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RESUMO

CONSONNI, J. L. F. Reguladores Quadráticos e Odometria Visual para Controle de

Veículos Autônomos. 2024. Monografia (Trabalho de Conclusão de Curso) – Escola de

Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2024.

O avanço no campo de veículos autônomos leva a um cenário de possível diminuição

em acidentes automobilísticos e expansão das aplicações para diversas áreas, como na

agricultura. Entretanto, sua segurança ainda é questionada devido a alguns acidentes

causados por esses veículos. Diante disso, com o objetivo de tornar o tráfego desse tipo

de veículo mais seguro, neste projeto foi proposto o desenvolvimento de um controlador,

utilizando o regulador linear quadrático e sua versão robusta. Visando a utilização de apenas

um tipo de sensor no veículo, a estimação de estados foi feita por meio de técnicas de

odometria visual e utilização de marcadores fiduciais, especificamente, marcadores ArUco.

A aplicação proposta foi a operação de transbordo em uma plantação de cana-de-açúcar, na

qual um caminhão deve seguir lateralmente a colheitadeira. Os testes foram realizados em

simulações, no software Carla, e em laboratório, utilizando dois robôs que representam a

colheitadeira e o caminhão. Os resultados obtidos não atingiram erro de regime nulo devido

a erros associados à detecção do marcador ArUco e estimação de estados. Concluiu-se

que os controladores desenvolvidos funcionam, de forma geral, e foram avaliadas soluções

para os problemas que limitaram seu desempenho e eficácia.

Palavras Chaves: Veículos Autônomos, Reguladores Lineares Quadráticos, Controle

Robusto, Odometria Visual, Marcadores Fiduciais, Operação de Transbordo.





ABSTRACT

CONSONNI, J. L. F. Quadratic Regulators and Visual Odometry for Autonomous Vehi-

cles Control. 2024. Monografia (Trabalho de Conclusão de Curso) – Escola de Engenharia

de São Carlos, Universidade de São Paulo, São Carlos, 2024.

Advances in the field of autonomous vehicles are leading to a scenario of a possible reduction

in car accidents and the expansion of applications to various areas, such as agriculture.

However, their safety is still questioned due to some accidents caused by these vehicles.

Aiming to make this type of vehicle’s traffic safer, this project proposes the development of

a controller using the quadratic linear regulator and its robust version. In order to use only

one type of sensor in the vehicle, state estimation was carried out using visual odometry

techniques and fiducial markers, specifically ArUco markers. The proposed application was a

transshipment operation in a sugarcane plantation, in which a truck must follow the harvester

laterally. The tests were carried out in simulations, in the software Carla, and in the laboratory,

using two robots representing the harvester and the truck. The results obtained did not reach

a null steady-state error due to errors associated with ArUco marker detection and state

estimation. It was concluded that the controllers developed work, in general, and solutions

were evaluated for the problems that limited their performance and effectiveness.

Keywords: Autonomous Vehicles. Quadratic Linear Regulators. Robust Control. Visual

Odometry. Fiducial Markers. Transshipment Operation.
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1 INTRODUÇÃO

O Brasil tem o agronegócio como um grande impulsionador da economia. Em 2023, o

Produto Interno Bruto (PIB) do agronegócio representou cerca de 24% do PIB do país1.

Segundo as projeções da OECD (Organisation for Economic Co-operation Development) e

da FAO (Food and Agriculture Organization), cerca de 87% do crescimento da produção

agrícola mundial será consequência do aumento de produtividade (OECD and Food and

Agriculture Organization of the United Nations, 2021). Nesse contexto, o desenvolvimento

de pesquisas com enfoque na automação do setor agrícola é fundamental, principalmente

em um país no qual a atividade contribui de forma significativa na economia.

Visando aumentar produtividade, reduzir custos e melhorar a segurança, os veículos

autônomos surgem como uma extensão natural da automação no campo. A evolução

histórica das pesquisas sobre o assunto é mostrada por Rondelli, Franceschetti e Mengoli

(2022). É possível perceber que os veículos são equipados com sensores, de modo a

poderem navegar pelo terreno, e que possuem muitas aplicações, desde a coleta de frutas

até pulverização de plantações e roçada do campo.

Diante desse cenário de constante evolução na agricultura, uma possibilidade de imple-

mentação de veículos autônomos é em plantações de cana-de-açúcar. Belardo, Cassia e

Silva (2015) apresentam o processo de corte, transbordo e transporte da cana, avaliando

aspectos econômicos.

O ponto de fundamental interesse nesse trabalho de conclusão de curso é a operação

de transbordo, na qual a colheitadeira e o caminhão de transbordo devem se locomover

paralelos, a uma distância estabelecida, de modo que a operação ocorra com sucesso.

Nessa operação, enquanto a colheitadeira realiza o corte da cana-de-açúcar, ela despeja

o que foi colhido no caminhão que anda lateralmente a ela. Desse modo, um caminhão

autônomo que fosse capaz de realizar essa tarefa traria benefícios de segurança e redução

de custos para o agricultor. Um exemplo dessa aplicação foi realizada pela Scania, como

mostra a Figura 1.

Para o controle do veículo, optou-se pela aplicação de reguladores lineares quadráticos.

Comparou-se o regulador nominal e o regulador robusto, que modela as incertezas do

sistema. Com isso, busca-se reduzir as incertezas associadas à estimação de estados

provenientes de interferências do ambiente, visando um melhor desempenho e maior

robustez.

A estimação de estados é feita por meio de odometria visual, que é uma técnica robusta

utilizada para o conhecimento da posição do veículo ao longo do tempo. Ela permite que

um veículo se localize de forma robusta utilizando apenas uma sequência de imagens

capturadas por uma câmera fixada no próprio veículo (AQEL et al., 2016).

1 https://www.cepea.esalq.usp.br/br/pib-do-agronegocio-brasileiro.aspx

https://www.cepea.esalq.usp.br/br/pib-do-agronegocio-brasileiro.aspx
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Figura 1 – Caminhão autônomo Scania em plantação de cana-de-açúcar

Fonte: (AUTOINDUSTRIA, 2022).

Desse modo, como objetivo geral do trabalho, tem-se o desenvolvimento de soluções

para plantações de cana-de-açúcar, especificamente, na operação de transbordo.

Como objetivos específicos, tem-se o desenvolvimento de algoritmos de controle do

veículo autônomo utilizando reguladores lineares quadráticos e odometria visual para

estimação de estados, mais especificamente, um controle servo-visual baseado em posição.

Este TCC está dividido em Revisão Bibliográfica, Metodologia, Resultados e Conclusão.

Para a obtenção de resultados foi utilizado o simulador Carla (DOSOVITSKIY et al., 2017)

e testes no LASI (Laboratório de Sistemas Inteligentes) utilizando um par de robôs que

simulam a colheitadeira e o caminhão.
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2 REVISÃO TEÓRICA

2.1 Reguladores lineares quadráticos

Para realizar o controle do veículo, utilizou-se o Regulador Linear Quadrático (LQR) e o

Regulador Linear Quadrático Robusto (RLQR), cujas formulações são apresentadas abaixo.

2.1.1 Regulador Linear Quadrático

Considere o modelo em espaço de estados do seguinte sistema linear discreto variante

no tempo

xk+1 = Fkxk +Gkuk, (2.1)

para k = 0, . . . , N , no qual xk ∈ Rn é o vetor de estado, uk ∈ Rm é o vetor de entradas,

Fk ∈ Rn×n e Gk ∈ Rn×m são matrizes conhecidas e x0 é o vetor de estado inicial.

Seja U o conjunto das possíveis entradas do sistema. O objetivo do regulador é encontrar

a sequência de entradas U∗ = {u∗
0, . . . , u

∗
N} ∈ U que minimize a função de custo

J(x, u) = xT
NPNxN +

N−1∑
0

(xT
kQkxk + uT

kRkuk), (2.2)

na qual PN , Qk ∈ Rn×n são matrizes semidefinidas positivas simétricas, Rk ∈ Rn×m é uma

matriz definida positiva simétrica, e N é chamado de horizonte de tempo.

Problema: Dado um estado inicial x0 ∈ Rn, determinar a sequência ótima de con-

trole U∗ = {u∗
0, . . . , u

∗
N} e a sequência de estados {x∗

0, . . . , x
∗
N} correspondente, que seja

solução do problema de otimização

min
uk∈U

J(x, u) (2.3)

sujeito a xk+1 = Fkxk +Gkuk. (2.4)

Por meio do método de programação dinâmica (DREYFUS, 2002), obtem-se a solução

do problema. Defina as matrizes Kk, Lk e Pk por

Kk = −(Rk +GT
kPk+1Gk)

−1GT
kPk+1Fk, (2.5)

Lk = Fk −Gk(Rk +GT
kPk+1Gk)

−1GT
kPk+1Fk, (2.6)

Pk = F T
k [Pk+1 − Pk+1Gk(Rk +GT

kPk+1Gk)
−1GT

kPk+1]Fk +Qk. (2.7)

A solução é dada por
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u∗
k = Kkxk (2.8)

x∗
k+1 = Lkxk. (2.9)

O Algoritmo 1 mostra o cálculo dos estados e entradas ótimas.

Algoritmo 1 Controlador LQR
Inicialização de parâmetros: Inicializar N, x0 e PN ≽ 0.

Calcular para k = N − 1, . . . , 0:

Kk = −(Rk +GT
kPk+1Gk)

−1GT
kPk+1Fk,

Lk = Fk −Gk(Rk +GT
kPk+1Gk)

−1GT
kPk+1Fk,

Pk = F T
k [Pk+1 − Pk+1Gk(Rk +GT

kPk+1Gk)
−1GT

kPk+1]Fk +Qk.

Obter para k = 0, . . . , N − 1:

u∗
k = Kkxk

x∗
k+1 = Lkxk.

2.1.2 Regulador Linear Quadrático Robusto

O Regulador Linear Quadrático Robusto é similar ao Regulador Linar Quadrático, mas

apresenta a modelagem de incertezas do sistema em sua formulação.

Considere o modelo de espaço de estados variante no tempo

xk+1 = (Fk + δFk)xk + (Gk + δGk)uk, (2.10)

no qual k, xk, Fk, Gk e uk são definidos da mesma forma que na Subseção 2.1.1, e δFk e

δGk são incertezas no sistema, que são incorporadas nas matrizes Fk e Gk.

Considere o problema de mínimos quadrados regularizados para o sistema

xk+1 = (A+ δA)xk + (b+ δb), (2.11)

onde a matriz A e o vetor b estão sujeitas a incertezas limitadas em norma δA e δb,

respectivamente. Assim, o problema de otimização é definido da seguinte forma

min
x

max
δA,δb

J(x) (2.12)

com a função de custo J(x) dada por
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J(x) = ||x||2Q + ||(A+ δA)x− (b+ δb)||2W =

= xTQx+ [(A+ δA)x− (b+ δb)]TW [(A+ δA)x− (b+ δb)], (2.13)

sendo x ∈ Rn o vetor desconhecido, Q ∈ Rn×n e W ∈ Rm×m matrizes de ponderação

simétricas conhecidas, A e b conhecidos e sujeitos a incertezas paramétricas δA ∈ Rm×n e

δb ∈ Rm modeladas por

[
δA δb

]
= H∆

[
EA Eb

]
, (2.14)

ondeH é uma matriz não-nula, EA e Eb são matrizes conhecidas de dimensões apropriadas,

∆ é uma matriz de contração arbitrária com ||∆||2 ≤ 1. A solução ótima do problema (2.12)

é mostrada em Sayed e Nascimento (1999).

Conforme apresentado por Terra, Cerri e Ishihara (2014), fazendo

x←−

[
xk+1

uk

]
, Q←−

[
Pk+1 0

0 Rk

]
,W ←−

[
Qk 0

0 µIn

]
,

A←−

[
0 0

In −Gk

]
, δA←−

[
0 0

0 −δGk

]
, b←−

[
−In
Fk

]
xk, δb←−

[
0

δFk

]
xk,

H ←−

[
0

Hk

]
,∆←− ∆k, EA ←−

[
0 −EGk

]
, Eb ←− EFk

,

é obtida a solução para o sistema (2.10).

As matrizes Kk, Lk e Pk são calculadas:

Lk

Kk

Pk

 =



0 0 0

0 0 0

0 0 −In
0 0 F̂k

In 0 0

0 Im 0



T 

P−1
k+1 0 0 0 In 0

0 R−1
k 0 0 0 Im

0 0 Q−1
k 0 0 0

0 0 0 Σµ,k În −Ĝk

In 0 0 ÎTn 0 0

0 Im 0 −ĜT
k 0 0



−1 

0

0

−In
F̂k

0

0


, (2.15)

onde In e Im são matrizes identidade de dimensões n e m, respectivamente, e

F̂k =

[
Fk

EFk

]
, Ĝk =

[
Gk

EGk

]
, În =

[
In

0

]
,Σµ,k =

[
Φ(µ, λ) 0

0 λ̂−1
µ Il

]
,

Φ(µ, λ̂µ) = µ−1I − λ̂−1
µ HkH

T
k , e

λ̂µ = (1 + α)||µHT
k Hk||, para algum α > 0.

Assim,
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u∗
k = Kkxk (2.16)

x∗
k+1 = Lkxk. (2.17)

O Algoritmo 2 mostra o cálculo dos estados e entradas ótimas.

Algoritmo 2 Controlador RLQR
Inicialização de parâmetros: Inicializar N, x0 e PN ≻ 0.

Calcular para k = N − 1, . . . , 0:

Lk

Kk

Pk

 =



0 0 0
0 0 0
0 0 −In
0 0 F̂k

In 0 0
0 Im 0



T 

P−1
k+1 0 0 0 In 0
0 R−1

k 0 0 0 Im
0 0 Q−1

k 0 0 0

0 0 0 Σµ,k În −Ĝk

In 0 0 ÎTn 0 0

0 Im 0 −ĜT
k 0 0



−1 

0
0
−In
F̂k

0
0

 , (2.18)

Obter para k = 0, . . . , N − 1:

u∗
k = Kkxk

x∗
k+1 = Lkxk.

Fazendo µ → ∞, tem-se λ̂µ → ∞ ⇒ λ̂−1
µ → 0 e Φ(µ, λ̂µ) → 0. Desse modo, Σµ,k se

torna uma matriz nula quando µ→∞.

2.1.3 Estabilidade

Será mostrada a estabilidade do RLQR, visto que a estabilidade do LQR segue procedi-

mento similar. As expressões para o cálculo das matrizes são obtidas por meio da equação

2.15. A prova é baseada na dissertação de Cerri (2009), onde utiliza-se µ→ infty. Além

disso, assuma que o par de matrizes Fk e Gk é controlável para todo k.

De acordo com a Seção 6.3 (CERRI, 2009), tem-se as seguintes relações:

Pk+1 = F̂ T
k (Pk − PkĜk(I + ĜT

kPkĜk)
−1ĜT

kPk)F̂k + Q̂, (2.19)

sendo

F̂k := Fk −GR−1ET
G(EGR

−1ET
G)

−1EF , (2.20)

R̂ := R−1 +R−1ET
G(EGR

−1ET
G)

−1EGR
−1, (2.21)

Ĝk := GkR̂
1
2 , (2.22)

Q̂ := Q+ ET
F (EGR

−1ET
G)

−1EF , (2.23)
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e assume que a condição inicial P0 satisfaz 0 ≺ P0 ≺ Q.

De acordo com o Lema 6.2.3 (CERRI, 2009), tem-se as seguintes relações:

K̂k = −(I + ĜT
kPkĜk)

−1ĜT
kPkF̂k, (2.24)

L̂k = F̂k + ĜkK̂k. (2.25)

A demonstração da estabilidade é uma adaptação do Lema 6.3.5 (CERRI, 2009),

considerando a variação temporal de F e G.

Lema 2.1.1 Se Pk ≻ 0, então todos os autovalores da matriz

Lk = (Fk +GkKk) = Fk −Gk(I +GT
kPkGk)

−1GT
kPkFk, (2.26)

pertencem ao círculo unitário aberto, ou seja, Lk é estável.

Demonstração: A demonstração é feita por redução ao absurdo. Assuma que L̂k não é

estável. Desse modo, existe algum autovalor λ, tal que |λ| ≥ 1, com Lkx = λx para x ̸= 0.

Sabe-se que

Pk+1 = F̂ T
k (Pk − PkĜk(I + ĜT

kPkĜk)
−1ĜT

kPk)F̂k + Q̂, (2.27)

que pode ser escrita como

Pk+1 = L̂T
kPkL̂k + K̂T

k IK̂k + Q̂, (2.28)

sendo

L̂k = (F̂k + ĜkK̂k) = F̂k − Ĝk(I + ĜT
kPkĜk)Ĝ

T
kPkF̂k. (2.29)

Pré-multiplicando e pós-multiplicando a Equação 2.28 por xT e x, respectivamente,

tem-se:

xTPkx = xT L̂T
kPkL̂kx+ xT K̂T

k IK̂kx+ xT Q̂x⇒

xTPkx = |λ|2xTPkx+ xT K̂T
k IK̂kx+ xT Q̂x⇒

(1− |λ|2)xTPkx = xT (K̂T
k IK̂k + Q̂)x.

Como Pk ≻ 0 e x ̸= 0, tem-se xTPkx > 0. Além disso, |λ| ≥ 1 ⇒ |λ|2 ≥ 1. Logo,

(1 − |λ|2)xTPkx ≤ 0. Entretanto, como K̂T
k IK̂k + Q̂ ≻ 0 e x ̸= 0, xT (K̂T

k IK̂k + Q̂)x > 0,

chegando em um absurdo.

Portanto, L̂ não possui autovalores de módulo maior ou igual a 1, ou seja, é estável.

Para um desenvolvimento similar do Corolário 6.3.1 (CERRI, 2009), conclui-se que o

regulador é estável.
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2.2 Modelagem do veículo

Para simplificar a modelagem e testes, o veículo foi modelado utilizando o modelo

de bicicleta, que é uma simplificação do modelo Ackermann (ZHAO et al., 2013), que

une as rodas pertencentes ao mesmo eixo em uma única roda, no centro do eixo. Essa

simplificação pode ser vista na Figura 2.

Figura 2 – Modelo de bicicleta dos veículos

Fonte: Lu et al. (2022).

Além disso, pode-se utilizar dois tipos de modelagem: cinemática ou dinâmica. A mode-

lagem cinemática considera apenas grandezas como posição, orientação e velocidade. Já

a modelagem dinâmica considera a massa do veículo e as forças atreladas a ele, como a

força de atrito. A modelagem adotada foi a cinemática, cujo diagrama é mostrado na Figura

3.
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Figura 3 – Modelo cinemático

Fonte: Adaptado de Ding (2021).

Pela geometria do problema, considerando o modelo de bicicleta e a modelagem cine-

mática, tem-se



ẋ = vcos(θ),

ẏ = vsin(θ),

θ̇ =
vtan(δ)

L
,

v̇ = a.

. (2.30)

Define-se o vetor de estados com a posição em x, posição em y, orientação θ e

velocidade v. Além disso, define-se o vetor de entradas com o ângulo de esterçamento δ e

a aceleração a. De forma concisa,

z =


x

y

θ

v

 e u =

[
a

δ

]
, (2.31)

onde z é o vetor de estados e u é o vetor de entradas.

Desse modo, linearizando o sistema (2.30) e utilizando as definições em (2.31), tem-se

o sistema linear
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ż = Az+Bu⇒


ẋ

ẏ

θ̇

v̇

 =


0 0 −vrefsin(θref ) cos(θref )

0 0 vrefcos(θref ) sin(θref )

0 0 0
tan(δref )

L
0 0 0 0



x

y

θ

v

+


0 0

0 0

0
vref

Lcos2(δref )

1 0


[
a

δ

]
.

(2.32)

Seja ∆t o passo de discretização do sistema contínuo no tempo (2.32). Desse modo, as

matrizes do sistema discreto são

F = A∆t+ I =


1 0 −vrefsin(θref )∆t cos(θref )∆t

0 1 vrefcos(θref )∆t sin(θref )∆t

0 0 1
tan(δref )

L
∆t

0 0 0 1

 , (2.33)

G = B∆t =


0 0

0 0

0
vref

Lcos2(δref )
∆t

∆t 0

 , (2.34)

e o sistema discreto é

zk+1 = Fzk +Guk (2.35)

Sejam zref e uref o vetor de estado de referência e o vetor de entradas de referência,

respectivamente. Além disso, defina z̃ = z − zref e ũ = u− uref .

Defina o sistema em espaço de estados conforme (2.36).

z̃k+1 = F z̃k +Gũk. (2.36)

Esse sistema tem como variáveis de estado os erros das variáveis cinemáticas. Desse

modo, o ponto de operação desejado é a origem.

Por meio do Algoritmo 1, obtém-se a matriz de ganho K e, consequentemente, as saídas

de controle para o veículo:

ũ = Kz̃ = K(z − zref ) (2.37)

u = ũ+ uref = K(z − zref ) + uref . (2.38)

Para a aplicação do controlador, é necessário determinar as variáveis de estado do

veículo a ser seguido. Essas variáveis podem ser estimadas com o uso de uma câmera, por

meio de odometria visual.
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2.3 Odometria visual

Veículos e robôs terrestres dependendem da odometria para estimar a trajetória percor-

rida enquanto se locomovem, a qual é uma parte fundamental para navegação autônoma.

Odometria visual é uma odometria feita por meio da análise de dados visuais, como imagens

de câmeras. A odometria convencional estima a posição de um robô por meio da medição

da rotação das rodas, utilizando sensores. Um dos problemas decorrentes disso é causado

pelo escorregamento da roda, que torna as estimativas cada vez mais imprecisas pela

perda de tração das rodas. A vantagem do método de odometria visual é que esse problema

é evitado (LIM; BRAUNL, 2020).

2.3.1 Calibração da câmera

O primeiro passo para aplicações de odometria visual é a calibração da câmera, que é
dividida em duas fases.

Primeiramente, a modelagem da câmera lida com a aproximação matemá-
tica do comportamento físico e ótico do sensor utilizando um conjunto de
parâmetros. A segunda fase consiste com o uso de métodos diretos ou
iterativos para estimar os valores desses parâmetros (SALVI; ARMANGUé;
BATLLE, 2002).

Existem dois tipos de parâmetros a serem considerados no modelo. Um desses tipos é

o conjunto de parâmetros intrínsecos, que modelam a geometria interna e as características

óticas da câmera. Em linhas gerais, os parâmetros intrínsecos modelam o modo que a luz é

projetada através da lente no plano da imagem do sensor. Já o outro tipo é o conjunto de

parâmetros extrínsecos, que indicam a posição e a orientação da câmera em relação a um

sistema de coordenadas do mundo, que fornece informações em relação à um sistema de

coordenadas fixo, em oposição ao sistema de coordenadas da câmera (SALVI; ARMANGUé;

BATLLE, 2002).

Os parâmetros (fx, fy, cx, cy) modelam a matriz da câmera C. Os parâmetros (k1, k2,

k3, p1, p2) modelam as distorções radial e tangencial causadas pela lente (HIERONYMUS,

2012).

• Distorção radial:

xdistorcido = x(1 + k1r
2 + k2r

4 + k3r
6)

ydistorcido = y(1 + k1r
2 + k2r

4 + k3r
6).

• Distorção tangencial:

xdistorcido = x+ [2p1xy + p2(r
2 + 2x2)]

ydistorcido = y + [p1(r
2 + 2y2) + 2p2xy].
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• Coeficientes da matriz da câmera:

C =

fx 0 cx

0 fy cy

0 0 1


fx e fy: Distâncias focais em x e y

cx e cy: Coordenadas x e y do centro óptico.

Para a calibração, é utilizado uma imagem quadriculada, alternando cores pretas e

brancas, como visto na Figura 4. O algoritmo encontra os cantos correspondentes e calcula

todos os parâmetros necessários 1.

Figura 4 – Imagem para calibração de câmera

Fonte: Adaptado do tutorial do OpenCV1.

2.3.2 Estimação da Pose

A estimação da pose consiste em determinar a posição e orientação de determinado

objeto, ou seja, sua configuração espacial 2.Uma das representações para a pose é um

vetor de translação t e uma matriz de rotação R, dados por

R =

r11 r12 r13

r21 r22 r23

r31 r32 r33

 e t =

txty
tz

 ,

que levam pontos das coordenadas globais para as coordenadas da câmera (u, v), conforme

a Figura 5.

1 https://docs.opencv.org/4.x/dc/dbb/tutorial_py_calibration.html
2 https://docs.opencv.org/3.4/d7/d53/tutorial_py_pose.html

https://docs.opencv.org/4.x/dc/dbb/tutorial_py_calibration.html
https://docs.opencv.org/3.4/d7/d53/tutorial_py_pose.html
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Figura 5 – Mudança de coordenadas

Fonte: Adaptado do tutorial do OpenCV3.

Seja C a matriz da câmera, Π a matriz de projeção dos pontos em três dimensões para

o plano óptico da câmera e Tw a matriz de transformação de coordenadas globais para as

da câmera. Desse modo, tem-se:


u

v

1


= CΠTw



xw

yw

zw

1


=


fx 0 cx

0 fy cy

0 0 1




1 0 0 0

0 1 0 0

0 0 1 0



R t

0 1





xw

yw

zw

1


(2.39)



xC

yC

zC

1


= Tw



xw

yw

zw

1


=

R t

0 1





xw

yw

zw

1


(2.40)

Para obter essa representação, é utilizado o algoritmo PnP (Perspective-n-Point) (LI; XU;

XIE, 2012), que encontra as matrizes R e t por meio da correspondência entre os pontos

do sistema de coordenadas 3D do mundo com os pontos do sistema de coordenadas 2D

da imagem. Para uma solução única, é necessário informar pelo menos 4 pontos para o

algoritmo. 3

3 https://docs.opencv.org/3.4/d5/d1f/calib3d_solvePnP.html

https://docs.opencv.org/3.4/d5/d1f/calib3d_solvePnP.html
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De modo a obter 4 pontos que possam ser utilizados no algoritmo, pode-se utilizar algum

tipo de marcador, que ofereça uma referência ou medida na imagem.

2.3.3 Marcadores ArUco

Marcadores ArUco são um tipo de marcador fiducial. Marcadores fiduciais, em sua

forma geral, são objetos utilizados para fornecer um ponto de referência ou medida em uma

imagem (KALAITZAKIS et al., 2021). Existem inúmeros tipos de marcadores fiduciais, cada

qual com a sua especificidade.

Uma das aplicações primárias de marcadores fiduciais na robótica é lo-
calização e mapeamento. Mesmo que outros métodos como VIO e SLAM
possam fornecer dados precisos, eles requerem condições ideais de lumino-
sidade e características visuais distintas. Marcadores fiduciais são utilizados
para aprimorar a qualidade da estimação de posição em ambientes nos
quais essas condições não são atendidas (KALAITZAKIS et al., 2021).

De acordo com os resultados de Kalaitzakis et al. (2021), pode-se perceber que o

custo computacional dos marcadores ArUco e ARTag são os menores entre os marcadores

analisados. Desse modo, essa é uma das motivações para a escolha deste marcador em

específico.

Por meio da detecção dos 4 cantos do marcador ArUco e seu tamanho, é possível

aplicar o algoritmo PnP (Subseção 2.3.2) e determinar a orientação, posição e profundidade

(distância até a câmera) do marcador 4, como exemplificado na Figura 6.

Figura 6 – Estimativa da pose de ArUcos

Fonte: Tutorial do OpenCV4.

4 https://docs.opencv.org/4.x/d5/dae/tutorial_aruco_detection.html

https://docs.opencv.org/4.x/d5/dae/tutorial_aruco_detection.html
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Portanto, unindo os conceitos dos reguladores e alimentando-os com os estados estima-

dos por meio da odometria visual, com o auxílio do marcador ArUco, é possível realizar o

controle do veículo.
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3 METODOLOGIA

A metodologia consiste na análise de cenários de simulação e laboratório. Em ambos

os casos são utilizados o LQR e RLQR para comparação. Na simulação, os estados são

obtidos do simulador. Já nos testes em laboratório, os estados são estimados por odometria

visual, utilizando o marcador ArUco como referência.

3.1 Simulação do cenário proposto

3.1.1 Ambiente de simulação

Para simular o cenário da operação de transbordo em plantações de cana-de-açúcar, foi

utilizado o software Carla (DOSOVITSKIY et al., 2017). Para a simulação, foram utilizados

dois veículos Tesla Model 3 1, onde um deles já tem um caminho pré-definido (chamado

de colheitadeira), e o outro tem os dados de posição, velocidade, orientação e ângulo

de esterçamento de ambos os veículos, que serão usados para o controle deste veículo

(chamado de caminhão).

Para o desenvolvimento e avaliação do controlador foram utilizados 4 cenários com

diferentes trajetórias: uma estrada em linha reta, uma rotatória, e duas pistas com partes

retas e curvas, uma menor e outra maior. A Figura 7 mostra as trajetórias de cada cenário.

3.1.2 Desenvolvimento do algoritmo

Para o controlador, foram utilizados o LQR e o RLQR, com as matrizes do sistema

variantes no tempo, visto que a cada iteração do controle o alvo muda de posição e,

com isso, deve-se alterar as matrizes F e G. Desse modo, baseado na posição atual da

colheitadeira, o algoritmo calcula a nova posição alvo, que é passada para o controlador

LQR ou RLQR.

Baseado no modelo apresentado na Seção 2.2, os dados necessários para a atualização

das matrizes F e G são:

• θref : Orientação de referência.

• vref : Velocidade de referência.

• δref : Ângulo de esterçamento de referência.

Seja ξ como uma grandeza genérica, como orientação ou velocidade. Defina ξcam e ξcol

como a grandeza ξ do caminhão e da colheitadeira, respectivamente.

Pela geometria do problema, as grandezas de referência podem ser calculadas. As

orientações e os ângulos de esterçamento de ambos os veículos devem ser os mesmos.
1 https://www.tesla.com/model3

https://www.tesla.com/model3
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Figura 7 – Percursos de simulação

(a) Trajetória - Primeiro cenário (b) Trajetória - Segundo cenário

(c) Trajetória - Terceiro cenário (d) Trajetória - Quarto cenário

Elaborado pelo autor.
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Nesse caso, θref = θcol e δref = δcol. Para a velocidade, tem-se a seguinte análise, baseada

na Figura 8, na qual ω é a velocidade angular, v é a velocidade linear, R é o raio da curva,

O é o centro da trajetória, e Dlat é a distância lateral.

• Linha reta: A velocidade do caminhão deve ser igual a da colheitadeira. Nesse caso,

vref = vcol.

• Curva:

Figura 8 – Cenário de movimento circular

Fonte: Elaborado pelo autor

Para o desenvolvimento algébrico, adotou-se um ângulo de esterçamento positivo

quando os veículos estão se movendo no sentido horário. Para consistência das

equações, um raio de trajetória negativo indica uma trajetória curva com raio de valor

absoluto igual ao valor apresentado e sentido anti-horário.

Como o é movimento curvilíneo, tem-se ωcam = ωcol:

ωcol = ωcam ⇒
vcol
Rcol

=
vcam
Rcam

⇒ vcam = vcol
Rcam

Rcol

. (3.1)



36

Desse modo,

vref = vcol
Rcam

Rcol

. (3.2)

Para calcular Rcam e Rcol, utiliza-se o ângulo de esterçamento δcol:

Rcol =
Lcol

tan(δcol)
e Rcam = Rcol −Dlat ⇒ Rcam =

Lcol

tan(δcol)
−Dlat. (3.3)

Portanto, a velocidade de referência é dada por

vref = vcol
Rcam

Rcol

= vcol
Rcol −Dlat

Rcol

= vcol

(
1−Dlat

tan(δcol)

Lcol

)
. (3.4)

3.2 Validação do código em laboratório

3.2.1 Ambiente de testes

Para os testes em laboratório, foram utilizados dois robôs LIMO 2 da AgileX 3 idênticos,

de modo a imitar o cenário simulado no software Carla, decrito na Seção 3.1. A Figura 9

mostra uma foto dos robôs no laboratório.

Figura 9 – Robôs utilizados em laboratório

Fonte: Elaborado pelo autor.

O robô conta com vários sensores, mas o único sensor utilizado para os testes é uma

câmera, instalada na lateral do robô que fará o papel do caminhão.
2 https://global.agilex.ai/solutions/4
3 https://global.agilex.ai/

https://global.agilex.ai/solutions/4
https://global.agilex.ai/
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A câmera utilizada é OAK-D S2. 4

O robô que representa a colheitadeira teve um marcador ArUco colocado na sua lateral,

de modo que a câmera do outro robô pudesse localizá-lo.

3.2.2 Dados para o controle

Considere a mesma nomenclatura de caminhão e colheitadeira da Subseção 3.1.1.

Os dados imediatamente disponíveis são os dados de velocidade e ângulo de ester-

çamento do caminhão, obtidos por meio dos sensores. Para o funcionamento correto do

controle, é necessário obter as medidas das variáveis contidas no sistema linearizado. Es-

ses dados são velocidade de referência, orientação de referência, ângulo de esterçamento

de referência, tamanho do veículo e tempo de discretização, que compõem as matrizes F e

G, da Equação (2.35).

O tempo de discretização e o tamanho do veículo são fixos e conhecidos. As outras

grandezas de referência mudam a cada instante e devem ser determinadas.

Os dados obtidos por meio da pose são a orientação e a posição relativas à câmera.

Assim, os dados utilizados para o controle consideram o centro da câmera como origem do

sistema. A Figura 10 mostra a referência dos eixos para o sistema de coordenadas utilizado.
5

Perceba que o eixo z representa a profundidade e o eixo x representa a direção do

movimento do veículo, já que no experimento a câmera encontra-se com o eixo óptico

parelelo ao solo.

Como as medidas são relativas à câmera, tem-se θref = θrel.

Utilizando duas medidas consecutivas de posição relativa (vetor t obtido do algoritmo

PnP), é possível obter a velocidade relativa fazendo

vrelk =
tk − tk−1

∆t
. (3.5)

Desse modo, é possível determinar a velocidade da colheitadeira:

vcamk
= [vcamk

, 0, 0]⇒ vcolk = vcamk
+ vrelk ⇒ vcolk = sign(vx

colk
)||vcolk ||, (3.6)

onde vx
colk

é a componente x do vetor. O sinal dessa componente indica a direção do

movimento.

Além disso, é possível determinar o ângulo de esterçamento por meio de duas estimati-

vas consecutivas. Discretizando a terceira equação do sistema (2.30):

θk − θk−1

Ts

=
vktan(δk)

L
⇒ δk = tan−1

(
L

vkTs

(θk − θk−1)

)
. (3.7)

4 https://shop.luxonis.com/products/oak-d-s2
5 https://docs.opencv.org/4.x/d9/d0c/group__calib3d.html

https://shop.luxonis.com/products/oak-d-s2
https://docs.opencv.org/4.x/d9/d0c/group__calib3d.html
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Figura 10 – Eixos do sistema de coordenadas utilizado

Fonte: Adaptado do tutorial do OpenCV 5.

Por fim, por meio da velocidade do caminhão e a velocidade da colheitadeira calculada,

é possível calcular a velocidade de referência do mesmo modo que na Seção 3.1.

É importante destacar que a Equação (3.7) poderia ser ruidosa devido ao cálculo

envolver muitas variáveis que também são estimativas. Entretanto, ao comparar o valor

calculado com valores obtidos direto do simulador, percebeu-se apenas em alguns instantes

a presença de ruído relevante no valor calculado, que não afetou o controle devido a sua

rara ocorrência. Em laboratório não foi feita essa avaliação.

3.2.3 Algoritmo de controle

De posse de todos os valores citados na Seção 3.2.2, é possível calcular as matrizes

Fk e Gk. A matriz de ganho K é obtida do LQR ou RLQR e, consequentemente, o sinal de

controle é determinado.

z − zref = [−tkx, Dlat − tk
z,−θref , vcam − vref ]⇒ u = K(z − zref ) + uref , (3.8)

onde Dlat é a distância lateral entre o caminhão e a colheitadeira, que foi pré-estabelecida.

Por fim, do mesmo modo que na simulação, os sinais de controle são colocados em

um intervalo de -1 a 1, representando a porcentagem de aceleração e de esterçamento.

Matematicamente:
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throttle = max(−1,min(1, a)); (3.9)

steering = max(−1,min(1, δ)). (3.10)

Para o envio de comandos ao robô, é necessário fornecer diretamente o valor de

velocidade e ângulo de esterçamento. Este último é obtido da saída de controle, fazendo:

δcmd = steering · δmax, (3.11)

onde δcmd é o comando de ângulo de esterçamento e δmax é o ângulo de esterçamento

máximo.

Já a velocidade é obtida por meio de uma lei cinemática:

vcmd = vant + throttle · amax∆t, (3.12)

onde vcmd é o comando de velocidade, vant é a velocidade anterior e amax é a aceleração

máxima.

Como escolha para o projeto, optou-se por não permitir o movimento de ré do robô.

Além disso, o ângulo de esterçamento máximo permitido é de 15◦ para ambos os lados,

aceleração e desaceleração máxima de 1m/s2, e velocidade máxima de 0, 2m/s. Ademais,

para evitar mudanças abruptas no ângulo de esterçamento, limitou-se a variação máxima de

uma iteração para a outra a 0, 05 radianos. Esses restrições foram escolhidas por limitações

do robô e dos ambientes de teste.

3.2.4 Execução dos algoritmos

Para obter um controle mais eficiente, o algoritmo de aquisição da pose por meio da

câmera é rodado em um nó do Robot Operating System (ROS), enquanto o algoritmo

de controle é rodado em outro nó. O nó de controle escuta os dados de pose, que são

publicados pelo nó da câmera. Desse modo, é possível obter uma frequência maior do

controlador, devido ao paralelismo e divisão de tarefas nos códigos.
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4 RESULTADOS

4.1 Simulações

Para os cenários de simulação, foram traçados gráficos com os erros de distância

longitudinal, distância lateral, velocidade e ângulo de orientação. As Figuras 11, 12, 13, 14,

15, 16, 17, 18, 19, 20, 21 e 22 mostram os dados para o cenários 1, 2, 3 e 4, respectivamente,

sendo três Figuras por cenário, uma para cada regulador e uma para o caminho percorrido.

Para cada cenário 3.1.1, foram utilizados os parâmetros da Tabela 1 e simulados ambos os

reguladores, com e sem ruídos no controle. Os ruídos consistem na aplicação de algum

sinal de controle de variação brusca, como ângulo de esterçamento máximo para algum

dos lados ou frenagem repentina.

Cenário vcol (km/h) Dlat (m) R Ts (s)

1 10 3

[
1 0
0 1

]
0,01

2 10 3

[
1 0
0 1

]
0,01

3 10 5

[
1 0
0 1

]
0,01

4 10 7

[
1 0
0 10

]
0,01

Laboratório Variável Variável

[
1 0
0 0, 2

]
0,1

Tabela 1 – Parâmetros de simulação

As matrizes Q,EF e EG tiveram seus valores idênticos para todos os cenários de

simulação e laboratório:

Q =


100 0 0 0

0 50 0 0

0 0 10 0

0 0 0 1

 , EF =
[
0, 01 0, 01 0, 02 0, 001

]
,

EG =
[
0, 007 0, 001

]
, H =


0

0, 001

0

0

 .

Os valores de velocidade foram escolhidos baseados nos valores reais de velocidades

de colheitadeiras no cenário proposto, da operação de transbordo. Já as distâncias laterais
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foram definidas de acordo com cada situação e suas restrições físicas. Por fim, as matrizes

foram obtidas por tentativa e erro, de modo a otimizar os controladores.
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Figura 11 – Cenário 1 - Linha reta - LQR

(a) Estados

(b) Sinais de controle

Elaborado pelo autor.
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Figura 12 – Cenário 1 - Linha reta - RLQR

(a) Estados

(b) Sinais de controle

Elaborado pelo autor.
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Figura 13 – Cenário 1 - Caminho percorrido

Elaborado pelo autor.
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Figura 14 – Cenário 2 - Rotatória - LQR

(a) Estados

(b) Sinais de controle

Elaborado pelo autor.
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Figura 15 – Cenário 2 - Rotatória - RLQR

(a) Estados

(b) Sinais de controle

Elaborado pelo autor.
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Figura 16 – Cenário 2 - Caminho percorrido

Elaborado pelo autor.
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Figura 17 – Cenário 3 - Trajeto curto com retas e curvas - LQR

(a) Estados

(b) Sinais de controle

Elaborado pelo autor.
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Figura 18 – Cenário 3 - Trajeto curto com retas e curvas - RLQR

(a) Estados

(b) Sinais de controle

Elaborado pelo autor.
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Figura 19 – Cenário 3 - Caminho percorrido

Elaborado pelo autor.



52

Figura 20 – Cenário 4 - Trajeto longo com retas e curvas - LQR

(a) Estados

(b) Sinais de controle

Elaborado pelo autor.
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Figura 21 – Cenário 4 - Trajeto longo com retas e curvas - RLQR

(a) Sinais de controle

Elaborado pelo autor.
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Figura 22 – Cenário 4 - Caminho percorrido

Elaborado pelo autor.
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4.2 Testes em laboratório

Para os testes em laboratório, foi utilizada uma frequência de 10Hz no controlador. A

Figura 23 mostra a visão da colheitadeira pela câmera.

Figura 23 – Visão da câmera no teste em laboratório

Fonte: Elaborado pelo autor.

Um experimento envolvendo retas e curvas foi realizado com os controladores. Para o

LQR, os valores dos estados são mostrados na Figura 24.

Figura 24 – Estados LQR - Laboratório

Fonte: Elaborado pelo autor.

É possível perceber que em um determinado momento há uma grande variação nos

erros de orientação, posição longitudinal, e posição lateral. Isso ocorreu, pois houve uma
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perda de referência no algoritmo de detecção do ArUco, que não identificou o marcador na

imagem, como mostrado na Figura 25.

Figura 25 – Perda de referência do ArUco

Fonte: Elaborado pelo autor.

Removendo os valores relativos a essa detecção, tem-se 4 frames removidos. Nesse

caso, o valor máximo da posição lateral relativa é de 0,67 m, aproximadamente, o que

resulta em um erro máximo de 0,17 m. Já a posição longitudinal relativa não passa de 0,1

m, conforme visto na Figura 26.

Nesse cenário, o controle RLQR não teve um desempenho capaz de acompanhar o

percurso. Simulando o cenário em linha reta, no qual a velocidade foi variada linearmente

com o tempo, foram obtidos os seguintes resultados para os controladores, mostrados nas

Figuras 27 e 28
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Figura 26 – LQR - Laboratório

(a) Estados

(b) Sinais de controle

Elaborado pelo autor.
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• LQR:

Figura 27 – LQR - Linha Reta - Laboratório

(a) Estados

(b) Sinais de controle

Elaborado pelo autor.
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• RLQR:

Figura 28 – RLQR - Linha Reta - Laboratório

(a) Estados

(b) Sinais de controle

Elaborado pelo autor.
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5 CONCLUSÃO

Com a implementação dos reguladores LQR e RLQR e testes em simulação e laboratório,

foi possível observar que, os controladores tendem a seguir a referência e zerar o erro para

os estados do modelo proposto. Entretanto, foram observados alguns pontos que impediram

a aplicação prática e resultados esperados em simulações.

Nas simulações, percebe-se um erro de regime permanente na distância longitudinal,

como no cenário 1, em linha reta. Isso se deve, provavelmente, ao ponto utilizado como

referência para o erro nulo, obtido pelos estados da colheitadeira. Esse ponto é calculado e

utilizado no algoritmo de controle, mas, enquanto isso acontece, a posição da colheitadeira

já se atualizou e, consequentemente, também foi atualizada a posição desejada. Pelo

movimento do veículo se dar principalmente no eixo longitudinal, este é um estado mais

afetado por essa defasagem na estimativa. Uma alternativa seria estimar essa defasagem

de tempo e estimar um ponto mais a frente considerando a velocidade da colheitadeira

ou otimizar o processamento do controlador. Além disso, percebe-se que em curvas o

controle não zera o erro de regime, e que, geralmente, apresenta erro positivo na distância

longitudinal, erro negativo na velocidade e erro positivo na distância lateral. Isso pode ser

consequência da estimação da posição desejada, conforme mencionado anteriormente.

Na prática, o LQR foi capaz de seguir a referência relativamente bem, com erros

pequenos. Isso se deve, principalmente, aos erros associados às estimativas de posições

provenientes da câmera. O maior problema foi a perda de referência do marcador pelo

algoritmo, o que se provou um problema consistente no decorrer dos diversos experimentos.

Uma possível solução seria utilizar mais marcadores e determinar os estados por meio da

detecção deles, oferencendo um mecanismo de redundância e maior precisão.

Outro problema prático foi a frequência de aquisição de imagens e do controlador. A

frequência máxima de aquisição de imagens era próxima de 15 fps com o controlador

operando. Desse modo, a frequência do controlador utilizada foi de 10Hz. Certamente uma

frequência maior seria capaz de obter resultados mais próximos do esperado.

Por fim, um possível problema pode ser a modelagem cinemática utilizada. O desenvol-

vimento de uma modelagem dinâmica pode trazer resultados melhores ao considerar as

forças atuantes no veículo.

Como continuação deste trabalho, é possível buscar otimizar os algoritmos, desenvolver

formas mais robustas de aquisição e estimação de dados por meio de odometria visual e

utilizar a modelagem dinâmica.
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