
UNIVERSIDADE DE SÃO PAULO
ESCOLA DE ENGENHARIA DE SÃO CARLOS

Francisco Ambrosio Garcia

Segmentação do caminhar humano via modelos de
Markov

São Carlos

2020

Francisco Ambrosio Garcia

Segmentação do caminhar humano via modelos de
Markov

Monografia apresentada ao Curso de Enge-
nharia Elétrica com Ênfase em Eletrônica,
da Escola de Engenharia de São Carlos da
Universidade de São Paulo, como parte dos
requisitos para obtenção do título de Enge-
nheiro Eletricista.

Orientador: Prof. Dr. Marco Henrique Terra

São Carlos
2020

AUTORIZO A REPRODUÇÃO TOTAL OU PARCIAL DESTE TRABALHO,
POR QUALQUER MEIO CONVENCIONAL OU ELETRÔNICO, PARA FINS
DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE.

Ficha catalográfica elaborada pela Biblioteca Prof. Dr. Sérgio Rodrigues Fontes da
EESC/USP com os dados inseridos pelo(a) autor(a).

Garcia, Francisco Ambrosio

 G216s Segmentação do caminhar humano via modelos de
Markov / Francisco Ambrosio Garcia; orientador Marco
Henrique Terra. São Carlos, 2020.

Monografia (Graduação em Engenharia Elétrica com

ênfase em Eletrônica) -- Escola de Engenharia de São
Carlos da Universidade de São Paulo, 2020.

1. Segmentação do Caminhar Humano. 2. Processos

Estocásticos. 3. Modelos de Markov. 4. Unidades de
Medidas Inerciais. I. Título.

Eduardo Graziosi Silva - CRB - 8/8907

Powered by TCPDF (www.tcpdf.org)

 1 / 1

FOLHA DE APROVAÇÃO

Nome: Francisco Ambrosio Garcia

Título: “Segmentação do caminhar humano via modelos de
Markov”

Trabalho de Conclusão de Curso defendido e aprovado
em__04__/_12___/_2020__,

com NOTA__Dez____(10 , 0), pela Comissão Julgadora:

Prof. Titular Marco Henrique Terra - Orientador SEL/EESC/USP

Prof. Associado Adriano Almeida Gonçalves Siqueira - SEM/EESC/

USP

Dr. Juan Carlos Perez Ibarra - Programa de Pós-doutoramento

EESC/USP

Coordenador da CoC-Engenharia Elétrica - EESC/USP:
Prof. Associado Rogério Andrade Flauzino

Este trabalho é dedicado à minha família, que sempre me apoiou e envidou todos os
esforços para que eu me desenvolvesse como ser humano. Muito obrigado.

AGRADECIMENTOS

Em primeiro lugar agradeço aos meus pais Maria Inês e José Eduardo por terem
fornecido a base sólida para minha existência. Agradeço igualmente meu irmão Antonio
que estimo imensamente. À minha prima Luana que me apoiou nos momentos mais difíceis
e é fonte de admiração. Agradecimento especial à minha tia Ana e ao meu tio Mario que
me forneceram apoio imensurável.

Muito obrigado aos meus amigos da Elétrica: Thamer, Igor, Rafael Fenerick, Rafael
Arone, Rafael Bagagli, Daniel, Paulo, Remo, Raul, Rogério, Leonardo, Vinícius, Jorge,
Ricardo, Larissa, Alisson que compartilharam os momentos da graduação.

Um agradecimento particular aos meus amigos Gabriel, Paula, Felipe, Leonardo,
Vinícius, Marcos Paulo, Guilherme, Caio, Yan, Marcos Saito, Liao Zihao, Fabrice, que
estiveram sempre presentes nas maravilhas e dificuldades dos estudos no exterior.

Muito obrigado aos meus amigos de longa data Leonardo, Pedro, Felipe, Nestor,
Igor, Hugo, por estarem ao meu lado durante todos esses anos.

Agradeço ao meu orientador Prof. Dr. Marco Henrique Terra por ter me apresentado
o universo da pesquisa em sua área de domínio, pelas oportunidades de trabalho, orientação
e inclusão na equipe. Ao Juan Carlos Perez Ibarra por compartilhar seu vasto conhecimento
e pelos comentários valiosos. Também agradeço ao Christoph M. Mitschka que foi um
grande incentivador durante meus primeiros anos de graduação. Aos colegas do laboratório
LASI, sempre dispostos a ajudar. À Escola de Engenharia de São Carlos da Universidade
de São Paulo e à CentraleSupélec, pela estrutura, oportunidades, laboratórios e ensino de
qualidade que contribuíram para minha formação.

“Um homem precisa viajar para lugares que não conhece para quebrar essa arrogância que
nos faz ver o mundo como o imaginamos, e não simplesmente como é ou pode ser; que

nos faz professores e doutores do que não vimos, quando deveríamos ser alunos, e
simplesmente ir ver.”

Amyr Klynk

RESUMO

GARCIA, F. A. Segmentação do caminhar humano via modelos de Markov.
2020. 83p. Monografia (Trabalho de Conclusão de Curso) - Escola de Engenharia de São
Carlos, Universidade de São Paulo, São Carlos, 2020.

A segmentação do caminhar humano pode auxiliar no acompanhamento de pacientes em
tratamentos de reabilitação motora e é crucial para o controle de sistemas robóticos de
suporte à marcha ou de reabilitação. Métodos já existentes realizam a detecção acurada
de fases do caminhar em indivíduos com padrão de marcha normal. Recentemente avanços
foram obtidos também em padrões de marcha alterados por alguma debilidade. Entretanto
grande parte das abordagens demanda equipamentos disponíveis apenas em laboratórios
especializados. Neste trabalho é realizada a segmentação da marcha humana via modelos
de Markov utilizando sensores inerciais. Na segunda parte do trabalho são empregados
smartphones para o treinamento, em substituição ao equipamento especializado. Dois
modelos foram implementados, o primeiro baseado em uma cadeia de Markov e o segundo
em um modelo oculto de Markov. Para o segundo as fases foram escolhidas de forma a
possuírem sentido físico interpretável e foram utilizados sensores inerciais existentes em
um smartphone. O treinamento foi realizado com dados de apenas um indivíduo por meio
de uma abordagem baseada em regras. Em seguida os estados do caminhar humano foram
decodificados pelo algoritmo de Viterbi, tanto em pós-processamento quanto em tempo real.
O método em tempo real consistiu em limitar o processamento a uma janela deslizante de
tamanho fixo. Por fim demonstrou-se uma aplicação que consiste em mensurar a duração
dos passos e de fases. Obteve-se uma performance satisfatória em pós-processamento (F1-
score de 0.96), comparável aos métodos reportados na literatura. Entretanto a performance
em tempo real (F1-score de 0.55) foi inferior a outros trabalhos. Em especial constatou-se
uma taxa de inserções elevada e um atraso inerente ao janelamento. Verificou-se que é
possível realizar o treinamento com o emprego de um smartphone. Os resultados sugerem
que uma quantidade bastante limitada de dados pode ser suficiente para treinar um modelo
satisfatório específico para um indivíduo, porém tal hipótese exige melhor investigação em
trabalhos futuros.

Palavras-chave: Segmentação do Caminhar Humano. Processos Estocásticos. Modelos
de Markov. Unidades de Medidas Inerciais.

ABSTRACT

GARCIA, F. A. Markov models-based gait segmentation. 2020. 83p. Monografia
(Trabalho de Conclusão de Curso) - Escola de Engenharia de São Carlos, Universidade de
São Paulo, São Carlos, 2020.

Human gait segmentation may help monitor patients undergoing rehabilitation treatments
and is crucial for the control of robotic systems designed to support walking or rehabilitation.
Several approaches have been proposed, some of which accurately detect human gait phases
in real-time for healthy subjects. Recently a great performance was also obtained for
impaired gait. However, a large proportion of the existing methods require devices that are
only available in specialized laboratories. This work describes human gait segmentation via
Markov models using inertial sensors. In the second part smartphones were used to train
the model, in substitution to the specialized equipment. Two models were implemented.
The first one is based on a Markov chain, whereas the second is a hidden Markov model.
For the second one the phases were chosen to have physical meaning and the inertial
sensors from a smartphone were used to train the model. The training was done following
a rule-based approach with data collected from a single healthy subject. Afterwards the
gait phases were decoded using the Viterbi algorithm, both in post-processing and in
real-time. The real-time approach consisted in limiting the computation to a sliding
window with fixed length. Finally, an application of measuring the duration of the steps
and gait phases is demonstrated. The post-processing algorithm showed a performance
(F1-score of 0.96) comparable to other methods available in the literature. However, the
performance in real-time (F1-score of 0.55) was inferior to other methods. In particular, it
produced a high insertion rate and a delay related to the windowing. The smartphone was
suitable for the training. The results suggest that a very limited dataset may be enough
to train a satisfactory model for a single subject, although this hypothesis requires further
investigation in future work.

Keywords: Gait Segmentation. Stochastic Processes. Markov Models. Inertial Measure-
ment Units.

LISTA DE FIGURAS

Figura 1 – Sistema simples com dois estados Markovianos 32
Figura 2 – Diagrama de estados do sistema simples 33
Figura 3 – Exemplo de estados ocultos e valores observados de um Modelo Oculto

de Markov . 35
Figura 4 – Articulações divididas em setores . 39
Figura 5 – Diagrama de estados do Modelo Oculto de Markov do tipo left-right . . 41
Figura 6 – Unidade de medida inercial MTw Awinda 44
Figura 7 – Software MTw Manager . 45
Figura 8 – IMUs acopladas ao corpo humano para a aquisição dos dados 45
Figura 9 – smartphone acoplado ao pé . 48
Figura 10 – MPT do caminhar humano referente à transição entre plano horizontal

e escada . 52
Figura 11 – MPT do camihar humano referente ao plano horizontal 53
Figura 12 – Estados do caminhar determinados com base em um conjunto de regras

para treinamento do modelo de Markov 55
Figura 13 – Estados do caminhar estimados em pós-processamento pelo algoritmo

de Viterbi com dados não filtrados . 56
Figura 14 – Estados do caminhar estimados em pós-processamento pelo algoritmo

de Viterbi com dados filtrados . 57
Figura 15 – Estados do caminhar estimados em tempo real pelo algoritmo de Viterbi

em uma janela limitada de tamanho fixo 57
Figura 16 – Comparação entre os estados estimados em tempo real e em pós-

processamento. Destacam-se a taxa de inserções elevada e o atraso
dos estados estimados em tempo real. 58

Figura 17 – Boxplot da duração dos passos e da fase Stance para cada um dos
algoritmos . 59

LISTA DE TABELAS

Tabela 1 – Precisão, Recall e F1-score obtidos para cada um dos algoritmos 60
Tabela 2 – Medianas da duração dos passos e da fase Stance obtidas para cada um

dos algoritmos . 61

LISTA DE ABREVIATURAS E SIGLAS

MPT Matriz de Probabilidades de Transição (ou matriz de transição)

IMU Unidade de Medidas Inerciais

LISTA DE SÍMBOLOS

N0 Números inteiros não negativos

R Números reais

C Números complexos

CN Espaço vetorial complexo n-dimensional

(Ω,F ,P) Espaço de probabilidade

X Processo Estocástico

P Matriz de Probabilidades de Transição de uma Cadeia de Markov

A Matriz de Probabilidades de Transição de um Modelo Oculto de Markov

P{A} Probabilidade do evento A

π Vetor estado inicial de um Modelo Oculto de Markov

φ Matriz de emissão de um Modelo Oculto de Markov

S Espaço de estados

pij Probabilidade de transição do estado i ao estado j em uma Cadeia de
Markov

aij Probabilidade de transição do estado i ao estado j em um Modelo
Oculto de Markov

SUMÁRIO

1 INTRODUÇÃO . 25

2 MÉTODOS . 29
2.1 Métodos de segmentação do caminhar humano 29
2.2 Processos de Markov . 30
2.2.1 Exemplo simples de um Processo de Markov Homogêneo 32
2.3 Modelo Oculto de Markov . 33
2.3.1 Exemplo simples de um Modelo Oculto de Markov 34
2.3.2 Problemas básicos relacionados a Modelos Ocultos de Markov 35
2.3.3 Solução ao Problema 2 . 36
2.3.4 Algoritmo de Viterbi de curta duração (On-line Viterbi) 37
2.3.5 Solução ao Problema 3 . 37
2.4 Modelagem Markoviana do caminhar humano 39
2.4.1 Articulações divididas em setores . 39
2.4.2 Quatro fases da marcha humana . 40

3 EXPERIMENTOS . 43
3.1 Derivação de uma MPT com base no modelo das articulações divi-

didas em setores . 43
3.1.1 Sensores utilizados . 43
3.1.2 Realização . 44
3.2 Treinamento do Modelo Oculto de Markov do tipo left-right com

quatro fases . 46
3.2.1 Sensores utilizados . 46
3.2.2 Escolha das saídas de interesse . 46
3.2.3 Realização . 48

4 RESULTADOS . 51
4.1 Articulações divididas em setores . 51
4.2 Modelo oculto de Markov do tipo left-right com quatro fases 54
4.2.1 Performance e comparação com outros trabalhos da literatura 60

5 DISCUSSÃO GERAL E CONCLUSÕES 63
5.1 Trabalhos futuros . 64

REFERÊNCIAS . 67

APÊNDICES 69

APÊNDICE A – CÓDIGOS EM MATLAB 71

APÊNDICE B – CÓDIGO EM PYTHON 79

25

1 INTRODUÇÃO

A detecção de fases da marcha humana é crucial para algumas aplicações, por
exemplo tratamentos de reabilitação motora como estimulação elétrica funcional, controle
de sistemas robóticos de suporte à marcha ou reabilitação e acompanhamento de pacientes
em tratamentos de recuperação motora. Muitas vezes, o sistema de detecção deve operar
em tempo real com baixo atraso e elevada acurácia. Assim, o problema da segmentação
do caminhar humano, possivelmente em tempo real, tem ampla relevância.

Diversas soluções foram propostas. Em geral elas podem ser divididas em dois
grupos: soluções baseadas em regras (análise no domínio temporal, thresholds, valores
de pico, cruzamento de zero, derivadas, médias, entre outras métricas), e soluções basea-
das em aprendizado de máquina (Modelos Ocultos de Markov, redes neurais artificiais,
aprendizagem profunda, entre outras) (VU et al., 2020).

As técnicas baseadas em regras possuem a vantagem de serem de simples implemen-
tação e não demandarem um treinamento prévio do modelo, como acontece com modelos
de aprendizagem de máquina. Além disso, o poder de processamento exigido para verificar
as regras é baixo, o que possibilita a aplicação em tempo real. Entretanto, a escolha das
regras exige um conhecimento sobre os padrões de caminhada e das características dos
sinais medidos.

Por outro lado, métodos baseados em aprendizagem de máquina possuem a van-
tagem de não exigirem um conhecimento especialista nos padrões dos sinais capturados.
Dentro desse contexto, na sequência de artigos de Mannini et al., os autores relatam
que o algoritmo desenvolvido utilizando Modelos Ocultos de Markov apresentou precisão
maior que Modelos de Misturas Gaussianas (Gaussian Mixtures), Máquinas de Vetores de
Suporte (Support Vector Machines) e Análise Discriminante Linear (Linear Discriminant
Analysis), e atraso menor que métodos baseados em regras.

A segmentação da marcha pode ocorrer de duas formas: em pós-processamento
ou em tempo real. A detecção em tempo real é crucial para por exemplo o controle
de exoesqueletos, porém apresenta alguns desafios. Os algoritmos devem ser causais e
não podem ser computacionalmente custosos. Observa-se que grande parte dos métodos
existentes na literatura não são viáveis em tempo real. Além disso, os desafios são ainda
maiores em indivíduos com alguma debilidade na marcha visto que a acurácia da maioria
dos métodos decai significativamente (Pérez-Ibarra et al., 2018).

Os sinais captados para se estimar os estados e eventos do caminhar podem provir
de diversos sensores, como sensores de pressão e botões na sola do pé, plataformas com
sensores de força, sistemas optoeletrônicos, acelerômetros, giroscópios, Unidades de Medidas

26

Inerciais, sensores de atividade elétrica nos músculos, entre outros (VU et al., 2020).

Os sensores de pressão, força e sistemas optoeletrônicos são considerados o padrão
ouro para a detecção dos eventos da marcha humana, porém não são apropriados para
aplicações autônomas e que devam continuar funcionando por um longo prazo. Os sensores
inerciais têm demonstrado bons resultados para suprir essa dificuldade, pois têm uma
vida útil longa e custo reduzido. Além disso, hoje eles estão presentes na grande parte dos
aparelhos celulares modernos (smartphones), sendo utilizados para por exemplo orientar a
tela corretamente quando o celular é rotacionado. Em geral, um sensor inercial é composto
por alguns acelerômetros e giroscópios dispostos em diferentes direções, que determinam
os graus de liberdade suportados.

O presente trabalho tem objetivo de detectar fases (ou estados) do caminhar
humano, tanto em pós-processamento quanto em tempo real com o emprego de sensores
inerciais. Optou-se por utilizar modelos de Markov, sendo um deles um Modelo Oculto de
Markov.

Para isso, primeiramente o caminhar foi analisado em diferentes cenários reais, como
em rampas ou escadas, o que foi de grande valia para o projeto 2012/14074−3 da FAPESP.
Nele, foi desenvolvido um controlador Markoviano para o exoesqueleto Exo-Kanguera,
utilizado em tratamentos de reabilitação motora. Um elemento crucial de tal controlador é
a Matriz de Probabilidades de Transição (MPT), que, no caso acima, refere-se ao caminhar
humano.

Essa matriz fundamentalmente descreve as probabilidades dos possíveis estados
futuros do caminhar com base no estado atual, graças ao conhecimento de dados prévios.
Esses dados foram coletados neste trabalho e uma MPT do caminhar humano foi derivada
com base no modelo do exoesqueleto. No projeto citado, o modelo Markoviano da marcha
humana é baseado em divisões em setores das articulações. Os estados desse modelo
não possuem sentido físico a priori, sendo apenas uma subdivisão matemática e não são
intuitivamente interpretáveis.

Em seguida, um segundo modelo foi derivado, baseado em Modelos Ocultos de
Markov. Os estados foram escolhidos de forma a terem sentido físico interpretável. Após
a fase de treinamento, o modelo foi utilizado para decodificar fases da marcha tanto em
pós-processamento quanto em tempo real. Em pós-processamento foi utilizado o algoritmo
de Viterbi convencional, e em tempo real aplicou-se o algoritmo de Viterbi limitado a uma
janela deslizante de tamanho fixo. O desempenho em pós-processamento foi satisfatório
e comparável a outros métodos relatados na literatura. Entretanto, o desempenho em
tempo real foi inferior a outros trabalhos já existentes. Em particular, constatou-se uma
alta taxa de inserção de ciclos completos da marcha dentro de um ciclo real. As principais
publicações que servem de base para a derivação deste segundo modelo são (MANNINI;
SABATINI, 2011) e (MANNINI; GENOVESE; SABATINI, 2013).

27

As principais contribuições deste trabalho são a própria implementação dos métodos
de segmentação da marcha bem como as matrizes obtidas e a utilização de um smartphone
para a captura dos dados. Além disso, os resultados obtidos em pós-processamento sugerem
a hipótese de que um pequeno conjunto de dados pode ser suficiente para treinar um
modelo da marcha satisfatório específico para um único indivíduo. Contudo, é necessária
uma investigação maior para elucidar essa hipótese.

29

2 MÉTODOS

2.1 Métodos de segmentação do caminhar humano

O caminhar humano pode ser segmentado em diferentes níveis de granularidade,
variando de dois estados até oito estados. Os métodos considerados em (VU et al., 2020)
apresentaram acurácia de 100% quando a marcha foi segmentada em apenas duas fases.
Conforme o número de subdivisões aumenta, a acurácia dos métodos diminui.

Diversos algoritmos existem para identificar eventos e fases da marcha humana.
Pode-se dividi-los em dois grupos. O primeiro grupo corresponde aos algoritmos baseados
em regras que tentam identificar características específicas das formas de onda de grandezas
medidas durante o caminhar, bem como valores dessas grandezas durante as transições de
fases.

Por exemplo, (CATALFAMO; GHOUSSAYNI; EWINS, 2010) propuseram um
método baseado regras envolvendo mínimos e cruzamentos por zero do sinal de um
giroscópio posicionado na canela para detectar dois eventos: contato inicial do pé com o
chão e o momento em que o pé perde o contado com o chão. Foram considerados sete
indivíduos com padrão de marcha normal em terrenos diversos. Nesse caso a taxa de
detecção foi superior a 98%. Vale ressaltar que esse algoritmo é viável para ser aplicado
em tempo real. A média do valor absoluto do atraso ou adiantamento para o segundo
evento foi menor que 75 ms.

Já no trabalho de (MARIANI et al., 2013) diversas regras foram avaliadas com o
objetivo de segmentar a marcha em quatro fases. Utilizaram-se sensores inerciais posicio-
nados sobre o pé, e os algoritmos foram testados em indivíduos com ou sem debilidades
na marcha. As melhores regras obtidas para cada um dos quatro eventos que indicam as
transições entre as fases tiveram a média do erro absoluto do atraso menor que 42 ms.

(LEE; PARK, 2011) desenvolveram um algoritmo para detectar três eventos: Initial
Contact (IC), Mid-Swing (MS) e End-Contact (EC) utilizando a velocidade angular na
direção médio-lateral de um giroscópio posicionado na canela. Os eventos IC e EC são
equivalentes aos eventos Heel-Strike (HS) e Toe-Off (TO) apresentados na seção 2.4.2.
Esse método é baseado na sequência de dois picos negativos seguidos de um pico negativo
do sinal. Ele também é aplicável ao sinal da velocidade angular na direção médio-lateral de
um giroscópio posicionado sobre o pé, pois a curva também apresenta uma sequência de
dois picos negativos seguidos de um pico positivo. O algoritmo de Lee et al. foi utilizado
aqui como padrão de comparação para os algoritmos implementados.

Existem também soluções baseadas em aprendizado de máquina (Modelos Ocultos
de Markov, redes neurais artificiais, aprendizagem profunda, algoritmos genéticos, entre

30

outros). A seguir são apresentados alguns trabalhos relevantes nessa categoria em que a
marcha é segmentada em quatro fases.

(Pérez-Ibarra; Siqueira; Krebs, 2020) propuseram um método que utiliza classifica-
dores lineares para detectar as transições entre quatro fases da marcha em tempo real,
sendo uma generalização dos algoritmos baseados em regras. A performance foi comparável
a outros métodos, com a vantagem de não se requerer conhecimento especializado prévio
sobre as curvas e valores específicos nas transições dos estados.

(MANNINI; SABATINI, 2011) utilizaram um Modelo Oculto de Markov. A especi-
ficidade e sensibilidade relatada é superior a 95%, e a média do erro absoluto do atraso de
aproximadamente 35 ms, sendo que a segmentação se deu em pós-processamento. Em um
trabalho posterior os autores adaptaram o método para ocorrer em tempo real (MANNINI;
GENOVESE; SABATINI, 2013).

O presente trabalho reproduz grande parte das ideias e métodos das duas publicações
de Mannini et al. citadas no parágrafo anterior. Entretanto, o método para a segmentação
da marcha em tempo real difere um pouco, visto que aqui foi utilizado o algoritmo de
Viterbi convencional em uma janela deslizante de tamanho fixo. Além disso, tanto em
pós-processamento quanto em tempo real aqui não foi considerada uma regra adicional
que proíbe ciclos de marcha muito curtos. Dessa forma, a base teórica é dada a seguir.

2.2 Processos de Markov

Os Processos de Markov possuem uma estrutura matemática que pode ser aplicada
a diversos problemas. Visto que a marcha humana será modelizada como uma Cadeia de
Markov, caso particular dos Processos de Markov, faz-se necessário formulá-la matematica-
mente. Deve-se ainda compreender como uma Cadeia de Markov pode ser implementada
computacionalmente e quais são os principais algoritmos de treinamento da Cadeia.

Dessa forma, proceder-se-á pela definição de um Processo Estocástico:

Definição 1 (Processo Estocástico). Seja t uma variável escalar real, que assume valores
em T , ou seja, t ∈ T ⊂ R. Seja S um conjunto denominado espaço de estados. Nas
aplicações reais, temos com frequência S = R,C,CN ou um conjunto enumerável. Um
processo estocástico (ou aleatório) é uma família de variáveis aleatórias sobre um mesmo
espaço de probabilidade (Ω,F ,P) indexada por T e cujas variáveis aleatórias assumem
valores em S. Cada uma dessas variáveis aleatórias é representada por Xt. O processo
estocástico é denotado por X = (Xt, t ∈ T).

Neste projeto, t será a variável de tempo que mais adiante será discretizado para
permitir implementação computacional do modelo. Fixando-se ω ∈ Ω, define-se a realização

31

ou trajetória de um processo estocástico como a aplicação que associa cada instante
de tempo t ao valor Xt(ω).

Um processo estocástico é dito Processo de Markov se e somente se a distribuição
de probabilidade condicional dos estados futuros dado os estados passados e presente
depende apenas do estado presente. Dessa forma, a melhor estimação que se pode fazer dos
estados futuros do processo pode ser calculada tendo como base apenas o estado presente.
Precisamente, temos a seguinte definição abaixo, que pode ser encontrada em (NIELSEN,
2009):

Definição 2 (Processo de Markov). X = (Xt, t ∈ T) é um processo de Markov se para
todo instante t ∈ T e s ∈ T , s > t, a lei de probabilidade condicional de Xs sabendo as
variáveis Xu, u ≤ t, depende unicamente de Xt. Ou seja, para qualquer C ∈ S, a lei
P{Xs ∈ C|Xu, u ≤ t} é uma função exclusivamente de t, s, Xt e C.

As Definições 1 e 2 descrevem os casos gerais em que o tempo é contínuo e o espaço
de estados S pode ser um conjunto não enumerável. Discretizando-se o tempo de forma
que t ∈ N0 = {0, 1, 2, ...}, e assumindo que o espaço de estados é um conjunto enumerável
cujos elementos são denotados por i0, i1, ..., in−1, in, j, definimos uma Cadeia de Markov.
Essa definição pode ser encontrada em (PARDOUX, 2006) ou em livros básicos sobre
Processos Estocásticos.

Definição 3 (Cadeia de Markov). Seja X = (Xn, n ∈ N0) um processo em tempo discreto
cujo espaço de estados é S. X é uma cadeia de Markov se para todo n ∈ N0 e para todos
i0, i1, ..., in−1, in, j ∈ S, tem-se:

P{Xn+1 = j|Xn = in, Xn−1 = in−1, ..., X0 = i0} = P{Xn+1 = j|Xn = in} (2.1)

Além disso, X é dita Cadeia de Markov Homogênea se o membro da direita
da Equação 2.1 não depende de n.

Neste ponto pode-se definir a probabilidade de transição do estado i no instante
n ao estado j como pij = P{Xn+1 = j|Xn = i}. Vale ressaltar que para uma cadeia de
Markov homogênea essa probabilidade independe de n.

A partir das probabilidades de transição, constrói-se a Matriz de Probabilidades
de Transição (MPT) (ou matriz de transição) P = [pij](i,j)∈S2 , onde cada pij é colocado
na linha i e coluna j. A matriz P é estocástica, ou seja, a soma dos termos de qualquer
uma de suas linhas é igual a 1.

∀i ∈ S,
∑
j∈S

pij = 1. (2.2)

32

2.2.1 Exemplo simples de um Processo de Markov Homogêneo

Considere um sistema com dois estados S = {θ1, θ2}, que inicia no estado θ1 em
t = 0 e realiza saltos durante t = (1, . . . , 20). Em cada instante, se o sistema estiver no
estado θ1, ele tem 70% de chance de permanecer no mesmo estado e 30% de chance de
saltar para o estado θ2. Se o sistema estiver no estado θ2, ele necessariamente retorna para
o estado θ1 no instante de tempo seguinte. Considera-se que ao final o sistema retorna ao
estado θ1. Com base nessas probabilidades pode-se construir a matriz de transição Pteórica:

Pteórica =
0.7 0.3

1 0

 (2.3)

A seguir, realiza-se uma simulação em ambiente MATLAB do sistema, e mapeia-se a
realização da cadeia de Markov, como mostrada na Figura 1. O código utilizado para a
simulação encontra-se no Apêndice.

Figura 1: Sistema simples com dois estados Markovianos

Fonte: O Autor (2019)

Agora podemos verificar, através de uma contagem dos resultados da simulação,
a frequência com que o sistema salta do estado θ1 para o mesmo estado θ1 e definir esse
evento como p11, e de θ2 para θ2 como p22.

Além disso, denota-se a frequência com que o sistema salta de θ1 para θ2 como p12,
e o contrário como p21. Finalmente, dividimos os saltos pelo número total de ocorrência de
cada estado individual. Neste exemplo, o estado θ1 aparece 16 vezes e o estado θ2 aparece
5 vezes. Com esses dados calculam-se as probabilidades de transição:

p11 = 11
16 = 0.6875 p12 = 5

16 = 0.3125,

p21 = 5
5 = 1 p22 = 0

5 = 0,

33

Dessa forma obtemos de forma empírica a MPT Pempírica:

Pempírica =
0.6875 0.3125

1 0

 (2.4)

Pode-se representar a cadeia de Markov por um grafo direcionado em que os nós correspon-
dem aos estados e as arestas às transições entre eles, cujos pesos são as probabilidades de
transição. Esse grafo recebe o nome de diagrama de estados. Na Figura 2 é mostrado o
diagrama de estados da cadeia referente à Equação 2.3.

Figura 2: Diagrama de estados do sistema simples

Fonte: O Autor (2019)

2.3 Modelo Oculto de Markov

Como discorrem (MANNINI; SABATINI, 2011), os Modelos Ocultos de Markov
são amplamente utilizados em visão computacional para o reconhecimento de gestos. Além
disso, tais modelos oferecem a possibilidade de segmentar a marcha humana utilizando
dados coletados em velocidades e inclinações do terreno variadas. Nesse trabalho, os
pesquisadores dividiram o caminhar em quatro estados e treinaram uma rede a partir de
sinais provindos de um giroscópio monoaxial posicionado sobre peito do pé e orientado na
direção médio-lateral, ou seja, apontando do centro para a lateral do corpo.

Seguindo esse raciocínio, observa-se que utilizar Modelos Ocultos de Markov para
segmentar a marcha humana é apropriado aos fins deste projeto.

Dessa forma, definem-se os modelos ocultos de Markov da seguinte maneira:
(BISHOP, 2006) e (Rabiner, 1989).

Definição 4 (Modelo Oculto de Markov). Suponha que numa cadeia de observações a
n’ésima observação é influenciada por uma variável oculta correspondente. Se as variáveis
ocultas são discretas e formam uma cadeia de Markov, diz-se que o modelo é um Modelo

34

Oculto de Markov. Denotam-se as observações por O1, . . . , On, e as variáreis ocultas
por z1, . . . , zn.

Com apenas a condição de que as variáveis ocultas formam uma cadeia de Markov,
pode-se provar que a probabilidade P{On+1|O1, . . . , On} depende de todos O1, . . . , On, ou
seja, a sequência de observações O = {O1, ..., On} não é uma cadeia de Markov.

Nesse modelo, as probabilidades de transição são dadas por aij = P{zn =
j|zn−1 = i} e as probabilidades de emissão são P{On|zn} . Caso os valores observados
On sejam discretos, podendo assumir D valores em V = {v1, . . . , vD} e o espaço de estados
possua K elementos, ou seja, S = {θ1, . . . , θK}, as probabilidades de emissão φ podem
ser organizadas em uma matriz KxD, representada por φ. Cada elemento φkd equivale à
probabilidade de se observar o valor vd dado que a variável oculta está no estado θk. A
matriz de transição é construída da mesma maneira que na seção anterior, porém quando
se trata de um Modelo Oculto a matriz será representada pela letra A = [aij](i,j)∈S2 .

Além disso, a probabilidade marginal P{z1} que descreve o estado inicial é um
vetor π de K elementos.

Assim, o modelo λ pode ser descrito por seus três parâmetros: λ = (π,A,φ).

2.3.1 Exemplo simples de um Modelo Oculto de Markov

Para que o conceito fique bem claro, um exemplo de um Modelo Oculto de Markov é
apresentado a seguir. Considere que o espaço de estados possui dois elementos, S = {θ1, θ2},
e a matriz de transição entre os estados ocultos é a mesma do exemplo anterior:

A =
0.7 0.3

1 0

 (2.5)

Visto que o sistema inicia no estado θ1, o vetor do estado inicial é π =
[
1 0

]T
. Por fim,

considere que o sistema pode emitir três valores de forma que V = {0, 1, 2}. Neste exemplo,
em cada instante de tempo existe uma probabilidade maior de que o sistema emita o valor
correspondente ao índice do estado oculto, porém existe também a possibilidade de que o
sistema emita o valor correspondente ao índice do outro estado ou o valor 0, de acordo
com a matriz de emissão:

φ =
0.2 0.7 0.1

0.3 0.1 0.6

 (2.6)

Na matriz φ, a primeira coluna corresponde à emissão do valor 0, a segunda ao valor 1 e
a terceira ao valor 2. Além disso, a primeira linha corresponde ao estado θ1 e a segunda
linha ao estado θ2. Logo, por exemplo o elemento φ12 é a probabilidade de emissão do
valor 1 dado que a variável oculta se encontra no estado θ1.

35

Realizando uma simulação desse sistema em MATLAB, obteve-se o resultado
mostrado na Figura 3. Nela, os pontos em azul representam os estados ocultos, ou seja,
a trajetória da cadeia de Markov oculta, e as cruzes em vermelho são as observações.
Verifica-se, como era esperado de acordo com a matriz da Equação 2.6, que na maior parte
dos instantes de tempo o valor observado corresponde ao índice do estado oculto. Isso
ocorre nos pontos em que a cruz vermelha e o ponto azul coincidem.

Figura 3: Exemplo de estados ocultos e valores observados de um Modelo Oculto de Markov

Fonte: O Autor (2019)

2.3.2 Problemas básicos relacionados a Modelos Ocultos de Markov

Existem três problemas básicos envolvendo os Modelos Ocultos de Markov (Rabiner,
1989):

Problema 1. Dada uma sequência de observações O = {O1, ..., On} e um modelo
λ = (π,A,φ), como calcular de forma eficiente P{O|λ}, que é a probabilidade da sequência
de observações dado o modelo?

Problema 2. Dada uma sequência de observações O = {O1, ..., On} e o modelo
λ = (π,A,φ), como encontrar a sequência de estados ocultos Z = {z1, ..., zn} que melhor
explica a sequência de observações? Este problema é denominado na literatura como
decodificação (decoding).

Problema 3. Como ajustar os parâmetros do modelo λ = (π,A,φ) para maximizar
P{O|λ}? Em outras palavras, como treinar o modelo?

Neste trabalho, primeiramente um Modelo Oculto de Markov será treinado e em
seguida uma sequência de estados ocultos será estimada com base em uma sequência de
observações. Logo, os Problemas 3 e 2 deverão ser solucionados.

36

2.3.3 Solução ao Problema 2

A solução ao problema de encontrar a sequência de estados ocultos que melhor
explica a sequência de observações não é única, e depende do significado matemático dado
à expressão explicação ótima. Duas soluções serão analisadas a seguir:

Pode-se considerar que a cada instante de tempo o estado oculto é aquele que
maximiza localmente a probabilidade de se estar no estado θi dada a sequência de
observações O e o modelo λ. Introduzindo a variável γt(i) = P{zt = θi|O, λ}, esta primeira
solução corresponde a maximizar γt(i) para cada instante de tempo individualmente. Logo,
de acordo com esse critério de otimização, os estados ocultos zt são dados pela Equação
2.7:

zt = arg max
1≤i≤K

[γt(i)], 0 ≤ t ≤ n (2.7)

Essa solução, apesar de maximizar a esperança do número de estados corretos,
apresenta algumas desvantagens. Os estados ocultos são determinados individualmente
sem que a sequência deles seja levada em conta. Esse fato pode levar o algoritmo a produzir
sequências improváveis ou até mesmo impossíveis quando a matriz A possui entradas nulas
(Rabiner, 1989).

Neste ponto, faz-se necessário ressaltar que a marcha humana pode normalmente
ser decomposta em uma sequência de estados cíclica de forma que a probabilidade de
realizá-la no sentido inverso pode ser considerada nula. Assim, o algoritmo utilizado para
resolver o Problema 2 deve ser capaz de produzir apenas sequências com probabilidade
não nula.

Uma segunda solução que contorna essa desvantagem é algoritmo de Viterbi, cujas
aplicações são diversas, incluindo decodificação de mensagens, reconhecimento de fala
e bioinformática. Ele baseia-se na maximização da probabilidade de toda a sequência
de estados Z = {z1, ..., zn}, ou seja, na maximização de P{Z|O, λ} que é equivalente a
P{Z,O|λ}. Dessa forma, a sequência ótima Z∗ é dada pela Equação 2.8:

Z∗ = arg max
Z

[P{Z,O|λ}] (2.8)

No trabalho de (MANNINI; SABATINI, 2011), dados da marcha de três indivíduos
foram coletados e os estados ocultos de uma cadeia de Markov foram identificados com
um pós-processamento utilizando-se o algoritmo de Viterbi. É importante observar que
o cálculo de Z∗ através da Equação 2.8 leva em consideração que toda sequência de
observações está disponível, o que não é viável em aplicações em tempo real.

Várias propostas foram feitas para contornar essa limitação. Por exemplo pode-se
considerar apenas uma janela de tamanho fixo em que apenas uma quantidade limitada
de estados é processada (MANNINI; GENOVESE; SABATINI, 2013).

37

Outra solução é apresentada em (MANNINI; GENOVESE; SABATINI, 2013). Os
autores utilizaram um algoritmo de Viterbi de curta duração, em que uma janela variável
é considerada para a decodificação dos estados ocultos. Aplicando-se essa técnica por meio
de um microprocessador ARM de 32 bits e uma taxa de amostragem de até 500 Hz, a
latência de detecção dos estados foi inferior a 100 ms para mais de 75% dos eventos.

Dentro dessas possibilidades, o Algoritmo de Viterbi de curta duração se destaca. Em
um primeiro momento ele seria uma boa escolha para resolver o problema da decodificação
dos estados em tempo real. Ele está descrito de maneira sucinta abaixo:

2.3.4 Algoritmo de Viterbi de curta duração (On-line Viterbi)

Mais de uma versão existe desse algoritmo. Uma versão bastante otimizada foi
desenvolvida na seguinte dissertação de mestrado: (ŠRáMEK, 2007). O pseudocódigo,
provas e análises de complexidade desse algoritmo podem ser encontradas na dissertação
acima e em (ŠRáMEK; BREJOVá; VINAř, 2007). De maneira bastante resumida, o
algoritmo consiste em armazenar dinamicamente os possíveis caminhos de estados ocultos
e respectivas probabilidades em matrizes dinâmicas. Se em dado instante todos os possíveis
caminhos convergem em determinado ponto, todos os estados precedentes ao ponto de
convergência são considerados ótimos no critério da Equação 2.8. Para mais detalhes
pode-se consultar as referências supracitadas.

Visto que nas buscas realizadas não foi encontrada nenhuma implementação na
linguagem C disponível na rede desse algoritmo, o Autor deste Trabalho realizou essa
implementação, que está disponível em código aberto no seguinte link: <https://github.
com/franciscoambrosio/hidden-markov>. Entretanto, testando-se a implementação do
Autor, constatou-se que o programa parava de funcionar depois de um certo tempo em
operação e era necessário recomeçá-lo. Provavelmente esse comportamento se deve a algum
erro de implementação dada a dificuldade de se trabalhar com alocação dinâmica de
memória na linguagem C.

Devido a essas dificuldades, optou-se neste trabalho por utilizar a solução mais
simples para o problema da decodificação em tempo real dos estados: uma janela de
tamanho fixo em que apenas uma quantidade limitada de estados é processada com o
algoritmo de Viterbi convencional.

2.3.5 Solução ao Problema 3

Este problema consiste em ajustar os parâmetros λ = (π,A,φ) de forma a maxi-
mizar a probabilidade da observação dado o modelo. Não existe uma fórmula analítica que
maximiza P{O|λ}, entretanto é possível encontrar um máximo local de P{O|λ} utilizando-
se algoritmos iterativos como Baum-Welch, que é um estimador de máxima verossimilhança,
ou um método de gradientes (Rabiner, 1989), (MANNINI; SABATINI, 2011). Além disso,

https://github.com/franciscoambrosio/hidden-markov
https://github.com/franciscoambrosio/hidden-markov

38

no tocante exclusivamente à matriz A, vale ressaltar que na literatura existem diversas
formas de se determinar uma matriz de transição, como (JILKOV; LI, 2004), (ORGUNER;
DEMIREKLER, 2008) e (WANG, 2010), que discutem modelos gerais.

Quando se possui um conjunto de dados em que os estados correspondentes às
observações já estão identificados, uma boa estimativa inicial para os parâmetros do modelo
corresponde a uma contagem do número de vezes em que o sistema esteve em cada estado
e dos saltos que realizou. Assim, as probabilidades da matriz A podem ser estimadas
da mesma forma como as entradas da matriz Pempírica foram calculadas em 2.4. Logo, a
probabilidade de transição do estado θi para o estado θj é dada como segue:

aij = pij = número de saltos do estado θi para o estado θj
número de vezes em que o sistema esteve no estado θi

(2.9)

O vetor de estado inicial π é estimado por:

πi = número de vezes em que o sistema esteve no estado θi
número total de observações (2.10)

O parâmetro restante φ depende de como as emissões são definidas. Pode-se modelar
as emissões seguindo uma variável discreta assumindo valores em V = {v1, . . . , vD}, ou con-
tínua. Visto que as saídas dos sensores inerciais, descritos na seção 3.1.1, possuem um passo
de discretização muito pequeno comparado ao número de estados, é coerente aproximá-las
para variáveis contínuas. Logo, as probabilidades de emissão φ =

[
φ1 φ2 . . . φK

]T
são

funções densidade de probabilidade. Cada elemento φi, 1 ≤ i ≤ K é uma função densidade
de probabilidade cuja variável aleatória é a observação nos instantes em que zt = θi. Em
(Rabiner, 1989) é explicitada a formulação mais geral para as densidades de probabilidade
φi. Neste projeto será considerado o caso particular em que cada φi é uma distribuição
normal de média µi e desvio padrão σ2

i .

φi ∼ N (zt|µi, σ2
i , zt = θi), 0 ≤ i ≤ K (2.11)

Em outras palavras, esse modelo representa a ideia de que para cada estado oculto,
a emissão seguirá uma densidade de probabilidade gaussiana.

A partir de uma sequência de observações é possível estimar os parâmetros µi e σ2
i

, 1 ≤ i ≤ K:

µi = 1
Ni

n∑
t=1

Ot

∣∣∣∣∣
zt=θi

(2.12)

σi =
√√√√ 1
Ni − 1

n∑
t=1

(Ot − µi)2

∣∣∣∣∣
zt=θi

(2.13)

39

Nas Equações 2.12 e 2.13, n representa o número total de observações e Ni o
número de vezes em que o sistema esteve no estado θi.

2.4 Modelagem Markoviana do caminhar humano

A marcha humana pode ser segmentada de diversas formas. Algumas não levam
em conta nenhum significado físico dos estados, sendo apenas uma subdivisão matemática
de variáveis de interesse. Um exemplo dessa abordagem é apresentado abaixo.

2.4.1 Articulações divididas em setores

Figura 4: Articulações divididas em setores

x

y

θ1

θ2

θ3

θ4

θ5

θ6

θ0

Fonte: Christoph M. Mitschka (2015)

No projeto de iniciação científica Derivação Empírica de uma Matriz de
Probabilidades de Transição do Caminhar Humano com Unidades de Medidas
Inerciais realizado pelo autor de 2015 a 2017 (processo FAPESP 2015/20644-5), uma MPT
foi derivada com base em estados Markovianos definidos a partir dos ângulos absolutos
descritos pelas juntas de acordo com o modelo utilizado no exoesqueleto Exo-Kanguera,
utilizado em tratamentos de reabilitação motora.

O modelo é apresentado nesta seção em linhas gerais. Detalhes técnicos e as equações
dinâmicas podem ser encontradas nos relatórios do projeto de doutorado de Christoph

40

M. Mitschka (processo FAPESP 2012/14074-3), em que foi derivado um controlador
Markoviano para esse exoesqueleto.

O exoesqueleto possui três articulações: quadril, joelho e tornozelo, que por con-
venção serão chamadas de quadril, fêmur e tíbia, respectivamente. As áreas de movimento
de cada articulação podem divididas em setores. Um exemplo de divisão é mostrado na
Figura 4. Assim, para cada instante de tempo, a configuração espacial do exoesqueleto
pode ser aproximada pela combinação dos setores em que se encontra cada articulação.

Cada uma dessas combinações de setores é tratada como um estado Markoviano do
exoesqueleto. Uma vez que o exoesqueleto está acoplado ao corpo humano, como mostra
a Figura 10, pode-se relacionar diretamente o estado do exoesqueleto com o estado do
caminhar da pessoa que o utiliza. Neste caso, cada articulação é dividida em três setores,
o que totaliza 33 = 27 estados.

2.4.2 Quatro fases da marcha humana

Da forma como foram definidos os estados na seção acima, os combinações de
ângulos das juntas não possuem sentido físico facilmente interpretável. Assim, as fases
que serão descritas abaixo foram escolhidas possuindo sentido físico. Existem diversas
propostas para isso. Por exemplo (RUETERBORIES et al., 2010) sugere uma divisão
em oito fases. Aqui será utilizada uma divisão em quatro fases, como em (MANNINI;
SABATINI, 2011), descrita abaixo:

Considere primeiramente os quatro eventos que ocorrem em um ciclo completo da
marcha humana convencional:

• HS(Heel-Strike): Momento em que o pé atinge o solo com o calcanhar

• FF(Flat-Foot): Momento em que o pé fica paralelo ao solo e em está em contato
com o solo

• HO(Heel-Off): Momento em que o calcanhar sai do solo

• TO(Toe-Off): Momento em que os dedos saem do solo

Os quatro estados são definidos como os intervalos entre os eventos. O estado S1

corresponde à fase delimitada por HS e FF. Analogamente, temos S2: FF-HO, S3: HO-TO
e S4: TO-HS.

Para modelar o caráter cíclico e unidirecional da marcha humana convencional,
é apropriado utilizar um Modelo Oculto de Markov do tipo left-right. Nele, o estado só
pode pular para o seguinte no ciclo ou para ele mesmo. A Figura 5 mostra o diagrama de
estados dessa estrutura.

41

Figura 5: Diagrama de estados do Modelo Oculto de Markov do tipo left-right

S1

a11

S2 S3 S4
a12

a33

a34

a44

a23

a22

a41

Fonte: (MANNINI; GENOVESE; SABATINI, 2013)

43

3 EXPERIMENTOS

Este capítulo está separado em duas partes. A primeira refere-se aos experimentos
realizados pelo autor com o intuito de derivar uma MPT do caminhar de acordo com
o modelo das articulações divididas em setores (2.4.1). Já a segunda parte apresenta os
experimentos realizados para a derivação do modelo das quatro fases (2.4.2), tanto no
treinamento quanto na validação.

3.1 Derivação de uma MPT com base no modelo das articulações divididas em
setores

3.1.1 Sensores utilizados

Visto que serão utilizadas IMUs para captar os sinais de interesse no caminhar
humano, uma descrição desses sensores é dada a seguir. Normalmente, um sensor inercial
é composto por alguns acelerômetros e giroscópios dispostos em diferentes direções, que
determinam os graus de liberdade suportados. Encontram-se na literatura muitos trabalhos
relacionados à melhoria e ao barateamento desses sensores, como discute (SILVA, 2013),
segundo o qual houve um grande progresso nos últimos cinquenta anos.

Uma Unidade de Medida Inercial em estado da arte consiste em um acelerômetro,
um sensor magnético e um giroscópio, sendo os três componentes triaxiais. Os sinais
dos dois primeiros componentes não apresentam deriva ao longo do tempo, devido à
comparação dos sinais com vetores de referência, como a aceleração gravitacional e o
campo magnético da Terra. O mesmo não ocorre com o giroscópio, que, dessa forma, deve
ser atualizado frequentemente com dados dos outros dois componentes. As IMUs utilizados
neste projeto são fabricados com a tecnologia MEMS (Microelectromechanical systems) de
estado sólido (XSENS. . . , 2013).

O acelerômetro pode fornecer a inclinação do corpo. Já a direção dos movimentos
pode ser determinada pela saída do sensor magnético. Além disso, pode-se determinar a
orientação espacial a partir das condições iniciais e da saída do giroscópio ao longo do
tempo (SABATINI, 2011).

O modelo geral para a saída de um sensor inercial após a calibração, de acordo
com (INOUE, 2012), pode ser dado por:

ym = (1 + k)yt + b(t) (3.1)

sendo ym a saída apresentada pelo sensor, yt o valor exato da medida, k o erro de fator
de escala e b(t) a polarização. Considera-se, geralmente, que o erro de fator de escala é
randômico. O software de fábrica que acompanha os sensores implementa um filtro de

44

Kalman que fusiona as saídas inerciais com os dados do magnetômetro nas três dimensões
para estimar a orientação das IMUs de maneira ótima (XSENS. . . , 2013).

As medidas para o modelo das articulações divididas em setores foram realizadas
com Unidades de Medidas Inerciais MTw Awinda (Figura 6) do MTw Development Kit da
XSens que foi financiado pelo CNPq. O kit contém sensores inerciais sem fio que podem
gravar o posicionamento dos membros de forma precisa.

Figura 6: Unidade de medida inercial MTw Awinda

Fonte: (XSENS. . . , 2013)

O kit também conta com um software que permite visualizar os dados, trabalhar
com eles e sincronizar os sensores nos experimentos. Isso possibilita uma análise completa
do caminhar humano. Na Figura 7 é mostrado um exemplo de utilização do software em
que algumas saídas das IMUs são representadas graficamente.

3.1.2 Realização

Para que se medissem os ângulos absolutos referentes a cada uma das juntas
explicitadas em (2.4.1), três IMUs foram acopladas ao corpo humano como mostra a
Figura 8. Com essa configuração, foram coletados dados em diversos ambientes reais de
caminhada: planos horizontais e inclinados, escadas e superfícies irregulares.

Além disso, foram realizados experimentos em locais de transição entre esses
ambientes. Em especial, a transição entre plano horizontal e escada foi tratada como uma
perturbação na trajetória do caminhar na elaboração do artigo Recursive Linear Quadratic
Regulator Subject to Markovian Jump Linear Systems in a Robotic Application System for
Rehabilitation (MITSCHKA et al., 2016). Nele, foram utilizadas as MPTs derivadas aqui.
Trata-se, portanto, da primeira contribuição do autor em um publicação.

Visto que o método de derivação da matriz é estatístico, coletou-se um volume
grande de dados, de forma que os resultados pudessem ser confiáveis. Por exemplo, no

45

Figura 7: Software MTw Manager

Fonte: O Autor (2020)

Figura 8: IMUs acopladas ao corpo humano para a aquisição dos dados

Fonte: O Autor (2016)

46

ambiente de escada, realizaram-se cerca de 1500 passos (750 de subida e 750 de descida).

Nesse contexto, faz-se necessário relatar as principais dificuldades enfrentadas
no decorrer dos experimentos. Primeiramente, no decorrer desse período, o laboratório
adquiriu sensores inerciais da geração mais recente. Assim, foi necessário contactar o
fabricante para que se soubesse como sincronizar as duas gerações de IMUs em uma mesma
base receptora dos sinais. O problema foi resolvido com uma atualização de software.

Além disso, pelo fato de os sensores serem sem fio, alguns conjuntos de dados
tiveram que ser descartados devido a interrupções da comunicação entre os sensores e a
base receptora. Não obstante, vale ressaltar a dificuldade em manter os níveis das baterias
próximos, para que nenhum sensor ficasse sem energia durante os experimentos. As baterias,
por sua vez, demoram algumas horas para carregarem. Dessa forma, os experimentos
deviam ser planejados e preparados com antecedência.

3.2 Treinamento do Modelo Oculto de Markov do tipo left-right com quatro fases

3.2.1 Sensores utilizados

Devido às condições restritivas decorrentes da pandemia de SARS-CoV-2, não
foi possível ter acesso às IMUs do laboratório no período em que foram realizados os
experimentos para este segundo modelo. Dessa forma, procurou-se uma solução alternativa
que estivesse ao alcance do autor. A solução encontrada foi utilizar os dados da IMU
presente em um smartphone de modelo Moto G5, da marca Motorola, cujo sistema
operacional é o Android 8.1.0. Nos documentos fornecidos pelo fabricante não consta
informação sobre o modelo exato da IMU existente dentro do aparelho, porém alguns
estudos indicam que a performance não é muito inferior a IMUs profissionais (PFEAU;
WELLE, 2015), (Zhi; Xu; Schwertfeger, 2019).

3.2.2 Escolha das saídas de interesse

Para que o modelo da Figura 5 seja aplicado, duas escolhas precisam ser feitas.
Primeiramente, deve-se escolher como os estados ocultos serão identificados na fase de
treinamento. Trata-se do etiquetamento dos estados (do inglês labeling). Cada variável
oculta z1, . . . , zn deve receber um valor em em S = {S1, . . . , SK}. Aqui K = 4 pois temos
4 estados possíveis. Na etapa de treinamento o labeling deve possuir uma grande acurácia.
Pode-se utilizar para isso por exemplo sensores de pressão, câmeras, sistemas de rastrea-
mento ou variáveis físicas cinemáticas ou dinâmicas. Em muitos casos o etiquetamento é
realizado por um especialista na área que classifica frames em um vídeo. Outra possibili-
dade de implementação mais simples é utilizar um conjunto de regras que as saídas de
interesse devem satisfazer em cada evento.

A segunda escolha que deve ser feita é qual ou quais variáveis serão consideradas

47

como observações O = {O1, ..., On}. Em geral utilizam-se para isso variáveis físicas cine-
máticas ou dinâmicas. Assim, as observações são em geral um vetor de uma ou mais saídas
específicas de sensores, como acelerômetros e giroscópios.

Neste projeto uma IMU presente em um smartphone foi fixada na parte superior do
pé, e as observações foram consideradas as saídas do giroscópio na direção médio-lateral.
Sabe-se que o perfil da curva de velocidade angular do pé na direção médio-lateral é uma
sequência bastante estável de arcos e planos (MANNINI; SABATINI, 2011). Tal fato
é essencial para a detecção dos eventos, pois eles podem ser identificados como pontos
na curva que satisfazem um determinado conjunto de regras. Optou-se por realizar o
etiquetamento dos estados utilizando-se regras baseadas nas regras definidas em (MANNINI;
SABATINI, 2011), que determinam em que momentos ocorrem os eventos HS, FF, HO e
TO. As regras do trabalho de (MANNINI; SABATINI, 2011) são mostradas a seguir:

• tHS: Ocorre logo antes do pico negativo da velocidade angular. Define-se como o
instante em que a diferença absoluta entre o sinal filtrado com o filtro passa-baixas
e o sinal não filtrado é máxima.

• tFF : Instante em que a velocidade angular fica maior que um threshold de -50 °/s,
estando previamente menor que -50 °/s.

• tHO: Instante em que a velocidade angular volta a ficar menor que um threshold de
-50 °/s.

• tTO: Instante em que a velocidade angular se anula, estando previamente negativa.

Essas regras foram adaptadas e foram inseridas regras adicionais para o proces-
samento não causal dos dados. Seja ω(n), n ∈ N0, a n’ésima discretização da velocidade
angular do pé na direção médio-lateral e seja ω̃(n) a velocidade angular ω(n) filtrada por
um filtro Butterworth de segunda ordem passa-baixas com frequência de corte de 15 Hz.
Definimos δ(n) = |ω(n)− ω̃(n)|.

Além disso, seja Pω̃ = {p1, ..., pq} o conjunto de todos os n ∈ N0 que satisfazem
ω̃(n) = 0 °/s. A posição angular θ̃(n) é dada pela integração numérica de ω̃(n) e a
aceleração angular dω̃

dt
(n) pela derivação numérica. As seguintes regras foram utilizadas:

• TFF = {n ∈ N0 | ω̃(n) ≥ −50 °/s e ω̃(n− 1) < −50 °/s e θ̃(n) > −15 °}

• THO = {n ∈ N0 | ω̃(n) ≤ −50 °/s e ω̃(n− 1) > −50 °/s e θ̃(n) < 0 °}

• TTO = {pk ∈ Pω̃ | ω̃(pk) = 0 °/s e dω̃
dt

(pk) > 2000 °/s2 e dω̃
dt

(pk+1) < −1500°/s2}

• Finalmente, para cada tTO ∈ TTO, seja pk+ o pk ∈ Pω̃ mais próximo de tTO tal que
pk > tTO. Seja tFF+ o tFF ∈ TFF mais próximo de pk+ tal que tFF > pk+. Faça
tHS = argmaxn δ(n), pk+ < n < tFF+. Temos que THS é o conjunto de todos tHS.

48

3.2.3 Realização

Figura 9: smartphone acoplado ao pé

Fonte: O Autor (2020)

O smartphone foi acoplado ao pé na parte superior (Figura 9). Para a transmissão
dos dados em tempo real para um laptop da marca Dell, modelo Inspiron 15 com um
processador Intel Core i5 de oitava geração, foi utilizado o aplicativo Sensor Node Free.
Para a recepção, gravação para pós-processamento e processamento desses dados em
tempo real, foi utilizado o código em Python disponível no Apêndice B. Esses dados foram
coletados com um período de amostragem de 6 ms, o que corresponde a 166,67 Hz.

Inicialmente, realizaram-se duas sessões de gravação dos dados para pós-processamento:
uma foi utilizada para treinamento e outra para validação do modelo. Ambas foram de
curta duração e realizadas em um corredor, visto que não foi possível ter acesso à esteira
do laboratório, dadas as condições de isolamento social.

Nesse sentido, foram utilizados apenas 6 passos completos para o treinamento do
modelo. Os dados da saída do giroscópio foram filtrados com um filtro Butterworth passa-
baixas de segunda ordem com frequência de corte de 15 Hz apenas para o etiquetamento
dos estados. Já a matriz de emissão foi calculada utilizando os dados sem filtragem. O
treinamento foi realizado em Matlab utilizando-se os estados definidos em 2.4.2, as regras
3.2.2 e as equações 2.9, 2.12 e 2.13. O vetor de estado inicial π foi considerado uma
distribuição uniforme entre os 4 estados possíveis.

Aqui, vale ressaltar que o treinamento foi realizado de forma não causal, ou seja, os
dados não foram processadas em sequência em um único loop. Logo, foi necessário adicionar

https://play.google.com/store/apps/details?id=com.mscino.sensornode&hl=en

49

algumas condições extras para retirar pontos que satisfaziam as regras apresentadas em
(MANNINI; SABATINI, 2011) mas estavam em locais errados da sequência de estados.
As regras adaptadas foram as apresentadas em 3.2.2. Por exemplo, a velocidade angular
passa de um valor inferior a -50 °/s para um valor maior que -50 °/s duas vezes em um
ciclo completo da marcha (Figura 12). Entretanto, só a primeira vez deve ser considerada,
pois na segunda vez essa regra não faz mais sentido, já que a marcha está em outro estado
e outra regra deve ser verificada para caracterizar o evento correspondente.

Outro exemplo é que a velocidade angular possivelmente se anula diversas vezes
durante um ciclo, em especial na fase de flat-foot. Entretanto, só deve ser considerado o
ponto que ocorre ao final da fase S3.

Assim, a experiência do autor adquirida com o presente trabalho sugere que um
processamento causal é de mais simples implementação.

A validação do modelo foi realizada com o segundo conjunto de dados aplicando-se
o algoritmo de Viterbi convencional em pós-processamento. Portanto, toda a sequência
de observações está disponível, o que não ocorre em aplicações em tempo real. Para isso
utilizou-se a biblioteca em Matlab (MURPHY, 1998). Esse procedimento foi realizado com
os dados não filtrados e com os dados filtrados. Os resultados foram comparados.

Por fim, realizou-se uma nova sessão de gravação em que os estados Markovianos
foram estimados em tempo real utilizando-se o algoritmo de Viterbi em uma janela
de tamanho fixo deslizante. Adotou-se uma janela de duração igual a 15 períodos de
amostragem, o que corresponde a 90 ms. Os dados dentro dessa janela foram filtrados em
tempo real por um Butterworth filtro passa-baixas de segunda ordem com frequência de
corte de 15 Hz. Logo em seguida aplicou-se o algoritmo de Viterbi dentro da janela. Para
isso utilizou-se a biblioteca hmmlearn em Python. A cada iteração considerou-se o estado
inicial como o a saída da iteração anterior.

A saída a cada iteração foi considerada como o segundo elemento do vetor de
estados ocultos estimados pelo algoritmo de Viterbi, já que o primeiro elemento sempre
correspondia à saída da iteração anterior. O código completo em Python dos experimentos
está disponível no Apêndice B. Nessa sessão foram gravados dados de 17 passos em um
corredor. Esses dados também foram aproveitados para validar novamente o algoritmo em
pós-processamento, de forma a aumentar a significância estatística.

Finalmente, foi demonstrada uma aplicação que consiste em medir a duração dos
passos bem como a duração das fases. Observa-se que em padrões de marcha com alguma
debilidade frequentemente a duração e proporções entre as durações das fases difere em
relação ao padrão de marcha normal. Aqui foi considerada a fase denominada de Stance,
que corresponde ao período em que o pé está em contato com o solo, ou seja, trata-se da
união das fases S1, S2 e S3 definidas em 2.4.2.

51

4 RESULTADOS

Assim como nos experimentos, os resultados serão divididos em duas partes, sendo
a primeira corresponde ao modelo das articulações divididas em setores, e a segunda ao
Modelo Oculto de Markov com quatro estados.

4.1 Articulações divididas em setores

Para cada cenário de caminhada, bem como para cada experimento realizado, a
MPT encontrada será diferente. Entretanto, a matriz referente a indivíduos sem dificuldades
para caminhar e de estatura média não apresentaram grandes desvios. Escolhendo-se o
ambiente da transição entre plano horizontal e escada, a MPT encontrada neste caso é
mostrada na Figura 10.

Observe que as maiores probabilidades concentram-se nas diagonais principal e nas
diagonais próximas a ela. Isso se deve ao fato de que em intervalos de tempo pequenos,
a Cadeia de Markov apresenta estados sequenciais repetidos, uma vez que a taxa de
amostragem é alta.

Fi
gu

ra
10
:M

PT
do

ca
m
in
ha

r
hu

m
an

o
re
fe
re
nt
e
à
tr
an

siç
ão

en
tr
e
pl
an

o
ho

riz
on

ta
le

es
ca
da

P 0.
43

84
0.

13
70

0.
27

40
0

0
0

0.
01

37
0

0.
01

37
0.

04
11

0.
01

37
0.

05
48

0
0

0.
01

37
0

0
0

0
0

0
0

0
0

0
0

0
0.

13
04

0.
53

04
0.

13
04

0.
00

87
0.

01
74

0
0.

00
87

0.
02

61
0

0.
01

74
0.

07
83

0.
03

48
0

0
0.

00
87

0
0.

00
87

0
0

0
0

0
0

0
0

0
0

0.
05

35
0.

07
36

0.
67

22
0

0
0.

04
01

0.
00

33
0

0.
03

34
0.

01
00

0.
00

67
0.

09
70

0
0

0.
01

00
0

0
0

0
0

0
0

0
0

0
0

0
0.

08
33

0
0.

08
33

0.
25

00
0.

08
33

0.
16

67
0

0.
25

00
0

0
0

0
0.

08
33

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0.
04

17
0.

12
50

0
0.

08
33

0.
29

17
0.

16
67

0
0.

04
17

0
0

0
0

0
0.

08
33

0
0

0.
12

50
0.

04
17

0
0

0
0

0
0

0
0

0
0

0
0.

06
16

0.
01

37
0.

03
42

0.
63

70
0

0
0.

13
01

0
0

0.
02

05
0

0
0.

08
90

0
0

0.
01

37
0

0
0

0
0

0
0

0
0

0.
01

59
0

0
0.

03
17

0
0

0.
38

10
0.

15
87

0.
26

98
0

0
0

0.
01

59
0

0.
01

59
0.

09
52

0
0.

01
59

0
0

0
0

0
0

0
0

0
0.

02
11

0.
02

11
0

0
0.

02
11

0
0.

01
05

0.
15

79
0.

42
11

0.
22

11
0

0
0

0
0

0
0.

03
16

0.
07

37
0.

02
11

0
0

0
0

0
0

0
0

0.
00

20
0.

00
60

0.
01

20
0

0.
00

40
0.

03
39

0.
02

79
0.

04
59

0.
71

06
0

0
0

0
0

0.
00

20
0.

00
40

0.
01

60
0.

13
57

0
0

0
0

0
0

0
0

0
0.

00
43

0.
00

43
0

0
0

0
0

0
0

0.
43

53
0.

18
10

0.
20

26
0.

03
02

0.
02

16
0.

01
29

0.
03

88
0.

02
16

0.
01

72
0.

00
43

0.
01

72
0.

00
43

0
0

0
0.

00
43

0
0

0
0.

01
52

0.
01

01
0

0.
00

25
0

0
0

0
0.

08
86

0.
57

72
0.

16
96

0.
00

51
0.

03
80

0.
00

51
0

0.
05

06
0.

00
51

0.
00

76
0.

02
03

0.
00

25
0

0
0

0.
00

25
0

0
0

0.
00

03
0.

01
11

0
0

0
0

0
0.

00
03

0.
01

38
0.

01
59

0.
85

64
0.

00
12

0.
00

06
0.

03
12

0.
00

21
0.

00
03

0.
04

53
0.

00
03

0.
00

09
0.

01
86

0
0

0.
00

06
0

0
0.

00
15

0
0

0
0.

01
06

0
0

0
0

0.
01

06
0.

12
77

0.
01

06
0.

03
19

0.
38

30
0.

08
51

0.
11

70
0.

09
57

0.
02

13
0.

02
13

0
0

0
0.

05
32

0
0.

01
06

0.
01

06
0.

01
06

0
0

0.
00

29
0

0
0.

00
88

0.
00

29
0

0
0

0.
01

17
0.

03
81

0.
01

17
0.

01
76

0.
47

80
0.

25
22

0.
01

47
0.

04
99

0.
05

57
0

0
0

0
0.

02
05

.0
20

5
0.

00
29

0.
00

88
0.

00
29

0
0

0
0

0.
00

04
0.

00
57

0
0

0.
00

09
0.

00
13

0.
00

13
0.

04
71

0.
00

65
0.

03
92

0.
75

29
0.

00
22

0.
00

74
0.

09
24

0
0

0.
00

04
0.

00
09

0.
00

22
0.

03
36

0
0.

00
04

0.
00

52
0.

00
19

0
0

0
0

0
0.

00
57

0.
00

38
0.

00
19

0.
02

30
0.

01
72

0.
00

77
0.

02
11

0.
00

77
0.

02
11

0.
00

77
0.

00
96

0.
46

36
0.

14
56

0.
23

56
0.

00
19

0
0

0.
02

30
0.

00
96

0
0.

01
53

0
0.

00
05

0
0

0
0

0
0.

00
42

0.
00

37
0.

00
11

0.
01

00
0

0.
00

21
0.

01
48

0.
01

06
0.

04
76

0.
55

31
0.

30
51

0
0.

00
11

0
0

0.
00

21
0.

00
05

0.
00

26
0.

02
43

0.
01

43
0

0
0.

00
05

0
0

0.
00

08
0.

00
03

0
0.

00
48

0.
00

02
0.

00
03

0.
01

03
0.

00
02

0.
00

11
0.

01
93

0.
00

93
0.

04
83

0.
87

27
0

0
0.

00
03

0
0.

00
08

0.
00

04
0.

00
08

0.
00

25
0.

02
95

0
0

0
0

0
0

0
0

0
0.

07
84

0.
03

92
0.

03
92

0
0

0
0

0.
01

96
0

0.
45

10
0.

05
88

0.
19

61
0

0
0.

03
92

0.
03

92
0.

01
96

0.
01

96
0

0.
08

33
0.

02
08

0
0

0
0

0
0

0
0.

20
83

0.
04

17
0.

02
08

0
0

0
0

0
0.

10
42

0.
39

58
0.

08
33

0
0

0
0.

04
17

0
0.

00
61

0
0.

01
21

0
0

0
0

0
0

0.
00

30
0

0.
17

58
0

0
0.

00
30

0
0.

00
30

0.
02

12
0.

02
42

0.
01

21
0.

66
67

0
0

0.
02

42
0.

00
61

0
0.

04
24

0
0

0
0

0
0

0
0

0
0

0
0.

03
45

0.
10

34
0

0
0

0
0

0.
17

24
0

0.
03

45
0.

34
48

0.
03

45
0.

13
79

0.
10

34
0

0.
03

45
0

0
0

0
0

0
0

0
0

0
0

0
0

0.
07

14
0

0
0.

02
86

0.
01

43
0.

01
43

0.
04

29
0.

01
43

0.
05

71
0.

44
29

0.
17

14
0.

02
86

0.
10

00
0.

01
43

0
0

0
0

0
0.

00
23

0
0

0
0

0
0.

01
13

0
0.

00
91

0.
12

47
0.

00
23

0
0.

02
72

0.
00

23
0

0.
02

49
0.

00
45

0.
03

40
0.

66
44

0
0.

01
36

0.
07

94
0

0
0

0
0

0
0.

00
64

0.
00

64
0

0.
00

64
0

0
0.

00
64

0
0

0.
09

55
0.

00
64

0.
03

82
0.

00
64

0.
00

64
0

0.
01

91
0

0.
01

27
0.

54
14

0.
06

37
0.

18
47

0
0

0
0

0
0

0
0.

00
74

0.
00

37
0

0
0

0
0.

00
37

0.
00

74
0.

01
48

0.
15

56
0.

12
22

0.
00

37
0.

00
37

0
0

0.
00

74
0.

01
11

0.
08

89
0.

37
78

0.
19

26
0

0
0

0
0

0.
00

07
0

0
0.

00
21

0
0

0.
00

21
0

0
0.

00
89

0.
00

41
0.

01
85

0.
27

07
0

0
0.

00
82

0.
00

14
0.

00
27

0.
01

64
0.

01
17

0.
03

70
0.

61
55

P

Fo
nt
e:

O
A
ut
or

(2
01
6)

53

Fi
gu

ra
11
:M

PT
do

ca
m
ih
ar

hu
m
an

o
re
fe
re
nt
e
ao

pl
an

o
ho

riz
on

ta
l

P
0.

88
42

0.
07

88
0

0.
00

25
0

0
0

0
0

0.
00

25
0

0
0

0
0

0
0

0
0.

03
20

0
0

0
0

0
0

0
0

0.
00

01
0.

92
38

0
0

0.
01

12
0

0
0.

00
01

0
0

0.
00

09
0

0
0

0
0

0
0

0.
00

02
0.

05
89

0
0

0.
00

49
0

0
0

0
0

0.
11

11
0.

88
89

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0.
01

01
0.

00
40

0
0.

85
89

0.
01

01
0

0.
08

06
0

0
0

0
0

0.
02

82
0

0
0.

00
60

0
0

0
0

0
0.

00
20

0
0

0
0

0
0

0.
00

30
0

0.
00

16
0.

86
03

0.
00

03
0.

00
04

0.
07

91
0

0
0

0
0

0.
01

77
0.

00
01

0
0.

00
17

0
0

0
0

0
0.

03
55

0
0

0.
00

03
0

0
0

0
0

0.
04

05
0.

91
89

0
0

0
0

0
0

0
0

0.
04

05
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0.

81
13

0
0

0
0

0
0

0
0

0.
18

49
0.

00
38

0
0

0
0

0
0

0
0

0
0

0
0.

00
04

0
0

0.
00

17
0

0.
00

06
0.

81
29

0
0

0
0

0
0.

00
02

0
0

0.
18

28
0

0
0

0
0

0
0

0
0.

00
13

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0.
10

81
0.

01
89

0
0

0
0

0
0

0
0.

84
05

0.
02

97
0

0.
00

27
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0.
09

51
0

0
0.

00
10

0
0

0
0

0.
00

02
0.

89
91

0
0

0.
00

43
0

0
0.

00
03

0
0

0
0

0
0

0
0

0
0

0
0

0.
20

00
0

0
0

0
0

0
0

0
0.

80
00

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0.

00
02

0
0

0.
00

55
0.

00
02

0
0

0
0

0.
01

24
0.

00
04

0
0.

95
18

0.
02

88
0.

00
02

0.
00

02
0

0
0

0
0

0.
00

02
0

0
0

0
0

0
0.

00
02

0
0

0.
00

61
0

0
0

0
0

0.
02

27
0

0.
00

20
0.

96
65

0.
00

09
0

0.
00

12
0

0
0

0
0

0.
00

03
0

0
0

0
0

0
0

0
0

0.
00

27
0

0
0

0
0

0.
00

09
0.

00
27

0.
02

97
0.

96
40

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0.
09

32
0

0
0.

86
57

0.
00

94
0

0
0

0
0

0
0

0.
03

17
0

0
0

0
0

0
0

0
0

0.
00

04
0

0
0.

00
03

0
0.

00
09

0.
06

94
0

0.
00

47
0.

83
98

0
0

0
0

0
0.

00
06

0
0.

00
01

0.
08

38
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0.

61
36

0
0

0.
38

64
0

0
0

0
0

0
0.

00
04

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0.
00

07
0.

73
97

0
0.

00
04

0.
25

84
0

0
0.

00
04

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0.

08
42

0
0

0.
01

05
0

0
0

0
0

0.
00

53
0

0
0

0
0

0
0

0
0.

88
68

0.
00

79
0.

00
26

0.
00

26
0

0
0

0
0

0.
00

01
0.

04
21

0
0

0.
00

49
0

0
0

0
0.

00
01

0.
01

04
0

0
0.

00
09

0
0

0.
00

01
0

0.
00

17
0.

91
09

0
0

0.
02

89
0

0
0

0
0

0
0.

50
00

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0.

50
00

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0.
07

50
0

0
0

0
0

0
0

0
0.

90
12

0.
02

39
0

0
0

0
0

0.
00

01
0

0
0.

01
91

0
0

0
0

0
0.

00
17

0
0.

00
04

0.
04

13
0

0
0.

00
01

0
0

0.
01

13
0

0.
00

10
0.

92
50

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

P

Fo
nt
e:

O
A
ut
or

(2
01
6)

54

Comparando-se as Figuras 10 e 11, verifica-se que a MPT referente à transição
entre plano horizontal e escada possui um número maior de entradas não nulas, ou seja,
há uma maior diversidade de movimentos realizados. Isso está de acordo com o esperado,
já que nesse caso a complexidade do cenário é maior.

4.2 Modelo oculto de Markov do tipo left-right com quatro fases

Apesar de não ter sido utilizado um método de elevada acurácia (como sensores
de pressão, câmeras e rastreadores de movimento) para o etiquetamento dos estados na
fase de treinamento, o método baseado em um conjunto de regras apresentou resultados
satisfatórios. Na Figura 12 são mostrados os 4 eventos definidos na seção 2.4.2 que foram
detectados com base nas regras. Um ciclo completo compreende os estados S1, S2, S3 e S4,
que em seguida voltam a se repetir no ciclo seguinte.

Observa-se na Figura 12 que o instante tHS (momento em que o calcanhar atinge o
solo) está um pouco antes do primeiro pico negativo da velocidade angular. Em seguida
o intervalo entre tFF e tHO configura o estado em que todo o pé está em contato com o
solo, o que pode ser associado ao valor absoluto da velocidade angular próximo de zero.
Em seguida, entre os eventos tHO e tTO encontra-se o maior pico negativo da velocidade
angular, em que o calcanhar sai do solo e a ponta do pé ainda está em contato com o solo.
Por fim, após os dedos saírem do solo em tTO, a velocidade angular muda para o lado
positivo, visto que a rotação do pé muda de sentido.

Este ciclo de dois picos negativos seguidos de um pico positivo possibilita também
a aplicação do algoritmo de (LEE; PARK, 2011) para comparação, mesmo que ele tenha
sido inicialmente projetado para dados de um sensor afixado na canela.

Em seguida os seguintes parâmetros do modelo foram encontrados:

Matriz de Probabilidades de Transição

A =


0.948 0.052 0 0

0 0.985 0.015 0
0 0 0.970 0.030

0.016 0 0 0.984



Estado (i) Média das emissões (µi) [°/s] Desvio padrão das emissões (σi) [°/s]

1 -199.7 113.8
2 -18.5 14.9
3 -298.2 221.6
4 232.6 163.8

55

Figura 12: Estados do caminhar determinados com base em um conjunto de regras para
treinamento do modelo de Markov

Fonte: O Autor (2020)

Nota: Observa-se a sequência de dois picos negativos seguidos de um pico positivo da velocidade
angular na direção médio-lateral de um giroscópio posicionado sobre o pé

Para a validação do modelo foi utilizado o segundo conjunto de dados, em que
haviam dados de dez passos completos. Os estados estimados com o algoritmo de Viterbi
com os dados não filtrados são mostrados na Figura 13. Observa-se que houve uma alta
taxa de inserções, em que um ciclo completo de curta duração é inserido no meio de um
ciclo com duração normal de caminhada. Ocorreram 4 inserções em 10 passos, o que é
insatisfatório para aplicações práticas. Já quando se realizou o mesmo procedimento com os
dados filtrados com o filtro passa-baixas a taxa de inserções foi bastante reduzida (Figura
14). Ocorreu 1 inserção no mesmo conjunto de dez passos. Esse resultado é bastante
satisfatório levando em conta a pequena quantidade de dados de treinamento, o que
mostra que em alguns casos é possível realizar o treinamento rapidamente. Visto que
posteriormente foram gravados mais 17 passos para o algoritmo em tempo real, testou-se
também o pós-processamento nesses dados filtrados e constatou-se 1 inserção nos 17 passos.
Isso totaliza 2 inserções em 27 passos.

Além disso, pode-se verificar pela análise visual da Figura 14 que as formas de onda
e os estados correspondentes são coerentes de um ponto de vista qualitativo em relação

56

aos estados definidos na Figura 12.

Entretanto, vale ressaltar que o sistema pode não ser generalizável para outros
indivíduos com padrões de caminhada diferentes, uma vez que o modelo foi treinado com
apenas um indivíduo.

Figura 13: Estados do caminhar estimados em pós-processamento pelo algoritmo de Viterbi
com dados não filtrados

Fonte: O Autor (2020)

Com esse mesmo modelo, porém agora aplicando-se o algoritmo de Viterbi em uma
janela deslizante de tamanho fixo para a estimação dos estados em tempo real, foi obtido o
resultado da Figura 15. Observa-se que a taxa de inserções é ainda mais elevada do que no
caso do pós-processamento com dados não filtrados. Ocorreram 28 inserções em 17 passos.
Essas inserções provavelmente inviabilizariam uma aplicação prática em tempo real. Além
disso, surge um atraso que está relacionado à duração da janela de tamanho fixo.

Por fim, as durações dos passos e das fases de Stance foram computadas para o
algoritmo de Viterbi em pós-processamento com os dados filtrados (caixa azul na Figura
17) e para o algoritmo de Viterbi em uma janela deslizante de tamanho fixo (caixa vermelha
na Figura 17). Esses dados são mostrados na Figura 17 na forma de um diagrama de
caixa (boxplot). Nele são representados a mediana, a média, os quartis inferior e superior,
o intervalo que conteria cerca de 99.3% dos dados caso a distribuição fosse normal e os
outliers.

57

Figura 14: Estados do caminhar estimados em pós-processamento pelo algoritmo de Viterbi
com dados filtrados

20 22 24 26 28 30
Tempo (s)

-600

-400

-200

0

200

400

V
e
lo

ci
d
a
d
e
 a

n
g
u
la

r
(°

/s
)

Estados do caminhar estimados em pós-processamento pelo algoritmo de Viterbi, dados filtrados

Estados do caminhar estimados pelo algoritmo de Viterbi em pós-processamento
Velocidade angular do pé na direção médio-lateral filtrada (°/s)

Fonte: O Autor (2020)

Figura 15: Estados do caminhar estimados em tempo real pelo algoritmo de Viterbi em
uma janela limitada de tamanho fixo

2 3 4 5 6 7 8 9 10 11 12
Tempo (s)

-600

-400

-200

0

200

400

V
e
lo

ci
d
a
d
e
 a

n
g
u
la

r
(°

/s
)

Estados do caminhar estimados em tempo real - Algoritmo de Viterbi em janela limitada deslizante

Velocidade angular do pé na direção médio lateral filtrada (°/s)
Estados do caminhar estimados em tempo real - Algoritmo de Viterbi em janela limitada

Fonte: O Autor (2020)

58

Figura 16: Comparação entre os estados estimados em tempo real e em pós-processamento.
Destacam-se a taxa de inserções elevada e o atraso dos estados estimados em tempo real.

6.5 7 7.5 8 8.5 9 9.5
Tempo (s)

S1

S2

S3

S4

E
st

a
d
o

Comparação entre estados estimados em pós-processamento e em tempo real

Estados estimados em pós-processamento - Algoritmo de Viterbi convencional
Estados estimados em tempo real - Algoritmo de Viterbi em janela limitada

Atraso

Fonte: O Autor (2020)

59

Figura 17: Boxplot da duração dos passos e da fase Stance para cada um dos algoritmos

(Lee et al., 2011) Viterbi convencional Tempo real

0.2

0.4

0.6

0.8

1

1.2

D
u
ra

ç
ã
o
 d

o
s
 p

a
s
s
o
s
 (

s
)

Duração dos passos

(a) Duração dos passos

(Lee et al., 2011) Viterbi convencional Tempo real
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

D
u
ra

ç
ã
o
 d

a
 f
a
s
e
 S

ta
n
c
e
 (

s
)

Duração da fase Stance (S1 + S2 + S3)

(b) Duração da fase Stance

Fonte: O Autor (2020)

Nota: A fase Stance corresponde a todo o tempo em que o pé está em contato com o solo.
A cor das caixas corresponde ao algoritmo: Lee et al., 2011 (amarelo), algoritmo de Viterbi
em pós-processamento com dados filtrados (azul) e algoritmo de Viterbi em tempo real com
janela deslizante de tamanho fixo (vermelho). Os traços vermelhos representam as medianas.
Os quadrados pretos são as médias. As caixas são limitadas pelos quartis inferior e superior,
o que representa 50% dos valores observados. Os tracejados correspondem ao intervalo que
conteria aproximadamente 99.3% dos dados caso a distribuição fosse normal. As cruzes vermelhas
correspondem aos outliers.

60

4.2.1 Performance e comparação com outros trabalhos da literatura

Apenas o modelo oculto de Markov são introduzidas as métricas de desempenho P
(Precisão), R (Recall) e F1 (F1-score), sendo que F1 leva em conta tanto a Precisão quanto
o Recall:

P = TP

TP + FP
, R = TP

TP + FN
, F1 = 2·P ·R

P +R
(4.1)

em que TP é o número de verdadeiros positivos, FN o número de falsos negativos e FP o
número de falsos positivos. Temos P , R e F1 ∈ (0, 1). Quanto mais próximos de 1 melhor a
performance. Foram considerados verdadeiros positivos os passos completos cujos eventos
HS (Heel-Strike) e TO (Toe-Off) estavam dentro de uma janela de tolerância de 200 ms em
relação aos eventos IC (Initial-Contact) e EC (End-Contact), respectivamente, detectados
com o algoritmo de (LEE; PARK, 2011). Além disso foi realizada uma inspeção visual para
confirmar que o algoritmo de (LEE; PARK, 2011) detectou todos os passos corretamente.
Todos os demais passos completos inseridos dentro dos passos verdadeiros positivos foram
considerados falsos positivos. Não houve falsos negativos, que seriam os casos em que um
passo é completamente ignorado pelo algoritmo.

Os índices obtidos com os métodos utilizados neste trabalho são mostrados na
Tabela 1.

Tabela 1: Precisão, Recall e F1-score obtidos para cada um dos algoritmos

Método P R F1

(Lee et al., 2011) 1.00 1.00 1.00
Pós-processamento - Dados não filtrados 0.71 1.00 0.83
Pós-processamento - Dados filtrados 0.93 1.00 0.96

Tempo real 0.38 1.00 0.55

Fonte: O Autor (2020)

No caso do pós-processamento com dados filtrados, a acurácia foi similar a outros
métodos disponíveis na literatura, que reportam acurácia próxima a 100% e F1 > 0.9.
Já em relação aos estados estimados em tempo real, o desempenho foi inferior a outros
métodos da literatura. Por exemplo (Pérez-Ibarra; Siqueira; Krebs, 2020) obtiveram um
índice F1 de 0.99 para indivíduos sem debilidade na marcha, enquanto que aqui foi de 0.55.
Já (MANNINI; GENOVESE; SABATINI, 2013) obtiveram taxas de inserção menores
que 0.50% para todos os quatro eventos, enquanto que aqui a taxa de inserção foi muito
elevada (superior a 100%). Por outro lado, a taxa de eliminação (quando um ciclo de
marcha é ignorado) observada aqui foi igual à de (MANNINI; GENOVESE; SABATINI,
2013), ou seja 0%, pois nenhum ciclo de marcha foi ignorado. Isso corresponde a R = 1,
pois não há falsos negativos.

61

As medianas da duração dos passos e das fases Stance obtidas com os algoritmos
são mostradas na Tabela 2. Novamente a performance do algoritmo de Viterbi convencional
com os dados filtrados foi muito similar ao algoritmo de Lee et al.. Isso também fica claro
na Figura 17, em que a distribuição das durações ficou próxima ao algoritmo de Lee et al..

Observa-se que as inserções configuraram outliers visto que elas são bastante
discrepantes em relação aos outros passos. Por outro lado o algoritmo em tempo real -
Viterbi em uma janela deslizante de tamanho fixo - foi bastante afetado pelas inserções, que
levaram a mediana das durações a valores reduzidos, visto que as durações das inserções
são curtas.

Além disso, dada a alta taxa de inserções, elas não configuraram outliers pois elas
foram a maioria dos passos detectados. Isso leva à conclusão de que é necessário adicionar
uma estratégia que impeça a detecção de ciclos de marcha com duração muito curta. Essa
estratégia foi adotada em (MANNINI; SABATINI, 2011), em que ciclos completos com
duração menor que 0.35 s eram descartados.

Tabela 2: Medianas da duração dos passos e da fase Stance obtidas para cada um dos
algoritmos

Método Duração dos passos [s]
(Mediana)

Duração das fases Stance [s]
(Mediana)

(Lee et al., 2011) 1.15 0.69
Pós-processamento - Dados filtrados 1.15 0.78

Tempo real 0.45 0.19

Fonte: O Autor (2020)

63

5 DISCUSSÃO GERAL E CONCLUSÕES

Este trabalho está inserido num contexto em que a detecção acurada de fases do
caminhar é relevante para tratamentos de reabilitação motora como estimulação elétrica
funcional, controle de sistemas robóticos de suporte à marcha ou reabilitação. Nesses
casos são necessários algoritmos em tempo real com baixo atraso. Por outro lado, o
acompanhamento a longo prazo de pacientes em tratamento de reabilitação motora é um
exemplo de aplicação que permite o pós-processamento. Algumas métricas como duração
das fases da marcha podem dar indícios sobre os graus de debilidade e de recuperação em
um tratamento. Em todos as aplicações é muito vantajosa a utilização de smartphones,
pois grande parte da população conta com tal aparelho. Dessa forma, este trabalho sugere
a disponibilização desses algoritmos em aplicativos de celular.

Uma desvantagem do método utilizado aqui no modelo das quatro fases foi a
necessidade de acoplamento do aparelho celular sobre o peito do pé, o que dificultaria
uma aplicação real. Nesse sentido, faz-se necessário investigar o posicionamento do celular
em outros locais, como a coxa, até mesmo dentro de um bolso, sem que ele esteja afixado
junto ao corpo. Um método acurado de detecção do caminhar humano em tempo real
utilizando um aparelho celular no bolso representaria um grande avanço nesta área.

Pode-se considerar que os objetivos principais deste projeto foram atingidos com
êxito. Foram derivadas duas matrizes de transição do caminhar humano, uma para cada
modelo.

Em relação ao modelo das articulações divididas em setores, derivou-se uma
MPT que foi útil para o projeto de um controlador Markoviano para um exoesqueleto.
Esses estados poderiam ser facilmente detectados em tempo real, uma vez que bastaria
simplesmente identificar em qual setor cada articulação está. A combinação entre os setores
da articulação corresponde diretamente ao estado. Este método, no entanto, não leva em
conta uma sequência de observações para determinar o estado em determinado instante
de tempo, o que pode produzir sequências improváveis caso haja ruído nos dados.

Para o modelo das quatro fases da marcha com sentido físico, foi possível estimar os
estados do caminhar humano tanto em pós-processamento quanto em tempo real. Ademais,
os estados com sentido físico que foram escolhidos com base na literatura são de simples
identificação através um conjunto de regras para a fase de treinamento, o que possibilitou
o avanço do trabalho mesmo sem acesso aos equipamentos do laboratório no período de
isolamento social devido à pandemia de SARS-CoV-2. Isso sugere que é possível treinar
modelos relativamente satisfatórios com equipamentos disponíveis para grande parte da
população e em ambientes diversos. Faz-se necessário, contudo, melhor investigar essa

64

hipótese.

A seguir são apresentadas algumas limitações dos métodos empregados bem como
dos resultados obtidos. Nos experimentos não foram utilizados dados de indivíduos com
marcha debilitada, cujos padrões de caminhada podem variar significativamente em
relação ao padrão da marcha em indivíduos sem debilidade no caminhar. Provavelmente os
resultados seriam degradados. Ademais o conjunto de dados foi pequeno nos experimentos
relativos ao modelo das quatro fases, o que implica numa baixa significância estatística.

Além disso, vale ressaltar que o processamento em tempo real se deu em um laptop
com um processador Intel Core i5 de oitava geração. Caso o processamento se desse
no próprio aparelho celular, possivelmente os algoritmos consumiriam grande parte dos
recursos do dispositivo, ou seriam até inviáveis dependendo do aparelho. Nesse sentido, a
elaboração de algoritmos poucos custosos é essencial.

Uma vantagem da abordagem aqui utilizada é que o atraso dos estados estimados
em tempo real pelo algoritmo de Viterbi em uma janela limitada de tamanho fixo é
aproximadamente constante em relação aos estados estimados em pós-processamento pelo
algoritmo de Viterbi tradicional, por conta do tamanho fixo do janelamento. Entretanto,
não existe garantia de otimalidade em relação ao critério da Equação 2.8. Já o Algoritmo
de Viterbi On-line garantiria tal condição, porém com a desvantagem de o atraso ser
incerto, variável e possivelmente ilimitado. Para contornar isso seria também necessário
limitar o tamanho dos caminhos de estados ocultos, o que implicaria na perda da garantia
de otimalidade da Equação 2.8.

5.1 Trabalhos futuros

Em primeiro lugar os resultados em pós-processamento levantam a pergunta natural
de qual é a quantidade de dados mínima necessária para realizar o treinamento e produzir
um modelo satisfatório. Além disso encontrar formas de facilitar o posicionamento dos
sensores é uma área importante a ser estudada.

Algumas ideias para melhoria dos resultados e investigação de outras técnicas
decorrem diretamente da literatura referente à modelagem do caminhar humano por
modelos de Markov.

Primeiramente, deve-se ressaltar que é recomendada a utilização de métodos mais
precisos na fase de etiquetamento dos estados de treinamento, como os que são considerados
padrão ouro: sensores de pressão na sola do calçado e sistemas optoeletrônicos. Isso
permitiria uma melhor validação quantitativa do modelo. Outro possível aprimoramento
dos resultados poderia ser obtido com a aplicação do Algoritmo de Viterbi On-line para
a estimação dos estados em tempo real, ao invés do método utilizado que consistiu em
aplicar o Algoritmo de Viterbi convencional em uma janela deslizante de tamanho fixo.

65

Além disso, modelos mais complexos do caminhar humano podem ser testados,
como por exemplo os modelos multivariados, que são um caso mais geral do que o modelo
gaussiano adotado neste trabalho. Não obstante, foi adotada uma única saída como vetor
de observação. É de se esperar que um vetor contendo mais saídas, combinando dados
de mais IMUs ou IMUs combinadas com sensores de pressão produza uma caracterização
mais completa do caminhar humano.

67

REFERÊNCIAS

BISHOP, C. M. Pattern Recognition and Machine Learning (Information
Science and Statistics). Berlin, Heidelberg: Springer-Verlag, 2006. ISBN 0387310738.

CATALFAMO, P.; GHOUSSAYNI, S.; EWINS, D. Gait event detection on level ground
and incline walking using a rate gyroscope. Sensors, v. 10(6):5683-5702, 2010.

INOUE, R. S. Controle Robusto Descentralizado de Movimentos Coordenados
de Robôs Heterogêneos. 2012. Tese (Doutorado) — Escola de Engenharia de São
Carlos, Universidade de São Paulo, 2012.

JILKOV, V.; LI, X. Online Bayesian estimation of transition probabilities for Markovian
jump systems. IEEE Transactions on Signal Processing, v. 52, n. 6, p. 1620–1630,
June 2004. ISSN 1053-587X.

LEE, J. K.; PARK, E. J. Quasi real-time gait event detection using shank-attached
gyroscopes. Medical Biological Engineering Computing volume, v. 49, p. 707 –
712, 2011.

MANNINI, A.; GENOVESE, V.; SABATINI, A. Online decoding of hidden markov
models for gait event detection using foot-mounted gyroscopes. Biomedical and health
informatics, IEEE journal of, PP, p. (online ahead of print), 12 2013.

MANNINI, A.; SABATINI, A. M. A hidden markov model-based technique for gait
segmentation using a foot-mounted gyroscope. Annual International Conference of
the IEEE EMBS, Boston, Massachusetts USA, v. 33, p. 4369–4373, 2011.

MARIANI, B. et al. Quantitative estimation of foot-flat and stance phase of gait using
foot-worn inertial sensors. Gait Posture, v. 37, n. 2, p. 229 – 234, 2013. ISSN 0966-6362.
Disponível em: <http://www.sciencedirect.com/science/article/pii/S0966636212002822>.

MITSCHKA, C. M. et al. Recursive linear quadratic regulator subject to markovian
jump linear systems in a robotic application system for rehabilitation. XXI Congresso
Brasileiro de Automática - CBA2016, p. 840–844, Outubro 2016. Disponível em:
<http://www.swge.inf.br/proceedings/paper/?P=CBA2016-0254>.

MURPHY, K. [S.l.], 1998. Disponível em: <https://www.cs.ubc.ca/~murphyk/Software/
HMM/hmm.html>.

NIELSEN, S. F. Continuous-time homogeneous Markov chains: Stochastic
processes. [S.l.]: University of Copenhagen, Department of Mathematical Sciences, 2009.
Disponível em <http://web.math.ku.dk/~susanne/kursusstokproc/ContinuousTime.pdf>.
Acesso em: 20 dez. 2019.

ORGUNER, U.; DEMIREKLER, M. Maximum Likelihood Estimation of Transition
Probabilities of Jump Markov Linear Systems. IEEE Transactions on Signal
Processing, v. 56, n. 10, p. 5093–5108, Oct 2008. ISSN 1053-587X.

http://www.sciencedirect.com/science/article/pii/S0966636212002822
http://www.swge.inf.br/proceedings/paper/?P=CBA2016-0254
https://www.cs.ubc.ca/~murphyk/Software/HMM/hmm.html
https://www.cs.ubc.ca/~murphyk/Software/HMM/hmm.html
http://web.math.ku.dk/~susanne/kursusstokproc/ContinuousTime.pdf

68

PARDOUX Étienne. Processus de Markov et applications: Algorithmes, réseaux,
génome et finance. 2006. Disponível em <http://paestel.fr/sites/default/files/Mat_les_
ressources/M1/Cours/E.%20Pardoux_493.pdf>. Acesso em: 20 dez. 2019.

PFEAU, T.; WELLE, R. Comparison of a standalone consumer grade smartphone with
a specialist inertial measurement unit for quantication of movement symmetry in the
trotting horse. Equine Veterinary Journal, v. 49(1):124-129, 2015. ISSN 0425-1644.

Pérez-Ibarra, J. C.; Siqueira, A. A. G.; Krebs, H. I. Identification of gait events in healthy
and parkinson’s disease subjects using inertial sensors: A supervised learning approach.
IEEE Sensors Journal, p. 1–1, 2020.

Pérez-Ibarra, J. C. et al. Real-time identification of impaired gait phases using a
single foot-mounted inertial sensor: Review and feasibility study. In: 2018 7th IEEE
International Conference on Biomedical Robotics and Biomechatronics
(Biorob). [S.l.: s.n.], 2018. p. 1157–1162.

Rabiner, L. R. A tutorial on hidden markov models and selected applications in speech
recognition. Proceedings of the IEEE, v. 77, n. 2, p. 257–286, 1989.

RUETERBORIES, J. et al. Methods for gait event detection and analysis in ambulatory
systems. Medical Engineering Physics, v. 32, p. 545–552, 2010.

SABATINI, A. M. Kalman-filter-based orientation determination using inertial/magnetic
sensors: Observability analysis and performance evaluation. Sensors (Basel,
Switzerland), v. 11, p. 9182–206, 12 2011.

SILVA, A. B. N. Um modelo de unidade de medida inercial utilizando três
acelerômetros triaxiais. Agosto 2013. Dissertação (Mestrado) — Universidade Federal
do Rio Grande do Norte, Agosto 2013.

VU, H. T. T. et al. A review of gait phase detection algorithms for lower limb prostheses.
Sensors, v. 20(14):3972, 2020.

WANG, G. ML Estimation of Transition Probabilities in Jump Markov Systems via
Convex Optimization. IEEE Transactions on Aerospace and Electronic Systems,
v. 46, n. 3, p. 1492–1502, July 2010. ISSN 0018-9251.

XSENS Technologies B.V., MTw User Manual. Enschede, The Netherlands, 2013.

Zhi, X.; Xu, Q.; Schwertfeger, S. Evaluation of Smartphone IMUs for Small Mobile Search
and Rescue Robots. arXiv e-prints, p. arXiv:1912.01221, dez. 2019.

ŠRáMEK, R. The on-line Viterbi algorithm. 2007. Dissertação (Mestrado) —
Department of Computer Science Faculty of Mathematics, Physics and Informatics
Comenius University Bratislava, 2007. Disponível em: <http://www.compbio.fmph.uniba.
sk/papers/07sramekth.pdf>.

ŠRáMEK, R.; BREJOVá, B.; VINAř, T. On-Line Viterbi Algorithm for Analysis
of Long Biological Sequences. Berlin, Heidelberg: Giancarlo R., Hannenhalli S.
(eds) Algorithms in Bioinformatics. WABI 2007. Lecture Notes in Computer Science,
Springer-Verlag, 2007. v. 4645. ISBN 978-3-540-74125-1.

http://paestel.fr/sites/default/files/Mat_les_ressources/M1/Cours/E.%20Pardoux_493.pdf
http://paestel.fr/sites/default/files/Mat_les_ressources/M1/Cours/E.%20Pardoux_493.pdf
http://www.compbio.fmph.uniba.sk/papers/07sramekth.pdf
http://www.compbio.fmph.uniba.sk/papers/07sramekth.pdf

Apêndices

71

APÊNDICE A – CÓDIGOS EM MATLAB

Códigos para a simulação de uma cadeia de Markov simples.

1 %Cadeia de Markov − Exemplo de Sistema simples

2 states = [];

3 states(1) = 1;

4 for i = 2 :21

5 if states(i−1) == 1

6 states(i) = 1

7 if rand > 0.7

8 states(i) = 2;

9 else

10 end

11 else

12 states(i) = 1;

13 end

14 i = i + 1;

15 end

16 plot((0:1:20),states, 'x', 'LineWidth',30)

17 axis([0 20 0.5 2.5])

18 yticks([1 2]);

19 xticks([0:1:20]);

20 ylabel('estados')

21 xlabel('instantes de tempo')

22

23 n1 = 0; n2 = 0;

24 P = zeros(2,2);

25 n1 = 1;

26

27 %Conta o numero de vezes que esteve em cada estado

28 for i = 2 :21

29 if states(i) == 1

30 n1 = n1 + 1;

31 if states(i−1) == 1

32 P(1,1) = P(1,1) + 1;

33 else

34 P(2,1) = P(2,1) + 1;

35 end

72

36 else

37 n2 = n2 + 1;

38 if states(i−1) == 1

39 P(1,2) = P(1,2) + 1;

40 else

41 P(2,2) = P(2,2) + 1;

42 end

43 end

44 end

45 if states(end) == 1

46 n1 = n1 − 1;

47 else

48 n2 = n2 − 1;

49 end

50 P(1,:) = P(1,:)/n1;

51 P(2,:) = P(2,:)/n2;

Código para treinamento do Modelo Oculto de Markov.

1 clear all

2 close all

3

4 load('plano_05_05_2020_pe_direito.mat')

5 data = plano_05_05_2020_pe_direito;

6 load('plano_05_05_2020_pe_direito_data3.mat')

7

8 data2 = data1588619683(:,5)*360/(2*pi);

9 t2 = data1588619683(:, 1);

10 t2 = t2− t2(1);

11 t2 =t2/1000 ;

12 t = data(:, 1);

13 t = t− t(1);

14 t =t/1000 ;

15 n = length(t);

16 avgT = t(n)/(n−1);
17 avgF = 1/avgT %Average frequency in Hz

18 angular_velocity = data(:,5)*360/(2*pi);

19 [b,a] = butter(2,15/(avgF/2));

20 y = filter(b,a,angular_velocity);

21 data2filtered = filter(b,a,data2);

22

73

23 angular_velocity_filtered =y;

24 difference = abs(angular_velocity − angular_velocity_filtered);

25 zci = @(v) find(v(:).*circshift(v(:), [−1 0]) <= 0);

26 % Returns Zero−Crossing Indices Of Argument Vector

27 zx = zci(y);

28 %acc = abs([diff(angular_velocity); 0])

29 %angular_position = cumtrapz(t, angular_velocity);

30

31 angular_position_filtered = cumtrapz(t, angular_velocity_filtered);

32 angular_acceleration = [diff([0; angular_velocity_filtered])/avgT];

33 lambdaFF = −50; %FF threshold in /s

34 lambdaHO = −50; %HO threshold in /s

35 %To find zeros

36 %angular_acceleration this > 2000; angular_accelerationnext <−1400
37 HS = find(difference > 5);

38

39 FFindicesboolean = zeros(1,n);

40 HOindicesboolean = zeros(1,n);

41 TOindicesboolean = zeros(1,n);

42 HSindicesboolean = zeros(1,n);

43 j = 1;

44 for i=1 :length(zx)

45 tzeros(i) = t(zx(i));

46 yzeros(i) = y(zx(i));

47 %tzeros2(i) = t(zx(i)) + avgT;

48 %yzeros2(i) = y(zx(i) + 1);

49 if i < length(zx)

50 if (angular_acceleration(zx(i)) > 2000 &&

51 angular_acceleration(zx(i +1)) <−1400)
52 tzerosTO(j) = t(zx(i));

53 yzerosTO(j) = y(zx(i));

54 indicesTO(j) = zx(i);

55 TOindicesboolean(1,zx(i)) = 1;

56 tzerosnext(j) = t(zx(i+1));

57 yzerosnext(j) = y(zx(i+1));

58 indicesnext(j) = zx(i+1);

59 j = j +1;

60 end

61 end

62 end

63

64 j = 1;

74

65 k = 1;

66 for i=2:length(angular_velocity_filtered)

67 if (angular_velocity_filtered(i) >= lambdaFF &&

68 angular_velocity_filtered(i−1) < lambdaFF &&

69 angular_position_filtered(i)> −15)
70 FFindices(j) = i;

71 FFindicesboolean(1,i) = 1;

72 yFF(j) = angular_velocity_filtered(i);

73 tFF(j) = t(i);

74 j = j +1;

75 end

76 if (angular_velocity_filtered(i) <= lambdaFF &&

77 angular_velocity_filtered(i−1) > lambdaFF &&

78 angular_position_filtered(i) < 0)

79 HOindices(k) = i;

80 HOindicesboolean(1,i) = 1;

81 yHO(j) = angular_velocity_filtered(i);

82 tHO(j) = t(i);

83 k = k+1;

84 end

85 end

86 HSindicesboolean = zeros(1,n);

87

88 FFindices = FFindices(1,5:end);

89 yFF = yFF(1,5:end);

90 tFF = tFF(1,5:end);

91 for i=1:length(FFindices)

92 [m, HSindices(i)] = max(difference(indicesnext(i):FFindices(i)));

93 HSindices(i) = HSindices(i) + indicesnext(i) − 1;

94 yHS(i) = angular_velocity_filtered(HSindices(i));

95 tHS(i) = t(HSindices(i));

96 HSindicesboolean(HSindices(i)) = 1;

97 end

98 states = [];

99 state = 1;

100 for i=1 :length(angular_velocity_filtered)

101 if HSindicesboolean(i)

102 state = 1;

103 elseif FFindicesboolean(i)

104 state = 2;

105 elseif HOindicesboolean(i)

106 state = 3;

75

107 elseif TOindicesboolean(i)

108 state = 4;

109 end

110 states(i) = state;

111 end

112

113 % scatter(tzerosTO, yzerosTO);

114 % scatter(tzerosnext, yzerosnext);

115 % scatter(tFF, yFF);

116 % scatter(tHS, yHS);

117 % % scatter(tHO, yHO);

118 % % %scatter(tzeros2, yzeros2)

119 % plot(t, angular_velocity)

120 % % %plot(t, angular_velocity)

121 % % plot(t, difference, 'r')

122 % % plot(t, angular_acceleration, 'g')

123

124 % % %plot(t, acc)

125

126 % plot(t,angular_position_filtered)

127 % plot(t,100*states)

128

129 %plot(states)

130

131 training_states = states(1501:2589);

132 training_cycles = 6;

133 testing_cycles = 3;

134 testing_states = states(2590:3155);

135

136 training_emissions = angular_velocity(1501:2589);

137 testing_emissions = angular_velocity(2590:3155);

138

139 emissions_1 = [];

140 emissions_2 = [];

141 emissions_3 = [];

142 emissions_4 = [];

143

144 for i=1 :length(training_states)

145 if training_states(i) == 1

146 emissions_1 = [emissions_1 training_emissions(i)];

147 elseif training_states(i) == 2

148 emissions_2 = [emissions_2 training_emissions(i)];

76

149 elseif training_states(i) == 3

150 emissions_3 = [emissions_3 training_emissions(i)];

151 elseif training_states(i) == 4

152 emissions_4= [emissions_4 training_emissions(i)];

153 end

154

155 end

156 emissions_stds= [std(emissions_1);

157 std(emissions_2);

158 std(emissions_3);

159 std(emissions_4)];

160

161 emissions_avgs = [mean(emissions_1);

162 mean(emissions_2);

163 mean(emissions_3);

164 mean(emissions_4)];

165 a12 = training_cycles/length(emissions_1);

166 a23 = training_cycles/length(emissions_2);

167 a34 = training_cycles/length(emissions_3);

168 a41 = training_cycles/length(emissions_4);

169 A = [(1−a12) a12 0 0;

170 0 (1−a23) a23 0;

171 0 0 (1−a34) a34;

172 a41 0 0 (1−a41)];
173 addpath(genpath('/home/francisco/Documents/MATLAB/TCC/HMMlibrary/HMM/HMMall'))

174 Sigma = zeros(1,1,4);

175 for i=1:4

176 Sigma(1,1,i) = emissions_stds(i);

177 end

178 B = mixgauss_prob(testing_emissions',emissions_avgs', Sigma);

179 prior = [0.25; 0.25; 0.25; 0.25];

180 [path] = viterbi_path(prior, A, B);

181 totalstates = [zeros(1,1500), training_states, path];

182 title('Estados de Markov ')

183 xlabel('Tempo (s)')

184 hold

185 figure(1)

186 hold on

187 plot(angular_velocity_filtered)

188 plot(100*totalstates, 'r', 'linewidth',2, 'DisplayName',

189 'Estados estimados com modelo de Markov')

190 plot(100*states, 'g','linewidth',4,'DisplayName',

77

191 'Estados estimados com modelo de Markov')

192 % scatter(tFF, yFF);

193 % scatter(tHS, yHS);

194 % scatter(tHO, yHO);

195 % legend show

196 % hold off

197 B2 = mixgauss_prob(data2',emissions_avgs', Sigma);

198 [path2] = viterbi_path(prior, A, B2);

199 figure(2)

200 B2filtered = mixgauss_prob(data2filtered',emissions_avgs', Sigma);

201 [path2filtered] = viterbi_path(prior, A,B2filtered);

202 plot(t2, 100*path2)

203 plot(t2, data2filtered)

79

APÊNDICE B – CÓDIGO EM PYTHON

Código utilizado para a recepção, gravação e processamento dos dados do celular
em tempo real.

1 import socket, traceback

2 import string

3 import time

4 import datetime as dt

5 import keyboard

6 import matplotlib.pyplot as plt

7

8 import datetime as dt

9 import matplotlib.animation as animation

10 import threading

11 import os

12 import numpy as np

13

14 from hmmlearn import hmm

15 from scipy import signal

16

17 data = (0, 0, 0, 0, 0 ,0 ,0)

18 delay = 0

19 loop_flag = True

20 def stop_loop():

21 global loop_flag

22 keyboard.wait(" ")

23 loop_flag = False

24 print("endloop")

25

26 def get_delay():

27 global data

28 while True: # making a loop

29 try: # used try so that if user pressed other than the given key error will not be shown

30 if keyboard.is_pressed(' '): # if key 'space' is pressed

31 #print('You Pressed A Key!')

32 delay = time.time()

33 print(delay)

34 while data[5] > −0.04:

80

35 pass

36 delay = time.time() − delay

37 print(delay)

38 break # finishing the loop

39 except:

40 break

41 delay = time.time()

42

43

44 def sensor_function():

45

46 fs = 165.9264858735708

47 fc = 15 # Cut−off frequency of the filter

48 w = fc / (fs / 2) # Normalize the frequency

49 b, a = signal.butter(2, w, 'low')

50

51 model = hmm.GaussianHMM(n_components=4,

52 covariance_type="spherical", init_params="cm",

53 params="cmt",

54 algorithm="viterbi")

55

56 model.startprob_ = np.array([0.25, 0.25, 0.25, 0.25])

57 model.transmat_ = np.array([[0.948275862068966, 0.0517241379310345, 0, 0],

58 [0, 0.984732824427481, 0.0152671755725191, 0],

59 [0, 0, 0.969543147208122, 0.0304568527918782],

60 [0.0156657963446475, 0, 0, 0.984334203655353]])

61

62 model.means_ = np.array([[−199.731014627276],
63 [−18.5162706325788],
64 [−298.191241225539],
65 [232.572872839484]])

66

67 model.covars_ = np.array([113.830919434039,

68 14.8864353839467,

69 221.608481988583,

70 163.783635242862])

71

72 global loop_flag

73 host = ''

74 port = 50000

75

76 s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

81

77 s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)

78 s.setsockopt(socket.SOL_SOCKET, socket.SO_BROADCAST, 1)

79 s.bind((host, port))

80

81 # used for debugging

82 saved_data = []

83 angular_velocity = []

84 print("Success binding")

85 global data

86 last_output_state = 0

87

88 try:

89

90 # Set up plot to call animate() function periodically

91 while loop_flag:

92 #print(loop_flag)

93 #start = time.time()

94 message, address = s.recvfrom(8192)

95 m = message.decode("utf−8")
96 #elapsed_time_fl = (time.time() − start)

97 #freq = 1 / elapsed_time_fl

98

99 data = (m.split('<TimeStamp>')[1].split('</TimeStamp')[0],

100 m.split('<Accelerometer1>')[1].split('</Accelerometer1>')[0],

101 m.split('<Accelerometer2>')[1].split('</Accelerometer2>')[0],

102 m.split('<Accelerometer3>')[1].split('</Accelerometer3>')[0],

103 m.split('<Gyroscope1>')[1].split('</Gyroscope1>')[0],

104 m.split('<Gyroscope2>')[1].split('</Gyroscope2>')[0],

105 m.split('<Gyroscope3>')[1].split('</Gyroscope3>')[0]

106)

107 # print(data)

108 angular_velocity.append([float(data[4])*360/(2*np.pi)])

109 saved_data.append(data)

110 start_prob = np.array([0.0, 0.0, 0.0, 0.0])

111 start_prob[last_output_state] = 1.0

112 model.startprob_ = start_prob

113 if len(angular_velocity) >= 100:

114 output_signal = signal.filtfilt(b, a, angular_velocity[−15:],axis=0)
115 else:

116 output_signal = angular_velocity[−15:]
117 [p, output_data] = model.decode(output_signal)

118 if len(output_data) >=2:

82

119 last_output_state = output_data[1]

120 print(last_output_state)

121

122 print("Finished acquisition")

123 print("Saving data")

124

125 file_path = '<YOUR_FILE_PATH>'

126 with open(file_path, 'w') as fp:

127 fp.write('\n'.join('{} {} {} {} {} {} {}'.format(x[0],

128 x[1], x[2], x[3], x[4], x[5], x[6]) for x in saved_data))

129 print("Finished saving sata")

130 except (KeyboardInterrupt, SystemExit):

131 print("end")

132 pass

133

134

135

136

137

138 # This function is called periodically from FuncAnimation

139 def animate(i, xs, ys1, ys2, ys3):

140 aux1 = round(float(data[4]), 2)

141 aux2 = round(float(data[5]), 2)

142 aux3 = round(float(data[6]), 2)

143

144 # Add x and y to lists

145 xs.append(dt.datetime.now().strftime('%H:%M:%S.%f'))

146 ys1.append(aux1)

147 ys2.append(aux2)

148 ys3.append(aux3)

149 if keyboard.is_pressed('p'):

150 while True:

151 pass

152

153 # Limit x and y lists to 20 items

154 xs = xs[−20:]
155 ys1 = ys1[−20:]
156 ys2 = ys2[−20:]
157 ys3 = ys3[−20:]
158

159 # Draw x and y lists

160 ax.clear()

83

161 ax.plot(xs, ys1, 'r') #Lateral (Direita +)

162 ax.plot(xs, ys2, 'b') #Frente−tr s (Frente +)

163 ax.plot(xs, ys3, 'g') #Vertical (Cima +)

164

165

166

167 # Format plot

168 plt.xticks(rotation=45, ha='right')

169 plt.subplots_adjust(bottom=0.30)

170 plt.title('Angular velocity over Time')

171 plt.ylabel('Angular velocity (rad/s)')

172

173

174

175 if __name__ == "__main__":

176

177 x = threading.Thread(target=sensor_function, args=())

178 x.daemon = True

179 x.start()

180 end_loop_thread = threading.Thread(target=stop_loop, args=())

181 end_loop_thread.daemon = True

182 end_loop_thread.start()

183

184 fig = plt.figure()

185 ax = fig.add_subplot(1, 1, 1)

186 # Create figure for plotting

187

188 xs = []

189 ys1 = []

190 ys2 = []

191 ys3 = []

192 print("Creating animation")

193 ani = animation.FuncAnimation(fig, animate, fargs=(xs,ys1, ys2, ys3), interval=100)

194 plt.show()

	Folha de rosto
	Dedicatória
	Agradecimentos
	Epígrafe
	Resumo
	Abstract
	Lista de figuras
	Lista de tabelas
	Lista de abreviaturas e siglas
	Lista de símbolos
	Sumário
	Introdução
	Métodos
	Métodos de segmentação do caminhar humano
	Processos de Markov
	Exemplo simples de um Processo de Markov Homogêneo

	Modelo Oculto de Markov
	Exemplo simples de um Modelo Oculto de Markov
	Problemas básicos relacionados a Modelos Ocultos de Markov
	Solução ao Problema 2
	Algoritmo de Viterbi de curta duração (On-line Viterbi)
	Solução ao Problema 3

	Modelagem Markoviana do caminhar humano
	Articulações divididas em setores
	Quatro fases da marcha humana

	Experimentos
	Derivação de uma MPT com base no modelo das articulações divididas em setores
	Sensores utilizados
	Realização

	Treinamento do Modelo Oculto de Markov do tipo left-right com quatro fases
	Sensores utilizados
	Escolha das saídas de interesse
	Realização

	Resultados
	Articulações divididas em setores
	Modelo oculto de Markov do tipo left-right com quatro fases
	Performance e comparação com outros trabalhos da literatura

	Discussão Geral e Conclusões
	Trabalhos futuros

	Referências
	Apêndices
	Códigos em MATLAB
	Código em Python

