
UNIVERSIDADE DE SÃO PAULO

ESCOLA DE ENGENHARIA DE SÃO
CARLOS

DEPTO. DE ENGENHARIA ELÉTRICA E
DE COMPUTAÇÃO

Construção de um Assistente Pessoal
Open Source

Autor: Guilherme Cabral da Silva, n𝑜. USP: 9403343
Autor: Samuel S. do Espírito Santo, n𝑜. USP: 9393221
Orientador: Prof. Dr. José Roberto B. A. Monteiro

Guilherme Cabral da Silva,
Samuel Santos do Espírito Santo

Construção de um Assistente Pessoal Open Source

Trabalho de conclusão de curso de Engenha-
ria Elétrica apresentado à Escola de Enge-
nharia de São Carlos da Universidade de São
Paulo - USP, sob a orientação do Prof. Dr.
José Roberto.

Universidade de São Paulo

Escola de Engenharia de São Carlos

Departamento de Engenharia Elétrica

Orientador: Prof. Dr. José Roberto B. A. Monteiro

São Carlos

05 de Novembro de 2019

AUTORIZO A REPRODUÇÃO E DIVULGAÇÃO TOTAL OU PARCIAL DESTE
TRABALHO, POR QUALQUER MEIO CONVENCIONAL OU ELETRÔNICO,
PARA FINS DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE.

 Silva, Guilherme Cabral da

S586c Construção de um assistente pessoal open source / Guilherme

Cabral da Silva, Samuel Santos do Espírito Santo; orientador

José Roberto B. A. Monteiro. -- São Carlos, 2019.

 Monografia (Graduação em Engenharia Elétrica com ênfase em

Eletrônica) -- Escola de Engenharia de São Carlos da

Universidade de São Paulo, 2019.

 1. Código aberto. 2. Desenvolvimento em comunidade.

3. Raspberry. 4. Assistente pessoal. 5. Python. I. Espírito

Santo, Samuel Santos do. II. Título.

Elaborado por Eduardo Graziosi Silva- CRB-8/8907

Agradecimentos

A Deus, em primeiro lugar, que nos proporcionou essa oportunidade e nos capaci-
tou e conduziu ao longo dessa jornada.

Aos nossos pais e irmãos, por todo o apoio, motivação e por sempre proporcionarem
as melhores condições para alcançarmos os nossos objetivos.

Ao nosso professor Dr. José Roberto B. A. Monteiro pela orientação, apoio, paci-
ência e oportunidade de realizar esse projeto.

E aos nossos amigos que nos acompanharam durante toda essa trajetória, nos
auxiliando em diversos momentos.

Resumo

Este projeto busca desenvolver um assistente pessoal de baixo custo, que
permita a democratização do conhecimento, da tecnologia e que possui flexibi-
lidade para o desenvolvimento de novas funcionalidades. Tendo como principal
elemento uma Raspberry Pi 3, o assistente pessoal procura servir como base
para o desenvolvimentos de projetos futuros e disseminar os conhecimentos em
IoT e assistentes pessoais. Para tal este conta com algumas funções atrativas,
como, agenda, sistema de segurança, verificação da temperatura e umidade
ambiente e interação por comando de voz. Este trabalho tem ainda como um
dos seus principais objetivos a disponibilização do seu código de forma aberta
(open-source), e visa o auxilio da comunidade para desenvolvimentos futuros
(Community development).

Palavras Chaves: Código aberto, Desenvolvimento em Comunidade,
Raspberry, Assistente Pessoal, Python.

Abstract

This project seeks to develop a low-cost personal assistant that allows the
democratization of knowledge, technology and has the flexibility to develop
new features. With a Raspberry Pi 3 as its main element, the personal assis-
tant looks to serve as a base project for future developments and to disseminate
the knowledge of IoT and Personal Assistants. With that in mind it counts
with some attractive functions such as schedule, security system, environment
temperature and humidity checking and voice command interaction. This
work also has as one of its main objectives the availability of its open source
code, and aims to help the community for future development.

Keywords: Open Source, Community Development, Raspberry, Personal
Assistant, Python.

Lista de ilustrações

Figura 1 – Raspberry Pi 3 Model B . 21
Figura 2 – Display LCD 3.5inch . 22
Figura 3 – Sensor de presença PIR HC-SR501 . 24
Figura 4 – Hardware PIR . 25
Figura 5 – Ajustes de operação do PIR . 25
Figura 6 – Sensor de temperatura DHT11 . 26
Figura 7 – WebCam Goldship 3817 . 27
Figura 8 – Super Mini USB 2.0 Microphone . 28
Figura 9 – Servo motor TowerPro MG995 . 29
Figura 10 – PCA9685 Adafruit . 30
Figura 11 – Disposição do sistema operacional no computador 31
Figura 12 – Estrutura HTML . 34
Figura 13 – Estrutura HTML (1) . 35
Figura 14 – Estrutura HTML (2) . 35
Figura 15 – Estrutura HTML (3) . 35
Figura 16 – Estrutura HTML com componente de javascript 36
Figura 17 – Arquitetura do Sistema . 43
Figura 18 – Cartão micro SD . 44
Figura 19 – Configurações no MAC . 45
Figura 20 – Terminal Putty . 46
Figura 21 – Interface DreamWeaver . 48
Figura 22 – Função Ajax para o Controle dos servos Motores 49
Figura 23 – Código HTML, CSS - Temperatura e Umidade 49
Figura 24 – Código Python - Temperatura e Umidade 50
Figura 25 – Código HTML – complete, Incomplete 51
Figura 26 – Método de Tarefa Completada . 51
Figura 27 – Exemplo arquivo Python . 52
Figura 28 – Exemplo arquivo kivy . 53
Figura 29 – Tela kivy . 54
Figura 30 – Exemplo código Python com kivy . 55
Figura 31 – Interface Kivy (1) . 56
Figura 32 – Código Kivy - Interface (1) . 56
Figura 33 – Código Kivy - Interface (2) . 57
Figura 34 – Kivy - Interface (2) . 58
Figura 35 – Código Kivy - Interface (3) . 59
Figura 36 – Kivy - Interface (3) . 60

Figura 37 – Esquemático motores e RPi . 61
Figura 38 – Rotas de controle do motor . 62
Figura 39 – Método servo_position . 62
Figura 40 – Esquemático PIR . 63
Figura 41 – Método de configuração do sensor PIR 64
Figura 42 – Método de envio do email . 64
Figura 43 – Esquemático DHT11 . 65
Figura 44 – Método readDht11 . 65
Figura 45 – Rota para receber os valores do sensor DHT11 66
Figura 46 – Menu de Configuração RPi, Opções Avançadas 66
Figura 47 – Menu de Configuração RPi, Expandir Sistema 67
Figura 48 – Método teste OpenCV . 71
Figura 49 – Método runFaceDetector . 71
Figura 50 – Método getImage . 72
Figura 51 – Método sendVideo . 72
Figura 52 – Método generateVideo . 73
Figura 53 – Endereço cameraview . 73
Figura 54 – Função create_collection . 75
Figura 55 – Função index_face . 75
Figura 56 – Função faceMatch . 76
Figura 57 – Configuração do arquivo config.txt . 77
Figura 58 – Configuração do arquivo asounf.conf 77
Figura 59 – Método speak . 79
Figura 60 – Desenvolvimento de skills . 79
Figura 61 – Banco de dados python (1) . 81
Figura 62 – Banco de dados python (2) . 81
Figura 63 – Página de Entrada WEB . 84
Figura 64 – Página de Aplicativos . 85
Figura 65 – Exemplo Interface Modo Vigia . 86
Figura 66 – Interface de Temperatura e Umidade 87
Figura 67 – Interface Agenda . 88
Figura 68 – Teste da Variação do Tamanho da Imagem Enviada 90
Figura 69 – Picos de tempo no início do teste . 91
Figura 70 – Teste com variação da imagem de entrada 92
Figura 71 – Teste em tempo real . 93
Figura 72 – Tempo de Requisição do Controle de Voz 94
Figura 73 – Erro no Reconhecimento de Voz . 95
Figura 74 – Teste de temperatura . 96
Figura 75 – Teste de Consumo da CPU . 97

Lista de tabelas

Tabela 1 – Características técnicas Display LCD 3.5inch 22
Tabela 2 – Características Display LCD . 23
Tabela 3 – Características técnicas PIR . 24
Tabela 4 – Características técnicas DHT11 . 26
Tabela 5 – Características técnicas WebCam Goldship 3817 27
Tabela 6 – Características técnicas Super Mini USB 2.0 Microphone 28
Tabela 7 – Características técnicas TowerPro MG995 28

Sumário

Lista de ilustrações . 6

Lista de tabelas . 8

Sumário . 9

1 INTRODUÇÃO . 13
1.1 Objetivo . 14
1.2 Organização do Trabalho . 15

2 FUNDAMENTOS . 16
2.1 Produto Final . 16
2.2 Sistemas Embarcados . 16
2.3 IoT . 16
2.4 Sensores . 17
2.5 Atuadores . 17
2.6 Computação na Nuvem . 18
2.7 Open Source . 18

3 MATERIAIS . 20
3.1 Estrutura de Hardware . 20
3.1.1 Raspberry Pi 3 Model B . 20
3.1.2 LCD . 21
3.1.3 Sensores . 23
3.1.3.1 Sensor de Presença . 23

3.1.3.2 Sensor de Temperatura e Umidade . 25

3.1.3.3 Câmera . 26

3.1.4 Mini Microfone USB . 27
3.1.5 Servo Motor . 28
3.2 Sistemas Operacionais . 30
3.2.1 Raspbian . 31
3.3 Estrutura de Software . 32
3.3.1 Python . 32
3.3.2 Web Server . 32
3.3.2.1 Flask . 33

3.3.3 Páginas WEB . 33
3.3.3.1 HTML . 33

3.3.3.2 CSS . 34

3.3.3.3 JavaScript . 35

3.3.4 Banco de Dados . 36
3.3.4.1 SQLite . 37

3.3.5 Interface Homem-Máquina . 38
3.3.5.1 Interface Gráfica . 38

3.3.5.2 Visão Computacional . 38

3.3.5.2.1 OpenCV . 39

3.3.5.3 Amazon Web Services . 40

3.3.5.3.1 AWS Rekognition . 40

3.3.5.4 Comando de Voz . 41

3.3.5.4.1 Google Assistant . 42

4 DESENVOLVIMENTO . 43
4.1 Arquitetura do Sistema . 43
4.2 Configuração da Raspberry PI . 44
4.3 Configuração do Servidor Flask . 47
4.4 Web . 47
4.4.1 DreamWeaver . 48
4.4.2 Página Inicial e de Aplicativos . 48
4.4.3 Página Modo Vigia . 49
4.4.4 Página Sensoriamento (Temperatura e Umidade) 49
4.4.5 Página Agenda . 50
4.5 Interface Gráfica . 51
4.5.0.1 Geração de Telas . 55

4.6 Sistema de Segurança . 60
4.6.1 Configuração do Motor . 60
4.6.2 Configuração do Sensor PIR . 62
4.6.3 Configuração DHT11 . 64
4.6.4 Configuração OpenCV . 66
4.6.4.1 Preparando Ambiente OpenCV . 70

4.6.4.2 Implementação Geral . 71

4.6.4.3 Implementação WEB . 72

4.6.5 Configuração AWS Rekognition . 73
4.7 Comando de Voz . 76
4.7.1 Configuração do Google Assistant . 76
4.7.2 Desenvolvimento de Skills . 78
4.8 Desenvolvimento do Banco de Dados 80
4.9 Característica Open-Source . 81

5 RESULTADOS E DISCUSSÕES 83
5.1 Interação com o Usuário . 83
5.1.1 Web . 83
5.1.1.1 Página Inicial . 83

5.1.1.2 Página de Aplicativos . 84

5.1.1.3 Página Modo Vigia . 85

5.1.1.4 Sensor de Temperatura e Umidade . 86

5.1.1.5 Agenda WEB . 87

5.2 Sistema de Segurança . 88
5.2.1 Controle Câmera . 88
5.2.2 Detector de Presença . 89
5.2.3 Reconhecimento Facial . 89
5.2.3.1 Testes AWS Rekognition . 89

5.3 Controle de Voz . 93
5.4 Performance do Sistema . 95

6 CONCLUSÃO . 98
6.1 Aprimoramentos Futuros . 99

Referências . 100

APÊNDICES 106

APÊNDICE A – GERENCIADOR DO SERVIDOR: SERVER.PY 107

APÊNDICE B – PROGRAMA MAIN.PY 110

APÊNDICE C – PROGRAMA AWSCONNECTION.PY 112

APÊNDICE D – PROGRAMA CAMERA.PY 113

APÊNDICE E – PROGRAMA KIVY_GUI.PY 115

APÊNDICE F – PROGRAMA PERSONAVERIFICATION.PY . . 119

APÊNDICE G – PROGRAMA SECURITY.PY 121

APÊNDICE H – PROGRAMA SENSOR.PY 122

APÊNDICE I – PROGRAMA SERVOMOTOR.PY 123

APÊNDICE J – CÓDIGO PÁGINA PRINCIPAL HTML 124

APÊNDICE K – CÓDIGO HTML PÁGINA APLICATIVOS . . . 127

APÊNDICE L – CONTROLE MOTORES E CAMERA HTML . 130

APÊNDICE M – CÓDIGO HTML TEMPERATURA E UMIDADE 133

APÊNDICE N – TODO HTML 138

12

1 Introdução

A humanidade, com o passar dos anos, vem encontrando novas formas cada vez
mais orgânicas de se utilizar da tecnologia no auxilio das tarefas diárias. Atualmente uma
das áreas de maior crescimento dentro do ramo tecnológico são os assistentes pessoais
e os IoTs[1][2]. Apesar do grande foco dado atualmente aos assistentes pessoais, a sua
concepção é antiga. Desde 1987 a Apple vem tentando implantar tecnologias que buscam
realizar tais funções, como o seu “Knowledge navigator” [3]. Os assistentes pessoais têm
como principal objetivo simplificar ações diárias que vão desde grandes tarefas como
controlar uma frota de carros a até fazer as compras do mês [4] [5].

Os elementos IoTs, ou Internet of Things, por sua vez são:

“Elementos que tem como principal função fazer com que objetos (moveis,
imoveis e dispositivos) inteligentes sejam o bloco de desenvolvimento do es-
paço físico-cibernético permitindo que os mesmos interajam entre si e com os
usuários realizando ações de forma a facilitar a vida dos seus usuários.” [6][7]

Porém apesar de todo o esforço de grandes empresas em criar tecnologias como
essas, poucas acabam sendo acessíveis ao publico em geral. Principalmente na socie-
dade brasileira onde essas tecnologias apresentam preços elevados e até mesmo um acesso
restrito.

Apesar do acesso restrito no Brasil em outros lugares do mundo cada vez mais
assistentes pessoais vem surgindo como as opções Alexa (desenvolvida pela Amazon), o
Google Home (Google), a Cortana (Microsoft), dentre outros. Essas tecnologias por sua
vez buscam integrar a modernização ao dia a dia das pessoas de forma estruturada e
eficiente.

Dessa forma as pessoas podem se sentir cada vez mais confortáveis com os equi-
pamentos IoTs e com o auxilio da tecnologia. Motivado por essa nova tendência que
nasce a ideia do assistente pessoal apresentado neste trabalho o qual recebeu o nome de
MUSK, o qual recebeu esse nome como uma homenagem ao cientista e empreendedor
Elon Musk, que vem tendo importantes contribuições no setor tecnológico. Um assistente
pessoal de código aberto que permite acesso a tecnologias de ponta, tornando dessa forma
o conhecimento deste tipo de aplicação acessível.

Introdução Organização do Trabalho

1.1 Objetivo

Este trabalho tem como objetivo a idealização e desenvolvimento de um assistente
pessoal capaz de realizar tarefas diárias a partir do controle de dispositivos externos. Foi
então construído um protótipo para que dessa forma fosse possível verificar o funciona-
mento do assistente pessoal aqui projetado. Por sua vez, o protótipo é uma iniciativa
que serve como base para o desenvolvimento de projetos mais complexos e diversificados,
como os assistentes pessoais comerciais (e.g.: Google Home, Echo Dot e etc).

Assim o MUSK foca na habilidade de ser integrado a diversos dispositivos, módulos
e atuadores, garantindo a sua flexibilidade e adaptação a necessidade do usuário e do
próprio projetista.

Em relação à iniciativa Open Source, o protótipo permite que pessoas de diver-
sas classes sociais possam ter acesso a ferramentas de desenvolvimento de tecnologias
avançadas e em alto crescimento dentro do mercado atual.

O grande diferencial do MUSK apresenta-se no fato deste ser um dos primeiros
projetos de assistente pessoal de código aberto e que é capaz de contar com o auxilio de
construção por comunidade.

É com o intuito de democratizar a tecnologia permitindo que tanto entusiastas
quanto amadores tenham acesso a esta tecnologia em expansão que reside o principal
objetivo do MUSK. Para conseguir alcançar tais objetivos utiliza-se elementos considera-
velmente mais simples e baratos e tem como intuito contar com um código aberto e com
apoio a comunidade.

Uma vez que um dos fundamentos do projeto está em utilizar-se de tecnologia
hodiernas o protótipo do MUSK tem como base a plataforma de processamento Raspberry
Pi, além de integrar sensores, dispositivos de áudio e imagem, atuadores eletromecânicos.
Em relação ao seu software embarcado determinou-se a utilização de um backend em
Python com o framework Flask, o banco de dados em SQLite e um frontend em HTML,
CSS e Javascript. O projeto ainda integra serviços da Amazon Web Services (AWS) e do
Google Cloud.

Por fim pode-se resumir que a grande relevância e objetivo deste projeto está em
possibilitar o conhecimento por parte dos alunos de tecnologias que são tendências no
mercado atual. Além de permitir o acesso a qualquer pessoa o poder de programar os
seus próprios aplicativos e ter o seu assistente pessoal personalizado, contribuindo assim
com a área de Internet das Coisas.

14

Introdução Organização do Trabalho

1.2 Organização do Trabalho

Este trabalho é dividido em 5 capítulos, contando com a introdução, conforme
descrito a baixo:

∙ Capítulo 2: Expõe os fundamentos básicos utilizados no projeto.

∙ Capítulo 3: Apresenta os materiais e ferramentas aplicadas no trabalho, além de
detalhar os procedimentos empregados.

∙ Capítulo 4: Discorre sobre os resultados obtidos até o fim do prazo útil.

∙ Capítulo 5: Conclui a discussão sobre o projeto, avaliando seus aspectos positivos
e negativos.

∙ Apêndices: Apresenta os códigos elaborados ao decorrer do trabalho.

15

2 Fundamentos

2.1 Produto Final

Uma vez que o objetivo final deste trabalho é a elaboração de um assistente pessoal
e este por sua vez constitui-se como um sistema embarcado, torna-se necessário que se
compreenda primeiramente o que é um sistema embarcado. Para tal será estudado suas
principais características, seus objetivos e a situação do atual deste sistema no mercado.

2.2 Sistemas Embarcados

Segundo a definição de Stallings[8], um sistema embarcado consiste em um sis-
tema micro-controlado no qual o computador é dedicado para uma aplicação específica,
diferentemente de computadores generalizados. Assim, o sistema embarcado realiza um
conjunto de tarefas pré-definidas em seu projeto, utilizando os mesmos componentes de
um computador em menor quantidade e embutidos em um único chip [8].

Devido a sua versatilidade e acessibilidade, os sistemas embarcados estão cada vez
mais difundidos em diversas áreas do cotidiano, como por exemplo [8]:

∙ Sistemas Automotivos: controle geral do carro, computadores de bordo e telemetria;

∙ Eletrodomésticos em geral;

∙ Drivers e periféricos de computador;

∙ Indústria: automação de processos e gerenciamento do sistema;

∙ Aparelhos de comunicação: celulares, elementos de redes e tablets.

Assim, a partir deste sistema, é possível a otimização do projeto ao reduzir tama-
nho, ferramentas computacionais e custos sem que ocorra uma perda de desempenho.

2.3 IoT

O termo Internet das Coisas (IoT) foi criado por Kevin Ashton, e é definida como
uma infraestrutura global para a sociedade conectada, possibilitando serviços avançados
através de interconexões de coisas (Físicas e Virtuais) baseadas em tecnologias de infor-
mação com interoperabilidade existentes ou em desenvolvimento [9].

Fundamentos Atuadores

Atualmente, as grandes empresas de Tecnologia da Informação (TI), como AWS,
Google e Microsoft, estão investindo massivamente em IoT, através do desenvolvimento
de plataformas em nuvem, com ferramentas que podem ser utilizadas na elaboração de
soluções em internet das coisas.

As áreas de maior impacto pela Internet das Coisas, são [10]:

∙ Otimização da Produção;

∙ Gestão de cadeia de fornecimento;

∙ Acompanhamento e gerenciamento de ativos;

∙ Tomada de decisões financeiras;

∙ Experiência do cliente.

2.4 Sensores

Um sensor é definido como um componente eletrônico que tem a capacidade de
transformar um evento físico em informação elétrica [11]. A partir desse dado, o sistema de
controle responsável pela leitura do dispositivo executa funções definidas anteriormente
em sua programação. No entanto, existem dois tipos de sinais emitidos por sensores:
analógicos e digitais.

O sensor analógico pode assumir quaisquer valores de tensão ao longo do tempo,
desde que esteja dentro de sua faixa de operação. Assim, antes de executar os comandos
programados no processador é necessário tratar o sinal analógico, ou seja, é realizada uma
conversão AD [12].

O sensor digital trabalha com valores discretos. A partir de circuitos eletrônicos,
o sinal destes sensores são convertidos resultando em apenas dois valores de operação ao
longo do tempo. Estes valores podem ser interpretados de acordo com a escala de bits
definida [12].

2.5 Atuadores

Atuadores são por definição [13] elementos que convertem energia elétrica, hi-
dráulica ou pneumática em mecânica e são utilizados nesse projeto para movimentar a
câmera, caso isto seja solicitado pelo usuário via integração Web. É possível classificar-se
os atuadores em dois tipos:

∙ Atuadores a base de Fluidos: São os atuadores que utilizam-se de ar ou óleo para
gerar o movimento. Estes possuem algumas características particulares como, o seu

17

Fundamentos Open Source

controle que normalmente se dá em forma de estados (ora contraído, ora acionado)
e não possuem controle quanto a velocidade de atuação.

∙ Atuadores Eletromagnéticos: Estes utilizam-se o fenômeno de que a energia
elétrica possui, uma vez que quando a mesma é capaz de gerar um campo magnético
ao ser transmitida através de um elemento condutor. Tais elementos são conhecidos
como motores elétricos e por sua vez, apesar de serem mais caros que os atuadores
hidráulicos e pneumáticos eles possuem um controle bem mais elevado.

2.6 Computação na Nuvem

Computação na nuvem, ou Cloud Computing como é mais popularmente conhe-
cido, é a oferta de poder computacional, armazenamento de dados, aplicativos e outros
serviços [14]. Devido a quebra de paradigma do oferecimento do poder computacional
como um serviço e não mas como um produto abrem-se espaços para que componentes
de hardware mais modesto sejam capazes de realizar operações mais complexas.

Dentre alguns dos serviços oferecidos estão armazenamento de banco de dados,
armazenamento de sites, analise de dados, reconhecimento facial, assistente de voz, entre
outros.

Alguns dos serviços populares usados ao longo deste trabalho são:

∙ AWS

∙ Google Asistant

∙ gTTS (Google Text To Speech)

2.7 Open Source

Open source é um termo em inglês que traduzido significa código aberto, ou seja,
quando um software é open source este tem como finalidade a liberação do código fonte,
sem licenças de uso, para a comunidade de desenvolvedores, assim qualquer pessoa pode
visualizar o código e sugerir alterações. A Open Source Initiative (OSI) é um organização
responsável pelo disseminação dessa cultura de software aberto ou livre. A OSI ainda
impôe dez condições para um software ser considerado open source [15]:

∙ Distribuição livre;

∙ O software deve ser distribuído com seu código fonte;

18

Fundamentos Open Source

∙ A licença do software deve fornecer permissões para que modificações sejam reali-
zadas;

∙ Integridade do autor do código fonte;

∙ Não discriminação contra pessoas ou grupos;

∙ Não discriminação contra áreas de atuação do usuário que deseja utilizar o programa;

∙ Distribuição da licença;

∙ O programa não pode fazer parte de outro software, sendo que para sua utilização
é necessária a distribuição de todo o código;

∙ O programa não pode colocar restrições em outros programas que estão sendo dis-
tribuídos juntos;

∙ A licença deve permitir que sejam adotadas interfaces, estilos e tecnologias sem
restrições.

19

3 Materiais

3.1 Estrutura de Hardware

O assistente pessoal utiliza de alguns componentes de hardware para a sua constru-
ção física. Dentre esses elementos são utilizados: microcomputador, sensores, atuadores
e dispositivos de áudio e som. Essa sessão tem como objetivo apresentar essas estruturas
com suas especificações técnicas e modos de utilização.

3.1.1 Raspberry Pi 3 Model B

Raspberry Pi (RPi) é um computador completo projetado em apenas uma placa
de circuito impresso, desenvolvido pela Fundação Raspberry Pi. Apesar de não possuir
um desempenho comparável com a de um computador de mesa moderno, a RPi é um
computador com grande capacidade para aquilo que se propõe, além de requisitar um
baixo consumo de energia.

Neste projeto foi utilizado a RPi 3 Model B, ilustrado na Figura 1, que possui
um System On Chip Broadcom BCM2837, cujo processador é um ARMv8 Cortex-A53
QuadCore com um clock de 1.2GHz. Sua memória RAM é de 1GB que por sua vez é
mais do que suficiente para a instalação de um Sistema Operacional e um Web Server
sem perda em sua capacidade de execução. Além disso a RPi ainda possui: [16]

∙ Bluetooth 4.1 BLE integrado;

∙ Adaptador Wifi 802.11n integrado;

∙ GPIO de 40 pinos;

∙ Interface para câmera e display;

∙ Slot para cartão SD;

∙ Conector de vídeo HDMI;

∙ 4 portas USB;

Materiais Estrutura de Hardware

Figura 1 – Raspberry Pi 3 Model B

Fonte:<https://br.rsdelivers.com/product/raspberry-pi/raspberry-pi-b/raspberry-pi-
model-b-sbc-computer-board/8111284>

A versão três da RPi é comparada, por muitos, a um PC devido ao seu elevado
desempenho [17]. Esse avanço de hardware em relação as versões anteriores, deve-se
a utilização de um processador de arquitetura Advanced RISC Machine (ARM). Essa
arquitetura é conhecida pela sua simplicidade, desempenho, baixo custo e consumo. Suas
principais características são [18]:

∙ Registradores em 32 bits;

∙ Dois conjuntos de instruções: ARM (32 bits) e THUMB (16 bits);

∙ Permite a execução condicional de várias instruções;

∙ Formato de instruções de 3 endereços: 2 registradores operandos e 1 registrador
resultado, independentemente especificados;

∙ Uniformidade e tamanhos fixos dos campos das instruções para facilitar a decodifi-
cação;

∙ Manipulação dos periféricos de I/O como dispositivos mapeados em memória;

∙ Tamanho do núcleo reduzido.

3.1.2 LCD

Para que fosse possível a interação visual com o usuário instalou-se uma tela LCD
sensível ao toque [19][20]. A tela LCD conta com 26 pinos, permitindo assim a conexão
de outros sensores e atuadores. As caraterísticas da tela LCD são apresentadas na Tabela
1.

21

Materiais Estrutura de Hardware

Tabela 1 – Características técnicas Display LCD 3.5inch

Variável Range
SKU MPI3501
Tipo de LCD TFT
Interface LCD SPI (Fmax: 32MHz)
Tipo de Touch-Screen Resistivo
Controlador de Touch-Screen XPT2046
Resolução 320 x 480 (Pixel)
Quantidade de Cores 65536
Corrente de Backlight 120mA
Dissipação de Energia 0.13A*5V ou 0,65W
Temperatura de Trabalho -20 60 oC
Dimensões da Tela 85,42 x 55,60 (mm)
Dimensões Combinadas 118 x 72 x 34 (mm)
Peso 75 g

Fonte:<https://www.filipeflop.com/produto/display-lcd-tft-touch-3-5-raspberry-pi/>

A tela instalada está presente na Figura 2.

Figura 2 – Display LCD 3.5inch

Fonte:<https://www.filipeflop.com/produto/display-lcd-tft-touch-3-5-raspberry-pi/>

22

Materiais Estrutura de Hardware

Por fim os pinos de saída estão presentes na Tabela 2.

Tabela 2 – Características Display LCD

PIN NO. Simbologia Descrição
1, 17 3.3V Alimentação (3.3V)
2, 4 5.0V Alimentação (5.0V)
3, 5, 7, 8, 10, 12,
13, 15, 16 NC Não Conectado

6, 9, 14, 20, 25 GND Ground

11 TP_IRQ

Touch Panel inter-
rupt- Nível Baixo
quando detecta to-
que

18 LCD_RS Instruction/Data
Register selection

19 LCD_SI / TP_SI SPI data input of
LCD/Touch Panel

21 TP_SO SPI data output of
Touch Panel

22 RST Reset

23 LCD_SCK / TP_SCK SPI clock of LCD/-
Touch Panel

24 LCD_CS LCD chip selection,
Ativo em nível baixo

26 TP_CS
Touch Panel chip se-
lection, Ativo em ní-
vel baixo

Fonte:<http://www.lcdwiki.com/3.5inch𝑅𝑃𝑖𝐷𝑖𝑠𝑝𝑙𝑎𝑦 >

3.1.3 Sensores

O MUSK utiliza sensores para detectar e responder estímulos do ambiente em que
está posicionado, como: detecção de presença e variações de temperatura.

3.1.3.1 Sensor de Presença

O sensor selecionado, para ser responsável pela verificação de eventuais presenças
no ambiente monitorado, é o PIR HC-SR501, ilustrado na Figura 3, uma vez que ele é
um dos mais utilizados devido a sua qualidade e facilidade de aplicação. A seguir estão
representadas na Tabela 3 as características do sensor [21].

23

Materiais Estrutura de Hardware

Tabela 3 – Características técnicas PIR
Variável Range
Tensão de Operação 4,5-20V
Tensão Dados 0V e 3,3V
Distância detectável 3 - 7m
Temperatura de Trabalho -20 +80oC
Dimensões LCD𝑅𝑆
Peso 7g

Fonte:<https://www.robocore.net/loja/sensores/sensor-de-presenca-pir-hc-sr501>

Figura 3 – Sensor de presença PIR HC-SR501

Fonte:<https://www.marinostore.com/sensores/sensor-de-movimento-e-presenca-pir>

O PIR possui dois modos de funcionamento: ’Auto Reset’ e ’No Reset’.

∙ Modo H (Auto Reset): após uma detecção o sensor reseta o ’tempo de saída’ e
retorna a função de verificação de movimento após um intervalo de tempo.

∙ Modo L (No Reset): não é necessário que o sensor efetue o reset após a detecção
de um movimento.

A configuração do hardware do sensor, é apresentado na Figura 4

24

Materiais Estrutura de Hardware

Figura 4 – Hardware PIR

Fonte:<https://fritzing.org/projects/hc-sr501-passive-infrared-sensor-pir>

O sensor ainda possui um controle de ’sensibilidade’ (Sensitivy) e ’tempo de saída’
(Output timing), conforme visto na Figura 5.

Figura 5 – Ajustes de operação do PIR

Fonte:<http://famillemoreau.hopto.org/Arduino/HC-SR501>

Em relação ao alcance, o PIR possui um campo de atuação razoável. Ele detecta
movimentos no formato de um cone de 110 graus a uma distante de 3 a 7 metros.

3.1.3.2 Sensor de Temperatura e Umidade

No projeto é utilizado o sensor DHT11, presente na Figura 6, para a aferição da
temperatura e umidade ambiente onde se encontra o assistente. O sensor possui quatro
pinos e utiliza apenas um para enviar os dados para a RPi. Os demais pinos são utilizados
para alimentação e aterramento e o terceiro não é utilizado. As características básicas do
sensor estão na Tabela 4 a seguir [22].

25

Materiais Estrutura de Hardware

Tabela 4 – Características técnicas DHT11
Variável Range
Alimentação 3 à 5,5 V
Faixa de leitura – Umidade 20 à 80%
Precisão umidade 5%
Faixa de leitura – Temperatura 0 – 50 oC
Precisão temperatura +/- 2 oC

Fonte:Autoria Própria

Figura 6 – Sensor de temperatura DHT11

Fonte:<https://www.filipeflop.com/produto/sensor-de-umidade-e-temperatura-dht11/>

3.1.3.3 Câmera

A câmera utilizada para a obtenção e streaming de imagens foi a câmera modelo
Goldship 3817, representada na Figura 7. A qual conta com uma resolução de 1.3M pi-
xels e foi executada em uma janela de 600 por 420 [23]. A utilização de uma câmera
com entrada USB comum, apesar de gerar certo atraso em relação a uma câmera que se
utiliza diretamente do barramento, permite uma fácil substituição do modelo de câmera
utilizado, facilitando-se assim upgrades de Hardware em futuras versões. Além disto as
bibliotecas utilizadas para o stream da câmera possibilita também a utilização de câme-
ras via barramento – tal como a PiCamera – caso a velocidade transmissão se torne algo
crucial em algum momento.

26

Materiais Estrutura de Hardware

Figura 7 – WebCam Goldship 3817

Fonte:<https://www.francavirtual.com.br/informatica/web-cam-s/web-cam-com-hub-
usb-multimidia-goldship-3817>

As características do modelo selecionado estão listadas na Tabela 5 a seguir.

Tabela 5 – Características técnicas WebCam Goldship 3817

Variável Range
Sensor CMOS 1.3M pixels
Resolução Máxima 4M pixels (interpolada)
TX Quadros 30 fps
Foco 5cm - Inf

Fonte:<https://www.francavirtual.com.br/informatica/web-cam-s/web-cam-com-hub-
usb-multimidia-goldship-3817>

3.1.4 Mini Microfone USB

Para a integração do serviço de comando de voz foi necessário utilizar o Super
Mini USB 2.0 Microphone, Figura 8. O dispositivo é considerado o menor do gênero no
mundo, além disso possui a característica de ser facilmente instalado devido a sua conexão
plug and play e seus drivers gratuitos. Em relação aos ruídos do ambiente, o microfone
possui filtros que cancelam essas oscilações, mas na prática observa-se um leve ruído nas
gravações de áudio realizadas [24]. Apesar disso, a API do Google Assistant consegue
absorver as informações do áudio de forma eficiente.

27

Materiais Estrutura de Hardware

Figura 8 – Super Mini USB 2.0 Microphone

Fonte:<https://mixvix.com.br/imprimir𝑎𝑛𝑢𝑛𝑐𝑖𝑜− 𝑝𝑟𝑒𝑐𝑜−722477 >

As especificações estão listadas na Tabela 6 a baixo.

Tabela 6 – Características técnicas Super Mini USB 2.0 Microphone

Variável Range
Sensibilidade -67dBV / pBar, -47dBV / Pascal +/- 4dB
Resposta de Frequência 100 - 16kHz
Tensão de Operação 4.5V
Peso 3g
Fonte:<https://mixvix.com.br/imprimir𝑎𝑛𝑢𝑛𝑐𝑖𝑜− 𝑝𝑟𝑒𝑐𝑜−722477 >

3.1.5 Servo Motor

Para o controle posicional do MUSK foi necessário a utilização do Servo TowerPro
MG995, Figura 9, uma vez que ele possui uma alta qualidade, precisão, dimensão e facili-
dade no controle. As características principais estão sendo amostrados na Tabela 7 seguir.

Tabela 7 – Características técnicas TowerPro MG995
Parâmetro Valor
Tensão de Operação 4,8 a 7,2V
Temperatura de Operação -20oC a +60oC
Torque 13,0 Kg.cm (4,8V) e 15,0 Kg.cm (6,0V)
Velocidade 0,17 seg/60o (4,8V) e 0,14 seg/60o (6,0V)
Peso 69g
Dimensões 40 x 19 x 43 mm
Faixa de Rotação 180o

Tamanho do cabo 30 cm
Fonte:<https://mixvix.com.br/imprimir𝑎𝑛𝑢𝑛𝑐𝑖𝑜− 𝑝𝑟𝑒𝑐𝑜−722477 >

28

Materiais Estrutura de Hardware

Figura 9 – Servo motor TowerPro MG995

Fonte:<https://www.filipeflop.com/produto/servo-towerpro-mg995-metalico/>

O servo motor é um dispositivo eletromecânico controlado a partir da Modulação
da Largura de Pulso (ou Pulse Width Modulation - PWM), onde o ângulo do motor é
proporcional ao Duty Cycle do sinal. Para gerar o pulso PWM e utiliza-se o módulo
PCA9685 da Adafruit, Figura 10 de baixo custo que estabelece a comunicação dos servos
com a RPi através do protocolo [25].

A vantagem principal desse tipo de comunicação é o fato dele necessitar apenas dos
pinos SDA e SCL para monitorar a ação dos servos, sendo que o número de periféricos
que podem ser conectados ao módulo é de 16, logo se o projeto exigisse mais motores
estes poderiam ser conectados e controlados facilmente com o PCA9685, sem prejudicar
a estabilidade ou velocidade de processamento do sistema.

29

Materiais Sistemas Operacionais

Figura 10 – PCA9685 Adafruit

Fonte:<https://www.adrobotica.com/produto/servo-driver-16-canais-pca9685/>

3.2 Sistemas Operacionais

A definição de sistema operacional (SO) é algo um pouco impreciso [26]. A defini-
ção mais difundida é de que o SO consiste em um programa, ou conjunto de programas,
responsáveis pelo gerenciamento dos recursos do computador, além de implementar uma
interface entre máquina e o usuário através da comunicação com a camada de aplicação.
Mais especificamente, o SO tem como função [26]:

∙ Gerenciamento de memória: permite que o usuário acesse de forma segura a
memória durante suas requisições, além de garantir que cada aplicação tenha seu
endereço próprio;

∙ Gerenciamento de processos: possibilita a impressão de que as tarefas estão
sendo executados simultaneamente, no entanto o que ocorre é um partição do tempo
para cada processo a partir do scheduler (escalonador) causando essa falsa concor-
rência;

∙ Gerenciamento de recursos: responsável por controlar o acesso das aplicações
aos recursos do sistema, de forma eficiente, evitando a ocorrência de deadlocks;

∙ Controle de fluxo de dados: abstrai a complexidade da interface do hardware dos
dispositivos periféricos, além de apresentar uma interface amigável para o usuário
controlar de forma segura os dados;

∙ Controle do sistema de arquivos: controla o armazenamento e recuperação de
informações de modo constante.

30

Materiais Sistemas Operacionais

Outra característica importante do SO a ser ressaltada é a sua operação em modo
núcleo, onde possui acesso completo a todo o hardware e pode executar qualquer instru-
ção existente na capacidade da máquina. Em contrapartida os demais softwares atuam
em modo usuário, onde possuem um subconjunto limitado de instruções da máquina
disponível [26].

A Figura 11 ilustra de forma clara a disposição em camadas do sistema operacional
dentro do computador.

Figura 11 – Disposição do sistema operacional no computador

Fonte:Autoria Própria

3.2.1 Raspbian

O Raspbian é uma variante não oficial do Debian (Wheezy armhf), sendo esta
otimizada para códigos “hard float”. Desta forma possibilitando uma performance muito
mais veloz para aplicações que fazem o uso intensivo de operações aritméticas com ponto
flutuante e com as instruções ARMv6 [16].

Esta distribuição é fornecida gratuitamente, sendo inicialmente desenvolvida por
Mike Thompson e Peter Green juntamente com entusiastas da placa Raspberry Pi [27].
O Raspbian tem como o seu ambiente padrão de desktop o LXDE, como gerenciador de
janelas o OpenBox e navegador Chromium. Disponibilizado pela fundação Raspberry Pi
este conta com uma versão do Mathematica e de uma versão para a Rasperry do jogo
Minecraft.

Em função das necessidades deste projeto a versão utilizada do Raspbian foi uma
imagem fornecida pela 𝐴𝐼𝑌 𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑠−𝐺𝑜𝑜𝑔𝑙𝑒. A qual por sua vez tem como base a versão
Stretch, contando porém com algumas alterações. Entre elas a instalação das bibliotecas
do Google Assistant e algumas modificações nos arquivos responsáveis pelas configurações
da Raspberry. [27] [28]

Estes arquivos foram novamente modificados durante o projeto para que fosse

31

Materiais Estrutura de Software

possível sobrescrever os requisitos de hardware fornecidos pela 𝐴𝐼𝑌 𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑠 − 𝐺𝑜𝑜𝑔𝑙𝑒.
Permitindo assim que o software de reconhecimento de voz fosse utilizado dentro dos
nossos parâmetros de hardware e software.

3.3 Estrutura de Software

A partir dos componentes de hardware selecionados foi integrado elementos de
software no desenvolvimento do sistema embarcado. O assistente pessoal faz uso de lin-
guagens, como Python, SQL, HTML, CSS e Javascript, frameworks, bibliotecas de visão
computacional e web services. Assim, essa sessão tem como finalidade apresentar as
estruturas de software utilizadas pelo MUSK.

3.3.1 Python

Para realizar a integração de todos os elementos de software presentes no projeto
é utilizada o Python. Essa linguagem é uma das mais populares no mercado, devido ao
seu alto nível, a sua versatilidade, sua curva de aprendizagem e a facilidade da leitura
do código. Suas aplicações abrangem diversas áreas da computação: Backend, criação
de CGIs para páginas dinâmicas scripts de execução e testes, processamento e análise de
dados e principalmente machine learning.

A sua versatilidade é resultado da sua característica multiparadigma. O Python
permite a programação utilizando conceitos de orientado a objetos, funcionais, impera-
tivos e procedural. Além disso é uma linguagem de tipagem dinâmica, ou seja, que se
adapta de acordo com o intuito e paradigma da aplicação. Ainda, por ser uma linguagem
interpretada faz uso de programas chamados de interpretadores que realizam a leitura do
código e a tradução para uma estrutura familiar ao sistema que irá executá-la. [29]

3.3.2 Web Server

O servidor Web tem como propósito o gerenciamento das requisições e respostas
que ocorrem durante a interação do cliente com a aplicação no servidor. Assim, este é
responsável pelas abstrações que tornam possível o envio de informações hipertexto.

Para realizar a comunicação entre os dois lados é utilizado o protocolo HTTP, que
possibilita a estruturação das informações que serão transmitidas. O conteúdo de uma
requisição ao servidor possui o tipo do método HTTP utilizado, o identificador da página
que será acessada e os parâmetros do processo. Já o conteúdo da resposta possui o status
da requisição, o tipo e o corpo do conteúdo a ser enviado para o cliente [30].

Os principais métodos do protocolo HTTP estão descritos a seguir [31].

32

Materiais Estrutura de Software

∙ GET: solicita a transmissão de uma informação específica do servidor;

∙ POST: submete um corpo de dados já codificados para processar no servidor;

∙ PUT: envia arquivos para atualizar o servidor;

∙ DELETE: possibilita a exclusão de arquivos no lado do servidor.

3.3.2.1 Flask

Para o desenvolvimento do servidor Web responsável por controlar e fornecer al-
gumas funcionalidades do assistente foi necessário determinar um ambiente de trabalho
leve e simples para embarcar na Raspberry. Assim foi definido a utilização do Flask.

Segundo sua documentação, Flask é um micro-framework para aplicações Web que
possui um núcleo simples e extensível, baseado nas bibliotecas WSGI Werkzeug, que é a
interface padrão entre a aplicação Web python e o servidor HTTP para o desenvolvimento
e aplicação, e Jinja 2, que é responsável pela renderização dos templates [32].

Uma das grandes vantagens do Flask é flexibilidade e capacidade de adaptação,
suportando extensões para adicionar funcionalidades específicas na sua aplicação como se
ela tivesse sido implementada no próprio framework.

O Flask não possui uma camada de abstração de banco de dados, o que permite que
o usuário decida a biblioteca que irá ser utilizada no sistema. Permite a implementação
de ferramentas de manipulação de bancos complexas, tanto para relacional quanto para
não-relacional [33].

3.3.3 Páginas WEB

As páginas web, popularmente conhecidas como “sites”, foram desenvolvidas com
base nas três principais linguagens de WEB, que são HTML, CSS e JavaScript (jQuery
e Ajax) [34][35]. Os sites foram posteriormente estilizados com a ajuda da ferramenta
DreamWeaver fornecida em forma de teste por 15 dias pela Adobe Co.

A seguir se observará quais as funções de cada linguagem e ferramentas utilizadas
ao longo deste processo. Serão também apresentados alguns exemplos uteis e fundamen-
tais tanto para o entendimento da linguagem como da confecção do trabalho.

É importante se enfatizar que para cada página web é necessário a geração de um
novo código, o que torna este trabalho consideravelmente grande.

3.3.3.1 HTML

A linguagem HTML – ou, Hyper Text Markup Language(Linguagem de Marcação
de Hipertexto em português) - foi criada (ainda não era uma linguagem, mas um conjunto

33

Materiais Estrutura de Software

de ferramentas) por Tim Berners-Lee em 1991 com o intuito de facilitar a disseminação
de artigos científicos [36][37]. Porém devido a sua sintaxe amigável e a popularização da
internet esta linguagem passou a ser a principal linguagem web e vem constantemente se
atualizando.

Atualmente o HTML encontra-se em sua versão 5.2, sendo que ao passar do tempo
a sua linguagem passou a se tornar mais rígida. Atualmente o HTML tem como a principal
função apresentar – ou exibir - e organizar a informação de determinado site. Para tal
a semântica do HTML é dividida em tags – ou marcações – as quais são iniciadas e
terminadas em parênteses angulares (e.g.: < >).

Na Figura 12, pode se observar o cabeçalho retirado da página “home_inside.html”
na qual é possível atentar-se para a formatação básica de um código a qual conta com uma
tag, head, html, body e por fim algumas tags de descrição, documentação e compilação –
e.g.: “!doctype”.

Figura 12 – Estrutura HTML

Fonte:Autoria Própria

A tag html delimita o inicio e o fim dos códigos em HTML. A tag head é responsável
por conectar, organizar e apresentar certos arquivos, funções e informações que não são
visíveis diretamente na página [36]. Alguns dos exemplos de informações contidas no
head é o titulo da página, links para arquivos CSS e JavaScript além de informações da
compilação do texto presente no body – UTF-8 -.

Já dentro da tag body está presente toda a informação que ficará visível na tela
principal do usuário. Tal como títulos, subtítulos, texto, legenda, imagens e etc [36].

3.3.3.2 CSS

CSS ou, Cascade Style Sheets(Folha de Estilos Em Cascata) é uma linguagem
utilizada juntamente com o HTML e tem como o principal intuito melhorar a apresentação
da página, trabalhando sobre os seus designs, suas fontes, cores de fundo, entre outros[38].

Existem algumas maneiras diferentes de se utilizar o CSS ao longo de uma página
HTML. A maneira profissional, é gerar uma biblioteca, sendo que no head do código em
HTML existe uma referência para tal arquivo e ao longo do body é possível se referenciar
a tais estilos a partir do atributo class [38]. Um exemplo pode ser observado na Figura

34

Materiais Estrutura de Software

13 e 14.

Figura 13 – Estrutura HTML (1)

Fonte:Autoria Própria

Figura 14 – Estrutura HTML (2)

Dentro do arquivo .css introduzido no head tem-se o seguinte modelo, ilustrado na
Figura 15.

Figura 15 – Estrutura HTML (3)

Fonte:Autoria Própria

É possível ainda alterar-se determinadas características de uma classe com o atri-
buto style o que permite a se utilizar uma mesma classe de diferentes maneiras.

3.3.3.3 JavaScript

Dentre as linguagens WEB o JavaScript é a linguagem mais próxima a aquelas já
vistas ao longo do curso, tal como C. O JavaScript é uma linguagem de programação in-
terpretada. Em outras palavras o JavaScript tem como função automatizar determinados
comportamentos da página quando acionado.

É importante também salientar que o JavaScript é uma linguagem de programa-
ção cliente-servidor. Este comportamento por sua vez abre espaço para scripts os quais
funcionam de maneira muito semelhante à funções secundarias no C.

35

Materiais Estrutura de Software

O JavaScript pode estar presente em uma biblioteca separada e ser chamado a
partir do head HTML, conforme pode ser visto no código apresentado na Figura 16 seguir.

Figura 16 – Estrutura HTML com componente de javascript

Fonte:Autoria Própria

As funções em JavaScript também podem ser escritas diretamente dentro da tag
script dentro do header, esta utilização se apresentou como a mais interessante neste
trabalho pois foram necessárias poucas requisições entre cliente e servidor.

3.3.4 Banco de Dados

Segundo Korth, um banco de dados (BD) pode ser definido como:

"Uma coleção de dados inter-relacionados, representando informações so-
bre um domínio específico." [39]

Logo, ao se agrupar informações que se relacionam e tratam de um assunto em
comum, têm-se um BD. Esta ferramenta é essencial no ramo empresarial, uma vez que
facilita o serviço de sistema de informações.

O sistema de gerenciamento de banco de dados (SGBD) é uma ferramenta capaz
de manipular informações do banco de dados e de interagir com o usuário. Um sistema
de BD pode ser subdividido em: dados, hardware, software e usuários. Segundo Date:

"Um sistema de bancos de dados pode ser considerado como uma sala de
arquivos eletrônica." [40]

A função primordial de um SGBD é de facilitar a interação entre o usuário e os
dados, umas vez que este não necessita analisar os detalhes internos do BD. Além disso,
a ferramenta torna independente os dados para com as aplicações, permitindo assim um
alto nível de abstração, principalmente por parte do utilizador do serviço.

Os bancos de dados são portanto extremamente difundidos e presentes nas mais
diferentes aplicações. Com o intuito então de se adaptar a cada aplicação dois modelos
de bancos de dados foram desenvolvidos, são estes:

∙ Banco de Dados Relacional: Este modelo de banco de dados trata e apresenta
as informações em forma de Tabela, ou em outras palavras a partir de relações. Esse

36

Materiais Estrutura de Software

tipo de modelo começou a ser concebido na década de 1970 e tinha como principal
objetivo simplificar a estruturação de soluções permitindo que um grande conjunto
de dados pudesse ser analisado e co-relacionado de maneira simples e organizada[41].

∙ Banco de Dados Não Relacional: Diferente do modelo relacional este método
não utiliza-se do esquema de organização em linhas e colunas. Para tratar de infor-
mações guardadas este tipo de modelo busca a otimizar a sua estrutura de acordo
com a informação armazenada. Podendo assim ter seus dados armazenados tanto
a partir de documentos JSON até gráficos definidos por vértices e bordas[42].

3.3.4.1 SQLite

No escopo do projeto utiliza-se a biblioteca SQLite no armazenamento de tarefas
do usuário para eventuais consultas. Essa biblioteca está presente em grande parte das
distribuições Linux, escrita em C, que permite a criação, edição e operação dentro de
bancos de dados SQL. É importante ressaltar que diferente do MySQL e outras bibliotecas
o principal objetivo do SQLite não é se conectar a servidores externos de bases de dados,
mas sim ao servidor local.

A linguagem SQL é dividida em conjuntos que são relacionados ao tipo de operação
que deseja se realizar no banco. Esses grupos são apresentados e exemplificados a seguir.

∙ Linguagem de Manipulação de Dados (DML): permite a inclusão (INSERT),
atualização (UPDATE) e exclusão (DELETE) de dados presentes em diversas Ta-
belas do banco ao mesmo tempo;

∙ Linguagem de Definição de Dados (DDL): permite a definição de novas Ta-
belas e elementos associados. Os comandos presentes nesse grupo são de criação
(CREATE), exclusão (DROP) e alteração (ALTER) do banco de dados ;

∙ Linguagem de Controle de Dados (DCL): responsável pelo controle de permis-
sões dos dados e usuários que tem acesso para consultar ou manipular as Tabelas
do banco de dados. Para habilitar o acesso é utilizado o comando GRANT e para
desabilitar o REVOKE ;

∙ Linguagem de Transação de Dados (DTL): caracteriza o controle das transa-
ções executadas no banco. A instrução BEGIN TRANSACTION inicia o processo,
o COMMIT indica a finalização da transação e o ROLLBACK descarta as mudanças
da última alteração;

∙ Linguagem de Consulta de Dados (DQL): responsável pela operação de con-
sulta de dados presentes no banco. A instrução mais utilizada é o SELECT .

37

Materiais Estrutura de Software

O SQLite é, principalmente, indicado para aplicações com baixas quantidade de
acessos e requisições, além é claro de sistemas com baixa concorrência. Delimitando-
se, portanto, a aplicações IoT - como é o caso deste projeto -, aplicações Desktop e
aprendizado de banco de dados. [43]

3.3.5 Interface Homem-Máquina

Essa sessão apresenta os recursos utilizados para proporcionar uma interface homem-
maquina (HMI) prática, flexível para futuros desenvolvimentos e confiável nos resultados
gerados.

3.3.5.1 Interface Gráfica

Um dos elementos mais importantes na transmissão de informações entre usuário
e maquina se dá através da interpretação visual. Desta forma a presença de uma tela
mostrou-se como uma opção interessante para que houvesse uma relação mais eficiente
na interface homem-máquina (ou Human-Machine Interface - HMI). Portanto utilizou a
biblioteca de desenvolvimento visual chamada kivy.

O Kivy é uma framework de código aberto, multiplataforma, criado para a geração
de aplicações com componentes visuais em interfaces hodiernas, contando também com
suporte a “touch e multi-touch”. O principal diferencial do Kivy é o seu apelo para um
rápido desenvolvimento e fácil interação com design.

Escrito em Python e Cython o Kivy é é baseado em OpenGL ES 2 e é suportado
em uma grande variedade de sistemas, além de possuir uma documentação e biblioteca
extensa e variada. A grande vantagem do Kivy é que assim como o Python ele pode
ser compilado em diversas plataformas, gerando assim uma maior flexibilidade para os
códigos.

3.3.5.2 Visão Computacional

Segundo o Data Science Academy, a visão computacional é o processo de modela-
gem e replicação da visão humana usando software e hardware. Assim o estudo dessa área
está vinculado aos avanços de algorítmos e métodos de machine learning, uma vez que
busca transmitir as informações do ambiente de forma compreensível para o computador
[44].

Entre as tarefas típicas de visão computacional, pode-se citar [45]:

∙ Reconhecimento;

∙ Identificação;

38

Materiais Estrutura de Software

∙ Detecção;

∙ Movimento;

∙ Reconstrução de cena;

∙ Restauração de imagens.

Uma das funcionalidades integradas ao projeto é a capacidade do assistente pes-
soal reconhecer pessoas no ambiente em que esta monitorando. Para realizar tal feito é
necessária a utilização das tarefas de detecção e reconhecimento em imagens.

O processo de reconhecimento facial possui, de forma geral, três etapas. Inicial-
mente realiza-se a detecção de faces dentro de imagens ou vídeos a partir da busca por
formas geométricas semelhantes ao rosto humano, além de eliminar do processamento in-
formações irrelevantes presentes na entrada. Em seguida é realizado a extração dos pontos
nodais, ou seja, as características presentes no rosto como por exemplo a distância entre
os olhos, o comprimento do nariz, o tamanho do queixo e a linha da mandíbula. Esses
dados podem ser armazenados em um banco de dados para realizar um refinamento no
algoritmo de reconhecimento ou apenas de forma temporária, uma vez que o algoritmo já
está consolidado. Após a definição do conjunto de dados característicos é efetuada a iden-
tificação da persona, a partir dos dados persistentes obtidos no treinamento do modelo
[46].

3.3.5.2.1 OpenCV

Acrônimo para Open Source Computer Vision, o OpenCV é uma biblioteca de
programação de código aberto. Nascido de um projeto da empresa Intel Research o
OpenCV tinha como ideia inicial fornecer serviços para o aprimoramento de aplicações
de elevado uso de CPU[47][48]. Ao longo dos anos o OpenCV contou com várias versões,
sendo que a cada nova versão ficava mais notável a sua afinidade com o processamento
de imagens.

O OpenCV é requisitado no escopo do projeto para compor a funcionalidade de
reconhecimento facial. No entanto a biblioteca é responsável por apenas realizar detecções
faciais dentro do ambiente que está sendo monitorado pelo assistente pessoal. A versão
utilizada neste projeto é o "OpenCV 4.0.0 Light", uma versão modificada que apesar
de ter menos funções é a versão mais adequada às características de processamento da
Raspberry Pi 3𝐵+. Na versão atual as sua funções mais evidentes são [48]:

∙ Conjunto de Ferramentas para imagens 2D e 3D: Análise de imagens (his-
tograma, entre outros), alteração de sistema de cores, alteração da imagem (e.g.:
desenhar formas sobre a imagem), etc;

39

Materiais Estrutura de Software

∙ Movimentação Espacial da Câmera (EgoMotion): Capacidade de percepção
de movimento da câmera;

∙ Sistema Reconhecimento Facial: Capacidade de comparar formas e reconhecer
rostos;

∙ Interação Homem-Máquina: Capacidade de gerar janelas e outros para a inte-
ração com o usuário;

∙ Segmentação e Reconhecimento: Capacidade de definir e reconhecer diferentes
objetos. É importante porém ressaltar que a utilização desse recurso demanda muito
da Raspberry e por isso não demonstrou ser uma característica viável.

3.3.5.3 Amazon Web Services

Amazon Web Services (AWS) é uma plataforma de serviços de computação em
nuvem que oferece entrega sob demanda de poder computacional, armazenamento de
banco de dados, aplicações e outros recursos de TI pela internet. Dentre suas principais
características pode-se citar [49]:

∙ Elasticidade e Escalabilidade: é a capacidade do ambiente computacional da
nuvem aumentar ou diminuir de forma automática os recursos computacionais de-
mandados e provisionados para cada usuário;

∙ Confiabilidade: alto desempenho no processamento e transmissão de dados, tole-
rância a falhas;

∙ Zonas de Disponibilidade: são Centros de Processamento de Dados (ou Data-
centers) separados e isolados fisicamente, que são conectados com baixa latência,
alta taxa de transferência e redes altamente escaláveis;

∙ Pay-as-you-go: paga apenas pelos serviços individuais que precisar, pelo tempo
que os utilizar, sem a necessidade de contratos de longo prazo ou licenciamento
complexo;

3.3.5.3.1 AWS Rekognition

Para o desenvolvimento da funcionalidade de reconhecimento facial do assistente
empregou-se o Rekognition. Este é um dos diversos serviços disponibilizados e gerenciados
pela AWS, que está dentro da área de visão computacional. Sua aplicação facilita a análise
de imagens e vídeos a partir de APIs próprias, de forma escalável e eficiente. Os tipos de
inferências que podem ser realizados está listado a seguir [50].

40

Materiais Estrutura de Software

∙ Rótulos: objetos, eventos, conceitos (noite, natureza) e atividades;

∙ Faces: detecta faces em imagens/vídeo, extraindo informações como pontos de
referência faciais, emoções, onde as faces são detectadas e comparação entre imagens;

∙ Pesquisa de face: as informações faciais são indexadas em um contêiner que são
utilizados como uma coleção de base;

∙ Caminhos das pessoas: Monitora o caminho de pessoas detectadas em um vídeo
armazenado. Fornece informações de rastreamento de caminho. Detalhes da face e
localização de quadros das pessoas detectadas;

∙ Detecção de texto: Detecta texto em imagens e os converte em textos legíveis
por máquinas;

∙ Outros: reconhecimento de celebridades/conteúdo desprotegido.

O serviço ainda permite configurar o seu modo de operação: com e sem armaze-
namento de dados. No primeiro, o Rekognition recebe os dados de entrada (imagem ou
vídeo), analisa e retorna os resultados, mas nada é salvo na nuvem. O segundo, realiza a
análise dos dados, devolve os resultados e os deixa armazenado para futuras ações.

3.3.5.4 Comando de Voz

Uma das principais habilidades do MUSK é a capacidade de interagir com o usuário
a partir de um sistema de comandos de voz, no entanto existem algumas dificuldades para
se trabalhar de forma adequada com sinais de áudio. Para se obter resultados eficientes
é necessária a utilização de alguns métodos, via software e hardware, durante todo o
processo.

Inicialmente é realizada a digitalização do sinal de áudio a partir de um conversor
analógico-digital que gera dados digitais através das vibrações produzidas. Em seguida é
realizado uma filtragem para a retirada de ruídos e interferências. Então é efetuado um
processo para a obtenção da característica espectral no domínio da frequência do sinal
digital, aplicando a Transformada Rápida de Fourier. Após a aplicação do método de
Fourier ocorre a separação do sinal digitalizado em partes ainda menores (sons fonéticos),
não maiores que uma sílaba. O software compara os sons captados com os fonemas já
conhecidos e persistidos no banco de dados que correspondem com o idioma do locutor.
A última etapa utiliza palavras e frases já conhecidas para comparar com os resultados
obtidos no processo anterior e converte o comando para a funcionalidade vinculada [51].

Essa tecnologia possibilita a implementação e integração de diversas aplicações que
a utilizam como gatilho para a execução de ações. Como exemplo de aplicação, pode-se

41

Materiais Estrutura de Software

citar o seu uso para automação residencial, escritórios inteligentes, atendimento eletrônico
(operadoras, bancos e serviços do governo) e assistentes pessoais.

Assim, para a funcionalidade de comando de voz é utilizado um serviço existente e
consolidado no mercado: Google Assistant. Pois o intuito do projeto não é o desenvolvi-
mento de um sistema de comando de voz (que envolve todo o procedimento apresentado
anteriormente), mas sim de um assistente pessoal que integra diversas funcionalidades.

3.3.5.4.1 Google Assistant

O Google Assistant é um assitente pessoal virtual desenvolvido pelo Google e que
se assemelha com outros concorrentes no mercado como Alexa (Amazon), Siri (Apple) e
Cortana (Microsoft). Este possui a habilidade de realizar diversas tarefas do dia-a-dia,
como ligar para uma pessoa, mandar mensagem, realizar pesquisas, além de interagir com
o usuário.

O sistema ainda possui compatibilidade com diversas plataformas e hardwares,
como:

∙ Google Home;

∙ Celulares Android;

∙ Tablets;

∙ Iphone e Ipad;

∙ Raspberry Pi.

Além das funcionalidades já integradas, existe a possibilidade de desenvolver novas
habilidades e integrá-las ao sistema. Essas funções são chamadas de actions que são o
ponto de entrada em uma interação entre o usuário e o Google Assistant, criadas através
de linguagem natural, em que o usuário pode falar ou digitar uma frase informando o
nome da action que deseja interagir [52].

42

4 Desenvolvimento

4.1 Arquitetura do Sistema

A Figura 17 a baixo ilustra o esquemático da arquitetura do sistema.

Figura 17 – Arquitetura do Sistema

Fonte:Autoria Própria

Os elementos presentes na arquitetura final do MUSK, são descritos a seguir:

∙ Processamento: Desenvolvido através da linguagem Python e suas bibliotecas.
Responsável por gerenciar as ferramentas, executar o servidor Web e serviços do
sistema;

∙ Servidor Web: Desenvolvido através do framework Flask. Responsável por exe-
cutar o servidor e de fornecer ferramentas para gerenciar as requisições;

∙ Web Services: Referente as bibliotecas utilizadas para integrar o sistema com
APIs dos serviços Web, AWS e Google Cloud;

∙ SQLite3: Responsável por fazer a comunicação do sistema com o banco de dados;

∙ Aquisição de Eventos: Responsável por estabelecer a comunicação entre elemen-
tos externos e o sistema;

Desenvolvimento Configuração da Raspberry PI

∙ Entrega de Eventos: Responsável pelos dados de saída do sistema para os dispo-
sitivos e serviços periféricos.

Nos próximos tópicos serão detalhados os elementos que compõem o assistente
pessoal e os processos utilizados no desenvolvimento dos mesmos, de forma a possibilitar
a reprodução deste trabalho.

4.2 Configuração da Raspberry PI

Para o desenvolvimento do projeto foi selecionado a RPi apresentada na sessão
anterior. Uma vez que essa não possui um SO embutido e nem uma memória de massa,
foi necessário utilizar um cartão micro SD, ilustrado na Figura 18.

Figura 18 – Cartão micro SD

Fonte:<https://www.magazineluiza.com.br/cartao-de-
memoria/informatica/s/in/ctdm/>

Então, foi realizado o download da imagem do SO Raspbian e instalado no cartão,
através do software Etcher.

O Raspbian assim como grande parte dos sistemas operacionais tem por padrão
uma aquisição dinâmica de IP, porém para que seja possível uma comunicação entre os
computadores dentro desta rede com a placa em questão é necessária que se conheça o
seu IP. Para tal é necessário que haja uma alocação estática de IP.

A alocação estática de IP será dada a partir do roteador o qual determinará um
IP com base no endereço de MAC da RPi. Para tal o roteador comparará os endereços
MACs presentes na rede LAN e caso haja uma convergência o mesmo estabelecerá uma
conexão a partir do endereço de IP presente no IPtable.

Duas técnicas foram utilizadas para a alteração do endereço MAC da RPi. O
primeiro contou com a utilização do serviço de DHCP e a alteração do arquivo responsável

44

Desenvolvimento Configuração da Raspberry PI

por configurar as conexões de internet. A seguir está presente o passo a passo desta
técnica. [53] [54]

Edição do Arquivo Interfaces: Para editar o arquivo interfaces é necessário a per-
missão de administrador, assim o comando a seguir foi utilizado.

sudo gedit /etc/network/interfaces

Determinou-se a conexão automática e prioritária via eth0 – Conexão Física – e o
uso do DHCP.

Auto eth0
iface eth0 inet dhcp

Adicionou-se o MAC Adress desejado, para que fosse possível haver um endereço
fixo caso o modem esteja preparado para isso.

hwaddress ether 01 : 02 : 03 : 04 : 05 : 06

Reiniciou-se a rede e a RPi para que tais medidas fizessem efeito.

sudo /etc/init.d/networking restart
sudo shutdown -r now

O segundo método utilizado foi o spoofing – “falsificação” - do endereço MAC.
Para tal seguiu-se o método a seguir.

Editou-se o arquivo systemd-network, conforme presente no comando a seguir.

sudo gedit /etc/systemd/network/00-defalt.link

Determinou-se o MAC adress desejado, Figura 19, a partir do spoofedMAC: [55]

Figura 19 – Configurações no MAC

Fonte:Autoria Própria

Ainda para que seja possível a conexão com outros computadores dentro da mesma
rede é necessário que se habilite a conexão via SSH na RPi, para tal deve-se seguir os
passos a seguir.

45

Desenvolvimento Configuração do Servidor Flask

Habilitar o uso da SSH da Raspberry a partir do systemctl: [56]

sudo systemctl enable ssh

Iniciar o uso da SSH pela Raspberry:

sudo systemctl start ssh

Para que um computador possa se conectar a raspberry agora basta caso este seja
Linux dar o comando ssh no terminal. Como pode ser visto a seguir.

ssh root@70.32.86.175

Caso se esteja utilizando o Windows é necessário a utilização de algum programa
auxiliar que suporte tal conexão. Neste trabalho foi-se utilizado o Putty, conforme visto
na Figura 20.

Figura 20 – Terminal Putty

Fonte:Autoria Própria

Configurou-se então o Putty com o IP alocado pelo roteador presente no laborató-
rio (IP: 10.235.10.48), determinou-se que a porta de conexão seria a 22.000 (vinte e dois
mil) e a conexão via SSH.

46

Desenvolvimento Web

4.3 Configuração do Servidor Flask

O servidor WEB é o servidor que será acessado pelo usuário para verificar e con-
trolar as ações do MUSK. Para o projeto foi utilizado o WEB Server Flask, cuja função é
possibilitar o acesso a página WEB construída para o assistente, a partir do gerenciamento
de requisições e da manipulação dos dados. [57]

Inicialmente foi necessário verificar se o python instalado na RPi está atualizado
a partir do comando:

sudo apt-get update
sudo apt-get upgrade

Em seguida, instalou-se o sistema de gerenciamento de pacotes (PIP) e então o
Flask foi instalado, a partir dos seguintes comandos:

sudo apt-get install python-pip python-flask
sudo pip install flask

Foi então criado um diretório onde ficaram armazenados os arquivos de programa
referentes ao projeto, a partir do comando:

sudo mkdir web-server

Dentro do diretório foi criado o arquivo app.py o qual será executado infinitamente,
sendo este o responsável pelo gerenciamento do projeto. O comando utilizado foi:

sudo nano app.py

Para as páginas HTML, foi criado uma pasta dentro do repositório chamada ’tem-
plates’.

sudo mkdir templates

Nesta foi armazenado todos os códigos em HTML elaborados no projeto. A parte
de elaboração dos códigos WEB será apresentada a seguir.

4.4 Web

A interface WEB tem um importante papel no projeto do assistente pessoal, já
que é a partir dela que os usuários são capazes de ter acesso remoto aos dispositivos
presentes em suas casas e - ou - escritórios. Para o desenvolvimento da interface WEB

47

Desenvolvimento Web

foram utilizadas as linguagens HTML, CSS e JavaScript. Com o intuito de aumentar a
velocidade do desenvolvimento utilizou-se da ferramenta da DreamWeaver da Adobe. A
qual fornece um licença de 15 dias gratuitos de teste. Ao longo deste tópico será abordado
o desenvolvimento da interface WEB a partir do DreamWeaver.

4.4.1 DreamWeaver

O DreamWeaver é uma plataforma de desenvolvimento web baseado em WY-
SIWYG (What You See Is What You Get – O Que Você Vê É O Que Você Têm, em
português) que possui suporte a várias tecnologias WEB, como HTML, XHTML, CSS,
JavaScript, Ajax, PHP, ASP, ASP.NET, JSP, entre outros [58].

O DreamWeaver conta tanto com uma IDE que permite combinar modos de edi-
ção visual quanto de código agilizado – sendo este o método utilizado neste trabalho. O
DreamWeaver possui funções de Autocomplete e visualização dinâmica as quais permi-
tem a produção mais veloz de páginas web. Pode-se observar a sua interface na Figura 21.

Figura 21 – Interface DreamWeaver

Fonte:Autoria Própria

4.4.2 Página Inicial e de Aplicativos

O desenvolvimento da tela inicial e de aplicativos se deu para que a utilização do
site ocorra de forma orgânica. Sendo que o seu principal objetivo é fornecer uma porta
de entrada para as funções mais internas do projeto.

O seu desenvolvimento contou com fontes e estilo JavaScript de acesso livre for-
necidas pela adobe, com o estilo de CSS conhecido como hero. O código para a criação

48

Desenvolvimento Web

de tal página está descrito no apêndice J, o resultado por sua vez pode ser observado na
Figura 63.

4.4.3 Página Modo Vigia

A concepção desta página tem como objetivo servir como fonte de segurança para
a casa. Permitindo que no momento em que um usuário inesperado for captado, um e-mail
é mandado para o responsável cadastrado. Informando-o e possibilitando não apenas que
este observe o cômodo, mas também mova a câmera.

Sobre essa interface funciona um dos elementos chaves para o controle dos servo
motores. Como pode ser observado na Figura 22, existe uma função Ajax (Java Script)
que é acionada a cada vez que os botões são clicados.

Figura 22 – Função Ajax para o Controle dos servos Motores

Fonte:Autoria Própria

Cada vez que um dos botões é acionado um comando é enviado através da URL
para o código em Python, o qual por sua vez interpreta qual a direção em que os servo
motores devem seguir, conforme visto no apêndice L. Onde pode se observar cada botão
envia uma “string” para a função que altera a URL de acordo com o botão acionado.

4.4.4 Página Sensoriamento (Temperatura e Umidade)

Quanto a esta página pode-se observar que o código em HTML recebe os dados
enviados através do servidor Flask. Os dados são recebidos a partir de um dicionário que
transmite um conjunto de strings e pode ser recebido e decomposto.

Figura 23 – Código HTML, CSS - Temperatura e Umidade

Fonte:Autoria Própria

49

Desenvolvimento Web

Como pode ser observado no código do apêndice M e nas Figuras 23 e 24, os
dados são apresentados no site através de variáveis (temp e umid) com nomes iguais aos
presentes no dicionário transmitido contidas em chaves duplas. [59]

Figura 24 – Código Python - Temperatura e Umidade

Fonte:Autoria Própria

Já o apêndice A apresenta a passagem do dicionário (“templateData”) que contém
as variáveis a serem apresentadas no site.

4.4.5 Página Agenda

A página da agenda foi construída para que fosse possível se inserir tarefas e
houvesse uma forma com a qual o usuário fosse capaz de visualizar e ser lembrado de
tais tarefas. Assim para se iniciar um código periodicamente foi-se utilizado o “crontab”-
presente em sistemas Linux, mas especificamente baseados em debian - no qual pode-se
iniciar um programa que a partir da quantidade de tarefas presentes no banco de dados
este gera uma Tabela dinâmica de botões correspondente a cada tarefa.

Sobre o código que controla a Interface da agenda web é interessante salientar
primeiramente o método pelo qual são enviados novas tarefas – apêndice N - ao arquivo
em python para que o mesmo salve as atividades em um banco de dados.

Como pode ser visto no apêndice N através de um método POST é mandado um
comando para que o python passe do seu método atual para o seu método “add”, isso
pode ser observado pelo comando presente no atributo “action” do código HTML. [60]

Como pode ser observado no apêndice ?? o método “add” recebe também um
atributo “post”, o que permite que ele faça requerimentos de itens dentro de “forms”
HTML. No caso em questão é passado o título da tarefa e a data da mesma. Em seguida
esses dados são colocados na Tabela do banco de dados e a mesma é salva. [61]

Já a referência que indica se uma tarefa já foi completada ocorre através da altera-
ção da URL entre tarefa completa ou não, conforme pode ser visto no código na Figura 25
seguir. Nesse código ainda é possível se observar comandos em chaves duplas para a ge-
ração de Tabelas dinâmicas e o recebimento de variáveis do código em python (todo.text,
todo, incomplete, etc.).

50

Desenvolvimento Interface Gráfica

Figura 25 – Código HTML – complete, Incomplete

Fonte:Autoria Própria

Já no código em python, na Figura 26, pode-se observar que ao se completar uma
tarefa o método “complete” recebe o id da tarefa em questão e altera o estado da coluna
“complete” informando que a tarefa foi completada. O código indicando isso está presente
no código a seguir.

Figura 26 – Método de Tarefa Completada

Fonte:Autoria Própria

4.5 Interface Gráfica

O desenvolvimento da interface gráfica como já introduzido anteriormente se deu
pela utilização do framework Kivy. Desta forma para que haja um pleno funcionamento
do Kivy é necessário primeiramente a sua instalação e a de suas bibliotecas adjacentes
conforme poderá ser observado através dos passos a seguir.

Deve-se primeiramente atualizar a lista de pacotes, para tal utiliza-se o comando
abaixo:

sudo apt-get update

Instala-se algumas dependências do Kivy:

sudo apt-get install kivy-examples
sudo apt-get install python-setuptools python-pygame

51

Desenvolvimento Interface Gráfica

python-opengl python-enchant python-dev build-essential python-pip libgl1-
mesa-dev libgles2-mesa-dev zlib1g-dev

Instala-se a versão mais recente do Cython:

sudo pip install –upgrade Cython==0.28.2

Instala-se o kivy para Python 2:

sudo apt-get install python-kivy

Instala-se o kivy para Python 3:

sudo apt-get install python3-kivy

Por fim, instala-se alguns exemplos de aplicações:

sudo apt-get install kivy-examples

O funcionamento do kivy pode se dar basicamente de duas formas, uma destas é
adicionando um arquivo com a extensão “.kv” sobre o mesmo diretório do arquivo python
que está rodando no momento. Sendo que no arquivo python deve-se procurar acionar
o programa a partir de uma classe instanciada com um argumento App da biblioteca
kivy.app. Tal dinâmica pode ser melhor entendida a partir da Figura 27 a seguir.

Figura 27 – Exemplo arquivo Python

Fonte:Autoria Própria

52

Desenvolvimento Interface Gráfica

Figura 28 – Exemplo arquivo kivy

Fonte:Autoria Própria

Conforme pode ser visto na Figura 27 após ser acionado o arquivo Python busca
instâncias apresentadas no arquivo kivy e que estejam presentes dentre as bibliotecas im-
portadas para o arquivo Python. Ao se compilar o programa apresentado é gerada a tela
presente na Figura 29.

53

Desenvolvimento Interface Gráfica

Figura 29 – Tela kivy

Fonte:Autoria Própria

A segunda forma é a mais utilizada é a apresentada na Figura 30, onde é adici-
onada uma biblioteca builder. Permitindo assim que o arquivo kivy e o arquivo Python
fiquem sobre um único arquivo Python. Tal código deverá gerar a mesma tela da gerada
pelos códigos apresentados anteriormente.

54

Desenvolvimento Interface Gráfica

Figura 30 – Exemplo código Python com kivy

Fonte:Autoria Própria

4.5.0.1 Geração de Telas

Após a inicialização do assistente, a tela de entrada dele é vista conforme ilustrado
na Figura 31. A interface fica alternando entre as imagens como uma forma de dinamizar
o MUSK. Permitindo assim a sua função Touch (e Multi-Touch consequentemente) seja
acionada em suas diversas telas.

Para produzir tal efeito foi utilizada a biblioteca kivy para o python. O código
foi incorporado ao programa principal deste projeto, conforme o Apêndice A. As imagens
que são vistas na tela são tratadas como botões que mudam em um determinado período
de tempo.

A interface visual é dividida em três telas principais, que são elas:

∙ 1. Desbloqueio Inicial

∙ 2. Dados de Sensoriamento

∙ 3. Informações Pessoais

55

Desenvolvimento Interface Gráfica

A tela de desbloqueio incial pode ser observada na Figura 31, a qual tem como
função servir como tela de descanso e futuramente exigir uma senha de entrada.

Figura 31 – Interface Kivy (1)

Fonte:Autoria Própria

Para a construção de tal tela utilizou-se os comandos apresentados em código kivy
presentes na Figura 32.

Figura 32 – Código Kivy - Interface (1)

Fonte:Autoria Própria

Através da Figura 32 pode-se observar que a pseudo classe ScreenOne recebe os
atributos tanto de ScreenManeger quanto de Button. Podendo assim comportar-se tanto
como uma tela variável, quanto ter características clicáveis de Touch. É importante notar

56

Desenvolvimento Interface Gráfica

que todas as demais telas seguem este mesmo padrão de atributos, além também de
partilharem a mesma cor de fundo e uma função clicável semelhante, essas por sua vez
são definidas por:

𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑_𝑐𝑜𝑙𝑜𝑟 : 0, 0, 0, 1

on press: root.manager.current = ’screen two’

Quanto as características particulares desta classe temos o Image e o Label. Sendo
que no Image determinou-se:

∙ source: Responsável por determinar a imagem utilizada, para tal é solicitado o seu
diterório juntamente com o seu nome e a extensão do arquivo.

∙ x, y: Variáveis responsáveis por determinar a posição matricial inicial da imagem
utilizada

∙ size: Apresenta as dimensões desejadas da imagem, permitindo assim o redimensi-
onamento da imagem

∙ allow strech: Flag, por padrão setada como False, permite o redimensionamento
da imagem de acordo com o tamanho da tela e o size selecionado

A tela de sensoriamento segue um padrão bem semelhante a da tela anterior como
pode ser observado a partir da Figura 33.

Figura 33 – Código Kivy - Interface (2)

Fonte:Autoria Própria

O código presente na Figura anterior gera então a seguinte tela.

57

Desenvolvimento Interface Gráfica

Figura 34 – Kivy - Interface (2)

Fonte:Autoria Própria

A tela de dados internos por sua vez a mais diferente, pois, ao invés de ser cons-
truída em um arquivo kivy comum. Ela é gerada a partir de um arquivo python uma
vez que esse tem melhores opções de recursividade. A código utilizado para gerar tal tela
pode ser observado na Figura 35.

58

Desenvolvimento Interface Gráfica

Figura 35 – Código Kivy - Interface (3)

Fonte:Autoria Própria

Semelhante ao código utilizado para gerar a tela de sensoriamento, a tela de dados
internos também utiliza-se de botões para transmitir informações. Porém a geração destes
botões se dá dentro de um for para que para cada informação dentro do banco de dados
seja gerado um botão. Tal comportamento está apresentado na Figura 36.

59

Desenvolvimento Sistema de Segurança

Figura 36 – Kivy - Interface (3)

Fonte:Autoria Própria

4.6 Sistema de Segurança

Uma das características principais do MUSK é a habilidade de atuar como um sis-
tema de segurança no ambiente em que se localiza de forma ativa através da página Modo
Vigia na Web e de serviços de email cadastrados pelo usuário. Para este protótipo foram
desenvolvidas e validadas algumas formas de controle de segurança, com a possibilidade
dessas serem expandidas de acordo com a necessidade do usuário.

4.6.1 Configuração do Motor

O motor possui 3 pinos de controle: VCC, GND e SIGNAL, esses são conectados
na placa PCA9685 na GPIO 12. A placa é responsável por ser o driver de comunicação
da RPi com o dispositivo eletromecânico. Já a conexão com a Raspberry é realizada nos
pinos referentes ao protocolo de comunicação I2C, ou seja, as portas GPIO 2 e GPIO 3.

60

Desenvolvimento Sistema de Segurança

O esquemático de controle do servo está ilustrado na Figura 37 a seguir.

Figura 37 – Esquemático motores e RPi

Fonte:Autoria Própria

Em relação ao software, foi instalada a biblioteca Adafruit_Python_PCA9685
para a integração do driver com a RPi. Os comandos executados no terminal para o
processo de instalação estão descritos abaixo de forma sequencial.

sudo apt-get install git build-essential python-dev
sudo git clone https://github.com/adafruit/Adafruit_Python_PCA9685.gitt
cd Adafruit_Python_PCA9685
sudo python setup.py install

O controle da câmera é realizado pelo usuário a partir dos botões posicionados na
página web do Modo Vigia que envia comandos ao servidor para ativar o funcionamento
do motor deslocando-o em passos de 36o para a direção desejada. A comunicação com o
backend é realizada a partir de um método de roteamento do framework Flask, conforme
ilustrado na Figura 38 seguir.

61

Desenvolvimento Sistema de Segurança

Figura 38 – Rotas de controle do motor

Fonte:Autoria Própria

Assim a partir do botão que foi apertado, o programa identifica o motor que
o usuário deseja movimentar e faz a chamada da função servo_position. Essa função
pertence à classe servoMotor. Seus parâmetros de entrada são referentes ao canal do
módulo PCA9685 em que o motor está conectado (canal 0) e ao tipo de movimento, onde
1 representa a direção horária e -1 a anti-horária. O retorno da requisição realiza um
refresh da página camera.html.

Através do trecho de código anexado a baixo, pode-se entender melhor o funciona-
mento do controle do motor. O método servo_position, altera o atributo memory, que é
responsável por guardar a posição atual do motor, de acordo com o sentido que se deseja
girar o motor e em seguida gera o pulso que irá realizar o movimento do motor através do
método step. Por fim é chamado o método set_pwm que executa o movimento do servo.

Figura 39 – Método servo_position

Fonte:Autoria Própria

4.6.2 Configuração do Sensor PIR

O sensor possui 3 pinos: VCC, GND e OUTPUT, esses são conectados na RPi
conforme ilustra o esquemático na Figura 40 a seguir.

62

Desenvolvimento Sistema de Segurança

Figura 40 – Esquemático PIR

Fonte:Autoria Própria

O sensor foi configurado para atuar no modo de funcionamento H (Auto-Reset).
A sensibilidade de detecção do dispositivo foi configurada para o seu valor máximo de
forma a alcançar a maior área possível de verificação de presença. Já o tempo de saída
foi definido para o seu valor mínimo de 3 segundos.

A partir da biblioteca RPi.GPIO, já instalada na raspberry, foi desenvolvido um
código em python para testar algumas funcionalidades do sensor, como as variações de
sensibilidade e tempo de saída, e em seguida foi implementado o código para o programa
principal do projeto.

Para o controle eficiente das ações do sensor, foi criada a classe sensor que a partir
do método runConfiguration, Figura 41, realiza a configuração dos pinos conectados ao
sensor em modo de interrupção externa. A verificação do estado do dispositivo é realizada
em uma nova thread, que ao receber um evento de interrupção (através de um sinal em
subida de borda), realiza o acionamento da função de callback, chamada motionCallback,
que é enviada como parâmetro de entrada do método de configuração da classe.

63

Desenvolvimento Sistema de Segurança

Figura 41 – Método de configuração do sensor PIR

Fonte:Autoria Própria

A função de callback, por sua vez, retorna o método sendEmail, conforme a Figura
42 do objeto instanciado da classe security que realiza o processo de envio do email.

A classe security quando instanciada realiza a configuração dos parâmetros pre-
sentes no corpo do email. Para realizar a comunicação é necessário utilizar o protocolo
Simple Mail Transfer Protocol (SMTP) que utiliza TCP/IP [62]. O atributo server é um
objeto da classe desse protocolo, sendo assim responsável por todo o mecanismo de envio.

Assim, quando o método de enviar email é retornado pela função de callback este
inicia a conexão com o servidor de email cadastrado (Google), realiza o login na conta de
email do assistente e faz o envio da mensagem para a conta do usuário. A conexão tem
um período curto e é encerrada no final de envio.

Figura 42 – Método de envio do email

Fonte:Autoria Própria

4.6.3 Configuração DHT11

O sensor DHT11 foi configurado conforme ilustra a montagem da Figura 43 a
seguir.

64

Desenvolvimento Sistema de Segurança

Figura 43 – Esquemático DHT11

Fonte:Autoria Própria

Os pinos da RPi utilizam um nível de tensão de 3,3V - as portas suportam 5V, mas
a aplicação desse valor não é recomendado pelo fabricante. Assim é necessário alimentar
o DHT11 com o pino de 3,3V da placa. Já para a leitura de dados é utilizado o pino 22
(GPIO 25), além de ser utilizado um resistor de pull-up de 4,7k na entrada da porta.

Para codificar o sensor é utilizado a biblioteca da Adafruit para python, instalando-
a na RPi a partir dos comandos:

sudo git clone https:/github.com/adafruit/Adafruit_Python_DHT.git
cd Adafruit_Python_DHT
sudo python setup.py install

Após as configurações no Raspbian, foi implementado um código de teste para o
sensor a fim de verificar a confiabilidade do dispositivo. Para realizar a leitura do sensor
DHT11, foi escrito o método readDht11 dentro da classe sensor, conforme descrito na
Figura 44 seguir:

Figura 44 – Método readDht11

Fonte:Autoria Própria

O método read_retry referente a biblioteca da Adafruit para o sensor informa os
valores da umidade e temperatura lidas pelo sensor. Esses valores são então retornados
pelo método readDht11 como resposta a requisição realizada pelo usuário através do lado

65

Desenvolvimento Sistema de Segurança

do cliente. A rota de chamada definida utilizando o framework Flask está exemplificado
na Figura 45.

Figura 45 – Rota para receber os valores do sensor DHT11

Fonte:Autoria Própria

Em seguida os dados recebidos são convertidos para um template padrão e retor-
nados junto com um refresh da página temperatura.html.

4.6.4 Configuração OpenCV

A instalação do OpenCV foi realizada a partir da compilação do seu código fonte,
uma vez que as tentativas de instalação via instalador de pacotes pip não foram frutíferas.
Observou-se, também, que devido ao elevado tamanho do OpenCV seria necessário o
aumento do memória de armazenamento, desta forma, refez-se todas as configurações e
alterações anteriores sobre um cartão SD de 32 Gigabytes.

A instalação do OpenCV iniciou-se com a expansão da memória utilizada pelo
sistema, pra que todo o espaço disponível fosse utilizado. Para isso a partir do terminal,
utilizou-se o comando:

sudo raspi-config

Selecionou-se "Advanced Options", conforme ilustra na Figura 46.

Figura 46 – Menu de Configuração RPi, Opções Avançadas

Fonte:Autoria Própria

66

Desenvolvimento Sistema de Segurança

Em seguida "Expand Filesytem", conforme apresentado na Figura 47.

Figura 47 – Menu de Configuração RPi, Expandir Sistema

Fonte:Autoria Própria

Para que as alterações sejam postas em prática reiniciou-se o sistema com o co-
mando:

sudo reboot now

Com espaço o suficiente para a instalação faz-se necessário a atualização dos pa-
cotes do sistema operacional. Realizada a partir dos comandos:

sudo apt-get update
sudo apt-get upgrade

Segue-se com a instalação dos pacotes de desenvolvimento:

sudo apt-get install build-essential cmake unzip pkg-config

Deve-se então instalar as bibliotecas para o controle de imagem e vídeo.

sudo apt-get install libjpeg-dev libpng-dev libtiff-dev
sudo apt-get install libavcodec-dev libavformat-dev libswscale-dev lib
sudo apt-get install libxvidcore-dev libx264-dev

Para que as funções de HMI (Human-Machine Interface) sejam implementadas é
necessário a instalação das bibliotecas de GTK e GUI (Grafical User Interface).

sudo apt-get install libgtk-3-dev
sudo apt-get install libcanberra-gtk*

67

Desenvolvimento Sistema de Segurança

O asterisco presente na função anterior tem como propósito a instalação da bibli-
oteca específica para os processadores ARM (presente na RPi).

Para um melhor desempenho instalou-se também os pacotes de otimizações nu-
méricas para OpenCV juntamente com alguns headers de desenvolvimento.

sudo apt-get install libatlas-base-dev gfortran
sudo apt-get install python3-dev
sudo pip install numpy

Depois de realizar todas as preparações iniciou-se a instalação do OpenCV propri-
amente dito. Para isso é necessário fazer o download dos repositórios.

wget -O opencv.zip https://github.com/opencv/opencv/archive/4.0.0.zip
wget -O opencv_contrib.zip https://github.com/opencv/opencv_contrib/archive/4.0.0.zip

É necessário a descompactação dos arquivos e para maior facilidade a renomeação
dos seus diretórios.

unzip opencv.zip
unzip opencv_contrib.zip
mv opencv-4.0.0 opencv
mv opencv_contrib-4.0.0 opencv_contrib

Com o código fonte devidamente presente na RPi, o próximo passo é a sua com-
pilação. Para isso deve-se entrar na pasta descompactada e criar um diretório, o qual por
padrão foi chamado de build. Pode-se observar esse procedimento nos comandos:

cd /opencv
mkdir build
cd build

Para preparar o diretório para a compilação do código utilizou-se o comando cmake
com as seguintes configurações:

cmake -D CMAKE_BUILD_TYPE = RELEASE ∖
-D CMAKE_INSTALL_PREFIX = /usr/local ∖
-D OPENCV_EXTRA_MODULES_PATH = /opencv_contrib/modules ∖
-D ENABLE_NEON = ON ∖
-D ENABLE_VFPV3 = ON ∖

68

Desenvolvimento Sistema de Segurança

-D BUILD_TESTS = OFF ∖
-D OPENCV_ENABLE_NONFREE = ON ∖
-D INSTALL_PYTHON_EXAMPLES = OFF ∖
-D BUILD_EXAMPLES = OFF

Ao fim desta operação foi exibido um log de informações indicando o resultado
positivo da compilação.

Para continuar com a instalação do OpenCV foi necessário aumentar o espaço
definido para a memória virtual, ou como é mais comumente chamada swap space. Para
isso seguiu-se os seguintes passos:

1. Abriu-se o arquivo responsável por determinar o espaço da memória virtual:

sudo nano /etc/dphys-swapfile

2. Editou-se o arquivo de forma a deixar a memória anterior comentada e fazer
com que esta passe a ser de 2 GB ao invés dos 100 MB anteriores.

CONF_ SWAPSIZE = 100

CONF_SWAPSIZE = 2048

3. Reiniciou-se o espaço virtual da RPi com os comandos:

sudo /etc/init.d/dphys-swapfile stop
sudo /etc/init.d/dphys-swapfile start

Compilou-se o código fonte do OpenCV com o comando:

make −𝑗4

Este comando então gerou o seguinte log de saída sobre o terminal indicado os
resultados obtidos:

Por fim, instalou-se o OpenCV e retornou-se com os comandos:

sudo make install
sudo ldconfig

69

Desenvolvimento Sistema de Segurança

4.6.4.1 Preparando Ambiente OpenCV

Devido a sua característica modular além da instalação do OpenCV é necessário
também algumas pequenas adaptações para que seja possível utilizar essa biblioteca em
diferentes sistemas.

Para tal primeiramente verificou-se se a instalação do OpenCV ocorreu sem erros.
A verificação se deu a partir da sequência de comandos.

sudo python3
>> import cv2
>> cv2.__version__

Após tal verificação, tornou-se possível a utilização de comandos de imagem bási-
cos. Para que comandos mais complicados de detecção facial sejam utilizados fez-se ne-
cessário importar os módulos correspondentes para o diretório de desenvolvimento. Para
que isto fosse realizado, era preciso determinar-se o diretório de armazenamento desses
módulos, seguiu-se então os comandos.

sudo python3
>> import cv2
>> print(cv2.__ file__)

O resultado obtido foi o o caminho de diretório:

/usr/lib/python3.4/ - Colocar aqui o diretório

Dado este caminho, decidiu-se pela sua cópia em um diretório específico para o
armazenamento de módulos do OpenCV. Este diretório foi chamado de:

/Desktop/tcc_files/opencv_aws/cascade/data.

O módulo copiado para o diretório citado anteriormente foi o frontal face cascade,
o qual tem como principal função a detecção de frontal de rostos.

Para a criação do diretório e a cópia do modulo em questão para o diretório
desejado seguiu-se os passos:

sudo mkdir /Desktop/tcc_files/opencv_aws/cascade/data
cd /Desktop/tcc_files/opencv_aws/cascade/data
sudo cp -rf /usr/lib/python3.4/data /Desktop/tcc_files/opencv_aws/cascade/data

70

Desenvolvimento Sistema de Segurança

Para conferir que este processo obteve sucesso, gerou-se e compilou-se o seguinte
código em python, apresentado na Figura 48.

Figura 48 – Método teste OpenCV

Fonte:Autoria Própria

4.6.4.2 Implementação Geral

Para a implementação do código do OpenCV criou-se uma classe em um arquivo
python. Onde que tanto a classe quanto o arquivo receberam o nome de camera. Decidiu-
se por utilizar-se deste método primeiramente pelo rigor organizacional do projeto como
um todo, além da flexibilidade de sua utilização em diferentes áreas do projeto.

A classe camera conta com seis métodos. Sendo que dentre estes os mais importan-
tes para o entendimento do funcionamento do programa são o getImage, runFaceDetector
e sendVideo.

O método runFaceDetector é normalmente chamado por programas exteriores e
funciona como uma função de alto nível lidando com outros métodos de mais baixo nível
como pode ser observado a partir da imagem 49.

Figura 49 – Método runFaceDetector

Fonte:Autoria Própria

Inicialmente determina-se uma flag que indica que ainda não se notou um rosto.

71

Desenvolvimento Sistema de Segurança

Em seguida chama-se o método getFrame que tem como função capturar as imagens
adquiridas pela câmera, converte-se essa imagem para preto e branco. Através dessa nova
imagem compara-se, com o comando detectMultiScale, a existência de olhos, boca e nariz
para que dai sejam retornado um vetor com valores de onde este rosto está localizado na
imagem.

Após isso é chamado o método getImage, o qual pode ser compreendido através
da Figura 50.

Figura 50 – Método getImage

Fonte:Autoria Própria

A principal função desta definição é delimitar a região de interesse. Realizar as
operações de redimensionar as imagens e salva-la para que essa então fosse possível ser
comparada com as coleções armazenadas na AWS.

4.6.4.3 Implementação WEB

Por fim, a definição sendVideo, Figura 51 tem como objetivo lidar com a geração
de imagens para a apresentação via WEB.

Figura 51 – Método sendVideo

Fonte:Autoria Própria

O método sendVideo é solicitado pela definição generateVideo presente no arquivo
server.py. O qual é responsável por lidar com todas as solicitações envolvidas na parte
WEB. A Figura 52 apresenta a definição generateVideo, a partir da qual pode-se verifi-
car que a mesma quando chamada utiliza-se de uma função em loop para primeiramente

72

Desenvolvimento Sistema de Segurança

adquirir a imagem da câmera e após isso remontá-la e enviá-la para página WEB como
uma imagem JPEG. Desta forma, devido ao loop a sequência de imagens assemelha-se a
geração de um vídeo em tempo real.

Figura 52 – Método generateVideo

Fonte:Autoria Própria

Por último a definição generateVideo é chamada quando o usuário acessa a página
WEB correspondente. Sendo o endereço (ou URL ou rota) desta página, /cameraview.
Para que a imagem obtida na câmera seja apresentada na página WEB retorna-se a ima-
gem obtida através da função generateVideo com os devidos cuidados como apresentado
na Figura 53.

Figura 53 – Endereço cameraview

Fonte:Autoria Própria

4.6.5 Configuração AWS Rekognition

Para a utilização dos serviços da AWS é necessário realizar o cadastro no site
oficial, assim sua conta é automaticamente cadastrada em todos os serviços disponíveis.
Apesar de ser um serviço pago, a Amazon oferece o uso grátis por um ano de forma
limitada. No escopo desse projeto foi integrado a API do Rekognition, que na versão
gratuita tem as seguintes características [63]:

∙ Analise de 5000 imagens por mês;

∙ Armazenamento de 1000 metadados de faces por mês;

Além disso, em todos os serviços é pago apenas o que foi utilizado, conforme
especificado no site.

73

Desenvolvimento Sistema de Segurança

∙ Vídeo arquivado analisado (faturado por segundo): 0,10 USD por minuto;

∙ Vídeo de streaming ao vivo analisado (faturado por segundo): 0,12 USD por minuto;

∙ Preço por 1000 metadados faciais armazenados: 0,01 USD por mês;

Após o cadastro, é necessário criar um usuário do Identity and Access Manage-
ment(IAM) com as permissões de administrador. Este usuário é necessário para definir
quais serviços serão acessíveis pelo usuário, uma vez que a AWS exige a apresentação de
credenciais para chamar as APIs. Assim, foi realizado os seguintes passos [64]:

∙ Criação do usuário rasptcc;

∙ Anexo das permissões AdministratorAccess e AmazonRekognitionFullAccess.

Para a integração do projeto com o Rekognition, foi utilizada a biblioteca boto3,
que é a SDK da AWS para python e utiliza o protocolo de comunicação HTTP. O processo
de instalação é realizado a partir do comando abaixo [65]:

sudo pip3 install boto3

Após configurar o ambiente de desenvolvimento, foi necessário efetuar as etapas
de tratamento das imagens armazenadas e enviadas, criação das coleções e treino dos
modelos para definição dos vetores de características.

O tratamento das imagens para o treinamento dos modelos e criação dos vetores
de características faciais, que serão utilizados para o reconhecimento facial, seguem alguns
pontos sugeridos pela Amazon que estão sintetizadas a seguir [66]:

∙ Utilização de imagens com os olhos abertos e visíveis;

∙ Imagens em que as faces tenham um tamanho mínimo de 50 x 50 pixels e máxima
de 1920 x 1080 pixels;

∙ Utilização de imagens coloridas;

∙ Utilização de imagens de uma mesma pessoa de diversos ângulos (30∘, 45∘ e 90∘) e
distâncias (0.5m, 0.75m e 1m);

∙ Imagens que não estejam desfocadas.

Em relação ao tamanho das imagens, foram definidos dois formatos, as imagens de
treino do modelo tinham 780 x 1040 pixels devido ao fato desse ser o tamanho original de

74

Desenvolvimento Sistema de Segurança

captura; Já as imagens de busca, ou seja, de verificação da identidade da pessoa, possuem
o tamanho de 400 x 650 pixels de forma a otimizar o processo, pois proporção influencia
diretamente no tempo de processamento na nuvem.

A criação da coleção é executada através da função create_collection que recebe
como parâmetro de entrada o nome da coleção utilizada no trabalho collectionTcc [67].

Figura 54 – Função create_collection

Fonte:Autoria Própria

As imagens para treino são enviadas a partir da chamada da funcionalidade in-
dex_faces da API junto à definição dos seus parâmetros de entrada [67].

Figura 55 – Função index_face

Fonte:Autoria Própria

Para o parâmetro de entrada Image foi passado os bytes da imagem que estava
armazenada na própria RPi. Para o ExternalImageId, que é o rótulo da imagem, foi
definido um padrão de nomenclatura utilizando o primeiro e segundo nome da pessoa com
letras minusculas. A CollectionId recebe o nome da coleção criada para o desenvolvimento
do projeto.

A função utilizada para realizar a identificação facial está ilustrada na Figura 56,
seguida de uma análise da lógica implementada.

75

Desenvolvimento Comando de Voz

Figura 56 – Função faceMatch

Fonte:Autoria Própria

Com o intuito de garantir a confiabilidade do serviço de reconhecimento facial, é
realizada uma segunda confirmação da existência de faces no ambiente através do Rekog-
nition. Ou seja, após a foto ser tirada, esta é analisada através da chamada da função
checkFace. O resultado é armazenado na variável result, que caso satisfaça a condição
dentro do if, ou seja, se for verdadeiro, inicia-se o processo de identificação facial através
da função checkMatches.

Após o reconhecimento facial, o Rekognition retorna uma lista de informações
sobre a análise realizada. Essas informações são imprimidas no prompt de comando e em
seguida armazenadas em arquivo de log.

4.7 Comando de Voz

4.7.1 Configuração do Google Assistant

Apesar da imagem do Raspbian já possuir todas as dependências instaladas do
Assistant, ainda foi necessário definir algumas configurações para os periféricos e para a
comunicação da raspberry com a Google Cloud. O processo de instalação seguiu o descrito
no tutorial do site Android Authority [28].

O primeiro passo foi a configuração da porta de áudio. No Start dev terminal foi
efetuado o comando:

sudo leafpad /boot/config.txt

Assim, foi comentada as linhas ilustradas na Figura 57.

76

Desenvolvimento Comando de Voz

Figura 57 – Configuração do arquivo config.txt

Fonte:Autoria Própria

Para utilizar o speaker e o microfone é preciso indicar para a RPi quais são as
portas correspondentes. O arquivo asounf.conf é o responsável por tal configuração.
Assim, foi executado o comando no cmd.

sudo leafpad /etc/asound.conf

O arquivo foi atualizado da seguinte forma.

Figura 58 – Configuração do arquivo asounf.conf

Fonte:Autoria Própria

Em seguida executou-se no Start dev terminal comando:

sudo leafpad /home/pi/voice-recognizer-raspi/checkpoints/check_audio.py

Para utilizar o microfone usb é necessário alterar a variável VOICEHAT_ID =
‘googlevoicehat’ para VOICEHAT_ID = ‘bcm2835’, uma vez que o ambiente está confi-
gurado para utilizar o microfone padrão do kit de desenvolvimento do Google.

Para verificar se os periféricos estão sendo reconhecidos pela interface, executou-se
o script bash abaixo.

sudo bash check_audio

77

Desenvolvimento Comando de Voz

Após isso é necessário configurar o Google Cloud, através de uma conta do próprio
Google para realizar a autenticação do dispositivo a partir das credenciais de acesso. O
procedimento dessa etapa está descrita a seguir.

∙ Criar um novo projeto;

∙ Habilitar o Google Assistant API ;

∙ Criar as credenciais de OAuth client ID ;

∙ Executar o download do arquivo da credencial;

∙ Alterar o nome da credencial para assistant.json;

∙ Mover o arquivo para a pasta /home/pi/assistant.json;

∙ Habilitar no painel de Controle de Atividades: atividade na Web e de apps, histórico
de localização, informações do dispositivo e atividade de áudio e voz.

Em seguida foi executado através do Start dev terminal o comando a baixo para
verificar se as configurações do sistema estavam funcionando corretamente a partir de
comandos de voz.

./assistant_grpc_demo.py

Após a conclusão dessas etapas de configuração do Google Cloud, iniciou-se o de-
senvolvimento de novas skills para a realização de tarefas específicas do assistente pessoal.

4.7.2 Desenvolvimento de Skills

Para o desenvolvimento não foi utilizado o método convencional definido pelo
Google, devido a problemas de desatualização da versão do SO instalado. Assim, as skills
foram criadas através de uma adaptação do arquivo python assistant_grpc_demo.py.
Para auxiliar nessa etapa foi necessário instalar o Google Text-to-Speech (gtts), que é uma
biblioteca em python do google que transforma textos em áudio. O processo de instalação
foi simples e utilizando o pip.

pip install gTTS

Em seguida, foi definido o método speak, conforme ilustrado na Figura 59 seguir.

78

Desenvolvimento Comando de Voz

Figura 59 – Método speak

Fonte:Autoria Própria

Quando o método é chamado, ele requisita o parâmetro de entrada text_rec que
é o texto reconhecido pelo serviço do google assistant. Em seguida, ele faz a chamada da
função gTTS que converte o texto de entrada para áudio. O áudio é então executado a
partir da biblioteca playsound.

Após essa etapa de preparação, foi criado uma nova skill que informa as tarefas
que o usuário tem agendada. O desenvolvimentos está ilustrado na Figura 60.

Figura 60 – Desenvolvimento de skills

Fonte:Autoria Própria

As novas skills não estão no banco de dados do Google, assim uma forma de veri-
ficar se estas foram requisitas, é verificar se o texto convertido pelo Google é equivalente
a alguma skill desenvolvida. A análise é realizada através do condicional if. O processo
completo é descrito a seguir.

79

Desenvolvimento Desenvolvimento do Banco de Dados

Após executar o serviço do Google, ele aguarda um gatilho, que é o inicio da fala
do usuário. Após a interação homem-maquina o serviço faz o reconhecimento do texto
falado e armazena os resultados obtidos nas variáveis text e audio, através da função assis-
tant.recognize. Dentro das variáveis são armazenados, respectivamente, o texto convertido
e a resposta em áudio gerada pelo Google. No entanto, caso o assistant não encontre uma
resposta pré-configurada no seu banco, ele retorna um áudio padrão informando que não
foi possível realizar a tarefa solicitada.

Em seguida, é realizada a verificação, através dos condicionais if, se o comando
passado pelo usuário corresponde a skill de tarefas criada. Quando sua condição é satis-
feita, o programa consulta as tarefas pendentes do usuário através da chamada do método
actionTask e em seguida utiliza o gTTS para realizar a interação via áudio.

4.8 Desenvolvimento do Banco de Dados

O banco de dados mostra-se fundamental pois será a partir dele que as instâncias
web podem não apenas salvar e consultar dados mas também podem se comunicar com
os elementos locais tal como a interface gráfica.

A criação do banco de dados ocorreu a partir do SQLite (sqlite3) e do SQLAL-
CHEMY (Flask Alchemy) – presente no código em python. A criação do banco de dados
pode ocorrer tanto diretamente a partir do console quanto a partir de código presente em
um arquivo python. Ao longo deste trabalho e em diferentes programas foram-se utilizado
os dois métodos a depender da complexidade e da necessidade do programa em questão.

Para criar um banco de dados via terminal deve-se primeiramente iniciá-lo através
do comando a seguir

sqlite3 <nome>.db

A seguir pode-se abri-lo e conferir que ainda não existe nenhuma Tabela dentro
do mesmo.

.table

Após isso deve-se fechar a base de dados e rodar o programa e instanciar a base
de dados a partir deste arquivo, para tal deve-se digitar o comando:

from <arquivopython>.py import <nome da Tabela do banco de dados>

Deve-se então criar a Tabela do banco de dados instanciado.

<nome da Tabela do banco de dados>.create_all() exit()

80

Desenvolvimento Característica Open-Source

Agora se iniciar novamente o banco de dados e buscar por suas Tabelas deverá se
achar a Tabela “<nome da Tabela do banco de dados>”.

Na Figura 61 seguir está presente o arquivo python que permite instanciar a Ta-
bela.

Figura 61 – Banco de dados python (1)

Fonte:Autoria Própria

O segundo método de se iniciar uma Tabela no banco de dados pode ser observada
no código da Figura 62 abaixo a partir da chamada da função create_table.

Figura 62 – Banco de dados python (2)

Fonte:Autoria Própria

4.9 Característica Open-Source

Para que o projeto seja acessível para toda a comunidade interessada utilizou-
se a ferramenta e ambiente GitHub. A criação do ambiente de armazenamento open-
source do projeto deu-se a partir da interface web do GitHub, onde através desta gerou-
se primeiramente um usuário administrador(neste caso o estudante Samuel Santos) do
projeto e em seguida os diretórios necessários para o armazenamento do projeto e suas
características básicas.

O acesso a tais arquivos se dá através do link presente a seguir e pode ser acessado
por todos usuários. Além de que qualquer membro da comunidade GitHub pode solicitar

81

Desenvolvimento Característica Open-Source

o poder de alteração do código, a qual pode ser realizada mediante a autorização do
administrador.

Link de acesso: https://github.com/samuelsantos22/M.U.S.K.git

82

5 Resultados e Discussões

Neste capítulo foi apresentado todos os resultados qualitativos e quantitativos da
interação com o usuário, do sistema de segurança e do desempenho do sistema. Em
paralelo, foi discutido os indicadores obtidos, pontuando possíveis aspectos de melhora
no projeto. No final é destinada uma seção para apresentar futuros aprimoramentos do
assistente pessoal.

5.1 Interação com o Usuário

Um dos elementos fundamentais para todo assistente pessoal é a sua capacidade de
interação com os seus usuários. Para uma interação mais completa e integrada buscou-se
que a mesma fosse capaz de fornecer todo o seu potencial através de telas e comandos
simples.

A interação entre o sistema e o usuário se dá principalmente de forma visual,
sendo que parte das funções pode ser acessada através da tela do componente e outra
parte a partir da interface WEB. A escolha de tal separação se deu para que a utilização
do sistema ocorresse da forma mais orgânica possível, uma vez que não se apresenta uma
solução viável a configuração do dispositivo através de uma tela móvel como a presente
no dispositivo.

5.1.1 Web

5.1.1.1 Página Inicial

A interface web inicia-se com uma tela de entrada na qual é apresentado o assis-
tente pessoal – MUSK -, além de suas principais funções e as guias que levam as demais
funcionalidades. A Figura 63 apresenta a página de entrada.

Resultados e Discussões Interação com o Usuário

Figura 63 – Página de Entrada WEB

Fonte:Autoria Própria

5.1.1.2 Página de Aplicativos

Ao acessar o site tem-se a pagina interna a qual permite que se escolha e adicione
aplicativos web, além é claro da descrição de cada um dos aplicativos. A Figura 64
apresenta a home de entrada.

84

Resultados e Discussões Interação com o Usuário

Figura 64 – Página de Aplicativos

Fonte:Autoria Própria

5.1.1.3 Página Modo Vigia

O modo vigia permite que se observe a partir de qualquer lugar através do site as
imagens obtidas a partir da câmera usb. Além de que permitir também que se altere a
posição da câmera aumentando assim consideravelmente o ângulo de visão da mesma. A
Figura 65 apresenta um exemplo da interface desta função web.

85

Resultados e Discussões Interação com o Usuário

Figura 65 – Exemplo Interface Modo Vigia

Fonte:Autoria Própria

5.1.1.4 Sensor de Temperatura e Umidade

A interface do sensor de umidade e temperatura está presente de forma simples em
um exemplo na Figura 66. Através dele é possível verificar localmente o ambiente e fu-
turamente será possível até mesmo acionar determinados eletrodomésticos para controlar
esta temperatura e torná-la ideal ao indicado pelo usuário.

86

Resultados e Discussões Interação com o Usuário

Figura 66 – Interface de Temperatura e Umidade

Fonte:Autoria Própria

5.1.1.5 Agenda WEB

Por fim tem-se a agenda que indica os eventos futuros, os quais por enquanto
só podem ser adicionados através do site mas são mostrados todos os dias na tela do
assistente pessoal.

87

Resultados e Discussões Sistema de Segurança

Figura 67 – Interface Agenda

Fonte:Autoria Própria

5.2 Sistema de Segurança

A capacidade do assistente realizar um serviço de segurança do ambiente, mostrou-
se muito promissora devido aos resultados obtidos nos testes realizados. Além disso foi
demonstrando a possibilidade de expansão do sistema com a integração de mais dispositi-
vos. A seguir, está apresentado os resultados obtidos para cada componente que compõe
o sistema de segurança.

5.2.1 Controle Câmera

Para a interação do usuário com a câmera, efetuou-se a validação do controle de
um módulo físico através de comandos realizados pelo usuário do lado do cliente no web
server. O processo obteve resultados com um tempo de resposta com delay mínimo e não
perceptivo. Além disso, pode-se garantir a partir dessa funcionalidade a possibilidade de
integrar mais periféricos com o MUSK com conexão direta com os pinos do hardware ou
através da conexão via Wi-Fi.

Um outro ponto a ser ressaltado é o fato de que toda a integração foi construída
dentro de uma mesma rede, ou seja, caso o usuário acesse a página web de uma rede
externa pode ocorrer variações no resultado devido ao desempenho e qualidade do sinal
de internet.

A dificuldade encontrada na integração dessa etapa no projeto foi devido a defini-

88

Resultados e Discussões Sistema de Segurança

ção do número de graus de liberdade de controle da câmera. O assistente permite apenas
um deslocamento de um eixo lateral, o que reflete no movimento da câmera. Na fase de
pré-projeto foi idealizado um deslocamento com dois graus de liberdade, no entanto de-
vido ao peso do protótipo não foi possível utilizar um suporte pan-tilt, que possibilitaria
uma maior mobilidade para a câmera integrada ao MUSK.

5.2.2 Detector de Presença

Outro módulo acoplado ao protótipo é o sensor de presença PIR. Seu objetivo é
garantir a segurança do ambiente quando o usuário não está presente, assim a sua ação
só é realizada quando for ativada via interface Web. Quando o sensor detecta uma nova
presença no ambiente é enviado uma mensagem para o email do responsável cadastrado.

A detecção de uma nova presença no ambiente teve resultados excelentes, apre-
sentando um delay desprezível (da ordem de mili segundos) e uma sensibilidade alta. Em
relação ao processo do email, obteve-se uma latência baixa, ou seja, quase instantânea de
entrega da mensagem, comprovando a eficiência dos métodos e protocolos utilizados na
operação.

A dificuldade encontrada na integração do sensor com o sistema é relacionada a
conexão via cabo entre as duas partes. Esse fator limita o alcance do PIR, uma vez
que é recomendado instalar o sensor em lugares altos, acima de 2 metros, para obter uma
"visão"ampla do ambiente. Assim, uma possível solução para esse problema é a utilização
de um microcontrolador para controlar o sensor PIR e comunicar os eventos obtidos para
a RPi via internet. Essa solução permitiria ainda a integração de diversos sensores com o
sistema, monitorando assim quantos ambientes o usuário desejar.

5.2.3 Reconhecimento Facial

Um outro componente presente no serviço de segurança disponibilizado pelo MUSK
é capacidade de realizar a detecção e reconhecimento de faces. Isso permite que o pro-
tótipo possa monitorar as pessoas que estão presentes no ambiente, além de controlar as
permissões e acesso a uma casa ou escritório. Por exemplo, a partir do cadastro de pessoas
conhecidas, o assistente é capaz de liberar a entrada de uma pessoa na empresa de forma
inteligente, rápida e gerando logs de acesso. Para validar a eficiência dessa habilidade,
foram realizados alguns testes de performance do reconhecimento de faces.

5.2.3.1 Testes AWS Rekognition

Para verificar a confiabilidade e latência da API da Amazon, foi desenvolvido
scripts em python para extrair informações que contribuam na avaliação do serviço. Fo-
ram realizados 2 processos:

89

Resultados e Discussões Sistema de Segurança

∙ Processo 1: Análise de fotos pré-definidas;

∙ Processo 2: Análise de imagens geradas em tempo real.

O objetivo desses dois processos foi realizar um número considerável de testes
(processo 1) e verificar se existe alguma perda de performance em imagens obtidas em
tempo real (processo 2).

As imagens de testes utilizadas tem as seguintes características.

∙ Usuário utilizado: Guilherme Cabral;

∙ Tamanho das imagens: 780x1040 pixels (imagem original) e 450x600 pixels (imagem
tratada);

∙ Distância de aproximadamente 0,75m;

∙ Diferentes ângulos de análise.

O primeiro teste a ser realizado é o de variação do tamanho das imagens processa-
das, que foi realizado em duas etapas. O gráfico na Figura 68 seguir mostra os resultados
obtidos para um total de 800 amostras.

Figura 68 – Teste da Variação do Tamanho da Imagem Enviada

Fonte:Autoria Própria

As fotos de tamanho original estão alocadas na primeira banda de amostras (0 -
400). Estas obtiveram uma instabilidade em relação ao tempo de resposta, uma vez que
pode constatar a presença de picos, como na amostra 81 que teve como resultado um

90

Resultados e Discussões Sistema de Segurança

pico de 7.641 segundos. Já na segunda banda (401 - 800) estão contidas as imagens que
tiveram seus tamanhos tratados, que por sua vez apresentou resultados mais estáveis.

Apesar de existir uma divergência na amostra 401 essa não interfere nas conclusões
do teste, pois esse pico ocorre com certa frequência na primeira imagem enviada a Cloud
para o processamento e análise, após o início da conexão com a AWS, como pode ser
observado no gráfico na Figura 69 seguir.

Figura 69 – Picos de tempo no início do teste

Fonte:Autoria Própria

Para esse teste foram utilizadas 17 bandas, em que 9 delas possuem 40 amostras
e as demais possuem 50 amostras. Assim, pode-se aferir através das amostras iniciais de
cada banda esse pico no tempo em relação as demais realizadas no mesmo período. O
motivo desse comportamento não está relacionado com a forma que é realizada a conexão.
Na documentação do Rekognition também não é informado sobre essa peculiaridade.

No entanto, esse problema não tem uma grande influência no funcionamento do
MUSK, uma vez que o sistema só estaria propenso a ter tal comportamento na primeira
imagem que envia para a AWS, após isso ele se estabiliza. Logo, esse pico pode ser
facilmente corrigido via software em que, após a conexão com a AWS, é enviada uma
imagem de teste para que o sistema se estabilize.

Em seguida foi realizado um teste para verificar se ocorria alterações no tempo
devido a resultados de processamentos antigos. Até então foram realizados testes usando
apenas uma persona o que poderia acarretar em um tempo de resposta cada vez menor.
Para essa etapa foi efetuado o reconhecimento de diferentes pessoas famosas intercaladas
entre si. As imagens delas foram tratadas usando o padrão desse projeto para que os
resultados não ficassem enviesados.

91

Resultados e Discussões Sistema de Segurança

∙ Usuário utilizado: Steve Jobs, Bill Gates, Jeff Bezos e Elon Musk;

∙ Tamanho das imagens: 450x600 pixels (imagem tratada);

∙ Cada rótulo utilizou 5 imagens para treino e determinação do vetor de característica.

Os resultados encontrados estão amostrados no gráfico da Figura 70 abaixo.

Figura 70 – Teste com variação da imagem de entrada

Fonte:Autoria Própria

Pode aferir-se que a API da AWS não é afetada pela variação de pessoas a serem
reconhecidas, uma vez que o tempo médio de reconhecimento foi muito próximo dos
realizados nos testes anteriores, sendo a diferença em milissegundos.

Por fim, foram realizados testes com fotos tiradas em tempo real utilizando o
mesmo usuário Guilherme. O procedimento foi realizado tirando fotos frontais enquanto
este estava realizando atividades no computador. Os resultados estão ilustrados na Figura
71 seguir.

92

Resultados e Discussões Controle de Voz

Figura 71 – Teste em tempo real

Fonte:Autoria Própria

Assim, constatou-se a estabilidade da latência do processamento na cloud, além
de um tempo médio de 0,92 segundos que é muito próximo dos obtidos com imagens
pré-definidas. Observa-se que um conjunto de amostras obteve um tempo de resposta
maior, com um máximo de 4,75 segundos, no entanto isso é resultado dos movimentos
que o usuário realizou durante os testes, que afetou a qualidade do foco e a detecção do
rosto, uma vez que o ângulo da face estava próximo do limiar permitido dificultando o
processamento do Rekognition.

Por fim, em todos os testes executados analisou-se também dois aspectos importan-
tes para um reconhecimento de faces eficiente. Os resultados obtidos foram especificados
abaixo.

∙ Confiabilidade: valor em porcentagem de 0 a 100 que informa qual a confiança
que se garante dos resultados retornados pela API. Em todos os testes realizados a
confiabilidade foi de 100%.

∙ Similaridade: valor em porcentagem de 0 a 100 que informa qual a similaridade
obtida entre a imagem enviada e o rótulo retornado (nome do usuário identificado).
Em todos os testes foram obtidos uma similaridade de 100%.

5.3 Controle de Voz

Após a implementação do sistema de controle por voz buscou-se elaborar e realizar
uma série de testes para averiguar o seu desempenho. No primeiro teste foi observado
a latência do sistema em cem oportunidades, verificando-se assim um tempo máximo de

93

Resultados e Discussões Controle de Voz

atendimento de 8,1772 segundos e um tempo mínimo de 2,9474 segundos. A média dos
tempos obtidos foi de 4.92 segundos e observou-se que ao passar do tempo a variação dos
atendimentos tendeu a diminuir como pode-se observar na Figura 72.

Figura 72 – Tempo de Requisição do Controle de Voz

Fonte:Autoria Própria

No segundo teste decidiu-se observar a capacidade qualitativa do controle de enten-
der corretamente as solicitações realizas. Para realizar este experimento realizou-se cem
testes anotando a quantidade de palavras que foram compreendidas de forma erradas.

Aproximou-se que cada frase utilizada tinha em média três palavras e dentro de
cada frase o erro máximo de palavras foi de três palavras, ou seja, de toda a sequência.
Porém tal fato ocorreu apenas uma vez sendo que durante maior parte do tempo o erro
foi nulo, ou seja, todas as palavras faladas foram compreendidas. O erro médio por frase
foi de 0,1 (ou seja, 10%), enquanto o erro médio por palavra foi de 0,033 (ou seja, 3,3%)
conforme apresentado no gráfico da Figura 73.

94

Resultados e Discussões Performance do Sistema

Figura 73 – Erro no Reconhecimento de Voz

Fonte:Autoria Própria

A partir da análise dos gráficos presente nas figuras 72 e 73 que o controle de voz
possui uma elevada confiabilidade, baixa latência e um desempenho elevado. Porém como
consequência disto este também necessita de uma quantidade elevada de processamento.

5.4 Performance do Sistema

Após a integração de todo o sistema, foi realizado um último teste para verificar
qual o desempenho final do sistema durante seu funcionamento. Os objetivos desse teste
são:

∙ Verificar se o sistema possui atrasos significativos nas respostas de suas funcionali-
dades, quando está realizando diversas tarefas ao mesmo tempo;

∙ Consultar o custo de memória e possíveis limitações da RPi em períodos de funcio-
namento extremo;

∙ Investigar possíveis aprimoramentos nas estruturas de software e hardware selecio-
nadas e desenvolvidas;

∙ Verificar a existência de super aquecimento no assistente.

Com o intuito de analisar o funcionamento geral do sistema, foi proposto elevar o
assistente a casos extremos de uso. A partir dessa necessidade, foi definido que o sistema
realizaria diferentes ações ao mesmo tempo. Assim, diferentes funcionalidades foram
testadas paralelamente, essas funcionalidades são:

∙ Testes de comando de voz (pré-definidos e criados);

95

Resultados e Discussões Performance do Sistema

∙ Detecção e Reconhecimento Facial;

∙ Interação com a interface do usuário (LCD);

∙ Envio de requisições via interface Web para a movimentação dos motores, consulta
da agenda e do sensor de temperatura e umidade.

Para realizar as medições de desempenho, foi utilizado o software RPi-Monitor
que é específico para geração de métricas na raspberry. Uma vez que o objetivo desse
capítulo é analisar os resultados obtidos, não será descrito o processo de instalação. No
entanto o processo é simples e fácil de ser acessado na internet.

Os resultados obtidos nos testes de performance estão descritos e ilustrados na
Figura 74 seguir. O período de avaliação do funcionamento do assistente foi de 38 minutos,
com inicio às 17 horas e 15 minutos.

Figura 74 – Teste de temperatura

Fonte:Autoria Própria

O gráfico de variação de temperatura acima mostra que durante o período de
execução do software do assistente pessoal, a RPi atingiu picos de quase 70C. Esses altos
valores estão relacionados ao consumo do processador pelos programas que estão sendo
executados. Uma vez que a temperatura normal de funcionamento é de 40 - 45C, observa-
se que a raspberry atingiu alguns picos críticos de aquecimento.

Além de analisar a variação de temperatura outro fator importante a se observar
é o consumo percentual da CPU. Para isso utilizou-se o mesmo programa apresentado
anteriormente de maneira que obteve-se o gráfico presente na Figura 75.

96

Resultados e Discussões Performance do Sistema

Figura 75 – Teste de Consumo da CPU

Fonte:Autoria Própria

Através deste gráfico pode-se então perceber que em pequenos períodos de tempo
houveram picos de 80%, tais períodos de tempo podem ser observados a partir dos dados
obtidos a cada segundo. Pode-se perceber também que apesar dos picos a ocupação
da CPU da Raspberry Pi mantêm-se estável entre 40% a 50% aproximadamente. Tais
valores por sua vez indicam um bom dimensionamento da distribuição do processamento
da Raspberry, porém também indicam que a adição de outras funções sobre o assistente
pessoal podem gerar tanto queda de desempenho na Raspberry quanto até mesmo a sua
parada. Uma vez que elevados picos de processamento durante muito tempo podem gerar
travamentos sobre a plataforma.

97

6 Conclusão

Este projeto foi concebido com o intuito de permitir o estudo de soluções em IoT
para a construção de um assistente pessoal. O qual por sua vez deveria possibilitar a
democratização das tecnologias utilizadas em assistentes pessoais comerciais.

Para isso, ao longo deste trabalho foi estudado diversas linguagens de programação
e marcação, como Python, SQL, HTML, JavaScript e CSS, permitindo assim, a construção
de um assistente pessoal que como qualquer outro sistema embarcado, integra elementos
de software e hardware dentro de um complexo sistema.

Foi possível também validar a hipótese inicial da construção de um assistente
pessoal de código aberto, flexível e acessível. A partir de bibliotecas gratuitas e públicas,
tal como o Flask, OpenCV e Google Assistant. Sendo que estas contam com comunidades
ativas.

Deve-se observar, no entanto, que o custo atribuído a execução do projeto foi maior
do que o estimado. Gerando assim uma barreira na sua acessibilidade, a qual, porém,
pode ser superada com a utilização de elementos de menor custo e consequentemente
desempenho. Além disso, foi necessário integrar serviços pagos para a execução de tarefas,
como identificação facial. O que demonstra, assim a dificuldade na construção de um
assistente pessoal totalmente gratuito.

Quanto aos resultados obtidos, nota-se no capítulo anterior uma integração entre os
serviços e programas sem interferências, apesar do elevado nível de processamento exigido
em relação a Raspberry Pi 3, que atingiu picos de 80%, junto com picos de aquecimento da
placa de 60∘C. Essa limitação quanto ao hardware só pode ser contornada com o avanço
de tecnologias de processamento de baixo custo.

A utilização de periféricos USB permite uma flexibilização na qualidade em relação
ao custo desempenho, uma vez que, isso permite a utilização de dispositivos de menor
custo ou de maior qualidade, caso necessário.

Por fim, pode se afirmar o sucesso deste projeto, uma vez que, este apresentou
uma integração dos serviços de forma a não gerar problemas de desempenho entre eles,
junto com um consumo de recursos do sistema sem interferências. Tal como, comando
de voz, reconhecimento facial, interface Web e visual, além da utilização de dispositivos
externos (sensores, atuadores e display LCD). Sendo que estes apresentaram um bom de-
sempenho devido a latência nos tempos de resposta dos serviços, e requisições do sistema,
e confiabilidade nos resultados obtidos.

Conclusão Aprimoramentos Futuros

6.1 Aprimoramentos Futuros

Devido ao seu objetivo principal que é de servir como base para desenvolvimentos
futuros na área, o assistente pessoal, ainda tem muito a evoluir. Entre alguns dos elemen-
tos que elevariam o potencial deste assistente pessoal estão: A integração do assistente
pessoal a um servidor, permitindo assim o acesso de diferentes ambientes. Sendo que
neste caso deverá haver um aumento de preocupação com o nível de segurança oferecido
pelo site, para que os seus usuários tenham os seus dados protegidos.

A criação de um aplicativo Mobile para facilitar a utilização das atuais ferramentas.
Sendo que esta é uma grande oportunidade para se utilizar novas ferramentas e tecnologias
tal como o React Native, Flutter e Xamarin.

Por último recomenda-se um estudo de otimização do software para permitir tanto
a expansão das suas ferramentas quanto para facilitar o acesso fazendo com que o mesmo
possa ser compilado em hardwares de menor potência.

99

Referências

[1] Unlocking the potential of the internet of things. https://www.

mckinsey.com/business-functions/mckinsey-digital/our-insights/

the-internet-of-things-the-value-of-digitizing-the-physical-world.
Accessed: 2019-10-15. Citado na página 13.

[2] Smart home technology poised for blockbuster growth. https://www.statista.

com/chart/15736/smart-home-market-forecast/. Accessed: 2019-10-15. Citado
na página 13.

[3] Apple future computer knowledge navigator. https://www.businessinsider.com/
apple-future-computer-knowledge-navigator. Accessed: 2019-10-15. Citado na
página 13.

[4] Assistentes pessoais virtuais ganham o mundo corporativo. https://cio.com.

br/assistentes-pessoais-virtuais-ganham-o-mundo-corporativo/. Accessed:
2019-10-15. Citado na página 13.

[5] Assistentes pessoais digitais. https://oglobo.globo.com/economia/

assistentes-pessoais-digitais-1-19383632. Accessed: 2019-10-15. Ci-
tado na página 13.

[6] Internet das coisas: Um desenho do futuro. https://www.proof.com.br/blog/

internet-das-coisas/. Accessed: 2019-10-15. Citado na página 13.

[7] Internet of things global standards initiative. https://www.itu.int/en/ITU-T/

gsi/iot/Pages/default.aspx. Accessed: 2019-10-15. Citado na página 13.

[8] W STALLINGS. Arquitetura e organização de computadores. Pearson Prentice-Hall,
10a ed., 2017. Citado na página 16.

[9] Internet of things global standards initiative. https://www.itu.int/en/ITU-T/

gsi/iot/Pages/default.aspx. Accessed: 2019-10-15. Citado na página 16.

[10] 5 áreas mais impactadas pela internet das coisas. https://cio.com.br/

5-areas-mais-impactadas-pela-internet-das-coisas/. Accessed: 2019-10-15.
Citado na página 17.

[11] Daniel Thomazini. Sensores industriais: fundamentos e aplicações. Saraiva Educação
SA, 2018. Citado na página 17.

Referências Aprimoramentos Futuros

[12] Sinal analógico x sinal digital. https://www.embarcados.com.br/

sinal-analogico-x-sinal-digital/. Accessed: 2019-10-14. Citado na pá-
gina 17.

[13] Sensores e atuadores. https://www.mecanicaindustrial.com.br/

374-para-que-servem-os-atuadores/. Accessed: 2019-10-15, Author: Prof.
Maurílio J. Inácio. Citado na página 17.

[14] O que é a computação em nuvem? https://aws.amazon.com/pt/

what-is-cloud-computing/. Accessed: 2019-10-15, Author: Prof. Maurílio J. Iná-
cio. Citado na página 18.

[15] O que é open source? https://canaltech.com.br/produtos/

O-que-e-open-source/. Accessed: 2019-10-15. Citado na página 18.

[16] Maik Schmidt. Raspberry Pi: A Quick-Start Guide. Pragmatic Bookshelf, 2014.
Citado 2 vezes nas páginas 20 e 31.

[17] Saiba tudo sobre o raspberry pi 3 e o que ele representa para o mercado. https:

//canaltech.com.br/hardware/saiba-tudo-sobre-o-raspberry-pi-3-59065/.
Accessed: 2019-10-14. Citado na página 21.

[18] Processador arm. http://www.dca.fee.unicamp.br/~lboccato/topico_3.1_

processador_ARM.pdf. Accessed: 2018-06-20. Citado na página 21.

[19] Display lcd tft touch 3.5inc raspberry pi. https://www.filipeflop.com/produto/
display-lcd-tft-touch-3-5-raspberry-pi/. Accessed: 2019-10-14. Citado na
página 21.

[20] 3.5inch rpi display. http://www.lcdwiki.com/3.5inch_RPi_Display. Accessed:
2019-10-14. Citado na página 21.

[21] PIR HC-SR501. Motion detector datasheet. Product Description. Citado na página
23.

[22] Warren W Gay. Dht11 sensor. In Experimenting with Raspberry Pi, pages 1–13.
Springer, 2014. Citado na página 25.

[23] Manual webcam goldship 3817. Manufacturer: GoldShip, Inc, LeaderSheep. Citado
na página 26.

[24] Microfone universal mini usb 2.0. Manufacturer: Mini, Inc. Citado na página 27.

[25] O que é servomotor? controlando um servo com arduino. https://portal.

vidadesilicio.com.br/o-que-e-servomotor/. Accessed: 2019-10-14. Citado na
página 29.

101

Referências Aprimoramentos Futuros

[26] Andrew S Tanenbaum and Herbert Bos. Modern operating systems. Pearson, 2015.
Citado 2 vezes nas páginas 30 e 31.

[27] About raspbian. https://www.raspbian.org/RaspbianAbout. Accessed: 2019-10-
14. Citado na página 31.

[28] How to build your own digital assistant with a raspberry pi. https://www.

androidauthority.com/build-google-assistant-raspberry-pi-770296/. Ac-
cessed: 2019-10-14. Citado 2 vezes nas páginas 31 e 76.

[29] Introdução a Classes e Métodos em Python kernel description. http://pythonclub.
com.br/introducao-classes-metodos-python-basico.html. Accessed: 2018-06-
22. Citado na página 32.

[30] Como funcionam as aplicações web. https://www.devmedia.com.br/

como-funcionam-as-aplicacoes-web/25888. Accessed: 2019-10-14. Citado
na página 32.

[31] Métodos de requisição http. https://developer.mozilla.org/pt-BR/docs/Web/

HTTP/Methods. Accessed: 2019-10-14. Citado na página 32.

[32] What does “micro” mean? https://flask-doc.readthedocs.io/en/latest/

foreword.html. Accessed: 2019-10-14. Citado na página 33.

[33] Python flask introdução. http://devfuria.com.br/python/flask/. Accessed:
2019-10-14. Citado na página 33.

[34] Qual a diferença entre página web, site, servidor web e mecanismo
de busca? https://developer.mozilla.org/pt-BR/docs/Learn/Common_

questions/Pages_sites_servers_and_search_engines. Accessed: 2019-06-20.
Citado na página 33.

[35] Definition of: dynamic web page. https://web.archive.org/web/

20170117040526/https://www.pcmag.com/encyclopedia/term/42199/

dynamic-web-page. Accessed: 2019-06-20. Citado na página 33.

[36] Html - standards. https://www.w3.org/standards/. Accessed: 2019-06-20. Citado
na página 34.

[37] Addison WESLEY. A history of HTML. 1998. Citado na página 34.

[38] O que é css? guia básico para iniciantes. https://www.hostinger.com.br/

tutoriais/o-que-e-css-guia-basico-de-css/. Accessed: 2019-06-20. Citado
na página 34.

102

Referências Aprimoramentos Futuros

[39] Henry F KORTH and A SILBERCHATZ. Sistemas de banco de dados. rev. Citado
na página 36.

[40] Christopher J Date. Introdução a sistemas de bancos de dados. Elsevier Brasil, 2004.
Citado na página 36.

[41] Jane Laudon, Kenneth; Laudon. Sistemas de Informação Gerenciais. Pearson Brasil,
2011. Citado na página 37.

[42] Dados não relacionais e nosql. https://docs.microsoft.com/pt-br/azure/

architecture/data-guide/big-data/non-relational-data. Accessed: 2019-10-
14. Citado na página 37.

[43] Sql. https://www.sqlite.org/features.html. Accessed: 2018-05-06. Citado na
página 38.

[44] O que é visão computacional? http://datascienceacademy.com.br/blog/

o-que-e-visao-computacional/. Accessed: 2019-10-14. Citado na página 38.

[45] O que é visão computacional? https://blogbrasil.comstor.com/

o-que-e-visao-computacional. Accessed: 2019-10-14. Citado na página
38.

[46] Como funciona o reconhecimento facial. https://www.techtudo.com.br/artigos/
noticia/2012/04/como-funciona-o-reconhecimento-facial.html. Accessed:
2019-10-14. Citado na página 39.

[47] Opencv about. https://opencv.org/about/. Accessed: 2019-10-14. Citado na
página 39.

[48] Opencv documentation. https://docs.opencv.org/4.1.1/d1/dfb/intro.html.
Accessed: 2019-10-14. Citado na página 39.

[49] O que é a computação em nuvem? https://aws.amazon.com/pt/

what-is-cloud-computing/. Accessed: 2019-10-14. Citado na página 40.

[50] Amazon rekognition. https://aws.amazon.com/pt/rekognition/. Accessed: 2019-
10-14. Citado na página 40.

[51] Como funciona o reconhecimento de voz? https://www.tecmundo.com.br/

curiosidade/3144-como-funciona-o-reconhecimento-de-voz-.htm. Accessed:
2019-10-14. Citado na página 41.

[52] Actions on google: Desenvolvendo actions para o google as-
sistant do zero. https://medium.com/@wmessiascavalcanti/

103

Referências Aprimoramentos Futuros

actions-on-google-desenvolvendo-actions-para-o-google-assistant-do-zero-75a7aee714de.
Accessed: 2019-10-14. Citado na página 42.

[53] Change your Network Card MAC Address on Ubuntu ker-
nel description. https://www.howtogeek.com/howto/ubuntu/

change-your-network-card-mac-address-on-ubuntu/. Accessed: 2018-06-
22. Citado na página 45.

[54] Dynamic Host Configuration Protocol (DHCP) kernel description. https://

www.raspberrypi.org/learning/networking-lessons/lesson-3/plan/. Acces-
sed: 2018-06-22. Citado na página 45.

[55] MAC address spoofing kernel description. https://wiki.archlinux.org/index.

php/MAC_address_spoofing. Accessed: 2018-06-22. Citado na página 45.

[56] SSH (SECURE SHELL) kernel description. https://www.raspberrypi.org/

documentation/remote-access/ssh/. Accessed: 2018-06-22. Citado na página
46.

[57] Como montar um servidor web com o Raspberry Pi kernel description. http:

//www.raspberrypiportugal.pt/montar-um-servidor-web-raspberry-pi/. Ac-
cessed: 2018-06-22. Citado na página 47.

[58] Sites responsivos com muita rapidez. https://www.adobe.com/br/products/

dreamweaver.html?gclid=Cj0KCQjw3JXtBRC8ARIsAEBHg4k4GxQiSHlz0I7fXA_

YecH2e3Up9_ExjntHECwgIrRZDElNihMCC0YaAuUZEALw_wcB&sdid=KQPQE&mv=

search&ef_id=Cj0KCQjw3JXtBRC8ARIsAEBHg4k4GxQiSHlz0I7fXA_YecH2e3Up9_

ExjntHECwgIrRZDElNihMCC0YaAuUZEALw_wcB:G:s&s_kwcid=AL!3085!3!

301784449881!e!!g!!dreamweaver. Accessed: 2019-10-14. Citado na página 48.

[59] Raspberry Temp. Server kernel description. http://

raspberrywebserver.com/cgiscripting/rpi-temperature-logger/

building-a-web-user-interface-for-the-temperature-monitor.html. Acces-
sed: 2018-06-22. Citado na página 50.

[60] Raspberry Forms Server kernel description. http://raspberrywebserver.com/

cgiscripting/web-forms-with-python.html. Accessed: 2018-06-22. Citado na
página 50.

[61] XML HttpRequest kernel description. https://www.w3schools.com/xml/xml_

http.asp. Accessed: 2018-06-22. Citado na página 50.

[62] Enviando e recebendo emails com python. https://humberto.io/pt-br/blog/

enviando-e-recebendo-emails-com-python/. Accessed: 2019-10-14. Citado na
página 64.

104

Conclusão Aprimoramentos Futuros

[63] Definição de preço do amazon rekognition. https://aws.amazon.com/pt/

rekognition/pricing/?nc=sn&loc=4. Accessed: 2019-10-14. Citado na página
73.

[64] Configurar uma conta da aws e criar um usuário do iam. https://docs.aws.amazon.
com/pt_br/rekognition/latest/dg/setting-up.html. Accessed: 2019-10-14. Ci-
tado na página 74.

[65] Aws sdk para python (boto3). https://aws.amazon.com/pt/sdk-for-python/. Ac-
cessed: 2019-10-14. Citado na página 74.

[66] Recomendações para imagens de entrada de reconhecimento fa-
cial. https://docs.aws.amazon.com/pt_br/rekognition/latest/dg/

recommendations-facial-input-images.html. Accessed: 2019-10-14. Ci-
tado na página 74.

[67] Available services. https://boto3.amazonaws.com/v1/documentation/api/

latest/reference/services/index.html. Accessed: 2019-10-14. Citado na pá-
gina 75.

105

Apêndices

APÊNDICE A – Gerenciador do Servidor:

server.py

1

from f l a s k import Flask , render_template , Response , request , ur l_for , abort
, r e d i r e c t

3 from f lask_sq la lchemy import SQLAlchemy
from datet ime import datet ime

5 import s q l i t e 3
import os

7 import thread ing
from senso r import s enso r

9 import camera
import main

11 import servoMotor

13 tccCamera = camera . camera ()
tccMotor = servoMotor . servoMotor ()

15 tccMotor . runConf igurat ion ()

17 de f thread_cam (data) :
p r i n t (" entrou na thread ")

19 main . run (tccCamera)

21 t = thread ing . Thread (t a r g e t=thread_cam , args=(" nu l l " ,))
t . s t a r t ()

23

de f thread_voice (data) :
25 pr in t (" entrou na thread_voice ")

os . system ("sudo bash try_bash_ . sh")
27

t = thread ing . Thread (t a r g e t=thread_voice , a rgs=(" nu l l " ,))
29 t . s t a r t ()

31 de f thread_kivy (data) :
p r i n t (" entrou na thread kivy ")

33 os . system ("sudo python kivy_gui . py")

35 t = thread ing . Thread (t a r g e t=thread_kivy , args=(" nu l l " ,))
t . s t a r t ()

37

Gerenciador do Servidor: server.py Aprimoramentos Futuros

39 de f generateVideo (cam) :
whi l e True :

41 frame = cam . sendVideo ()
y i e l d (b ’−−frame\ r \n ’

43 b ’ Content−Type : image/ jpeg \ r \n\ r \n ’ + frame + b ’ \ r \n\ r \n ’)

45

Sta r t i ng Flask Server and Sq l i t e 3
47 app = Flask (__name__)

app . c on f i g [’SQLALCHEMY_DATABASE_URI’] = ’ s q l i t e :////home/ pi /Desktop/
t c c_ f i l e s /opencv_aws/ todo . db ’

49 db = SQLAlchemy(app)

51

c l a s s Todo(db . Model) :
53 id = db . Column(db . Integer , primary_key=True)

t i t l e = db . Column(db . S t r ing (200))
55 s t a r t = db . Column(db . DateTime , nu l l a b l e=False , d e f au l t=datet ime . utcnow)

complete = db . Column(db . Boolean)
57

59 @app . route ("/")
de f index () :

61 re turn render_template (’ home_entry . html ’)

63 @app . route (’ / i n s i d e ’)
de f index2 () :

65 re turn render_template (’ home_inside . html ’)

67 @app . route (’ / contact_pag ’)
de f contact () :

69 re turn r e d i r e c t (ur l_for (’ index ’))

71 @app . route (’ /camera ’)
de f camera () :

73 re turn render_template (’ camera . html ’)

75 @app . route (’ / cameraview ’)
de f cameraview () :

77 re turn Response (generateVideo (tccCamera) , mimetype=’ mult ipart /x−mixed−
r ep l a c e ; boundary=frame ’)

79 @app . route (’ / pan l e f t ’)
de f move2 () :

81 tccMotor . s e rvo_pos i t i on (0 ,−1)
re turn r e d i r e c t (ur l_for (’ camera . html ’))

83

108

Gerenciador do Servidor: server.py Aprimoramentos Futuros

@app . route (’ / panr ight ’)
85 de f move3 () :

tccMotor . s e rvo_pos i t i on (0 , 1)
87 re turn r e d i r e c t (ur l_for (’ camera . html ’))

89 @app . route (’ / temperatura ’)
de f temp () :

91 umidade , temperatura = senso r . readDht11 () ;
templateData = { ’umid ’ : "10" , ’ temp ’ : "10"}

93 re turn render_template (’ temperaturahtml . html ’ , ** templateData)

95 @app . route (’ /agenda_pag ’)
de f agenda () :

97 todos = Todo . query . a l l ()
incomplete = Todo . query . f i l t e r_by (complete=False) . a l l ()

99 complete = Todo . query . f i l t e r_by (complete=True) . a l l ()
r e turn render_template (’Agenda . html ’ , incomplete=incomplete , complete=

complete)
101

@app . route (’ /add ’ , methods=[’POST ’])
103 de f add () :

todo = Todo(t i t l e=reques t . form [’ todoitem ’] , s t a r t=datet ime . s t rpt ime (
r eque s t . form [’ date ’] , ’%Y−%m−%d ’) , complete=False)

105 db . s e s s i o n . add (todo)
db . s e s s i o n . commit ()

107 re turn r e d i r e c t (ur l_for (’ agenda ’))

109 @app . route (’ / complete/<id>’)
de f complete (id) :

111 pr in t (" id obt ido : " + s t r (id))
todo = Todo . query . f i l t e r_by (id=in t (id)) . f i r s t ()

113 todo . complete = True
db . s e s s i o n . commit ()

115 re turn r e d i r e c t (ur l_for (’ agenda ’))

117

i f __name__ == "__main__" :
119 app . run (host=’ 0 . 0 . 0 . 0 ’ , port =3000 , debug=False)

109

APÊNDICE B – Programa main.py

2 import numpy as np
import cv2

4 import time
import j son

6 import p e r s onaVe r i f i c a t i o n
import awsConnection

8 import s enso r
import s e c u r i t y

10 import camera

12

de f run (tccCamhttps : //www. o v e r l e a f . com/download/ p r o j e c t /5
dbaeae75ec01100010104c4 / bu i ld /16 e3931c71c−df1cd0a65045b15c /output /output
. pdf ? compileGroup=standard&c l s i s e r v e r i d=c l s i −pre−emp−pq3c&cache_bust
=1572917593506&popupDownload=true) :

14 # Creat ing ob j e c t s
tccAws = awsConnection . awsConnection ()

16 tccPersona = pe r s onaVe r i f i c a t i o n . p e r s onaVe r i f i c a t i o n ()
t ccSensor = senso r . s enso r ()

18 t c cS e cu r i t y = s e cu r i t y . s e c u r i t y ()
p r i n t (" antes do cv2")

20 tccCamera = tccCam
pr in t (" depo i s do cv2")

22

Connecting to AWS Rekognit ion
24 tccAws . ge tRekogn i t i onCl i ent ()

26 # Motion ca l l ba ck func t i on
de f motionCallback (channel) :

28 pr in t (" [+] Motion detec ted ")
re turn t c cS e cu r i t y . sendEmail ()

30

Sta r t i ng s en so r s
32 t ccSensor . runConf igurat ion (motionCallback)

34

whi le (True) :
36 frame = tccCamera . runFaceDetector ()

i f (tccCamera . f l a g) :
38 tccPersona . faceMatch (tccAws . awsRekognit ionCl ient)

Programa main.py Aprimoramentos Futuros

cv2 . imshow (’ frame ’ , frame)
40

#stop when ’ q ’ i s pre s sed
42 i f cv2 . waitKey (20) & 0xFF == ord (’ q ’) :

break
44

#r e l e a s e the capture on the end
46 cap . r e l e a s e ()

cv2 . destroyAllWindows ()
48 t ccSensor . c l eanSensorPor t s ()

111

APÊNDICE C – Programa awsConnection.py

1

import boto3 as b3
3

c l a s s awsConnection () :
5 de f __init__(s e l f) :

s e l f . awsRekognit ionCl ient = 0
7 s e l f . key_id = "key_id"

s e l f . secret_key = " secret_key "
9 s e l f . aws_region = " reg i on "

11 de f ge tRekogn i t i onCl i ent (s e l f) :
s e l f . awsRekognit ionCl ient = b3 . c l i e n t (’ r ekogn i t i on ’ , aws_access_key_id

= s e l f . key_id , aws_secret_access_key = s e l f . secret_key , region_name
= s e l f . aws_region)

13 pr in t (" [+] Connected to AWS Rekognit ion ")

APÊNDICE D – Programa camera.py

1

import numpy as np
3 import cv2

5

c l a s s camera () :
7 de f __init__(s e l f) :

s e l f . l i n eRec t = 2
9 s e l f . co lo rRect = (0 ,255 ,0)

s e l f . captureCamera = cv2 . VideoCapture (0)
11 s e l f . faceCascade = cv2 . Ca s c ad eC l a s s i f i e r (’ cascade /data/

haarcascade_f ronta l f a ce_de fau l t . xml ’)
s e l f . f a c e s = 0

13 s e l f . gray_frame = 0
s e l f . frame = 0

15 s e l f . f l a g = False

17 de f getFrame (s e l f) :
#capture frame

19 re turn s e l f . captureCamera . read ()

21 de f des t roy (s e l f) :
r e turn s e l f . captureCamera . r e l e a s e ()

23

de f getImage (s e l f) :
25 f o r (x , y ,w, h) in s e l f . f a c e s :

p r i n t (x , y ,w, h)
27 #Cords

end_cord_x = x+w+50; end_cord_y = y+h+50;
29 ini_cord_x = x−25; ini_cord_y = y−25;

#r o i − r eg i on o f i n t e r e s t
31 roi_gray = s e l f . gray_frame [ini_cord_y : end_cord_y , ini_cord_x :

end_cord_x]
ro i_co l o r = s e l f . frame [ini_cord_y : end_cord_y , ini_cord_x : end_cord_x]

33 roi_gray_res = cv2 . r e s i z e (roi_gray , d s i z e =(420 , 420) , i n t e r p o l a t i o n=
cv2 .INTER_CUBIC)

cv2 . imwrite ("img1 . jpg " , roi_gray_res)
35 cv2 . r e c t ang l e (s e l f . frame , (x , y) , (end_cord_x , end_cord_y) , s e l f .

co lorRect , s e l f . l i n eRec t)
s e l f . f l a g = True

37

Programa camera.py Aprimoramentos Futuros

de f runFaceDetector (s e l f) :
39 s e l f . f l a g = False

ret , s e l f . frame = s e l f . getFrame () ;
41 #turn in to gray

s e l f . gray_frame = cv2 . cvtColor (s e l f . frame , cv2 .COLOR_BGR2GRAY)
43 s e l f . f a c e s = s e l f . faceCascade . de t e c tMu l t iS ca l e (s e l f . gray_frame ,

s c a l eFac to r =1.5 , minNeighbors=8)
s e l f . getImage () ;

45 re turn s e l f . frame

47 de f sendVideo (s e l f) :
succes s , image = s e l f . getFrame ()

49 ret , jpg = cv2 . imencode (’ . jpg ’ , image)
re turn jpg . tobytes ()

114

APÊNDICE E – Programa kivy_gui.py

1

−*− coding : utf−8 −*−
3

import kivy
5 from kivy . app import App

from kivy . lang import Bui lder
7 from kivy . uix . screenmanager import ScreenManager , Screen , NoTransit ion

from kivy . uix . button import Button
9 from kivy . c l o ck import Clock

from kivy . uix . widget import Widget
11 from kivy . uix . f l o a t l a y ou t import FloatLayout

from kivy . p r op e r t i e s import ObjectProperty
13 from kivy . uix . boxlayout import BoxLayout

from kivy . uix . s c r o l l v i ew import Scro l lV iew
15

from datet ime import datet ime
17 import databaseSql

import time
19 import os

import commands
21 import s enso r

23 # −−−−− CONFIG KIVY −−−−−
kivy . r e qu i r e (’ 1 . 8 . 0 ’)

25

You can c r ea t e your kv code in the Python f i l e
27 Bui lder . l oad_str ing ("""

29 <ScreenOne@Button >:

31 background_color : 0 ,0 ,0 ,1

33

on_press :
35 root . manager . cur r ent = ’ screen_two ’

Image :
37 source : ’ s k u l l 1 . jpg ’

y : s e l f . parent . y + s e l f . parent . he ight − 600
39 x : s e l f . parent . x + 0

s i z e : 35 ,35
41 a l low_stre tch : True

Programa kivy_gui.py Aprimoramentos Futuros

Label :
43 t ex t : "M.U. S .K"

font_s i z e : ’ 4 0 sp ’
45 bold : True

47

<ScreenTwo@Button>:
49

background_color : 0 ,0 ,0 ,1
51

on_press :
53 root . manager . cur r ent = ’ screen_three ’

55 Button :
background_color : 0 ,0 ,0 ,1

57 t ex t : root . in i t_var ()
s i z e : 150 ,50

59 f on t_s i z e : 36
pos_hint : {" center_x " : . 5 , " center_y " : .65}

61

63 <ScreenThree@Button >:

65 background_color : 0 ,0 ,0 ,1

67 on_press :
root . manager . cur r ent = ’ screen_one ’

69

Button :
71 background_color : 0 ,0 ,0 ,1

t ex t : root . r e g i s t r ado r_ta r e f a s
73 s i z e : 150 ,50

font_s i z e : 36
75

""")
77

79 tccDatabase = databaseSql . databaseSql ()
t ccSensor = senso r . s enso r ()

81

c l a s s ScreenOne (Screen , Button) :
83

de f __init__(s e l f , **kwargs) :
85 super (ScreenOne , s e l f) . __init__(** kwargs)

87 de f c a l l b a ck (s e l f , dt) :
c a l l i n g t h i s f u n c i t i o n

116

Programa kivy_gui.py Aprimoramentos Futuros

89 screen_manager . t r a n s i t i o n = NoTransit ion ()
screen_manager . cur rent = ’ screen_two ’

91

93 c l a s s ScreenTwo (Screen , Button) :

95

de f __init__(s e l f , **kwargs) :
97 super (ScreenTwo , s e l f) . __init__(** kwargs)

Clock . s chedu l e_ in te rva l (s e l f . ca l lback , 29)
99

de f in i t_var (s e l f) :
101

umid , temp = tccSensor . readDht11 () ;
103 umid = "Umidade : " + s t r (umid) + " % \n"

temp = "Temperatura : " + s t r (temp) + " C \n"
105

now = datet ime . now()
107 date = "\n" + "\n" + "\n" + "Hoje : " + s t r (now . day) + "/" + s t r (

now . month) + "/" + s t r (now . year) + " \n"
time = "Horas : " + s t r (now . hour) + " : " + s t r (now . minute) + " : " +

s t r (now . second)
109

registrador_umid_e_temp = ObjectProperty (None)
111 registrador_umid_e_temp = temp + umid + date + time

return registrador_umid_e_temp
113

115 de f c a l l b a ck (s e l f , dt) :
pr in t (’ In Cal lback ’) # Test − The timer i s a c t ua l l y c a l l i n g t h i s

f u n c i t i o n
117

screen_manager . t r a n s i t i o n = NoTransit ion ()
119 screen_manager . cur rent = ’ screen_one ’

121

c l a s s ScreenThree (Screen , Button) :
123

t i t l e = tccDatabase . read_string_db ()
125 l e n_ t i t l e = len (t i t l e)

127 t a r e f a s = ’ ’ ;
f o r i in range (l e n_ t i t l e) :

129 t a r e f a s = t a r e f a s + s t r (t i t l e [i]) + ’ \n ’

131 r e g i s t r ado r_ta r e f a s = ObjectProperty (None)
r e g i s t r ado r_ta r e f a s = t a r e f a s

117

Programa kivy_gui.py Aprimoramentos Futuros

133

135

de f __init__(s e l f , **kwargs) :
137

super (ScreenThree , s e l f) . __init__(** kwargs)
139 l ayout = BoxLayout (o r i e n t a t i o n=" v e r t i c a l " , s ize_hint_y=None)

141 btn_volta = Button (t ext="Volta " ,
pos_hint = ({ " l e f t " : 1 , "bottom" : 1}) ,

143 s i z e =(810 , 700) ,
s i z e_hint=(None , None) ,

145 background_color =(0 , 0 , 0 , 1) ,
f on t_s i z e =(36) ,

147 on_press=s e l f . Press_auth)
layout . add_widget (btn_volta)

149

root = Scro l lV iew ()
151 root . add_widget (layout)

s e l f . add_widget (root)
153

de f Press_auth (s e l f , i n s t anc e) :
155 screen_manager . t r a n s i t i o n = NoTransit ion ()

screen_manager . cur rent = ’ screen_one ’
157 pr in t (s t r (i n s t anc e))

159

The ScreenManager c on t r o l s moving between s c r e en s
161 screen_manager = ScreenManager ()

163 # Add the s c r e en s to the manager and then supply a name
that i s used to switch s c r e en s

165 screen_manager . add_widget (ScreenOne (name="screen_one"))
screen_manager . add_widget (ScreenTwo (name="screen_two"))

167 screen_manager . add_widget (ScreenThree (name=" screen_three "))

169

c l a s s KivyTut2App(App) :
171

de f bu i ld (s e l f) :
173 re turn screen_manager

175 i f __name__ == ’__main__ ’ :
KivyTut2App () . run ()

118

APÊNDICE F – Programa

personaVerification.py

2 import boto3 as b3

4 c l a s s p e r s onaVe r i f i c a t i o n () :
de f __init__(s e l f) :

6 s e l f . name = 0
s e l f . s i m i l a r i t y = 0

8 s e l f . c on f id ence = 0
s e l f . p i c t u r e = ’ img1 . jpg ’

10 s e l f . co l l ect ionName = ’ c o l l e c t i o nTc c ’

12 de f checkFace (s e l f , c l i e n t) :
face_detected = False

14 with open (s e l f . p i c ture , ’ rb ’) as image :
re sponse = c l i e n t . de tec t_face s (Image={ ’ Bytes ’ : image . read () })

16 i f (not re sponse [’ FaceDeta i l s ’]) :
face_detected = False

18 e l s e :
face_detected = True

20 re turn face_detected , re sponse

22 de f checkMatches (s e l f , c l i e n t) :
face_matches = False

24 with open (s e l f . p i c ture , ’ rb ’) as image :
re sponse = c l i e n t . search_faces_by_image (Co l l e c t i on Id=s e l f .

co l lect ionName , Image={ ’ Bytes ’ : image . read () } , MaxFaces=1,
FaceMatchThreshold=95)

26 i f (not re sponse [’ FaceMatches ’]) :
face_matches = False

28 e l s e :
face_matches = True

30 re turn face_matches , r e sponse

32 de f faceMatch (s e l f , c l i e n t) :
r e su l t , r e sp = s e l f . checkFace (c l i e n t) ;

34 i f (r e s u l t) :
resu , r e s = s e l f . checkMatches (c l i e n t) ;

36 i f r e su :
s e l f . name = re s [’ FaceMatches ’] [0] [’ Face ’] [’ ExternalImageId ’]

Programa personaVerification.py Aprimoramentos Futuros

38 s e l f . s i m i l a r i t y = r e s [’ FaceMatches ’] [0] [’ S im i l a r i t y ’]
s e l f . c on f id ence = re s [’ FaceMatches ’] [0] [’ Face ’] [’ Conf idence ’]

40 e l s e :
s e l f . name = ’unknown ’

42 s e l f . s i m i l a r i t y = 0
s e l f . c on f id ence = 0

44 pr in t (" [+] Detected Person : " + s t r (s e l f . name))
p r i n t (" [+] S im i l a r i t y : " + s t r (s e l f . s i m i l a r i t y))

46 pr in t (" [+] Conf idence : " + s t r (s e l f . c on f idence))
p r i n t (" ")

48 e l s e :
p r i n t (" [+]No f a c e s detec ted ")

120

APÊNDICE G – Programa security.py

2 import smtpl ib

4 c l a s s s e c u r i t y () :
de f __init__(s e l f) :

6 s e l f . r e c e i v e r = ’ gui . cabral201@gmail . com ’
s e l f . t op i c = ’MUSK Secur i ty Se rv i c e ’

8 s e l f . t ex t = ’ Motion Detected ’
s e l f . sender = ’ projetosd373@gmai l . com ’

10 s e l f . password = ’ p r o j e t o s e l 3 7 3 ’
s e l f . message = ’ \ r \n ’ . j o i n ([’From : %s ’ % s e l f . sender , ’To : %s ’ % s e l f .

r e c e i v e r , ’ Subject : %s ’ % s e l f . top ic , ’ ’ , ’%s ’ % s e l f . t ex t])
12 s e l f . s e r v e r = smtpl ib .SMTP()

14 de f sendEmail (s e l f) :
s e l f . s e r v e r . connect (’ smtp . gmail . com ’ , ’ 587 ’)

16 s e l f . s e r v e r . s t a r t t l s ()
s e l f . s e r v e r . l o g i n (s e l f . sender , s e l f . password)

18 s e l f . s e r v e r . sendmai l (s e l f . sender , s e l f . r e c e i v e r , s e l f . message)
s e l f . s e r v e r . qu i t ()

20 re turn p r in t (" [+]The emai l was send")

22 de f sendAlert (s e l f) :
p r i n t (" [+] Send an a l e r t message to user ’ s phone")

APÊNDICE H – Programa sensor.py

1

import RPi .GPIO as GPIO
3 import Adafruit_DHT

5

#def t e s t eCa l l (channel) :
7 # pr in t (" deu bom")

9 c l a s s s enso r () :
de f __init__(s e l f) :

11 s e l f . pinoMotion = 24
s e l f . pinoTemperature = 26

13 s e l f . sensorTemperatureType = Adafruit_DHT .DHT11

15 de f runConf igurat ion (s e l f , motionFunction) :
GPIO. setmode (GPIO.BOARD)

17 GPIO. setup (s e l f . pinoMotion , GPIO. IN , pull_up_down=GPIO.PUD_DOWN)
GPIO. add_event_detect (s e l f . pinoMotion , GPIO. RISING , ca l l ba ck=

motionFunction , bouncetime=300)
19 pr in t (" [+] Sensors con f i gu r ed ")

21 de f readDht11 (s e l f) :
umidade , temperatura = Adafruit_DHT . read_retry (s e l f .

sensorTemperatureType , s e l f . pinoTemperature)
23 re turn umidade , temperatura

#return "10" , "10"
25

de f c l eanSensorPor t s (s e l f) :
27 GPIO. cleanup ()

APÊNDICE I – Programa servoMotor.py

2

import Adafruit_PCA9685
4

c l a s s servoMotor () :
6

de f __init__(s e l f) :
8 s e l f .pwm = Adafruit_PCA9685 . PCA9685 ()

s e l f . servo_min = 150
10 s e l f . servo_max = 600

s e l f . memory = [0 , 0]
12

de f runConf igurat ion (s e l f) :
14 s e l f .pwm. set_pwm_freq (60)

16 de f s tep (x) :
y = 375 + 225*x

18 i f y>=600:
y = 600

20 i f y<=150:
y = 150

22 re turn y

24 de f s e rvo_pos i t i on (s e l f , motor , pos) :

26 i f pos == 1 :
s e l f . memory[0]+=1

28 pr in t ("pos = 1")
i f pos == −1:

30 s e l f . memory[0]−=1

32 pu l s e = s e l f . s t ep (s e l f . memory [0])
s e l f .pwm. set_pwm(0 , 0 , pu l s e)

APÊNDICE J – Código Página Principal

HTML

1 <!doctype html>
<html lang="pt−BR">

3 <head>
<meta cha r s e t="utf−8">

5 <meta http−equiv="X−UA−Compatible" content="IE=edge">
<meta name="viewport " content="width=device−width , i n i t i a l −s c a l e=1">

7 <t i t l e >MUSK</t i t l e >
<l i n k h r e f="{{ ur l_for (’ s t a t i c ’ , f i l ename=’ c s s / s inglePageTemplate . c s s ’) }}"

r e l=" s t y l e s h e e t " type=" text / c s s ">
9 <!−−The f o l l ow i ng s c r i p t tag downloads a font from the Adobe Edge Web Fonts

s e r v e r f o r use with in the web page . We recommend that you do not modify
i t .−−>

<sc r i p t >var __adobewebfontsappname__="dreamweaver"</s c r i p t >
11 <s c r i p t s r c="http :// use . edge font s . net / source−sans−pro : n2 : d e f au l t . j s " type="

text / j a v a s c r i p t "></s c r i p t >

13 <sty l e >

15 . hero {
background−image : u r l (s t a t i c / images / logo1 . jpg) ;

17 background−s i z e : cover ; /* For f l e x i b i l i t y */
he ight : 290px

19

}
21 . banner{

he ight : 160px ;
23 margin−top : 70px ;

}
25 </s ty l e >

27 </head>
<body>

29

<!−− Main Container −−>
31 <div c l a s s=" conta ine r ">

<!−− Navigat ion −−>
33 <header> <a hr e f="">

<h4 c l a s s=" logo ">MUSK</h4>
35

Código Página Principal HTML Aprimoramentos Futuros

<nav>
37

<l i ><a hr e f="{{ ur l_for (’ index ’) }}">HOME</l i >
39 <l i > <a hr e f="{{ ur l_for (’ index ’) }}"">CONTACT</l i >

<l i ><a hr e f="{{ ur l_for (’ index2 ’) }}"">LOGIN</l i >
41

</nav>
43 </header>

<!−− Hero Sec t i on −−>
45 <se c t i o n c l a s s="hero " id="hero ">

47

<h2 c l a s s="hero_header">MUSK − Personal Ass i s t ent </
span></h2>

49 <p c l a s s=" t a g l i n e "> AN opensource pe r sona l a s s i s t e n t INITIATIVE</p>
</sec t i on >

51 <!−− About Sec t i on −−>
<se c t i o n c l a s s="about" id="about">

53 <h2 c l a s s="hidden">About</h2>
<p c l a s s="text_column">O Musk um pro j e t o de a s s i s t e n t e p e s s oa l de

c d i g o aberto c r i ado e desenvo lv ido pe l o s e s tudantes da USP Samuel
Santos e Guilherme Cabral como elemento a v a l i a t i v o na d i s c i p l i n a de
Pro j e to s de Sistemas D i g i t a i s e tem como p r i n c i p a l i n t u i t o pe rm i t i r
o contato das pes soas com uma t e cno l o g i a cada vez mais pre s ente em
nosso dia a dia . Fazendo com que o desenvolvimento de p r o j e t o s de
IOTs s e j a cada vez mais a c e s s i v e l e compreens ive l .

55 <p c l a s s="text_column">
E n t o e s s e o Musk um pro j e t o para todos
, e spero que gos te . </p>

</sec t i on >
57

<!−− Para l l ax Sec t i on −−>
59 <se c t i o n c l a s s="banner">

<h2 c l a s s=" pa ra l l ax ">O que o MUSK pode f a z e r por v o c ?</h2>
61 </sec t i on >

<!−− More In f o Sec t i on −−>
63 <foote r >

<a r t i c l e c l a s s=" footer_column">
65 <h3>MODO VIGIA</h3>

<img s r c=" s t a t i c / images / i c on s /036−camera . png" a l t="" width="100"
he ight="100" />

67 <p>Uma das grandes qua l idades do MUSK a de s e r os seus o lhos e
ouvidos quando v o c

n o e s t em casa , mas quer saber como as c o i s a s andam por l </p>
69 </a r t i c l e >

<a r t i c l e c l a s s=" footer_column">
71 <h3>TEMPERATURA</h3>

<img s r c=" s t a t i c / images / i c on s /thermometer −1.png" a l t="" width="100"

125

Código Página Principal HTML Aprimoramentos Futuros

he ight="100" />
73 <p>O MUSK tem tamb m a capacidade de d i z e r qual a temperatura

ambiente e a sua humidade , permit indo
assim que v o c sempre possa manter o ambiente c o n f o r t v e l .

Futuramente o MUSK deve tamb m c r i a r modelos que melhor se adequem
as suas e x i g en c i a s e a j u s t a r o ambiente</p>

75 </a r t i c l e >
</foo t e r >

77 <!−− Footer Sec t i on −−>
<se c t i o n c l a s s=" footer_banner " id=" contact ">

79 <h2 c l a s s="hidden">Footer Banner Sec t i on </h2>
<p c l a s s="hero_header">PARA MAIS NOT CIAS & ; ATUALIZA ES </p>

81 <div c l a s s="button">subscr ibe </div>
</sec t i on >

83 <!−− Copyrights Sec t i on −−>
<div c l a s s=" copyr ight ">© ;2018 − Samuel Santos e Guilherme

Cabral</div>
85 </div>

<!−− Main Container Ends −−>
87 </body>

</html>

126

APÊNDICE K – Código HTML Página

Aplicativos

1

<!doctype html>
3 <html lang="pt−br">

<head>
5 <meta cha r s e t="utf−8">

<meta http−equiv="X−UA−Compatible" content="IE=edge">
7 <meta name="viewport " content="width=device−width , i n i t i a l −s c a l e=1">

<l i n k h r e f="{{ ur l_for (’ s t a t i c ’ , f i l ename=’ c s s / simpleGridTemplate . c s s ’) }}"
r e l=" s t y l e s h e e t " type=" text / c s s ">

9

<t i t l e >MUSK</t i t l e >
11 <l i n k h r e f="{{ ur l_for (’ s t a t i c ’ , f i l ename=’ s t y l e s h e e t s / c s s /

s inglePageTemplate . c s s ’) }}" r e l=" s t y l e s h e e t " type=" text / c s s ">
<sc r i p t >var __adobewebfontsappname__="dreamweaver"</s c r i p t >

13 <s c r i p t s r c="http :// use . edge font s . net / source−sans−pro : n2 : d e f au l t . j s " type="
text / j a v a s c r i p t "></s c r i p t >

15 <sty l e >
. t i t l e_ {

17 gr id−template : up ;
}

19

</s ty l e >
21

</head>
23 <body>

<!−− Main Container −−>
25 <div c l a s s=" conta ine r ">

<!−− Navigat ion −−>
27

<header id=" logo ">
29

<a c l a s s=" logo ">
31

33 <nav>

35 <l i id = " tit le_musk"><a hr e f="" >MUSK</l i >
<l i ><a hr e f="{{ ur l_for (’ index2 ’) }}">HOME</l i >

Código HTML Página Aplicativos Aprimoramentos Futuros

37 <l i > <a hr e f="{{ ur l_for (’ index ’) }}">CONTACT</l i >
<l i ><a hr e f="{{ ur l_for (’ index ’) }}">LOGOUT</l i >

39
</nav>

41 </header>
<!−− Hero Sec t i on −−>

43 <se c t i o n c l a s s=" i n t r o ">
<div c l a s s="column">

45 <h3>JOHN DOE</h3>
 </div>

47 <div c l a s s="column">
<p>O l , e s sa a sua p g i n a p r i n c i p a l e aqui e s t a r o d i s p on i v e i s

todos os a p l i c a t i v o s de s envo lv ido s com o foco de f a c i l i t a r o seu
dia a dia . Futuramente se d e s e n v o l v e r uma l o j a que p e r m i t i r
que v o c baixe e se u t i l i z e apenas os a p l i c a t i v o s que v o c
dese ja , mas a t l ap rove i t e todos os nossos s e r v i o s </p>

49 <p> Lembre−se sempre que estamos de ouvidos aber to s a melhor ias ,
assim caso su r j a uma nova i d e i a ou s u g e s t o basta nos contac ta r .
Estamos trabalhando cada vez mais para de ixar e s s e p ro j e t o o mais
amigavel p o s s i v e l . </p>

</div>
51 </sec t i on >

<!−− Stat s Ga l l e ry Sec t i on −−>
53 <div c l a s s=" g a l l e r y ">

<div c l a s s="thumbnail "> <a hr e f="{{ ur l_for (’ camera_display ’) }}">

55 <h4>MODO VIGIA</h4>
<p c l a s s=" tag ">CMERA</p>

57 <p >Deixe que n s sejamos seus o lhos e ouvidos
 .</p>
</div>

59 <div c l a s s="thumbnail "> <a hr e f="{{ ur l_for (’ temp ’) }}"><img s r c=" s t a t i c /
images / i c on s /thermometer −1.png" width="200" />

<h4>TEMPERATURA</h4>
61 <p c l a s s=" tag ">COMO EST A CASA</p>

<p c l a s s=> Veja como de ixar o seu ambiente mais con fo r tave l </p>
63 </div>

<div c l a s s="thumbnail "> <a hr e f="{{ ur l_for (’ agenda ’) }}"><img s r c="
s t a t i c / images / i c on s /009− ca lendar −1.png" a l t="" width="200"/>

65 <h4>AGENDA</h4>
<p c l a s s=" tag ">O QUE TEMOS PARA HOJE ?</p>

67 <p> Veja aqui qua i s s o as suas p r x i m a s t a r e f a s
 .</p>
</div>

69 </div>

71

<!−− Copyrights Sec t i on −−>

128

Código HTML Página Aplicativos Aprimoramentos Futuros

73 <div c l a s s=" copyr ight ">© ;2018 − Samuel Santos e Guilherme
Cabral</div>

</div>
75 <!−− Main Container Ends −−>

</body>
77 </html>

129

APÊNDICE L – Controle Motores e Camera

HTML

1 <!doctype html>
<html>

3 <head>
<meta cha r s e t="utf−8">

5 <meta http−equiv="X−UA−Compatible" content="IE=edge">
<meta name="viewport " content="width=device−width , i n i t i a l −s c a l e=1">

7 <t i t l e >MUSK</t i t l e >
<l i n k h r e f="{{ ur l_for (’ s t a t i c ’ , f i l ename=’ c s s /multiColumnTemplate . c s s ’) }}

" r e l=" s t y l e s h e e t " type=" text / c s s ">
9

<sc r i p t >var __adobewebfontsappname__="dreamweaver"</s c r i p t >
11 <s c r i p t s r c="http :// use . edge font s . net / source−sans−pro : n2 : d e f au l t . j s " type="

text / j a v a s c r i p t "></s c r i p t >
<!−− HTML5 shim and Respond . j s f o r IE8 support o f HTML5 elements and media

qu e r i e s −−>
13 <!−− WARNING: Respond . j s doesn ’ t work i f you view the page v ia f i l e : // −−>

<!−−[i f l t IE 9]>
15 <s c r i p t s r c="https : // os s . maxcdn . com/html5shiv /3 . 7 . 2 / html5shiv . min . j s

"></s c r i p t >
<s c r i p t s r c="https : // os s . maxcdn . com/ respond /1 . 4 . 2 / respond . min . j s "></

s c r i p t >
17 <![end i f]−−>

19 <s c r i p t s r c ="//ajax . goog l e ap i s . com/ ajax / l i b s / jquery /1 . 11 . 0/ jquery . min . j s
"></s c r i p t >

<s c r i p t language="j a v a s c r i p t " type="text / j a v a s c r i p t">
21 f unc t i on Button_onclick (d i r e c t i o n) {

$. a jax ({ u r l : ’ / ’ + d i r e c t i o n })
23 }

</s c r i p t >
25

</head>
27 <body s t y l e="background−c o l o r : t ransparent ;">

<div c l a s s="conta ine r">
29 <header> <a hr e f="">

<h4 c l a s s="logo">MUSK</h4>
31

<nav>
33

Controle Motores e Camera HTML Aprimoramentos Futuros

<l i id = " tit le_musk"><a hr e f="{{ur l_for (’ index2 ’) }}" >MUSK</l i >
35 <l i ><a hr e f="{{ur l_for (’ index2 ’)}}">HOME</l i >

<l i > <a hr e f="{{ur l_for (’ contact ’)}}">CONTACT</l i >
37 <l i ><a hr e f="{{ur l_for (’ index ’)}}">LOGOUT</l i >

39
</nav>

41 </header>
<s e c t i o n c l a s s ="" s t y l e="background : l i n e a r−grad i ent (to r ight , l i gh tg ray ,

l i g h t g r ay)">
43 <p a l i g n="r i gh t " s t y l e="margin : i n h e r i t ; margin−r i g h t : 300px;"><i f rame

s c r o l l i n g="no" frameborder="0" s r c="http ://192.168.0 .46:8081" > </ iframe
></p>

</sec t i on >
45 <div c l a s s="row" s t y l e="margin−bottom : 400px;">

<div c l a s s="columns">
47 <p c l a s s="thumbnail_align"> <button s t y l e="background−c o l o r :

t ransparent ; border : none ;">
<img id="btnUp" s r c=" s t a t i c / images / i c on s /up−arrow−7.png" a l t="" c l a s s

="thumbnail " on c l i c k="Button_onclick (’ t i l t u p ’)"/>
49 </button>

</p>
51 <h4>UP</h4>

</div>
53 <div c l a s s="columns">

<p c l a s s="thumbnail_align"> <button s t y l e="background−c o l o r :
t ransparent ; border : none ;">

55 <img id="btnDown" s r c=" s t a t i c / images / i c on s /down−arrow−6.png" a l t=""
c l a s s="thumbnail " on c l i c k="Button_onclick (’ t i l tdown ’)"/>

</button> </p>
57 <h4>DOWN</h4>

</div>
59 <div c l a s s="columns">

<p c l a s s="thumbnail_align"> <button s t y l e="background−c o l o r :
t ransparent ; border : none ;">

61 <img id="btnLeft " s r c=" s t a t i c / images / i c on s / l e f t −arrow−8.png" a l t=""
c l a s s="thumbnail " on c l i c k="Button_onclick (’ p an l e f t ’)"/>

</button> </p>
63 <h4>LEFT</h4>

</div>
65 <div c l a s s="columns">

<p c l a s s="thumbnail_align"> <button s t y l e="background−c o l o r :
t ransparent ; border : none ;">

67 <img id="btnRight " s r c=" s t a t i c / images / i c on s / r ight−arrow −10.png" a l t
="" c l a s s="thumbnail " on c l i c k="Button_onclick (’ panr ight ’)"/>

</button> </p>
69 <h4>RIGHT</h4>

131

Controle Motores e Camera HTML Aprimoramentos Futuros

</div>
71 <div c l a s s="copyr ight " s t y l e="border : none;">© ;2018 −

Samuel Santos e Guilherme Cabral</div>
</div>

73

</div>
75 </body>

</html>

132

APÊNDICE M – Código HTML Temperatura

e Umidade

1 <!DOCTYPE html>
<html lang="pt−br">

3 <head>
<meta cha r s e t="utf−8">

5 <meta http−equiv="X−UA−Compatible" content="IE=edge">
<meta name="viewport " content="width=device−width , i n i t i a l −s c a l e =1.0 ,

maximum−s c a l e=1">
7

<t i t l e >MUSK</t i t l e >
9

<!−− Loading th i rd party f on t s −−>
11 <l i n k h r e f="http :// f on t s . g oog l e ap i s . com/ c s s ? fami ly=Roboto : 300 , 400 , 700 | "

r e l=" s t y l e s h e e t " type=" text / c s s ">
<l i n k h r e f=" f on t s / font−awesome . min . c s s " r e l=" s t y l e s h e e t " type=" text / c s s

">
13

<!−− Loading main c s s f i l e −−>
15 <l i n k r e l=" s t y l e s h e e t " h r e f="{{ ur l_for (’ s t a t i c ’ , f i l ename=’ c s s /

temp_style . c s s ’) }}">

17 <!−−[i f l t IE 9]>
<s c r i p t s r c=" j s / ie−support /html5 . j s "></s c r i p t >

19 <s c r i p t s r c=" j s / ie−support / respond . j s "></s c r i p t >
<![end i f]−−>

21

<sc r i p t >var __adobewebfontsappname__="dreamweaver"</s c r i p t >
23 <s c r i p t s r c="http :// use . edge font s . net / source−sans−pro : n2 : d e f au l t . j s " type="

text / j a v a s c r i p t "></s c r i p t >

25 </head>

27

<body>
29 <!−− s t y l e="background−c o l o r : l i g h t g r ay "−−>

<div c l a s s=" s i t e −content " s t y l e="background−c o l o r : white ; ">
31 <header> <a hr e f="">

<h4 c l a s s=" logo " s t y l e="margin : i n h e r i t ; margin− l e f t : 30px ; font−
f ami ly : ’ source−sans−pro ’ ; ">MUSK</h4>

33

Código HTML Temperatura e Umidade Aprimoramentos Futuros

<nav>
35

<l i ><a s t y l e=" font−f ami ly : ’ source−sans−pro ’ ; " h r e f="{{ ur l_for (’
index2 ’) }}"">HOME</l i >

37 <l i ><a s t y l e=" font−f ami ly : ’ source−sans−pro ’ ; " h r e f="{{ ur l_for (’
contact ’) }}"">CONTACT</l i >

<l i ><a s t y l e=" font−f ami ly : ’ source−sans−pro ’ ; " h r e f="{{ ur l_for (’
index ’) }}"">LOGOUT</l i >

39
</nav>

41 </header>

43 <!−− . s i t e −header −−>

45

<div c l a s s=" f o r e c a s t−t ab l e " s t y l e="background−c o l o r : white ; ">
47 <div c l a s s=" conta ine r " s t y l e="margin−top : 190px ; ">

49 <div c l a s s=" f o r e c a s t−conta ine r ">
<div c l a s s="today f o r e c a s t ">

51 <div c l a s s=" f o r e c a s t−heade r ">
<div c l a s s="day" s t y l e=" f l o a t : none ; ">Temperatura − Sala</

div>
53

</div> <!−− . f o r e c a s t−header −−>
55 <div c l a s s=" f o r e c a s t−content ">

<div c l a s s=" degree ">
57 <div c l a s s="num">{{ temp }}^oC</div>

<div c l a s s=" f o r e c a s t−i con ">
59 <img s r c=" s t a t i c / images / i c on s / temperature −512.png" a l t=

"">
</div>

61 </div>
</div>

63 </div>
<div c l a s s=" f o r e c a s t ">

65 <div c l a s s=" f o r e c a s t−heade r ">
<div c l a s s="day"> Umidade</div>

67 </div> <!−− . f o r e c a s t−header −−>
<div c l a s s=" f o r e c a s t−content ">

69 <div c l a s s="num" s t y l e=" font−s i z e : 62px ; ">{{ umid }} %</div
>

<div c l a s s=" f o r e c a s t−i con ">
71 <img s r c=" s t a t i c / images / i c on s /umid−1.png" s t y l e="width :

70px ; " a l t="" >
</div>

73 </div>

134

Código HTML Temperatura e Umidade Aprimoramentos Futuros

75 </div>
</div>

77 </div>
</div>

79 <main c l a s s="main−content ">
<div c l a s s=" fu l lw id th−block " s t y l e="margin−bottom : i n h e r i t ;

background−c o l o r : #52bad5;">
81 <div c l a s s=" conta ine r ">

<h2 c l a s s=" sec t i on−t i t l e ">Controle </h2>
83 <div c l a s s="row">

<div c l a s s=" col−md−3 co l−sm−6">
85 <div c l a s s=" l i v e−camera">

<f i g u r e c l a s s=" l i v e−camera−cover " s t y l e="border : none ; "><
img s r c=" s t a t i c / images /ar−cond−1.png" a l t="" width="50
" he ight="5" ></f i gu r e >

87 <h3 a l i g n=" cente r " c l a s s=" l o c a t i o n ">Ar−Condicionado − 1</
h3>

89 </div>
</div>

91 <div c l a s s=" col−md−3 co l−sm−6">
<div c l a s s=" l i v e−camera">

93 <f i g u r e c l a s s=" l i v e−camera−cover " s t y l e="border : none ; "><
img s r c=" s t a t i c / images /vent −1.png" a l t=""></f i gu r e >

<h3 a l i g n=" cente r " c l a s s=" l o c a t i o n ">Vent i lador − Teto 1</
h3>

95

</div>
97 </div>

<div c l a s s=" col−md−3 co l−sm−6">
99 <div c l a s s=" l i v e−camera">

<f i g u r e c l a s s=" l i v e−camera−cover " s t y l e="border : none ; "
><img s t y l e="width : 210px ; he ight : 210px ; " s r c=" s t a t i c
/ images /tv−1.png" a l t=""></f i gu r e >

101 <h3 a l i g n=" cente r " c l a s s=" l o c a t i o n ">Te lev i so r </h3>

103 </div>
</div>

105 <div c l a s s=" col−md−3 co l−sm−6">
<div c l a s s=" l i v e−camera">

107 <f i g u r e c l a s s=" l i v e−camera−cover " s t y l e="border : none ; "><
img s r c=" s t a t i c / images /sound−1.png" a l t=""></f i gu r e >

<h3 a l i g n=" cente r " c l a s s=" l o c a t i o n ">SoundBar</h3>
109

</div>
111 </div>

135

Código HTML Temperatura e Umidade Aprimoramentos Futuros

</div>
113 </div>

</div>
115

<div c l a s s=" fu l lw id th−block ">
117 <div c l a s s=" conta ine r ">

<h2 c l a s s=" sec t i on−t i t l e " s t y l e=" co l o r : #A3A3A3 ; ">C modos </h2>
119 <div c l a s s="row">

<div c l a s s=" col−md−3 co l−sm−6">
121 <div c l a s s=" l i v e−camera">

<f i g u r e c l a s s=" l i v e−camera−cover "><img s t y l e="width : 210
px ; he ight : 210px ; " s r c=" s t a t i c / images / i c on s /041−
c r ad l e . png" a l t=""></f i gu r e >

123 <h3 c l a s s=" l o c a t i o n " s t y l e=" co l o r : #A3A3A3 ; ">Quarto do
B b </h3>

</div>
125 </div>

<div c l a s s=" col−md−3 co l−sm−6">
127 <div c l a s s=" l i v e−camera">

<f i g u r e c l a s s=" l i v e−camera−cover "><img s r c=" s t a t i c / images
/ i c on s /030− p i c tu r e . png" s t y l e="width : 210px ; he ight :
210px ; " a l t=""></f i gu r e >

129 <h3 c l a s s=" l o c a t i o n " s t y l e=" co l o r : #A3A3A3 ; ">Sala</h3>
</div>

131 </div>
<div c l a s s=" col−md−3 co l−sm−6">

133 <div c l a s s=" l i v e−camera">
<f i g u r e c l a s s=" l i v e−camera−cover "><img s r c=" s t a t i c / images

/ i c on s /028−bed . png" a l t=""></f i gu r e >
135 <h3 c l a s s=" l o c a t i o n " s t y l e=" co l o r : #A3A3A3 ; ">Quarto

Pr inc ipa l </h3>
</div>

137 </div>
<div c l a s s=" col−md−3 co l−sm−6">

139 <div c l a s s=" l i v e−camera">
<f i g u r e c l a s s=" l i v e−camera−cover "><img s r c=" s t a t i c / images

/ i c on s /013− tea−cup . png" a l t=""></f i gu r e >
141 <h3 c l a s s=" l o c a t i o n " s t y l e=" co l o r : #A3A3A3 ; ">Cozinha</h3>

</div>
143 </div>

</div>
145 </div>

</div>
147 </main> <!−− . main−content −−>

149 <div c l a s s=" copyr ight "> © ;2018 − Samuel Santos e Guilherme
Cabral </div>

136

Código HTML Temperatura e Umidade Aprimoramentos Futuros

<!−− . s i t e −f o o t e r −−>
151 </div>

153 <s c r i p t s r c=" j s / jquery −1 .11 . 1 .min . j s "></s c r i p t >
<s c r i p t s r c=" j s / p lug in s . j s "></s c r i p t >

155 <s c r i p t s r c=" j s /app . j s "></s c r i p t >

157 </body>

159 </html>

137

APÊNDICE N – Todo HTML

1 <!DOCTYPE html>
<html lang="en">

3

<head>
5 <meta cha r s e t="utf−8">

<meta name="viewport " content="width=device−width , i n i t i a l −s c a l e =1.0">
7 <meta name=" de s c r i p t i o n " content="">

<meta name="author " content="">
9

<t i t l e >MUSK</t i t l e >
11

<!−− c s s −−>
13 <l i n k h r e f="{{ ur l_for (’ s t a t i c ’ , f i l ename=’ c s s / boots t rap . min . c s s ’) }}"

r e l=" s t y l e s h e e t " type=" text / c s s ">
<l i n k h r e f="{{ ur l_for (’ s t a t i c ’ , f i l ename=’ font−awesome/ c s s / font−

awesome . min . c s s ’) }}" r e l=" s t y l e s h e e t " type=" text / c s s " />
15 <l i n k r e l=" s t y l e s h e e t " type=" text / c s s " h r e f="{{ ur l_for (’ s t a t i c ’ ,

f i l ename=’ p lug in s / cub epo r t f o l i o / c s s / cub epo r t f o l i o . min . c s s ’) }}">
<l i n k h r e f="{{ ur l_for (’ s t a t i c ’ , f i l ename=’ s s /nivo−l i gh tbox . c s s ’) }} c"

r e l=" s t y l e s h e e t " />
17 <l i n k h r e f="{{ ur l_for (’ s t a t i c ’ , f i l ename=’ c s s /nivo−l i ghtbox−theme/

de f au l t / d e f au l t . c s s ’) }}" r e l=" s t y l e s h e e t " type=" text / c s s " />
<l i n k h r e f="{{ ur l_for (’ s t a t i c ’ , f i l ename=’ c s s /owl . c a r ou s e l . c s s ’) }}" r e l

=" s t y l e s h e e t " media=" sc r e en " />
19 <l i n k h r e f="{{ ur l_for (’ s t a t i c ’ , f i l ename=’ c s s /owl . theme . c s s ’) }}" r e l=

" s t y l e s h e e t " media=" sc r e en " />
<l i n k h r e f="{{ ur l_for (’ s t a t i c ’ , f i l ename=’ c s s /animate . c s s ’) }}" r e l="

s t y l e s h e e t " />
21 <l i n k h r e f="{{ ur l_for (’ s t a t i c ’ , f i l ename=’ c s s / todo_style . c s s ’) }}" r e l

=" s t y l e s h e e t ">

23 <!−− boxed bg −−>
<l i n k id="bodybg" h r e f="bodybg/bg1 . c s s " r e l=" s t y l e s h e e t " type=" text / c s s "

/>
25 <!−− template sk in −−>

<l i n k id="t−c o l o r s " h r e f="{{ ur l_for (’ s t a t i c ’ , f i l ename=’ c o l o r / d e f au l t .
c s s ’) }}" r e l=" s t y l e s h e e t ">

27

<sc r i p t >var __adobewebfontsappname__="dreamweaver"</s c r i p t >
29 <s c r i p t s r c="http :// use . edge font s . net / source−sans−pro : n2 : d e f au l t . j s " type

=" text / j a v a s c r i p t "></s c r i p t >

Todo HTML Aprimoramentos Futuros

31

</head>
33

<body id="page−top" data−spy=" s c r o l l " data−t a r g e t=" . navbar−custom">
35

<div id="wrapper">
37 <header> <a hr e f="">

<h4 c l a s s=" logo " s t y l e=" font−f ami ly : ’ source−sans−pro ’ ; font−s i z e : 15
px ; margin : i n h e r i t ; margin−top : 20px ; margin− l e f t : 30px ; ">MUSK</
h4>

39
<nav s t y l e="margin−top : 10px ; ">

41
<l i ><a hr e f="{{ ur l_for (’ index2 ’) }}" s t y l e=" font−f ami ly : ’ source−sans−

pro ’ ; font−s i z e : 15px ; ">HOME</l i >
43 <l i > <a hr e f="{{ ur l_for (’ contact ’) }}"" s t y l e=" font−

f ami ly : ’ source−sans−pro ’ ; font−s i z e : 15px ; ">
CONTACT</l i >

<l i ><a hr e f="{{ ur l_for (’ index ’) }}"" s t y l e=" font−
f ami ly : ’ source−sans−pro ’ ; font−s i z e : 15px ; ">
LOGOUT</l i >

45
</nav>

47 </header>
<header> <p></p></header>

49

51 <!−− Sec t i on : i n t r o −−>
<se c t i o n id=" i n t r o " c l a s s=" i n t r o ">

53 <div c l a s s=" int ro−content " >
<div c l a s s=" conta ine r ">

55 <div c l a s s="row">
<div c l a s s=" col−lg−6">

57 <div c l a s s="wow fadeInDown" data−wow−o f f s e t="0" data−wow−delay="
0 .1 s ">

<h2 c l a s s="h−u l t r a ">Agende Suas Tarefas </h2>
59 </div>

<div c l a s s="wow fadeInUp" data−wow−o f f s e t="0" data−wow−delay=" 0 .1
s ">

61 <h4 c l a s s="h−l i g h t "><p></p>Tare fas a <span c l a s s=" co l o r " s t y l e="
co l o r : #931C1E ; ">F in a l i z a r :</h4>

</div>
63 <div c l a s s=" we l l wel l−t rans ">

<div c l a s s="wow fadeInRight " data−wow−delay=" 0 .1 s ">
65

<ul c l a s s=" lead− l i s t ">

139

Todo HTML Aprimoramentos Futuros

67 {% f o r todo in incomplete %}
<l i ><a hr e f="{{ ur l_for (’ complete ’ , id=todo . id) }}">

69 <img s t y l e="width : 50px ; " s r c=" s t a t i c / images / i c on s /
c l i pboa rd s /004− c l ipboards −11.png" />

{{ todo . t i t l e }} , {{ todo . s t a r t
}}

71 </ l i >
{% endfor %}

73

75 </div>
</div>

77

79 </div>

81 <div c l a s s=" col−lg−6">
<div c l a s s="form−wrapper">

83 <div c l a s s="wow fadeInRight " data−wow−durat ion="2 s " data−wow−
delay=" 0 .2 s ">

85 <div c l a s s="panel panel−sk in ">
<div c l a s s="panel−heading ">

87 <h3 c l a s s="panel−t i t l e "><span c l a s s=" fa fa−penc i l−square−
o"> Adic ione um Compromisso </h3>

</div>
89 <div c l a s s="panel−body">

<form r o l e="form" c l a s s=" lead " ac t i on="{{ ur l_for (’ add ’)
}}" method="POST">

91 <div c l a s s="row">
<div c l a s s=" col−xs−6 co l−sm−6 co l−md−6">

93 <div c l a s s="form−group">
<labe l >T t u l o </labe l >

95 <input type=" text " name=" todoitem" c l a s s="form−
c on t r o l input−md">

</div>
97 </div>

<div c l a s s=" col−xs−6 co l−sm−6 co l−md−6">
99 <div c l a s s="form−group">

<labe l >Data</labe l >
101 <input type="date " name

="date " id="phone"
c l a s s="form−con$">

</div>
103 </div>

</div>
105

140

Todo HTML Aprimoramentos Futuros

<div c l a s s="row">
107 <div c l a s s=" col−xs−6 co l−sm−6 co l−md−6">

<div c l a s s="form−group">
109 <l ab e l s t y l e=" co l o r :

white ; " >.</ labe l >
</div>

111

</div>
113 <div c l a s s=" col−xs−6 co l−sm−6 co l−md−6">

<div c l a s s="form−group">
115 <l ab e l s t y l e=" co l o r :

white ; " >.</ labe l >
</div>

117 </div>
</div>

119

<input type="submit" value="Submit" c l a s s="btn btn−sk in
btn−block btn−l g ">

121 </form>
</div>

123 </div>

125 </div>
</div>

127 </div>

129 <div c l a s s="row">
<div c l a s s=" col−lg−6" s t y l e="margin−r i g h t : 300px ; ">

131 <div c l a s s="wow fadeInDown" data−wow−o f f s e t="0" data−wow−delay="
0 .1 s ">

<h2 c l a s s="h−u l t r a "></h2>
133 </div>

<div c l a s s="wow fadeInUp" data−wow−o f f s e t="0" data−wow−delay=" 0 .1
s ">

135 <h4 c l a s s="h−l i g h t ">Tare fas F ina l i z ada s :</
span></h4>

</div>
137 <div c l a s s=" we l l wel l−t rans ">

<div c l a s s="wow fadeInRight " data−wow−delay=" 0 .1 s ">
139

<ul c l a s s=" lead− l i s t ">
141 {% f o r todo in complete %}

<l i ><img s t y l e="width : 50px ; " s r c=" s t a t i c / images / i c on s /
c l i pboa rd s /008− c l ipboards −7.png"/><
strong >{{ todo . t i t l e }}</l i >

143 {% endfor %}

141

Conclusão Aprimoramentos Futuros

145 </div>
</div>

147 </div>
</div>

149 </div>
</div>

151 </sec t i on >

153

</div>
155 <div c l a s s=" copyr ight " s t y l e=" font−f ami ly : ’ source−sans−pro ’ ; ">©

;2018 − Samuel Santos e Guilherme Cabral</div>

157 <a hre f="#" c l a s s=" s c r o l l u p "><i c l a s s=" fa fa−angle−up a c t i v e "></i>

159 <!−− Core JavaScr ipt F i l e s −−>
<s c r i p t s r c=" j s / jquery . min . j s "></s c r i p t >

161 <s c r i p t s r c=" j s / boots t rap . min . j s "></s c r i p t >
<s c r i p t s r c=" j s / jquery . ea s ing . min . j s "></s c r i p t >

163 <s c r i p t s r c=" j s /wow. min . j s "></s c r i p t >
<s c r i p t s r c=" j s / jquery . s c r o l lTo . j s "></s c r i p t >

165 <s c r i p t s r c=" j s / jquery . appear . j s "></s c r i p t >
<s c r i p t s r c=" j s / s t e l l a r . j s "></s c r i p t >

167 <s c r i p t s r c=" p lug in s / cub epo r t f o l i o / j s / jquery . c ub epo r t f o l i o . min . j s "></
s c r i p t >

<s c r i p t s r c=" j s /owl . c a r ou s e l . min . j s "></s c r i p t >
169 <s c r i p t s r c=" j s /nivo−l i gh tbox . min . j s "></s c r i p t >

<s c r i p t s r c=" j s /custom . j s "></s c r i p t >
171

173 </body>

175 </html>

142

