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ABSTRACT

MARTINS FLORENTINO, LEONARDO HENRIQUE. A theoretical study of noise
attenuation  in  a  turbofan  engine  using  Herschel-Quincke  waveguides.  2023.
Monograph (Bachelor Final Thesis) - São Carlos School of Engineering, University of
São Paulo, São Carlos, 2023.

This work aims to explain noise attenuation in a turbofan engine from physical

theory through the use of a device called Herschel-Quincke (HQ) waveguide. It is

demonstrated by Burdisso and Smith from experimental analysis that the use of the

HQ waveguides at the inlet of the engine is capable to reduce significantly the noise

generated by the turbofan engine.  From this  starting point,  and utilising analogies

from the electromagnetic theory of physics, the engine is modelled as a cylindrical

waveguide. The equation for sound propagation on the cylindrical waveguide in this

model  is  derived  through  Navier-Stokes  equations.  Afterwards,  the  differential

equation for the pressure field in the waveguide is solved by separation of variables,

what invites us the study of Bessel functions and its properties. Finally, in order to

reproduce  the  effect  of  the  HQ  waveguide,  an  analogy  with  sound  sources  is

employed, which shows, through acoustic and differential equation theory, the effect

of  energy  confinement  caused  by  the  HQ waveguides  and  their  role  in  reducing

acoustic noise from leaving the turbofan engine. A conclusion is drawn from the study

and improvements for future works are suggested.

  

Keywords:  Aeroacoustics.  Mathematical  physics.  Herschel-Quincke  waveguides.

Noise attenuation. 





RESUMO

MARTINS FLORENTINO, LEONARDO HENRIQUE. A theoretical study of noise
attenuation  in  a  turbofan  engine  using  Herschel-Quincke  waveguides.  2023.
Monografia (Trabalho de Conclusão de Curso) - Escola de Engenharia de São Carlos,
Universidade de São Paulo, São Carlos, 2023.

Este trabalho busca explicar a atenuação de ruído em um motor turbofan a

partir de conceitos físicos por meio do uso de um dispositivo chamado de guia de

onda de Herschel-Quincke (HQ). Estudos experimentais feitos por Burdisso e Smith

demonstram que o uso das guias de onda HQ na entrada do motor é capaz de reduzir

de maneira significativa o ruído gerado pelo motor turbofan. Desse ponto de partida, e

utilizando-se de analogias da teoria eletromagnética da física, o motor é modelado

como uma guia de onda cilíndrica. A equação para a propagação sonora na guia de

onda  cilíndrica  neste  modelo  é  deduzida  a  partir  das  equações  de  Navier-Stokes.

Posteriormente, a equação diferencial para o campo de pressão na guia de onda é

resolvida  por  meio  de  separação  de  variáveis,  o  que  nos  convida  ao  estudo  das

funções de Bessel e suas propriedades. Finalmente, de maneira a reproduzir o efeito

das guias de onda HQ, uma analogia com fontes sonoras é empregada, o que mostra,

por meio da teoria acústica e de equações diferenciais, o efeito do confinamento de

energia causado pelas guias de onda HQ e seu papel em reduzir o ruído acústico que

sai do motor turbofan. Apresenta-se uma conclusão para o estudo e melhorias para

futuros trabalhos são sugeridas.

Palavras-chave:  Aeroacústica.  Física  matemática.  Guias  de  onda  de  Herschel-

Quincke. Atenuação de ruído.
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1. Introduction and Objectives

1 Introduction and Objectives

Despite technological improvement, turbofan engines are still a major source of acous-

tic noise in an aircraft, whose hazardous effects are felt most by people working and

living in the vicinity of airports. More and more will aviation agencies create more

stringent rules to assure that noise levels generated by aircraft are gradually reduced.

Different passive technologies are currently used in an attempt to a greater reduction

of sound noise, such as lobular mixers and liner technology, but there are inherent lim-

itations that prevent them from achieving higher levels of noise reduction. In this con-

text, the industry is open to new passive noise-attenuating technologies, as active con-

trol  is  a  technology  still  under  development.  Herschel-Quincke  waveguides  could

come as a new solution for noise attenuation mainly from the turbofan inlet. 

In this study we study turbofan noise generation as a whole and present some of the

technologies currently used to reduce noise generation. Then Herschel-Quincke wave-

guides are first introduced and experimental results concerning its use in a study by

Burdisso and Smith are shown. The study demonstrates the potential of the Herschel-

Quincke waveguides as a noise attenuator device, and with this motivation, we initiate

a theoretical study of the noise propagation at the turbofan engine, here modelled as a

cylindrical waveguide. After finding an expression for the pressure field inside the tur-

bofan, we attempt to create a theoretical model for the Herschel-Quincke waveguides,

and based on the theory of sound sources and Green’s functions, we find an expression

for noise attenuation of the pressure field inside the turbofan engine.

The main objective of this work is to enhance the theoretical understanding of wave-

guides in an aeroacoustic setting with practical relevance, by use of the mathematical

tools and their meaning in the expressions. That is one reason why the deductions and

mathematical passages are very detailed. In this way it is possible to help the reader to

have a thorough understanding of the concepts involved and motivate him to advance

in this study. As computational tools are today widely available, a further step in this

work would be to do a numerical simulation of the effect of the Herschel-Quincke

waveguides in a turbofan engine and compare the results with experiments.

1



2. Turbofan engine noise and the Herschel-Quincke technique

2 Turbofan engine noise and the Herschel-Quincke technique

2.1 Turbofan engine noise

Turbofan engines are the preference choice of aircraft manufacturers due to their ad-

vantages over other engine types, such as the turbojet and the turboprop. The turbojet

is very inefficient, as all the air that is admitted to the engine is also accelerated in the

combustion process. When the accelerated mass of air leaves the engine, it interacts

with the atmosphere, causing pressure changes that lead to big energy losses and a lot

of acoustic noise. The turboprop is a more efficient engine but it presents limitations in

the cruise speed aircraft can develop, what makes this aircraft more suitable for re-

gional aviation. Thus, the turbofan is the best choice for aircraft engine in most situ-

ations. Fig. 1 presents a depiction of a Pratt & Whitney F100 turbofan engine. Air is

admitted through the inlet, later being propelled by the fan. Then part of the air passes

through the core, while the other part enters in a chamber around the core, also called

bypass. The air which passes through the core is heated and later mixed with the by-

pass air. The ratio between the air mass which passes around the core and the mass

which passes through the core is called bypass ratio. The fact that air passes through

two different chambers account for less energy losses for this type of engine, what in

turn also leads to less acoustic noise emissions. These are some reasons the turbofan

engine is a premier choice for manufacturers [1].

2

Fig. 1: Pratt & Whitney F100 - example of a turbofan engine
Source: [2]
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There are a variety of processes which generate noise in the operation of a turbofan

engine. Usually noise in a turbofan is divided into two categories: broadband noise of

aerodynamic origin and line spectrum noise of multiples of blade-passage frequency

(also called tonal noise). Broadband noise is usually generated by vortex shedding,

boundary layer turbulence, interaction between the blade pressure fields, wall bound-

ary layer, among others. As for the line spectrum noise, the sources of these type of

noise involve steady aerodynamic blade loading and blade thickness and also vortex

shedding, transient aerodynamic loading variations due to turbulence, and blade vibra-

tion. In essence, many of the sound-generating processes for the latter type of noise

can be attributed to the interaction between the rotor blades and the stator vanes [3],

[4]. The exact mathematical modelling of those sound-generating processes for each of

the sources can be quite difficult and will not be attempted at this work.

2.2 Noise abatement in turbofan engines

Usually sound produced by turbofan engines can be divided into two categories per-

taining to the location of the sources: at the inlet and the outlet. For the latter, also

called exhaust jet noise, possible technologies for noise reduction are: jet velocity re-

duction, which can be achieved by increasing the bypass ratio (though this can have a

harmful effect in increasing tonal noise), the use of lobular mixers and the use of chev-

ron and sawtooth nozzles. Increasing the bypass ratio is an interesting solution because

enables the maintenance of thrust for the aircraft engine while increasing fuel effi-

ciency and reducing noise [5]. Lobular mixers are important because they help impart

linear momentum to the bypass air,  in a way that increases efficiency and reduces

noise [1]. As for the nozzles in chevron an sawtooth geometries, they help can control

the shear layer by generating turbulence, which delays separation and avoids bigger

generation of noise.

3
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Fig. 2: Lobular mixer of a Pratt & Whitney JT8D-209 turbofan engine 
Source: [6]

Fig. 3: Chevron nozzle of a turbofan engine
Source: [7]
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In regard to the engine inlet, several improvements with the goal of reducing noise

emission are possible. The geometry and the number of the fan blades and the rotor

vanes  can  be  changed  for  a  configuration  capable  to  reduce  mainly  tonal  noise.

Clearly, these changes could modify the aerodynamic flow inside the engine, generat-

ing noise from undesired side effects. A research field that is gaining traction over the

last years is active noise control. A computational model is made, consisted of differ-

ent acoustic and engine performance variables. Thus, the physical variables inside the

engine are measured and the control system is capable to find optimal configurations

for the engine performance through actuators while reducing acoustic noise [8]. Des-

pite its potential, active noise control is yet to reach maturity and therefore is not util-

ised in industry in a broad scale [4]. Reference [7] is an example of the development

of this technology for a more concrete use.

2.2.1 Liner technology

As opposed to active control, liner technology consists of passive sound absorbers,

made of porous material, which can be divided in two types. Absorber liners from ma-

terial like foam or expanded polystyrene causes the air inside the pores to vibrate. The

relative motion between this air and the skeleton dissipates sound energy into heat by

friction. There is also an additional energy loss due to the heat exchange between the

heated compressed air and the solid skeleton. This means that this kind of liners dissip-

ate energy irrespective of the pressure frequency and are appropriate for broadband

noise attenuation  [4],  [9]. Conversely, resonant liners, which appear in perforated or

honeycomb panels  with a  cavity  act  like  a  Helmholtz  resonator,  attenuating better

pressure waves with the same frequency as the resonant cavity, thus being appropriate

for abatement of noise of a specific frequency. They prove very useful in reducing the

tonal frequency of blade passage, for instance, but apart from this, are inefficient in

lowering broadband noise, while occupying a considerable volume inside the engine

[4],  [9].  Liner  technology is  undoubtedly useful,  but it  has its  limitations,  because

liners have a very well-defined structure and there is not much room for improvements

or new configurations, making their overuse not feasible for efficient applications. In

this context, new noise-reducing passive technologies are certainly welcome, and that

is a very good motivation to introduce the concept of Herschel-Quincke waveguides.

5
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Fig. 4: Types of liner: absorber and resonant
Source: [9]
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2.3 The Herschel-Quincke technique

2.3.1 Definition and history

A Herschel-Quincke waveguide (or tube, according to several references on the topic)1

is a tube that has one of its openings attached to a main tube, and the other opening

also attached to the main tube, but in a different position from the first opening. The

line linking the first and the second openings of the tube in most cases is parallel to the

axis of the main tube. It can be said that the tube will have the shape of a circumfer-

ence arc when cut longitudinally. And the shape of its transversal section is a circle.

Fig. 5 presents an example of a Herschel-Quincke (HQ) waveguide:

Next is shown this HQ waveguide concept applied to the inlet of a turbofan engine:

1 The fact that we call it a Herschel-Quincke waveguide or tube is just a matter of nomenclature. To 
be consistent with the experimental reference which will be presented in the next subsection, we use 
the term “waveguide”.

7

Fig. 5: General example of a HQ waveguide
Source:  adapted from [10]

Fig. 6: HQ waveguides applied to the inlet of a turbofan engine
Source: [4]
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The entire circumference of the inlet of the engine is permeated by several HQ wave-

guides, each parallel to the other, to assure noise attenuation in all of the circumferen-

tial coordinate; it could be that some modes would not be affected by the HQ wave-

guides if they were not distributed in all of the circumference of the inlet. Also, this

distribution guarantees symmetry in the noise abatement effects. That is one reason

why all waveguides have the same dimensions.

The Herschel-Quincke waveguide owes its name to the scientists who proposed this

guide design and made experiments with light (electromagnetic waves) in the 19 th cen-

tury. The HQ waveguide has been studied by various authors, but received little atten-

tion as a sound attenuation device until the late 1970s  [11]. In the 1990s, Selamet,

Dickey and Novak theoretically and experimentally investigated the HQ waveguide

without flow and without end reflection, developed a general expression for transmis-

sion  loss  and  presented  a  non-linear  one-dimensional  finite-difference  model  [11],

[12]. At the outset of the 20th century, Burdisso and Smith [13] developed an extensive

experimental study on noise attenuation in a turbofan engine with an innovative imple-

mentation of the Herschel-Quincke waveguides which will be the subject of subsec-

tion 2.4. 

2.3.2 Geometrical characteristics and wave interference

The Herschel-Quincke waveguide clearly has a very definite set of geometrical fea-

tures, which are responsible for the sound-attenuating mechanisms. These characterist-

ics have been studied since the inception of the concept. Herschel, still in the 19th cen-

tury,  predicted that the cancellation of tones would occur when the path length differ-

ence  between  the  recombined  signals  was (2m+1 ) (λ / 2) ,  with λ being  the

wavelength and m an integer. Later, in 1866, Quincke experimentally validated that

Herschel’s system did effectively cancel sound. George W. Stewart, in 1928, verified

that cancellation does occur when the path length difference is (2m+1 ) (λ / 2) , but

also when the path length difference is mλ , with limited attenuation at other trans-

itional frequencies [4]. 

In addition to the difference between the paths of the sound waves, there are theoret-

ical models which take into consideration other geometrical variables such as the dia-

8
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meter of the Herschel-Quincke waveguides, their length and also the distance between

the two openings of a certain tube.

Brady’s model, presented in Fig. 7, is bidimensional and determines the equations for

the pressure field at the HQ waveguide and the main waveguide separately, later coup-

ling both equations. When the equation for the transmitted pressure field is shown, it is

seen that it depends on the diameter of the HQ waveguide S , its length L and the

distance between the openings of two tubes l . This model also presents a way to

predict the frequency of maximum attenuation for individual modes, which will de-

pend on a transcendental equation that features the same geometrical variables S ,

L and l . Therefore, not only the geometry of the tube influences the resulting

pressure field, but it also presents a way to modulate the resonance frequencies that

can better attenuate noise from the turbofan engine. 

Because of this, an interesting extension of HQ tube design for the suppression of

higher-order modes might include active control of an aspect of tube geometry in order

to attain optimum attenuation of sound at a range of frequencies. For instance, in some

noise control applications, it may be feasible to adjust the length of the HQ tube [14].

9

Fig. 7: Herschel-Quincke waveguide modelling concept
Source: [14]



2. Turbofan engine noise and the Herschel-Quincke technique

2.4 Experimental data on Herschel-Quincke waveguides

2.4.1 Motivation

A typical fan acoustic spectrum includes a broadband noise level and tones at the fan

blade  passage  frequency  (BPF)  and  its  harmonics.  These  tones  are  often  at  least

10−15 dB above the broadband level. Future ultra high bypass ratio turbofan en-

gines (ratios of up to 10) will have an even greater fan tonal noise component at lower

frequencies. The shorter inlet ducts relative to the size of the fan and the lower BPFs

expected for these engines will make traditional passive liner technology less effective

for attenuating the fan tones [13]. In this context, new noise-reducing passive techno-

logies such as the Herschel-Quincke waveguides can provide better results while act-

ive control technology does not reach widespread use.

2.4.2 The experiment set-up

In the study carried in reference [13], Burdisso and Smith implemented an array of HQ

waveguides around the circumference of the Pratt & Whitney JT15D turbofan engine

inlet. This engine has been used extensively for research in passive and active noise

control methods applied to turbofan engines. It is a twin spool turbofan engine with a

full length bypass duct and a maximum bypass ratio of 2.7 . The engine is equipped

with an inlet inflow control device (ICD). Its purpose is to minimize the spurious ef-

fects of ground testing on acoustic measurements by breaking up incoming vortices.

The maximum diameter of the ICD is 2.1 times the engine inlet diameter. Finally,

the engine is mounted in a test cell, which is divided into two chambers by a transmis-

sion loss partition. The forward chamber is anechoic to simulate free field conditions,

where only the inlet is inside. This serves the purpose of isolating the radiation of the

inlet from the aft and jet noise radiation. One wall of the anechoic chamber is open to

the atmosphere for engine intake air as depicted in Fig. 8 [13].

In these experiments, one and two arrays of HQ tubes are mounted circumferentially

around the cylindrical perforated mesh inlet of the turbofan jet engine. For clarity, the

inlet configured with one and two arrays of HQ tubes will be denoted as the 1AHQ

and 2AHQ inlets, respectively. The surface area of the inlet section where the tubes

were not attached was configured as a rigid wall. All of the tubes are axially-oriented

(i.e., extend parallel to the engine axis) as shown in the configuration schematic in Fig.

10
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6. Figs. 9 and 10 show pictures of the engine inlet configured as a hard-wall and with

two arrays of HQ tubes, respectively. In Fig. the bottom panel is left off so that the

mesh screen cylinder is visible [13].

11

Fig. 8: Depiction of turbofan engine test cell
Source: [13]

Fig. 9: JT15D inlet configured as a hard wall
Source: [13]
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Two HQ tube configurations are investigated as shown in Fig. 11. The first configura-

tion consists of a single array of 20 HQ tubs (1AHQ inlet) while the second is con-

figured with two arrays of HQ tubes with 20 and 16 tubes, respectively (2AHQ inlet)

[13].

12

Fig. 10: JT15D inlet configured with two arrays of HQ tubes
Source: [13]

Fig. 11: Configurations of one and two arrays of HQ tubes
Source: [13]
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2.4.3 Experimental results

13

Fig. 12: Acoustic power at the BPF tone, sector from 0° to 90°
Source: [13]

Fig. 13: Acoustic power at the BPF tone, sector from 50° to 90°
Source: [13]
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BPF 
(Hz)

Sector 0° - 90° Sector 50° - 90°
1 Array 2 Arrays 1 Array 2 Arrays

2340 5.0 8.6 7.3 9.5

2440 4.8 8.2 6.5 5.2

Tab. 1: Power Level Reduction at BPF tone
Source: [13]

Figs. 12 and 13 show the acoustic power, in decibels, at the BPF tone for the sectors

0 ° to  90 ° and 50° to 90 ° ,  respectively.  It  is  possible to see that the HQ

waveguide has a positive effect on noise reduction, as the results with the configura-

tion 2AHQ have indeed a lesser level of noise power, noticeably lower around the BPF

frequency tone.

14

Fig. 14: Sound pressure directivity at BPF tone, BPF=2340 Hz
Source: [13]
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As for Figs. 14 and 15, the directivity of the sound noise is shown for different values

of the BPF frequency. It is possible to see an accentuated noise reduction around the

angle 0 ° , which is not the case for the angle ±15 ° . Then a progressive reduc-

tion  on  SPL is  noticed,  and the  lowest  values  for  SPL are  seen  around the  angle

±90° . Again, the best results are obtained with the 2AHQ configuration, and the

1AHQ configuration is better than the hard wall configuration for noise reduction pur-

poses.

15

Fig. 15: Sound pressure directivity at BPF tone, BPF=2440 Hz
Source: [13]
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16

Fig. 16: SPL reduction vs . frequency and far-field angle for 1AHQ
inlet

Source: [13]

Fig. 17: SPL reduction vs . frequency and far-field angle for 2AHQ
inlet

Source: [13]
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Now, Figs.  16 and 17 show that for both configurations of the Herschel-Quincke ar-

rays of waveguides, there is indeed a broadband noise reduction, because it can be

seen that  for  all  frequencies,  there  is  some SPL reduction,  but  it  specially  occurs

around  the  BPF  frequencies,  which  happen  between  1000−1500 Hz and

2000−2500 Hz . In this case, there is tonal noise reduction at the BPF.

17

Fig. 18: Acoustic power spectra for the HW, 1AHQ, 2AHQ inlets for sector 0° - 90°
Source: [13]
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Combination of
Broadband and BPF

Tone Reductions

Overall Power Reduction (dB)

1AHQ 2AHQ

Actual Broaband Red.
+ Actual BPF tone Red. 2.7 4.6

Complete removal of
BPF tone only 2.6 2.6

Actual Broadband Red.
+ Total BPF tone Red. 4.1 5.6

Tab. 2: Overall Power Level Reductions – 0° - 90° Sector
Source: [13]

Combination of
Broadband and BPF

Tone Reductions

Overall Power Reduction (dB)

1AHQ 2AHQ

Actual Broaband Red.
+ Actual BPF tone Red. 2.8 4.4

Complete removal of
BPF tone only 1.4 1.4

Actual Broadband Red.
+ Total BPF tone Red. 3.2 4.8

Tab. 3: Overall Power Level Reductions – 50° - 90° Sector
Source: [13]
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Fig. 19: Acoustic power spectra for the HW, 1AHQ, 2AHQ inlets for sector 50° - 90°
Source: [13]
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Figs. 18 and 19 make very clear that the tonal noise at the BPF generates a consider-

ably louder tone, which is clearly felt by people who live near airport zones. It also

shows the potential of the Herschel-Quincke waveguide in reducing the pressure level

for a spectra of frequency values.

Based on the experiment set-up and our knowledge of waves, we could try to elaborate

an explanation on wave attenuation referring only to the geometrical disposition of the

Herschel-Quincke waveguide and the conditions of the experiment. By reading the ex-

periment  paper  [13],  we  find  that  at  that  condition  the  sound  speed  was

c = 42.5 / 0.12 = 354.17 m /s .  We also know that the HQ waveguides were de-

signed mainly to attenuate sound at the 2320 Hz frequency. This enables us to find

the wavelength of those sound waves in such a scenario, which is λ = 0.15266 m .

In  subsection  2.3.2 we  discovered  that  destructive  interference  occurs  for

(2m+1 ) (λ / 2) and  mλ .  This  is  equivalent  to (2m+1 ) × 0.076329 m and

m × 0.15266 m , while the path difference between a wave that goes inside the HQ

waveguide and other that stays in the main cylindrical waveguide is of the order of

0.01 m . Thus, in a first inspection, the phenomenon of sound attenuation could not

be explained by destructive interference due to path difference. The distance between

the two arrays of tubes is approximately 0.1683 m , which is close to λ , but a re-

lation between the two amounts based in wave interference is not immediate.

Therefore, we can conclude through this experimental study that a Herschel-Quincke

waveguide mounted at the inlet of a turbofan engine is able to present satisfactory res-

ults in the reduction of the sound power level for different frequencies. When this ar-

ray of waveguides is adjusted accordingly for the geometry of the engine inlet, it can

also contribute to the reduction of sound tones for the blade passage frequency, which

is a major source of noise for people and affects considerably the Effective Perceived

Noise Level (EPNL) scale. To better understand how a Herschel-Quincke waveguide

can be useful at the inlet of turbofan engines, it can be useful to study how it attenuates

noise from a theoretical standpoint; this way, we might gain insights that will enable

other researchers and the industry to provide effective solutions for the aircraft engine

noise problem. This theoretical study will be done in the next sections.
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3 Waveguides

3.1 Electromagnetic waveguides

Waveguides  are  structures  which  confine  electromagnetic  waves,  enabling  the

propagation of this wave in a certain direction. They were particularly utilised during

the 1960s, on the radar age, because of their properties to propagate waves from one

location  to  another  with  minimal  energy  loss  [15].  Dealing  with  electromagnetic

waves, we can assume the material which makes up the waveguide is a perfect con-

ductor, what, in practical applications, would mean that it is made of a metal. In order

to show the parallels between the electromagnetic theory of waveguides and the acous-

tic one, the equations for the electromagnetic waveguide are derived in some depth.

The  boundary  conditions  for  the  propagation  of  the  electromagnetic  waves  in  the

waveguide are as follows:

(i) E∥ = 0 ,
(ii) B⊥ = 0.

(1)

The conditions specified by equations  (1) are only valid on the inner surface of the

conductor; there is not, in principle, any constraint for the values of the fields on the

hollow space inside the guide. Because we want to find monochromatic waves that

propagate down the tube, the electric and magnetic fields will have the generic form

[16]:

(i) ~E(x , y , z ,t ) = ~E0 (x , y)e i(kz−ω t ) ,
(ii) ~B(x , y , z , t) = ~B0(x , y)ei (kz−ω t) .

(2)
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Fig. 20: Example of a waveguide
Source: [16]
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The electric and magnetic fields must, evidently, obey Maxwell’s equations, in the in-

terior of the waveguide [16]:

(i) ∇⋅E = 0 , (iii) ∇×E = −∂ B
∂ t

,

(ii) ∇⋅B = 0 , (iv ) ∇×B = 1
c2

∂ E
∂ t

.
(3)

To find a solution to equations (3), subject to the boundary conditions specified in (1),

it is necessary to propose electric and magnetic fields with vector components in the

three axes2. By applying this three-vector field form in the equations, and after quite a

lot of algebraic work, we find the following differential equations [16]:

[ ∂2

∂ x2 +
∂2

∂ y2 +(ω/c)2−k 2] E z = 0 ,

[ ∂2

∂ x2 +
∂2

∂ y2 +(ω/c)2−k 2]B z = 0.
(4)

When E z=0 , these waves are called TE (“transverse electric”), while for Bz=0 ,

they are called TM (“transverse magnetic”). We will now focus on the TE case. But

the method to solve each of them is the same. If we have E z=0 , we still need to

solve the equation for Bz , which is a function of two variables, x and y . In this

section,  for  simplicity,  we  will  solve  the  equations  for  a  rectangular  waveguide

depicted in Fig. 21. 

2 This is due to the nature of the problem, as we deal with confined waves. In non-confined cases it
would be possible to have transverse waves.
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Fig. 21: Depiction of a rectangular waveguide
Source: [16]
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The most common way to solve this equation, one of equations (4), is by separation of

variables:

Bz(x , y) = X (x)Y ( y) (5)

Finally, the solution for the magnetic field in this case is:

Bz = B0 cos(m π x /a)cos(n π y /b) (6)

With m and n non-negative integers. The other components of the magnetic and

electric fields can also be obtained, but their formulas will be here omitted. For more

information on the subject, see [16]. And the wave number is given by:

k = √(ω/c )2−π2[(m /a)2+(n /b)2] (7)

If  this  wave number is  complex,  it  means that  instead of a  wave,  there would be

exponentially decreasing fields. When this happens, we have the following situation:

ω < ωmn (8)

With ωmn defined as:

ωmn ≡ c π √(m/a)2+(n /b)2 . (9)

ωmn is called the cutoff frequency, because waves with lesser frequencies would not

propagate. Clearly, ωmn depends on the mode, that is, the integers m and n . The

lowest cutoff frequency for a given waveguide occurs for the mode TE10:

ω10 = c π/a (10)

Lower frequencies cannot propagate in such a waveguide under no circumstances [16].

3.2 Modelling of the turbofan inlet as an acoustic waveguide

By the same token, we can consider a turbofan engine, a cylindrical structure with an

enclosed geometry, a waveguide. Sound, as well as electromagnetic waves, is a kind of

wave, which obeys the wave equation and because of this, similar results from the

theory of waveguides can be obtained even if the physical equations governing the

phenomena are in their appearance different3. 

3 Electromagnetism and fluid dynamics share a lot of mathematical similarities, which can be quite
useful in theoretical development, like here. But one cannot deny the fact that, in the electromag-
netic derivation of waveguides, we started from Maxwell’s equations, and here, we will start from
Navier-Stokes equations. 
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It is important to note that in this development, we will consider sound propagation in

a turbofan engine, here modelled as a waveguide, without a mathematical source of

sound. But this description can be valuable notwithstanding, because, in the words of

[17],  “In  the  sound  field, q must  be  zero  because  sound  waves  satisfy  the

homogeneous wave equation. The source region, V ,  where q (x , t) is non-zero, is

thus clearly separated from the sound field where must vanish. We have said that this

definition of a sound source is somewhat arbitrary, and indeed knowledge of the sound

field is not sufficient to uniquely determine the source.”

This means that the sound-generating processes which take place inside the turbofan,

such as rotor-stator interaction, boundary layer phenomena, among others, do not need

to be considered if we are only interested in sound propagation, because sound waves

satisfy the homogeneous wave equation. Therefore, it can be understood that studying

only sound propagation without a source could describe an adequate view of sound

propagation inside the turbofan engine. But the extent to which this assumption can

provide  an  accurate  evaluation  of  the  sound  field  inside  the  turbofan  engine  is

debatable, because we could reasonably assume that all of the engine is inside the

source region V . Nonetheless, as the sound-generating processes inside the engine

can be quite complicated to model, studying the sound propagation by itself, without a

source,  can  still  give  us  some  useful  perspectives  on  acoustic  properties  of  the

turbofan, while being a more tractable problem than modelling each sound-generating

process inside the engine.

For the treatment of the turbofan engine as an acoustic waveguide, we neglect the

reflections  at  the open end of  the inlet  and on the fan.  To do so we consider  the

turbofan engine, in its geometry, a hard-walled cylindrical duct with infinite length.

Fig.  22 presents the duct, with radius a ,  through which a uniform air  flow with

velocity V passes. This velocity field is parallel to the z axis. Sound propagation

is in the same direction as the z axis [4].
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The generic form of the acoustic wave equation in a moving media is as follows [18]:

1
c ² ( ∂

∂ t
+V⋅∇ )

2
p ' = ∇ 2 p ' (11)

We are going to prove this equation  (11) from Navier-Stokes equations in the next

section. This is something that neither [4] nor [18] do.

3.3 Deduction of the acoustic wave equation in moving media from 
Navier-Stokes equations

Navier-Stokes  equations  are  differential  equations  governing  the  motion  of

compressible,  Newtonian  fluid.  They  arise  from  conservation  laws,  namely,  the

conservation of mass, the conservation of momentum and the conservation of energy.

For the purposes of this proof we will only need conservation of mass and momentum.

The continuity equation, the equation for conservation of mass, is written as:

∂ρ '
∂ t

+ρ0 ∇⋅v = 0 (12)

In  (12) we  are  only  considering  first-order  terms,  and  neglecting  those  of  lower

magnitude  [19].  Following  that  equation  we  have  the  general  form  for  the

conservation of momentum, which is also Newton’s second law [20]:
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Fig. 22: Turbofan model as an infinite cylindrical waveguide
Source: [4]
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ρ ( ∂
∂ t

+ v⋅∇ )v = −∇ p + η [∇ 2 v + 1
3

∇ (∇⋅v )] + F (13)

In its most complete form, viscosity effects would need to be considered, but here we

neglect them. Smaller terms are also neglected, and thus the first-order equation for

conservation of momentum is:

ρ0
∂ v
∂ t

= −∇ p ' (14)

Now,  if  the  fluid  is  moving  with  a  velocity  field,  whose  magnitude  is V ,  the

continuity and conservation of momentum equations are, in relation to the laboratory

frame [18]:

(i) ( ∂
∂ t

+V⋅∇ )ρ ' + ρ0 ∇⋅v = 0

(ii) ρ0( ∂
∂ t

+V⋅∇ ) v = −∇ p '
(15)

By establishing a linear dependence between pressure and density for the sound wave:

p ' = c ²ρ ' (16)

This enables us to rewrite equations (15) in the following way:

(i) 1
c ² ( ∂

∂ t
+V⋅∇ ) p ' + ρ0 ∇⋅v = 0

(ii) ρ0( ∂
∂ t

+V⋅∇ ) v + ∇ p ' = 0
(17)

Equation (17) (i) can be rearranged, whilst we can take the divergence from equation

(17) (ii):

(i) ∇⋅v = − 1
ρ0 c ² ( ∂

∂ t
+V⋅∇ ) p '

(ii) ρ0 ∇⋅[( ∂
∂ t

+V⋅∇ ) v ] + ∇ 2 p ' = 0
(18)

Now the task is to prove that:

∇⋅[( ∂
∂ t

+V⋅∇ ) v ] = ( ∂
∂ t

+V⋅∇ ) (∇⋅v ) (19)

We cannot take the equality shown in (19) for granted; we need to prove it to use it.

Let us start with the time derivative term, which is much easier than the one with the

inner product. It is immediate that:
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∇⋅(∂ v
∂ t ) = ∂

∂ t
(∇⋅v ) (20)

Because the partial time derivative is a linear operator (although I am not sure this is

strictly needed) and mainly because the divergence is a derivative on position, and it

will not interfere with the partial time derivative. So it is possible to reverse the order

of the operations without changing the result. For the other term, we will need to do

the operations explicitly and verify the equality. 

3.3.1 Left-hand side of the equality of equation (19)

Let us start with:

∇⋅[ (V⋅∇ ) v ] (21)

The first step is to apply the gradient operator on the vector v . Before doing this, we

need to understand some aspects of vector algebra. We write the vector in matrix form,

given by:

v=[v x

v y

v z
] (22)

When  we  write  a  vector  in  matrix  form,  we  are  already  defining  an  coordinate

orthonormal  base  to  which  the  components  depend  on  [21].  Here  we  decided  to

express the vector in Cartesian coordinates. Now we need to take the gradient of this

vector.  When  we  take  the  gradient  of  a  scalar,  what  is  obtained  is  a  vector.  By

extending this reasoning, the gradient of a vector generates a second-rank tensor. This

second-rank tensor can be obtained with the tensor product between two vectors, the

gradient vector and the velocity vector4 [22], [23]:

4 The resulting tensor matrix is the transpose of the velocity gradient shown in [22]. But this is not a
issue because both tensors are correct; their difference is just a matter of convention. Here we are
being consistent with our definitions of vector and inner and outer products. And as it will be seen at
the end, we will succeed in demonstrating the equality. Therefore our choices and definitions will
also be correct.
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∇ v = ∇ v ≡ ∇⊗v = ∇ vT

∇ vT = [
∂
∂ x
∂
∂ y
∂
∂ z

] [v x v y v z ] = [
∂ v x

∂ x
∂ v y

∂ x
∂ v z

∂ x
∂ v x

∂ y
∂ v y

∂ y
∂ v z

∂ y
∂ v x

∂ z
∂ v y

∂ z
∂ v z

∂ z
] (23)

The next step is to execute the inner product between the vector V and the second-

rank  tensor  ∇ v .  The  inner  product  reduces  the  rank  of  the  tensorial  object,

therefore, the result of this product is a vector [21]:

V⋅∇ v = V T ∇ v = [V x V y V z ][
∂ v x

∂ x
∂ v y

∂ x
∂ v z

∂ x
∂ v x

∂ y
∂ v y

∂ y
∂ v z

∂ y
∂ v x

∂ z
∂ v y

∂ z
∂ v z

∂ z
]

V⋅∇ v = [V x
∂ vx

∂ x
+V y

∂ vx

∂ y
+V z

∂ vx

∂ z

V x
∂ v y

∂ x
+V y

∂ v y

∂ y
+V z

∂ v y

∂ z

V x
∂ v z

∂ x
+V y

∂ v z

∂ y
+V z

∂ v z

∂ z
]

(24)

At last, we need to take the divergence of such vector, finally getting a scalar:
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∇⋅(V⋅∇ v ) = ∇ T (V⋅∇ v )

∇⋅(V⋅∇ v ) = [ ∂
∂ x

∂
∂ y

∂
∂ z ][V x

∂ v x

∂ x
+V y

∂ v x

∂ y
+V z

∂ v x

∂ z

V x
∂v y

∂ x
+V y

∂ v y

∂ y
+V z

∂ v y

∂ z

V x
∂ vz

∂ x
+V y

∂ vz

∂ y
+V z

∂ vz

∂ z
]

∇⋅(V⋅∇ v ) = V x
∂2 vx

∂ x ²
+ V y

∂2 v x

∂ x∂ y
+ V z

∂2 v x

∂ x∂ z
+ V x

∂2 v y

∂ y∂ x

+V y
∂2 v y

∂ y ²
+ V z

∂2 v y

∂ y ∂ z
+ V x

∂2 vz

∂ z∂ x
+ V y

∂2 vz

∂ z∂ y
+ V z

∂2 v z

∂ z ²

(25)

Therefore, the final expression can be written as:

∇⋅(V⋅∇ v ) = ∑
i , j=1

3

V i
∂2 v j

∂ x j∂ x i

(26)

3.3.2 Right-hand side of the equality of equation (19)

We begin with:

V⋅[∇ (∇⋅v ) ] (27)

Applying the divergence operator on the vector v is very straight-forward:

∇⋅v = [ ∂
∂ x

∂
∂ y

∂
∂ z ][ v x

v y

v z
] =

∂ v x

∂ x
+

∂ v y

∂ y
+

∂ v z

∂ z (28)

Then we take the gradient of this scalar:
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∇ (∇⋅v) = [
∂
∂ x
∂
∂ y
∂
∂ z

][ ∂ vx

∂ x
+
∂ v y

∂ y
+
∂ v z

∂ z ]

∇ (∇⋅v) = [
∂2 vx

∂ x ²
+

∂2 v y

∂ x∂ y
+

∂2 vz

∂ x∂ z
∂2 v x

∂ y ∂ x
+
∂2 v y

∂ y ²
+

∂2 v z

∂ y ∂ z
∂2 v x

∂ z∂ x
+

∂2 v y

∂ z∂ y
+
∂2 v z

∂ z ²
]

(29)

Finally we perform the inner product between V and ∇ (∇⋅v) :

V⋅∇ (∇⋅v) = [V x V y V z ] [
∂2 v x

∂ x ²
+

∂2 v y

∂ x ∂ y
+

∂2 v z

∂ x∂ z
∂2 v x

∂ y∂ x
+
∂2 v y

∂ y ²
+

∂2 v z

∂ y∂ z
∂2 v x

∂ z∂ x
+

∂2 v y

∂ z∂ y
+
∂2 v z

∂ z ²
]

V⋅∇ (∇⋅v) = V x
∂2 v x

∂ x ²
+ V x

∂2 v y

∂ x ∂ y
+ V x

∂2 v z

∂ x ∂ z
+ V y

∂2 v x

∂ y ∂ x
+ V y

∂2 v y

∂ y ²

+ V y
∂2 v y

∂ z∂ y
+ V z

∂2 vx

∂ z∂ x
+ V z

∂2 v y

∂ z∂ y
+ V z

∂2 v z

∂ z ²

(30)

This leads us to:

V⋅∇ (∇⋅v ) = ∑
i , j=1

3

V i
∂2 v j

∂ xi∂ x j

(31)

The order of the partial derivatives does not alter the final result, so we know that:

∑
i , j=1

3

V i
∂2 v j

∂ x j∂ xi
= ∑

i , j=1

3

V i
∂2 v j

∂ xi∂ x j

(32)

Finally, we can conclude that: 

∇⋅[ (V⋅∇ ) v ] = V⋅[∇ (∇⋅v ) ] (33)

Equation (19) is proven.
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3.3.3 Final derivation of the wave equation

This means that we can write equation (18) (ii) in function of the divergence of v :

(i) ∇⋅v = − 1
ρ0 c ² ( ∂

∂ t
+V⋅∇ ) p '

(ii) ρ0 ( ∂
∂ t

+V⋅∇ ) ( ∇⋅v ) + ∇ 2 p ' = 0
(34)

Now we can substitute equation (34) (i) into (34) (ii):

− 1
c ² ( ∂

∂ t
+V⋅∇ )( ∂

∂t
+V⋅∇ ) p ' + ∇ 2 p ' = 0 (35)

At this point, we need to look at the operator:

( ∂
∂ t

+V⋅∇ ) (36)

Is  it  linear?  And the  answer  is  yes.  The partial  time derivative  is  clearly  a  linear

operator. The addition operation does not interfere with linearity. The V⋅∇ operator

is also linear. The gradient is a linear operator, as it consist of first-order derivatives.

The inner product with V is a linear operator as well. Thus, we conclude that the

operator shown in expression  (36) is linear,  and we can apply it  twice on a given

scalar. This invites to write equation (35) as:

− 1
c ² ( ∂

∂ t
+V⋅∇ )

2
p' + ∇2 p ' = 0 (37)

Whence ( ∂
∂ t

+V⋅∇ )
2

is the operator ( ∂
∂ t

+V⋅∇ ) being applied on the scalar

p ' twice.

At last, we get the expression for the acoustic wave equation in a moving media, as in 

equation (11):

1
c ² ( ∂

∂ t
+V⋅∇ )

2
p ' = ∇2 p ' (38)

Note that even though this result was derived utilising Cartesian coordinates, it is also 

valid for cylindrical and spherical coordinates. This is important, because we will 

study the engine as an acoustic waveguide through cylindrical coordinates.
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3.4 Derivation of the pressure function on the cylindrical waveguide

Starting from equation (38), we need first to define the direction of the velocity field

of the moving fluid. We assume that it will have the form:

V = c M k̂ (39)

With k̂ being the unit vector in the cylindrical z-axis. In this problem, in specific, we

consider upstream sound propagation. Because we define sound will propagate in the

positive direction of z-axis, the fluid motion will have the opposite direction. This can

be expressed with a negative sign of Mach number M [4]. By developing the left-

hand side of equation (38), we obtain:

1
c ² ( ∂

∂ t
+V⋅∇ )

2
p ' = 1

c ² ( ∂
∂ t

+V⋅∇ )( ∂
∂ t

+V⋅∇ ) p ' (40)

At this point, it is important to be reminded that we are studying the problem with

cylindrical coordinates. Thus, the gradient operator will also be presented with this

choice of coordinates:

V⋅∇ p ' = V T ∇ p ' = [ 0 0 cM ] [
∂ p '
∂ r

1
r

∂ p '
∂θ

∂ p '
∂ z

] = cM ∂ p '
∂ z

(41)

We find that:

1
c ² ( ∂

∂ t
+V⋅∇ )( ∂

∂ t
+V⋅∇ ) p ' = 1

c ² ( ∂
∂ t

+V⋅∇ )(∂ p '
∂ t

+cM ∂ p '
∂ z )

= 1
c ² ( ∂

∂ t
+cM ∂

∂ z )(∂ p'

∂ t
+cM ∂ p'

∂ z )= 1
c ² [ ∂

2 p'

∂ t ²
+2cM ∂

∂ t
∂ p '

∂ z
+c ² M ² ∂2 p '

∂ z ² ]
(42)

As for the right-hand side of equation (38), it is simply the Laplacian of the pressure in

cylindrical coordinates:

∇ 2 p ' = 1
r

∂
∂r (r ∂ p '

∂ r ) + 1
r ²

∂2 p '
∂θ ²

+ ∂2 p '
∂ z ²

(43)

And we can write equation (38) as:

1
c ² [ ∂

2 p '

∂ t ²
+2 cM ∂

∂ t
∂ p '

∂ z
+c ² M ² ∂2 p'

∂ z ² ] = 1
r

∂
∂ r (r ∂ p'

∂ r ) + 1
r ²

∂2 p '

∂θ ²
+ ∂2 p'

∂ z ²
(44)
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Assuming an harmonic motion, we have5:

p ' (η , t ) = A ei (ω t−k⋅η )

∂ p '
∂ t

(η , t ) = iω A ei (ω t−k⋅η )

∂2 p '
∂ t ²

(η , t ) = −ω2 A e i (ωt−k⋅η )

(45)

The resulting  expressions  are  function  of  the wave frequency ω .  As we saw in

equation  (7),  the  wave number  depends on the  frequency but  also on geometrical

variables, which in in this case we are yet to deduce. But [4] suggests us to substitute
ω , perhaps to not have the differential equation in terms of time variables. And so

we do, making the following substitution:

ω = c k0 (46)

k 0 would  be  the  wave  number  of  the  acoustic  waves  if  there  were  not  the

geometrical constraints created by the waveguide, that is, if the wave could propagate

in free space.  The harmonic  motion assumption enables  us  to  free the  differential

equation from the time dependence,  and we finally get the differential  equation in

function of the geometrical variables only:

−k 0 ² p '+2 ik0 M ∂ p '
∂ z

+M2 ∂2 p '
∂ z ²

= ∂2 p '
∂ r ²

+ 1
r

∂ p '
∂ r

+ 1
r ²

∂2 p '
∂θ ²

+∂2 p '
∂ z ²

(47)

The solution for the differential equation can be expressed as a propagating wave in 

the z-axis, possessing the form:

p ' (r ,θ , z ,t ) = Φ (r ,θ ) e−i k z z eiω t (48)

By applying this function into the differential equation, we obtain:

∂2Φ
∂ r ²

+ 1
r
∂Φ
∂ r

+ 1
r ²

∂2Φ
∂θ ²

+ {k 0 ²−k z ² (1−M 2 )−2 k 0 k z M }Φ = 0 (49)

As in equations (4), we can solve equation (49) with separation of variables (the most

formal  solution would be to start  with separation of variables  from the beginning,

equation (48), but as [4] does this way, we are reproducing these steps) . The method

used here is very similar to that of quantum mechanics, when it is needed to solve the

5 In physics books such as  [16] and  [18], the travelling wave is shown as e i (k⋅η−ω t ) , whilst in
books such as  [19], the latter an engineering book, the travelling wave is shown as e i (ω t−k⋅η ) .
Both expressions are equivalent, the difference of which is a π radians phase shift.
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equations for the hydrogen atom. See [24].  Therefore, the incognito function can be

written as:

Φ(r ,θ ) = R(r )Θ(θ) (50)

The resulting differential equation, after some rearrangements, becomes:

r ²
R ( d2 R

dr ²
+ 1

r
dR
dr ) + 1

Θ
d2Θ
d θ ²

+ r ² kmn ² = 0 ,

kmn ² = k 0 ²−k z ² (1−M 2 )−2 k 0 k z M

(51)

kmn , with the indexes m and n ? We’ll see why in a while. The term in the sum

which depends on θ must be a constant, in order to hold the equality. This means

that it can be written as:

1
Θ

d2Θ
d θ ²

= −m ² (52)

This leads to:

Θ (θ ) = ei mθ ⇔ Θ (θ ) = A cos(mθ) + B sin(mθ) ,
m ∈ ℤ

(53)

Because the function Θ (θ ) is periodic with period 2π . Now we are left with the

differential equation for r :

r ²
R ( d2 R

dr ²
+ 1

r
dR
dr ) − m ² + r ²k mn ² = 0 (54)

3.4.1 Bessel functions6

The following differential equation:

d2 y
dx ²

+ 1
x

dy
dx

+ (1− 1
x ² ) y = 0 (55)

Appears  in  several  branches  of  physics,  and  is  very  common when  a  problem is

attacked through the method of separation of variables. In order to solve this equation,

various approaches are possible. One of them is to propose a solution in the format of

an infinite series:

6 I owe professor Reginaldo de Jesus Napolitano from IFSC-USP my complete gratitude for providing
me valuable observations on the study of Bessel functions which proved indispensable to writing
this section.
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y = ∑
n=0

∞

an xn
(56)

By applying this solution into the equation, and equating coefficients of powers of

x  to zero, we get the following function [25]:

y = a1(x − x ³
2⋅4

+ x ⁵
2⋅4⋅4⋅6

− x ⁷
2⋅4⋅6⋅4⋅6⋅8

⋯) (57)

This is a series called Bessel function, more precisely the Bessel function of the first

kind. For the general differential equation, also called Bessel equation:

d2 y
dx ²

+ 1
x

dy
dx

+ (1−m ²
x ² ) y = 0 (58)

The Bessel function of order m is defined as [26]:

J m ( x ) = ∑
s=0

∞ (−1 )s

s ! (m+s ) ! ( x
2 )

m+2 s

= xn

2n n!
− xn+2

2n+2 (n+1 ) !
+ ⋯ (59)

Other  approaches  to  get  to  the  Bessel  function  involve  a  generating  function  or

contour  integrals,  but  will  not  be  shown  here.  Bessel  equation  is  a  second-order

differential  equation  and  as  such,  it  should  involve  the  sum  of  two  independent

functions. For non-integral order ν , there are two independent solutions, namely,

J ν ( x ) and J−ν ( x ) , with ν replacing m in equation (59). But for integer m ,

the relevant case for this problem, it is not possible to get two independent solutions

through the series method or the generating function. But a second solution exists, and

it is called Neumann function or Bessel function of the second kind. It has the form

[26]:

N m ( x ) = −(n−1)!(2/ x)n/ π + ⋯+ 2
π ( x

2 )
n 1

n!
ln( x

2 ) + ⋯ (60)

Which has the remarkable characteristic of diverging to minus infinity for x = 0 .

Therefore,  a  Neumann  function  does  not  permit  a  finite  solution  at  the  origin.

Considering that we want a finite value for the pressure field at the origin r = 0 for

this waveguide, we rule out the Neumann function as a part of the solution for our

differential equation due to the boundary conditions. Thus, the solution for the radial

function R (r ) will only be composed of a Bessel function of the first kind, Jm ( x ) .

For a cylindrical system of coordinates, the Bessel equation can be written as:
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r ² d2

dr ²
Jm ( kr ) + r d

dr
Jm ( kr ) + (k ² r ²−m ² ) Jm (kr ) = 0 (61)

In our problem, the function R (r ) will have the form:

R (r ) = C Jm (kmn r ) (62)

Like in equation (51), we are back with the indexes m and n of kmn . We are yet

to  explain  the  index n .  The  other  boundary  condition  is  that  the  radial  particle

velocity on the wall must be zero  [4]. This implies that the radial component of the

pressure on the wall is null, what leads to the derivative of the pressure in relation to

the radial position to zero:

∂ p
∂r |

r=a
= ∂Φ

∂ r |
r=a

= dR
dr |

r=a
= 0 (63)

Thus, we have:

dJm

dr (kmnr )|
r=a

= 0 (64)

The derivative of the Bessel function can be expressed as:

d
dr [∑s=0

∞ (−1 )s

s ! (m+s )! ( kmnr
2 )

m+2 s ]|r=a

= ∑
s=0

∞ (−1)s

s ! (m+s ) !
(m+2 s ) kmn

2 ( kmn r
2 )

m+2 s−1|
r=a

= ∑
s=0

∞ (−1 )s

s ! (m+ s ) !
(m+2 s ) kmn

2 ( kmn a
2 )

m+2 s−1

= 0

(65)

There is an expression equal to zero and we can find ways to simplify it. We have

already seen that m is an integer (equation (53)). Each m corresponds to a Bessel

eigenfunction  of  order m .  For  a  certain Bessel  function, m is  integer  and thus

fixed.  This  makes  the  factors
kmn

2 ( kmn

2 )
m

and ( a
2 )

m−1

,  at  the  last  of  equations

(65), to be constants and this way they can be removed from the equation,  unless

kmn and a are zero. The equation becomes:
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∑
s=0

∞ (−1)s

s ! (m+s )!
(m+2 s )( k mn a

2 )
2 s

= 0 (66)

In order to solve the equation for this series, we can substitute the upper limit of the

sum, infinity, for a positive integer number called N , as big as one wants. In such a

case, we get the following equation for the variable kmn :

∑
s=0

N (−1)s

s ! (m+s )!
(m+2 s )( k mn a

2 )
2 s

= 0 (67)

This means we have an equation of the degree 2 N , which leads to 2N roots for

kmn . In order to label each of the roots, we define firstly the constant m , because

each order of the Bessel function will lead to different equations. For each value of

m , as we saw, there are 2N roots. And each root will be given an index, called

n , from the first ( k m1 ) to the 2N-th root of the equation ( km2 N ). That is the

reason the constant  k , relative to the wave number of the acoustic waves in the

waveguide, is given the index kmn
7. It is of fundamental importance to note that the

index n refers to the number of the root of k mn , from the smallest to the biggest,

and it does not refer to the index s of the counting of the terms in the series. As we

increase the size of N , more and more we get closer to the zeroes of the derivative

of the Bessel function. For N at infinity, the solutions would converge to the zeroes

of the derivative.  These zeroes can be found through tables in the literature or by

computational methods. Note! All zeros of the Bessel function and its derivatives, for

m ⩾ −1  are real, but unfortunately we will not be able to prove that in this work.

One point to be careful is that if one goes to a table to find the zeroes of the derivative

of the Bessel function, he will find a quantity here labelled χmn , which relates with

kmn in the following way:

χmn = kmn a (68)

This  is  because  the  argument  of  the  Bessel  function  in  the  cylindrical  choice  of

coordinates is  x = kr , as seen in equation (61), and the tables are calculated for

the argument of the Bessel function, and not for the argument divided by an arbitrary

constant.  In  order  to  make this  study more  visual,  let  us  show a  graph of  Bessel

functions of the first kind for some orders:

7 Actually, the most formal procedure would be not to label k as k mn in equation (51) until we 
derived the reason why k has those indexes. But in order to be consistent with the notation of [4],
we decided to put the indexes from the beginning.
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By looking at this graph, we see that x01 , which is the same as χ01 , the first point

at which the derivative of the Bessel function J 0 is zero,  is at x = 0.0 . If we

refer to a table of zeroes of the Bessel function derivative, such as [27], we find that

the position at  which the derivative of the order zero Bessel  function is  null  is  at

x = 0.0 .  But  I  must  admit  I  cheated  in  this  case.  The picture  is  not  clear  as

whether x = 0 is a point of zero derivative. The next point is clearer. We easily see

that a point around x = 3.9 is a zero point for the derivative of J 0 , and as such,

it would be labelled x02 , or  χ02 . By looking at the table, we see that the actual

point of zero derivative is at x = 3.8317 . It was close, considering we estimated

using our eyes. And so it goes on, if we cross-check the derivative zeroes of the graph

against the tabulated values. In this way it is possible to have a more visual notion of

what the points χmn mean. Note that we started our counting of n with n = 1 .

But this is just a matter of choice. In reference [4], the author starts with n = 0 .

Therefore, to be consistent with the notation of [4], we will take the first value of the

integer  n , which is related to the counting of the derivative zeroes in the Bessel

function, as n = 0 onwards.
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3.5 Wave propagation

We have successfully written all functions which compose the pressure field in rela-

tion to each coordinate variable thanks to the method of separation of variables. Now

we shall write the expression for the function Φ (r ,θ ) :

Φ (r ,θ ) = [ Amn cos(mθ) + Bmn sin (mθ)] J m (kmn r ) (69)

Therefore, the pressure field is given by:

p ' (r ,θ , z , t ) = [ Amncos(mθ) + Bmnsin(mθ) ] J m (kmn r )e−i k z z eiω t (70)

The only incognito currently is k z . But as we found the value of k mn , k z will be

determined by solving the quadratic equation shown in equation (51):

k mn ² = k 0 ²−k z ² (1−M 2)−2 k0 k z M (71)

The solution of this equation is the following:

k z =
−M k 0±√k 0 ²−kmn ² (1−M ² )

(1−M ² )
(72)

Thus,  we  see  there  are  two  solutions  for  the  wave  number  in  the  z-axis,  each

corresponding to a travelling wave. In the same way as electromagnetic waves, which

we studied in subsection  3.1, if the radicand in the square root assumes a negative

value, there will be exponentially decaying pressure fields instead of a travelling wave.

Likewise,  we  can  define  the  cutoff  frequency  for  wave  propagation.  The  cutoff

condition is given by:

k 0 = k mn√1−M ² (73)

Remember  that  we  defined k 0 in  equation  (46) as ω / c .  Therefore,  the  cutoff

frequency is expressed as:

ωcutoff = c kmn √1−M ² (74)

An important remark on cutoff frequencies is that these pressure fields die because we

are assuming an infinitely long cylindrical waveguide. In reality, that is not true and

the nacelle has a finite length. This means that the waves with a frequency below the

cutoff  will  dissipate  exponentially  but  their  modulus  will  not  go  to  zero,  as  they

travelled  a  finite  length.  When  they  leave  the  turbofan  engine,  these  waves  will

propagate to the environment without attenuation, with a lower pressure than waves

with frequencies above the cutoff. So the cutoff condition helps, but does not eliminate
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lower-frequency wave propagation.  How smaller the pressure field of those waves

compared  to  non-cutoff  waves  would  be  is  something  that  can  be  calculated

considering the length of the turbofan and the path travelled by those waves.

Our initial equation in this problem was a Helmholtz equation (see equation (47)). The

general solution for this equation is a linear combination of the product solutions, for

the positive and negative values of k z  [28]:

p ' (r ,θ , z ,t ) = ∑
m=0

N θ

∑
n=0

N r

[ Amn
(+ ) cos (mθ) + Bmn

(+ ) sin (mθ)] Jm (k mnr ) e−i k z
( + ) z eiωt

+ ∑
m=0

N θ

∑
n=0

N r

[ Amn
(− ) cos(mθ) + Bmn

(− ) sin(mθ)] Jm (kmnr ) e−i k z
(− ) z e iωt

(75)

Any pressure field function can be written with this linear combination of functions,

and the equation (75) is a double series, a Bessel-Fourier series. It is a Bessel series in

r and  a  Fourier  series  in θ .  If  we  know the  pressure  field  for  an  harmonic

acoustic wave, we can determine its coefficients for the Bessel-Fourier series in the

following way:

{Amn

Bmn

= 2 [π a ² e−i k z z eiωt Jm+1
2 (k mn ) ]−1

⋅ ∫
0

2π

∫
0

a

p ' (r ,θ , z , t ) Jm (kmn r ){sin (mθ)
cos(mθ)}r dr d θ

(76)

Both Bessel and Fourier eigenfunctions are orthogonal [26].  Our final result, equation

(75), is an important one. Remember that in section 2.1 we said that there are a lot of

different  sound-generating processes occurring inside the turbofan,  which could be

attributed to boundary layer phenomena and rotor-stator interaction, among others. In

section 3.2 we said that if we are only interested in sound propagation, we did not need

to be concerned with the source in the sound-generating processes. What we can make

of  this  result  is  that  if  we make  the  assumption  that  the  region V of  the  sound

sources is small enough and we are only looking at sound propagation, then, no matter

how complicated the sound-generating processes are at the sources, we can always

represent the sound field inside the cylindrical waveguide (our model for the turbofan)

as a double Bessel-Fourier series, because this representation encompasses all possible

frequencies and amplitudes at the sound-generating processes inside the turbofan. The

only issue is that we have a way to represent the sound field, but we do not know the
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coefficients for the frequencies and amplitudes equation  (75) in because we did not

model the sound sources. But nonetheless equation (75) can be useful in our study of

noise reduction by Herschel-Quincke waveguides.
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4 Noise reduction on Herschel-Quincke waveguides

4.1 Theoretical modelling of the Herschel-Quincke waveguides

After we have defined the sound pressure field without the HQ waveguides, it is time

to insert them in our theoretical model and see what conclusions of the behaviour of

the system can be drawn. The first step is to define, in terms of a sound pressure field,

what a Herschel-Quincke waveguide is.

According to  [4] a reasonable model for a HQ waveguide would be a finite piston

source. It is as if the cylindrical waveguide were permeated by several pistons in its

wall, each with a definite position and producing a certain pressure field. The overall

effect  of a HQ waveguide could be simulated by adding the effects  of  all  pistons

around the circumference. The model for the HQ waveguides can be seen in Fig. 25.

Now  the  need  to  define  the  pressure  function  for  this  finite  piston  source.  The

literature on the subject provides us several possible ways to express the pressure.

According to Anselmet and Mattei  [29], with a system of coordinates centred on the

circular piston, its pressure in function of the position is given by:

p ' (r ,θ) = ω2ρ0 u0 R ² eikr

r
J 1 [kRsin (θ)]

kR sin(θ)
(77)
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4. Noise reduction on Herschel-Quincke waveguides

It is important to note that the coordinates r and θ in equation  (77) are not the

same with which the analysis of the turbofan was made in subsection 3.4. The change

of coordinates in this problem is not simple, because several assumptions were made

in order to reach the form of the pressure field in  (77). Because this is beyond the

scope of this present work, the derivation of the pressure field for a certain position at

the cylindrical wave guide will not be attempted at this work.

Other author, Mangulis [30], for the similar problem of a circular rigid piston in a non-

rigid baffle, presents us the following solution for the directivity and intensity of the

pressure for such a system:

p ' (r ,θ ) = 1
2

R ²u0
e−ikr

r
cos(θ)

cos(θ)−i γ
2J 1 [kR sin(θ)]

kR sin(θ)

⋅{1−γ kR∑
m=0

∞

cm
[kR sin(θ)]2

[kR sin(θ)]2−λm
2 }

(78)

Now a solution presented by Morse and Ingard [31] for the problem of the radiation

pressure generated by a circular piston:

p ' (r ,θ ) = −ik ρc eikr

4 π r
2 uω π R ² {2 J1 [kR sin (θ) ]

kRsin (θ)
cos(θ)

β+cos(θ) } (79)

Any of those pistons has a characteristic frequency, called  ω or dependent on the

wave number k . Therefore they can be considered, by themselves, sources of sound,

because they are a resonant surface which has the capacity of modifying the pressure
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field around. In the next section we are going to study in what ways those piston

sources can attenuate noise from the cylindrical waveguide pressure field. 

4.2 Noise attenuation by point sources of sound

In  the  last  section,  we  argued  that  the  Herschel-Quincke  waveguides  could  be

modelled  as  piston  sources  of  sound and presented  some possible  formats  for  the

pressure field they generate. Now we can assert that these sources of sound can also be

considered points, what will be useful in our analysis because it makes the problem

more tractable. The equation for the pressure field in the presence of a general source

becomes [32]:

1
c ² ( ∂

∂ t
+V⋅∇ )

2
p ' − ∇2 p '= f (r ,θ , z )eiω0 t

(80)

The  fact  that  we  have  a  term  in  the  equation  not  dependent  on p ' makes  it

inhomogeneous, what invites us to the study of Green’s functions.

4.2.1 Green’s functions

Consider that we have a derivative operator called  ℒ ,  which acts  on a certain

function  y ( x ) .  For  a  homogeneous  differential  equation,  we  would  have  the

following:

ℒ y ( x ) = 0 (81)

While a non-homogeneous differential equation would appear in this scenario:

ℒ y ( x ) = f ( x ) (82)

Considering f ( x ) a  specified  function  of x .  In  the  case  of  the  inhomogeneous

differential equation, equation (82) is equivalent to:

ℒ G ( x , x ' ) = δ ( x−x ' ) (83)

With δ being the Dirac delta function. Thus the solution for the non-homogeneous

differential equation can be written as:

y ( x ) = ∫G (x , x ') f (x ')dx '

y (r1 ) = ∫G (r1 , r2) f (r2)d τ2

(84)

The latter of equations  (84) is valid for  ℜ ³ , a situation in three dimensions and

three  variables  accordingly.  G is  called  Green’s  function.  This  is  a  powerful
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technique  to  solve  inhomogeneous  differential  equations  in  several  branches  of

physics [28], [33].

In our problem in aeroacoustics, the differential equation operator is:

ℒ = ∇2 − 1
c ² ( ∂

∂ t
+V⋅∇ )

2

(85)

This is a Helmholtz equation, albeit with a fluid velocity term V . We can say that

this operator is Hermitian, because, for an Hermitian operator: 

1. The eigenvalues of an Hermitian operator are real. In our operator, the eigenvalue is

the constant kmn found in equation  (68). In that section, we have already said that

the values of kmn would be real. Check.

2. The eigenfunctions of an Hermitian operator are orthogonal.  Our eigenfunction is

the function of the Bessel-Fourier series presented in equation (75). And we have said

that the eigenfunctions are orthogonal. Check.

3. The eigenfunctions of an Hermitian operator form a complete set. We did not prove

this, but we provided the reference in section  3.5. Because both Fourier and Bessel

series can form any function, then their product will also form a complete set  [34].

Check.

For an Hermitian operator, the Green’s function can be written as:

G (r1 , r2) = ∑
n=0

∞ ϕn (r1 )ϕn (r2 )
λn−λ (86)

For the corresponding homogeneous differential equation:

ℒ ψ + λψ = 0 (87)

Aimed at solving the inhomogeneous differential equation:

ℒ ψ + λψ = −ρ (88)
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4.2.2 Mechanism of sound attenuation

We learned that  to  find a determined function applied by an operator,  we need to

integrate the Green’s function multiplied by a specific function (which generates the

non-homogeneity)  applied  in  the  variable  of  the  position  of  the  source,  what  is

demonstrated by equations  (84). Now we are able to do this for a piston source in

order to find the pressure field in the cylindrical waveguide. First we need to expand

the source function f (r ,θ , z) through a Fourier integral [32]:

f mn(z ) = ∫
−∞

∞

Fmn(k)e−ikz dk (89)

Note  that,  for  the  previous  step,  Plancherel’s  theorem was  utilised  to  convert  an

integral in relation to a space variable into an integral in relation to the wave number

k [35].  The  function Fmn ( k ) appears  because  we  are  already  writing  the

eigenfunctions of the operator at  the position of the source,  such as equation  (86)

prescribes, but instead of having this eigenfunction in function of the position of the

source z , we used Plancherel’s theorem to have it in function of the wave number.

Integration of Green’s function leads to the following expression:

p ' (r ,θ , z) = ∑
m=0

∞

∑
n=0

∞

pmn(r ,θ )∫
−∞

∞

Fmn(k) e [i (ω0 t−kz )]

Bmn (ω0 , k )
dk ,

Bmn (ω , k ) = −( ωc )
2
+k0 ²+(ωmn

c )
2

(90)

If ωmn > ω0 , the integral becomes exponentially small at large distances from the

source region. Physically, we can say that then all motion in the mode pmn has its

energy trapped around the source.  pmn are the modes of the cylindrical waveguide

in function of the general positional coordinate, that is, they are the representation of

the  pressure  field  of  the  turbofan  engine.  When  there  is  a  source  function  like

f (r ,θ , z ) ,  this  source is capable to trap acoustic energy around it  for values of

frequency  ωmn > ω0 [32].  In  this  way,  a  Herschel-Quincke  waveguide,  here

modelled as a piston source, is capable to act as a noise attenuator.

The calculation presented in equation  (90) is valid for a single piston source. As we

have several pistons permeating the cylindrical waveguide, this integration would have

to be performed as many times as the number of pistons. Even though it is in a certain
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way implicit, it is this sum of each piston that creates the geometrical dependence of

the distance between the pistons in the pressure field function. Because each piston is

a source with a definite position, each integral will yield a different result and this

enables  us  to  quantify  the  effect  of  the  distribution  of  the  HQ waveguides  in  the

cylindrical waveguide. In the first glance, this model does not present a dependence on

the  length  of  the  HQ  waveguides;  however,  the  velocity  of  the  piston  and  its

frequency, two variables in our piston model, possibly have a mathematical relation

with the length of the HQ waveguide.
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5 Conclusion

In this work, we presented the problem of sound noise generated at the inlet of the

turbofan engine. In order to understand better the mechanisms of sound generation, the

turbofan and its parts were introduced, followed by technologies currently utilised in

order  to  reduce  sound  pollution  generation,  such  as  lobular  mixers  and  chevron

nozzles.  We also  emphasised  liner  technology  and  distinguished  the  absorber  and

resonant types of sound absorbers.

Then  the  Herschel-Quincke  technique  was  introduced,  and  we  drew  a  timeline

showing the advancements in its study along the centuries. The experimental study of

Burdisso and Smith [13] showing the potential of the Herschel-Quincke waveguides in

reducing noise from the turbofan inlet  was presented in fine detail,  as well  as the

results obtained.

Afterwards, a theoretical study of the turbofan engine was carried based on the theory

of  waveguides.  Firstly,  as  a  source  of  inspiration,  the  theory  of  electromagnetic

waveguides was derived and its properties and the mathematics involving them was

investigated.  The most  remarkable  points  in  that  study were  the concept  of  cutoff

frequency and the mathematical technique of separation of variables to solve  partial

differential equations.

Finally the turbofan engine was modelled as a cylindrical waveguide. Because of the

airflow, a velocity term had to be added to the acoustic equations for the pressure field.

Starting  from  Navier-Stokes  equations,  we  derived  the  acoustic  equation  for  the

pressure field in moving media with the use of theory of tensors and vector calculus.

After this study, we were finally able to find the differential equation for the pressure

field.  It  was solved in a similar way as in the electromagnetic case,  but this time,

because  the  waveguide  was  cylindrical,  we  also  had to  solve  Bessel’s  differential

equation. In order to do so, the concept of Bessel functions had to be introduced, and

enabled us to understand the mathematical meaning of the eigenvalues for the wave

number.  We  then  were  able  to  present  a  final  expression  for  the  pressure  field

encompassing all kinds of sound-generating processes, by being a complete Bessel-

Fourier series.
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At  last  we  attempted  to  understand  theoretically  in  what  ways  Herschel-Quincke

waveguides can have a noise attenuating effect on a turbofan. For this we had to model

those waveguides as finite piston sound sources, and we presented, based on the work

of different authors, several models for the sound field this piston would generate.

Because the introduction of the piston source would create a inhomogeneity in the

differential equation for the pressure field, we had to introduce the concept of Green’s

functions. Armed with this important technique for solving inhomogeneous differential

equations, we were able to demonstrate how the point sound source would be able to

trap  certain  pressure  modes  at  the  waveguide,  thus  being  able  to  reduce  noise

propagation.

This work is far from being complete, and as future improvements, one could better

develop the Green’s functions for sound propagation in this waveguide, present the

piston sources in the general coordinates of the system and even carry out calculations

to make a theoretical prediction of noise reduction in decibels. Later, a computational

numerical  simulation  could  be  performed  in  order  to  compare  the  theory  with

experiments.  There are  some aspects  of  the  eigenfunctions  and their  orthogonality

which were not completed explored in this work and one would be welcome to further

advance on the subject.
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6 Appendices

Appendix I: MATLAB/Octave code of the Bessel functions plot

I

 1 x = 0:0.1:10;
 2 J = zeros(3,101);
 3 
 4 for i = 0:2
 5     J(i+1,:) = besselj(i,x);
 6 end
 7  
 8 plot(x,J)
 9 grid on
10 legend('J_0','J_1','J_2','Location','Best')
11 title('Bessel Functions of the First Kind for $m \in [0,     
   2]$','interpreter','latex')
12 xlabel('x','interpreter','latex')
13 ylabel('$J_m(x)$','interpreter','latex')
14 
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