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Resumo

Este trabalho tem como foco a proposta de abordagens para a divulgagdo e o ensino de Topologia
para estudantes de Ensino Fundamental e Médio. Tais propostas sdo inspiradas no desenvolvimento
histérico dessa drea da Matematica, tendo como ponto de partida as férmulas de Euler e de Descartes
sobre poliedros. Para além da mera proposicdo, foi possivel aplicd-las através de oficinas realizadas
em turmas de Ensino Fundamental e Médio de uma escola de Sdo Paulo. Além da exposicdao de
tais oficinas e do embasamento matematico que a inspirou, o presente texto também apresenta uma
construgdo de uma bola cabeluda com o intuito de ilustrar o teorema que carrega o seu nome.






Abstract

This work focus on presenting several approaches related to the divulgation and teaching of Topo-
logy for middle and high school students. These proposals are inspired on the historical development
of this branch of Mathematics, and use Euler’s and Descartes’” formulas about polyhedra as starting
points. Beyond simply proposing approaches, it was possible to apply them through workshops
which were done in middle and high school classes in a Sdo Paulo school. Besides presenting the
aaplication of such workshops and the mathematical background which inspired it, this text also
presents a construction of a hairy ball with the intention of illustrating the theorem which carries its
name.
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Introducao

No Ensino Basico, a Geometria é vista como a parte mais visual da Matemadtica, mas, ainda assim,
muitas vezes é dado um enfoque bastante grande a aplicagdo mecanica de férmulas. Isso pode acabar
por reduzir o carater criativo que a Matemadtica e, em especial, a Geometria possuem. Por outro lado,
acreditamos que é importante mostrar aos estudantes a imensidade de possibilidades que existem nos
campos de estudo da Matematica. Assim, pensamos que um reino da Matematica consideravelmente
desconhecido para a sociedade em geral, mas que possui conceitos e ideias bastante visuais é o da
Topologia.

Mesmo assim, devemos lembrar que a grade curricular escolar ja possui uma variedade de con-
teddos, e que a inclusdo de mais um tema necessita, no minimo, de uma boa quantidade de bom
senso. Assim, para propor novos assuntos, torna-se necessario a realizagdo de didlogos com contet-
dos ja previstos na grade curricular. Esse é o caso, por exemplo, da férmula de Euler, que é genera-
lizada dentro da Topologia para qualquer superficie, mas que dialoga com a habilidade EFO6MA17
da BNCC: “quantificar e estabelecer relagdes entre o ntimero de vértices, faces e arestas de prismas e
piramides, em fung¢do do seu poligono da base, para resolver problemas e desenvolver a percepgao
espacial”.

Em outro aspecto, acreditamos que o tema de Topologia seja propicio para evidenciar a inter-
face entre Arte e Matemadtica. Com efeito, muitas superficies topoldgicas, como modelos da faixa de
Mobius e da garrafa de Klein, sdo objetos de arte (veja [FS08] por exemplo). Desse modo, pode-se
abrir um campo para atividades interdisciplinares que tenham como principal objetivo estimular a
criatividade dos alunos.

O principal objetivo deste trabalho estd em apontar caminhos para o ensino de Topologia de Su-
perficies, com especial enfoque em estudantes de Ensino Fundamental e Médio. Tais caminhos séo,
de certa forma, inspirados no préprio desenvolvimento histérico da drea e tém como ponto de par-
tida as férmulas de Euler (1750) e de Descartes (~1630) sobre poliedros. A primeira delas afirma
que um poliedro convexo com F' faces, A arestas e V' vértices satisfaz a igualdade V — A+ F' = 2,
enquanto que a segunda afirma que a deficiéncia angular total de qualquer poliedro convexo é igual
a 720° (ou 4m). Como pode-se notar, tais resultados trazem a mente uma visdo bastante geral sobre
o tipo de informagdo que é comum a uma diversidade de formas geométricas. Basicamente, essa é
a esséncia da Topologia, a drea da Matemaética que estuda as propriedades de objetos geométricos
preservadas quando sdo submetidos a deformacgdes continuas, como esticar, inflar, entortar ou enco-
lher. Com o passar dos anos, ao longo do século XIX, a férmula de Euler foi analisada para poliedros
ndo-convexos e notou-se que existem tanto casos em que ela continua sendo valida (como um poli-
edro “com degraus”) como casos em que ndo (como um poliedro com buracos). Apenas no fim do
século, o trabalho de Poincaré pdde dar a resposta definitiva para tais estudos: um poliedro satisfaz
a férmula de Euler quando ele é topologicamente equivalente a uma esfera. Atualmente, o niimero
dado por V — A + F' é comumente chamado de caracteristica de Euler-Poincaré.

Na literatura, também puderam ser encontrados outros trabalhos que propdem atividades que vi-
sam o ensino de Topologia no Ensino Bésico. Entre eles, elencamos as monografias de Ferron [Ferl7],
Sugarman [Sug14] e Fiorotto [Fi020]. A principal diferenga do presente trabalho em relagéo a esses €,
de fato, o uso da férmula de Euler como ingrediente central e motivador.

Estrutura do texto: No primeiro capitulo, sdo apresentadas algumas das bases matemadticas que
justificam e esclarecem a relacdo que a férmula de Euler possui com a Topologia. Também, é apresen-
tada a importancia de tal férmula para a Matematica, através da exposicdo de diferentes problemas
nos quais ela pode ser aplicada. No capitulo seguinte, é apresentado o processo de constru¢do de um
objeto fisico que visa ilustrar um importante resultado de Topologia, o teorema da bola cabeluda. Isso
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6 CONTEUDO

foi feito com o intuito de fornecer mais uma ferramenta para a divulgacdo de Topologia. No terceiro
capitulo, sdo apresentados os principais resultados do presente trabalho: oficinas de Topologia que
foram aplicadas com turmas de Ensino Fundamental e Médio. Assim, sdo descritas tanto as propos-
tas ideais das oficinas quanto as suas aplicagdes. Num capfitulo final, sdo discutidos outros tépicos de
Topologia que ndo foram abordados aqui, mas que poderiam ser proveitosamente analisados tendo
como foco as suas didatizagoes.

Terminologia e nota¢des matematicas: Quando estivermos falando sobre um poliedro, as letras
maitsculas V, A e F serdo usadas para denotar, respectivamente, as suas quantidades de vértices,
arestas e faces. Além disso, as palavras “isomorfismo” ou “isomorfas” sempre serdo utilizadas para
se referir a isomorfismos topolégicos; em outras palavras, elas substituirdo os usuais termos “home-
omorfismo” e “homeomorfas”.



Capitulo 1

Exposicao tedrico-matematica

Neste capitulo, apresentaremos aspectos tedricos de Topologia Algébrica que esclarecem o tratamento
topoldgico dado a férmula de Euler. Vale ressaltar que, tendo em vista a clareza da exposigdo, o rigor
matematico adotado aqui é menor do que aquele geralmente encontrado em livros-texto de Matema-
tica. Também, sempre que possivel, serdo apresentados comentarios histdricos sobre o desenvolvi-
mento e a descoberta dos tépicos apresentados.

As principais referéncias para a escrita desse capitulo sdo os livros de Richeson [Ric08], que apre-
senta o nascimento da Topologia através da férmula de Euler, e o de Federico [Fed82, Parts I and II],
que apresenta uma tradugdo comentada de um manuscrito de Descartes sobre poliedros.

1.1 Poliedros e Superficies

Um espago topolégico X nada mais é do que um conjunto munido de uma topologia, isto é, uma
escolha adequada dos subconjuntos de X para serem chamados de abertos. Equivalentemente, uma
topologia é determinada ao escolhermos quais subconjuntos podem ser considerados as vizinhangas
de seus pontos. Essas nog¢des nos ddo uma forma bastante interessante de pensar o conceito de con-
tinuidade de fungdes, sem a necessidade de utilizar os usuais “epsilons” e “deltas” da Analise Real.
Mais precisamente, temos o seguinte:

Definic¢do 1.1.1. Uma funcdo f: X — Y entre os espagos topolégicos X e Y é continua se, para todo
aberto A de Y, vale que f~![A] é um aberto de X.

Também, definimos que dois espagos sdo topologicamente isomorfos quando existe uma fungéo
que preserva suas topologias. Em outras palavras, temos que uma fungéo f: X — Y é um isomorfismo
topolégico se for uma fungdo continua cuja inversa também é continua.

Vista do modo acima, a disciplina de Topologia pode ser estudada de um modo até mesmo des-
vinculado de aspectos geométricos. No entanto, no caso deste trabalho, focaremos nos aspectos mais
visuais dessa teoria. Por exemplo, os espagos topolégicos que estudaremos sdo as superficies, como
a esfera, o toro, a garrafa de Klein e tantas outros. Formalmente, a maneira mais usual de definir
uma superficie ¢ como um espago topoldgico localmente isomorfo a R?, enquanto que os espacos lo-
calmente isomorfos a R™ sdo chamados de variedades (topolégicas) de dimensdo n.

Essencialmente, podemos pensar que ha quatro tipos de isomorfismos entre superficies [Fio20, p.
33]:

1. Esticar ou inflar a superficie ou partes dela

2. Encolher a superficie ou partes dela

3. Entortar a superficie ou partes dela

4. Recorte e (re)colagem de partes da superficie, obedecendo algumas regras.

Um dos principais focos do presente trabalho estd nas nogdes topoldgicas que sdo motivadas pela
férmula de Euler. Desse modo, precisamos fornecer alguns esclarecimentos sobre os objetos centrais
do nosso estudo: os poliedros.

Primeiramente, definamos poligonos:
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Defini¢do 1.1.2. Uma curva em R? ¢é poligonal se ela é formada pela unido de finitos segmentos de
retas. Um poligono é a regido em R? compacta determinada por uma curva poligonal fechada e sem
autointersecdes.

Com essa definigdo, temos que todo poligono é, em particular, isomorfo a um disco. Isso é uma
consequéncia do teorema de Jordan-Schoenflies por exemplo, veja [Wik23].

Agora, deve-se ficar claro que ndo hd uma tinica forma universal de se definir poliedros, de modo
que cada uma depende do contexto e dos interesses de estudo de cada um. Para o nosso caso, é
desejavel que todo poliedro seja, em particular, uma superficie topoldgica. Assim, um poliedro sera
uma reunido de um numero finito de poligonos (i.e. faces) satisfazendo certas regras, como:

* cada lado de um desses poligonos é, também, lado de exatamente um outro poligono. Em
outras palavras, cada aresta é adjacente a exatamente duas faces.

* ndo hd singularidades, como as geradas quando colamos duas pirdmides através de seus vérti-
ces.

Uma outra condic¢do que é muitas vezes exigida é a de que a intersecdo de duas faces é igual a
uma aresta, um vértice ou vazia. Aqui, ndo iremos pedir tal exigéncia tendo em mente que alguns
poliedros com auto-interse¢des, como modelos poliedrais do plano projetivo ou da garrafa de Klein
(figura 1.1), também merecem a nossa atengdo.

Figura 1.1: A esquerda, um modelo poliedral da garrafa de Klein. A direita, um modelo poliedral da
superficie de Boy (que é isomorfa ao plano projetivo) conhecido como poliedro de Brehm; figura de
Laura Gay [Gay] (sob a licenga CC BY-NC-SA 3.0 DEED).

1.2 A(s) féormula(s) de Euler, Descartes e Poincaré

Em 1750, Euler inaugurou uma nova forma de estudar os poliedros (ou corpos sélidos na terminolo-
gia da época). Basicamente, ele notou que, para estudé-los, ndo se poderia ficar restrito ao estudo de
suas faces e de seus dngulos sdlidos. Para tanto, um novo conceito se tornava necessario: as arestas.
Assim, ele notou que haveria trés tipos de objetos: os vértices!, que sdo pontos, as arestas, que sdo
linhas, e as faces, que sdo superficies. Com isso, uma interessante questdo torna-se presente:

Questdo 1.2.1. Quais caracteristicas de um poliedro sdo determinadas pela sequéncia de niimeros (V, A, F')?

Em outras palavras, o qudo diferente dois poliedros com mesmos nimeros de vértices, arestas e
faces podem ser? Por exemplo, é facil encontrar dois poliedros que possuem mesma quantidade de
faces, mas nimeros de vértices distintos, como uma piramide quadrangular e um prisma triangu-
lar. Para o caso de V, A e F coincidirem simultaneamente, é necessario pensar em poliedros menos
convencionais, como alguns sélidos arquimedianos. Por exemplo, tanto o cubo truncado quanto o


https://creativecommons.org/licenses/by-nc-sa/3.0/

1.2. A(S) FORMULA(S) DE EULER, DESCARTES E POINCARE 9

Figura 1.2: O cubo truncado, a esquerda, e o octaedro truncado, a direita, possuem as mesmas quan-
tidades de vértices, arestas e faces. Fonte: Wikimedia Commons (sob a licenga CC BY-SA 3.0 DEED).

octaedro truncado (figura 1.2) possuem 24 vértices, 36 arestas e 14 faces; j4 o dodecadedro truncado e
o0 icosaedro truncado (i.e. a bola de futebol) possuem ambos 60 vértices, 90 arestas e 32 faces.

Tendo tais quantidades em mente, Euler descobriu a sua famosa férmula: todo poliedro convexo
satisfaz a relagdo V 4+ F = A+-2. Provavelmente, o matematico chegou a essa concluséo através de um
pensamento indutivo, ou seja, ele notou que muitos poliedros, como pirdmides, prismas e os cinco
poliedros regulares, satisfaziam essa igualdade e inferiu que o mesmo se aplicava aos outros. De fato,
Euler enunciou sua férmula em um artigo apresentado em 1750 [Eul58b], mas sua demonstragdo s6
foi apresentada no ano seguinte [Eul58a].

A prova de Euler é baseada em reduzir sistematicamente um poliedro até que ele tenha uma forma
simples o suficiente para garantir que a igualdade seja vélida (veja [Ric08, Chapter 7]). Apesar de ela
ter sido aceito por certos matematicos na época, ela ndo atinge os padrdes de rigor para a maioria dos
matematicos hoje em dia. Nos anos seguintes, muitas outras provas e extensdes do teorema foram
elaboradas, entre elas:

* a demonstracdo de Legendre (1794) [Leg94], que se baseia na projecdo de um poliedro sobre
uma esfera e na utilizacdo de férmulas sobre dreas de poligonos esféricos. Com ela, pode-se
facilmente concluir que a férmula é vélida, mais geralmente, para qualquer poliedro estrelado,
ou seja, aqueles que possuem um ponto interno O de modo que todo segmento entre O e algum
outro ponto do poliedro estad contido em seu interior. Veja [Ric08, Chapter 10].

* a demonstragdo de Cauchy (1813) [Cau09], que inicia retirando uma face do poliedro e, em
seguida, transportando (continuamente) as faces até obter uma figura plana com diversos poli-
gonos. Uma andlise dessa prova e dos diversos poliedros aos quais ela pode ser aplicada pode
ser conferida no artigo de Elon [Lim85b]. Por exemplo, ela é valida ao considerar um poliedro
em forma de “U”.

* a demonstra¢do de von Staudt (1847) [v547, pp. 18-23], que é elegantemente elaborada através
de um simples argumento de grafos. Para tanto, ele elabora duas claras hipéteses essencial-
mente topolégicas sobre os poliedros: que seja possivel chegar de qualquer vértice a outro atra-
vés de um caminho de arestas; que qualquer ciclo (isto é, um caminho que comega e termina
no mesmo ponto) de arestas que ndo passa por um mesmo vértice duas vezes divida o poliedro
em duas partes. Veja [Ric08, pp. 152-155].

Referéncias de outros matemaéticos que forneceram provas e extensdes para o teorema de Euler
podem ser encontradas em [Fed82, 70-71].

Agora, veremos que a férmula de Euler possui uma intima conexdo com outra férmula, que foi
descoberta mais de 100 anos antes pelo filésofo e matemaético francés Descartes. Tal resultado, no
entanto, ndo foi publicado na época e s6 veio a ser conhecido pela comunidade cientifica no ano
de 1860, quando um manuscrito de Descartes foi descoberto. Em mais detalhes, uma cépia dele foi
encontrada dentro de uma colecédo de escritos de Leibniz até entdo ndo catalogados. Dado, ainda,
que o manuscrito original continua perdido, é dificil apontar uma data precisa para a descoberta da
férmula de Descartes. Segundo Federico [Fed82, §4], pode-se afirmar que a escrita do manuscrito
ocorreu por volta do ano 1630.

1Vale ressaltar que esse termo ainda nao era utilizado por Euler. Ele utilizava o termo “angulos sélidos”.
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Um primeiro aspecto que nos permite aproximar o manuscrito de Descartes aos trabalhos de Euler
é a importancia dada a entender os poliedros de maneira aritmética. Por outro lado, a principal
diferenca é que o matematico francés ndo identificava de maneira explicita os conceitos de arestas
ou mesmo de vértices, de modo que os elementos de um poliedro que ele dava maior enfoque eram,
além das faces, os seguintes:

* os angulos s6lidos, isto é, os “dngulos tridimensionais” formados no encontro das faces em cada
vértice

* os angulos planos, que estdo presentes em cada face.

Note que o primeiro corresponde aos vértices e, dado que o ntimero de dngulos em um poligono é
igual ao de lados, o segundo estd conectado com as arestas. Desse modo, ele obteve férmulas que re-
lacionavam a quantidade desses elementos dentro de um poliedro. Para enuncid-las mais claramente,
vejamos, agora, a seguinte definigdo.

Definicdo 1.2.2. A deficiéncia angular de um vértice é dada por 2 menos a soma dos angulos adjacentes
a este vértice. A deficiéncia angular total de um poliedro é igual a soma das deficiéncias angulares de seus
vértices.

Intuitivamente, temos que a deficiéncia angular de um vértice é positiva quando ele forma um
“bico”. Com isso em mente, podemos formular a seguinte equivaléncia: um poliedro é convexo se, e
somente se, a deficiéncia angular de cada um de seus vértices é positiva.

A formula de Descartes nos diz que a deficiéncia angular total de qualquer poliedro convexo é igual
a 4w. A forma como Descartes descobriu essa férmula foi através de um pensamento por analogia
com a soma dos dngulos externos de um poligono, que é igual a 27. Nas palavras do matemaético
franceés:

“Assim como numa figura plana todos os angulos externos, tomados juntos, sdo iguais
a quatro angulos retos, em um corpo soélido todos os angulos sélidos externos, tomados
juntos, sdo iguais a oito angulos retos.” [Fed82, p.44; traducdo nossa]

Também, vale apontar que Descartes esclarece que a medida de um angulo sélido externo é igual,
dentro da nossa nomenclatura, a deficiéncia angular do seu vértice.

Abaixo, veremos como essa férmula pode ser facilmente deduzida da férmula de Euler e vice-
versa. Ou seja, ambas as férmulas sdo equivalentes.

Proposic¢do 1.2.3. A soma S de todos os dngulos planos de um poliedro satisfaz S = 2w(A — F).

Demonstragio. Utilize que a soma S; dos dngulos internos de uma face n;-agonal é dada por S; =
m(n; — 2) e realize a soma de tais igualdades considerando todas as faces do poliedro. O

Corolario 1.2.4. A deficiéncia angular total de um poliedro é iqual a 2w - (V. — A + F'). Em particular, um
poliedro satisfaz a formula de Euler se, e somente se, satisfaz a formula de Descartes.

Demonstragio. Note que a deficiéncia angular total é dada por 27V — S e aplique a proposigdo acima.
O

Vale ressaltar que um enunciado equivalente ao da proposicdo 1.2.3 era conhecido por Descartes
(veja [Fed82, p. 54]). A grande diferenca é que, ndo possuindo o conceito de arestas, ele focava na
contagem do ntmero P de dngulos planos, de modo que a férmula se tornaria S = 7P — 27 F. Desse
modo, ele pdde deduzir a seguinte férmula muito similar a de Euler: P = 2F 4 2V — 4. A tnica
observacdo necessdria para chegar exatamente a igualdade V — A+ F = 2éade que P = 2A e, sobre
isso, o préprio matematico francés escreveu:

“Ha sempre duas vezes mais angulos planos na superficie de um corpo sélido do que
lados; pois um lado é sempre comum a duas faces.” [Fed82, p.54; traducdo nossa]

Dada a simplicidade de se deduzir a férmula de Euler a partir do manuscrito de Descartes, mui-
tos matematicos passaram a afirmar que este a havia antecipado ou que ja a conhecia, veja [Fed82,
Chapter 9].

Agora, apresentaremos o resultado crucial que permite enxergar que a férmula de Euler, na ver-
dade, é um resultado que depende da topologia dos poliedros. Em outras palavras, responderemos a
seguinte questdo fundamental: quais sdo os poliedros que satisfazem a igualdade V' — A 4 F' = 2?
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Definic¢do 1.2.5. Dado um poliedro P, chamamos a quantidade dada por V' — A + F de caracteristica
de Euler de P e a denotamos por X (P).

Teorema 1.2.6 (Poincaré). Dois poliedros isomorfos possuem a mesma caracteristica de Euler.

Ideia da demonstragdo. Para provar este teorema, normalmente é utilizada uma poderosa ferramenta
da Topologia Algébrica, a Teoria de Homologia. Basicamente, para cada poliedro P, definimos os
chamados grupos de homologia de P, denotados por H;(P), i = 0,1,---. Para defini-los, digamos
que P possui ng faces, ny arestas e ng vértices. Com isso, constréi-se uma certa sequéncia de fungdes
d;, chamadas de fungdes (ou mapas) de bordo*

0 % gre 22, g By gro Yy
e define-se:
H;(M) = ker(d;)/Im(d;1)

Através de tais espagos vetoriais, podemos definir os niimeros de Betti b; (sobre R)? como a dimen-
sdo de tais espagos, isto é, b; = dim(H;(M)). Com isso, é possivel provar que a caracteristica de Euler
de uma superficie coincide com a soma alternada de seus niimeros de Betti. De fato, temos que

b; = dim(ker(d;)) — dim(Im(d;41))
n; = dim(ker(d;)) + dim(Im(d;))

Assim, pode-se deduzir que X (P) = Y_,(—=1)'n; = >_,(—1)b;.

Desse modo, a prova é finalizada ao utilizar que os grupos de homologia sdo invariantes por
isomorfismos topologicos.

Para mais detalhes sobre os grupos de homologia, consulte o capitulo 2 do livro de Hatcher
[Hat01]. O

Historico da demonstragdo. H. Poincaré [Poi93] mostrou que a caracteristica de Euler é igual a soma
alternada dos ntimeros de Betti e, provavelmente, tomava por garantido que eles seriam invariantes
topoldgicos. Na exigéncia de maior rigor, J]. W. Alexander [Alel5] forneceu uma prova para esse fato.

O resultado acima permite definir a caracteristica de Euler de superficies em geral:

Definicdo 1.2.7. Uma poligonizagio de uma superficie M é um poliedro que é isomorfo a M. A carac-
teristica de Euler (ou de Euler-Poincaré) x (M) é definida como a caracteristica de Euler de (alguma de)
suas poligonizacoes.

Vale ressaltar que a defini¢do acima ndo é muito usual, pois, geralmente, considera-se a caracteris-
tica de Euler de uma triangulacdo ou, mais geralmente, de uma estrutura de complexo CW associada
a superficie. Assim, podemos dizer que nossa defini¢do se encontra num meio termo, pois uma tri-
angulacdo é um caso particular de uma poligonizacédo, a qual é, por sua vez, um tipo de complexo
CW. Mesmo assim, vale notar que pode-se facilmente encontrar uma triangulagio a partir de uma
poligonizac¢do: basta adicionar algumas arestas para as faces se tornarem tridngulos. O mesmo ndo
ocorre para o caso de um complexo CW, pois nem sempre podemos fornecer-lhe uma poligonizagao.

Desse modo, podemos dizer, por exemplo, que a caracteristica de Euler da esfera é igual a 2 e que
a do toro é igual a 0. Tendo essa ideia em mente, obtemos assim a versdo definitiva da férmula de
Euler:

Corolario 1.2.8. Todo poliedro isomorfo a esfera satisfaz a igualdade V — A+ F = 2.

Uma prova alternativa para o resultado acima também pode ser deduzida a partir da demonstra-
¢do de Cauchy, como pode ser conferido no artigo de Elon L. Lima [Lim85b], no qual a hipdtese de o
poliedro ser isomorfo a esfera é substituida por outras condi¢des equivalentes.

O leitor poderia ainda se perguntar se ndo poderiamos generalizar ainda mais a hipétese desse
teorema. A resposta para tal questdo é negativa, pois o teorema de classificacdo de superficies (veja o
apéndice A) nos diz que hd apenas trés tipos de superficies a menos de isomorfismos:

2Com efeito, esse nome é utilizado, pois tais fungdes sdo definidas através da borda de cada figura. Por exemplo, aplicando
dy sobre uma face do poliedro nos devolve uma “soma” de seus lados.

3Aqui, vale notar que os niimeros de Betti sdo considerados usualmente com coeficientes sobre Z (ao invés de sobre R), mas
pode-se mostrar que eles sdo iguais em ambos os casos
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* aesfera, cuja caracteristica de Euler é igual a 2;
* uma soma conexa de g > 1 toros, cuja caracteristica é igual a 2 — 2g;
* uma soma conexa de m > 1 planos projetivos, cuja caracteristica é igual 2 — m.

Lembre que estamos assumindo aqui que todo poliedro é uma superficie topolégica. No entanto,
se permitissemos os poliedros de possuirem certas singularidades, como arestas adjacentes a mais de
duas faces, ainda poderiamos encontrar outros casos em que a igualdade V' — A + F' = 2 é vélida.

1.3 Consequéncias da férmula de Euler

Nessa se¢do, buscaremos ver como a férmula de Euler é capaz de ser aplicada em alguns contextos.
Basicamente, iremos utilizé-la para obter os seguintes:

* uma caracterizac¢do dos sélidos platdnicos

* algumas formas de construir poliedros com algumas faces hexagonais
* o teorema das seis cores

e uma férmula para o calculo da 4rea de poligonos

Em Matematica, é comum que os objetos de foco de estudo sejam aqueles que possuem maior
simetria. O estudo dos poliedros ndo é excecdo. De fato, pode-se dizer que os sélidos que mais
chamaram a atencdo dos matemaéticos gregos sdo o tetraedro, o cubo, o octaedro, o dodecaedro e o
icosaedro. Por exemplo, eles estdo presentes em alguns dos didlogos de Platdo, nos quais o fildsofo
os associa a elementos da natureza. Todos eles sdo extremamente simétricos: é possivel perceber um
mesmo padrdo reaparecer em diversos modos de olha-los. Assim, uma pergunta que surge natural-
mente é: serd que ha outros poliedros que sejam simétricos do mesmo modo?

Figura 1.3: Os cinco s6lidos platonicos representando elementos da natureza, da obra Harmonices
Mundi de J. Kepler.

Para responder a essa pergunta, comecemos com uma clarificagdo da terminologia a ser usada.

Defini¢ao 1.3.1. Um poliedro é chamado de sélido platénico ou de regular se satisfizer as trés condicdes
seguintes: ser convexo; todas as suas faces serem poligonos regulares com mesmo nimero de lados;
em cada vértice, sempre encontrarem-se a mesma quantidade de faces.

A classificagdo dos sélidos platdnicos é um dos grandes teoremas presentes n’Os Elementos de
Euclides, no livro XIII. Um resultado fundamental usado na demonstragdo (provado na proposigdo
21 do livro XI) é o de que a soma dos angulos planos adjacentes a um certo vértice é sempre menor
do que 360° quando o poliedro é convexo. Assim, lembrando que cada vértice possui, pelo menos, 3
faces adjacentes, pode-se notar que ele ndo poderia ser formado por hexdgonos, ja que seus angulos
internos sdo iguais a 120°. Do mesmo modo, quatro quadrados ndo poderiam se encontrar em um
mesmo vértice nem mais do que cinco tridngulos.

Agora, veremos um modo de deduzir isso através da férmula de Euler. Assuma que um sélido
platonico é formado por poligonos de n lados e que se encontram m vezes em cada vértice. Assim, as
suas quantidades de vértices e arestas sdo dadas por

vt ,_nf
m 2
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Usando que V — A + F = 2, pode-se concluir ap6s alguns cdlculos que

4
F:—m
2n —mn 4+ 2m

Sabemos que o denominador deve ser positivo e vale que n > 3 e m > 3. Agora, supondo que n > 6,
temos que:

n—mn+2m=2-mn+2m< (2—m)-6+2m
=0<(2-—m)-6+2m=12—4m
=>m <3
Com tal contradigdo, concluimos que n < 5 e, sem perda de generalidade, que o mesmo vale para
m. Com mais alguns célculos, pode-se concluir que os tinicos pares possiveis para (m,n) sdo (3,3),
(3,4), (4,3), (3,5) e (5,3). Assim, com as férmulas acima, obtemos a seguinte sintese:
Proposigdo 1.3.2. Para um sélido platonico, os tinicos valores possiveis para (m,n) e (V, A, F) sdo:

3,3) e (4,6,4) (tetraedro)

(
(3,4) e (6,12,8) (cubo)
(
(

)e (
)e (
4,3) e (8,12, 6) (octaedro)
3,5) e (20, 30, 12) (dodecaedro)
)e (

* (5,3) e (12,30, 20) (icosaedro)

Vale ressaltar que Descartes, em seu manuscrito, também notou que sua férmula podia ser utili-
zada para deduzir o nimero de faces e vértices dos sélidos platonicos, veja [Fed82, p.50].

Uma consequéncia particular da discussdo acima é que néo é possivel formar um sélido platénico
usando apenas hexdgonos. Na verdade, também podemos ver que nenhum poliedro que satisfaz a
férmula de Euler pode ser construido apenas usando hexdgonos. De fato, se um poliedro possuir

apenas faces hexagonais, teremos que A = £ = 3F. Além disso, o nimero de angulos planos
adjacentes em cada vértice é, no minimo, 3, o que nos diz que V' < % = 2F. Desse modo, obtemos

que
V-A+F<L2F-3F+F=0

Ou seja, sua caracteristica de Euler deve ser, no médximo, zero. Assim, é natural perguntar se é possivel
a construcdo de um poliedro isomorfo ao toro apenas com faces hexagonais. A resposta é afirmativa:
um exemplo é o poliedro de Szilassi, que é formado por sete faces hexagonais todas adjacentes entre
si, veja [Gar78]. Esse poliedro também é um importante exemplo para o teorema das cores aplicado
sobre o toro, como serd explicado adiante.

A seguir, notaremos quantas faces e de quais tipo sdo necessdrias para se construir um poliedro
convexo com faces hexagonais.

Proposicao 1.3.3. Tome um poliedro cuja caracteristica de Euler seja 2 e que possua, pelo menos, uma face
hexagonal.

* Se suas outras faces sdo tridngulos, entdo hd, pelo menos, 4 faces triangulares.
* Se suas outras faces sio quadradas, entdo hd, pelo menos, 6 faces quadradas.
* Se suas outras faces sio pentagonais, entdo hd, pelo menos, 12 faces pentagonais.
Tais quantidades minimas sdo atingidas se assumirmos que todo vértice é adjacente a somente trés arestas.

Demonstragio. Para o primeiro caso, assuma que ha H faces hexagonais e 7" faces triangulares. Desse
modo, pelos mesmos argumentos utilizados acima, temos que:

_3TH6H 3T sy v <3O oy

F=T+H A
+ 2 2 3
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Com isso:
3T T
2=V -A+F< (T—?+T)+(2H—3H+H):§
Logo, T' > 4. No caso em que todo vértice é adjacente a somente trés arestas, temos a igualdade em
ambas as desigualdades acima.

Os outros casos podem ser provados de forma anéloga. O

O caso acima dos doze pentadgonos é especialmente notavel, pois podemos visualizé-lo através de
objetos fisicos, como as bolas de golfe e de futebol (em sua versao classica), ou através de moléculas
quimicas, como os fulerenos.

Utilizando a técnica acima, pode-se ver também que todo poliedro (com caracteristica de Euler
igual a 2) possui, pelo menos, quatro faces dadas por poligonos com menos de 6 lados. Além disso,
pode-se analisar diversas outras possiveis configuragdes para as faces de um poliedro, como de qua-
drados e pentdgonos, tridngulos e pentdgonos, etc.

Outro famoso teorema em Matematica é o Teorema das Quatro Cores. Ele diz que é necessério,
no maximo, quatro cores para colorir um mapa plano de modo que dois territérios vizinhos possuam
cores distintas. Um fator que o torna notavel é que, apesar de seu enunciado ser bastante simples,
a sua demonstracdo é consideravelmente complexa e até hoje s6 pode ser cumprida através do uso
de computadores. Aqui, mostraremos que uma versdo mais fraca do teorema pode ser deduzida
utilizando alguns dos fatos que foram mostrados acima através da férmula de Euler.

Proposicdo 1.3.4. Todo mapa pode ser colorido com seis cores ou menos.

Esbogo da demonstracio. Dado um mapa com alguns territérios, podemos realizar uma deformagédo
continua para que cada um de seus territérios sejam poligonos satisfazendo que dois territérios vizi-
nhos tenham um, e somente um, lado em comum. Além disso, se um territério estiver na borda do
mapa (por exemplo, um pais que é banhado pelo oceano), entdao podemos assumir que um, e somente
um, dos lados desse territério estard nessa borda. Em outras palavras, ndo ha dois lados adjacentes
de um mesmo territério banhados por um mesmo oceano. Para uma ilustracdo, veja a figura 1.4.
Levando em conta também a face exterior desse mapa poligonal, ele nos fornece uma poligonizagao
da esfera e, portanto, pela tltima proposicdo, deve haver pelo menos duas faces poligonais com 5
lados ou menos. Em outras palavras, hd sempre um territério que é vizinho de, no maximo, outros 5
territérios. Diremos que tal territério é notdvel.

Figura 1.4: Representacdo poligonal do mapa da América do Sul. Repare, por exemplo, que o Para-
guai é um tridngulo, pois ele possui apenas 3 vizinhos e ndo é banhado pelo oceano.
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Agora, assuma que a proposicao seja falsa e tome um contraexemplo minimal, isto é, um mapa
que ndo pode ser colorido com seis cores e com o menor nimero de territérios possivel. Assim, se
retirarmos desse mapa um territério notavel, sabemos que o mapa restante pode ser colorido com seis
cores. Isso nos gera uma contradi¢do: como esse territério tem, no maximo cinco vizinhos, pode-se
reinseri-lo de modo que o mapa-contraexemplo seja colorido com seis cores; de fato, basta colorir o
territério notdvel com uma cor que seja diferente das cores dos seus cinco vizinhos. O

Para aprimorar o teorema acima para o caso de cinco cores, é necessdria a introdugéo de algumas
técnicas do estudo de grafos, o que foi feito, por exemplo, por A. Kempe em 1879. J4 a prova do caso
das quatro cores se mostrou muito mais complicada e s6 veio a ser cumprida com a assisténcia de
computadores em 1976. Para mais detalhes, veja [Ric08, Chapter 14].

Teoremas andlogos a esse podem ser estudados para mapas sobre outras superficies (que ndo
sdo isomorfas a esfera). Por exemplo, se considerarmos mapas sobre um toro, pode-se provar que é
necessario sete cores ou menos para colori-lo e, de fato, sete cores sdo necessarias para colorir, por
exemplo, o poliedro de Szilassi.

Por fim, enunciamos mais um interessante resultado que pode ser deduzido através da férmula
de Euler. Ele fornece um simples modo de calcular a 4rea de certos poligonos, que possivelmente
podem ser bastante complicados.

Proposicdo 1.3.5 (Teorema de Pick). Tome um poligono sobre o plano cartesiano cujos vértices tenham coor-
denadas inteiras. Sendo I e B as quantidades de pontos com coordenadas inteiras, respectivamente, no interior
do poligono e na sua borda, entdo a drea do poligono é iguala I + B/2 — 1

Demonstragio. Consulte [Ric08, pp. 126-127]. O

Figura 1.5: Com o teorema de Pick, podemos calcular rapidamente a drea do poligono acima. Fonte:
Wikimedia Commons (sob a licenga CC BY-SA 4.0 DEED).

1.4 Teoremas sobre a caracteristica de Euler

Nesta se¢do, que tem como base o artigo de Elon Lima [Lim85a], descreveremos como a caracteristica
de Euler aparece em diversos contextos dentro da Matemaética. Comegaremos mostrando qual a sua
relacdo com a presenca de campos vetoriais — ou, de modo mais pitoresco, fios de cabelos — sobre
uma superficie.

Teorema 1.4.1 (Poicaré-Hopf). Tome um campo vetorial continuo v: M — R™ tangente sobre uma varie-
dade M (de dimensio m e compacta) de modo que v seja zero apenas em um niimero finito de pontos Py, --- , P,
de M. A soma dos indices dos zeros* de v é igual a caracteristica de Euler de M, isto é

n

Y ilviBy) = X(M)

j=1

Intuitivamente, o indice de um zero p € M de v é dado pelo ntimero de voltas dadas por v(g) quando pontos ¢ € M
descrevem uma pequena curva em torno de p, veja [Lim85a, p.53]
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Historico do teorema. Em 1881, Poincaré o demonstrou para a esfera 52, de dimendo 2, enquanto que
Brower generalizou, em 1911, para o caso das esferas de qualquer dimensao. Em 1925, Hopf provou
que o resultado é vélido para qualquer variedade. Veja [Ric08, pp. 212-214].

Demonstragio. Pode-se consultar Milnor [Mil65, §6] ou as notas de aula de Haftka [Hafa]. Na primeira
referéncia, é utilizada como ferramenta a aplicagdo normal de Gauss enquanto que, na segunda, a
demonstragdo é feita através da teoria de pontos fixos de Lefschetz. O

Definicdo 1.4.2. Dizemos que uma superficie pode ser penteada se existe um campo vetorial continuo
sobre ela que seja ndo-nulo em todos os pontos.

Como consequéncia direta do Teorema de Poincaré-Hopf, vemos que a caracteristica de Euler
nos fornece uma condicdo necessdria para que possamos pentear uma superficie. Em mais detalhes,
temos o seguinte:

Corolario 1.4.3 (Teorema das Superficies Cabeludas). Se uma superficie M pode ser penteada, entdo sua
caracteristica de Euler Y (M) é iqual a 0.

Também pode-se provar que a reciproca do coroldrio acima é verdadeira. Por exemplo, no caso
de um toro cabeludo, podemos pentear todos os seus fios no sentido anti-hordrio, veja a figura 1.6.

Figura 1.6: O toro é uma superficie que pode ser penteada. Fonte: Wikimedia Commons.

Como a caracteristica da esfera é igual a 2, obtemos a seguinte imediata concluséo.
Coroldrio 1.4.4 (Teorema da Bola Cabeluda). A esfera S? nio pode ser penteada.

Demonstragio alternativa. Um modo mais direto de provar esse resultado é notando que a existéncia
de um campo vetorial ndo-nulo em S? nos fornece uma homotopia entre as fungdes identidade e
antipoda em S? (isto ¢, a fungdo que leva um ponto ao seu diametralmente oposto). Através do uso
de ferramentas da teoria de homologia, pode-se mostrar que isso é um absurdo, veja [Hat01, pp.134-
135]. O

Outra forma de interpretar o teorema acima é dizendo que sempre hd, pelo menos, um ponto da
superficie da Terra no qual nenhum vento é soprado horizontalmente.

Agora, apresentaremos um importante teorema de Geometria Diferencial, o teorema de Gauss-
Bonnet. Essencialmente, ele nos diz que a caracteristica de Euler ¢ uma medida para a curvatura glo-
bal de uma superficie. Antes de enuncié-lo, precisamos esclarecer o conceito de curvatura gaussiana.
Intuitivamente, ela nos fornece uma medida (dada por um ntimero real) do quanto uma superficie se
curva em cada um de seus pontos e é dada pelo produto da menor e da maior curvatura (com sinal)
ao varrer todas as direg¢des. Além disso, seu sinal nos da algumas informagdes: quando a curvatura
é positiva em um certo ponto z, a superficie fica (localmente) em apenas de um do plano tangente
em x; nesse caso, o ponto é chamado eliptico. Tal propriedade ndo ocorre no caso de a curvatura ser
negativa e, assim, o ponto é chamado de hiperbdlico.

Exemplo 1.4.5. Abaixo, apresentamos a curvatura gaussiana de algumas superficies conhecidas:

1. A curvatura de qualquer ponto do plano é igual a zero. O mesmo vale para o cilindro, pois suas
seg¢des verticais sdo retas.
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2. A curvatura de uma esfera de raio r é igual a 1/r? em todo ponto.
3. A sela dada pelo grafico z = xy possui curvatura igual a —4 no ponto 0.

4. Como pode ser visto na figura 1.7 do toro, sua regido proxima ao anel interno possui curvatura
negativa e sua regido préxima ao anel externo possui curvatura positiva.

‘\1ega"{'i'\'fé'f:'uwaturE

Postive Guryatr

Figura 1.7: Metade do toro possui curvatura positiva e metade possui curvatura negativa. Fonte:
Wikimedia Commons (sob a licenga CC BY-SA 3.0 DEED).

Teorema 1.4.6 (Gauss-Bonnet). Sendo M uma superficie compacta (sem bordo) e K : M — R sua curvatura
gaussiana, temos que

KdA = 2rx (M),
M

onde d A representa que a integracio é feita sobre a drea da superficie.

O leitor é convidado a notar a validade da igualdade acima para os casos da esfera e do toro.

Tal resultado é extraordindrio: ele nos diz que a curvatura total de uma superficie é determinada
pela sua topologia. Em outras palavras, ndo importa o quanto uma esfera seja entortada, sua curva-
tura total serd sempre igual a 47. Isso mostra um dos modos como a topologia de uma superficie pode
controlar sua geometria. Repare que esse mesmo paralelo pode ser tracado se pensarmos, por exem-
plo, na férmula de Descartes. De fato, ela pode ser vista como uma versao particular, para poliedros,
do teorema de Gauss-Bonnet.

Outro ambiente em que a caracteristica de Euler também est4 presente é na Teoria de Morse, cujo
foco reside no estudo de fungodes diferencidveis da forma f: M — R. Pode-se mostrar que hd uma
relacdo entre a caracteristica de Euler e o tipo e a quantidade de pontos criticos de tais fungdes. Para
mais detalhes, consulte [Lim85a, §5].
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Capitulo 2

Construindo uma bola cabeluda

O teorema da bola cabeluda é um dos mais pictéricos teoremas de Matematica: ndo é possivel pentear
uma bola cabeluda sem que haja pontos carecas, fios em pé ou descontinuidades. Assim, é bastante
sugestiva a proposicdo de uma pega fisica que possa servir como uma verificagdo visual e palpavel do
teorema, de modo que possa ser utilizada para a divulga¢do matematica, especialmente em ambientes
como o da Matemateca do IME-USP. No entanto, encontramos apenas um modo de construgdo de
superficie cabeludas documentada na literatura, a qual foi realizada para o caso da garrafa de Klein
[CG19]. Aqui, apresentamos a construcdo de uma bola cabeluda a partir da colagem de tapete sobre
uma bola de isopor.

Figura 2.1: Bola cabeluda cuja construgédo é descrita neste capitulo.

2.1 Proposta e Material utilizado

Diversas foram as ideias que tivemos para a confeccdo de uma bola cabeluda. Algumas eram pouco
praticas, como a costura de uma infinidade de fios sobre uma bola previamente coberta por um te-
cido; ja outras eram, digamos pouco ortodoxas: por exemplo, envolviam a decapitacdo de bonecos
cabeludos e, posteriormente, a colagens de suas meia-cabegas. Outras ainda passavam pelo uso de
limalha de ferro que pudessem ser “penteadas” com um ima. De qualquer modo, uma das grandes
preocupacdes iniciais estava no formato dos fios: eles deveriam ser compridos e finos o suficiente
para serem penteadas, mas também curtos a ponto de ndo esconder descontinuidades.

Apos a visita a certas lojas de tapetes, pude descobrir a existéncia de certos tapetes peludos que
podem transmitir, apds alisad-lo com as mdos por exemplo, a sensacdo de pentear. Desse modo, pen-
samos que ndo haveria mais a necessidade de realizar o drduo trabalho de costurar fios, todos eles ja
estavam posicionados sobre o tecido de base do tapete. Apenas um problema se tornava evidente: ta-
petes sdo planos e, portanto, ndo possuem geometria esférica. Assim, a questdo central posta foi: qual
a melhor maneira de cortar uma figura plana a fim de preencher totalmente uma esfera e sem que
haja sobreposi¢des? Ou, visto de modo inverso, qual é a melhor maneira de planificar uma esfera?

19
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A resposta matematica para tal questao é simples: nao existe tal maneira. De fato, uma planifica-
¢do perfeita da esfera nos forneceria uma isometria local entre o plano e a esfera e chegariamos a uma
contradicdo, pois a curvatura do plano é diferente da da esfera. Assim, naturalmente, devemos pen-
sar numa planificacdo aproximada da esfera. Para tanto, diversos modelos puderam ser encontrados,
0s quais sdo especialmente usados para a construcdo de globos terrestres; acesse, por exemplo, o site
www . 3dgeography.co.uk/make-a-globe. Para um embasamento geométrico sobre o modo de
construir tais planificagdes, consulte a pagina de M. B. Barison [Bar].

A

1
A
|

Figura 2.2: Planificagdo de esfera a partir de seus fusos. Fonte: 3D Geography.

A planificagdo utilizada se baseia em definir uma quantidade de meridianos e planificar, sepa-
radamente, cada um dos fusos determinados por eles. Desse modo, os pontos mais problematicos
dessa construcao sdo aqueles onde todos os fusos se encontram, ou seja, os polos da esfera. E bas-
tante comum que ocorram imprecisdes, como sobreposi¢cdes ou buracos, nos lugares préoximo a esses
pontos. Tendo isso em mente, tivemos como objetivo recortar a ponta de cada fuso planificado antes
da colagem na esfera e, ao final, o buraco gerado nos polos da esfera poderia ser preenchido com um
circulo, de modo semelhante ao feito numa bola de praia (figura 2.3).

Figura 2.3: A bola de praia nos fornece uma visualizagdo do modo pelo qual buscamos realizar a
colagem do tapete sobre a esfera. Fonte: Wikimedia Commons.

Em esséncia, os materiais utilizados para a construcgdo foram:

¢ uma bola de isopor oca de 350mm de didmetro.

* um tapete retangular de pele de poliéster, com dimensdes de 60cm x 120cm e fios medindo 2cm.
* um molde da planificacdo de um fuso correspondente a 1/18 da bola, ou seja, um fuso de 20°.
¢ cola multiuso.

Nao houve grandes dificuldades de se obter tais materiais, bastando a ida a lojas especializadas
em isopor e em tapetes.


www.3dgeography.co.uk/make-a-globe
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2.2 Confecg¢ao

Antes de iniciar, de fato, a construcdo da bola cabeluda, realizei um modelo inicial de teste com uma
bola menor (de 20 cm de didmetro) e usando folhas de EVA no lugar do tapete. Com isso, pode-
se, além de adquirir algumas habilidades manuais, ter uma nogdo das principais dificuldades e dos
pontos que necessitam de maior cuidado. Em especial, verificou-se que as regides préximas aos polos
da esfera acabaram por apresentar brechas, nas quais o isopor se tornava visivel. Assim, tornou-se
mais evidente a necessidade da realizacdo de cortes das pontas dos fusos seguida da colagem de
circulos para preencherem os polos.

Figura 2.4: As pontas dos fusos foram cortadas a fim de minimizar as brechas encontradas entre os
fusos.

Ap6s o teste com EVA, passamos para a utilizagao da tapete. O primeiro passo foi a utilizagao do
molde de um meio-fuso planificado para ser demarcado sobre o verso do tapete — no qual, por sorte,
podia-se escrever até mesmo com canetas esferograficas. Para tanto, nas primeiras reprodugdes, eu
fixava um molde de papel sobre o verso do tapete e o delineava utilizando uma caneta. Em seguida,
recortava os pedacos de tapete tendo como linha ideal de corte a linha gerada pela borda interna da
caneta — mesmo assim, a diferenca era provavelmente desprezivel dado que ponta da caneta era
consideravelmente fina. Pensando em tornar o processo mais agil, utilizei uma segunda técnica para
a demarcacdo do molde. Dessa vez utilizando um molde mais rigido, feito de cartolina, passei a
utilizd-lo como um carimbo: espalhava tinta sobre sua borda e, em seguida, pressionava-o contra o
verso do tapete. Nesse caso, o devido corte do tapete era feito considerando a borda externa gerada
pelo molde.

Figura 2.5: Visualizagdo das duas técnicas utilizadas para a reproducdo do molde sobre o tapete.

Durante o corte das partes do tapete, pudemos perceber que seria bastante importante ordena-los
do mesmo em que eram cortados. Desse modo, dois fusos que fossem adjacentes no tapete (antes de
ser cortado), de fato, seriam colados um ao lado do outro.

Em seguida, foi realizada a colagem dos fusos sobre a bola. Para isso, dois cuidados precisaram
ser tomados. O primeiro deles é referente a identificacio do equador da esfera com a linha central de
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Figura 2.6: Fusos de tapete cortados e alinhados logo antes da colagem sobre a bola.

cada fuso. Isso pode ser usado como referéncia para que os fusos fossem posicionados de maneira
adequada. Além disso, visto que os polos da bola podiam ser permutados de maneira despercebida
durante o seu manejo, se mostrou ttil o desenho de simbolos sobre a bola de isopor para que se
tornasse claro a orientagdo escolhida para a colagem dos fusos.

Figura 2.7: Alguns dos cuidados tomados durante a colagem dos fusos sobre a bola.

Ap6s a colagem de 17 fusos sobre a bola, notou-se que a lacuna faltante era consideravelmente
distinta do que, em teoria, deveria ser o formato de apenas mais um fuso de 20° (figura 2.8). Para se
ter uma nogdo, o comprimento da lacuna (sobre o equador) era de, aproximadamente, 13cm, o que
corresponde a um dngulo de mais de 40°. Isso deve ter ocorrido devido a uma soma das imprecisoes
realizadas durante os cortes e as colagens. Além disso, tal lacuna ndo era simétrica em relacdo ao
seu meridiano central. Desse modo, o décimo oitavo fuso foi feito a parte: busquei reproduzir o seu
formato em uma folha de papel sobreposta sobre o espaco para, em seguida, demarca-la no tapete.

Figura 2.8: A lacuna para colagem do tltimo fuso era irregular e maior do que o esperado.
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Finalmente, apds todos os fusos serem fixados, a tltima etapa realizada foi a colagem das “tam-
pas” da bola, isto é, os circulos de preenchimento dos polos. Novamente, os espagos faltantes se
mostraram consideravelmente distintos do formato ideal proposto inicialmente, de circulos. Assim,
a seguinte estratégia foi adotada: cortou-se um pedago circular do tapete que fosse maior do que a
lacuna; em seguida, ele era sobreposto sobre a lacuna para notar-se as partes que necessitavam ser
reduzidas; assim, se procedia até obter o formato ideal para ser encaixado. Veja a figura 2.9.

Figura 2.9: A esquerda, espagos vazios produzidos nos polos da bola. A direita, recortes dos pedagos
de tapete usados para preenché-los.

2.3 Discussao

Antes de finalizarmos este capitulo, serd apresentada aqui uma avaliagdo sobre o processo de con-
feccdo da bola e seu resultado final. Em especial, buscaremos apresentar alguns pontos em que a
confeccdo apresentou sucessos ou falhas. Em outras palavras, apresentaremos alguns dos aprendiza-
dos obtidos durante a construgdo da bola.

Figura 2.10: Visualizacdo do resultado final da bola cabeluda na qual é possivel notar suas divisdes
como numa bola de praia.

Primeiramente, devemos dizer que, diferentemente da bola feita com EVA, a bola com tapete ndo
apresentou buracos em que o isopor ficasse visivel. Acredito que isso se deu, principalmente, pela
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maior flexibilidade que o tapete possuia em comparacdo com o EVA, o que permitia a justaposigdo
dos fusos através de pequenas movimentagdes. Além disso, outros fatores que contribuiram nesse
sentido foram a presenca dos fios do tapete, que possibilitam esconder os buracos, e a melhoria das
técnicas de colagem e corte utilizadas — isto é, os pequenos aprendizados manuais obtidos com a
confec¢do da bola-teste puderam ser usados na bola final.

Por outro lado, um dos pontos negativos que se tornaram evidentes foram as divisdes entre os
pedacos colados. Essa é uma das principais caracteristicas a serem evitadas, pois ela dificulta a visua-
lizagdo de um penteado continuo dos fios, e que é tdo fundamental para o entendimento do teorema.
Vale notar que essas divisdes se tornavam menos claras préximas ao equador e entre dois fusos que
ja eram adjacentes antes do tapete ser cortado. Desse modo, a ordem em que os fusos colados sobre
o tapete devem respeitar tacitamente a ordem com que eles surgem no tapete. Do mesmo modo,
deve-se evitar o corte de fusos como os encontrados no topo da figura 2.5 a direita.

Outra possibilidade para mitigar o efeito negativo acima estd em reduzir o ndmero de fusos uti-
lizados na planificagdo da esfera. Além de diminuir o nimero de divisdes, isso também simplifica o
trabalho de modo geral. No entanto, isso deve ser feito levando em conta que a redu¢do do ntimero
de fusos leva a uma maior imprecisdo da planificagdo, exigindo mais da plasticidade do material.
Além disso, foi possivel notar que o ultimo fuso colado sobre a bola, que representava um angulo de
40°, se mostrou maledvel o bastante para ser devidamente colado. Desse modo, pensamos que um
bom ntimero de fusos a ser considerado na planifica¢do seria em torno de 9 — ao invés do utilizado
18.

As técnicas mencionadas acima também podem ajudar a atenuar outra limitacdo do uso do tapete,
a auséncia de flexibilidade total de seus pelos. Com efeito, mesmo no tapete original, ndo era possivel
mover de maneira ordenada cada um de seus fios em qualquer direcdo desejada. Por exemplo, a
sensacdo de pentear os pelos do tapete era mais clara apenas quando o faziamos horizontalmente.
Isso nos motiva as seguintes questdes: haveria outros modelos de tapetes que permitissem maior
liberdade dos fios? O uso de pelos um pouco mais compridos (do que 2cm) auxiliariam nesse sentido?

Finalmente, devemos lembrar que a Matematica é criada independentemente da sua existéncia na
realidade. Assim, ndo podemos pensar que a constru¢do de um objeto que venha a ilustrar um teo-
rema matematico seja isento de falhas. Ainda assim, ha casos em que objetos matematicos (um cubo,
por exemplo) podem ser construidos de modo que suas imprecisdes sejam menores do que as que
nossa percepcao visual permite notar. Tendo isso em mente, acredito que a bola cabeluda construida
possa ser usada, além de um objeto que desperta a curiosidade das pessoas, para tornar evidente o
significado de pentear continuamente uma superficie, ainda mais quando forem explicadas as limi-
tacdes do objeto.

Além disso, o presente trabalho, talvez, possa servir como protétipo inicial para a realizagdo de
outros trabalhos no sentido da divulgagdo dos teoremas das superficies cabeludas. Em especial, pode
ser proveitoso analisar se as técnicas apresentadas aqui também poderiam ser utilizadas para a cria-
¢do de um toro cabeludo!, o que mostraria um exemplo de superficie que pode ser penteada.

1Vale notar que toros podem sdo vendidos em lojas de isopor com os nomes de “guirlandas”, “boias” ou “argolas”.



Capitulo 3

Oficinas de Topologia para o Ensino
Basico

Neste capitulo, apresentaremos abordagens de ensino, configuradas através de oficinas, que buscam
tratar de tépicos de Topologia a partir da férmula de Euler. Na primeira se¢do, encontram-se as
propostas de oficinas assim como a descri¢do, por exemplo, dos materiais necessarios para realiza-
las. Na secdo seguinte, serd apresentado como se deu a aplicagdo de tais oficinas em algumas turmas
de uma escola estadual de Sao Paulo.

Acredito ser fundamental que os alunos sejam incentivados a a¢do, ao questionamento e a for-
mulagdo de hip6teses. Com isso em mente, as atividades foram elaboradas e aplicadas com o intuito
de levar os alunos a uma participacdo ativa, como com a construgdo de poliedros em papel e com
discussodes que levem a reflexdao de problemas.

3.1 Descri¢ao das oficinas

A seguir, serdo apresentadas propostas de quatro oficinas tendo como publico-alvo alunos de Ensino
Fundamental II e Médio. Mesmo assim, ndo hd nenhum impeditivo para aplica-las com estudantes
de Ensino Superior, por exemplo. Na verdade, isso pode ser bastante proveitoso, visto que alguns
temas da oficina sdo desconhecidos até mesmo por professores de Matematica, pois geralmente sdo
apresentados apenas em cursos de Matemdtica “avangados”.

Elas foram pensadas para serem realizadas de modo sequencial e sdo iniciadas com um problema
elementar: a andlise dos vértices, arestas e faces de poliedros. A partir disso, busca-se guiar os alu-
nos até o enunciado da férmula de Euler. Na segunda oficina, busca-se tracar um paralelo com a
férmula de Descartes, mostrando a conexdo que a férmula de Euler possui com os angulos planos
dos poliedros. Em seguida, visa-se chegar na formulacdo definitiva da férmula de Euler, de que
todo poliedro isomorfo a esfera satisfaz V' — A + F' = 2. Ja na dltima oficina, é tratado do tema
de (ndo-)orientabilidade de superficies a fim de observar que toda superficie pode ser caracterizada
simplesmente pela sua caracteristica de Euler e sua orientabilidade.

Nota-se que tal sequéncia didatica é similar ao caminho histérico percorrido durante o nascimento
da Topologia. Assim, pode ser bastante proveitosa a realizacdo ao longo das oficinas de comentarios
histéricos, como os presentes na secdo 1.2.

Ainda que a sequéncia das oficinas formem um todo coerente, também acreditamos que elas po-
dem ser encurtadas caso o interesse seja de apresentar certos tépicos de maneira mais direta. Por
exemplo, a realizagdo da oficina 2 ndo é necessdaria para o cumprimento das seguintes. Além disso, as
partes iniciais das oficinas 3 e 4 também podem ser realizadas de maneira independente das demais.

Oficina 1: Caracteristica de Euler de Poliedros

Objetivos: Calcular a caracteristica de Euler de alguns poliedros e compara-las.

Conhecimentos prévios desejaveis: algum contato com poliedros; reconhecimento de vértices, ares-
tas e faces; alguma pratica com colagens.

25
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Materiais necessarios: uma planificagdo de um poliedro isomorfo a esfera (e.g. poliedros convexos
ou poliedros em formato de “L” [figura 3.1]) e uma de um poliedro isomorfo ao toro (veja o apéndice
B) para cada aluna/o; cola ou fita adesiva.

Roteiro:

1. Comegar a aula introduzindo (ou relembrando) o conceito de poliedro e focar em suas trés
principais caracteristicas: faces (F), arestas (A) e vértices (F). Perguntar quais poliedros eles
conhecem e se eles conhecem a férmula de Euler. Notar, também, que cada aresta é adjacente a
s6 2 faces e cada vértice a pelo menos trés faces.

2. Entregar para cada aluno as 2 planificagdes e pedir para eles montarem colando com cola ou
com fita adesiva disponibilizada em pedagos pela/o professor/a.

3. Pedir para eles contarem as faces, arestas e vértices e realizarem a conta V+F-A.

4. Apos fazerem as contas colocarem na frente da sala em duas categorias: os poliedros que satis-
fazem V+F-A=0 e os que satisfazem V+F-A=2.

5. Incentivar uma discussdo: vocés esperavam isso? Os poliedros de cada grupo sdo parecidos? O
que fazem eles serem agrupados desse jeito?

6. Finalizar dizendo que V+F-A=2 para poliedros convexos é conhecida como férmula de Euler (e
tracar alguns comentarios histéricos) e que o valor V+F-A é conhecido como caracteristica de
Euler.

Figura 3.1: A esuerda, uma planificacdo de um poliedro que possui a forma de um “L”, sendo nao-
convexo e isomorfo a esfera. O segmento vermelho indica que a regido deve ser dobrada de modo a
formar uma concavidade. A direita, planificagdes de poliedros isomorfos ao toro.

Oficina 2: Fé6rmula de Descartes

Objetivos: Calcular a deficiéncia angular de alguns poliedros, compara-las e tracar um paralelo
com a caracteristica de Euler.

Conhecimentos prévios desejaveis: nogdes de angulos (e.g. 360°=1 volta; 180°=meia-volta); é inte-
ressante o conhecimento de ntiimeros negativos, mas a proposta pode ser adaptada para que nédo haja
suas ocorréncia.

Materiais necessérios: 1 poliedro do tipo esfera e 1 do tipo toro para cada aluno/a (e.g. da oficina
anterior).

Roteiro:

1. Comegar a oficina introduzindo o conceito de deficiéncia angular de um vértice. Para tanto,
é 1til usar um poliedro como exemplo. Também, pode ser necessario relembrar/introduzir
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medidas de angulos internos de poligonos (em especial, de tridngulos equiléteros, quadrados e
trapézios) e a soma de seus angulos externos.

. Entregar para cada aluno os dois poliedros e pedir para calcularem a deficiéncia angular de

cada vértice e, entdo, soma-las para obter a deficiéncia angular total dos poliedros.

. Ap6s fazerem as contas, colocarem na frente da sala em duas categorias: os poliedros que pos-

suem deficiéncia igual a 0° e os de igual a 720°.

. Iniciar a discussdo: vocés esperavam isso? Essa organizacdo de poliedros é parecida com a da

atividade anterior?

. Finalizar dizendo que a deficiéncia angular ser igual a 720 é chamada de férmula de Descartes

(tragando alguns comentdrios histéricos) e evidenciar a relagdo, por meio de uma tabela, entre
os dois conceitos: (deficiéncia angular)=720° x (caracteristica de Euler).

Oficina 3: Isomorfismo de Superficies

Objetivos: Introduzir o conceito de isomorfismo topolégico de superficies e sua relagdo com a
caracteristica de Euler.

Materiais necessérios: folhas de atividade sobre identificagao de figuras isomorfas para cada aluno

(veja a figura 3.2); projetor de video ou TV; 1 bola de isopor (opcional).

Roteiro: Essa aula serd consideravelmente expositiva e focada principalmente na introdugéo de
conceitos e terminologia.

1.

Introduzir o conceito de superficies como um papel deformado e apresentar por video ou ima-
gem diversos exemplos visuais para os alunos: esfera oca, poliedros, toro oco ou rosquinha,
garrafa de Klein, superficies quadraticas, como elipsoides, paraboloides, hiperboloides e selas
(como a usual e a do macaco), entre outras.

. Introduzir através de exemplos a nogao de superficie fechada (como superficies “limitadas” e

sem bordo).

. Apresentar as transformagdes de encolher, entortar, esticar ou inflar uma superficie (ou partes

dela) e dizer que elas sdo chamadas de isomorfismos.

. Apresentar a seguinte terminologia: duas superficies sdo ditas isomorfas quando podemos ob-

ter uma a partir da outra através de um isomorfismo. Ilustrar com exemplos visuais e videos
(como o isomorfismo entre o cubo e a esfera ou entre o toro e a xicaral). Se possivel, contrastar
com as nogdes de figuras congruentes e semelhantes.

. Entregar e pedir para os alunos realizarem uma atividade de identificagdo de superficies iso-

morfas.

. Enunciar a férmula de Euler da seguinte maneira: todo poliedro isomorfo a esfera satisfaz V+F-

A=2. O mesmo acontece para a rosquinha e explicar que a caracteristica de Euler ndo muda
para superficies isomorfas.

. (Opcional) O acima pode ser equivalentemente formulado como: toda poligonizac¢do da esfera

satisfaz V+F-A=2. Por exemplo, isso pode ser ilustrado apresentando algumas poligonizagdes
da esfera desenhando sobre uma bola de isopor.

. Finalizar com a pergunta: se duas superficies tém a mesma caracteristica de Euler, serd que elas

sdo isomorfas?

Oficina 4: Orientabilidade

INesse caso, uma boa visualizagio pode ser acessada em https://en.wikipedia.org/wiki/File:Mug_and_
Torus_morph.gif


https://en.wikipedia.org/wiki/File:Mug_and_Torus_morph.gif
https://en.wikipedia.org/wiki/File:Mug_and_Torus_morph.gif
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Figura 3.2: Exemplo de atividade de reconhecimento de figuras isomorfas.

Objetivos: Introduzir o conceito de (ndo-)orientabilidade de superficies; observar que a caracteris-
tica de Euler vista junto & orientabilidade caracteriza as superficies fechadas.

Materiais necessdrios: faixas de papel vegetal (com pelo menos 4cm de altura); fita crepe ou ade-
siva; modelos poliedrais da garrafa de Klein.

Roteiro:

1. Comegar dando as faixas de papel para cada aluno e pedir para desenharem sobre ela um pac-
man se movimentando em uma direcdo. Com o uso do papel vegetal, deve ficar claro que o
pac-man pode ser visualizado em ambos os lados da faixa. Em seguida, pedir para formarem a
faixa de Mobius.

2. Notar algumas caracteristicas da faixa: ela inverte a posi¢do do pacman apés 1 volta; se o seu
dedo (ou uma formiga) andar pela faixa, ele também vai ficar de ponta-cabeca (pode-se mostrar
o desenho de Escher de formigas andando sobre uma faixa de Mobius); a faixa possui apenas
um lado (isto €, ndo é possivel colori-la com duas cores sem que as cores se cruzem).

3. Com o anterior, dizer que superficies que satisfazem as caracteristicas acima sdo ditas nao-
orientdveis e, se necessdrio, explicar em mais detalhes, ao contrastar com exemplos de superfi-
cies orientaveis.

4. Apresentar, em seguida, a garrafa de Klein com o modelo fisico usual e mostrar duas possiveis
construgdes matematicas dela: tomando um cilindro e colando suas duas bases com orientagdo
invertida ou através de duas faixa de Mobius?.

5. (Opcional) Mostrar videos de outras superficies ndo-orientdveis, como os trés modelos do plano
projetivo: calota cruzada (em inglés, cross-cap), superficie romana e superficie de Boy®.

2Ambas podem ser visualizadas na excelente pagina online de Marianne Freiberger: plus.maths.org/content/
introducing-klein-bottle.

3Para tanto, recomendamos os videos disponiveis em: youtu.be/W-sKLNOVBkk; youtu.be/Op2TSnLgkuY; youtu.
be/uig-EcQz_uU.


plus.maths.org/content/introducing-klein-bottle
plus.maths.org/content/introducing-klein-bottle
youtu.be/W-sKLN0VBkk
youtu.be/Op2TSnLgkuY
youtu.be/uiq-EcQz_uU
youtu.be/uiq-EcQz_uU
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6. Em seguida, usar o modelo poliedral da garrafa de Klein para que os alunos calculem a sua
caracteristica de Euler, concluindo que sua caracteristica de Euler é igual a do toro.

7. Enunciar o resultado de que duas superficies fechadas sdo isomorfas se (e somente se) possuem
mesma orientacdo e mesma caracteristica de Euler.

Comentdrios sobre a aplicacdo: A realizacdo da oficina depende do uso de um modelo poliedral
da garrafa de Klein. Uma possibilidade é dada pela “caixa de Klein”, apresentada na figura 3.3 abaixo,
cuja planificagdo pode ser acessada através do seguinte link:

wWww.cCs.cmu.edu/~kmcrane/Projects/ModelRepository/KleinBoxPattern.pdf

Assim, seria interessante que cada aluno (ou dupla de alunos) construisse tal poliedro e reali-
zasse o cdlculo da caracteristica. Nesse ponto, é necessario que o professor alerte que as faces de um
poliedro ndo podem possuir buracos, de modo que a parte superior do paralelepipedo que forma
a caixa de Klein ndo pode ser contado simplesmente como uma face. Para tanto, é necessdrio criar
novas arestas (e.g. que ligam o vértice do retingulo a um dos vértices do buraco) para formar faces
simplesmente conexas (i.e. sem buracos).

Uma maneira para evitar a insergdo de tais arestas “artificiais” é utilizando outro modelo da gar-
rafa de Klein, como o apresentado anteriormente na figura 1.1. Nesse caso, cada aresta é adjacente
a duas faces que pertencem a planos concorrentes entre si. Infelizmente, ndo fornecemos aqui uma
planificagdo de tal modelo.

Figura 3.3: Modelo poliedral da garrafa de Klein. Fonte: Keenan’s 3D Model Repository.

3.2 Aplicacao das oficinas

Apliquei algumas das oficinas acima em trés diferentes turmas da Escola Estadual Dr. Octavio Men-
des, escola de tempo integral localizada na Zona Norte de Sdo Paulo, no bairro de Santana. Em uma
turma de 37 série do Ensino Médio , foram realizadas as oficinas 1 e 3. A oficina 1 também foi feita
com uma turma de 9° ano do Ensino Fundamental e a parte inicial da oficina 4 foi realizada com
uma turma de 8° ano. Durante todas as aulas, busquei construir o conhecimento junto aos alunos,
incentivando-os ao questionamento e a formulagdo de hip6teses. Abaixo, serd relatado como se deu
a aplicagdo em cada uma das turmas, apontando algumas dos problemas encontrados e de como os
alunos reagiram as atividades.

Aplicacao na 3? série (oficinas 1 e 3)

Na turma de Ensino Médio, realizou-se as oficinas 1 e 3 em dois dias distintos, ambas durante um
periodo de 1h30 e que comprometia o tempo de duas aulas do “Itinerdrio Formativo de Exatas”. A
turma era consideravelmente pequena, composta por 7 alunos.

Primeiramente, foi realizada a oficina 1, que trata do célculo da caracteristica de Euler de diferen-
tes poliedros a partir da sua construgdo com papel e da contagem de seus vértices, arestas e faces.
Inicialmente, dado que ndo era certo se os alunos lembravam de temas relacionados a poliedros,
busquei comegar a aula contrastando os conceitos de poligonos e poliedros e pedindo para os alunos


www.cs.cmu.edu/~kmcrane/Projects/ModelRepository/KleinBoxPattern.pdf
https://www.cs.cmu.edu/~kmcrane/Projects/ModelRepository/
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fornecerem alguns exemplos de cada. Também, evidenciei os trés elementos dos poliedros que seriam
nosso foco: os vértices, as arestas e as faces.

Em seguida, forneci aos alunos quatro planifica¢des (previamente recortadas) de poliedros iso-
morfos ao toro, sendo dois com segédo triangular e dois com secdo quadrangular, e quatro de isomor-
fos a esfera, sendo um tetraedro, um cubo, um prisma hexagonal e um poliedro em forma de “L” (o
tnico ndo-convexo). Assim, cada aluno ficou responsavel pela montagem de um poliedro, enquanto
que o oitavo poliedro poderia ser construido espontaneamente por algum aluno que desejasse.

Enquanto os alunos dobravam as planificagdes, eu passava em cada mesa recortando e entregando
pedacos de fita adesiva para que os poliedros fossem fixados. Além disso, eu buscava fornecer algu-
mas orientacdes para as montagens, visto que eu nao lhes forneci previamente nenhuma visualizagdo
do resultado final dos poliedros do tipo toro. A facilidade na montagem foi varidvel: uma aluna, por
exemplo, montou rapidamente um poliedro toroidal triangular, enquanto outro aluno teve dificulda-
des de construir o tetraedro. Durante esse tempo, também surgiram alguns questionamentos sobre o
nome dos poliedros. Por exemplo, eles ndo lembravam o nome do prisma hexagonal, de modo que
pude relembrar alguns conceitos que lhes foram apresentados no ano anterior, e também queriam
saber os nomes dos poliedros do tipo toro, os quais decidi chamar de “rosquinhas” triangulares e
quadradas (a depender da sua se¢do horizontal).

Apo6s a montagem, pedi para que cada um dos alunos contasse e registrasse as quantidades de
vértices, arestas e faces de seu poliedro. A medida que eles finalizavam, eles me forneciam suas
respostas, eu as registrava na lousa e dizia se estavam corretas ou ndo. Em muitos casos, os alunos
erraram a contagem na primeira tentativa, especialmente da quantidade de arestas. Por exemplo, o
aluno responsavel pelo cubo disse, inicialmente, que havia 16 arestas; mas, logo ap6s apontar seu
erro, conseguiu fornecer a resposta correta. Para outros casos, como do prisma hexagonal ou de
alguns toroidais, foi necessario uma maior intervengdo para chegarmos nas quantidades adequadas.

Vale notar que, em ambas as etapas acima, para que ninguém ficasse para tras, alguns alunos que
j& tinham finalizado suas tarefas passaram a auxiliar os que ainda estavam precisavam cumpri-las.

Com o intuito de chegar na férmula de Euler, apés o registro de todas as quantidades na lousa,
lhes questionei se eles poderiam reconhecer algum padrdo que fosse comum a todos os poliedros.
Inicialmente, uma das respostas foi a de que os ntimeros eram pares, o que realmente era valido
para todos com excegdo dos vértices e faces dos poliedros toroidais com secado triangular. Ap6s mais
algumas observagoes, pudemos perceber que, ao realizar o cdlculo de V — A + F, havia alguns que
nos davam o valor 2 e outros que davam o valor 0. Rapidamente, eles observaram que o valor 0 s6
era obtido pelos poliedros que tinham buraco, enquanto os outros nos forneciam o valor 2.

Na sequéncia, tracei alguns comentérios sobre Euler e de que ele havia descoberto que a relagdo
V — A4 F = 2 era véalida para qualquer poliedro convexo. Apés isso, um questdo interessante foi
formulada por uma aluna: “Essa relagdo também vale para o cone? Como contamos vértices, arestas
e faces de um cone?” Tal pergunta me tomou de surpresa e lhes disse que seria mais facil de eu
responder tal pergunta se eu possuisse fisicamente um cone naquele momento — o que eu néo tinha.
Assim, de modo totalmente espontaneo, os alunos comegaram a fazer um cone com as folhas de seus
cadernos — uma aluna até tentou iniciar um trabalho em equipe dizendo algo como: “enquanto eu
faco a parte de cima, corta um circulo para fazer a base”. Em conclusdo, com o cone feito pelos alunos
pude lhes explicar que, apesar de ele ser formado por curvas, poderiamos marcar alguns pontos na
sua base para serem vértices e, apés tracar segmentos até o vértice superior, poderiamos enxergar
suas arestas e notar que a férmula de Euler também ¢é valida para o cone.

Ao final da aula, outras duas questdes interessantes foram formulada por um aluno: “O valor de
V-A+F é sempre igual a 2 ou 0? Qual seria o valor se houvesse dois buracos?” Nesse ponto, decidi
ndo dar a resposta para os alunos para que se mantivessem curiosos e tentassem encontrar a resposta
sozinhos. Assim, eles puderam notar que, para responder tais questdes, bastava colar dois poliedros
do tipo toro e realizar as devidas contagens. No entanto, ndo chegaram a fazé-lo: ja estavam cansados
o bastante e a aula, que era a dltima do dia, ja iria acabar.

A oficina 3 pode ser aplicada com a mesma turma somente ap6s um intervalo de trés semanas.
Desse modo, foi necessério a realizacdo de uma revisdo da aula anterior. Tal momento, também,
foi bastante proveitoso para tornar claros alguns conceitos e nomenclaturas, como a de poliedros
convexos e de caracteristica de Euler. Em seguida, comecei a introduzir o conceito de superficie
perguntando-lhes se poderiam fornecer alguns exemplos. Eles puderam dar algumas respostas, mas
todas se restringiam a superficies planas, como a superficie de uma mesa ou de uma parede. Entao,
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Figura 3.4: Poliedros (e cone) construidos pela turma da 3° série.

apresentei diversos outros exemplos a partir de imagens que foram previamente organizadas através
de uma apresentacdo por slides.

As superficies abaixo séo isomorfas?

Figura 3.5: Exemplo de um dos exercicios discutidos com a turma da 3" série.

Para introduzir o conceito de isomorfismos, assim como descrito anteriormente, foquei no uso de
quatro palavras-chaves: esticar, inflar, encolher e entortar. Em seguida, isso foi ilustrado a partir do
exemplo de um cubo e uma esfera e do classico exemplo do toro e da xicara. Mesmo assim, acredito
que a efetiva aprendizagem s6 se deu no momento dos exercicios. Ao invés de lhes entregar ativi-
dades a serem resolvidas em papel, decidi realizar as perguntas para serem respondidas oralmente
a todos da sala. Assim, procedia da seguinte maneira: eu expunha duas superficies na TV da sala,
escolhia um(a) aluno/a e lhe perguntava se elas seriam isomorfas; ap6s sua resposta, eu abria uma
discussdo com o resto da sala para ver se os outros concordavam ou ndo com a/o colega. Na mai-
oria dos casos, eles puderam acertar, mesmo ndo fornecendo justificativas; também acredito que as
ocorréncias de erros puderam ser bastante aproveitadas: por exemplo, um aluno disse que a esfera
poderia ser isomorfa a um toro caso seus dois polos fossem pressionados um contra ao outro. Assim,
em seguida, mencionei sobre a impossibilidade de criar um buraco dessa maneira, visto que os dois
polos se tocariam quando pressionados ao maximo.

Ao final, busquei propor que os alunos fornecessem o enunciado definitivo para a férmula de
Euler — e tinha a expectativa de que o fariam. No entanto, eles ndo responderam como gostaria, de
modo que o fato de que, por exemplo, todo poliedro isomorfo a esfera satisfaz V' — A + F = 2 56 se
tornou claro ap6s eu dar seu enunciado. Mesmo assim, durante a discussdo, uma aluna péde com
sucesso reparar que o poliedro em forma de “L” é isomorfo a um cubo, dizendo que basta elevar a
parte inferior do “L” até ele encontrar a parte superior.

Aplicacdo no 9° ano (oficina 1)

Como a aplicagdo da oficina 1 ja foi descrita acima, buscarei apresentar aqui quais foram os prin-
cipais contrastes quando ela foi realizada na turma de 9° ano. O primeiro ponto a se levar em consi-
deracdo é que essa turma necessitava de maior articulacdo por parte do professor, visto que ela era
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Figura 3.6: Lousa da sala de aula apds a realizagao da oficina 3 na 3° série.

consideravelmente maior: havia pouco menos de 30 alunos presentes. Assim, a parte introdutéria
da oficina, que tem o intuito de evidenciar o conceito de poliedro e seus elementos, foi realizada
com uma sessdo de perguntas que elaborei através da plataforma Kahoot. A realizagdo de tal ativi-
dade foi motivada pela professora da turma, que gostaria de experimentar a plataforma, mas nao
sabia exatamente como utilizd-la. Com isso, apds serem organizados em duplas, diversas perguntas
eram apresentadas na TV aos alunos, os quais usavam o celular para responderem. Dependendo de
suas respostas e de sua rapidez, eles recebiam pontuagdes e, em seguida, a plataforma fornecia um
ranqueamento dos participantes, dando uma sensacdo de jogo para a atividade.

Como sao chamadas as figuras geomeétricas abaixo?

A Poligonos # Solidos geométricos

@ Paralelepipedos. W Poliedros

V7

Figura 3.7: Uma das perguntas feitas durante o momento inicial da aula no 9° ano.

Ainda em duplas, entreguei para cada uma delas duas planifica¢des, sendo uma de um poliedro
convexo e uma de um isomorfo ao toro. Durante a montagem, dois pontos interessantes puderam ser
observados. O primeiro deles é que, dado o tamanho da turma, um problema de ordem prética na-
turalmente surgiu: era necessario muito tempo para que eu recortasse e entregasse fita adesiva para
todos os alunos. Com isso, tentei incentiva-los a usar a menor quantidade de fita possivel realizando
uma questdo que, também, é interessante do ponto de vista matemético: quantas fitas sdo necessa-
rias para montar uma planificagdo? Enquanto alguns ndo souberam responder, outros analisavam a
planificacdo e davam uma resposta baseado no niimero de lados que eram colados.

Outro ponto notavel é que essa turma tinha menos conhecimento sobre os nomes matematicos
dos poliedros; assim, alguns passaram a registra-los de maneiras alternativas. Por exemplo, alguns
diziam que um tetraedro é poliedro em forma de tridngulo, enquanto outros diferenciavam os po-
liedros através do nome do integrante da dupla. Por exemplo, um seria o poliedro que Fulano fez
enquanto o outro seria o que Sicrano fez. De qualquer modo, também adotamos a convengdo, que foi
bastante aceita, de chamar os poliedros toroidais de rosquinhas.

Durante a contagem de vértices, arestas e faces, foi notavel que os alunos dessa turma possufam
mais dificuldade do que os da 3° série do Ensino Médio. De fato, uma quantidade consideravel de
duplas ndo conseguiu chegar nos valores corretos para o caso dos poliedros convexos e apenas uma
dupla obteve a resposta correta para o caso das rosquinhas. Desse modo, tentei realizar algumas
revisdes das contagens de maneira individual com os alunos, sendo infactivel de atender apropriada-
mente a todos os alunos. Ao final da aula, mesmo sem poder garantir o claro entendimento por todos
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Figura 3.8: Alguns poliedros construidos pela turma do 9° ano.

os alunos, respondi quais valores deveriam ser obtidos no cdlculode V' — A + F.

A fim de facilitar o problema da contagem, uma possivel abordagem poderia se basear na pla-
nificagdo dos poliedros. De fato, é muito mais facil contar as faces de um poliedro quando vemos
a sua planificagdo. O mesmo também pode ser verdade para as arestas caso estejam claras para o
aluno as regides de colagem, de modo que a quantidade de arestas na borda da planificagdo deve ser
divida pela metade. Desse modo, ao invés de pedir, em primeiro lugar, que os alunos montassem os
poliedros para, em seguida, contar suas faces, arestas e vértices, poderia se tratar das duas tarefas de
maneira simultanea. Por exemplo, poderia ser sugerido aos alunos que montassem os poliedros, mas
sem fixd-los com fita adesiva, de modo que eles tivessem uma nogdo de seu formato e das arestas
identificadas, mas que ainda fosse possivel recuperar facilmente sua planificagdo. Ou, ainda, pode-
riam ser fornecidas duas planificagdes de um mesmo poliedro para cada aluno, sendo uma utilizada
para a montagem e a outra para o auxilio na contagem.

Por fim, também vale comentar que um dos alunos da turma apresentou dificuldade no calculo
com ntimeros negativos, o que poderia ser remediado caso eu apresentasse o cdlculo da caracteristica
dos poliedros como V + F' — Aaoinvésde V. — A + F.

Aplica¢ao no 8° ano (oficina 4)

Em uma turma de 8° ano, que possuia mais de 30 alunos, foi realizada a parte inicial da oficina
4, o que envolve a introdugdo do conceito de ndo-orientabilidade através da construgdo de uma faixa
de Mobius. Desse modo, temas relacionados a caracteristica de Euler estiveram totalmente ausentes
na aplicacdo da atividade com essa turma.

Comecei a aula fornecendo uma pequena introdugdo ao conceito de superficies e, em seguida,
entregando uma faixa de papel sulfite* previamente recortada para cada aluno. De maneira natural,
as faixas acabaram por apresentar diferencas de tamanho e de formato — algumas delas possuiam
pontas de maneira a formar uma espécie de coroa quando enroladas para formar um cilindro. Esse
fendmeno se torna ttil para evidenciar a natureza dos objetos topoldgicos, que sdo considerados
equivalentes ao serem ampliados ou reduzidos, e nem sempre é ébvia: por exemplo, durante a aula,
um aluno me questionou sobre os tamanhos possiveis de uma faixa de Mobius.

Em seguida, apresentei & sala como a faixa poderia ser formada, com uma rotagdo de 180° de
sua borda e posterior colagem, em contraste com o modo de colagem do cilindro. Em seguida, pude
conferir que, enquanto alguns realizaram imediatamente a montagem, outros, em especial aqueles
que tinham faixas com “pontas”, sé conseguiram com um maior auxilio meu ou dos colegas. Na
sequéncia, propus um desafio: “vocés conseguem colorir o lado de fora da faixa de uma cor e o lado
de dentro de outra?” Assim, a grande maioria dos alunos retornou a faixa a sua posigdo plana e
pintou cada um de seus lados retangulares de uma cor. Com isso, alguns alunos puderam notar que
as duas cores se tocavam no momento da colagem da faixa de Mobius. Um aluno, especificamente,
observou mais ainda: “quando realizamos um ntimero impar de rota¢des [de 180°], as duas cores
diferentes sdo coladas juntas; enquanto isso, no caso de um niimero par, as cores iguais sdo coladas.”

4Por questdes praticas, ndo utilizei papel vegetal. Na verdade, as faixas usadas foram fruto dos restos de papel gerados
apo6s o recorte das planificagdes de poliedros usadas nas outras oficinas.
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Figura 3.9: Faixa colorida por uma das alunas da turma do 8° ano.

Ap6s algumas consideragdes, uma segunda atividade foi proposta: desenhar um boneco como o
do Pac-man se locomovendo pela faixa e descobrir para onde ele deve seguir ap6s uma volta. Ideal-
mente, eu deveria ter lhes dito para desenharem o mesmo desenho na frente e no verso da folha, visto
que o conceito de orientagdo trata da anédlise de caminhos realizados por, digamos, “seres bidimen-
sionais”, que estdo “dentro” da superficie e ndo “sobre” ela. Essa falta de especificagdo da atividade
permitiu que os alunos desenhassem o caminho do boneco de diversas maneiras. Mesmo assim, o
fato de que o boneco estaria invertido apds uma volta pdde ser percebido de diferentes formas.

Por fim, vale citar que alguns alunos experimentaram outros modos de colagem da faixa. Um de-
les (0 mesmo que realizou a observagdo do pentultimo pardgrafo) buscou testar o maximo de rotagoes
que ele poderia realizar antes de colar as duas bordas; outro tentou reproduzir algumas das imagens
de caréter artistico que expus na TV; outro ainda produziu uma figura, de certo modo, em forma de
“8”, mas que é isomorfa a um cilindro.



Discussao final

Além dos tépicos de Topologia apresentados aqui, muitos outros poderiam ser analisados a fim
de torna-los passiveis de serem ensinados ou divulgados para um publico mais abrangente. Entre
eles, estd o plano projetivo, que possui trés diferentes modelos de visualizacdo tridimensional (veja
[Mar19, Capitulo 6]): a calota cruzada (em inglés cross-cap), a superficie romana e a superficie de
Boy. Apesar de todas poderem ser realizadas de maneira poliedral — inclusive, uma planificacdo da
calota cruzada pode ser conferida em [Ric08, p. 282] —, apenas a superficie de Boy ndo apresenta
singularidades. Desse modo, ela é a tinica que torna evidente, no nosso entendimento, o célculo
da caracteristica de Euler do plano projetivo através de sua visualizacdo global tridimensional. No
entanto, algum esforgo é necessario para apresentar de forma didatica a construcdo de um modelo
poliedral da superficie de Boy. Com esse intuito, pode-se consultar os trabalhos de Brehm [Bre90] e
de Laura Gay [Gay].

Um modo alternativo para resolver o problema do cdlculo da caracteristica de Euler do plano
projetivo estd em tratar as superficies através de suas apresentacgdes poligonais. Com isso, uma po-
ligonizacdo das superficies é obtida através de uma poligonizacdo adequada de tais apresentagdes
bidimensionais. Esse tipo de visualizacdo das superficies é apresentado nas atividades de ensino
de Topologia propostas por Ferron [Ferl7] e, também, pode ser tratado através de jogos interati-
vos, como os Torus Games de Jeff Weeks, que podem ser acessados via www . geometrygames.org/
TorusGames/index.html.

Outra nogdo topolégica importante que foi deixada de lado neste trabalho foi a de isomorfismos
topoldgicos dados por corte e (re)colagem de superficies. O tratamento desse t6pico pode ser bastante
proveitoso, visto que, quando aliado as apresentacdes poligonais, permite mostrar isomorfismos in-
teressantes, como o entre a garrafa de Klein e uma soma de dois planos projetivos ou o entre uma
soma de planos projetivos e uma soma de um toro com um plano projetivo (veja o lema A.0.7).

Ainda, outros famosos teoremas podem ser aproveitados para o ensino e a divulgacdo cientifica,
como é o caso dos resultados apresentados nas duas tdltimas se¢des do capitulo 1, mas também do
teorema do ponto fixo de Brouwer e do teorema de Borsuk-Ulam, o qual por sua vez é utilizado para
provar o teorema do Sanduiche de Presunto. Além disso, vale considerar o tratamento da conjectura
de Poincaré, cuja demonstragdo levou cerca de cem anos para ser finalizada e é apresentada de modo
instigante e palatdvel, por exemplo, no livro de O’Shea [O’S07].

Por fim, outra tema ligado a Topologia e que pode ser bastante estimulante para a divulgagao
cientifica é dado pelos estudos acerca da topologia do Universo, veja [Wee02, Chapter 19]. Por exem-
plo, hd quem afirme que o universo possua a topologia do espaco dodecaédrico de Poincaré [Wee(04].
Nesse contexto, torna-se relevante a apresentagdo da nogdo de uma quarta dimenséo e de variedades
de dimensdo 3. Sobre esse tema, ainda pode ser proveitoso o uso do conto “A torre da Babilonia”, de
Ted Chiang [Chil6], no qual é apresentado um mundo que “estava enrolado de algum modo fantas-
tico”, em que céu e terra se tocavam.
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Apéndice A

Teorema de Classificacao de
Superficies

A seguir, serd apresentado um trabalho realizado pelo aluno durante uma disciplina de Topologia
Algébrica, cursada em 2019 no IME-USP e ministrada pelo prof. Ivan Struchiner.

O objetivo do trabalho é mostrar que toda superficie conexa compacta sem bordo triangulada é
isomorfa exatamente a uma destas superficies: a esfera, uma soma conexa de toros ou uma soma
conexa de planos projetivos. Aqui, superficie se refere a uma variedade topolégica de dimensao 2.
Como principais referéncias, foram utilizados o livro de John M. Lee [Lee00] e as notas de aula de
Marius Drainic e Ivan Struchiner, Topologie en Meetkunde 2011.

A demonstracdo realizada aqui se baseia na aplicagdo de diversas transformagdes (que preservam
a topologia) sobre apresentagdes poligonais de superficies. Uma demonstracéo alternativa para o te-
orema é dada pela “prova ZIP” [FW99], que, segundo os autores do artigo, possui uma abordagem
“mais leve, sem gorduras e que mantém o gosto classico da topologia elementar”. Outra possivel de-
monstra¢do pode ser conferida no livro de Armstrong [Arm83, Chapter 7], que se baseia na aplicagdo
de “cirurgias” sobre as superficies que aumentam o valor de sua caracteristica de Euler. Alguns co-
mentdrios histéricos sobre as primeiros matematicos a obterem este teorema podem ser encontrados
em [Ric08, pp. 183-184].

Primeiramente, vamos dar um pequeno esclarecimento quanto as hipéteses escolhidas para a su-
perficie. Escolhemos que ela seja triangulada e compacta, porque a prova do teorema é totalmente
baseada na existéncia de uma apresentacdo poligonal da superficie e sabe-se que tais superficies pos-
suem tal apresentacdo, induzida pela triangulacdo. Além disso, estamos considerando que ela seja
conexa, pois, desse modo, sua apresentagdo provém de apenas um poligono. O propdsito de ser uma
superficie sem bordo é que sua apresentacado seja propria (diremos o que isso significa). Por exemplo,
se retirdssemos a hip6tese sobre o bordo, o teorema ndo valeria, ja que o cilindro com bordo de altura
e raio unitarios é uma superficie compacta conexa triangulada nio isomorfa a nenhuma das citadas
acima: de fato, o cilindro ¢ homot6pico a esfera S! e, portanto, seu grupo fundamental é Z, que é
diferente dos grupos fundamentais das superficies citadas.

A fim de facilitar apresenta¢des de algumas superficies, assumimos aqui que um poligono com 2
lados é uma circunferéncia em que um vértice é um ponto fixado na circunferéncia e o outro vértce é
o diametralmente oposto e, assim, cada aresta é uma semicircunferéncia.

Defini¢do A.0.1. Seja P C R? um poligono convexo com n arestas orientadas, n > 2, e n vértices
ordenados, i.e., fixa-se um vértice como vy e, recursivamente, nomeiamos o vértice mais préximo de
v;—1 no sentido anti-hordrio por v;, de modo que vy = v,. Além disso, associe para cada aresta de P
um simbolo, que chamaremos de rétulo (em geral, vamos utilizar letras mintisculas como a, b, ...) e
associe, também, ao seu rétulo a orientacdo:

* se uma aresta a tem sentido anti-horério (i.e., vai de um vértice v, para um v1), temos uma
orientagdo positiva (+1) e rotulamos a aresta simplesmente por q;

* se uma aresta a tem sentido hordrio (i.e., vai de um vértice vi4; para um vy), temos uma orien-
tagdo negativa (-1) e rotulamos a aresta por a .
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Rotuladas todas arestas, iremos denotar essa rotulagédo do poligono por W = [a{* ... a%"], onde a;
é o rétulo da aresta com vértices v;_; e v; e e; denota a sua respectiva orientagdo. Repare que pode-se
utilizar o mesmo rétulo (com uma possivel troca de orientacdo) para duas arestas diferentes. Fazemos
isso com o intuito de representar uma certa colagem dessas arestas na orientagdo indicada e é desse
modo que produziremos nossas superficies.

Explicitamente, a colagem sera dada com auxilio de um isomorfismo: dada uma aresta c que vai
de um vértice v; para um w; e outra d que vai de v, para um ws, temos que a fungdo h : ¢ — d que,
para cada z = (1 — t)vy + twy € ¢, associa a h(z) = (1 — t)ve + twy € d é um isomorfismo. Assim,
sendo R a regido poligonal de P (i.e., a reunido de P com seu interior), podemos construir um espago
X = R/~, com ~ sendo a seguinte relagdo de equivaléncia:

* se p € R estd no interior de R, entdo p é equivalente somente a p;
* sejam b;, b; duas arestas de P que possuem o mesmo rétulo, entdo b; > x ~ h(x) € b;.

Desse modo, através das rotula¢des do poligono P, obtivemos o espago X e diremos que X foi
obtido através da rotulacdo W (de P) e que W é uma apresentacdo poligonal de X. Também, vamos
incluir aqui espagos que sdo obtidos a partir da rotulacdo de um ntmero finito de poligonos com
rétulos Wi ... W,, e denotaremos a apresentagdo de X por [Wy, Wa, ..., Wp,].

Exemplo A.0.2. Para nossos exemplos bésicos de superficies, temos as seguintes apresentac¢des poli-
gonais, que serdo nossos padroes:

1. A esfera S? é dada por [aa™1];
2. O toro T? por [aba=1b71];
3. O plano projetivo P? por [aal.

Téao importante quanto entender como a superficie é dada é saber como poderemos transforma-la
em outras de modo que elas continuem isomorfas. Assim, vejamos algumas transformacoes desse
tipo, a que chamaremos de transformagoes elementares:

e Corte: Dada uma rotulagdo w e um rétulo b ndo presente em w, entdo chamamos de corte ao
longo de b a transformacgdo: w = [aj ... akAk+1 - - - Q) — [a1 ... akb, b tags1 ... ap)

¢ Colagem: E a transformagdo inversa ao corte, isto é, uma rotulagdo da forma [a; ... agb, b~ tagiq ...

é levada a rotulagdo [ay . .. agar+1 - - - ap). E dizemos que ocorreu uma colagem ao longo de b.

* Rotagdo: Esta baseia-se simplesmente em mudar onde foi definido o vértice vy do poligono:
[a1...ak...an] = [ag ... anay ... ax—1]

* Rerrotulagdo: Essa transformagdo é dada simplesmente através da mudanga do simbolo de
algum rétulo. Por exemplo, se a é o rétulo de uma certa aresta e b € um simbolo ndo usado na
rotulagdo, podemos trocar todas as ocorréncias de a por b.

* Reflexdo: Esta baseia-se em, fixado o vértice vy, refletir o poligono de modo que cada vértice
v, passe a ser o vértice v,_x, lembrando que fixamos a ordem no sentido anti-horario. Assim,
a orientacdo de cada rétulo é trocada e o rétulo que aparecia na k-ésima posicdo vai para a

(n 4+ 1 — k)-ésima posigdo: [af*...as] = [a, " ...a] 7]

e Dobradura: Nesse caso, quando temos um rotulagdo da forma [Vee 'W], onde V e W sédo
pedagos ndo-vazios da rotulagdo e a ndo aparece em V' ou em W, podemos simplificd-la por
[VW]. Pode-se visualiza-la melhor na figura abaixo.

an]
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Figura A.1

Proposic¢do A.0.3. Dado um espaco X que possui uma apresentagdo poligonal W, se aplicarmos as transfor-
magoes de corte ou colagem sobre W, entdo o espago obtido através dessa nova apresentagdo serd isomorfo a
X.

Demonstragio. Seja X o espago dado pela apresentacao poligonal W = [V, V5] e Y o dado pela apresen-
tagdo apds um corte, isto é, por [V; b, b~'V5]. Assim, como na figura abaixo, sendo P a regido poligonal
em que ocoreu a rotulacdo W e sendo Q)1 e ()2 os dois poligonos gerados apds o corte de P e rotulados
por Vib e por b= 1Vs, temos que X = P/~eY = (Q1 ][ Q2)/~.

~ . Corte
g 15

P ] 0
I 7
/ Colagem LS
Vi p wf— i
~
Vi~ 7
- /'/
~, 'y
\. ./
b
Figura A.2

Defina ¢: Q1 [[ Q2 — P a fungdo que, restrita a ()1 ou a )2, é a incluséo deles em P. Repare que
essa fungdo é sobrejetora e s6 ndo é injetora nos pontos da aresta comum a @ e ()2, a rotulada por b.
Agora, vejamos que a relagdo seguinte é um isomorfismo:

p:Y =+ X
[g] = [¢(q)]-

1. ¢ é, de fato, uma fungdo: seja p,q € Q1 ][ Q- tal que [p] = [¢] (i.e. p ~ q), se p estd no interior de
Q1 ou de @2, vale que p = ¢; se p € 1 ndo é um vértice e estd na aresta rotulada por b, entdo
g = pougq € Q3 é o tinico outro ponto que estd identificado com p e vale que ¢(p) = ¢(q) (para
p € Q2 é andlogo); agora, levando em conta que as rotulagdes nas arestas, que ndo a rotulada
por b, de Q1 ][ Q2 sdo as mesmas que as em P, se p estd em uma aresta que nao a b, entdo vale
que ¢(p) ~ ¢(q). Assim, de qualquer modo, temos [¢(p)] = [¢(q)].

2. @ é injetora: como as rotula¢des de Q1 [[ Q2 e P s6 diferem pelas duas arestas com rétulo b e ¢
s6 ndo é injetora nessas arestas, basta ver a injetividade ai: isto é, sendo p € Q1 ponto da aresta
b e g tal que ¢(q) ~ ¢(p), vale que ¢(p) estd no interior de P, entdo ¢(p) = ¢(q) e, assim p e ¢
estdo identificados pelo rétulo b, isto é, [p] = [¢].

3. @ é sobrejetora: isso segue da sobrejetividade da fungdo ¢.

4. ¢ é continua: Sendo m1: P — X e my: Q1 ][ Q2 — Y as aplicagdes quocientes, é de se reparar
queVg € Q1 [[Q2, (pom)(q) = [¢(g)] = (m1 0)(q). Além disso, pela propriedade da topologia
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quociente, vale que: ¢ é continua < ¢ o w3 é continua. Assim, o resultado segue, pois ¢ o mp =
m o ¢ e (m o ¢) é continua, ja que é composta de continuas.

5. ¢ éisomorfismo: isso provém dos itens acima e do fato de que Y é compacto e X é Hausdorff.

Repare que, assim, provamos que, se Y é obtido de uma apresentacdo de X que sofreu um corte,
entdo X e Y sdo isomorfos. Mas, também, podemos pensar que X e Y sdo isomorfos quando X é
obtido de uma apresentagdo de Y que sofreu uma colagem. O

Definicdo A.0.4. Duas rotulagdes V e W sdo ditas equivalentes se podemos obter W através da
aplicagdo sobre V' de uma sequéncia de transformacoes elementares.

Dando coeréncia a essa defini¢do, pode-se provar, generalizando a proposicdo, que dois espagos
obtidos através de apresentagdes poligonais equivalentes sao isomorfos. E facil de se notar isso para
as transformagdes de rotagdo e reflexdo, ja que sdo movimentos rigidos no plano euclidiano, e para a
de rerrotulagédo, pois é uma simples troca de nomes.

Em seguida, valendo do fato de que nossa superficie ndo tem bordo, veremos que a sua apresenta-
¢do poligonal ndo pode ter rétulos solitarios, isto é, todas as arestas do poligono possuem uma aresta
companheira para se identificar. Também, por conta de certa regularidade das variedades, veremos
que essa companheira é tinica. Primeiro, daremos um nome para quando isso acontece:

Definicdo A.0.5. Dizemos que uma rotulacdo de um poligono é prépria se cada um de seus rétulos
aparece exatamente duas vezes.

Proposic¢do A.0.6. Dada uma superficie S compacta triangulada sem bordo, a apresentagio poligonal induzida
por sua triangulagacdo é propria.

Demonstragio. Escreva como {11,...,T,} o conjunto dos tridngulos dos quais, através da rotulacido
de suas arestas, obtemos a superficie S. Como abuso de notagdo, os 7; também vao ser usados para
se referir as suas cépias isomorfas em S, dadas pela sua triangulagao.

Comecemos vendo que cada rétulo aparece pelo menos duas vez na apresentagdo: de fato, se
um rétulo aparecer apenas uma vez, entdo hd uma aresta de algum triangulo 7; que nao ¢ identifi-
cada com nenhuma outra; assim, tome x um ponto pertencente a essa aresta, afirmo que qualquer
vizinhanca de z ndo serd isomorfa a um aberto de R?.

Como ilustrado na figura 3, isso acontece, porque, sendo U vizinhanca de x € Se B C U uma
subvizinhanga aberta isomorfa a um semidisco (ou a um setor de disco se = for um vértice) que
contém z, temos que z estd no bordo de B e, assim, B \ {z} é espago simplesmente conexo (isso
acontece, pois B \ {z} é um espago contratil: uma homotopia pode ser dada através de uma rotacao
dos pontos até um mesmo segmento de raio, que pode ser contraido a um ponto). Enquanto que, se
tomarmos um aberto A de R? e a € 4, vale que A \ {a} ndo é simplesmente conexo (pois os lagos
que contornam a nao sdo triviais). Assim, B\ {z} 2 A\ {a} = B 2 A e, portanto, U ndo pode ser
isomorfo a um aberto de R?, sendo a restricio do isomorfismo a B contradiria que B 22 A. Desse
modo, a superficie ndo satisfaria a condi¢do de variedade sem bordo.

Agora, vejamos que o rétulo deve aparecer, no maximo, duas vezes. Suponha que um rétulo
apareca um namero m > 3 de vezes, entdo hd m arestas de tridangulos T}, , . . ., T}, sendo identificadas.
Escolha y € S um nao-vértice pertencente a uma dessas arestas apds serem identificadas, e seja V' C S
vizinhanga de y, temos, também, que V' nédo é isomorfa a nenhum aberto de R2.

A razdo desse fato estd que, tomando p/ todo i, um subespaco C;, C V N T;, isomorfo a um
semidisco, temos que C' = U{C;, : k =1,...,m} C V évizinhanga aberta de y isomorfa a k semidis-
cos colados pelo didmetro (a figura abaixo ilustra o caso k = 3). Assim, C'\ {y} é homotdpico a um
buqué de (m — 1) l-esferas, j& que, retirando o ponto y, temos uma equivaléncia de homotopia com
o espago dado por m semiesferas de dimens&o 1 coladas pela bordas do didmetro, o que é isomorfo
a uma esfera (de dim. 1) com (m — 2) cordas coladas entre os polos, sendo que cada corda pode ser
continuamente deformada até formarem um S' colado por um ponto com a esfera; isto ¢, é gerado o
buqué de (m — 1) 1-esferas.

Com isso, computado através do Teorema de Seifert-van Kampem, temos que 71 (C \ {y},c) é
isomorfo ao grupo livre de m — 1 > 2 geradores. Por outro lado, todo aberto de R? contém um disco
aberto D, de modo que D \ {d} é homot6pico a S* e m; (S, x) é o grupo livre de 1 gerador, portanto
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C\{y} 2 D\ {d} = C 2 D; do mesmo modo, toda subvizinhanga C’ C C de y é ndo-isomorfa a um
disco. Isso conclui a nossa prova, porque se V fosse isomorfa a um aberto de R?, C seria isomorfa a
um aberto de R?. O

Figura A.3: As vizinhangas B e C ndo sdo isomorfas a abertos de R2.

Com esse arcabougo, enfim, podemos desenvolver uma prova para o teorema através de trans-
formagoes elementares da apresentagdo poligonal da nossa superficie levemente arbitrdria. Mas, pri-
meiro, facamos um lema que, além de ser 1til para a demonstragdo do teorema, exemplifica bem
como podemos usar essas ferramentas para concluir que duas superficies sdo isomorfas.

Lema A.0.7. A soma conexa P>#P2#P? é isomorfa a T?#P2,

Demonstragio. Temos que uma apresentacdo de P2#P2#P? é [aabbec]. Fagamos algumas transforma-
coes:
[aabbec] = [abbeca) (rotagdo) =~ [abd, d~*beea] (corte ao longo de d)
~ [dab, ad™'bec] (rotagdo) ~ [dab, b~ da™c !¢ (reflexdo e rotacdo do 2° poligono)
~ [dada™'c™ ¢ '] (colagem ao longo de b)
E de se notar que esta tltima é uma apresentagio (mais clara) da soma K#P?, onde K é a garrafa
de Klein. Agora, rerotulando ¢~! por ¢, continuemos, para chegar em uma apresentacdo de T?#P?
(algo, a menos de rerotulagdo, da forma [aba='b~"cc]):
cdae™ ", eda™"c] (rotagdo e corte ao longo de e)

dae ¢, ctad e (rotacdo do 1° e reflexdo do 2°)
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Assim, chegamos em uma apresentacdo de T?#P? a partir de uma de P2#P2#P2. O

Teorema A.0.8. Toda superficie M compacta triangulada sem bordo conexa é isomorfa a uma das seguintes
superficies (com suas respectivas apresentagoes poligonais):

1. aesferaS? : [aa™1);
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2. uma soma conexa de m toros T2# - - - #T2 : [brerby er b bmembi et
3. uma soma conexa de k planos projetivos P?# - - - #P? : [a1ay ... agag].

Demonstragio. Sabendo que M é triangulada e compacta, temos que ela poussui uma apresentagdo
poligonal induzida pela triangulagdo e que essa apresentacdo é prépria, pela proposigdo 2. As-
sim, quando um par de rétulos aparecer na apresentagdo com orientacdo trocada, isto é, na forma

a,...,a~ !, chamaremos o par de circular e, quando ele aparecer com a mesma orientagdo, isto é, a, ...a

oua~!,..,a”!, o chamaremos de projetivo. Além disso, se uma apresentacdo, ou um pedaco da apre-
sentacdo, é formada somente de pares circulares, diremos que ela é do tipo toro.

A fim de provar o teorema, vamos transformar em alguns passos a apresentacdo de M em alguma
das trés apresentagdes padrdes: de S? ou de soma de T? ou de soma de P2

PASSO 1: M admite uma apresentagio poligonal proveniente de apenas um poligono. Lembrando que
M é conexa, se a apresentacdo é dada através da rotulagdo de dois ou mais poligonos, entdo alguma
aresta de cada poligono deve estar identificada (através da rotulagdo) com uma aresta de um poligono
diferente; sendo, teriamos pelo menos um poligono que nédo identifica suas arestas com os outros e,
ao fazer a colagem das arestas, a superficie gerada por esse poligono estaria desconexa das outras
e estarfamos portanto separando a superficie em, pelo menos, duas componentes conexas. Sabendo
isso, podemos aplicar transformagdes de colagem dessas arestas identificadas (junto com rotagdes e
reflexdes se necessario) para reduzir nossa apresentagdo poligonal até que seja dada através de um
tnico poligono.

PASSO 2: Se M ndo é isomorfo a esfera, entdo M admite uma apresentacio sem pares circulares adjacentes.
Todo par circular da apresentacdo de M pode ser eliminado através de uma dobradura, a ndo ser que
ele seja o tnico par da apresentacdo, que é o caso da apresentacdo padrdo da esfera [aa~!] e poderia
ser o caso da superficie se ela fosse isomorfa a esfera.

A partir de agora, assumiremos que M ndo é isomorfo a esfera e que o passo 2 foi aplicado.

PASSO 3: M admite uma apresentagio em que todos os pares projetivos sdo adjacentes e estdo todos conca-
tenados, isto é, a apresentagio serd da forma [a1ay . .. arai V), sendo V do tipo toro. Se a apresentagdo possui
um par projetivo, entdo ela é da forma [UaVaW]. Podemos assumir que U,V e W sdo ndo vazios,
fagamos algumas transformacdes:

[UaVaW] ~ [Uab, b~V aW] (corte ao longo de b)

~
~ [U ' ta™t, aWb V] (reflexdo do 1° e rotagdo do 2°)

~ [b"'Wb VU (colagem ao longo de a e rotagio)

~ [ We, ¢t VU ] (corte ao longo de c)

~ [Web™!, bcUV ™1 (rotagdo do 1° e reflexdo e rotagao do 2°)

~ [WeecUV ™1 (colagem ao longo de b)

~ [c e W VU T (reflexdo e rotagdo) = [UV " Wec] (reflexdo)
~ |

aaUV W] (rotagéo e rerotulagdo de c)

Repare que, se havia outros pares de rétulos adjacentes no inicio, eles estariam ambos em U ou
em V ou em W e, portanto, continuam adjacentes na tdltima apresentacdo. Assim, apesar de pos-
sivelmente terem sido criados outros pares projetivos por causa da reflexdo de V, o nimero de
pares nao adjacentes dimininui por pelo menos um. Logo, apés um ndmero finito de operagdes
dessa chegaremos na forma desejada: suponha que UV ~'W ndo é do tipo toro, i.e., existe b tal
que w = [aaUV W] = [aaUbV~'bW], aplicando novamente as transformagdes acima, obtemos
w =~ [bbaaUV ~'W]; agora, basta repetir esse processo até que UV~ seja do tipo toro. Perceba,
ainda, que poderiam ter sido criados novos pares circulares adjacentes na reflexdo de V, mas eles
podem ser eliminados aplicando o Passo 2.

PASSO 4: Se a apresentagiio de M possuir pares circulares, entdo hd pelo menos dois deles e eles ocorrem
intercalados, i.e. ela é da forma [UaVbWa~1Xb~!]. Pelo passo 3, sabemos que ela tem a forma w =
[a1a1 .. .akga;V], V do tipo toro, entdo, todos os pares circulares de w estdo em V. Assim, escolha
a,a”! o par cujas ocorrécias estdo o mais perto possivel, isto é, com a menor quantidade de rétulos
entre eles, e assumiremos, s.p.g., que a ocorre primeiro, sendo basta fazer uma simples rerotulagéo.
Desse modo, sendo b algum rétulo entre a e a=* (lembrando que o passo 2 foi aplicado), temos que
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b forma um par circular, pois V é do tipo toro, e b~! ocorre antes de a ou depois de a~!, sendo a,a ™!

ndo seria o par mais proximo possivel. Assim, com uma eventual rerotulagdo, temos w exatamente
como enunciado.

PASSO 5: M admite uma apresentagio em que, havendo dois pares circulares intercalados, eles ocorrem jun-
tos sem outros rétulos entre eles: aba=b~1; e mais: todos esses blocos podem ocorrer concatenados. Temos que,
dado o passo 4, a apresentacgdo é dada, a menos de rotagdo, por [WaX bYa"1Zb~1]. Transformemo-la:

(WaXbYa 'Zb™'| = [WaXec,c 'bYa ' Zb~ ] (corte ao longo de c)

XcWa,a ' Zb~ ¢ 'bY] (rotagdo do 1° e 2°)
WZb~'e™'bY X ] (colagem ao longo de a e rotagdo)
WZb~ 1d_1 ,de™'bY X ¢] (corte ao longo de d)
W Zb~,bY Xcde ™| (rotagdo do 1° do 2°)
aba"'b~'W ZY X] (colagem ao longo de b, rotagio e rerotulagio)

[
~ |
~ [
~ |
~ |d
~ |
Assim, os pares que estavam adjacentes anteriormente foram mantidos assim e juntamos os pares que
estavam intercalados. Agora, repita isso para todos os pares circulares e teremos uma apresentagdo
da forma w = [byciby te; ! .. bpmemb; e, ' W], onde W s6 possui pares projetivos: suponha que existe
¢,d tal que w = [aba='b~'W] é da forma [aba='b~'WcZdY cXd™ ], fazendo como acima, obtemos
[cde™rd"aba='b"'W ZY X] e repita isso até que W XY Z s6 tenha pares projetivos. Para terminar,
fagamos uma rotacdo: w = [Whyciby *e; ... bnembrlc;t]. (Observe que, pelo passo 3, W é dado por
concatenagdo de pares projetivos adjacentes).

PASSO 6: M é isomorfa a uma soma conexa de toros ou a uma soma conexa de planos projetivos. Pelo passo
3, a apresentacdo é dada de modo que todos os pares projetivos estdo adjacentes e, pelos passos 4 e 5,
todos os pares circulares ocorrem em grupos intercalados como aba~'b~!. Assim, se a apresentagdo
ndo possuir pares circulares, entdo ela é sequéncia de pares projetivos [a1a; ...ana,] €, portanto, a
superficie é isomorfa a uma soma conexa de pares projetivos. Se ela ndo possuir pares projetivos,
entdo ela é da forma [a1b1a; ~1b; -1 ambmam_lbmfl] e, portanto, é isomorfa a uma soma conexa de
toros.

Agora, se a apresentacdo possui tanto pares projetivos como pares circulares, temos que, dados
0s passos anteriores, a apresentacdo é da forma [a;a; .. . agarbicy bflcfl oo bemby e ], isto é, uma
soma conexa de planos projetivos somado a uma soma conexa de toros: P2 - - #IF’Q#Tz# - #T2,
Aqui podemos aplicar o lema sucessivamente para substituir cada ocorréncia de P?#T? por P2 #P?#P?
e obter assim uma soma conexa de k + 2m planos projetivos (para cada toro, colocamos 2 planos pro-
jetivos). Entdo, nesse caso, a superficie seria isomorfa a uma soma de planos projetivos. Finalizamos,
assim, a prova. O

Uma das consequéncias do teorema é que uma superficie é orientdvel somente quando for uma
esfera ou soma conexa de toros; caso contrario, ela é isomorfa a uma soma de planos projetivos.

Agora, para mostrar que a lista de superficies do enunciado ndo é redundante (isto é, ndo tem re-
peti¢des), é geralmente necessdrio a utilizagdo de algum invariante topolégico, como o grupo funda-
mental ou a caracteristica de Euler. Este pode ser obtido de algumas triangula¢des das apresentagdes
poligonais das superficies, nos fornecendo os seguintes valores:

* a caracteristica de Euler da esfera é igual a 2;
* a caracteristica de uma soma conexa de ¢g > 1 toros é igual a 2 — 2g;

* a caracteristica de uma soma conexa de m > 1 planos projetivos é igual 2 —

Em sintese, obtemos a seguinte caracterizagao de isomorfismo entre superficies:

Corolario A.0.9. Duas superficies (compactas sem bordo conexas) sdo isomorfas se, e somente se, possuem
mesma caracteristica de Euler e mesma orientabilidade (i.e. sdo ambas orientdveis ou ambas nio-orientdveis.)

Para o caso de superficies com bordo, o resultado acima pode ser reformulado se considerarmos
também o nimero de componentes de bordo da superficie.
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Apéndice B

Planificacao de toros poliedrais

Para a aplicacdo das oficinas, foram utilizados quatro tipos de poliedros isomorfos ao toro, sendo que
as seg¢Oes horizontais de dois deles sdo tridngulos e dos outros dois sdo quadrados. As planificagdes
de dois desses poliedros, sendo uma triangular e uma quadrada, foram retiradas do site “Wolfram
Demonstrations Project” [Hafb], enquanto que as outras duas foram construidas usando o Geogebra
e disponibilizadas através do link https: //www.geogebra.org/m/bdudgxph. Na pagina abaixo,
ambas as planifica¢gdes podem ser encontradas em formato pronto para impressao.

Sobre as planificagdes construidas, o ponto crucial para realiza-las estd em encontrar o angulo na
base da face trapezoidal, que na figura B.1 abaixo esta representado por /.

Figura B.1: Células bésicas que compdem a planificagdo de um toro poliedral.

Seja a a altura do face retangular e b a altura da face em forma de trapézio. Se quisermos que a
secdo horizontal do poliedro seja um n-agono regular, entdo o angulo 3 é determinado pela seguinte

igualdade:
tgB = %-tg(%),

B —

7r(n—2). B

particular, notamos que uma condigdo necessdria para sua construgdo é que b > a/2. De fgto, isso é
fundamental para que as faces trapezoidais se juntem apds serem dobradas.

Usando tal informagdo, podemos construir, assim, a planificagdo de um toro poliedral a partir
dos seguintes quatro parametros: a altura do trapézio, o comprimento e a altura do retangulo e a
quantidade n de lados da se¢do horizontal do poliedro.

onde o, representa a medida do angulo interno de um n-dgono regular, que é igual a m
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46 APENDICE B. PLANIFICACAO DE TOROS POLIEDRAIS

Figura B.2: Planificacéo de dois poliedros isomorfos ao toro. A esquerda, um com secdo triangular e,
a direita, um com secdo quadrada.
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