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RESUMO

CONSONNI, J. L. F. Reguladores Quadraticos e Odometria Visual para Controle de
Veiculos Auténomos. 2024. Monografia (Trabalho de Concluséao de Curso) — Escola de
Engenharia de Sao Carlos, Universidade de Sao Paulo, Sao Carlos, 2024.

O avango no campo de veiculos autbnomos leva a um cenario de possivel diminuicao
em acidentes automobilisticos e expansao das aplicacdes para diversas areas, como na
agricultura. Entretanto, sua seguranca ainda é questionada devido a alguns acidentes
causados por esses veiculos. Diante disso, com o objetivo de tornar o trafego desse tipo
de veiculo mais seguro, neste projeto foi proposto o desenvolvimento de um controlador,
utilizando o regulador linear quadratico e sua versao robusta. Visando a utilizacdo de apenas
um tipo de sensor no veiculo, a estimacao de estados foi feita por meio de técnicas de
odometria visual e utilizacao de marcadores fiduciais, especificamente, marcadores ArUco.
A aplicagao proposta foi a operacéo de transbordo em uma plantacao de cana-de-agucar, na
qual um caminhao deve seguir lateralmente a colheitadeira. Os testes foram realizados em
simulacées, no software Carla, e em laboratério, utilizando dois robés que representam a
colheitadeira e 0 caminhao. Os resultados obtidos ndo atingiram erro de regime nulo devido
a erros associados a detec¢cao do marcador ArUco e estimacgéo de estados. Concluiu-se
que os controladores desenvolvidos funcionam, de forma geral, e foram avaliadas solugdes
para os problemas que limitaram seu desempenho e eficacia.

Palavras Chaves: Veiculos Autonomos, Reguladores Lineares Quadraticos, Controle
Robusto, Odometria Visual, Marcadores Fiduciais, Operacao de Transbordo.






ABSTRACT

CONSONNI, J. L. F. Quadratic Regulators and Visual Odometry for Autonomous Vehi-
cles Control. 2024. Monografia (Trabalho de Conclusao de Curso) — Escola de Engenharia
de Sao Carlos, Universidade de Sao Paulo, Sdo Carlos, 2024.

Advances in the field of autonomous vehicles are leading to a scenario of a possible reduction
in car accidents and the expansion of applications to various areas, such as agriculture.
However, their safety is still questioned due to some accidents caused by these vehicles.
Aiming to make this type of vehicle’s traffic safer, this project proposes the development of
a controller using the quadratic linear regulator and its robust version. In order to use only
one type of sensor in the vehicle, state estimation was carried out using visual odometry
techniques and fiducial markers, specifically ArUco markers. The proposed application was a
transshipment operation in a sugarcane plantation, in which a truck must follow the harvester
laterally. The tests were carried out in simulations, in the software Carla, and in the laboratory,
using two robots representing the harvester and the truck. The results obtained did not reach
a null steady-state error due to errors associated with ArUco marker detection and state
estimation. It was concluded that the controllers developed work, in general, and solutions
were evaluated for the problems that limited their performance and effectiveness.

Keywords: Autonomous Vehicles. Quadratic Linear Regulators. Robust Control. Visual
Odometry. Fiducial Markers. Transshipment Operation.
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1 INTRODUGCAO

O Brasil tem 0 agroneg6cio como um grande impulsionador da economia. Em 2023, o
Produto Interno Bruto (PIB) do agronegécio representou cerca de 24% do PIB do pais[].
Segundo as proje¢des da OECD (Organisation for Economic Co-operation Development) e
da FAO (Food and Agriculture Organization), cerca de 87% do crescimento da producao
agricola mundial sera consequéncia do aumento de produtividade (OECD and Food and
Agriculture Organization of the United Nations|, |2021). Nesse contexto, o desenvolvimento
de pesquisas com enfoque na automagéao do setor agricola é fundamental, principalmente
em um pais no qual a atividade contribui de forma significativa na economia.

Visando aumentar produtividade, reduzir custos e melhorar a seguranca, os veiculos
autbnomos surgem como uma extensao natural da automag¢do no campo. A evolugao
histérica das pesquisas sobre 0 assunto é mostrada por Rondelli, Franceschetti e Mengoli
(2022). E possivel perceber que os veiculos sdo equipados com sensores, de modo a
poderem navegar pelo terreno, e que possuem muitas aplicagoes, desde a coleta de frutas
até pulverizacao de plantagdes e rogada do campo.

Diante desse cenario de constante evolugado na agricultura, uma possibilidade de imple-
mentagao de veiculos autbnomos € em planta¢des de cana-de-agucar. Belardo, Cassia e
Silval (2015) apresentam o processo de corte, transbordo e transporte da cana, avaliando
aspectos econdmicos.

O ponto de fundamental interesse nesse trabalho de conclusao de curso é a operacao
de transbordo, na qual a colheitadeira e o0 caminh&o de transbordo devem se locomover
paralelos, a uma distancia estabelecida, de modo que a operacédo ocorra com sucesso.
Nessa operacéo, enquanto a colheitadeira realiza o corte da cana-de-agucar, ela despeja
o que foi colhido no caminhdo que anda lateralmente a ela. Desse modo, um caminh&o
autébnomo que fosse capaz de realizar essa tarefa traria beneficios de seguranca e reducao
de custos para o agricultor. Um exemplo dessa aplicacao foi realizada pela Scania, como
mostra a Figura([i]

Para o controle do veiculo, optou-se pela aplicacao de reguladores lineares quadraticos.
Comparou-se o regulador nominal e o regulador robusto, que modela as incertezas do
sistema. Com isso, busca-se reduzir as incertezas associadas a estimacao de estados
provenientes de interferéncias do ambiente, visando um melhor desempenho e maior
robustez.

A estimacgéao de estados é feita por meio de odometria visual, que € uma técnica robusta
utilizada para o conhecimento da posicao do veiculo ao longo do tempo. Ela permite que
um veiculo se localize de forma robusta utilizando apenas uma sequéncia de imagens
capturadas por uma camera fixada no proprio veiculo (AQEL et al., [2016).

' |https://www.cepea.esalqg.usp.br/br/pib-do-agronegocio-brasileiro.aspx


https://www.cepea.esalq.usp.br/br/pib-do-agronegocio-brasileiro.aspx
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Figura 1 — Caminhao autbnomo Scania em plantagdo de cana-de-agucar

Fonte: (AUTOINDUSTRIA, 2022).

Desse modo, como objetivo geral do trabalho, tem-se o desenvolvimento de solugdes
para plantagbes de cana-de-agucar, especificamente, na operacao de transbordo.

Como objetivos especificos, tem-se o desenvolvimento de algoritmos de controle do
veiculo autbnomo utilizando reguladores lineares quadraticos e odometria visual para
estimagao de estados, mais especificamente, um controle servo-visual baseado em posicao.

Este TCC esta dividido em Revisao Bibliografica, Metodologia, Resultados e Conclusao.
Para a obtengao de resultados foi utilizado o simulador Carla (DOSOVITSKIY et al., 2017)
e testes no LASI (Laboratério de Sistemas Inteligentes) utilizando um par de robbs que
simulam a colheitadeira e o caminh3o.
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2 REVISAO TEORICA

2.1 Reguladores lineares quadraticos

Para realizar o controle do veiculo, utilizou-se o Regulador Linear Quadratico (LQR) e o
Regulador Linear Quadratico Robusto (RLQR), cujas formulagdes sdo apresentadas abaixo.

2.1.1 Regulador Linear Quadratico
Considere o modelo em espacgo de estados do seguinte sistema linear discreto variante
no tempo

Tpt1 = Iy + Grug, (2.1)

para k = 0,...,N, no qual z;, € R" é o vetor de estado, u;, € R™ é o vetor de entradas,
. e R™" e (G, € R™™ sao matrizes conhecidas e x, é o vetor de estado inicial.
Seja U o conjunto das possiveis entradas do sistema. O objetivo do regulador é encontrar

a sequéncia de entradas U* = {u,...,uy} € U que minimize a fungdo de custo
N-1
J(z,u) = xNPyry + Z(w%@kxk + uj Ryuy,), (2.2)

0
na qual Py, @), € R"*" sdo matrizes semidefinidas positivas simétricas, R, € R™*" é uma
matriz definida positiva simétrica, e N é chamado de horizonte de tempo.
Problema: Dado um estado inicial xo € R"”, determinar a sequéncia 6tima de con-
trole U* = {uf, ..., uy} e a sequéncia de estados {z}, ..., 2%} correspondente, que seja
solucao do problema de otimizacao

i 2.3
min J(z, u) (2.3)
sujeito a rpy 1 = Frag + Gruyg. (2.4)

Por meio do método de programagao dinamica (DREYFUS, 2002), obtem-se a solugéo
do problema. Defina as matrizes Ky, L; e P por

Ky = —(Ry, + G{ Piy1G) ' G P F, (2.5)
Ly = Fy — G(Ri + Gf PoaGr) 'GY Piyi P, (2.6)
Py = FL[Pos1 — Pop1Gi(Ry + GE Poi Gy) 7 GE P | By, + Qi (2.7)

A solucéo € dada por
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ZL’Z_H = LkZL’k. (29)

O Algoritmo 1] mostra o célculo dos estados e entradas 6timas.

Algoritmo 1 Controlador LQR
Inicializacao de parametros: Inicializar N, xq e Py = 0.

Calcularparak =N —1,...,0:

K, = —(Rk + Ggpk+1Gk)_1G£Pk+1Fk,
L,=F, — Gk(Rk + Gzpk_;_le)_ngP]H_le,
P, = Fl'[Pyy1 — Pep1Gr(Ry + GE Poy1Gp) 7 G Pyt | Fr + Q.

Obterparak =0,...,N — 1:

* j—
$k+1 = kak

2.1.2 Regulador Linear Quadratico Robusto

O Regulador Linear Quadratico Robusto é similar ao Regulador Linar Quadratico, mas
apresenta a modelagem de incertezas do sistema em sua formulagéo.
Considere o modelo de espacgo de estados variante no tempo

Tpp1 = (Fi + 0Fg)x, + (Gi + Gy )uy, (2.10)

no qual k, zy, Fy, Gy, € u sdo definidos da mesma forma que na Subsecao2.1.1, e 6 F}, e
0G|, s@o incertezas no sistema, que sdo incorporadas nas matrizes Fj e Gy.
Considere o problema de minimos quadrados regularizados para o sistema

onde a matriz A e o vetor b estdo sujeitas a incertezas limitadas em norma 6.A e b,

respectivamente. Assim, o problema de otimizagao é definido da seguinte forma

min max J(x) (2.12)

com a fungéo de custo J(z) dada por
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J(x) = ||z]|% + ||(A+ 6 A)z — (b+ 0b)| |3 =
=270x + [(A+ 6A)z — (b + 6b)"W[(A+ SA)x — (b+ 6b)], (2.13)

sendo x € R" o vetor desconhecido, @ € R™"™ e W € R™ ™ matrizes de ponderagao
simétricas conhecidas, A e b conhecidos e sujeitos a incertezas paramétricas 6 A € R™*" e
0b € R™ modeladas por

[M 5@} — HA [EA Eb], (2.14)

onde H € uma matriz ndo-nula, F 4 e Ej, sdo matrizes conhecidas de dimensdes apropriadas,
A é uma matriz de contragéo arbitraria com ||A||> < 1. A solugéo étima do problema
€ mostrada em Sayed e Nascimento| (1999).

Conforme apresentado por [Terra, Cerri e Ishihara (2014), fazendo

P, 0 0
T — s , Q) — FH W — @ ,
Up, 0 Ry 0 ul,
0 0 0 0 —1I,
A+— JOA — b +— Ty, 0b — T,
I, -Gy 0 —0Gy k 0Fy
0
H+— [ ,A(—Ak,EA(— |:O —Egk} 7Eb<_EFk,
k
€ obtida a solugéo para o sistema (2.10).
As matrizes K., L, e P, sao calculadas:
- - T — 1 - _1 - -
0 0 P, 0 0 0 I, O
. 0 0 0 R 0 0 In
k
0 0 -1, 0 0 0 0 0 —1,
Ki| = X L . R L, (2.15)
0 0 Fy 0 0 0 2. I, —Gyg Fy
P, !
I, 0 0 I, 0 0 I 0 0 0
0 I, 0 0 I, 0 =G 0 0 | 0|

~

onde I, e I,,, sdo matrizes identidade de dimensdes n e m, respectivamente, e
G

. I O, \) 0
g S (1, A) 7
Eg, 0

0 A
O(p, A = p T — NHGHT e
A\ = (14 a)||pHF Hy|, para algum a > 0.

y Tk —

Assim,
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T = Liwy (2.17)
O Algoritmo[2l mostra o célculo dos estados e entradas étimas.
Algoritmo 2 Controlador RLQR
Inicializacao de parametros: Inicializar N, xq e Py > 0.
Calcularparak =N —1,...,0:
0 00 01°[P2, 0 0 0 L, 071'T0]
I 0 0 0 0 R 0 0 0 I, 0
k —1
0 0 —I, 0 0 0 0 0 -1,
K| = A @ - R ", (2.18)
g I, 0 0 I, 0 0 T 0 0 0
o, o] o I, 0 -GF o o] [0
Obterpara k=0,...,N — 1:
U = Kkl‘k
Ty = Liwy
Fazendo y — oo, tem-se A, — co = ;\;1 — 0e ®(u,\,) — 0. Desse modo, ¥, se

torna uma matriz nula quando p — oo.

2.1.3 Estabilidade

Sera mostrada a estabilidade do RLQR, visto que a estabilidade do LQR segue procedi-
mento similar. As expressdes para o calculo das matrizes sdo obtidas por meio da equacao
2.15, A prova é baseada na dissertacao de Cerri (2009), onde utiliza-se 1 — in fty. Além

disso, assuma que o par de matrizes F}, e (G, € controlavel para todo k.
De acordo com a Secéao 6.3 (CERRI, 2009), tem-se as seguintes relagdes:

Py = FL(P, — P.Gu(I + GTP.G,)\GT P E, + Q,

sendo

F, = F, — GR'EL(EGREL) 'Ep,
R:= R+ R'EL(EcREL)"'EcR™,
ék = ka%%,

Q:=Q+ EL(EGR'EL) ' Ep,

(2.19)
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e assume que a condic¢ao inicial P, satisfaz 0 < Fy < Q.
De acordo com o Lema 6.2.3 (CERRI, 2009), tem-se as seguintes relagdes:

[A(k =—(I+ @ZPk@k)*lékaﬁk, (2.24)
L, = F, + G, K. (2.25)

A demonstragdo da estabilidade é uma adaptagdo do Lema 6.3.5 (CERRI, 2009),
considerando a variagdo temporal de F' e G.

Lema 2.1.1 Se P, = 0, entdo todos os autovalores da matriz

Ly, = (Fy + GuKy) = F, — Gi(I + GL P.Gy,) ' GL B F, (2.26)
pertencem ao circulo unitario aberto, ou seja, L, é estavel.
Demonstragdo: A demonstracao é feita por reducédo ao absurdo. Assuma que Lj, ndo é

estavel. Desse modo, existe algum autovalor A, tal que |\| > 1, com Lyz = Az para = # 0.
Sabe-se que

Py = F,?(Pk — Pkék(f + @ka@k)’léka)Fk + Q (2.27)

que pode ser escrita como

Pevy = Li Pl + KL TK + Q. (2.28)

sendo

ﬁk = (Fk + Gkkk) = Fk - ék(l + Gzpkék)égpkﬁk- (2.29)

Pré-multiplicando e pés-multiplicando a Equacao por 2T e z, respectivamente,
tem-se:

2T Pox = a:TI:ZPk[:k:B + fo(,?[f(kx + a:TQ:IJ =
TPy = |MN*2" P + 2" KU TK e + 27 Qx =

(1 — N?)aT Pox = T (KTTK, + Q).

Como P, = 0 e x # 0, tem-se 2" Pz > 0. Além disso, |\| > 1 = |A|*> > 1. Logo,
(1 — [N?)z” Puz < 0. Entretanto, como K7 TK; +Q = 0 e x # 0, 27 (K[ TK, + Q)x > 0,
chegando em um absurdo.

Portanto, L n&o possui autovalores de médulo maior ou igual a 1, ou seja, € estavel.

Para um desenvolvimento similar do Corolario 6.3.1 (CERRI, 2009), conclui-se que o
regulador é estavel.
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2.2 Modelagem do veiculo

Para simplificar a modelagem e testes, o veiculo foi modelado utilizando o modelo
de bicicleta, que é uma simplificacdo do modelo Ackermann (ZHAO et al., |2013), que
une as rodas pertencentes ao mesmo eixo em uma unica roda, no centro do eixo. Essa

simplificacéo pode ser vista na Figura[2]

Figura 2 — Modelo de bicicleta dos veiculos

i i Ofr

Fonte:|Lu et al.[|(2022).

Além disso, pode-se utilizar dois tipos de modelagem: cinematica ou dinamica. A mode-
lagem cinematica considera apenas grandezas como posi¢ao, orientagdo e velocidade. Ja
a modelagem dinadmica considera a massa do veiculo e as forgas atreladas a ele, como a
forca de atrito. A modelagem adotada foi a cinematica, cujo diagrama é mostrado na Figura

8l
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Figura 3 — Modelo cinematico

Velocidade tangente
a trajetoria

\

>

X

Fonte: Adaptado de |Ding (2021).

Pela geometria do problema, considerando o modelo de bicicleta e a modelagem cine-
matica, tem-se

T = wvcos(0),

y = vsin(0),
_ vtan(0) - (2.30)
==

v=a

Define-se o vetor de estados com a posicao em x, posicdo em y, orientagdo 6 e
velocidade v. Além disso, define-se o vetor de entradas com o angulo de estergamento ¢ e
a aceleracao a. De forma concisa,

xXr

=Y eu:H, (2.31)
0
v

onde z é o vetor de estados e u é o vetor de entradas.
Desse modo, linearizando o sistema (2.30) e utilizando as definicbes em (2.31)), tem-se
o sistema linear
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@ 0 0 —vpepsin(Brer) cos(bres) | [4 0 0
. J 0 0 wpeeos(bres)  sin(Ores) | |y 0 0 a
z=Az+Bu= |"| = tan(Oyer) 0 + 0 Uref 5
0 00 0 I Lcos®(6rey)
v 00 0 0 ] v 1 0

" (2.32)
Seja At o passo de discretizagdo do sistema continuo no tempo (2.32). Desse modo, as
matrizes do sistema discreto sao

1 0 —vpersin(brer) At cos(0,cr) At
0 1 vepcos(Oref) At sin(brep) At
F=AAt+1 = , 2.33
0 0 1 MAt (2.33)
L
_O 0 0 1 |
_ . . -
0 0
G = BAt = Uref At (234)
Lcos?(0yey)
_At 0 |
e o sistema discreto é

Sejam z,.; e u,.; 0 vetor de estado de referéncia e o vetor de entradas de referéncia,
respectivamente. Além disso, defina z = 2 — 2.y € U = U — Uycy.
Defina o sistema em espaco de estados conforme (2.36).

Ze1 = F2 + Giig. (2.36)

Esse sistema tem como variaveis de estado os erros das variaveis cinematicas. Desse
modo, o ponto de operacao desejado é a origem.

Por meio do Algoritmo[f] obtém-se a matriz de ganho K e, consequentemente, as saidas
de controle para o veiculo:

U=KZzZ=K(2— 2f) (2.37)
U =T+ Uper = K(2 — Zrep) + Upes. (2.38)
Para a aplicacao do controlador, € necessario determinar as variaveis de estado do

veiculo a ser seguido. Essas variaveis podem ser estimadas com o uso de uma camera, por
meio de odometria visual.
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2.3 Odometria visual

Veiculos e robds terrestres dependendem da odometria para estimar a trajetéria percor-
rida enquanto se locomovem, a qual € uma parte fundamental para navegagao autbnoma.
Odometria visual € uma odometria feita por meio da andlise de dados visuais, como imagens
de cameras. A odometria convencional estima a posicao de um rob6 por meio da medigao
da rotacao das rodas, utilizando sensores. Um dos problemas decorrentes disso € causado
pelo escorregamento da roda, que torna as estimativas cada vez mais imprecisas pela
perda de tracdo das rodas. A vantagem do método de odometria visual é que esse problema
é evitado (LIM; BRAUNL, 2020).

2.3.1 Calibracao da camera

O primeiro passo para aplicagdes de odometria visual é a calibracao da camera, que é
dividida em duas fases.

Primeiramente, a modelagem da camera lida com a aproximagao matema-
tica do comportamento fisico e 6tico do sensor utilizando um conjunto de
parametros. A segunda fase consiste com o uso de métodos diretos ou
iterativos para estimar os valores desses parametros (SALVI; ARMANGUE;
BATLLE, [2002).

Existem dois tipos de parametros a serem considerados no modelo. Um desses tipos é
o0 conjunto de parametros intrinsecos, que modelam a geometria interna e as caracteristicas
oticas da camera. Em linhas gerais, os parametros intrinsecos modelam o modo que a luz é
projetada através da lente no plano da imagem do sensor. Ja o outro tipo é o conjunto de
parametros extrinsecos, que indicam a posi¢ao e a orientagdo da cadmera em relacdo a um
sistema de coordenadas do mundo, que fornece informagdes em relagdo a um sistema de
coordenadas fixo, em oposicao ao sistema de coordenadas da camera (SALVI; ARMANGUE;
BATLLE/, [2002).

Os parametros (f;, fy, ¢z, ¢,) modelam a matriz da cadmera C. Os parametros (ki, k2,
ks, p1, p2) modelam as distor¢des radial e tangencial causadas pela lente (HIERONYMUS,
2012).

» Distorgao radial:
Ldistorcido = 23(1 + ]{317“2 + k2T4 + kBTG)
Ydistorcido = y(l + klr2 + k2T4 + kSTG)-

+ Distorgao tangencial:
Ldistorcido — L + [2p1$?/ + D2 (T2 + 21’2)}
Ydistorcido — Y + [pl (TQ + 2y2) + 2p21’y]
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» Coeficientes da matriz da camera:
Je 0 ¢y
C=10 fy¢
001

f= e f,: Distancias focaisem z e y

c; € ¢,: Coordenadas x e y do centro optico.

Para a calibracao, € utilizado uma imagem quadriculada, alternando cores pretas e
brancas, como visto na Figura[4} O algoritmo encontra os cantos correspondentes e calcula
todos os parametros necessarios ']

Fonte: Adaptado do tutorial do OpenCVA.

2.3.2 Estimacgao da Pose

A estimacéao da pose consiste em determinar a posi¢ao e orientacdo de determinado
objeto, ou seja, sua configuracao espacial El.Uma das representacbes para a pose é um
vetor de translacao ¢ e uma matriz de rotagdo R, dados por

T T2 T13 2
R = T91 T922 793 et = ty y
r31 T32 733 t.

que levam pontos das coordenadas globais para as coordenadas da camera (u, v), conforme
a Figura5l

1
2

https://docs.opencv.org/4.x/dc/dbb/tutorial_py_calibration.html
https://docs.opencv.org/3.4/d7/d53/tutorial_py_pose.html


https://docs.opencv.org/4.x/dc/dbb/tutorial_py_calibration.html
https://docs.opencv.org/3.4/d7/d53/tutorial_py_pose.html

Figura 5 — Mudanca de coordenadas
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Fonte: Adaptado do tutorial do OpenCVE.
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Seja C' a matriz da camera, I1 a matriz de projecao dos pontos em trés dimensdes para
o plano éptico da camera e T, a matriz de transformacéo de coordenadas globais para as

da camera. Desse modo, tem-se:

o T
u
Yuw
v | = CIT, =
Zw
1
o 1
Zc
Yo
=T,
Zc
1

0 fy ¢y

0

T

Yuw

Rw

1

0

fz 0 ¢,

1

R

01

1000
0100

0010

Ly

Yuw

w

1

R

01

Yuw

Rw

(2.39)

(2.40)

Para obter essa representacao, é utilizado o algoritmo PnP (Perspective-n-Point) (LI; XU;
XIE, 2012), que encontra as matrizes R e t por meio da correspondéncia entre os pontos
do sistema de coordenadas 3D do mundo com os pontos do sistema de coordenadas 2D
da imagem. Para uma solug¢ao unica, é necessario informar pelo menos 4 pontos para o

algoritmo. [f

3 https://docs.opencv.org/3.4/d5/d1f/calib3d_solvePnP.html


https://docs.opencv.org/3.4/d5/d1f/calib3d_solvePnP.html
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De modo a obter 4 pontos que possam ser utilizados no algoritmo, pode-se utilizar algum
tipo de marcador, que ofereca uma referéncia ou medida na imagem.

2.3.3 Marcadores ArUco

Marcadores ArUco s&o um tipo de marcador fiducial. Marcadores fiduciais, em sua
forma geral, sdo objetos utilizados para fornecer um ponto de referéncia ou medida em uma
imagem (KALAITZAKIS et al.,2021). Existem inimeros tipos de marcadores fiduciais, cada
qual com a sua especificidade.

Uma das aplicagdes primarias de marcadores fiduciais na robética é lo-
calizagdo e mapeamento. Mesmo que outros métodos como VIO e SLAM
possam fornecer dados precisos, eles requerem condigdes ideais de lumino-
sidade e caracteristicas visuais distintas. Marcadores fiduciais sao utilizados
para aprimorar a qualidade da estimagdo de posigao em ambientes nos

quais essas condigdes ndo sio atendidas (KALAITZAKIS et al.|[2021).

De acordo com os resultados de Kalaitzakis et al.| (2021), pode-se perceber que o
custo computacional dos marcadores ArUco e ARTag s&o 0os menores entre os marcadores

analisados. Desse modo, essa € uma das motivacdes para a escolha deste marcador em
especifico.

Por meio da detec¢éo dos 4 cantos do marcador ArUco e seu tamanho, é possivel
aplicar o algoritmo PnP (Subsecgéo[2.3.2) e determinar a orientagéo, posicdo e profundidade
(distéancia até a camera) do marcadorEI, como exemplificado na Figura@

Figura 6 — Estimativa da pose de ArUcos

Fonte: Tutorial do OpenCV&,

4 https://docs.opencv.org/4.x/d5/dae/tutorial_aruco_detection.html


https://docs.opencv.org/4.x/d5/dae/tutorial_aruco_detection.html

31

Portanto, unindo os conceitos dos reguladores e alimentando-os com os estados estima-
dos por meio da odometria visual, com o auxilio do marcador ArUco, é possivel realizar o
controle do veiculo.
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3 METODOLOGIA

A metodologia consiste na analise de cenarios de simulagéo e laboratério. Em ambos
0s casos sao utilizados o LQR e RLQR para comparagao. Na simulacéo, os estados séao
obtidos do simulador. Ja nos testes em laboratério, os estados sao estimados por odometria
visual, utilizando o marcador ArUco como referéncia.

3.1 Simulacao do cenario proposto

3.1.1  Ambiente de simulacao

Para simular o cenario da operagéo de transbordo em plantagdes de cana-de-agucar, foi
utilizado o software Carla (DOSOVITSKIY et al., [2017). Para a simulagao, foram utilizados
dois veiculos Tesla Model SE], onde um deles ja tem um caminho pré-definido (chamado
de colheitadeira), e o outro tem os dados de posigao, velocidade, orientacdo e angulo
de estercamento de ambos os veiculos, que serdo usados para o controle deste veiculo
(chamado de caminho).

Para o desenvolvimento e avaliacdo do controlador foram utilizados 4 cenarios com
diferentes trajetérias: uma estrada em linha reta, uma rotatéria, e duas pistas com partes
retas e curvas, uma menor e outra maior. A Figura[7|mostra as trajetérias de cada cenério.

3.1.2 Desenvolvimento do algoritmo

Para o controlador, foram utilizados o LQR e o RLQR, com as matrizes do sistema
variantes no tempo, visto que a cada iteracdo do controle o alvo muda de posicéo e,
com isso, deve-se alterar as matrizes F' e G. Desse modo, baseado na posigcao atual da
colheitadeira, o algoritmo calcula a nova posigao alvo, que é passada para o controlador
LQR ou RLQR.

Baseado no modelo apresentado na Secdo[2.2] os dados necessarios para a atualizagédo
das matrizes F' e G séo:

* 0, Orientagdo de referéncia.
* v.f: Velocidade de referéncia.

* Oref: Angulo de estercamento de referéncia.

Seja £ como uma grandeza genérica, como orientagao ou velocidade. Defina &..,, € ol
como a grandeza £ do caminh&o e da colheitadeira, respectivamente.

Pela geometria do problema, as grandezas de referéncia podem ser calculadas. As
orientacdes e os angulos de estercamento de ambos os veiculos devem ser os mesmos.

' https://www.tesla.com/model3


https://www.tesla.com/model3
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Figura 7 — Percursos de simulacao

(b) Trajetéria - Segundo cenario

(c) Trajetdria - Terceiro cenario (d) Trajetéria - Quarto cenario

Elaborado pelo autor.
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Nesse caso, 0,.r = 0., € 0,cf = 0.01- Para a velocidade, tem-se a seguinte andlise, baseada
na Figura[8} na qual w é a velocidade angular, v é a velocidade linear, R é o raio da curva,
O é o centro da trajetoria, e D,,; € a distancia lateral.

 Linha reta: A velocidade do caminhao deve ser igual a da colheitadeira. Nesse caso,
Uref = Vcol-
* Curva:

Figura 8 — Cenario de movimento circular

f\y

v

Fonte: Elaborado pelo autor

Para o desenvolvimento algébrico, adotou-se um angulo de estercamento positivo
qguando os veiculos estdo se movendo no sentido horario. Para consisténcia das
equagobes, um raio de trajetéria negativo indica uma trajetdria curva com raio de valor
absoluto igual ao valor apresentado e sentido anti-horario.

Como o é movimento curvilineo, tem-se weqm = Weor:

Veol Veam Rcam
Weol = Weam = = = Veam = UcolR—- (31)
col

Rcol Rcam
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Desse modo,

Rcam
Uref = 'UCOZR—Z. (32)

Para calcular R..,, € R.., utiliza-se o angulo de estercamento d..,;:

Lcol Lcol
Rco:— Rcam:Rco_Da :>Rcam:—_Da- 3.3
: tan(deor) © : fat tan(Seor) fat (3:3)
Portanto, a velocidade de referéncia € dada por
Rcam Rcol - D lat tan((;col)
ref — Uco = Uco = Uco 1-D a . 3.4
! / Vel Rcol Vel Rcol Vel fat Lcol ( )

3.2 Validacao do codigo em laboratoério

3.2.1 Ambiente de testes

Para os testes em laboratério, foram utilizados dois robds LIMO P| da AgileX [f]idénticos,
de modo a imitar o cenério simulado no software Carla, decrito na Secéo[3.1] A Figura[9]
mostra uma foto dos robds no laboratoério.

Figura 9 — Robds utilizados em laboratorio

Fonte: Elaborado pelo autor.

O robd conta com varios sensores, mas o0 Unico sensor utilizado para os testes € uma
camera, instalada na lateral do robd que fara o papel do caminhao.

2 |nttps://global.agilex.ai/solutions/4

3 https://global.agilex.ai/


https://global.agilex.ai/solutions/4
https://global.agilex.ai/
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A camera utilizada é OAK-D S2. [
O robd que representa a colheitadeira teve um marcador ArUco colocado na sua lateral,
de modo que a camera do outro robd pudesse localiza-lo.

3.2.2 Dados para o controle

Considere a mesma nomenclatura de caminhao e colheitadeira da Subsegédo [3.1.1]

Os dados imediatamente disponiveis sdo os dados de velocidade e angulo de ester-
¢amento do caminhao, obtidos por meio dos sensores. Para o funcionamento correto do
controle, € necessario obter as medidas das variaveis contidas no sistema linearizado. Es-
ses dados séo velocidade de referéncia, orientacdo de referéncia, angulo de estergamento
de referéncia, tamanho do veiculo e tempo de discretizacdo, que compdem as matrizes F e
G, da Equagao (2.35).

O tempo de discretizacao e o tamanho do veiculo sao fixos e conhecidos. As outras
grandezas de referéncia mudam a cada instante e devem ser determinadas.

Os dados obtidos por meio da pose sao a orientagdo e a posicao relativas a camera.
Assim, os dados utilizados para o controle consideram o centro da cdmera como origem do
sistema. A Figura[10]mostra a referéncia dos eixos para o sistema de coordenadas utilizado.
Bl

Perceba que o eixo z representa a profundidade e o eixo z representa a diregdo do
movimento do veiculo, ja que no experimento a camera encontra-se com 0 eixo 6ptico
parelelo ao solo.

Como as medidas sé&o relativas a camera, tem-se 0,.; = 0,.;.

Utilizando duas medidas consecutivas de posicao relativa (vetor t obtido do algoritmo
PnP), é possivel obter a velocidade relativa fazendo

ty — tp 1
Viyel, = ——————. 3.5
rely At ( )
Desse modo, é possivel determinar a velocidade da colheitadeira:
Veamy, = [Ucamka 07 0] = Veol, = Veamy, + Vel = Veoly, = Sign(vfolk>HVCOlk H7 (36)

onde vy, € a componente x do vetor. O sinal dessa componente indica a diregéo do
movimento.
Além disso, é possivel determinar o angulo de estercamento por meio de duas estimati-

vas consecutivas. Discretizando a terceira equagdo do sistema (2.30):

Gk — ek,1 . vktan(ék)

T, L
https://shop.luxonis.com/products/oak-d-s2
5 'https://docs.opencv.org/4.x/d9/d0c/group__calib3d.html

= §, = tan”"
g (UkTs

(61 — ek_o) . (3.7)



https://shop.luxonis.com/products/oak-d-s2
https://docs.opencv.org/4.x/d9/d0c/group__calib3d.html
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Figura 10 — Eixos do sistema de coordenadas utilizado

P = (X'w ¥ Y‘wr Z'.:I:J

Fonte: Adaptado do tutorial do OpenCV E.

Por fim, por meio da velocidade do caminh&o e a velocidade da colheitadeira calculada,
é possivel calcular a velocidade de referéncia do mesmo modo que na Segéo [3.1]

E importante destacar que a Equacéo poderia ser ruidosa devido ao calculo
envolver muitas variaveis que também séo estimativas. Entretanto, ao comparar o valor
calculado com valores obtidos direto do simulador, percebeu-se apenas em alguns instantes
a presenca de ruido relevante no valor calculado, que ndo afetou o controle devido a sua
rara ocorréncia. Em laboratério néo foi feita essa avaliagao.

3.2.3 Algoritmo de controle

De posse de todos os valores citados na Sec¢éo [3.2.2, é possivel calcular as matrizes
F} e G. A matriz de ganho K € obtida do LQR ou RLQR e, consequentemente, o sinal de
controle é determinado.

Z = Zref — [_tha Dlat - tkza _erefa Veam — U'ref] = U= K(Z - Zref) + Uref, (38)

onde D,,; € a distancia lateral entre o caminhdo e a colheitadeira, que foi pré-estabelecida.

Por fim, do mesmo modo que na simulagao, os sinais de controle sdo colocados em
um intervalo de -1 a 1, representando a porcentagem de aceleragcao e de estercamento.
Matematicamente:
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throttle = max(—1, min(1,a)); (3.9)
steering = max(—1, min(1,9)). (8.10)

Para o envio de comandos ao rob0d, é necessario fornecer diretamente o valor de
velocidade e angulo de estercamento. Este ultimo é obtido da saida de controle, fazendo:

Oema = Steering - dmaz, (3.11)

onde J.,q € 0 comando de angulo de estercamento € 9,,,. € 0 angulo de estercamento
maximo.
Ja a velocidade € obtida por meio de uma lei cinematica:

Vemd = Vant + throttle - apq. At, (3.12)

onde v.,,q € 0 comando de velocidade, v,,; € a velocidade anterior e a,,,, € a aceleracao
maxima.

Como escolha para o projeto, optou-se por ndo permitir o movimento de ré do robd.
Além disso, o angulo de estercamento maximo permitido é de 15° para ambos os lados,
aceleragéo e desaceleragdo maxima de 1 m/s?, e velocidade méaxima de 0, 2 m/s. Ademais,
para evitar mudancgas abruptas no angulo de estercamento, limitou-se a variagdo maxima de
uma iteragdo para a outra a 0, 05 radianos. Esses restricdes foram escolhidas por limitacdes
do rob6 e dos ambientes de teste.

3.2.4 Execucéao dos algoritmos

Para obter um controle mais eficiente, o algoritmo de aquisi¢cdo da pose por meio da
camera é rodado em um né do Robot Operating System (ROS), enquanto o algoritmo
de controle é rodado em outro n6. O n6 de controle escuta os dados de pose, que sao
publicados pelo n6 da camera. Desse modo, € possivel obter uma frequéncia maior do
controlador, devido ao paralelismo e divisdo de tarefas nos cédigos.
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4 RESULTADOS

4.1 Simulacoes

Para os cenarios de simulacdo, foram tracados graficos com os erros de distancia
longitudinal, distancia lateral, velocidade e angulo de orientagéo. As Figuras [11][12,[13] [14]
[15,[16,[17} [21)e[22)mostram os dados para o cendrios 1, 2, 3 e 4, respectivamente,
sendo trés Figuras por cenario, uma para cada regulador e uma para o caminho percorrido.
Para cada cenario foram utilizados os parametros da Tabela (1| e simulados ambos os
reguladores, com e sem ruidos no controle. Os ruidos consistem na aplicagdo de algum
sinal de controle de variagéo brusca, como angulo de estercamento maximo para algum
dos lados ou frenagem repentina.

Cenério Veol (km/h) Dot (m) R Ts (s)
T ol

1 10 3 0 1 0,01
o]

2 10 3 0 1 0,01
o]

3 10 5 0 1 0,01
1 0

4 10 7 {0 101 0,01
. . . 1 0

Laboratério Variavel Variavel {O 0 2} 0,1

Tabela 1 — Parametros de simulagéo

As matrizes (), Er e Eg tiveram seus valores idénticos para todos os cenarios de
simulacéo e laboratério:

00 0 0 0
0 50 0 0
= ,EF:[O,Ol 0,01 0,02 0,001,
0 0 10 0
0 0 0 1
0
0,001
Eq = [0,007 0,001},1{: .
0

Os valores de velocidade foram escolhidos baseados nos valores reais de velocidades
de colheitadeiras no cenario proposto, da operagéo de transbordo. Ja as distancias laterais
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foram definidas de acordo com cada situagao e suas restricoes fisicas. Por fim, as matrizes
foram obtidas por tentativa e erro, de modo a otimizar os controladores.



Distance [m]

6 [rad]

Figura 11 — Cenario 1 - Linha reta - LQR

43

Longitudinal Error Lateral Error
0.0 —
0.0 f==t=—m -
024 —
024
0.4 q T 041
-0.6 g -0.6
5
-0.8 4 t;‘, —0.8 1
a
~1.04 -1.0 4
194
124
1.4
100 0 20 40 60 80 100 QR
Time [s] Time [s] —— LQR - Noise
Orientation Error Velocity Error == Noise
1 1 = = Reference
0.4 : 0.5 :
1 | NJ\»\
0.2 § 1 _ 0.0 = - % -
1 2 I
] E 7031 T
0.0 = [ — = 1
1 T Lo 1
1 % |
—0.2 1 | = —1.5 1
1 |
1 —2.0 1
_0.4 1 !
1 |
254
T T T I T T T T T T I T T T
0 20 40 60 80 100 0 20 40 60 80 100
Time [s] Time [s]
(a) Estados
Steering Input Throttle Input
| 1
0.8 1 — 1
| 1
1 0.7+ 1
| | 1
06 | 1
I 1
1 0.6 1
0.4 1 1
I 1
! ]
0.2 7 1 1
| 1
(=1 —
£ ! § o041 : I':g: "
o 0.0+ S - - Noise
g v——-—— = ) — = Noise
) = 1
0.3 1 1
—0.2 1
1
1
—0.4 1 0.2 4 1
1
—0.6 0.1+ i
1
1
1
—0.8 — L 0.0 = 1
T T I T T T T T T I T T T
20 40 60 80 100 0 20 40 60 80 100
Time [s] Time [s]

(b) Sinais de controle

Elaborado pelo autor.
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Figura 12 — Cenario 1 - Linha reta - RLQR
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Figura 13 — Cenério 1 - Caminho percorrido
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Longitudinal Error

Figura 14 — Cenario 2 - Rotatéria - LQR
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Figura 15 — Cenario 2 - Rotatéria - RLQR
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Figura 16 — Cenério 2 - Caminho percorrido
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Figura 17 — Cenario 3 - Trajeto curto com retas e curvas - LQR
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Figura 18 — Cenario 3 - Trajeto curto com retas e curvas - RLQR
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Figura 19 — Cenério 3 - Caminho percorrido
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Figura 20 — Cenario 4 - Trajeto longo com retas e curvas - LQR
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Figura 21 — Cenario 4 - Trajeto longo com retas e curvas - RLQR
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Figura 22 — Cenério 4 - Caminho percorrido
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4.2 Testes em laboratorio

Para os testes em laboratdério, foi utilizada uma frequéncia de 10Hz no controlador. A
Figura 23| mostra a visdo da colheitadeira pela camera.

Figura 23 — Visdo da camera no teste em laboratério
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Fps: 8.29, Maker z distance: 0.665
Fonte: Elaborado pelo autor.

Um experimento envolvendo retas e curvas foi realizado com os controladores. Para o
LQR, os valores dos estados sdo mostrados na Figura[24]

Figura 24 — Estados LQR - Laborat6rio
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Fonte: Elaborado pelo autor.

E possivel perceber que em um determinado momento ha uma grande variagdo nos
erros de orientagao, posi¢ao longitudinal, e posicao lateral. Isso ocorreu, pois houve uma
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perda de referéncia no algoritmo de detecg¢ao do ArUco, que nao identificou 0 marcador na
imagem, como mostrado na Figura [25]

Figura 25 — Perda de referéncia do ArUco

P

Fps: 6.53,'4 Maker z distance: None
Fonte: Elaborado pelo autor.

Removendo os valores relativos a essa deteccao, tem-se 4 frames removidos. Nesse
caso, o valor maximo da posicao lateral relativa é de 0,67 m, aproximadamente, o que
resulta em um erro maximo de 0,17 m. Ja a posigao longitudinal relativa ndo passa de 0,1
m, conforme visto na Figura[26]

Nesse cenario, o controle RLQR nao teve um desempenho capaz de acompanhar o
percurso. Simulando o cenario em linha reta, no qual a velocidade foi variada linearmente
com o tempo, foram obtidos os seguintes resultados para os controladores, mostrados nas

Figuras[27|e[2§]
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Figura 26 — LQR - Laboratério
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Figura 27 — LQR - Linha Reta - Laboratério
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Figura 28 — RLQR - Linha Reta - Laboratério
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5 CONCLUSAO

Com a implementacao dos reguladores LQR e RLQR e testes em simulagao e laboratério,
foi possivel observar que, os controladores tendem a seguir a referéncia e zerar o erro para
os estados do modelo proposto. Entretanto, foram observados alguns pontos que impediram
a aplicacao pratica e resultados esperados em simulagdes.

Nas simulagdes, percebe-se um erro de regime permanente na distancia longitudinal,
como no cenario 1, em linha reta. Isso se deve, provavelmente, ao ponto utilizado como
referéncia para o erro nulo, obtido pelos estados da colheitadeira. Esse ponto € calculado e
utilizado no algoritmo de controle, mas, enquanto isso acontece, a posi¢cao da colheitadeira
ja se atualizou e, consequentemente, também foi atualizada a posicao desejada. Pelo
movimento do veiculo se dar principalmente no eixo longitudinal, este € um estado mais
afetado por essa defasagem na estimativa. Uma alternativa seria estimar essa defasagem
de tempo e estimar um ponto mais a frente considerando a velocidade da colheitadeira
ou otimizar o processamento do controlador. Além disso, percebe-se que em curvas o
controle ndo zera o erro de regime, e que, geralmente, apresenta erro positivo na distancia
longitudinal, erro negativo na velocidade e erro positivo na distancia lateral. Isso pode ser
consequéncia da estimacao da posi¢cao desejada, conforme mencionado anteriormente.

Na pratica, o LQR foi capaz de seguir a referéncia relativamente bem, com erros
pequenos. Isso se deve, principalmente, aos erros associados as estimativas de posi¢des
provenientes da camera. O maior problema foi a perda de referéncia do marcador pelo
algoritmo, o que se provou um problema consistente no decorrer dos diversos experimentos.
Uma possivel solu¢do seria utilizar mais marcadores e determinar os estados por meio da
deteccao deles, oferencendo um mecanismo de redundancia e maior precisao.

Outro problema pratico foi a frequéncia de aquisicdo de imagens e do controlador. A
frequéncia maxima de aquisigcdo de imagens era préxima de 15 fps com o controlador
operando. Desse modo, a frequéncia do controlador utilizada foi de 10Hz. Certamente uma
frequéncia maior seria capaz de obter resultados mais proximos do esperado.

Por fim, um possivel problema pode ser a modelagem cinematica utilizada. O desenvol-
vimento de uma modelagem dinamica pode trazer resultados melhores ao considerar as
forgas atuantes no veiculo.

Como continuacao deste trabalho, é possivel buscar otimizar os algoritmos, desenvolver
formas mais robustas de aquisi¢éo e estimacao de dados por meio de odometria visual e
utilizar a modelagem dinamica.
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