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ABSTRACT

MARTINS FLORENTINO, LEONARDO HENRIQUE. A theoretical study of noise
attenuation in a turbofan engine using Herschel-Quincke waveguides. 2023.
Monograph (Bachelor Final Thesis) - Sao Carlos School of Engineering, University of
Sdo Paulo, Sdo Carlos, 2023.

This work aims to explain noise attenuation in a turbofan engine from physical
theory through the use of a device called Herschel-Quincke (HQ) waveguide. It is
demonstrated by Burdisso and Smith from experimental analysis that the use of the
HQ waveguides at the inlet of the engine is capable to reduce significantly the noise
generated by the turbofan engine. From this starting point, and utilising analogies
from the electromagnetic theory of physics, the engine is modelled as a cylindrical
waveguide. The equation for sound propagation on the cylindrical waveguide in this
model is derived through Navier-Stokes equations. Afterwards, the differential
equation for the pressure field in the waveguide is solved by separation of variables,
what invites us the study of Bessel functions and its properties. Finally, in order to
reproduce the effect of the HQ waveguide, an analogy with sound sources is
employed, which shows, through acoustic and differential equation theory, the effect
of energy confinement caused by the HQ waveguides and their role in reducing
acoustic noise from leaving the turbofan engine. A conclusion is drawn from the study

and improvements for future works are suggested.

Keywords: Aeroacoustics. Mathematical physics. Herschel-Quincke waveguides.

Noise attenuation.






RESUMO

MARTINS FLORENTINO, LEONARDO HENRIQUE. A theoretical study of noise
attenuation in a turbofan engine using Herschel-Quincke waveguides. 2023.
Monografia (Trabalho de Conclusdo de Curso) - Escola de Engenharia de Sao Carlos,
Universidade de Sdo Paulo, Sdo Carlos, 2023.

Este trabalho busca explicar a atenuacdo de ruido em um motor turbofan a
partir de conceitos fisicos por meio do uso de um dispositivo chamado de guia de
onda de Herschel-Quincke (HQ). Estudos experimentais feitos por Burdisso e Smith
demonstram que o uso das guias de onda HQ na entrada do motor é capaz de reduzir
de maneira significativa o ruido gerado pelo motor turbofan. Desse ponto de partida, e
utilizando-se de analogias da teoria eletromagnética da fisica, o motor é modelado
como uma guia de onda cilindrica. A equacdo para a propagacdo sonora na guia de
onda cilindrica neste modelo é deduzida a partir das equacoes de Navier-Stokes.
Posteriormente, a equagdo diferencial para o campo de pressdo na guia de onda é
resolvida por meio de separacdo de variaveis, o que nos convida ao estudo das
funcdes de Bessel e suas propriedades. Finalmente, de maneira a reproduzir o efeito
das guias de onda HQ, uma analogia com fontes sonoras é empregada, o que mostra,
por meio da teoria acustica e de equacoOes diferenciais, o efeito do confinamento de
energia causado pelas guias de onda HQ e seu papel em reduzir o ruido actistico que
sai do motor turbofan. Apresenta-se uma conclusdo para o estudo e melhorias para

futuros trabalhos sdo sugeridas.

Palavras-chave: Aeroacustica. Fisica matematica. Guias de onda de Herschel-

Quincke. Atenuagao de ruido.
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1. Introduction and Objectives

1 Introduction and Objectives

Despite technological improvement, turbofan engines are still a major source of acous-
tic noise in an aircraft, whose hazardous effects are felt most by people working and
living in the vicinity of airports. More and more will aviation agencies create more
stringent rules to assure that noise levels generated by aircraft are gradually reduced.
Different passive technologies are currently used in an attempt to a greater reduction
of sound noise, such as lobular mixers and liner technology, but there are inherent lim-
itations that prevent them from achieving higher levels of noise reduction. In this con-
text, the industry is open to new passive noise-attenuating technologies, as active con-
trol is a technology still under development. Herschel-Quincke waveguides could

come as a new solution for noise attenuation mainly from the turbofan inlet.

In this study we study turbofan noise generation as a whole and present some of the
technologies currently used to reduce noise generation. Then Herschel-Quincke wave-
guides are first introduced and experimental results concerning its use in a study by
Burdisso and Smith are shown. The study demonstrates the potential of the Herschel-
Quincke waveguides as a noise attenuator device, and with this motivation, we initiate
a theoretical study of the noise propagation at the turbofan engine, here modelled as a
cylindrical waveguide. After finding an expression for the pressure field inside the tur-
bofan, we attempt to create a theoretical model for the Herschel-Quincke waveguides,
and based on the theory of sound sources and Green’s functions, we find an expression

for noise attenuation of the pressure field inside the turbofan engine.

The main objective of this work is to enhance the theoretical understanding of wave-
guides in an aeroacoustic setting with practical relevance, by use of the mathematical
tools and their meaning in the expressions. That is one reason why the deductions and
mathematical passages are very detailed. In this way it is possible to help the reader to
have a thorough understanding of the concepts involved and motivate him to advance
in this study. As computational tools are today widely available, a further step in this
work would be to do a numerical simulation of the effect of the Herschel-Quincke

waveguides in a turbofan engine and compare the results with experiments.
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2 Turbofan engine noise and the Herschel-Quincke technique

2.1 Turbofan engine noise

Turbofan engines are the preference choice of aircraft manufacturers due to their ad-
vantages over other engine types, such as the turbojet and the turboprop. The turbojet
is very inefficient, as all the air that is admitted to the engine is also accelerated in the
combustion process. When the accelerated mass of air leaves the engine, it interacts
with the atmosphere, causing pressure changes that lead to big energy losses and a lot
of acoustic noise. The turboprop is a more efficient engine but it presents limitations in
the cruise speed aircraft can develop, what makes this aircraft more suitable for re-
gional aviation. Thus, the turbofan is the best choice for aircraft engine in most situ-
ations. Fig. 1 presents a depiction of a Pratt & Whitney F100 turbofan engine. Air is
admitted through the inlet, later being propelled by the fan. Then part of the air passes
through the core, while the other part enters in a chamber around the core, also called
bypass. The air which passes through the core is heated and later mixed with the by-
pass air. The ratio between the air mass which passes around the core and the mass
which passes through the core is called bypass ratio. The fact that air passes through
two different chambers account for less energy losses for this type of engine, what in
turn also leads to less acoustic noise emissions. These are some reasons the turbofan

engine is a premier choice for manufacturers [1].

High- Low-pressure
pressure turtine
lurblne~

B Main \ 1|6 ’ Allerburner No)xllz

inlet fan | Compressor burner
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e e )
LM :
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, I
| i i -
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Fig2.4: Schematic of the F100 Engine (from [1]).

Fig. 1: Pratt & Whitney F100 - example of a turbofan engine
Source: [2]
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There are a variety of processes which generate noise in the operation of a turbofan
engine. Usually noise in a turbofan is divided into two categories: broadband noise of
aerodynamic origin and line spectrum noise of multiples of blade-passage frequency
(also called tonal noise). Broadband noise is usually generated by vortex shedding,
boundary layer turbulence, interaction between the blade pressure fields, wall bound-
ary layer, among others. As for the line spectrum noise, the sources of these type of
noise involve steady aerodynamic blade loading and blade thickness and also vortex
shedding, transient aerodynamic loading variations due to turbulence, and blade vibra-
tion. In essence, many of the sound-generating processes for the latter type of noise
can be attributed to the interaction between the rotor blades and the stator vanes [3],
[4]. The exact mathematical modelling of those sound-generating processes for each of

the sources can be quite difficult and will not be attempted at this work.

2.2 Noise abatement in turbofan engines

Usually sound produced by turbofan engines can be divided into two categories per-
taining to the location of the sources: at the inlet and the outlet. For the latter, also
called exhaust jet noise, possible technologies for noise reduction are: jet velocity re-
duction, which can be achieved by increasing the bypass ratio (though this can have a
harmful effect in increasing tonal noise), the use of lobular mixers and the use of chev-
ron and sawtooth nozzles. Increasing the bypass ratio is an interesting solution because
enables the maintenance of thrust for the aircraft engine while increasing fuel effi-
ciency and reducing noise [5]. Lobular mixers are important because they help impart
linear momentum to the bypass air, in a way that increases efficiency and reduces
noise [1]. As for the nozzles in chevron an sawtooth geometries, they help can control
the shear layer by generating turbulence, which delays separation and avoids bigger

generation of noise.
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Figure 11 Three Dimensional Display of JT8D-209 Mixer Geometry

Fig. 2: Lobular mixer of a Pratt & Whitney JT8D-209 turbofan engine
Source: [6]

FIG. 1

100 118 108

Fig. 3: Chevron nozzle of a turbofan engine
Source: [7]
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In regard to the engine inlet, several improvements with the goal of reducing noise
emission are possible. The geometry and the number of the fan blades and the rotor
vanes can be changed for a configuration capable to reduce mainly tonal noise.
Clearly, these changes could modify the aerodynamic flow inside the engine, generat-
ing noise from undesired side effects. A research field that is gaining traction over the
last years is active noise control. A computational model is made, consisted of differ-
ent acoustic and engine performance variables. Thus, the physical variables inside the
engine are measured and the control system is capable to find optimal configurations
for the engine performance through actuators while reducing acoustic noise [8]. Des-
pite its potential, active noise control is yet to reach maturity and therefore is not util-
ised in industry in a broad scale [4]. Reference [7] is an example of the development

of this technology for a more concrete use.

2.2.1 Liner technology

As opposed to active control, liner technology consists of passive sound absorbers,
made of porous material, which can be divided in two types. Absorber liners from ma-
terial like foam or expanded polystyrene causes the air inside the pores to vibrate. The
relative motion between this air and the skeleton dissipates sound energy into heat by
friction. There is also an additional energy loss due to the heat exchange between the
heated compressed air and the solid skeleton. This means that this kind of liners dissip-
ate energy irrespective of the pressure frequency and are appropriate for broadband
noise attenuation [4], [9]. Conversely, resonant liners, which appear in perforated or
honeycomb panels with a cavity act like a Helmholtz resonator, attenuating better
pressure waves with the same frequency as the resonant cavity, thus being appropriate
for abatement of noise of a specific frequency. They prove very useful in reducing the
tonal frequency of blade passage, for instance, but apart from this, are inefficient in
lowering broadband noise, while occupying a considerable volume inside the engine
[4], [9]. Liner technology is undoubtedly useful, but it has its limitations, because
liners have a very well-defined structure and there is not much room for improvements
or new configurations, making their overuse not feasible for efficient applications. In
this context, new noise-reducing passive technologies are certainly welcome, and that

is a very good motivation to introduce the concept of Herschel-Quincke waveguides.
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Fig. 4: Types of liner: absorber and resonant
Source: [9]
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2.3 The Herschel-Quincke technique

2.3.1 Definition and history

A Herschel-Quincke waveguide (or tube, according to several references on the topic)*
is a tube that has one of its openings attached to a main tube, and the other opening
also attached to the main tube, but in a different position from the first opening. The
line linking the first and the second openings of the tube in most cases is parallel to the
axis of the main tube. It can be said that the tube will have the shape of a circumfer-
ence arc when cut longitudinally. And the shape of its transversal section is a circle.

Fig. 5 presents an example of a Herschel-Quincke (HQ) waveguide:

!

Fig. 5: General example of a HQ waveguide
Source: adapted from [10]

Next is shown this HQ waveguide concept applied to the inlet of a turbofan engine:

Fan Casing
Guide Vanes

Fig. 6: HQ waveguides applied to the inlet of a turbofan engine
Source: [4]

! The fact that we call it a Herschel-Quincke waveguide or tube is just a matter of nomenclature. To
be consistent with the experimental reference which will be presented in the next subsection, we use
the term “waveguide”.
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The entire circumference of the inlet of the engine is permeated by several HQ wave-
guides, each parallel to the other, to assure noise attenuation in all of the circumferen-
tial coordinate; it could be that some modes would not be affected by the HQ wave-
guides if they were not distributed in all of the circumference of the inlet. Also, this
distribution guarantees symmetry in the noise abatement effects. That is one reason

why all waveguides have the same dimensions.

The Herschel-Quincke waveguide owes its name to the scientists who proposed this
guide design and made experiments with light (electromagnetic waves) in the 19" cen-
tury. The HQ waveguide has been studied by various authors, but received little atten-
tion as a sound attenuation device until the late 1970s [11]. In the 1990s, Selamet,
Dickey and Novak theoretically and experimentally investigated the HQ waveguide
without flow and without end reflection, developed a general expression for transmis-
sion loss and presented a non-linear one-dimensional finite-difference model [11],
[12]. At the outset of the 20" century, Burdisso and Smith [13] developed an extensive
experimental study on noise attenuation in a turbofan engine with an innovative imple-
mentation of the Herschel-Quincke waveguides which will be the subject of subsec-

tion 2.4.

2.3.2 Geometrical characteristics and wave interference

The Herschel-Quincke waveguide clearly has a very definite set of geometrical fea-
tures, which are responsible for the sound-attenuating mechanisms. These characterist-
ics have been studied since the inception of the concept. Herschel, still in the 19" cen-
tury, predicted that the cancellation of tones would occur when the path length differ-
ence between the recombined signals was (2m+1)[A/2) , with A being the
wavelength and m an integer. Later, in 1866, Quincke experimentally validated that
Herschel’s system did effectively cancel sound. George W. Stewart, in 1928, verified
that cancellation does occur when the path length difference is [2m+1/(A /2] , but
also when the path length difference is mA , with limited attenuation at other trans-

itional frequencies [4].

In addition to the difference between the paths of the sound waves, there are theoret-

ical models which take into consideration other geometrical variables such as the dia-
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meter of the Herschel-Quincke waveguides, their length and also the distance between

the two openings of a certain tube.

Main-duct

Fig. 7: Herschel-Quincke waveguide modelling concept
Source: [14]

Brady’s model, presented in Fig. 7, is bidimensional and determines the equations for
the pressure field at the HQ waveguide and the main waveguide separately, later coup-
ling both equations. When the equation for the transmitted pressure field is shown, it is
seen that it depends on the diameter of the HQ waveguide S , its length L and the
distance between the openings of two tubes [ . This model also presents a way to
predict the frequency of maximum attenuation for individual modes, which will de-
pend on a transcendental equation that features the same geometrical variables S ,

L and [ . Therefore, not only the geometry of the tube influences the resulting
pressure field, but it also presents a way to modulate the resonance frequencies that

can better attenuate noise from the turbofan engine.

Because of this, an interesting extension of HQ tube design for the suppression of
higher-order modes might include active control of an aspect of tube geometry in order
to attain optimum attenuation of sound at a range of frequencies. For instance, in some

noise control applications, it may be feasible to adjust the length of the HQ tube [14].
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2.4 Experimental data on Herschel-Quincke waveguides

2.4.1 Motivation

A typical fan acoustic spectrum includes a broadband noise level and tones at the fan
blade passage frequency (BPF) and its harmonics. These tones are often at least

10—15 dB above the broadband level. Future ultra high bypass ratio turbofan en-
gines (ratios of up to 10) will have an even greater fan tonal noise component at lower
frequencies. The shorter inlet ducts relative to the size of the fan and the lower BPFs
expected for these engines will make traditional passive liner technology less effective
for attenuating the fan tones [13]. In this context, new noise-reducing passive techno-
logies such as the Herschel-Quincke waveguides can provide better results while act-

ive control technology does not reach widespread use.

2.4.2 The experiment set-up

In the study carried in reference [13], Burdisso and Smith implemented an array of HQ
waveguides around the circumference of the Pratt & Whitney JT15D turbofan engine
inlet. This engine has been used extensively for research in passive and active noise
control methods applied to turbofan engines. It is a twin spool turbofan engine with a
full length bypass duct and a maximum bypass ratio of 2.7 . The engine is equipped
with an inlet inflow control device (ICD). Its purpose is to minimize the spurious ef-
fects of ground testing on acoustic measurements by breaking up incoming vortices.
The maximum diameter of the ICD is 2.1 times the engine inlet diameter. Finally,
the engine is mounted in a test cell, which is divided into two chambers by a transmis -
sion loss partition. The forward chamber is anechoic to simulate free field conditions,
where only the inlet is inside. This serves the purpose of isolating the radiation of the
inlet from the aft and jet noise radiation. One wall of the anechoic chamber is open to
the atmosphere for engine intake air as depicted in Fig. 8 [13].

In these experiments, one and two arrays of HQ tubes are mounted circumferentially
around the cylindrical perforated mesh inlet of the turbofan jet engine. For clarity, the
inlet configured with one and two arrays of HQ tubes will be denoted as the 1AHQ
and 2AHQ inlets, respectively. The surface area of the inlet section where the tubes
were not attached was configured as a rigid wall. All of the tubes are axially-oriented

(i.e., extend parallel to the engine axis) as shown in the configuration schematic in Fig.

10



2. Turbofan engine noise and the Herschel-Quincke technique

Acoustically

Exciter
Rods Treated Chamber
\ Microphone

Arc

JTi5D

Engine

Aft

Transmission Loss Test Cell
Partition Top View

Fig. 8: Depiction of turbofan engine test cell
Source: [13]

6. Figs. 9 and 10 show pictures of the engine inlet configured as a hard-wall and with
two arrays of HQ tubes, respectively. In Fig. the bottom panel is left off so that the

mesh screen cylinder is visible [13].

Fig. 9: JT15D inlet configurd as a hard wall
Source: [13]
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2. Turbofan engine noise and the Herschel-Quincke technique

ity L i == i
Fig. 10: JT15D inlet configured with two arrays of HQ tubes
Source: [13]

Two HQ tube configurations are investigated as shown in Fig. 11. The first configura-
tion consists of a single array of 20 HQ tubs (1AHQ inlet) while the second is con-
figured with two arrays of HQ tubes with 20 and 16 tubes, respectively (2AHQ inlet)
[13].

Amay | Array 2 JTi15D Engine
20 Tubes 16 Tubxs. 27 rody

14.5”7

Inler
227 1D.

<
=

5.257

17.5" 4"

Fig. 11: Configurations of one and two arrays of HQ tubes
Source: [13]
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2.4.3 Experimental results
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Fig. 12: Acoustic power at the BPF tone, sector from 0° to 90°
Source: [13]
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Fig. 13: Acoustic power at the BPF tone, sector from 50° to 90°
Source: [13]
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BPF Sector 0° - 90° Sector 50° - 90°
(Hz) 1 Array 2 Arrays 1 Array 2 Arrays
2340 5.0 8.6 7.3 9.5
2440 4.8 8.2 6.5 5.2

Tab. 1: Power Level Reduction at BPF tone

Source: [13]

Figs. 12 and 13 show the acoustic power, in decibels, at the BPF tone for the sectors

0° to

90° and 50° to 90° , respectively. It is possible to see that the HQ

waveguide has a positive effect on noise reduction, as the results with the configura-

tion 2AHQ have indeed a lesser level of noise power, noticeably lower around the BPF

frequency tone.
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—, 100
v» 95
90
85
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1
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Far-field Angle ®(Deg.)

Fig. 14: Sound pressure directivity at BPF tone, BPF=2340 Hz

Source: [13]
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Fig. 15: Sound pressure directivity at BPF tone, BPF=2440 Hz
Source: [13]

As for Figs. 14 and 15, the directivity of the sound noise is shown for different values
of the BPF frequency. It is possible to see an accentuated noise reduction around the
angle 0° , which is not the case for the angle +15° . Then a progressive reduc-
tion on SPL is noticed, and the lowest values for SPL are seen around the angle

+90° . Again, the best results are obtained with the 2AHQ configuration, and the
1AHQ configuration is better than the hard wall configuration for noise reduction pur-

poses.
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Fig. 16: SPL reduction vs . frequency and far-field angle for IAHQ
inlet
Source: [13]
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Fig. 17: SPL reduction vs . frequency and far-field angle for 2AHQ
inlet

Source: [13]
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2. Turbofan engine noise and the Herschel-Quincke technique

Now, Figs. 16 and 17 show that for both configurations of the Herschel-Quincke ar-

rays of waveguides, there is indeed a broadband noise reduction, because it can be

seen that for all frequencies, there is some SPL reduction, but it specially occurs

around the BPF frequencies, which happen between  1000—1500 Hz and
2000—2500 Hz . In this case, there is tonal noise reduction at the BPF.

120["'["'I"'I"'T"B'pPF:' i
~ 110 1
= [
=
Z 100 1AHQ . .
o
g
| =1
= L
o> 90 |
. /0 M.',:_v‘-"’
v W IAHQ
| P I RS SR U T VS S SR |

400 800 1200 1600 2000 2400 2800 3200
Frequency (Hz)

Fig. 18: Acoustic power spectra for the H W, 1AHQ, 2AHQ inlets for sector 0° - 90°
Source: [13]
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Fig. 19: Acoustic power spectra for the HW, 1AHQ, 2AHQ inlets for sector 50° - 90°

Source: [13]

Combination of Overall Power Reduction (dB)
Broadband and BPF
Tone Reductions 1AHQ 2AHQ
Actual Broaband Red.
+ Actual BPF tone Red. 2.7 4.6
Complete removal of
BPF tone only 2.6 2.6
Actual Broadband Red.
+ Total BPF tone Red. 41 56

Tab. 2: Overall Power Level Reductions — 0° - 90° Sector

Source: [13]

Combination of Overall Power Reduction (dB)
Broadband and BPF
Tone Reductions 1AHQ 2AHQ
Actual Broaband Red.
+ Actual BPF tone Red. 2.8 44
Complete removal of
BPF tone only L4 L4
Actual Broadband Red.
+ Total BPF tone Red. 3.2 4.8

Tab. 3: Overall Power Level Reductions — 50° - 90° Sector

Source: [13]
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2. Turbofan engine noise and the Herschel-Quincke technique

Figs. 18 and 19 make very clear that the tonal noise at the BPF generates a consider-
ably louder tone, which is clearly felt by people who live near airport zones. It also
shows the potential of the Herschel-Quincke waveguide in reducing the pressure level

for a spectra of frequency values.

Based on the experiment set-up and our knowledge of waves, we could try to elaborate
an explanation on wave attenuation referring only to the geometrical disposition of the
Herschel-Quincke waveguide and the conditions of the experiment. By reading the ex-
periment paper [13], we find that at that condition the sound speed was
¢ = 425/0.12 = 354.17 m/s . We also know that the HQ waveguides were de-
signed mainly to attenuate sound at the 2320 Hz frequency. This enables us to find
the wavelength of those sound waves in such a scenario, which is A = 0.15266 m
In subsection 2.3.2 we discovered that destructive interference occurs for
2m+1)(A/2] and mA . This is equivalent to [2m+1]X 0.076329 m and
m X 0.15266 m , while the path difference between a wave that goes inside the HQ
waveguide and other that stays in the main cylindrical waveguide is of the order of
0.01 m . Thus, in a first inspection, the phenomenon of sound attenuation could not
be explained by destructive interference due to path difference. The distance between
the two arrays of tubes is approximately 0.1683 m , which is closeto A , but a re-

lation between the two amounts based in wave interference is not immediate.

Therefore, we can conclude through this experimental study that a Herschel-Quincke
waveguide mounted at the inlet of a turbofan engine is able to present satisfactory res-
ults in the reduction of the sound power level for different frequencies. When this ar-
ray of waveguides is adjusted accordingly for the geometry of the engine inlet, it can
also contribute to the reduction of sound tones for the blade passage frequency, which
is a major source of noise for people and affects considerably the Effective Perceived
Noise Level (EPNL) scale. To better understand how a Herschel-Quincke waveguide
can be useful at the inlet of turbofan engines, it can be useful to study how it attenuates
noise from a theoretical standpoint; this way, we might gain insights that will enable
other researchers and the industry to provide effective solutions for the aircraft engine

noise problem. This theoretical study will be done in the next sections.
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3. Waveguides

3 Waveguides

3.1 Electromagnetic waveguides

Waveguides are structures which confine electromagnetic waves, enabling the
propagation of this wave in a certain direction. They were particularly utilised during
the 1960s, on the radar age, because of their properties to propagate waves from one
location to another with minimal energy loss [15]. Dealing with electromagnetic
waves, we can assume the material which makes up the waveguide is a perfect con-
ductor, what, in practical applications, would mean that it is made of a metal. In order
to show the parallels between the electromagnetic theory of waveguides and the acous-

tic one, the equations for the electromagnetic waveguide are derived in some depth.

FIGURE 9.23

Fig. 20: Example of a waveguide
Source: [16]

The boundary conditions for the propagation of the electromagnetic waves in the
waveguide are as follows:
: [

((ili)) ]1; = 0(;. @
The conditions specified by equations (1) are only valid on the inner surface of the
conductor; there is not, in principle, any constraint for the values of the fields on the
hollow space inside the guide. Because we want to find monochromatic waves that
propagate down the tube, the electric and magnetic fields will have the generic form
[16]:

(i) E(x,y,z,t) = Ey(x,y)e" ™",
X,

E E, o
(if) E(x,y,z,t) = INSO( ke —ot)

yle :
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3. Waveguides

The electric and magnetic fields must, evidently, obey Maxwell’s equations, in the in-

terior of the waveguide [16]:

(i) V-E = 0, (iii) VXE = —%—’f,
3)

(i) V-B =0, (iv)VXB = iza—E.

c- Ot

To find a solution to equations (3), subject to the boundary conditions specified in (1),
it is necessary to propose electric and magnetic fields with vector components in the
three axes®. By applying this three-vector field form in the equations, and after quite a

lot of algebraic work, we find the following differential equations [16]:

2 2
%2}5 2+(a)/c)2—kzlEz =0,
X Yy
o o 2 2 @
F-Fa 2+(CU/C) —k BZ = 0.
X Yy

When E,=0 | these waves are called TE (“transverse electric”), while for B,=0
they are called TM (“transverse magnetic”). We will now focus on the TE case. But
the method to solve each of them is the same. If we have E,=0 | we still need to
solve the equation for B, , which is a function of two variables, x and y . In this
section, for simplicity, we will solve the equations for a rectangular waveguide

depicted in Fig. 21.

.

Figure 9.24

Fig. 21: Depiction of a rectangular wavequide
Source: [16]

2 This is due to the nature of the problem, as we deal with confined waves. In non-confined cases it

would be possible to have transverse waves.
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The most common way to solve this equation, one of equations (4), is by separation of

variables:
B,(x,y) = X(x)Y(y) 5)
Finally, the solution for the magnetic field in this case is:

B, = B,cos(max/a)cos(nmylb) (6)

z
With m and n non-negative integers. The other components of the magnetic and
electric fields can also be obtained, but their formulas will be here omitted. For more

information on the subject, see [16]. And the wave number is given by:

k = V(wlc)—m[(mla)*+(n/b)] 7)

If this wave number is complex, it means that instead of a wave, there would be
exponentially decreasing fields. When this happens, we have the following situation:

w < o (8)

mn

With @m: defined as:

w = cay(mla)+(n/b). 9)

@ny is called the cutoff frequency, because waves with lesser frequencies would not
propagate. Clearly, ®“mn depends on the mode, that is, the integers m and n . The

lowest cutoff frequency for a given waveguide occurs for the mode TE:
w, = cnla (10)

Lower frequencies cannot propagate in such a waveguide under no circumstances [16].

3.2 Modelling of the turbofan inlet as an acoustic waveguide

By the same token, we can consider a turbofan engine, a cylindrical structure with an
enclosed geometry, a waveguide. Sound, as well as electromagnetic waves, is a kind of
wave, which obeys the wave equation and because of this, similar results from the
theory of waveguides can be obtained even if the physical equations governing the

phenomena are in their appearance different®.

Electromagnetism and fluid dynamics share a lot of mathematical similarities, which can be quite
useful in theoretical development, like here. But one cannot deny the fact that, in the electromag-
netic derivation of waveguides, we started from Maxwell’s equations, and here, we will start from
Navier-Stokes equations.
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It is important to note that in this development, we will consider sound propagation in
a turbofan engine, here modelled as a waveguide, without a mathematical source of
sound. But this description can be valuable notwithstanding, because, in the words of
[17], “In the sound field, q must be zero because sound waves satisfy the
homogeneous wave equation. The source region, V , where q(x,t) is non-zero, is
thus clearly separated from the sound field where must vanish. We have said that this
definition of a sound source is somewhat arbitrary, and indeed knowledge of the sound

field is not sufficient to uniquely determine the source.”

This means that the sound-generating processes which take place inside the turbofan,
such as rotor-stator interaction, boundary layer phenomena, among others, do not need
to be considered if we are only interested in sound propagation, because sound waves
satisfy the homogeneous wave equation. Therefore, it can be understood that studying
only sound propagation without a source could describe an adequate view of sound
propagation inside the turbofan engine. But the extent to which this assumption can
provide an accurate evaluation of the sound field inside the turbofan engine is
debatable, because we could reasonably assume that all of the engine is inside the
source region V . Nonetheless, as the sound-generating processes inside the engine
can be quite complicated to model, studying the sound propagation by itself, without a
source, can still give us some useful perspectives on acoustic properties of the
turbofan, while being a more tractable problem than modelling each sound-generating

process inside the engine.

For the treatment of the turbofan engine as an acoustic waveguide, we neglect the
reflections at the open end of the inlet and on the fan. To do so we consider the
turbofan engine, in its geometry, a hard-walled cylindrical duct with infinite length.
Fig. 22 presents the duct, with radius a , through which a uniform air flow with
velocity V passes. This velocity field is parallel to the z axis. Sound propagation

is in the same direction as the z axis [4].
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Uniform flow
field V

Figure 2-2: Model of the infinite cylindrical duct with flow.

Fig. 22: Turbofan model as an infinite cylindrical waveguide
Source: [4]

The generic form of the acoustic wave equation in a moving media is as follows [18]:

1

c?

2
%+V-V) p' = Vp’ (11)

We are going to prove this equation (11) from Navier-Stokes equations in the next

section. This is something that neither [4] nor [18] do.

3.3 Deduction of the acoustic wave equation in moving media from
Navier-Stokes equations

Navier-Stokes equations are differential equations governing the motion of
compressible, Newtonian fluid. They arise from conservation laws, namely, the
conservation of mass, the conservation of momentum and the conservation of energy.
For the purposes of this proof we will only need conservation of mass and momentum.

The continuity equation, the equation for conservation of mass, is written as:

op'
v = 12
Gt Vv =0 (12)

In (12) we are only considering first-order terms, and neglecting those of lower
magnitude [19]. Following that equation we have the general form for the

conservation of momentum, which is also Newton’s second law [20]:
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p%+V-VV =-Vp+n V2v+%V(V-v) +F (13)

In its most complete form, viscosity effects would need to be considered, but here we
neglect them. Smaller terms are also neglected, and thus the first-order equation for

conservation of momentum is:
Po =T = _V p' (14)

Now, if the fluid is moving with a velocity field, whose magnitude is V , the
continuity and conservation of momentum equations are, in relation to the laboratory

frame [18]:
(i) [Z+v-V

(ii) Py

p 40, Vv = 0

v=-Vp’

5 (15)
2tV

By establishing a linear dependence between pressure and density for the sound wave:

p' = c?p’ (16)

This enables us to rewrite equations (15) in the following way:
N1
(i) o2

(ii) o,

LV V p Vv = 0

17)

%+V-V v+Vp =0

Equation (17) (i) can be rearranged, whilst we can take the divergence from equation

(17) (ii):

. 0 '
. [ p— — V.
() Vi PoC? ot V)p (18)
Now the task is to prove that:
VvV %+V~V v| = %+V~V Vv (19)

We cannot take the equality shown in (19) for granted; we need to prove it to use it.
Let us start with the time derivative term, which is much easier than the one with the

inner product. It is immediate that:
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ov

Vst

_ 0
= E(V'V) (20)

Because the partial time derivative is a linear operator (although I am not sure this is
strictly needed) and mainly because the divergence is a derivative on position, and it
will not interfere with the partial time derivative. So it is possible to reverse the order
of the operations without changing the result. For the other term, we will need to do

the operations explicitly and verify the equality.

3.3.1 Left-hand side of the equality of equation (19)

Let us start with:
VvV (21)
The first step is to apply the gradient operator on the vector v . Before doing this, we

need to understand some aspects of vector algebra. We write the vector in matrix form,

given by:
v=|v (22)

When we write a vector in matrix form, we are already defining an coordinate
orthonormal base to which the components depend on [21]. Here we decided to
express the vector in Cartesian coordinates. Now we need to take the gradient of this
vector. When we take the gradient of a scalar, what is obtained is a vector. By
extending this reasoning, the gradient of a vector generates a second-rank tensor. This
second-rank tensor can be obtained with the tensor product between two vectors, the

gradient vector and the velocity vector* [22], [23]:

The resulting tensor matrix is the transpose of the velocity gradient shown in [22]. But this is not a
issue because both tensors are correct; their difference is just a matter of convention. Here we are
being consistent with our definitions of vector and inner and outer products. And as it will be seen at
the end, we will succeed in demonstrating the equality. Therefore our choices and definitions will
also be correct.
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= Vv =Vev = VV

Iavx ov, avzl

ox Ox 0x 03

_ |0v, 0dv, O0v, (23)

Ve Vv, V| =

dy 0Oy 0Oy

ov, dv, 0v,

0z 0z 0z

The next step is to execute the inner product between the vector V and the second-

rank tensor

Vv . The inner product reduces the rank of the tensorial object,

therefore, the result of this product is a vector [21]:

<

ov, 0ov, 0v,
ox Ox O0x
v=I[v, v, Vv, ov, 0v, 0v,
dy 0y 0y
ov, 0Ov, 0v,
I@z 0z azl
(24)
v 8vx+ 6vx+ ov,
*ox Yoy "0z
ov ov ov
= Y Y Y
Vi 0x e oy V. 0z
ov, ov, ov,
+ +
*ox Yoy ‘o0z

At last, we need to take the divergence of such vector, finally getting a scalar:

27



3. Waveguides

\4 +
*ox Yoy ‘oz

: 0 0 0 v, av, av,
VIVYY =[50 3y o2)|Vax oy Vs
v 6vZ+V 6VZ+V ov, (25)
*ox Yoy ‘oz ]
o*v v o*v o*v
VYy| =V 24y — = x v
Viv-Ly] x8x2+ y6x6y+ “0x0z *O0yox
82vy 62vy v, v, v,

+Vy6y2+V26yﬁz+vxﬁzax+vy826y 022

Therefore, the final expression can be written as:

3
Jv. — j
VivVy Z Vis e (26)

3.3.2 Right-hand side of the equality of equation (19)

We begin with:
VIVIVv| (27)
Applying the divergence operator on the vector v is very straight-forward:
6 o0 0 Va _Ov, O0v, O0v,
Vv=iol o a2l Tt (28)

V4

Then we take the gradient of this scalar:
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lil
e L2v,,0
Vv _ |8 |0V, 0v, Ov,
V(Vv) = oy || ox ay T oz
0
oz
i [ | 29
v, 62vy o*v, 29
+ +
0x?2 8x6y 0x0z
V(Vy) = v, 6 v, v,
6y8x oy? 6y62
v, o v, v,
+ +
I@z@x 0z0y azzl
Finally we perform the inner product between V and V (Vv)
o°v, 82vy o’v,
+
0x? 0x0y 0x0z
2 2
V-V(Vwv) = [Vx v, v, o°v, +8 v, o’v,
oyox 0Yy? 8y82
v, 82vy d’v,
+ +——
Iazax 0z0y 0z ] (30)
o’ o’v d’v o’ o’v
. . — X y z X y
V-V({V) VX6x2+VX8x6y+ X6x62+vy8y6x+ YO0y?
'V 62vy 'V v, 'V szy 'V v,
Y0z0y "0z0x 0z0y 0z2
This leads us to:
’ 3 2
. 31
V-VIV.v| V’axax (31)

i,j=1

The order of the partial derivatives does not alter the final result, so we know that:

3 azv 3
) I = 32
ZV’@X 0 x Z::V’axax (32)

i,j=1 Yt i,j=1

Finally, we can conclude that:
\% “V V| v]

Equation (19) is proven.

vV VIV (33)
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3.3.3 Final derivation of the wave equation

This means that we can write equation (18) (ii) in function of the divergence of v :

(i)  Vwv=-—[Z+v.V|p
PoCc?\ 0t (34)
(i) p, %+V-V)(V-V)+V2p’ =0
Now we can substitute equation (34) (i) into (34) (ii):
1(0 0 , 2
——|=+V: —+V- + =0
clactV VetV Ve =)
At this point, we need to look at the operator:
0
—~+V-
Py V) (36)

Is it linear? And the answer is yes. The partial time derivative is clearly a linear
operator. The addition operation does not interfere with linearity. The V-V operator
is also linear. The gradient is a linear operator, as it consist of first-order derivatives.
The inner product with V is a linear operator as well. Thus, we conclude that the
operator shown in expression (36) is linear, and we can apply it twice on a given

scalar. This invites to write equation (35) as:

1 0 2 2
N _+V. "+ "= 0
c2l ot V) p'+V'p (37)
2
Whence %+ V'V) is the operator %"' V-V| being applied on the scalar
p' twice.

At last, we get the expression for the acoustic wave equation in a moving media, as in

equation (11):
Lo vl — v
cz(at+v V)p = Vp (38)

Note that even though this result was derived utilising Cartesian coordinates, it is also
valid for cylindrical and spherical coordinates. This is important, because we will

study the engine as an acoustic waveguide through cylindrical coordinates.
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3.4 Derivation of the pressure function on the cylindrical waveguide

Starting from equation (38), we need first to define the direction of the velocity field

of the moving fluid. We assume that it will have the form:

V = cMk (39)
With k being the unit vector in the cylindrical z-axis. In this problem, in specific, we
consider upstream sound propagation. Because we define sound will propagate in the
positive direction of z-axis, the fluid motion will have the opposite direction. This can
be expressed with a negative sign of Mach number M [4]. By developing the left-

hand side of equation (38), we obtain:

c? ot

b= L2y P (40
ot c?\ot

At this point, it is important to be reminded that we are studying the problem with
cylindrical coordinates. Thus, the gradient operator will also be presented with this

choice of coordinates:

n ap' [
or
V-Vp =Vv'Vp =0 0 cM]| 10p'| _ 2P (41)
r 00 0z
op'
0z
We find that:
1o ,v.v|o,v. - 1o . yvvwllop  poP'
C2(6t+v V) otV V)p - 62(8t+v V)( ot T M5,
(42)
_ (o, yol\lop, 0P |_1]|0p 00P , oy 0P
c? 8t+CM62)(8t+CM 07) 2| o PP MG e M

As for the right-hand side of equation (38), it is simply the Laplacian of the pressure in

cylindrical coordinates:

2, 19 0p' 10°p'  9°p'
_ 10 Sl B 43
Vi rar(rar)+r2692+azz 43)
And we can write equation (38) as:
1(6°p o 0p op 19| 0p 10°p  0'p
— 2cM L ZE poep2 L | == Y (282 — = F 44
czlae2 "M oca Y )T var\Tar | Trra6er T a2 49
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Assuming an harmonic motion, we have’:

py(n’t) — Ae”wt*k‘ﬂ‘

8p' I ilwt—k-n|

En n,t] = iwAe 45)
°p’ _ 2 4 ilot—k-n)
W(ﬂ,t) = —w Ae !

The resulting expressions are function of the wave frequency @ . As we saw in
equation (7), the wave number depends on the frequency but also on geometrical
variables, which in in this case we are yet to deduce. But [4] suggests us to substitute

@ , perhaps to not have the differential equation in terms of time variables. And so

we do, making the following substitution:
w = ck, (46)

k, would be the wave number of the acoustic waves if there were not the
geometrical constraints created by the waveguide, that is, if the wave could propagate
in free space. The harmonic motion assumption enables us to free the differential
equation from the time dependence, and we finally get the differential equation in

function of the geometrical variables only:

r 2 ] 2 ] r 2 ] 2 ]
_ky2p+2ikgM P 2P — O p  10p’ 1 0p' Op

= 47
0z 0z? or?2 r Or r2o060% 0z2 47

The solution for the differential equation can be expressed as a propagating wave in
the z-axis, possessing the form:
p'lr,0,z,t] = ®[r,0)e """ (48)

By applying this function into the differential equation, we obtain:

o ’w 1o, 1 5d ' 2
+20@, 2 OD@ o 21— M -2k k. M|d = 0 49
or2 r or r2062 |0 Z( ) 07 } (49)

As in equations (4), we can solve equation (49) with separation of variables (the most
formal solution would be to start with separation of variables from the beginning,
equation (48), but as [4] does this way, we are reproducing these steps) . The method

used here is very similar to that of quantum mechanics, when it is needed to solve the

> In physics books such as [16] and [18], the travelling wave is shown as e”k'"*‘”” , whilst in

books such as [19], the latter an engineering book, the travelling wave is shown as ¢! ®¢ =%

Both expressions are equivalent, the difference of whichisa 7 radians phase shift.
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equations for the hydrogen atom. See [24]. Therefore, the incognito function can be

written as:
®(r,0) = R(r)e(6) (50)
The resulting differential equation, after some rearrangements, becomes:

1 d°0
+

@ g "k

mn

dr? +rdr

[l
o

rz[d°R _1dR
R

(51)

k.2 = ky2—k,2(1—M>?|—2k,k,M

K., ,withthe indexes m and n ? We’ll see why in a while. The term in the sum

which depends on 6 must be a constant, in order to hold the equality. This means

that it can be written as:

% = —m? (52)

This leads to:

0] = " o 0l6] = Acos(mb)+ Bsin(m6)

me Z (53)

Because the function ©|(6] is periodic with period 27 . Now we are left with the

differential equation for r

d°R 1dR B
0z +?E)—m2+r2kmn2 =0 (54)

r2
R

3.4.1 Bessel functions®

The following differential equation:

2
dy 1dy
dx? xdx

1

1—; y =20 (55)

Appears in several branches of physics, and is very common when a problem is
attacked through the method of separation of variables. In order to solve this equation,
various approaches are possible. One of them is to propose a solution in the format of

an infinite series:

® T owe professor Reginaldo de Jesus Napolitano from IFSC-USP my complete gratitude for providing

me valuable observations on the study of Bessel functions which proved indispensable to writing
this section.
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y =2, a,x (56)

n=0
By applying this solution into the equation, and equating coefficients of powers of

X to zero, we get the following function [25]:

x3 x> x7 )

—_ + p— .
YT 2472446 246468 7)

y =q

This is a series called Bessel function, more precisely the Bessel function of the first
kind. For the general differential equation, also called Bessel equation:

'y, 1dy

= 58
dx? xdx Y 0 (58)

The Bessel function of order m is defined as [26]:

e (_1'Js x m+2s Xn Xn+2
J x| =Y ———|= = — + o 59
nlX] SZ:;)S!(mﬂ)! 2 2'n! 2™ (n+1]! 59)

Other approaches to get to the Bessel function involve a generating function or
contour integrals, but will not be shown here. Bessel equation is a second-order
differential equation and as such, it should involve the sum of two independent
functions. For non-integral order Vv , there are two independent solutions, namely,

J, x| and J /x| , with Vv replacing m in equation (59). But for integer m |,
the relevant case for this problem, it is not possible to get two independent solutions
through the series method or the generating function. But a second solution exists, and
it is called Neumann function or Bessel function of the second kind. It has the form

[26]:

Nm(XJ = —(n—l]!(Z/x)”/n+~--+% .- (60)

2

Which has the remarkable characteristic of diverging to minus infinity for x = 0
Therefore, a Neumann function does not permit a finite solution at the origin.
Considering that we want a finite value for the pressure field at the origin r = 0 for
this waveguide, we rule out the Neumann function as a part of the solution for our
differential equation due to the boundary conditions. Thus, the solution for the radial
function R(r| will only be composed of a Bessel function of the first kind, J NEY

For a cylindrical system of coordinates, the Bessel equation can be written as:
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2
rzd—J (kr)+rijm(kr]+[k2r2—m2)1m(kr) =0 (61)
dr? dr
In our problem, the function R(r| will have the form:
Rlr| = CJ, [kt (62)

Like in equation (51), we are back with the indexes m and n of k,, .We are yet
to explain the index n . The other boundary condition is that the radial particle
velocity on the wall must be zero [4]. This implies that the radial component of the
pressure on the wall is null, what leads to the derivative of the pressure in relation to

the radial position to zero:

ap| _ o®| _ 4R} _
orl_, _ orl|.,  drl., 0 (63)
Thus, we have:
dJ?T(k _ 0 (64)
dr mn" ea -

The derivative of the Bessel function can be expressed as:

m+2s
r ]

s (m+2s)kmn kmnr et
2

k

mn

2

2 (—1f
= s!m+s)!

d
dr

r=a

(65)

00
B szs’m+s 2

r=a

m+2s—1

i S (m+2s)kmn kmna
= m+s)’ 2 2

There is an expression equal to zero and we can find ways to simplify it. We have
already seen that m is an integer (equation (53)). Each m corresponds to a Bessel

eigenfunction of order m . For a certain Bessel function, m is integer and thus
m—1

m
and (— , at the last of equations

k
fixed. This makes the factors é"” ( L

(65), to be constants and this way they can be removed from the equation, unless

k,, and a are zero. The equation becomes:
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i(il(m+2s)

_1]5
= slim+s)!

kmna 2s
5 =0 (66)

In order to solve the equation for this series, we can substitute the upper limit of the
sum, infinity, for a positive integer number called N , as big as one wants. In such a

case, we get the following equation for the variable k,,

i (_—1Js(m+25) k
S slim+s)!

mnd ° -0 (67)
> =

This means we have an equation of the degree 2N , which leads to 2N roots for
K., .In order to label each of the roots, we define firstly the constant m , because
each order of the Bessel function will lead to different equations. For each value of
m , as we saw, there are 2N roots. And each root will be given an index, called
n , from the first ( k,;, ) to the 2N-th root of the equation ( k,,y ). That is the
reason the constant k , relative to the wave number of the acoustic waves in the
waveguide, is given the index k,, 7. It is of fundamental importance to note that the
index n refers to the number of the root of k,, , from the smallest to the biggest,
and it does not refer to the index s of the counting of the terms in the series. As we
increase the size of N , more and more we get closer to the zeroes of the derivative
of the Bessel function. For N at infinity, the solutions would converge to the zeroes
of the derivative. These zeroes can be found through tables in the literature or by
computational methods. Note! All zeros of the Bessel function and its derivatives, for
m = —1 are real, but unfortunately we will not be able to prove that in this work.
One point to be careful is that if one goes to a table to find the zeroes of the derivative
of the Bessel function, he will find a quantity here labelled Xmn , which relates with
k., in the following way:
Xon = Ky @ (68)
This is because the argument of the Bessel function in the cylindrical choice of
coordinates is x = kr , as seen in equation (61), and the tables are calculated for
the argument of the Bessel function, and not for the argument divided by an arbitrary

constant. In order to make this study more visual, let us show a graph of Bessel

functions of the first kind for some orders:

7 Actually, the most formal procedure would be not to label k as k,, inequation (51) until we

derived the reason why k has those indexes. But in order to be consistent with the notation of [4],
we decided to put the indexes from the beginning.
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Bessel Functions of the First Kind for $m \in [0, 2]$
i T T

| | | |
0 2 4 6 8 10

Fig. 23: Plots of Bessel functions of the first kind for the first integer orders
Source: see section 6 Appendices

By looking at this graph, we see that X,; , which is the same as Xo1 , the first point
at which the derivative of the Bessel function J, is zero, isat x = 0.0 . If we
refer to a table of zeroes of the Bessel function derivative, such as [27], we find that
the position at which the derivative of the order zero Bessel function is null is at
x = 0.0 . But I must admit I cheated in this case. The picture is not clear as
whether x = 0 is a point of zero derivative. The next point is clearer. We easily see
that a point around x = 3.9 is a zero point for the derivative of J, , and as such,
it would be labelled X, , or Xo2 . By looking at the table, we see that the actual
point of zero derivative is at x = 3.8317 . It was close, considering we estimated
using our eyes. And so it goes on, if we cross-check the derivative zeroes of the graph
against the tabulated values. In this way it is possible to have a more visual notion of
what the points Xmn mean. Note that we started our counting of n with n =1
But this is just a matter of choice. In reference [4], the author starts with n = 0
Therefore, to be consistent with the notation of [4], we will take the first value of the
integer n , which is related to the counting of the derivative zeroes in the Bessel

function, as n = 0 onwards.
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3.5 Wave propagation

We have successfully written all functions which compose the pressure field in rela-
tion to each coordinate variable thanks to the method of separation of variables. Now
we shall write the expression for the function ®|r, 0
®r,0] = [A,,cos(m6)+ B,,sin(m6)|J,,(Kk,,r] (69)
Therefore, the pressure field is given by:
p'lr,0,z,t] = [A,,cos(m6)+B,,sin(m6)|J,[k,,r|e " " (70)
The only incognito currently is k, . But as we found the value of k,, , k, will be
determined by solving the quadratic equation shown in equation (51):
k. ? = ko2—k 2[1-M?|—2k,k,M (71)

The solution of this equation is the following:

_ —Mky*\k, 2~k 2[1-M?|
a 1-M?2

(72)

Thus, we see there are two solutions for the wave number in the z-axis, each
corresponding to a travelling wave. In the same way as electromagnetic waves, which
we studied in subsection 3.1, if the radicand in the square root assumes a negative
value, there will be exponentially decaying pressure fields instead of a travelling wave.
Likewise, we can define the cutoff frequency for wave propagation. The cutoff
condition is given by:

ky = k,\1—M? (73)

mn

Remember that we defined k, in equation (46) as w/c . Therefore, the cutoff

frequency is expressed as:

W ck J1—M? (74)

cutoff mn

An important remark on cutoff frequencies is that these pressure fields die because we
are assuming an infinitely long cylindrical waveguide. In reality, that is not true and
the nacelle has a finite length. This means that the waves with a frequency below the
cutoff will dissipate exponentially but their modulus will not go to zero, as they
travelled a finite length. When they leave the turbofan engine, these waves will
propagate to the environment without attenuation, with a lower pressure than waves

with frequencies above the cutoff. So the cutoff condition helps, but does not eliminate
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lower-frequency wave propagation. How smaller the pressure field of those waves
compared to non-cutoff waves would be is something that can be calculated

considering the length of the turbofan and the path travelled by those waves.

Our initial equation in this problem was a Helmholtz equation (see equation (47)). The
general solution for this equation is a linear combination of the product solutions, for

the positive and negative values of k, [28]:

353 ‘ (+) Ll .
p'lr,0,z,t] = Z Z [A:,;COS(m 6) + B sin(m 0)]]m(kmnr okl 2 gt
m=0 n=0 (75)
N, N, o
Z Z {A ‘cos(m6) + B sin(m6 ]J )efikz £ gion

Any pressure field function can be written with this linear combination of functions,
and the equation (75) is a double series, a Bessel-Fourier series. It is a Bessel series in

r and a Fourier series in 6 . If we know the pressure field for an harmonic
acoustic wave, we can determine its coefficients for the Bessel-Fourier series in the

following way:

gmn = 2{75(12e_iklzeiwt‘]rzn+l(kmn)]71
| - (76)
0 I sin(m drd@
ffp r,0,z,t1J,k,,r| cos(mH)]r d

Both Bessel and Fourier eigenfunctions are orthogonal [26]. Our final result, equation
(75), is an important one. Remember that in section 2.1 we said that there are a lot of
different sound-generating processes occurring inside the turbofan, which could be
attributed to boundary layer phenomena and rotor-stator interaction, among others. In
section 3.2 we said that if we are only interested in sound propagation, we did not need
to be concerned with the source in the sound-generating processes. What we can make
of this result is that if we make the assumption that the region V of the sound
sources is small enough and we are only looking at sound propagation, then, no matter
how complicated the sound-generating processes are at the sources, we can always
represent the sound field inside the cylindrical waveguide (our model for the turbofan)
as a double Bessel-Fourier series, because this representation encompasses all possible
frequencies and amplitudes at the sound-generating processes inside the turbofan. The

only issue is that we have a way to represent the sound field, but we do not know the
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coefficients for the frequencies and amplitudes equation (75) in because we did not
model the sound sources. But nonetheless equation (75) can be useful in our study of

noise reduction by Herschel-Quincke waveguides.

40



4. Noise reduction on Herschel-Quincke waveguides

4 Noise reduction on Herschel-Quincke waveguides

4.1 Theoretical modelling of the Herschel-Quincke waveguides

After we have defined the sound pressure field without the HQ waveguides, it is time
to insert them in our theoretical model and see what conclusions of the behaviour of
the system can be drawn. The first step is to define, in terms of a sound pressure field,

what a Herschel-Quincke waveguide is.

HQ tubes

Uniform flow
field IV

Fig. 24: HQ waveguides applied to the cylindrical waveguide
Source: [4]

According to [4] a reasonable model for a HQ waveguide would be a finite piston
source. It is as if the cylindrical waveguide were permeated by several pistons in its
wall, each with a definite position and producing a certain pressure field. The overall
effect of a HQ waveguide could be simulated by adding the effects of all pistons
around the circumference. The model for the HQ waveguides can be seen in Fig. 25.
Now the need to define the pressure function for this finite piston source. The
literature on the subject provides us several possible ways to express the pressure.
According to Anselmet and Mattei [29], with a system of coordinates centred on the

circular piston, its pressure in function of the position is given by:

it J [kRsin(6)]
"(r,0) = o pyu, R2E—2—— "1 77
p'(r.0) = o pouy r  kRsin(0) (77
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It is important to note that the coordinates r and 6 in equation (77) are not the
same with which the analysis of the turbofan was made in subsection 3.4. The change
of coordinates in this problem is not simple, because several assumptions were made
in order to reach the form of the pressure field in (77). Because this is beyond the
scope of this present work, the derivation of the pressure field for a certain position at

the cylindrical wave guide will not be attempted at this work.

Pressure and velocity _
h [
over /" tube sources — "4

sources

Fig. 25: Modelling HQ waveguides as finite piston sources
Source: [4]

Other author, Mangulis [30], for the similar problem of a circular rigid piston in a non-
rigid baffle, presents us the following solution for the directivity and intensity of the

pressure for such a system:

e ™ cos(6) 2J,[kRsin(6)]

p'((r,@) — leUo

2 r cos(@)—iy kRsin(6)
. (78)
3 [kRsin(6)["
11-=ykR 2 c
Y ,;) " [kRsin(6)]'= 2%

Now a solution presented by Morse and Ingard [31] for the problem of the radiation

pressure generated by a circular piston:
ikr 2]1{kRSin(9)] cos( 6)

kRsin(6) B+cos(6)

p'lr,0) = —ikpc 4e (79)

2u,tR?
r

Any of those pistons has a characteristic frequency, called @ or dependent on the
wave number k . Therefore they can be considered, by themselves, sources of sound,

because they are a resonant surface which has the capacity of modifying the pressure
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field around. In the next section we are going to study in what ways those piston

sources can attenuate noise from the cylindrical waveguide pressure field.

4.2 Noise attenuation by point sources of sound

In the last section, we argued that the Herschel-Quincke waveguides could be
modelled as piston sources of sound and presented some possible formats for the
pressure field they generate. Now we can assert that these sources of sound can also be
considered points, what will be useful in our analysis because it makes the problem
more tractable. The equation for the pressure field in the presence of a general source

becomes [32]:

1

C2

2 .
%W-V) p' = Vp'= f(r,0,z)e™ (80)

The fact that we have a term in the equation not dependent on p' makes it

inhomogeneous, what invites us to the study of Green’s functions.

4.2.1 Green’s functions

Consider that we have a derivative operator called -2  , which acts on a certain
function  y(x| . For a homogeneous differential equation, we would have the
following:

Zylxl =0 (81)
While a non-homogeneous differential equation would appear in this scenario:

Zylx] = flx] (82)
Considering flx| a specified function of x . In the case of the inhomogeneous
differential equation, equation (82) is equivalent to:

ZLGlx,x'] = olx—x'| (83)

With ¢ being the Dirac delta function. Thus the solution for the non-homogeneous

differential equation can be written as:

ylx) = [Glx,x")f(x)dx’
(84)

)’(r1) = f G(ry,r,)f(r)d,
The latter of equations (84) is valid for *R?® , a situation in three dimensions and

three variables accordingly. G is called Green’s function. This is a powerful
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technique to solve inhomogeneous differential equations in several branches of
physics [28], [33].

In our problem in aeroacoustics, the differential equation operator is:

2
v =V - %(i+vv

ot (85)

This is a Helmholtz equation, albeit with a fluid velocity term V . We can say that

this operator is Hermitian, because, for an Hermitian operator:

1. The eigenvalues of an Hermitian operator are real. In our operator, the eigenvalue is
the constant Kk, found in equation (68). In that section, we have already said that

the values of k,,, would be real. Check.

2. The eigenfunctions of an Hermitian operator are orthogonal. Our eigenfunction is
the function of the Bessel-Fourier series presented in equation (75). And we have said

that the eigenfunctions are orthogonal. Check.

3. The eigenfunctions of an Hermitian operator form a complete set. We did not prove
this, but we provided the reference in section 3.5. Because both Fourier and Bessel
series can form any function, then their product will also form a complete set [34].
Check.

For an Hermitian operator, the Green’s function can be written as:

G(rl,rz) = Z—an(;ij)}(rZ) (86)

For the corresponding homogeneous differential equation:
LY+ Ay =0 (87)
Aimed at solving the inhomogeneous differential equation:

LY+ Ay = —p (88)

44



4. Noise reduction on Herschel-Quincke waveguides

4.2.2 Mechanism of sound attenuation

We learned that to find a determined function applied by an operator, we need to
integrate the Green’s function multiplied by a specific function (which generates the
non-homogeneity) applied in the variable of the position of the source, what is
demonstrated by equations (84). Now we are able to do this for a piston source in
order to find the pressure field in the cylindrical waveguide. First we need to expand

the source function f(r,6,z) through a Fourier integral [32]:

fun(z) = [ Fp(k)e™ dk (89)

Note that, for the previous step, Plancherel’s theorem was utilised to convert an
integral in relation to a space variable into an integral in relation to the wave number
k [35]. The function F mn(k] appears because we are already writing the
eigenfunctions of the operator at the position of the source, such as equation (86)
prescribes, but instead of having this eigenfunction in function of the position of the

source z , we used Plancherel’s theorem to have it in function of the wave number.

Integration of Green’s function leads to the following expression:

0 ® 0 [i\(uot—kzj\]
(r.6,z) = re) [ F () dk
p ( ) mZ::OHZE)P ( )L ( )an(wo,k)
(90)
2 w 2
okl = o[22
C C

If o,, > o, ,the integral becomes exponentially small at large distances from the
source region. Physically, we can say that then all motion in the mode p,, has its
energy trapped around the source. p,, are the modes of the cylindrical waveguide
in function of the general positional coordinate, that is, they are the representation of
the pressure field of the turbofan engine. When there is a source function like

f(r,0,z) , this source is capable to trap acoustic energy around it for values of
frequency ®,, > @, [32]. In this way, a Herschel-Quincke waveguide, here

modelled as a piston source, is capable to act as a noise attenuator.
The calculation presented in equation (90) is valid for a single piston source. As we

have several pistons permeating the cylindrical waveguide, this integration would have

to be performed as many times as the number of pistons. Even though it is in a certain
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way implicit, it is this sum of each piston that creates the geometrical dependence of
the distance between the pistons in the pressure field function. Because each piston is
a source with a definite position, each integral will yield a different result and this
enables us to quantify the effect of the distribution of the HQ waveguides in the
cylindrical waveguide. In the first glance, this model does not present a dependence on
the length of the HQ waveguides; however, the velocity of the piston and its
frequency, two variables in our piston model, possibly have a mathematical relation

with the length of the HQ waveguide.
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5 Conclusion

In this work, we presented the problem of sound noise generated at the inlet of the
turbofan engine. In order to understand better the mechanisms of sound generation, the
turbofan and its parts were introduced, followed by technologies currently utilised in
order to reduce sound pollution generation, such as lobular mixers and chevron
nozzles. We also emphasised liner technology and distinguished the absorber and

resonant types of sound absorbers.

Then the Herschel-Quincke technique was introduced, and we drew a timeline
showing the advancements in its study along the centuries. The experimental study of
Burdisso and Smith [13] showing the potential of the Herschel-Quincke waveguides in
reducing noise from the turbofan inlet was presented in fine detail, as well as the

results obtained.

Afterwards, a theoretical study of the turbofan engine was carried based on the theory
of waveguides. Firstly, as a source of inspiration, the theory of electromagnetic
waveguides was derived and its properties and the mathematics involving them was
investigated. The most remarkable points in that study were the concept of cutoff
frequency and the mathematical technique of separation of variables to solve partial

differential equations.

Finally the turbofan engine was modelled as a cylindrical waveguide. Because of the
airflow, a velocity term had to be added to the acoustic equations for the pressure field.
Starting from Navier-Stokes equations, we derived the acoustic equation for the
pressure field in moving media with the use of theory of tensors and vector calculus.
After this study, we were finally able to find the differential equation for the pressure
field. It was solved in a similar way as in the electromagnetic case, but this time,
because the waveguide was cylindrical, we also had to solve Bessel’s differential
equation. In order to do so, the concept of Bessel functions had to be introduced, and
enabled us to understand the mathematical meaning of the eigenvalues for the wave
number. We then were able to present a final expression for the pressure field
encompassing all kinds of sound-generating processes, by being a complete Bessel-

Fourier series.
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At last we attempted to understand theoretically in what ways Herschel-Quincke
waveguides can have a noise attenuating effect on a turbofan. For this we had to model
those waveguides as finite piston sound sources, and we presented, based on the work
of different authors, several models for the sound field this piston would generate.
Because the introduction of the piston source would create a inhomogeneity in the
differential equation for the pressure field, we had to introduce the concept of Green’s
functions. Armed with this important technique for solving inhomogeneous differential
equations, we were able to demonstrate how the point sound source would be able to
trap certain pressure modes at the waveguide, thus being able to reduce noise

propagation.

This work is far from being complete, and as future improvements, one could better
develop the Green’s functions for sound propagation in this waveguide, present the
piston sources in the general coordinates of the system and even carry out calculations
to make a theoretical prediction of noise reduction in decibels. Later, a computational
numerical simulation could be performed in order to compare the theory with
experiments. There are some aspects of the eigenfunctions and their orthogonality
which were not completed explored in this work and one would be welcome to further

advance on the subject.
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6 Appendices

Appendix I: MATLAB/Octave code of the Bessel functions plot

1 x =0:0.1:10;

2 J = zeros(3,101);

3

4 for i = 0:2

5 J(i+1,:) = besselj(i,x);

6 end

7

8 plot(x,J)

9 grid on

10 legend('J 0','J 1','J 2','Location', 'Best")

11 title('Bessel Functions of the First Kind for $m \in [0,
2]1$', "interpreter', 'latex")

12 xlabel('x"', 'interpreter', 'latex")

13 ylabel('$J m(x)$', "interpreter', 'latex")
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