logo após apontar seu
erro, conseguiu fornecer a resposta correta. Para outros casos, como do prisma hexagonal ou de
alguns toroidais, foi necessário uma maior intervenção para chegarmos nas quantidades adequadas.

Vale notar que, em ambas as etapas acima, para que ninguém ficasse para trás, alguns alunos que
já tinham finalizado suas tarefas passaram a auxiliar os que ainda estavam precisavam cumpri-las.

Com o intuito de chegar na fórmula de Euler, após o registro de todas as quantidades na lousa,
lhes questionei se eles poderiam reconhecer algum padrão que fosse comum a todos os poliedros.
Inicialmente, uma das respostas foi a de que os números eram pares, o que realmente era válido
para todos com exceção dos vértices e faces dos poliedros toroidais com seção triangular. Após mais
algumas observações, pudemos perceber que, ao realizar o cálculo de V − A + F , havia alguns que
nos davam o valor 2 e outros que davam o valor 0. Rapidamente, eles observaram que o valor 0 só
era obtido pelos poliedros que tinham buraco, enquanto os outros nos forneciam o valor 2.

Na sequência, tracei alguns comentários sobre Euler e de que ele havia descoberto que a relação
V − A + F = 2 era válida para qualquer poliedro convexo. Após isso, um questão interessante foi
formulada por uma aluna: “Essa relação também vale para o cone? Como contamos vértices, arestas
e faces de um cone?” Tal pergunta me tomou de surpresa e lhes disse que seria mais fácil de eu
responder tal pergunta se eu possuísse fisicamente um cone naquele momento — o que eu não tinha.
Assim, de modo totalmente espontâneo, os alunos começaram a fazer um cone com as folhas de seus
cadernos — uma aluna até tentou iniciar um trabalho em equipe dizendo algo como: “enquanto eu
faço a parte de cima, corta um círculo para fazer a base”. Em conclusão, com o cone feito pelos alunos
pude lhes explicar que, apesar de ele ser formado por curvas, poderíamos marcar alguns pontos na
sua base para serem vértices e, após traçar segmentos até o vértice superior, poderíamos enxergar
suas arestas e notar que a fórmula de Euler também é válida para o cone.

Ao final da aula, outras duas questões interessantes foram formulada por um aluno: “O valor de
V-A+F é sempre igual a 2 ou 0? Qual seria o valor se houvesse dois buracos?” Nesse ponto, decidi
não dar a resposta para os alunos para que se mantivessem curiosos e tentassem encontrar a resposta
sozinhos. Assim, eles puderam notar que, para responder tais questões, bastava colar dois poliedros
do tipo toro e realizar as devidas contagens. No entanto, não chegaram a fazê-lo: já estavam cansados
o bastante e a aula, que era a última do dia, já iria acabar.

A oficina 3 pôde ser aplicada com a mesma turma somente após um intervalo de três semanas.
Desse modo, foi necessário a realização de uma revisão da aula anterior. Tal momento, também,
foi bastante proveitoso para tornar claros alguns conceitos e nomenclaturas, como a de poliedros
convexos e de característica de Euler. Em seguida, comecei a introduzir o conceito de superfície
perguntando-lhes se poderiam fornecer alguns exemplos. Eles puderam dar algumas respostas, mas
todas se restringiam a superfícies planas, como a superfície de uma mesa ou de uma parede. Então,
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Figura 3.4: Poliedros (e cone) construídos pela turma da 3ª série.

apresentei diversos outros exemplos a partir de imagens que foram previamente organizadas através
de uma apresentação por slides.

Figura 3.5: Exemplo de um dos exercícios discutidos com a turma da 3ª série.

Para introduzir o conceito de isomorfismos, assim como descrito anteriormente, foquei no uso de
quatro palavras-chaves: esticar, inflar, encolher e entortar. Em seguida, isso foi ilustrado a partir do
exemplo de um cubo e uma esfera e do clássico exemplo do toro e da xícara. Mesmo assim, acredito
que a efetiva aprendizagem só se deu no momento dos exercícios. Ao invés de lhes entregar ativi-
dades a serem resolvidas em papel, decidi realizar as perguntas para serem respondidas oralmente
a todos da sala. Assim, procedia da seguinte maneira: eu expunha duas superfícies na TV da sala,
escolhia um(a) aluno/a e lhe perguntava se elas seriam isomorfas; após sua resposta, eu abria uma
discussão com o resto da sala para ver se os outros concordavam ou não com a/o colega. Na mai-
oria dos casos, eles puderam acertar, mesmo não fornecendo justificativas; também acredito que as
ocorrências de erros puderam ser bastante aproveitadas: por exemplo, um aluno disse que a esfera
poderia ser isomorfa a um toro caso seus dois polos fossem pressionados um contra ao outro. Assim,
em seguida, mencionei sobre a impossibilidade de criar um buraco dessa maneira, visto que os dois
polos se tocariam quando pressionados ao máximo.

Ao final, busquei propor que os alunos fornecessem o enunciado definitivo para a fórmula de
Euler — e tinha a expectativa de que o fariam. No entanto, eles não responderam como gostaria, de
modo que o fato de que, por exemplo, todo poliedro isomorfo à esfera satisfaz V − A + F = 2 só se
tornou claro após eu dar seu enunciado. Mesmo assim, durante a discussão, uma aluna pôde com
sucesso reparar que o poliedro em forma de “L” é isomorfo a um cubo, dizendo que basta elevar a
parte inferior do “L” até ele encontrar a parte superior.

Aplicação no 9º ano (oficina 1)

Como a aplicação da oficina 1 já foi descrita acima, buscarei apresentar aqui quais foram os prin-
cipais contrastes quando ela foi realizada na turma de 9º ano. O primeiro ponto a se levar em consi-
deração é que essa turma necessitava de maior articulação por parte do professor, visto que ela era
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Figura 3.6: Lousa da sala de aula após a realização da oficina 3 na 3ª série.

consideravelmente maior: havia pouco menos de 30 alunos presentes. Assim, a parte introdutória
da oficina, que tem o intuito de evidenciar o conceito de poliedro e seus elementos, foi realizada
com uma sessão de perguntas que elaborei através da plataforma Kahoot. A realização de tal ativi-
dade foi motivada pela professora da turma, que gostaria de experimentar a plataforma, mas não
sabia exatamente como utilizá-la. Com isso, após serem organizados em duplas, diversas perguntas
eram apresentadas na TV aos alunos, os quais usavam o celular para responderem. Dependendo de
suas respostas e de sua rapidez, eles recebiam pontuações e, em seguida, a plataforma fornecia um
ranqueamento dos participantes, dando uma sensação de jogo para a atividade.

Figura 3.7: Uma das perguntas feitas durante o momento inicial da aula no 9º ano.

Ainda em duplas, entreguei para cada uma delas duas planificações, sendo uma de um poliedro
convexo e uma de um isomorfo ao toro. Durante a montagem, dois pontos interessantes puderam ser
observados. O primeiro deles é que, dado o tamanho da turma, um problema de ordem prática na-
turalmente surgiu: era necessário muito tempo para que eu recortasse e entregasse fita adesiva para
todos os alunos. Com isso, tentei incentivá-los a usar a menor quantidade de fita possível realizando
uma questão que, também, é interessante do ponto de vista matemático: quantas fitas são necessá-
rias para montar uma planificação? Enquanto alguns não souberam responder, outros analisavam a
planificação e davam uma resposta baseado no número de lados que eram colados.

Outro ponto notável é que essa turma tinha menos conhecimento sobre os nomes matemáticos
dos poliedros; assim, alguns passaram a registrá-los de maneiras alternativas. Por exemplo, alguns
diziam que um tetraedro é poliedro em forma de triângulo, enquanto outros diferenciavam os po-
liedros através do nome do integrante da dupla. Por exemplo, um seria o poliedro que Fulano fez
enquanto o outro seria o que Sicrano fez. De qualquer modo, também adotamos a convenção, que foi
bastante aceita, de chamar os poliedros toroidais de rosquinhas.

Durante a contagem de vértices, arestas e faces, foi notável que os alunos dessa turma possuíam
mais dificuldade do que os da 3ª série do Ensino Médio. De fato, uma quantidade considerável de
duplas não conseguiu chegar nos valores corretos para o caso dos poliedros convexos e apenas uma
dupla obteve a resposta correta para o caso das rosquinhas. Desse modo, tentei realizar algumas
revisões das contagens de maneira individual com os alunos, sendo infactível de atender apropriada-
mente a todos os alunos. Ao final da aula, mesmo sem poder garantir o claro entendimento por todos
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Figura 3.8: Alguns poliedros construídos pela turma do 9º ano.

os alunos, respondi quais valores deveriam ser obtidos no cálculo de V −A+ F .
A fim de facilitar o problema da contagem, uma possível abordagem poderia se basear na pla-

nificação dos poliedros. De fato, é muito mais fácil contar as faces de um poliedro quando vemos
a sua planificação. O mesmo também pode ser verdade para as arestas caso estejam claras para o
aluno as regiões de colagem, de modo que a quantidade de arestas na borda da planificação deve ser
divida pela metade. Desse modo, ao invés de pedir, em primeiro lugar, que os alunos montassem os
poliedros para, em seguida, contar suas faces, arestas e vértices, poderia se tratar das duas tarefas de
maneira simultânea. Por exemplo, poderia ser sugerido aos alunos que montassem os poliedros, mas
sem fixá-los com fita adesiva, de modo que eles tivessem uma noção de seu formato e das arestas
identificadas, mas que ainda fosse possível recuperar facilmente sua planificação. Ou, ainda, pode-
riam ser fornecidas duas planificações de um mesmo poliedro para cada aluno, sendo uma utilizada
para a montagem e a outra para o auxílio na contagem.

Por fim, também vale comentar que um dos alunos da turma apresentou dificuldade no cálculo
com números negativos, o que poderia ser remediado caso eu apresentasse o cálculo da característica
dos poliedros como V + F −A ao invés de V −A+ F .

Aplicação no 8º ano (oficina 4)

Em uma turma de 8º ano, que possuía mais de 30 alunos, foi realizada a parte inicial da oficina
4, o que envolve a introdução do conceito de não-orientabilidade através da construção de uma faixa
de Möbius. Desse modo, temas relacionados à característica de Euler estiveram totalmente ausentes
na aplicação da atividade com essa turma.

Comecei a aula fornecendo uma pequena introdução ao conceito de superfícies e, em seguida,
entregando uma faixa de papel sulfite4 previamente recortada para cada aluno. De maneira natural,
as faixas acabaram por apresentar diferenças de tamanho e de formato — algumas delas possuíam
pontas de maneira a formar uma espécie de coroa quando enroladas para formar um cilindro. Esse
fenômeno se torna útil para evidenciar a natureza dos objetos topológicos, que são considerados
equivalentes ao serem ampliados ou reduzidos, e nem sempre é óbvia: por exemplo, durante a aula,
um aluno me questionou sobre os tamanhos possíveis de uma faixa de Möbius.

Em seguida, apresentei à sala como a faixa poderia ser formada, com uma rotação de 180◦ de
sua borda e posterior colagem, em contraste com o modo de colagem do cilindro. Em seguida, pude
conferir que, enquanto alguns realizaram imediatamente a montagem, outros, em especial aqueles
que tinham faixas com “pontas”, só conseguiram com um maior auxílio meu ou dos colegas. Na
sequência, propus um desafio: “vocês conseguem colorir o lado de fora da faixa de uma cor e o lado
de dentro de outra?” Assim, a grande maioria dos alunos retornou a faixa à sua posição plana e
pintou cada um de seus lados retangulares de uma cor. Com isso, alguns alunos puderam notar que
as duas cores se tocavam no momento da colagem da faixa de Möbius. Um aluno, especificamente,
observou mais ainda: “quando realizamos um número ímpar de rotações [de 180◦], as duas cores
diferentes são coladas juntas; enquanto isso, no caso de um número par, as cores iguais são coladas.”

4Por questões práticas, não utilizei papel vegetal. Na verdade, as faixas usadas foram fruto dos restos de papel gerados
após o recorte das planificações de poliedros usadas nas outras oficinas.
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Figura 3.9: Faixa colorida por uma das alunas da turma do 8º ano.

Após algumas considerações, uma segunda atividade foi proposta: desenhar um boneco como o
do Pac-man se locomovendo pela faixa e descobrir para onde ele deve seguir após uma volta. Ideal-
mente, eu deveria ter lhes dito para desenharem o mesmo desenho na frente e no verso da folha, visto
que o conceito de orientação trata da análise de caminhos realizados por, digamos, “seres bidimen-
sionais”, que estão “dentro” da superfície e não “sobre” ela. Essa falta de especificação da atividade
permitiu que os alunos desenhassem o caminho do boneco de diversas maneiras. Mesmo assim, o
fato de que o boneco estaria invertido após uma volta pôde ser percebido de diferentes formas.

Por fim, vale citar que alguns alunos experimentaram outros modos de colagem da faixa. Um de-
les (o mesmo que realizou a observação do penúltimo parágrafo) buscou testar o máximo de rotações
que ele poderia realizar antes de colar as duas bordas; outro tentou reproduzir algumas das imagens
de caráter artístico que expus na TV; outro ainda produziu uma figura, de certo modo, em forma de
“8”, mas que é isomorfa a um cilindro.



Discussão final

Além dos tópicos de Topologia apresentados aqui, muitos outros poderiam ser analisados a fim
de torná-los passíveis de serem ensinados ou divulgados para um público mais abrangente. Entre
eles, está o plano projetivo, que possui três diferentes modelos de visualização tridimensional (veja
[Mar19, Capítulo 6]): a calota cruzada (em inglês cross-cap), a superfície romana e a superfície de
Boy. Apesar de todas poderem ser realizadas de maneira poliedral — inclusive, uma planificação da
calota cruzada pode ser conferida em [Ric08, p. 282] —, apenas a superfície de Boy não apresenta
singularidades. Desse modo, ela é a única que torna evidente, no nosso entendimento, o cálculo
da característica de Euler do plano projetivo através de sua visualização global tridimensional. No
entanto, algum esforço é necessário para apresentar de forma didática a construção de um modelo
poliedral da superfície de Boy. Com esse intuito, pode-se consultar os trabalhos de Brehm [Bre90] e
de Laura Gay [Gay].

Um modo alternativo para resolver o problema do cálculo da característica de Euler do plano
projetivo está em tratar as superfícies através de suas apresentações poligonais. Com isso, uma po-
ligonização das superfícies é obtida através de uma poligonização adequada de tais apresentações
bidimensionais. Esse tipo de visualização das superfícies é apresentado nas atividades de ensino
de Topologia propostas por Ferron [Fer17] e, também, pode ser tratado através de jogos interati-
vos, como os Torus Games de Jeff Weeks, que podem ser acessados via www.geometrygames.org/
TorusGames/index.html.

Outra noção topológica importante que foi deixada de lado neste trabalho foi a de isomorfismos
topológicos dados por corte e (re)colagem de superfícies. O tratamento desse tópico pode ser bastante
proveitoso, visto que, quando aliado às apresentações poligonais, permite mostrar isomorfismos in-
teressantes, como o entre a garrafa de Klein e uma soma de dois planos projetivos ou o entre uma
soma de planos projetivos e uma soma de um toro com um plano projetivo (veja o lema A.0.7).

Ainda, outros famosos teoremas podem ser aproveitados para o ensino e a divulgação científica,
como é o caso dos resultados apresentados nas duas últimas seções do capítulo 1, mas também do
teorema do ponto fixo de Brouwer e do teorema de Borsuk-Ulam, o qual por sua vez é utilizado para
provar o teorema do Sanduíche de Presunto. Além disso, vale considerar o tratamento da conjectura
de Poincaré, cuja demonstração levou cerca de cem anos para ser finalizada e é apresentada de modo
instigante e palatável, por exemplo, no livro de O’Shea [O’S07].

Por fim, outra tema ligado à Topologia e que pode ser bastante estimulante para a divulgação
científica é dado pelos estudos acerca da topologia do Universo, veja [Wee02, Chapter 19]. Por exem-
plo, há quem afirme que o universo possua a topologia do espaço dodecaédrico de Poincaré [Wee04].
Nesse contexto, torna-se relevante a apresentação da noção de uma quarta dimensão e de variedades
de dimensão 3. Sobre esse tema, ainda pode ser proveitoso o uso do conto “A torre da Babilônia”, de
Ted Chiang [Chi16], no qual é apresentado um mundo que “estava enrolado de algum modo fantás-
tico”, em que céu e terra se tocavam.
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Apêndice A

Teorema de Classificação de
Superfícies

A seguir, será apresentado um trabalho realizado pelo aluno durante uma disciplina de Topologia
Algébrica, cursada em 2019 no IME-USP e ministrada pelo prof. Ivan Struchiner.

O objetivo do trabalho é mostrar que toda superfície conexa compacta sem bordo triangulada é
isomorfa exatamente a uma destas superfícies: a esfera, uma soma conexa de toros ou uma soma
conexa de planos projetivos. Aqui, superfície se refere a uma variedade topológica de dimensão 2.
Como principais referências, foram utilizados o livro de John M. Lee [Lee00] e as notas de aula de
Marius Drainic e Ivan Struchiner, Topologie en Meetkunde 2011.

A demonstração realizada aqui se baseia na aplicação de diversas transformações (que preservam
a topologia) sobre apresentações poligonais de superfícies. Uma demonstração alternativa para o te-
orema é dada pela “prova ZIP” [FW99], que, segundo os autores do artigo, possui uma abordagem
“mais leve, sem gorduras e que mantém o gosto clássico da topologia elementar”. Outra possível de-
monstração pode ser conferida no livro de Armstrong [Arm83, Chapter 7], que se baseia na aplicação
de “cirurgias” sobre as superfícies que aumentam o valor de sua característica de Euler. Alguns co-
mentários históricos sobre as primeiros matemáticos a obterem este teorema podem ser encontrados
em [Ric08, pp. 183-184].

Primeiramente, vamos dar um pequeno esclarecimento quanto às hipóteses escolhidas para a su-
perfície. Escolhemos que ela seja triangulada e compacta, porque a prova do teorema é totalmente
baseada na existência de uma apresentação poligonal da superfície e sabe-se que tais superfícies pos-
suem tal apresentação, induzida pela triangulação. Além disso, estamos considerando que ela seja
conexa, pois, desse modo, sua apresentação provém de apenas um polígono. O propósito de ser uma
superfície sem bordo é que sua apresentação seja própria (diremos o que isso significa). Por exemplo,
se retirássemos a hipótese sobre o bordo, o teorema não valeria, já que o cilindro com bordo de altura
e raio unitários é uma superfície compacta conexa triangulada não isomorfa a nenhuma das citadas
acima: de fato, o cilindro é homotópico à esfera S1 e, portanto, seu grupo fundamental é Z, que é
diferente dos grupos fundamentais das superfícies citadas.

A fim de facilitar apresentações de algumas superfícies, assumimos aqui que um polígono com 2
lados é uma circunferência em que um vértice é um ponto fixado na circunferência e o outro vértce é
o diametralmente oposto e, assim, cada aresta é uma semicircunferência.

Definição A.0.1. Seja P ⊂ R2 um polígono convexo com n arestas orientadas, n ⩾ 2, e n vértices
ordenados, i.e., fixa-se um vértice como v0 e, recursivamente, nomeiamos o vértice mais próximo de
vi−1 no sentido anti-horário por vi, de modo que v0 = vn. Além disso, associe para cada aresta de P
um símbolo, que chamaremos de rótulo (em geral, vamos utilizar letras minúsculas como a, b, . . .) e
associe, também, ao seu rótulo a orientação:

• se uma aresta a tem sentido anti-horário (i.e., vai de um vértice vk para um vk+1), temos uma
orientação positiva (+1) e rotulamos a aresta simplesmente por a;

• se uma aresta a tem sentido horário (i.e., vai de um vértice vk+1 para um vk), temos uma orien-
tação negativa (-1) e rotulamos a aresta por a−1.
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Rotuladas todas arestas, iremos denotar essa rotulação do polígono por W = [ae11 . . . aenn ], onde ai
é o rótulo da aresta com vértices vi−1 e vi e ei denota a sua respectiva orientação. Repare que pode-se
utilizar o mesmo rótulo (com uma possível troca de orientação) para duas arestas diferentes. Fazemos
isso com o intuito de representar uma certa colagem dessas arestas na orientação indicada e é desse
modo que produziremos nossas superfícies.

Explicitamente, a colagem será dada com auxílio de um isomorfismo: dada uma aresta c que vai
de um vértice v1 para um w1 e outra d que vai de v2 para um w2, temos que a função h : c −→ d que,
para cada x = (1 − t)v1 + tw1 ∈ c, associa a h(x) = (1 − t)v2 + tw2 ∈ d é um isomorfismo. Assim,
sendo R a região poligonal de P (i.e., a reunião de P com seu interior), podemos construir um espaço
X = R/∼, com ∼ sendo a seguinte relação de equivalência:

• se p ∈ R está no interior de R, então p é equivalente somente a p;

• sejam bi, bj duas arestas de P que possuem o mesmo rótulo, então bi ∋ x ∼ h(x) ∈ bj .

Desse modo, através das rotulações do polígono P , obtivemos o espaço X e diremos que X foi
obtido através da rotulação W (de P ) e que W é uma apresentação poligonal de X. Também, vamos
incluir aqui espaços que são obtidos a partir da rotulação de um número finito de polígonos com
rótulos W1 . . .Wm e denotaremos a apresentação de X por [W1,W2, . . . ,Wm].

Exemplo A.0.2. Para nossos exemplos básicos de superfícies, temos as seguintes apresentações poli-
gonais, que serão nossos padrões:

1. A esfera S2 é dada por [aa−1];

2. O toro T2 por [aba−1b−1];

3. O plano projetivo P2 por [aa].

Tão importante quanto entender como a superfície é dada é saber como poderemos transformá-la
em outras de modo que elas continuem isomorfas. Assim, vejamos algumas transformações desse
tipo, a que chamaremos de transformações elementares:

• Corte: Dada uma rotulação w e um rótulo b não presente em w, então chamamos de corte ao
longo de b a transformação: w = [a1 . . . akak+1 . . . an] → [a1 . . . akb, b

−1ak+1 . . . an]

• Colagem: É a transformação inversa ao corte, isto é, uma rotulação da forma [a1 . . . akb, b
−1ak+1 . . . an]

é levada à rotulação [a1 . . . akak+1 . . . an]. E dizemos que ocorreu uma colagem ao longo de b.

• Rotação: Esta baseia-se simplesmente em mudar onde foi definido o vértice v0 do polígono:
[a1 . . . ak . . . an] → [ak . . . ana1 . . . ak−1]

• Rerrotulação: Essa transformação é dada simplesmente através da mudança do símbolo de
algum rótulo. Por exemplo, se a é o rótulo de uma certa aresta e b é um símbolo não usado na
rotulação, podemos trocar todas as ocorrências de a por b.

• Reflexão: Esta baseia-se em, fixado o vértice v0, refletir o polígono de modo que cada vértice
vk passe a ser o vértice vn−k, lembrando que fixamos a ordem no sentido anti-horário. Assim,
a orientação de cada rótulo é trocada e o rótulo que aparecia na k-ésima posição vai para a
(n+ 1− k)-ésima posição: [ae11 . . . aenn ] → [a−en

n . . . a−e1
1 ]

• Dobradura: Nesse caso, quando temos um rotulação da forma [V ee−1W ], onde V e W são
pedaços não-vazios da rotulação e a não aparece em V ou em W , podemos simplificá-la por
[VW ]. Pode-se visualizá-la melhor na figura abaixo.



39

Figura A.1

Proposição A.0.3. Dado um espaço X que possui uma apresentação poligonal W , se aplicarmos as transfor-
mações de corte ou colagem sobre W , então o espaço obtido através dessa nova apresentação será isomorfo a
X.

Demonstração. Seja X o espaço dado pela apresentação poligonal W = [V1V2] e Y o dado pela apresen-
tação após um corte, isto é, por [V1b, b

−1V2]. Assim, como na figura abaixo, sendo P a região poligonal
em que ocoreu a rotulação W e sendo Q1 e Q2 os dois polígonos gerados após o corte de P e rotulados
por V1b e por b−1V2, temos que X = P/∼ e Y = (Q1

∐
Q2)/∼.

Figura A.2

Defina ϕ : Q1

∐
Q2 → P a função que, restrita a Q1 ou a Q2, é a inclusão deles em P . Repare que

essa função é sobrejetora e só não é injetora nos pontos da aresta comum a Q1 e Q2, a rotulada por b.
Agora, vejamos que a relação seguinte é um isomorfismo:

φ : Y → X

[q] 7→ [ϕ(q)].

1. φ é, de fato, uma função: seja p, q ∈ Q1

∐
Q2 tal que [p] = [q] (i.e. p ∼ q), se p está no interior de

Q1 ou de Q2, vale que p = q; se p ∈ Q1 não é um vértice e está na aresta rotulada por b, então
q = p ou q ∈ Q2 é o único outro ponto que está identificado com p e vale que ϕ(p) = ϕ(q) (para
p ∈ Q2 é análogo); agora, levando em conta que as rotulações nas arestas, que não a rotulada
por b, de Q1

∐
Q2 são as mesmas que as em P , se p está em uma aresta que não a b, então vale

que ϕ(p) ∼ ϕ(q). Assim, de qualquer modo, temos [ϕ(p)] = [ϕ(q)].

2. φ é injetora: como as rotulações de Q1

∐
Q2 e P só diferem pelas duas arestas com rótulo b e ϕ

só não é injetora nessas arestas, basta ver a injetividade ai: isto é, sendo p ∈ Q1 ponto da aresta
b e q tal que ϕ(q) ∼ ϕ(p), vale que ϕ(p) está no interior de P , então ϕ(p) = ϕ(q) e, assim p e q
estão identificados pelo rótulo b, isto é, [p] = [q].

3. φ é sobrejetora: isso segue da sobrejetividade da função ϕ.

4. φ é contínua: Sendo π1 : P → X e π2 : Q1

∐
Q2 → Y as aplicações quocientes, é de se reparar

que ∀q ∈ Q1

∐
Q2, (φ ◦π2)(q) = [ϕ(q)] = (π1 ◦ϕ)(q). Além disso, pela propriedade da topologia
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quociente, vale que: φ é contínua ⇔ φ ◦ π2 é contínua. Assim, o resultado segue, pois φ ◦ π2 =
π1 ◦ ϕ e (π1 ◦ ϕ) é contínua, já que é composta de contínuas.

5. φ é isomorfismo: isso provém dos itens acima e do fato de que Y é compacto e X é Hausdorff.

Repare que, assim, provamos que, se Y é obtido de uma apresentação de X que sofreu um corte,
então X e Y são isomorfos. Mas, também, podemos pensar que X e Y são isomorfos quando X é
obtido de uma apresentação de Y que sofreu uma colagem.

Definição A.0.4. Duas rotulações V e W são ditas equivalentes se podemos obter W através da
aplicação sobre V de uma sequência de transformações elementares.

Dando coerência a essa definição, pode-se provar, generalizando a proposição, que dois espaços
obtidos através de apresentações poligonais equivalentes são isomorfos. É fácil de se notar isso para
as transformações de rotação e reflexão, já que são movimentos rígidos no plano euclidiano, e para a
de rerrotulação, pois é uma simples troca de nomes.

Em seguida, valendo do fato de que nossa superfície não tem bordo, veremos que a sua apresenta-
ção poligonal não pode ter rótulos solitários, isto é, todas as arestas do polígono possuem uma aresta
companheira para se identificar. Também, por conta de certa regularidade das variedades, veremos
que essa companheira é única. Primeiro, daremos um nome para quando isso acontece:

Definição A.0.5. Dizemos que uma rotulação de um polígono é própria se cada um de seus rótulos
aparece exatamente duas vezes.

Proposição A.0.6. Dada uma superfície S compacta triangulada sem bordo, a apresentação poligonal induzida
por sua triangulagação é própria.

Demonstração. Escreva como {T1, . . . , Tn} o conjunto dos triângulos dos quais, através da rotulação
de suas arestas, obtemos a superfície S. Como abuso de notação, os Ti também vão ser usados para
se referir às suas cópias isomorfas em S, dadas pela sua triangulação.

Comecemos vendo que cada rótulo aparece pelo menos duas vez na apresentação: de fato, se
um rótulo aparecer apenas uma vez, então há uma aresta de algum triângulo Ti que não é identifi-
cada com nenhuma outra; assim, tome x um ponto pertencente a essa aresta, afirmo que qualquer
vizinhança de x não será isomorfa a um aberto de R2.

Como ilustrado na figura 3, isso acontece, porque, sendo U vizinhança de x ∈ S e B ⊆ U uma
subvizinhança aberta isomorfa a um semidisco (ou a um setor de disco se x for um vértice) que
contém x, temos que x está no bordo de B e, assim, B \ {x} é espaço simplesmente conexo (isso
acontece, pois B \ {x} é um espaço contrátil: uma homotopia pode ser dada através de uma rotação
dos pontos até um mesmo segmento de raio, que pode ser contraído a um ponto). Enquanto que, se
tomarmos um aberto A de R2 e a ∈ A, vale que A \ {a} não é simplesmente conexo (pois os laços
que contornam a não são triviais). Assim, B \ {x} ≇ A \ {a} ⇒ B ≇ A e, portanto, U não pode ser
isomorfo a um aberto de R2, senão a restrição do isomorfismo a B contradiria que B ≇ A. Desse
modo, a superfície não satisfaria a condição de variedade sem bordo.

Agora, vejamos que o rótulo deve aparecer, no máximo, duas vezes. Suponha que um rótulo
apareça um número m ≥ 3 de vezes, então há m arestas de triângulos Ti1 , . . . , Tim sendo identificadas.
Escolha y ∈ S um não-vértice pertencente a uma dessas arestas após serem identificadas, e seja V ⊆ S
vizinhança de y, temos, também, que V não é isomorfa a nenhum aberto de R2.

A razão desse fato está que, tomando p/ todo ik um subespaço Cik ⊂ V ∩ Tik isomorfo a um
semidisco, temos que C = ∪{Cik : k = 1, . . . ,m} ⊆ V é vizinhança aberta de y isomorfa a k semidis-
cos colados pelo diâmetro (a figura abaixo ilustra o caso k = 3). Assim, C \ {y} é homotópico a um
buquê de (m − 1) 1-esferas, já que, retirando o ponto y, temos uma equivalência de homotopia com
o espaço dado por m semiesferas de dimensão 1 coladas pela bordas do diâmetro, o que é isomorfo
a uma esfera (de dim. 1) com (m − 2) cordas coladas entre os polos, sendo que cada corda pode ser
continuamente deformada até formarem um S1 colado por um ponto com a esfera; isto é, é gerado o
buquê de (m− 1) 1-esferas.

Com isso, computado através do Teorema de Seifert-van Kampem, temos que π1(C \ {y}, c) é
isomorfo ao grupo livre de m− 1 ≥ 2 geradores. Por outro lado, todo aberto de R2 contém um disco
aberto D, de modo que D \ {d} é homotópico a S1 e π1(S

1, x) é o grupo livre de 1 gerador, portanto
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C \ {y} ≇ D \ {d} ⇒ C ≇ D; do mesmo modo, toda subvizinhança C ′ ⊆ C de y é não-isomorfa a um
disco. Isso conclui a nossa prova, porque se V fosse isomorfa a um aberto de R2, C seria isomorfa a
um aberto de R2.

Figura A.3: As vizinhanças B e C não são isomorfas a abertos de R2.

Com esse arcabouço, enfim, podemos desenvolver uma prova para o teorema através de trans-
formações elementares da apresentação poligonal da nossa superfície levemente arbitrária. Mas, pri-
meiro, façamos um lema que, além de ser útil para a demonstração do teorema, exemplifica bem
como podemos usar essas ferramentas para concluir que duas superfícies são isomorfas.

Lema A.0.7. A soma conexa P2#P2#P2 é isomorfa à T2#P2.

Demonstração. Temos que uma apresentação de P2#P2#P2 é [aabbcc]. Façamos algumas transforma-
ções:

[aabbcc] ≈ [abbcca] (rotação) ≈ [abd, d−1bcca] (corte ao longo de d)

≈ [dab, ad−1bcc] (rotação) ≈ [dab, b−1da−1c−1c−1] (reflexão e rotação do 2º polígono)

≈ [dada−1c−1c−1] (colagem ao longo de b)

É de se notar que esta última é uma apresentação (mais clara) da soma K#P2, onde K é a garrafa
de Klein. Agora, rerotulando c−1 por c, continuemos, para chegar em uma apresentação de T2#P2

(algo, a menos de rerotulação, da forma [aba−1b−1cc]):

[dada−1cc] ≈ [cdae−1, eda−1c] (rotação e corte ao longo de e)

≈ [dae−1c, c−1ad−1e−1] (rotação do 1º e reflexão do 2º)

≈ [dae−1ad−1e−1] (colagem ao longo de c) ≈ [d−1e−1dae−1a] (rotação)

≈ [d−1e−1daf, f−1e−1a] (corte ao longo de f)

≈ [fd−1e−1da, a−1ef ] (rotação do 1º e reflexão do 2º)

≈ [d−1e−1deff ] (colagem ao longo de a e rotação)

Assim, chegamos em uma apresentação de T2#P2 a partir de uma de P2#P2#P2.

Teorema A.0.8. Toda superfície M compacta triangulada sem bordo conexa é isomorfa a uma das seguintes
superfícies (com suas respectivas apresentações poligonais):

1. a esfera S2 : [aa−1];
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2. uma soma conexa de m toros T2# · · ·#T2 : [b1c1b
−1
1 c−1

1 . . . bmcmb−1
m c−1

m ];

3. uma soma conexa de k planos projetivos P2# · · ·#P2 : [a1a1 . . . akak].

Demonstração. Sabendo que M é triangulada e compacta, temos que ela poussui uma apresentação
poligonal induzida pela triangulação e que essa apresentação é própria, pela proposição 2. As-
sim, quando um par de rótulos aparecer na apresentação com orientação trocada, isto é, na forma
a, ..., a−1, chamaremos o par de circular e, quando ele aparecer com a mesma orientação, isto é, a, ...a
ou a−1, ..., a−1, o chamaremos de projetivo. Além disso, se uma apresentação, ou um pedaço da apre-
sentação, é formada somente de pares circulares, diremos que ela é do tipo toro.

A fim de provar o teorema, vamos transformar em alguns passos a apresentação de M em alguma
das três apresentações padrões: de S2 ou de soma de T2 ou de soma de P2.

PASSO 1: M admite uma apresentação poligonal proveniente de apenas um polígono. Lembrando que
M é conexa, se a apresentação é dada através da rotulação de dois ou mais polígonos, então alguma
aresta de cada polígono deve estar identificada (através da rotulação) com uma aresta de um polígono
diferente; senão, teríamos pelo menos um polígono que não identifica suas arestas com os outros e,
ao fazer a colagem das arestas, a superfície gerada por esse polígono estaria desconexa das outras
e estaríamos portanto separando a superfície em, pelo menos, duas componentes conexas. Sabendo
isso, podemos aplicar transformações de colagem dessas arestas identificadas (junto com rotações e
reflexões se necessário) para reduzir nossa apresentação poligonal até que seja dada através de um
único polígono.

PASSO 2: Se M não é isomorfo à esfera, então M admite uma apresentação sem pares circulares adjacentes.
Todo par circular da apresentação de M pode ser eliminado através de uma dobradura, a não ser que
ele seja o único par da apresentação, que é o caso da apresentação padrão da esfera [aa−1] e poderia
ser o caso da superfície se ela fosse isomorfa à esfera.

A partir de agora, assumiremos que M não é isomorfo à esfera e que o passo 2 foi aplicado.
PASSO 3: M admite uma apresentação em que todos os pares projetivos são adjacentes e estão todos conca-

tenados, isto é, a apresentação será da forma [a1a1 . . . akakV ], sendo V do tipo toro. Se a apresentação possui
um par projetivo, então ela é da forma [UaV aW ]. Podemos assumir que U ,V e W são não vazios,
façamos algumas transformações:

[UaV aW ] ≈ [Uab, b−1V aW ] (corte ao longo de b)

≈ [U−1b−1a−1, aWb−1V ] (reflexão do 1º e rotação do 2º)

≈ [b−1Wb−1V U−1] (colagem ao longo de a e rotação)

≈ [b−1Wc, c−1b−1V U−1] (corte ao longo de c)

≈ [Wcb−1, bcUV −1] (rotação do 1º e reflexão e rotação do 2º)

≈ [WccUV −1] (colagem ao longo de b)

≈ [c−1c−1W−1V U−1] (reflexão e rotação) ≈ [UV −1Wcc] (reflexão)

≈ [aaUV −1W ] (rotação e rerotulação de c)

Repare que, se havia outros pares de rótulos adjacentes no início, eles estariam ambos em U ou
em V ou em W e, portanto, continuam adjacentes na última apresentação. Assim, apesar de pos-
sivelmente terem sido criados outros pares projetivos por causa da reflexão de V , o número de
pares não adjacentes dimininui por pelo menos um. Logo, após um número finito de operações
dessa chegaremos na forma desejada: suponha que UV −1W não é do tipo toro, i.e., existe b tal
que w = [aaUV −1W ] = [aaUbV −1bW ], aplicando novamente as transformações acima, obtemos
w ≈ [bbaaUV −1W ]; agora, basta repetir esse processo até que UV −1W seja do tipo toro. Perceba,
ainda, que poderiam ter sido criados novos pares circulares adjacentes na reflexão de V , mas eles
podem ser eliminados aplicando o Passo 2.

PASSO 4: Se a apresentação de M possuir pares circulares, então há pelo menos dois deles e eles ocorrem
intercalados, i.e. ela é da forma [UaV bWa−1Xb−1]. Pelo passo 3, sabemos que ela tem a forma w =
[a1a1 . . . akakV ], V do tipo toro, então, todos os pares circulares de w estão em V . Assim, escolha
a, a−1 o par cujas ocorrêcias estão o mais perto possível, isto é, com a menor quantidade de rótulos
entre eles, e assumiremos, s.p.g., que a ocorre primeiro, senão basta fazer uma simples rerotulação.
Desse modo, sendo b algum rótulo entre a e a−1 (lembrando que o passo 2 foi aplicado), temos que
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b forma um par circular, pois V é do tipo toro, e b−1 ocorre antes de a ou depois de a−1, senão a, a−1

não seria o par mais próximo possível. Assim, com uma eventual rerotulação, temos w exatamente
como enunciado.

PASSO 5: M admite uma apresentação em que, havendo dois pares circulares intercalados, eles ocorrem jun-
tos sem outros rótulos entre eles: aba−1b−1; e mais: todos esses blocos podem ocorrer concatenados. Temos que,
dado o passo 4, a apresentação é dada, a menos de rotação, por [WaXbY a−1Zb−1] . Transformemó-la:

[WaXbY a−1Zb−1] ≈ [WaXc, c−1bY a−1Zb−1] (corte ao longo de c)

≈ [XcWa, a−1Zb−1c−1bY ] (rotação do 1º e 2º)

≈ [WZb−1c−1bY Xc] (colagem ao longo de a e rotação)

≈ [WZb−1d−1, dc−1bY Xc] (corte ao longo de d)

≈ [d−1WZb−1, bY Xcdc−1] (rotação do 1º do 2º)

≈ [aba−1b−1WZYX] (colagem ao longo de b, rotação e rerotulação)

Assim, os pares que estavam adjacentes anteriormente foram mantidos assim e juntamos os pares que
estavam intercalados. Agora, repita isso para todos os pares circulares e teremos uma apresentação
da forma w = [b1c1b

−1
1 c−1

1 . . . bmcmb−1
m c−1

m W ], onde W só possui pares projetivos: suponha que existe
c, d tal que w = [aba−1b−1W ] é da forma [aba−1b−1WcZdY cXd−1], fazendo como acima, obtemos
[cdc−1d−1aba−1b−1WZYX] e repita isso até que WXY Z só tenha pares projetivos. Para terminar,
façamos uma rotação: w ≈ [Wb1c1b

−1
1 c−1

1 . . . bmcmb−1
m c−1

m ]. (Observe que, pelo passo 3, W é dado por
concatenação de pares projetivos adjacentes).

PASSO 6: M é isomorfa a uma soma conexa de toros ou a uma soma conexa de planos projetivos. Pelo passo
3, a apresentação é dada de modo que todos os pares projetivos estão adjacentes e, pelos passos 4 e 5,
todos os pares circulares ocorrem em grupos intercalados como aba−1b−1. Assim, se a apresentação
não possuir pares circulares, então ela é sequência de pares projetivos [a1a1 . . . anan] e, portanto, a
superfície é isomorfa a uma soma conexa de pares projetivos. Se ela não possuir pares projetivos,
então ela é da forma [a1b1a1

−1b1
−1 . . . ambmam

−1bm
−1] e, portanto, é isomorfa a uma soma conexa de

toros.
Agora, se a apresentação possui tanto pares projetivos como pares circulares, temos que, dados

os passos anteriores, a apresentação é da forma [a1a1 . . . akakb1c1b
−1
1 c−1

1 . . . bmcmb−1
m c−1

m ], isto é, uma
soma conexa de planos projetivos somado a uma soma conexa de toros: P2# · · ·#P2#T2# · · ·#T2.
Aqui podemos aplicar o lema sucessivamente para substituir cada ocorrência de P2#T2 por P2#P2#P2

e obter assim uma soma conexa de k+2m planos projetivos (para cada toro, colocamos 2 planos pro-
jetivos). Então, nesse caso, a superfície seria isomorfa a uma soma de planos projetivos. Finalizamos,
assim, a prova.

Uma das consequências do teorema é que uma superfície é orientável somente quando for uma
esfera ou soma conexa de toros; caso contrário, ela é isomorfa a uma soma de planos projetivos.

Agora, para mostrar que a lista de superfícies do enunciado não é redundante (isto é, não tem re-
petições), é geralmente necessário a utilização de algum invariante topológico, como o grupo funda-
mental ou a característica de Euler. Este pode ser obtido de algumas triangulações das apresentações
poligonais das superfícies, nos fornecendo os seguintes valores:

• a característica de Euler da esfera é igual a 2;

• a característica de uma soma conexa de g ⩾ 1 toros é igual a 2− 2g;

• a característica de uma soma conexa de m ⩾ 1 planos projetivos é igual 2−m.

Em síntese, obtemos a seguinte caracterização de isomorfismo entre superfícies:

Corolário A.0.9. Duas superfícies (compactas sem bordo conexas) são isomorfas se, e somente se, possuem
mesma característica de Euler e mesma orientabilidade (i.e. são ambas orientáveis ou ambas não-orientáveis.)

Para o caso de superfícies com bordo, o resultado acima pode ser reformulado se considerarmos
também o número de componentes de bordo da superfície.
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Apêndice B

Planificação de toros poliedrais

Para a aplicação das oficinas, foram utilizados quatro tipos de poliedros isomorfos ao toro, sendo que
as seções horizontais de dois deles são triângulos e dos outros dois são quadrados. As planificações
de dois desses poliedros, sendo uma triangular e uma quadrada, foram retiradas do site “Wolfram
Demonstrations Project” [Hafb], enquanto que as outras duas foram construídas usando o Geogebra
e disponibilizadas através do link https://www.geogebra.org/m/bdu4gxph. Na página abaixo,
ambas as planificações podem ser encontradas em formato pronto para impressão.

Sobre as planificações construídas, o ponto crucial para realizá-las está em encontrar o ângulo na
base da face trapezoidal, que na figura B.1 abaixo está representado por β.

Figura B.1: Células básicas que compõem a planificação de um toro poliedral.

Seja a a altura do face retangular e b a altura da face em forma de trapézio. Se quisermos que a
seção horizontal do poliedro seja um n-ágono regular, então o ângulo β é determinado pela seguinte
igualdade:

tgβ =
b√

b2 − a2

4

· tg
(αn

2

)
,

onde αn representa a medida do ângulo interno de um n-ágono regular, que é igual a
π(n− 2)

n
. Em

particular, notamos que uma condição necessária para sua construção é que b > a/2. De fato, isso é
fundamental para que as faces trapezoidais se juntem após serem dobradas.

Usando tal informação, podemos construir, assim, a planificação de um toro poliedral a partir
dos seguintes quatro parâmetros: a altura do trapézio, o comprimento e a altura do retângulo e a
quantidade n de lados da seção horizontal do poliedro.

45

https://www.geogebra.org/m/bdu4gxph


46 APÊNDICE B. PLANIFICAÇÃO DE TOROS POLIEDRAIS

Figura B.2: Planificação de dois poliedros isomorfos ao toro. À esquerda, um com seção triangular e,
à direita, um com seção quadrada.
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