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RESUMO

GARCIA, F. A. Segmentagdao do caminhar humano via modelos de Markov.
2020. 83p. Monografia (Trabalho de Conclusao de Curso) - Escola de Engenharia de Sao
Carlos, Universidade de Sao Paulo, Sao Carlos, 2020.

A segmentacdao do caminhar humano pode auxiliar no acompanhamento de pacientes em
tratamentos de reabilitacao motora e é crucial para o controle de sistemas robdticos de
suporte a marcha ou de reabilitacao. Métodos ja existentes realizam a deteccao acurada
de fases do caminhar em individuos com padrao de marcha normal. Recentemente avancos
foram obtidos também em padroes de marcha alterados por alguma debilidade. Entretanto
grande parte das abordagens demanda equipamentos disponiveis apenas em laboratérios
especializados. Neste trabalho é realizada a segmentacao da marcha humana via modelos
de Markov utilizando sensores inerciais. Na segunda parte do trabalho sdo empregados
smartphones para o treinamento, em substituicao ao equipamento especializado. Dois
modelos foram implementados, o primeiro baseado em uma cadeia de Markov e o segundo
em um modelo oculto de Markov. Para o segundo as fases foram escolhidas de forma a
possuirem sentido fisico interpretavel e foram utilizados sensores inerciais existentes em
um smartphone. O treinamento foi realizado com dados de apenas um individuo por meio
de uma abordagem baseada em regras. Em seguida os estados do caminhar humano foram
decodificados pelo algoritmo de Viterbi, tanto em pds-processamento quanto em tempo real.
O método em tempo real consistiu em limitar o processamento a uma janela deslizante de
tamanho fixo. Por fim demonstrou-se uma aplicagdo que consiste em mensurar a duracao
dos passos e de fases. Obteve-se uma performance satisfatéria em pds-processamento (F-
score de 0.96), comparavel aos métodos reportados na literatura. Entretanto a performance
em tempo real (Fj-score de 0.55) foi inferior a outros trabalhos. Em especial constatou-se
uma taxa de insercoes elevada e um atraso inerente ao janelamento. Verificou-se que é
possivel realizar o treinamento com o emprego de um smartphone. Os resultados sugerem
que uma quantidade bastante limitada de dados pode ser suficiente para treinar um modelo
satisfatorio especifico para um individuo, porém tal hipdtese exige melhor investigacao em

trabalhos futuros.

Palavras-chave: Segmentacao do Caminhar Humano. Processos Estocéasticos. Modelos
de Markov. Unidades de Medidas Inerciais.






ABSTRACT

GARCIA, F. A. Markov models-based gait segmentation. 2020. 83p. Monografia
(Trabalho de Conclusao de Curso) - Escola de Engenharia de Sao Carlos, Universidade de
Sao Paulo, Sao Carlos, 2020.

Human gait segmentation may help monitor patients undergoing rehabilitation treatments
and is crucial for the control of robotic systems designed to support walking or rehabilitation.
Several approaches have been proposed, some of which accurately detect human gait phases
in real-time for healthy subjects. Recently a great performance was also obtained for
impaired gait. However, a large proportion of the existing methods require devices that are
only available in specialized laboratories. This work describes human gait segmentation via
Markov models using inertial sensors. In the second part smartphones were used to train
the model, in substitution to the specialized equipment. Two models were implemented.
The first one is based on a Markov chain, whereas the second is a hidden Markov model.
For the second one the phases were chosen to have physical meaning and the inertial
sensors from a smartphone were used to train the model. The training was done following
a rule-based approach with data collected from a single healthy subject. Afterwards the
gait phases were decoded using the Viterbi algorithm, both in post-processing and in
real-time. The real-time approach consisted in limiting the computation to a sliding
window with fixed length. Finally, an application of measuring the duration of the steps
and gait phases is demonstrated. The post-processing algorithm showed a performance
(F1-score of 0.96) comparable to other methods available in the literature. However, the
performance in real-time (Fj-score of 0.55) was inferior to other methods. In particular, it
produced a high insertion rate and a delay related to the windowing. The smartphone was
suitable for the training. The results suggest that a very limited dataset may be enough
to train a satisfactory model for a single subject, although this hypothesis requires further

investigation in future work.

Keywords: Gait Segmentation. Stochastic Processes. Markov Models. Inertial Measure-

ment Units.
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1 INTRODUCAO

A deteccao de fases da marcha humana é crucial para algumas aplicagoes, por
exemplo tratamentos de reabilitacdo motora como estimulacao elétrica funcional, controle
de sistemas robdticos de suporte a marcha ou reabilitacdo e acompanhamento de pacientes
em tratamentos de recuperacao motora. Muitas vezes, o sistema de deteccao deve operar
em tempo real com baixo atraso e elevada acuracia. Assim, o problema da segmentagao

do caminhar humano, possivelmente em tempo real, tem ampla relevancia.

Diversas soluc¢oes foram propostas. Em geral elas podem ser divididas em dois
grupos: solugoes baseadas em regras (analise no dominio temporal, thresholds, valores
de pico, cruzamento de zero, derivadas, médias, entre outras métricas), e solugoes basea-
das em aprendizado de maquina (Modelos Ocultos de Markov, redes neurais artificiais,

aprendizagem profunda, entre outras) (VU et al., 2020).

As técnicas baseadas em regras possuem a vantagem de serem de simples implemen-
tacdo e nao demandarem um treinamento prévio do modelo, como acontece com modelos
de aprendizagem de maquina. Além disso, o poder de processamento exigido para verificar
as regras ¢ baixo, o que possibilita a aplicagao em tempo real. Entretanto, a escolha das
regras exige um conhecimento sobre os padroes de caminhada e das caracteristicas dos

sinais medidos.

Por outro lado, métodos baseados em aprendizagem de maquina possuem a van-
tagem de nao exigirem um conhecimento especialista nos padroes dos sinais capturados.
Dentro desse contexto, na sequéncia de artigos de Mannini et al., os autores relatam
que o algoritmo desenvolvido utilizando Modelos Ocultos de Markov apresentou precisao
maior que Modelos de Misturas Gaussianas ( Gaussian Miztures), Maquinas de Vetores de
Suporte (Support Vector Machines) e Analise Discriminante Linear (Linear Discriminant

Analysis), e atraso menor que métodos baseados em regras.

A segmentacdo da marcha pode ocorrer de duas formas: em pds-processamento
ou em tempo real. A deteccdo em tempo real é crucial para por exemplo o controle
de exoesqueletos, porém apresenta alguns desafios. Os algoritmos devem ser causais e
nao podem ser computacionalmente custosos. Observa-se que grande parte dos métodos
existentes na literatura nao sdo viaveis em tempo real. Além disso, os desafios sdo ainda
maiores em individuos com alguma debilidade na marcha visto que a acuracia da maioria

dos métodos decai significativamente (Pérez-Ibarra et al., 2018).

Os sinais captados para se estimar os estados e eventos do caminhar podem provir
de diversos sensores, como sensores de pressao e botoes na sola do pé, plataformas com

sensores de forca, sistemas optoeletronicos, acelerémetros, giroscépios, Unidades de Medidas
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Inerciais, sensores de atividade elétrica nos musculos, entre outros (VU et al., 2020).

Os sensores de pressao, forga e sistemas optoeletronicos sdo considerados o padrao
ouro para a deteccao dos eventos da marcha humana, porém nao sao apropriados para
aplicagbes autonomas e que devam continuar funcionando por um longo prazo. Os sensores
inerciais tém demonstrado bons resultados para suprir essa dificuldade, pois tém uma
vida 1til longa e custo reduzido. Além disso, hoje eles estao presentes na grande parte dos
aparelhos celulares modernos (smartphones), sendo utilizados para por exemplo orientar a
tela corretamente quando o celular é rotacionado. Em geral, um sensor inercial é composto
por alguns acelerémetros e giroscopios dispostos em diferentes dire¢oes, que determinam

os graus de liberdade suportados.

O presente trabalho tem objetivo de detectar fases (ou estados) do caminhar
humano, tanto em pés-processamento quanto em tempo real com o emprego de sensores

inerciais. Optou-se por utilizar modelos de Markov, sendo um deles um Modelo Oculto de
Markov.

Para isso, primeiramente o caminhar foi analisado em diferentes cenarios reais, como
em rampas ou escadas, o que foi de grande valia para o projeto 2012/14074 — 3 da FAPESP.
Nele, foi desenvolvido um controlador Markoviano para o exoesqueleto Exo-Kanguera,
utilizado em tratamentos de reabilitagdo motora. Um elemento crucial de tal controlador é
a Matriz de Probabilidades de Transi¢ao (MPT), que, no caso acima, refere-se ao caminhar

humano.

Essa matriz fundamentalmente descreve as probabilidades dos possiveis estados
futuros do caminhar com base no estado atual, gracas ao conhecimento de dados prévios.
Esses dados foram coletados neste trabalho e uma MPT do caminhar humano foi derivada
com base no modelo do exoesqueleto. No projeto citado, o modelo Markoviano da marcha
humana é baseado em divisdes em setores das articulacoes. Os estados desse modelo
nao possuem sentido fisico a priori, sendo apenas uma subdivisao matematica e nao sao

intuitivamente interpretaveis.

Em seguida, um segundo modelo foi derivado, baseado em Modelos Ocultos de
Markov. Os estados foram escolhidos de forma a terem sentido fisico interpretavel. Apés
a fase de treinamento, o modelo foi utilizado para decodificar fases da marcha tanto em
pos-processamento quanto em tempo real. Em pods-processamento foi utilizado o algoritmo
de Viterbi convencional, e em tempo real aplicou-se o algoritmo de Viterbi limitado a uma
janela deslizante de tamanho fixo. O desempenho em pds-processamento foi satisfatorio
e comparavel a outros métodos relatados na literatura. Entretanto, o desempenho em
tempo real foi inferior a outros trabalhos ja existentes. Em particular, constatou-se uma
alta taxa de insercao de ciclos completos da marcha dentro de um ciclo real. As principais

publicagdes que servem de base para a derivagao deste segundo modelo sao (MANNINI;
SABATINI, 2011) e (MANNINI; GENOVESE; SABATINI, 2013).
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As principais contribuigoes deste trabalho sao a propria implementacao dos métodos
de segmentacao da marcha bem como as matrizes obtidas e a utilizacao de um smartphone
para a captura dos dados. Além disso, os resultados obtidos em pds-processamento sugerem
a hipdétese de que um pequeno conjunto de dados pode ser suficiente para treinar um
modelo da marcha satisfatério especifico para um tnico individuo. Contudo, é necessaria

uma investigacao maior para elucidar essa hipétese.
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2 METODOS

2.1 Métodos de segmentacao do caminhar humano

O caminhar humano pode ser segmentado em diferentes niveis de granularidade,
variando de dois estados até oito estados. Os métodos considerados em (VU et al., 2020)
apresentaram acurdcia de 100% quando a marcha foi segmentada em apenas duas fases.

Conforme o niimero de subdivisoes aumenta, a acuracia dos métodos diminui.

Diversos algoritmos existem para identificar eventos e fases da marcha humana.
Pode-se dividi-los em dois grupos. O primeiro grupo corresponde aos algoritmos baseados
em regras que tentam identificar caracteristicas especificas das formas de onda de grandezas
medidas durante o caminhar, bem como valores dessas grandezas durante as transicoes de

fases.

Por exemplo, (CATALFAMO; GHOUSSAYNI; EWINS, 2010) propuseram um
método baseado regras envolvendo minimos e cruzamentos por zero do sinal de um
giroscoOpio posicionado na canela para detectar dois eventos: contato inicial do pé com o
chao e o momento em que o pé perde o contado com o chao. Foram considerados sete
individuos com padrao de marcha normal em terrenos diversos. Nesse caso a taxa de
detecgao foi superior a 98%. Vale ressaltar que esse algoritmo é vidvel para ser aplicado
em tempo real. A média do valor absoluto do atraso ou adiantamento para o segundo

evento foi menor que 75 ms.

Ja no trabalho de (MARIANT et al., 2013) diversas regras foram avaliadas com o
objetivo de segmentar a marcha em quatro fases. Utilizaram-se sensores inerciais posicio-
nados sobre o pé, e os algoritmos foram testados em individuos com ou sem debilidades
na marcha. As melhores regras obtidas para cada um dos quatro eventos que indicam as

transicoes entre as fases tiveram a média do erro absoluto do atraso menor que 42 ms.

(LEE; PARK, 2011) desenvolveram um algoritmo para detectar trés eventos: Initial
Contact (1C), Mid-Swing (MS) e End-Contact (EC) utilizando a velocidade angular na
direcdo médio-lateral de um giroscopio posicionado na canela. Os eventos IC e EC sao
equivalentes aos eventos Heel-Strike (HS) e Toe-Off (TO) apresentados na segao 2.4.2.
Esse método ¢é baseado na sequéncia de dois picos negativos seguidos de um pico negativo
do sinal. Ele também é aplicavel ao sinal da velocidade angular na direcao médio-lateral de
um giroscopio posicionado sobre o pé, pois a curva também apresenta uma sequéncia de
dois picos negativos seguidos de um pico positivo. O algoritmo de Lee et al. foi utilizado

aqui como padrao de comparacao para os algoritmos implementados.

Existem também solugoes baseadas em aprendizado de méquina (Modelos Ocultos

de Markov, redes neurais artificiais, aprendizagem profunda, algoritmos genéticos, entre
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outros). A seguir sao apresentados alguns trabalhos relevantes nessa categoria em que a

marcha é segmentada em quatro fases.

(Pérez-Ibarra; Siqueira; Krebs, 2020) propuseram um método que utiliza classifica-
dores lineares para detectar as transicoes entre quatro fases da marcha em tempo real,
sendo uma generalizacao dos algoritmos baseados em regras. A performance foi comparavel
a outros métodos, com a vantagem de nao se requerer conhecimento especializado prévio

sobre as curvas e valores especificos nas transi¢oes dos estados.

(MANNINT; SABATINI, 2011) utilizaram um Modelo Oculto de Markov. A especi-
ficidade e sensibilidade relatada é superior a 95%, e a média do erro absoluto do atraso de
aproximadamente 35 ms, sendo que a segmentacao se deu em pos-processamento. Em um

trabalho posterior os autores adaptaram o método para ocorrer em tempo real (MANNINI;
GENOVESE; SABATINI, 2013).

O presente trabalho reproduz grande parte das ideias e métodos das duas publicac¢oes
de Mannini et al. citadas no paragrafo anterior. Entretanto, o método para a segmentacao
da marcha em tempo real difere um pouco, visto que aqui foi utilizado o algoritmo de
Viterbi convencional em uma janela deslizante de tamanho fixo. Além disso, tanto em
pés-processamento quanto em tempo real aqui nao foi considerada uma regra adicional

que proibe ciclos de marcha muito curtos. Dessa forma, a base tedrica é dada a seguir.

2.2 Processos de Markov

Os Processos de Markov possuem uma estrutura matemética que pode ser aplicada
a diversos problemas. Visto que a marcha humana serd modelizada como uma Cadeia de
Markov, caso particular dos Processos de Markov, faz-se necessario formula-la matematica-
mente. Deve-se ainda compreender como uma Cadeia de Markov pode ser implementada

computacionalmente e quais sdo os principais algoritmos de treinamento da Cadeia.

Dessa forma, proceder-se-a pela definicdo de um Processo Estocastico:

Definigao 1 (Processo Estocastico). Seja t uma varidvel escalar real, que assume valores
em T, ou seja, t € T C R. Seja S um conjunto denominado espago de estados. Nas
aplicacoes reais, temos com frequéncia S = R,C,CN ou um conjunto enumerdvel. Um
processo estocdstico (ou aleatdrio) é uma familia de varidveis aleatorias sobre um mesmo
espaco de probabilidade (2, F,P) indexada por T e cujas varidveis aleatdrias assumem
valores em S. Cada uma dessas varidveis aleatorias € representada por X;. O processo

estocdstico € denotado por X = (X, t € T).

Neste projeto, t serd a variavel de tempo que mais adiante serd discretizado para

permitir implementagao computacional do modelo. Fixando-se w € €, define-se a realizacao
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ou trajetéria de um processo estocastico como a aplicagao que associa cada instante

de tempo t ao valor X;(w).

Um processo estocastico é dito Processo de Markov se e somente se a distribuicao
de probabilidade condicional dos estados futuros dado os estados passados e presente
depende apenas do estado presente. Dessa forma, a melhor estimacao que se pode fazer dos
estados futuros do processo pode ser calculada tendo como base apenas o estado presente.
Precisamente, temos a seguinte definicao abaixo, que pode ser encontrada em (NIELSEN;,
2009):

Defini¢ao 2 (Processo de Markov). X = (Xy,t € T) é um processo de Markov se para
todo instantet € T e s € T, s > t, a lei de probabilidade condicional de X, sabendo as
variaveis X, u < t, depende unicamente de X;. Ou seja, para qualquer C € S, a let
P{X, € C|Xy,u <t} € uma funcio exclusivamente de t, s, Xy e C.

As Definicoes 1 e 2 descrevem os casos gerais em que o tempo é continuo e o espaco
de estados S pode ser um conjunto nao enumeravel. Discretizando-se o tempo de forma
que t € Ng ={0,1,2,...}, e assumindo que o espago de estados é um conjunto enumeravel
cujos elementos sao denotados por ig, i1, ..., tn_1, in, j, definimos uma Cadeia de Markov.
Essa defini¢do pode ser encontrada em (PARDOUX, 2006) ou em livros bésicos sobre

Processos Estocésticos.

Definicao 3 (Cadeia de Markov). Seja X = (X,,,n € Ng) um processo em tempo discreto
cujo espago de estados € S. X é uma cadeia de Markov se para todo n € Ny e para todos

105 U1y oees b1, n, J € S, tem-se:

P{Xn+1 = ]|Xn - in, Xn,1 = ’l'nfl, ceey X() - Zo} - ]P){XnJrl - j|Xn - Zn} (21)

Além disso, X é dita Cadeia de Markov Homogénea se o membro da direita

da Equagao 2.1 nao depende de n.

Neste ponto pode-se definir a probabilidade de transig¢ao do estado ¢ no instante
n ao estado j como p;; = P{X, 11 = j|X,, = i}. Vale ressaltar que para uma cadeia de

Markov homogénea essa probabilidade independe de n.

A partir das probabilidades de transicao, constréi-se a Matriz de Probabilidades
de Transicdo (MPT) (ou matriz de transicdo) P = [p;;](; j)es2, onde cada p;; é colocado
na linha i e coluna j. A matriz P é estocastica, ou seja, a soma dos termos de qualquer

uma de suas linhas € igual a 1.

jes



32

2.2.1 Exemplo simples de um Processo de Markov Homogéneo

Considere um sistema com dois estados S = {6, 62}, que inicia no estado #; em
t = 0 e realiza saltos durante ¢t = (1,...,20). Em cada instante, se o sistema estiver no
estado 6y, ele tem 70% de chance de permanecer no mesmo estado e 30% de chance de
saltar para o estado 5. Se o sistema estiver no estado 6s, ele necessariamente retorna para
o estado #; no instante de tempo seguinte. Considera-se que ao final o sistema retorna ao

estado #;. Com base nessas probabilidades pode-se construir a matriz de transicdo Piegrica:

0.7 0.3

t (2.3)

Pte(’)m‘ca = [

A seguir, realiza-se uma simulagdo em ambiente MATLAB do sistema, e mapeia-se a
realizacao da cadeia de Markov, como mostrada na Figura 1. O codigo utilizado para a

simulacao encontra-se no Apéndice.

Figura 1: Sistema simples com dois estados Markovianos

estados

1% & & .- * & -» * * & .- % * & & & -

8] 1 2 3 4 5 (5] 7 a 9 10 11 12 1= 14 15 16 17 18 19 20
instantes de tempo

Fonte: O Autor (2019)

Agora podemos verificar, através de uma contagem dos resultados da simulagao,
a frequéncia com que o sistema salta do estado 6; para o mesmo estado #; e definir esse

evento como pi1, € de 6y para 0y como pas.

Além disso, denota-se a frequéncia com que o sistema salta de 6, para 6y como pia,
e o contrario como po;. Finalmente, dividimos os saltos pelo niimero total de ocorréncia de
cada estado individual. Neste exemplo, o estado 0, aparece 16 vezes e o estado 0y aparece

5 vezes. Com esses dados calculam-se as probabilidades de transicao:

11 5
= — =0.6875 = — =10.3125
P11 1 D12 16 )
5 0
D21 5 D22 5 )
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Dessa forma obtemos de forma empirica a MPT Peppirica:

0.6875 0.3125

1 ; (2.4)

Pempl’rica = [

Pode-se representar a cadeia de Markov por um grafo direcionado em que os nds correspon-
dem aos estados e as arestas as transigoes entre eles, cujos pesos sdo as probabilidades de
transicao. Esse grafo recebe o nome de diagrama de estados. Na Figura 2 é mostrado o

diagrama de estados da cadeia referente a Equacao 2.3.

Figura 2: Diagrama de estados do sistema simples
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Fonte: O Autor (2019)

2.3 Modelo Oculto de Markov

Como discorrem (MANNINI; SABATINI, 2011), os Modelos Ocultos de Markov
sao amplamente utilizados em visdo computacional para o reconhecimento de gestos. Além
disso, tais modelos oferecem a possibilidade de segmentar a marcha humana utilizando
dados coletados em velocidades e inclinagoes do terreno variadas. Nesse trabalho, os
pesquisadores dividiram o caminhar em quatro estados e treinaram uma rede a partir de
sinais provindos de um giroscopio monoaxial posicionado sobre peito do pé e orientado na

direcao médio-lateral, ou seja, apontando do centro para a lateral do corpo.

Seguindo esse raciocinio, observa-se que utilizar Modelos Ocultos de Markov para

segmentar a marcha humana é apropriado aos fins deste projeto.

Dessa forma, definem-se os modelos ocultos de Markov da seguinte maneira:
(BISHOP, 2006) e (Rabiner, 1989).

Definigao 4 (Modelo Oculto de Markov). Suponha que numa cadeia de observagies a
n’ésima observagdo € influenciada por uma varidvel oculta correspondente. Se as varidveis

ocultas sdao discretas e formam uma cadeia de Markov, diz-se que o modelo é um Modelo
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Oculto de Markov. Denotam-se as observacoes por Oq,...,0,, e as varidreis ocultas

POT 21y ...y Zn-

Com apenas a condicao de que as variaveis ocultas formam uma cadeia de Markov,
pode-se provar que a probabilidade P{O,,1|O1,...,0,} depende de todos Oy, ...,O,, ou

seja, a sequéncia de observac¢oes O = {0y, ..., O, } ndo é uma cadeia de Markov.

Nesse modelo, as probabilidades de transicdo sao dadas por a;; = P{z, =
jlzn—1 =i} e as probabilidades de emissao sao P{O,|z,} . Caso os valores observados
O,, sejam discretos, podendo assumir D valores em V = {vy,...,vp} e o espago de estados
possua K elementos, ou seja, S = {0y,...,0k}, as probabilidades de emissao ¢ podem
ser organizadas em uma matriz KxD), representada por ¢. Cada elemento ¢rq equivale a
probabilidade de se observar o valor v, dado que a variavel oculta esta no estado 6. A
matriz de transicdo é construida da mesma maneira que na se¢ao anterior, porém quando

se trata de um Modelo Oculto a matriz sera representada pela letra A = [a;;]; j)esz-

Além disso, a probabilidade marginal P{z;} que descreve o estado inicial é um

vetor 7 de K elementos.

Assim, o modelo A pode ser descrito por seus trés pardmetros: A = (7, A, ¢).

2.3.1 Exemplo simples de um Modelo Oculto de Markov

Para que o conceito fique bem claro, um exemplo de um Modelo Oculto de Markov é
apresentado a seguir. Considere que o espago de estados possui dois elementos, S = {0y, 65},

e a matriz de transicao entre os estados ocultos é a mesma do exemplo anterior:

0.7 0.3
- o

Visto que o sistema inicia no estado #,, o vetor do estado inicial é w = [1 O}T. Por fim,
considere que o sistema pode emitir trés valores de forma que V' = {0, 1, 2}. Neste exemplo,
em cada instante de tempo existe uma probabilidade maior de que o sistema emita o valor
correspondente ao indice do estado oculto, porém existe também a possibilidade de que o
sistema emita o valor correspondente ao indice do outro estado ou o valor 0, de acordo

com a matriz de emissao:

02 0.7 01
¢= {0.3 0.1 0.6] (2:6)

Na matriz ¢, a primeira coluna corresponde a emissao do valor 0, a segunda ao valor 1 e
a terceira ao valor 2. Além disso, a primeira linha corresponde ao estado 6; e a segunda
linha ao estado 5. Logo, por exemplo o elemento ¢;5 ¢ a probabilidade de emissao do

valor 1 dado que a variavel oculta se encontra no estado 6,.
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Realizando uma simulacdo desse sistema em MATLAB, obteve-se o resultado
mostrado na Figura 3. Nela, os pontos em azul representam os estados ocultos, ou seja,
a trajetéria da cadeia de Markov oculta, e as cruzes em vermelho sao as observagoes.
Verifica-se, como era esperado de acordo com a matriz da Equagao 2.6, que na maior parte
dos instantes de tempo o valor observado corresponde ao indice do estado oculto. Isso

ocorre nos pontos em que a cruz vermelha e o ponto azul coincidem.

Figura 3: Exemplo de estados ocultos e valores observados de um Modelo Oculto de Markov

Mocdelo Oculto de Markov com dois possiveis estados ocultos e trés valores observaveis
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Fonte: O Autor (2019)

2.3.2 Problemas basicos relacionados a Modelos Ocultos de Markov

Existem trés problemas bésicos envolvendo os Modelos Ocultos de Markov (Rabiner,
1989):

Problema 1. Dada uma sequéncia de observagoes O = {Oy, ..., O,,} e um modelo
A = (m, A, @), como calcular de forma eficiente P{O|\}, que é a probabilidade da sequéncia

de observacoes dado o modelo?

Problema 2. Dada uma sequéncia de observagoes O = {Oy, ..., O, } e o modelo
A= (m, A, @), como encontrar a sequéncia de estados ocultos Z = {zy, ..., 2z, } que melhor
explica a sequéncia de observagoes? Este problema é denominado na literatura como

decodificagao (decoding).

Problema 3. Como ajustar os pardmetros do modelo A = (7, A, ¢) para maximizar

P{O|\}? Em outras palavras, como treinar o modelo?

Neste trabalho, primeiramente um Modelo Oculto de Markov sera treinado e em
seguida uma sequéncia de estados ocultos sera estimada com base em uma sequéncia de

observagoes. Logo, os Problemas 3 e 2 deverao ser solucionados.
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2.3.3 Solucao ao Problema 2

A solucgao ao problema de encontrar a sequéncia de estados ocultos que melhor
explica a sequéncia de observagoes nao ¢ tnica, e depende do significado mateméatico dado

a expressao explicacao 6tima. Duas solugoes serao analisadas a seguir:

Pode-se considerar que a cada instante de tempo o estado oculto é aquele que
maximiza localmente a probabilidade de se estar no estado 6; dada a sequéncia de
observagoes O e o modelo A. Introduzindo a varidvel v;(i) = P{z; = 0;|O, A}, esta primeira
solugdo corresponde a maximizar 7;(i) para cada instante de tempo individualmente. Logo,
de acordo com esse critério de otimizacao, os estados ocultos z; sao dados pela Equacao
2.7

2z = argmax|y;(i)], 0<t<n (2.7)
1<i<K

Essa solugao, apesar de maximizar a esperanca do nimero de estados corretos,
apresenta algumas desvantagens. Os estados ocultos sao determinados individualmente
sem que a sequéncia deles seja levada em conta. Esse fato pode levar o algoritmo a produzir
sequéncias improvaveis ou até mesmo impossiveis quando a matriz A possui entradas nulas

(Rabiner, 1989).

Neste ponto, faz-se necessario ressaltar que a marcha humana pode normalmente
ser decomposta em uma sequéncia de estados ciclica de forma que a probabilidade de
realiza-la no sentido inverso pode ser considerada nula. Assim, o algoritmo utilizado para
resolver o Problema 2 deve ser capaz de produzir apenas sequéncias com probabilidade

nao nula.

Uma segunda solucao que contorna essa desvantagem ¢ algoritmo de Viterbi, cujas
aplicagoes sao diversas, incluindo decodificagdo de mensagens, reconhecimento de fala
e bioinformatica. Ele baseia-se na maximizacdao da probabilidade de toda a sequéncia
de estados Z = {z1, ..., 2, }, ou seja, na maximizagao de P{Z]|O, A} que é equivalente a

P{Z, O|\}. Dessa forma, a sequéncia étima Z* é dada pela Equacao 2.8:

7" = arg;nax[]P’{Z,O])\}] (2.8)

No trabalho de (MANNINI; SABATINI, 2011), dados da marcha de trés individuos
foram coletados e os estados ocultos de uma cadeia de Markov foram identificados com
um poés-processamento utilizando-se o algoritmo de Viterbi. E importante observar que
o célculo de Z* através da Equagao 2.8 leva em consideragao que toda sequéncia de

observagoes estd disponivel, o que nao ¢ viavel em aplicagoes em tempo real.

Varias propostas foram feitas para contornar essa limitacao. Por exemplo pode-se

considerar apenas uma janela de tamanho fixo em que apenas uma quantidade limitada

de estados é processada (MANNINI; GENOVESE; SABATINI, 2013).
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Outra solugao é apresentada em (MANNINI; GENOVESE; SABATINI, 2013). Os
autores utilizaram um algoritmo de Viterbi de curta duracao, em que uma janela variavel
é considerada para a decodificacao dos estados ocultos. Aplicando-se essa técnica por meio
de um microprocessador ARM de 32 bits e uma taxa de amostragem de até 500 Hz, a

laténcia de deteccao dos estados foi inferior a 100 ms para mais de 75% dos eventos.

Dentro dessas possibilidades, o Algoritmo de Viterbi de curta duragao se destaca. Em
um primeiro momento ele seria uma boa escolha para resolver o problema da decodificagao

dos estados em tempo real. Ele esta descrito de maneira sucinta abaixo:

2.3.4 Algoritmo de Viterbi de curta duragao (On-line Viterbi)

Mais de uma versao existe desse algoritmo. Uma versao bastante otimizada foi
desenvolvida na seguinte dissertacdo de mestrado: (SRAMEK, 2007). O pseudocédigo,
provas e analises de complexidade desse algoritmo podem ser encontradas na dissertacao
acima e em (SRAMEK; BREJOV4; VINAF, 2007). De maneira bastante resumida, o
algoritmo consiste em armazenar dinamicamente os possiveis caminhos de estados ocultos
e respectivas probabilidades em matrizes dindmicas. Se em dado instante todos os possiveis
caminhos convergem em determinado ponto, todos os estados precedentes ao ponto de
convergéncia sdo considerados 6timos no critério da Equagdo 2.8. Para mais detalhes

pode-se consultar as referéncias supracitadas.

Visto que nas buscas realizadas nao foi encontrada nenhuma implementagao na
linguagem C disponivel na rede desse algoritmo, o Autor deste Trabalho realizou essa
implementacao, que estd disponivel em c6digo aberto no seguinte link: <https://github.
com/franciscoambrosio/hidden-markov>. Entretanto, testando-se a implementacao do
Autor, constatou-se que o programa parava de funcionar depois de um certo tempo em
operagao e era necessario recomecga-lo. Provavelmente esse comportamento se deve a algum
erro de implementacao dada a dificuldade de se trabalhar com alocagdo dindmica de

memoéria na linguagem C.

Devido a essas dificuldades, optou-se neste trabalho por utilizar a solu¢do mais
simples para o problema da decodificagao em tempo real dos estados: uma janela de
tamanho fixo em que apenas uma quantidade limitada de estados é processada com o

algoritmo de Viterbi convencional.

2.3.5 Solucao ao Problema 3

Este problema consiste em ajustar os pardmetros A = (m, A, ¢) de forma a maxi-
mizar a probabilidade da observacao dado o modelo. Nao existe uma féormula analitica que
maximiza P{O|\}, entretanto é possivel encontrar um méximo local de P{O|\} utilizando-

se algoritmos iterativos como Baum-Welch, que é um estimador de maxima verossimilhanca,
ou um método de gradientes (Rabiner, 1989), (MANNINI; SABATINI, 2011). Além disso,


https://github.com/franciscoambrosio/hidden-markov
https://github.com/franciscoambrosio/hidden-markov
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no tocante exclusivamente a matriz A, vale ressaltar que na literatura existem diversas
formas de se determinar uma matriz de transigao, como (JILKOV; LI, 2004), (ORGUNER;
DEMIREKLER, 2008) e (WANG, 2010), que discutem modelos gerais.

Quando se possui um conjunto de dados em que os estados correspondentes as
observacoes ja estao identificados, uma boa estimativa inicial para os parametros do modelo
corresponde a uma contagem do nimero de vezes em que o sistema esteve em cada estado
e dos saltos que realizou. Assim, as probabilidades da matriz A podem ser estimadas
da mesma forma como as entradas da matriz P,,pirice foram calculadas em 2.4. Logo, a

probabilidade de transi¢ao do estado 6; para o estado 0; ¢ dada como segue:

nimero de saltos do estado 0; para o estado 0;

Ai5 = Pijg = — ; 2.9
I 7 ntimero de vezes em que o sistema esteve no estado 6, (2.9)
O vetor de estado inicial 7 é estimado por:
numero de vezes em que o sistema esteve no estado 6; (2.10)
T, = .

numero total de observagoes

O parametro restante ¢ depende de como as emissoes sao definidas. Pode-se modelar
as emissoes seguindo uma variavel discreta assumindo valores em V' = {vy,...,vp}, ou con-
tinua. Visto que as saidas dos sensores inerciais, descritos na secao 3.1.1, possuem um passo
de discretizagdo muito pequeno comparado ao nimero de estados, é coerente aproxima-las
para variaveis continuas. Logo, as probabilidades de emissao ¢ = [¢1 Oy ... ¢K}T sao
fungdes densidade de probabilidade. Cada elemento ¢;, 1 < i < K é uma funcao densidade
de probabilidade cuja variavel aleatéria é a observagao nos instantes em que z; = 6;. Em
(Rabiner, 1989) é explicitada a formulacdo mais geral para as densidades de probabilidade
¢;. Neste projeto serd considerado o caso particular em que cada ¢; ¢ uma distribuicao

normal de média y; e desvio padrdo o?.

Em outras palavras, esse modelo representa a ideia de que para cada estado oculto,
a emissao seguird uma densidade de probabilidade gaussiana.

A partir de uma sequéncia de observagoes é possivel estimar os pardmetros u; e o2
,1<i < K:

1 n
i =~ 0y (2.12)
Ni =1 z=0;
LS 00— (2.13)
0; = t = M .
Ni —1 t=1 zt="0;
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Nas Equacgoes 2.12 e 2.13, n representa o nimero total de observagoes e N; o

numero de vezes em que o sistema esteve no estado 6;.

2.4 Modelagem Markoviana do caminhar humano

A marcha humana pode ser segmentada de diversas formas. Algumas nao levam
em conta nenhum significado fisico dos estados, sendo apenas uma subdivisdo matematica

de variaveis de interesse. Um exemplo dessa abordagem é apresentado abaixo.

2.4.1 Articulagoes divididas em setores

Figura 4: Articulagoes divididas em setores

Fonte: Christoph M. Mitschka (2015)

No projeto de iniciacdo cientifica Derivacao Empirica de uma Matriz de
Probabilidades de Transicao do Caminhar Humano com Unidades de Medidas
Inerciais realizado pelo autor de 2015 a 2017 (processo FAPESP 2015/20644-5), uma MPT
foi derivada com base em estados Markovianos definidos a partir dos angulos absolutos
descritos pelas juntas de acordo com o modelo utilizado no exoesqueleto Exo-Kanguera,

utilizado em tratamentos de reabilitagao motora.

O modelo ¢é apresentado nesta secao em linhas gerais. Detalhes técnicos e as equagoes

dindmicas podem ser encontradas nos relatérios do projeto de doutorado de Christoph
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M. Mitschka (processo FAPESP 2012/14074-3), em que foi derivado um controlador

Markoviano para esse exoesqueleto.

O exoesqueleto possui trés articulagoes: quadril, joelho e tornozelo, que por con-
vengao serao chamadas de quadril, fémur e tibia, respectivamente. As areas de movimento
de cada articulagao podem divididas em setores. Um exemplo de divisao é mostrado na
Figura 4. Assim, para cada instante de tempo, a configuracao espacial do exoesqueleto

pode ser aproximada pela combinagao dos setores em que se encontra cada articulagao.

Cada uma dessas combinagoes de setores é tratada como um estado Markoviano do
exoesqueleto. Uma vez que o exoesqueleto esta acoplado ao corpo humano, como mostra
a Figura 10, pode-se relacionar diretamente o estado do exoesqueleto com o estado do
caminhar da pessoa que o utiliza. Neste caso, cada articulacao é dividida em trés setores,

o que totaliza 3% = 27 estados.

2.4.2 Quatro fases da marcha humana

Da forma como foram definidos os estados na sec¢ao acima, os combinagoes de
angulos das juntas nao possuem sentido fisico facilmente interpretavel. Assim, as fases
que serao descritas abaixo foram escolhidas possuindo sentido fisico. Existem diversas
propostas para isso. Por exemplo (RUETERBORIES et al., 2010) sugere uma divisao
em oito fases. Aqui serd utilizada uma divisdao em quatro fases, como em (MANNINI;
SABATINI, 2011), descrita abaixo:

Considere primeiramente os quatro eventos que ocorrem em um ciclo completo da

marcha humana convencional:

« HS(Heel-Strike): Momento em que o pé atinge o solo com o calcanhar

o FF (Flat-Foot): Momento em que o pé fica paralelo ao solo e em estd em contato

com o solo
« HO (Heel-Off): Momento em que o calcanhar sai do solo

o TO(Toe-Off): Momento em que os dedos saem do solo

Os quatro estados sao definidos como os intervalos entre os eventos. O estado S
corresponde a fase delimitada por HS e FF. Analogamente, temos Ss: FF-HO, S5: HO-TO
e S4: TO-HS.

Para modelar o carater ciclico e unidirecional da marcha humana convencional,
¢é apropriado utilizar um Modelo Oculto de Markov do tipo left-right. Nele, o estado s6
pode pular para o seguinte no ciclo ou para ele mesmo. A Figura 5 mostra o diagrama de

estados dessa estrutura.
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Figura 5: Diagrama de estados do Modelo Oculto de Markov do tipo left-right

Fonte: (MANNINI; GENOVESE; SABATINI, 2013)
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3 EXPERIMENTOS

Este capitulo esta separado em duas partes. A primeira refere-se aos experimentos
realizados pelo autor com o intuito de derivar uma MPT do caminhar de acordo com
o modelo das articulagdes divididas em setores (2.4.1). Ja a segunda parte apresenta os
experimentos realizados para a derivagao do modelo das quatro fases (2.4.2), tanto no

treinamento quanto na validagao.

3.1 Derivacao de uma MPT com base no modelo das articulacées divididas em
setores

3.1.1 Sensores utilizados

Visto que serao utilizadas IMUs para captar os sinais de interesse no caminhar
humano, uma descricao desses sensores é dada a seguir. Normalmente, um sensor inercial
é composto por alguns acelerometros e giroscopios dispostos em diferentes dire¢oes, que
determinam os graus de liberdade suportados. Encontram-se na literatura muitos trabalhos
relacionados a melhoria e ao barateamento desses sensores, como discute (SILVA, 2013),

segundo o qual houve um grande progresso nos tltimos cinquenta anos.

Uma Unidade de Medida Inercial em estado da arte consiste em um acelerébmetro,
um sensor magnético e um giroscopio, sendo os trés componentes triaxiais. Os sinais
dos dois primeiros componentes nao apresentam deriva ao longo do tempo, devido a
comparagao dos sinais com vetores de referéncia, como a aceleracao gravitacional e o
campo magnético da Terra. O mesmo nao ocorre com o giroscépio, que, dessa forma, deve
ser atualizado frequentemente com dados dos outros dois componentes. As IMUs utilizados
neste projeto sao fabricados com a tecnologia MEMS (Microelectromechanical systems) de
estado solido (XSENS. .., 2013).

O acelerébmetro pode fornecer a inclinagao do corpo. Ja a direcao dos movimentos
pode ser determinada pela saida do sensor magnético. Além disso, pode-se determinar a

orientagao espacial a partir das condigoes iniciais e da saida do giroscépio ao longo do
tempo (SABATINI, 2011).

O modelo geral para a saida de um sensor inercial apés a calibragao, de acordo
com (INOUE, 2012), pode ser dado por:

Ym = (L+F)ye + b(t) (3.1)

sendo ¥, a saida apresentada pelo sensor, 1, o valor exato da medida, k o erro de fator
de escala e b(t) a polarizagdo. Considera-se, geralmente, que o erro de fator de escala é

randémico. O software de fabrica que acompanha os sensores implementa um filtro de
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Kalman que fusiona as saidas inerciais com os dados do magnetdmetro nas trés dimensoes

para estimar a orientacao das IMUs de maneira 6tima (XSENS. .., 2013).

As medidas para o modelo das articulagoes divididas em setores foram realizadas
com Unidades de Medidas Inerciais MTw Awinda (Figura 6) do MTw Development Kit da
XSens que foi financiado pelo CNPq. O kit contém sensores inerciais sem fio que podem

gravar o posicionamento dos membros de forma precisa.

Figura 6: Unidade de medida inercial MTw Awinda

Fonte: (XSENS..., 2013)

O kit também conta com um software que permite visualizar os dados, trabalhar
com eles e sincronizar os sensores nos experimentos. Isso possibilita uma analise completa
do caminhar humano. Na Figura 7 é mostrado um exemplo de utilizacao do software em

que algumas saidas das IMUs sdo representadas graficamente.

3.1.2 Realizacao

Para que se medissem os angulos absolutos referentes a cada uma das juntas
explicitadas em (2.4.1), trés IMUs foram acopladas ao corpo humano como mostra a
Figura 8. Com essa configuracao, foram coletados dados em diversos ambientes reais de

caminhada: planos horizontais e inclinados, escadas e superficies irregulares.

Além disso, foram realizados experimentos em locais de transicdo entre esses
ambientes. Em especial, a transicao entre plano horizontal e escada foi tratada como uma
perturbacao na trajetoria do caminhar na elaboracao do artigo Recursive Linear Quadratic
Regulator Subject to Markovian Jump Linear Systems in a Robotic Application System for
Rehabilitation (MITSCHKA et al., 2016). Nele, foram utilizadas as MPTs derivadas aqui.

Trata-se, portanto, da primeira contribuicao do autor em um publicagao.

Visto que o método de derivagao da matriz é estatistico, coletou-se um volume

grande de dados, de forma que os resultados pudessem ser confidaveis. Por exemplo, no
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Figura 7: Software MTw Manager
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Figura 8: IMUs acopladas ao corpo humano para a aquisicao dos dados

Fonte: O Autor (2016)
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ambiente de escada, realizaram-se cerca de 1500 passos (750 de subida e 750 de descida).

Nesse contexto, faz-se necessario relatar as principais dificuldades enfrentadas
no decorrer dos experimentos. Primeiramente, no decorrer desse periodo, o laboratério
adquiriu sensores inerciais da geragao mais recente. Assim, foi necessario contactar o
fabricante para que se soubesse como sincronizar as duas geragdes de IMUs em uma mesma

base receptora dos sinais. O problema foi resolvido com uma atualizacao de software.

Além disso, pelo fato de os sensores serem sem fio, alguns conjuntos de dados
tiveram que ser descartados devido a interrupgoes da comunicacao entre os sensores e a
base receptora. Nao obstante, vale ressaltar a dificuldade em manter os niveis das baterias
préoximos, para que nenhum sensor ficasse sem energia durante os experimentos. As baterias,
por sua vez, demoram algumas horas para carregarem. Dessa forma, os experimentos

deviam ser planejados e preparados com antecedéncia.

3.2 Treinamento do Modelo Oculto de Markov do tipo left-right com quatro fases
3.2.1 Sensores utilizados

Devido as condicoes restritivas decorrentes da pandemia de SARS-CoV-2, nao
foi possivel ter acesso as IMUs do laboratorio no periodo em que foram realizados os
experimentos para este segundo modelo. Dessa forma, procurou-se uma solugao alternativa
que estivesse ao alcance do autor. A solucdo encontrada foi utilizar os dados da IMU
presente em um smartphone de modelo Moto G5, da marca Motorola, cujo sistema
operacional é o Android 8.1.0. Nos documentos fornecidos pelo fabricante nao consta
informagao sobre o modelo exato da IMU existente dentro do aparelho, porém alguns
estudos indicam que a performance nao é muito inferior a IMUs profissionais (PFEAU;
WELLE, 2015), (Zhi; Xu; Schwertfeger, 2019).

3.2.2 Escolha das saidas de interesse

Para que o modelo da Figura 5 seja aplicado, duas escolhas precisam ser feitas.
Primeiramente, deve-se escolher como os estados ocultos serao identificados na fase de
treinamento. Trata-se do etiquetamento dos estados (do inglés labeling). Cada varidvel
oculta z1, ..., z, deve receber um valor em em S = {S1,...,Sk}. Aqui K =4 pois temos
4 estados possiveis. Na etapa de treinamento o labeling deve possuir uma grande acuracia.
Pode-se utilizar para isso por exemplo sensores de pressao, cameras, sistemas de rastrea-
mento ou variaveis fisicas cinematicas ou dinamicas. Em muitos casos o etiquetamento é
realizado por um especialista na area que classifica frames em um video. Outra possibili-
dade de implementacao mais simples é utilizar um conjunto de regras que as saidas de

interesse devem satisfazer em cada evento.

A segunda escolha que deve ser feita é qual ou quais varidveis serdao consideradas
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como observagoes O = {Oy, ...,O, }. Em geral utilizam-se para isso varidveis fisicas cine-
maticas ou dindmicas. Assim, as observagoes sao em geral um vetor de uma ou mais saidas

especificas de sensores, como acelerdmetros e giroscopios.

Neste projeto uma IMU presente em um smartphone foi fixada na parte superior do
pé, e as observagoes foram consideradas as saidas do giroscopio na direcao médio-lateral.
Sabe-se que o perfil da curva de velocidade angular do pé na direcao médio-lateral é uma
sequéncia bastante estavel de arcos e planos (MANNINI; SABATINI, 2011). Tal fato
¢é essencial para a deteccao dos eventos, pois eles podem ser identificados como pontos
na curva que satisfazem um determinado conjunto de regras. Optou-se por realizar o
etiquetamento dos estados utilizando-se regras baseadas nas regras definidas em (MANNINI;
SABATINI, 2011), que determinam em que momentos ocorrem os eventos HS, FF, HO e
TO. As regras do trabalho de (MANNINI; SABATINI, 2011) sao mostradas a seguir:

o tys: Ocorre logo antes do pico negativo da velocidade angular. Define-se como o
instante em que a diferenca absoluta entre o sinal filtrado com o filtro passa-baixas

e o sinal nao filtrado é maxima.

o tpp: Instante em que a velocidade angular fica maior que um threshold de -50 °/s,

estando previamente menor que -50 °/s.

e tgo: Instante em que a velocidade angular volta a ficar menor que um threshold de
-50 °/s.

e tro: Instante em que a velocidade angular se anula, estando previamente negativa.

Essas regras foram adaptadas e foram inseridas regras adicionais para o proces-
samento nao causal dos dados. Seja w(n), n € Ny, a n’ésima discretizacao da velocidade
angular do pé na diregdo médio-lateral e seja @(n) a velocidade angular w(n) filtrada por
um filtro Butterworth de segunda ordem passa-baixas com frequéncia de corte de 15 Hz.
Definimos §(n) = |w(n) — @(n)|.

Além disso, seja Py = {p1,...,p,} 0 conjunto de todos os n € Ny que satisfazem
@(n) = 0 °/s. A posicdo angular f(n) é dada pela integracio numérica de @(n) e a
d

aceleragao angular 2 (n) pela derivacdo numérica. As seguintes regras foram utilizadas:

e Ter={neNy|@n)>-50°/sed(n—1)<-50°/sebdn)>—15°}
e Tho=1{neNy|@(n)<—=50°sed(n—1)>-50°sebn)<0°}
« Tro={px € Pu | @(px) =0°/s e L(p) >2000 °/s*> e L (py11) < —1500°/s%}

o Finalmente, para cada tro € Tro, seja ppr 0 pr € P; mais proximo de tro tal que
pr > tro. Seja tppy 0 tpp € Trpp mais préoximo de pgy tal que tpp > pry. Faca

tgs = argmax, 6(n), ppy < n < tppy. Temos que Tyg é o conjunto de todos tyg.
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3.2.3 Realizacao

Figura 9: smartphone acoplado ao pé

Fonte: O Autor (2020)

O smartphone foi acoplado ao pé na parte superior (Figura 9). Para a transmissio
dos dados em tempo real para um laptop da marca Dell, modelo Inspiron 15 com um
processador Intel Core i5 de oitava geracao, foi utilizado o aplicativo Sensor Node Free.
Para a recepgdo, gravagao para pos-processamento e processamento desses dados em
tempo real, foi utilizado o cédigo em Python disponivel no Apéndice B. Esses dados foram

coletados com um periodo de amostragem de 6 ms, o que corresponde a 166,67 Hz.

Inicialmente, realizaram-se duas sessoes de gravagao dos dados para pés-processamento:
uma foi utilizada para treinamento e outra para validagao do modelo. Ambas foram de
curta duracao e realizadas em um corredor, visto que nao foi possivel ter acesso a esteira

do laboratorio, dadas as condigoes de isolamento social.

Nesse sentido, foram utilizados apenas 6 passos completos para o treinamento do
modelo. Os dados da saida do giroscépio foram filtrados com um filtro Butterworth passa-
baixas de segunda ordem com frequéncia de corte de 15 Hz apenas para o etiquetamento
dos estados. J4 a matriz de emissao foi calculada utilizando os dados sem filtragem. O
treinamento foi realizado em Matlab utilizando-se os estados definidos em 2.4.2, as regras
3.2.2 e as equagodes 2.9, 2.12 e 2.13. O vetor de estado inicial 7 foi considerado uma

distribuicao uniforme entre os 4 estados possiveis.

Aqui, vale ressaltar que o treinamento foi realizado de forma nao causal, ou seja, os

dados nao foram processadas em sequéncia em um tnico loop. Logo, foi necessario adicionar


https://play.google.com/store/apps/details?id=com.mscino.sensornode&hl=en
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algumas condigoes extras para retirar pontos que satisfaziam as regras apresentadas em
(MANNINI; SABATINI, 2011) mas estavam em locais errados da sequéncia de estados.
As regras adaptadas foram as apresentadas em 3.2.2. Por exemplo, a velocidade angular
passa de um valor inferior a -50 °/s para um valor maior que -50 °/s duas vezes em um
ciclo completo da marcha (Figura 12). Entretanto, s6 a primeira vez deve ser considerada,
pois na segunda vez essa regra nao faz mais sentido, ja que a marcha estd em outro estado

e outra regra deve ser verificada para caracterizar o evento correspondente.

Outro exemplo é que a velocidade angular possivelmente se anula diversas vezes
durante um ciclo, em especial na fase de flat-foot. Entretanto, s6 deve ser considerado o

ponto que ocorre ao final da fase Sj.

Assim, a experiéncia do autor adquirida com o presente trabalho sugere que um

processamento causal é de mais simples implementacao.

A validacao do modelo foi realizada com o segundo conjunto de dados aplicando-se
o algoritmo de Viterbi convencional em pés-processamento. Portanto, toda a sequéncia
de observagoes esta disponivel, o que nao ocorre em aplicagoes em tempo real. Para isso
utilizou-se a biblioteca em Matlab (MURPHY, 1998). Esse procedimento foi realizado com

os dados nao filtrados e com os dados filtrados. Os resultados foram comparados.

Por fim, realizou-se uma nova sessao de gravacao em que os estados Markovianos
foram estimados em tempo real utilizando-se o algoritmo de Viterbi em uma janela
de tamanho fixo deslizante. Adotou-se uma janela de duracao igual a 15 periodos de
amostragem, o que corresponde a 90 ms. Os dados dentro dessa janela foram filtrados em
tempo real por um Butterworth filtro passa-baixas de segunda ordem com frequéncia de
corte de 15 Hz. Logo em seguida aplicou-se o algoritmo de Viterbi dentro da janela. Para
isso utilizou-se a biblioteca hmmlearn em Python. A cada iteragdo considerou-se o estado

inicial como o a saida da iteragao anterior.

A saida a cada iteracao foi considerada como o segundo elemento do vetor de
estados ocultos estimados pelo algoritmo de Viterbi, ja que o primeiro elemento sempre
correspondia a saida da iteracdo anterior. O cédigo completo em Python dos experimentos
esta disponivel no Apéndice B. Nessa sessao foram gravados dados de 17 passos em um
corredor. Esses dados também foram aproveitados para validar novamente o algoritmo em

pos-processamento, de forma a aumentar a significincia estatistica.

Finalmente, foi demonstrada uma aplicacao que consiste em medir a duracao dos
passos bem como a duracao das fases. Observa-se que em padrdes de marcha com alguma
debilidade frequentemente a duragao e proporgoes entre as duragoes das fases difere em
relacao ao padrao de marcha normal. Aqui foi considerada a fase denominada de Stance,
que corresponde ao periodo em que o pé estd em contato com o solo, ou seja, trata-se da

uniao das fases S7, Sy e S3 definidas em 2.4.2.
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4 RESULTADOS

Assim como nos experimentos, os resultados serdao divididos em duas partes, sendo
a primeira corresponde ao modelo das articulagoes divididas em setores, e a segunda ao

Modelo Oculto de Markov com quatro estados.

4.1 Articulacoes divididas em setores

Para cada cenario de caminhada, bem como para cada experimento realizado, a
MPT encontrada serda diferente. Entretanto, a matriz referente a individuos sem dificuldades
para caminhar e de estatura média nao apresentaram grandes desvios. Escolhendo-se o
ambiente da transicao entre plano horizontal e escada, a MPT encontrada neste caso é

mostrada na Figura 10.

Observe que as maiores probabilidades concentram-se nas diagonais principal e nas
diagonais proximas a ela. Isso se deve ao fato de que em intervalos de tempo pequenos,
a Cadeia de Markov apresenta estados sequenciais repetidos, uma vez que a taxa de

amostragem ¢é alta.
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MPT do camihar humano referente ao plano horizontal

Figura 11
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Comparando-se as Figuras 10 e 11, verifica-se que a MPT referente a transicao
entre plano horizontal e escada possui um niimero maior de entradas nao nulas, ou seja,
h& uma maior diversidade de movimentos realizados. Isso estd de acordo com o esperado,

ja que nesse caso a complexidade do cenario é maior.

4.2 Modelo oculto de Markov do tipo left-right com quatro fases

Apesar de nao ter sido utilizado um método de elevada acuricia (como sensores
de pressao, cAmeras e rastreadores de movimento) para o etiquetamento dos estados na
fase de treinamento, o método baseado em um conjunto de regras apresentou resultados
satisfatérios. Na Figura 12 sdo mostrados os 4 eventos definidos na secao 2.4.2 que foram
detectados com base nas regras. Um ciclo completo compreende os estados Sy, Sa, S3 € Sy,

que em seguida voltam a se repetir no ciclo seguinte.

Observa-se na Figura 12 que o instante tzs (momento em que o calcanhar atinge o
solo) estd um pouco antes do primeiro pico negativo da velocidade angular. Em seguida
o intervalo entre tpp e tyo configura o estado em que todo o pé estda em contato com o
solo, o que pode ser associado ao valor absoluto da velocidade angular préximo de zero.
Em seguida, entre os eventos tgo e tro encontra-se o maior pico negativo da velocidade
angular, em que o calcanhar sai do solo e a ponta do pé ainda estd em contato com o solo.
Por fim, apods os dedos sairem do solo em tro, a velocidade angular muda para o lado

positivo, visto que a rotacao do pé muda de sentido.

Este ciclo de dois picos negativos seguidos de um pico positivo possibilita também
a aplicacao do algoritmo de (LEE; PARK, 2011) para comparacao, mesmo que ele tenha

sido inicialmente projetado para dados de um sensor afixado na canela.

Em seguida os seguintes parametros do modelo foram encontrados:

Matriz de Probabilidades de Transicao

0.948 0.052 0 0
0 098 0.015 0
0 0 0.970 0.030

0.016 0O 0 0.984

A=

Estado (i) Média das emissoes (u;) [°/s] Desvio padrao das emissoes (o;) [°/s]
1 -199.7 113.8
2 -18.5 14.9
3 -298.2 221.6
4 232.6 163.8




55

Figura 12: Estados do caminhar determinados com base em um conjunto de regras para
treinamento do modelo de Markov

Estados do caminhar determinados com base em um conjunto de regras para o treinamento
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Fonte: O Autor (2020)

Nota: Observa-se a sequéncia de dois picos negativos seguidos de um pico positivo da velocidade
angular na direcdo médio-lateral de um giroscépio posicionado sobre o pé

Para a validagao do modelo foi utilizado o segundo conjunto de dados, em que
haviam dados de dez passos completos. Os estados estimados com o algoritmo de Viterbi
com os dados nao filtrados sao mostrados na Figura 13. Observa-se que houve uma alta
taxa de insercoes, em que um ciclo completo de curta duragao é inserido no meio de um
ciclo com duragao normal de caminhada. Ocorreram 4 inser¢oes em 10 passos, o que ¢é
insatisfatorio para aplicagoes praticas. Ja quando se realizou o mesmo procedimento com os
dados filtrados com o filtro passa-baixas a taxa de inser¢des foi bastante reduzida (Figura
14). Ocorreu 1 inser¢do no mesmo conjunto de dez passos. Esse resultado é bastante
satisfatorio levando em conta a pequena quantidade de dados de treinamento, o que
mostra que em alguns casos é possivel realizar o treinamento rapidamente. Visto que
posteriormente foram gravados mais 17 passos para o algoritmo em tempo real, testou-se
também o pos-processamento nesses dados filtrados e constatou-se 1 insercao nos 17 passos.

Isso totaliza 2 insercoes em 27 passos.

Além disso, pode-se verificar pela analise visual da Figura 14 que as formas de onda

e os estados correspondentes sao coerentes de um ponto de vista qualitativo em relacao
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aos estados definidos na Figura 12.

Entretanto, vale ressaltar que o sistema pode nao ser generalizavel para outros
individuos com padroes de caminhada diferentes, uma vez que o modelo foi treinado com

apenas um individuo.

Figura 13: Estados do caminhar estimados em pds-processamento pelo algoritmo de Viterbi
com dados nao filtrados

Estados do caminhar estimados em pés-processamento pelo algoritmo de Viterbi, dados nao filtrados

400
200
Q
g 0
5 m Inserco
=
@
o -200 -
T
@
i)
]
£ -400 |-
g
>
-600 |-
\ \ \ \ \ \
20 22 24 26 28 30

Tempo (s)

Estados estimados em pés-processamento pelo algoritmo de Viterbi
— Velocidade angular do pé na diregao médio-lateral (°/s) nao filtrada

Fonte: O Autor (2020)

Com esse mesmo modelo, porém agora aplicando-se o algoritmo de Viterbi em uma
janela deslizante de tamanho fixo para a estimacao dos estados em tempo real, foi obtido o
resultado da Figura 15. Observa-se que a taxa de insercoes ¢ ainda mais elevada do que no
caso do pos-processamento com dados nao filtrados. Ocorreram 28 inser¢oes em 17 passos.
Essas inserc¢oes provavelmente inviabilizariam uma aplicagdo pratica em tempo real. Além

disso, surge um atraso que esta relacionado a duracao da janela de tamanho fixo.

Por fim, as duragoes dos passos e das fases de Stance foram computadas para o
algoritmo de Viterbi em pos-processamento com os dados filtrados (caixa azul na Figura
17) e para o algoritmo de Viterbi em uma janela deslizante de tamanho fixo (caixa vermelha
na Figura 17). Esses dados sdo mostrados na Figura 17 na forma de um diagrama de
caixa (boxplot). Nele sdo representados a mediana, a média, os quartis inferior e superior,
o intervalo que conteria cerca de 99.3% dos dados caso a distribuigao fosse normal e os

outliers.
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Figura 14: Estados do caminhar estimados em pés-processamento pelo algoritmo de Viterbi
com dados filtrados

Velocidade angular (°/s)

Figura

Estados do caminhar estimados em pés-processamento pelo algoritmo de Viterbi, dados filtrados
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15: Estados do caminhar estimados em tempo real pelo algoritmo de Viterbi em

uma janela limitada de tamanho fixo
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Figura 16: Comparagao entre os estados estimados em tempo real e em pos-processamento.
Destacam-se a taxa de inser¢oes elevada e o atraso dos estados estimados em tempo real.

Comparagdo entre estados estimados em pos-processamento e em tempo real
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Fonte: O Autor (2020)
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Figura 17: Bozplot da duracao dos passos e da fase Stance para cada um dos algoritmos
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Nota: A fase Stance corresponde a todo o tempo em que o pé estd em contato com o solo.
A cor das caixas corresponde ao algoritmo: Lee et al., 2011 (amarelo), algoritmo de Viterbi
em poés-processamento com dados filtrados (azul) e algoritmo de Viterbi em tempo real com
janela deslizante de tamanho fixo (vermelho). Os tragos vermelhos representam as medianas.
Os quadrados pretos sdo as médias. As caixas sdo limitadas pelos quartis inferior e superior,
o que representa 50% dos valores observados. Os tracejados correspondem ao intervalo que
conteria aproximadamente 99.3% dos dados caso a distribuicio fosse normal. As cruzes vermelhas
correspondem aos outliers.
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4.2.1 Performance e comparacao com outros trabalhos da literatura

Apenas o modelo oculto de Markov sao introduzidas as métricas de desempenho P
(Precisao), R (Recall) e Fy (Fi-score), sendo que F) leva em conta tanto a Precisao quanto

o Recall:
b TP R TP _ 2.P-R
T TP+FP ' O TP+FN ' 'T PiR

(4.1)

em que T'P é o nimero de verdadeiros positivos, F'N o nimero de falsos negativos e F'/P o
numero de falsos positivos. Temos P, R e F; € (0,1). Quanto mais préximos de 1 melhor a
performance. Foram considerados verdadeiros positivos os passos completos cujos eventos
HS (Heel-Strike) e TO (Toe-Off) estavam dentro de uma janela de tolerdncia de 200 ms em
relagdo aos eventos IC (Initial-Contact) e EC (End-Contact), respectivamente, detectados
com o algoritmo de (LEE; PARK, 2011). Além disso foi realizada uma inspegao visual para
confirmar que o algoritmo de (LEE; PARK, 2011) detectou todos os passos corretamente.
Todos os demais passos completos inseridos dentro dos passos verdadeiros positivos foram
considerados falsos positivos. Nao houve falsos negativos, que seriam os casos em que um

passo é completamente ignorado pelo algoritmo.

Os indices obtidos com os métodos utilizados neste trabalho sdo mostrados na
Tabela 1.

Tabela 1: Precisao, Recall e Fi-score obtidos para cada um dos algoritmos

H Método P R F H

(Lee et al., 2011) 1.00 1.00 1.00
Poés-processamento - Dados nao filtrados 0.71 1.00 0.83
Pés-processamento - Dados filtrados 0.93 1.00 0.96
Tempo real 0.38 1.00 0.55

Fonte: O Autor (2020)

No caso do pés-processamento com dados filtrados, a acuracia foi similar a outros
métodos disponiveis na literatura, que reportam acurdcia proxima a 100% e F; > 0.9.
Ja em relagao aos estados estimados em tempo real, o desempenho foi inferior a outros
métodos da literatura. Por exemplo (Pérez-Ibarra; Siqueira; Krebs, 2020) obtiveram um
indice F; de 0.99 para individuos sem debilidade na marcha, enquanto que aqui foi de 0.55.
Ja (MANNINI; GENOVESE; SABATINI, 2013) obtiveram taxas de inser¢do menores
que 0.50% para todos os quatro eventos, enquanto que aqui a taxa de insercao foi muito
elevada (superior a 100%). Por outro lado, a taxa de eliminacdo (quando um ciclo de
marcha é ignorado) observada aqui foi igual a de (MANNINI; GENOVESE; SABATINTI,
2013), ou seja 0%, pois nenhum ciclo de marcha foi ignorado. Isso corresponde a R = 1,

pois nao ha falsos negativos.
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As medianas da duracao dos passos e das fases Stance obtidas com os algoritmos
sao mostradas na Tabela 2. Novamente a performance do algoritmo de Viterbi convencional
com os dados filtrados foi muito similar ao algoritmo de Lee et al.. Isso também fica claro

na Figura 17, em que a distribuicao das duragoes ficou proxima ao algoritmo de Lee et al..

Observa-se que as inserc¢oes configuraram outliers visto que elas sdo bastante
discrepantes em relacao aos outros passos. Por outro lado o algoritmo em tempo real -
Viterbi em uma janela deslizante de tamanho fixo - foi bastante afetado pelas inserc¢oes, que
levaram a mediana das duracoes a valores reduzidos, visto que as duragoes das insercoes

sao curtas.

Além disso, dada a alta taxa de insercoes, elas nao configuraram outliers pois elas
foram a maioria dos passos detectados. Isso leva a conclusao de que é necessario adicionar
uma estratégia que impega a deteccao de ciclos de marcha com duracao muito curta. Essa
estratégia foi adotada em (MANNINI; SABATINI, 2011), em que ciclos completos com

duragao menor que 0.35 s eram descartados.

Tabela 2: Medianas da duracdo dos passos e da fase Stance obtidas para cada um dos
algoritmos

, Duracao dos passos [s| Duracao das fases Stance |s

Meétodo %Mediana) . : (Mediana) .
(Lee et al., 2011) 1.15 0.69
Pés-processamento - Dados filtrados 1.15 0.78
Tempo real 0.45 0.19

Fonte: O Autor (2020)
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5 DISCUSSAO GERAL E CONCLUSOES

Este trabalho esta inserido num contexto em que a deteccao acurada de fases do
caminhar é relevante para tratamentos de reabilitacdo motora como estimulacao elétrica
funcional, controle de sistemas robdticos de suporte a marcha ou reabilitacdo. Nesses
casos sao necessarios algoritmos em tempo real com baixo atraso. Por outro lado, o
acompanhamento a longo prazo de pacientes em tratamento de reabilitacgao motora é um
exemplo de aplicagdo que permite o pds-processamento. Algumas métricas como duragao
das fases da marcha podem dar indicios sobre os graus de debilidade e de recuperacao em
um tratamento. Em todos as aplicagoes é muito vantajosa a utilizacao de smartphones,
pois grande parte da populagdo conta com tal aparelho. Dessa forma, este trabalho sugere

a disponibilizacao desses algoritmos em aplicativos de celular.

Uma desvantagem do método utilizado aqui no modelo das quatro fases foi a
necessidade de acoplamento do aparelho celular sobre o peito do pé, o que dificultaria
uma aplicagao real. Nesse sentido, faz-se necesséario investigar o posicionamento do celular
em outros locais, como a coxa, até mesmo dentro de um bolso, sem que ele esteja afixado
junto ao corpo. Um método acurado de deteccdo do caminhar humano em tempo real

utilizando um aparelho celular no bolso representaria um grande avanco nesta area.

Pode-se considerar que os objetivos principais deste projeto foram atingidos com
éxito. Foram derivadas duas matrizes de transicao do caminhar humano, uma para cada

modelo.

Em relacao ao modelo das articulagoes divididas em setores, derivou-se uma
MPT que foi util para o projeto de um controlador Markoviano para um exoesqueleto.
Esses estados poderiam ser facilmente detectados em tempo real, uma vez que bastaria
simplesmente identificar em qual setor cada articulacdo esta. A combinacao entre os setores
da articulagao corresponde diretamente ao estado. Este método, no entanto, nao leva em
conta uma sequéncia de observagoes para determinar o estado em determinado instante

de tempo, o que pode produzir sequéncias improvaveis caso haja ruido nos dados.

Para o modelo das quatro fases da marcha com sentido fisico, foi possivel estimar os
estados do caminhar humano tanto em pdés-processamento quanto em tempo real. Ademais,
os estados com sentido fisico que foram escolhidos com base na literatura sao de simples
identificagdo através um conjunto de regras para a fase de treinamento, o que possibilitou
o avanco do trabalho mesmo sem acesso aos equipamentos do laboratério no periodo de
isolamento social devido a pandemia de SARS-CoV-2. Isso sugere que é possivel treinar
modelos relativamente satisfatérios com equipamentos disponiveis para grande parte da

populacao e em ambientes diversos. Faz-se necessario, contudo, melhor investigar essa
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hipotese.

A seguir sao apresentadas algumas limitagdes dos métodos empregados bem como
dos resultados obtidos. Nos experimentos nao foram utilizados dados de individuos com
marcha debilitada, cujos padrées de caminhada podem variar significativamente em
relacao ao padrao da marcha em individuos sem debilidade no caminhar. Provavelmente os
resultados seriam degradados. Ademais o conjunto de dados foi pequeno nos experimentos

relativos ao modelo das quatro fases, o que implica numa baixa significincia estatistica.

Além disso, vale ressaltar que o processamento em tempo real se deu em um laptop
com um processador Intel Core i5 de oitava geracao. Caso o processamento se desse
no proprio aparelho celular, possivelmente os algoritmos consumiriam grande parte dos
recursos do dispositivo, ou seriam até inviaveis dependendo do aparelho. Nesse sentido, a

elaboracao de algoritmos poucos custosos é essencial.

Uma vantagem da abordagem aqui utilizada é que o atraso dos estados estimados
em tempo real pelo algoritmo de Viterbi em uma janela limitada de tamanho fixo é
aproximadamente constante em relacao aos estados estimados em pos-processamento pelo
algoritmo de Viterbi tradicional, por conta do tamanho fixo do janelamento. Entretanto,
nao existe garantia de otimalidade em relagdo ao critério da Equacao 2.8. J4 o Algoritmo
de Viterbi On-line garantiria tal condi¢ao, porém com a desvantagem de o atraso ser
incerto, variavel e possivelmente ilimitado. Para contornar isso seria também necessario
limitar o tamanho dos caminhos de estados ocultos, o que implicaria na perda da garantia

de otimalidade da Equagao 2.8.

5.1 Trabalhos futuros

Em primeiro lugar os resultados em pés-processamento levantam a pergunta natural
de qual é a quantidade de dados minima necessaria para realizar o treinamento e produzir
um modelo satisfatorio. Além disso encontrar formas de facilitar o posicionamento dos

sensores ¢ uma area importante a ser estudada.

Algumas ideias para melhoria dos resultados e investigacdo de outras técnicas
decorrem diretamente da literatura referente a modelagem do caminhar humano por

modelos de Markov.

Primeiramente, deve-se ressaltar que é recomendada a utilizacdo de métodos mais
precisos na fase de etiquetamento dos estados de treinamento, como os que sao considerados
padrao ouro: sensores de pressao na sola do calcado e sistemas optoeletronicos. Isso
permitiria uma melhor validagdo quantitativa do modelo. Outro possivel aprimoramento
dos resultados poderia ser obtido com a aplicagdo do Algoritmo de Viterbi On-line para
a estimacao dos estados em tempo real, ao invés do método utilizado que consistiu em

aplicar o Algoritmo de Viterbi convencional em uma janela deslizante de tamanho fixo.
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Além disso, modelos mais complexos do caminhar humano podem ser testados,
como por exemplo os modelos multivariados, que sao um caso mais geral do que o modelo
gaussiano adotado neste trabalho. Nao obstante, foi adotada uma tnica saida como vetor
de observagdo. E de se esperar que um vetor contendo mais saidas, combinando dados
de mais IMUs ou IMUs combinadas com sensores de pressao produza uma caracterizagao

mais completa do caminhar humano.
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APENDICE A - CODIGOS EM MATLAB

Codigos para a simulagdo de uma cadeia de Markov simples.

71

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

35

%Cadeia de Markov — Exemplo de Sistema simples
states = [];
states(l) = 1;
for i = 2 :21
if states(i—1) == 1
states (i) =1

if rand > 0.7
states (i) = 2;
else
end
else

states (i) = 1;

end

plot ((0:1:20),states, 'x', 'LineWidth',30)
axis ([0 20 0.5 2.51)

yticks ([1 21);

xticks ([0:1:20]);

ylabel (

xlabel (

'estados')

'instantes de tempo')

nl = 0; n2 = 0;
P = zeros(2,2);

nl = 1;

%$Conta o numero de vezes que esteve em cada estado
for 1 = 2 :21
if states (i) ==

nl = nl + 1;

if states(i—1) == 1
P(1,1) = P(1,1) + 1;
else
P(2,1) = P(2,1) + 1;
end
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36 else
37 n2 = n2 + 1;
38 if states(i—-1) == 1
39 P(1,2) = P(1,2) + 1;
40 else
41 P(2,2) = P(2,2) + 1;
42 end
43 end
44 end
45 1f states(end) == 1
46 nl = nl — 1;
47 else
48 n2 = n2 — 1;
49 end
50 P(1l,:) = P(1,:)/nl;
51 P(2,:) = P(2,:)/n2;
Cédigo para treinamento do Modelo Oculto de Markov.
1 clear all
2 close all
3
4 load('plano_05_05_2020_pe_direito.mat"')
5 data = plano_05_05_2020_pe_direito;
6 load('plano_05_05_2020_pe_direito_data3.mat"')
7
8 data2 = datal588619683(:,5)*360/ (2*pi);
9 t2 = datal588619683(:, 1);
10 t2 = t2— t2(1);
11 t2 =t2/1000 ;
12 t = data(:, 1);
13 t =t— t(l);
14 t =t/1000 ;
15 n = length(t);
16 avgT = t(n)/(n—1);
17 avgF = 1/avgT %$Average frequency in Hz
18 angular_velocity = data(:,5)*360/(2%pi);
19 [b,a] = butter(2,15/(avgF/2));
20 vy = filter(b,a,angular_velocity);
21 data2filtered = filter(b,a,data?);

22
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23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

angular_velocity_filtered =y;
difference = abs (angular_velocity — angular_velocity_filtered);
zci = @(v) find(v(:) .*circshift(v(:), [—1 0]) <= 0);

[o)

% Returns Zero—Crossing Indices Of Argument Vector

zx = zci(y);

%$acc = abs ([diff (angular_velocity); 0])

%$angular_position = cumtrapz (t, angular_velocity);
angular_position_filtered = cumtrapz(t, angular_velocity_ filtered);
angular_acceleration = [diff([0; angular_velocity_filtered])/avgT];
lambdaFF = —50; %FF threshold in /s

lambdaHO = —50; $%HO threshold in /s

$To find zeros
%angular_acceleration this > 2000; angular_accelerationnext <—1400

HS = find(difference > 5);

FFindicesboolean = zeros(l,n);
HOindicesboolean = zeros(l,n);
TOindicesboolean = zeros(l,n);
HSindicesboolean = zeros(l,n);
J=1;
for i=1 :length(zx)
tzeros (i) = t(zx(i));
yzeros (i) = y(zx(i));
S$tzeros2 (i) = t(zx(i)) + avgT;
Syzeros2 (i) = y(zx(i) + 1);

if i < length(zx)
if (angular_acceleration(zx(i)) > 2000 &&
angular_acceleration(zx (i +1)) <—1400)
t(zx(i));

tzerosTO (7J)

yzerosTO (J) y(zx(1));

indicesTO(]j) = zx(i);
TOindicesboolean (l,zx (1)) = 1;
tzerosnext (J) = t(zx(i+l));
yzerosnext (j) = y(zx(i+l));
indicesnext () = zx(i+1);
Jo=3 +1L;

end
end

end
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65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
00
101
102
103
104

105

106

k =1;

for i=2:1length(angular_velocity_filtered)
if (angular_velocity_filtered (i) >= lambdaFF &&
angular_velocity_filtered(i—1) < lambdaFF &&

angular_position_filtered(i)> —15)

FFindices (3) = 1i;
FFindicesboolean(l,1i) = 1;

yFF (j) = angular_velocity_filtered(i);
tEF(J) = t(i);

J =3 +1;

end
if (angular_velocity_filtered(i) <= lambdaFF &&
angular_velocity_filtered(i—1) > lambdaFF &&

angular_position_filtered(i) < 0 )

HOindices (k) = 1i;
HOindicesboolean (1l,i) = 1;
yHO (j) = angular_velocity_filtered(i);
tHO(J) = t(1);
k = k+1;
end
end
HSindicesboolean = zeros(l,n);
FFindices = FFindices(1l,5:end);

yFF = yFF (1,5:end);

tFF = tFF(1,5:end);

for i=1l:length (FFindices)
[m, HSindices (i)] = max(difference (indicesnext (i) :FFindices (1))
HSindices (i) = HSindices (i) + indicesnext (i) — 1;
yHS (1)
tHS (1) = t (HSindices (i));

angular_velocity_filtered(HSindices (1i));

HSindicesboolean (HSindices (i)) = 1;
end
states = [];
state = 1;
for i=1 :length(angular_velocity_filtered)
if HSindicesboolean (i)
state = 1;
elseif FFindicesboolean (1)
state = 2;
elseif HOindicesboolean (1)

state = 3;
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Lo7
08
09
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
1130
131
132
133
134
L35
136
137
138
39
140
141
142
143
144
145
146
147

148

elseif TOindicesboolean (1)
state = 4;
end

states (i) = state;

end

o\°

scatter (tzerosTO, yzerosTO);

o\°

scatter (tzerosnext, yzerosnext);
scatter (tFF, yFF);

scatter (tHS, yHS);

scatter (tHO, yHO);

oo oo  o°
o\°

o\
o\

%$scatter (tzeros2, yzeros2)

% plot(t, angular_velocity)

o\
o\°

%plot (t, angular_velocity)

A}

o\
o\

plot (t, difference, r')

o\
o\

plot (t, angular_acceleration, 'g')

o\°
o\°

splot (t, acc)

o\°

plot (t,angular_position_filtered)
% plot (t,100xstates)

%plot (states)

states (1501:2589);
training_cycles = 6;
3;
states (2590:3155);

training_ states

testing_cycles

testing_states

training _emissions = angular_velocity (1501:2589);
testing_emissions = angular_velocity (2590:3155);
emissions_1 =

;
emissions_2 = ;

emissions_3 =

~

4

(]
(]
(]
(]

emissions_4

for i=1 :length(training_states)
if training_states (i) == 1
emissions_ 1 = [emissions_1 training_emissions (i) ];
elseif training_states (i) == 2

emissions 2 = [emissions_2 training_emissions (i) ];
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149
50
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
Le7
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188

189

190

elseif training_states (i) ==

emissions_3 = [emissions_3 training_emissions (i) ];
elseif training_states (i) ==

emissions_4= [emissions_4 training emissions(i)];

end

end

emissions_stds= [std(emissions_1);
std(emissions_2);
std(emissions_3);

std(emissions_4) ];

emissions_avgs = [mean (emissions_1);
mean (emissions_2) ;
mean (emissions_3);

mean (emissions_4) ];

al2 = training_cycles/length (emissions_1);
a23 = training_cycles/length (emissions_2);
a34 = training_cycles/length (emissions_3);
a4l = training_cycles/length (emissions_4);

A = [(1—al2) al2 0 0;
0 (1—a23) a23 0;
0 0 (1—a34) a34;
a4l 0 0 (1—a4dl)];
addpath (genpath (' /home/francisco/Documents/MATLAB/TCC/HMMlibrary/HM
Sigma = zeros(1l,1,4);
for i=1:4
Sigma(l,1,i) = emissions_stds(i);
end
B = mixgauss_prob (testing_emissions',emissions_avgs', Sigma);
prior = [0.25; 0.25; 0.25; 0.25];
[path] = viterbi_path(prior, A, B);
totalstates = [zeros(1l,1500), training_states, path];
title ('Estados de Markov ')
xlabel ('Tempo (s) ')
hold
figure (1)
hold on
plot (angular_velocity_filtered)
plot (100+xtotalstates, 'r', 'linewidth',2, 'DisplayName',
'Estados estimados com modelo de Markov')

plot (100*xstates, 'g','linewidth',4, 'DisplayName’',

M/HMMall'))
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191

192

193

194

195

196

197

198

199

200

P01

P02

RO3

'Estados estimados com modelo de Markov')

o\°

scatter (tFF, yFF);

o\°

scatter (tHS, yHS);

o\°

scatter (tHO, yHO);

o\°

legend show

% hold off

B2 = mixgauss_prob (data2',emissions_avgs', Sigma);
[path2] = viterbi_path(prior, A, B2);

figure (2)

B2filtered = mixgauss_prob (data2filtered',emissions_avgs',
[path2filtered] = viterbi_path(prior, A,B2filtered);

plot (t2, 100xpath2)

plot (t2, data2filtered)

Sigma) ;
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APENDICE B - CODIGO EM PYTHON

Codigo utilizado para a recepgao, gravagao e processamento dos dados do celular

em tempo real.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

import socket, traceback

import string

import time

import datetime as dt

import keyboard

import matplotlib.pyplot as plt

import datetime as dt

import matplotlib.animation as animation
import threading

import os

import numpy as np

from hmmlearn import hmm

from scipy import signal

data = (0, 0, 0, 0, 0 ,0 ,0)
delay = 0
loop_flag = True
def stop_loop():
global loop_flag
keyboard.wait (" ")
loop_flag = False
print ("endloop™)

def get_delay():
global data
while True: # making a loop
try: # used try so that if user pressed other than the giv
if keyboard.is_pressed(' "): # if key 'space' is press
#print ('You Pressed A Key!'")
delay = time.time ()
print (delay)
while data[5] > —0.04:

en key e:
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35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

76

pass
delay = time.time () — delay
print (delay)

break # finishing the loop

except:
break
delay = time.time ()

def sensor_ function () :

fs = 165.9264858735708
fc

15 # Cut—off frequency of the filter
w = fc / (fs / 2) # Normalize the frequency

b, a = signal.butter (2, w, 'low')

model = hmm.GaussianHMM (n_components=4,
covariance_type="spherical",
params="cmt",

algorithm="viterbi™)

model.startprob_ = np.array([0.25, 0.25, 0.25, 0.25]

init_param

)

model.transmat_ = np.array([[0.948275862068966, 0.0517241379310
[0, 0.984732824427481, 0.0152671755725191,
[0, 0, 0.969543147208122, 0.0304568527918

[0.0156657963446475, 0, 0,

model .means_ = np.array([[—199.731014627276],
[—18.5162706325788]

[—298.191241225539]
[232.5728728394841] ]

4

)

model.covars_ = np.array([113.830919434039,
14.8864353839467,

221.608481988583,
163.783635242862])

global loop_flag

host
port = 50000

s = socket.socket (socket .AF_INET, socket.SOCK_DGRAM)

0.984334203

s="cm" ,

345, 0, 01,
01,

7821,
655353]11])
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7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
00
101
102
103
104
05
L06
Lo7
08
09
10
111
112
113
114
115
116
17

118

s.setsockopt (socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
s.setsockopt (socket.SOL_SOCKET, socket.SO_BROADCAST, 1)
s.bind( (host, port))

# used for debugging

saved_data = []

angular_velocity = []

print ("Success binding")

global data

last_output_state = 0

try:

# Set up plot to call animate() function periodically

while loop_flag:

#print (loop_flag)

#start = time.time ()

message, address = s.recvifrom(8192)

m = message.decode ("utf—-8")
#felapsed_time_fl = (time.time() — start)
#freq = 1 / elapsed_time_f1l

data = (m.split ('<TimeStamp>"')[1l].split ('</TimeStamp') [
m.split ('<Accelerometerl>") [1].split ('</Accelerometer
m.split ('<Accelerometer2>") [1].split ('</Accelerometer
m.split ('<Accelerometer3>"') [1].split ('</Accelerometer
m.split ('<Gyroscopel>"')[1l].split ('</Gyroscopel>"')[0],
m.split ('<Gyroscope2>"') [1].split ('</Gyroscope2>"')[0],
m.split ('<Gyroscope3>"') [1].split ('</Gyroscope3>"') [0]

)
# print (data)
angular_velocity.append([float (datal[4])*«360/ (2xnp.pi)])
saved_data.append (data)
start_prob = np.array([0.0, 0.0, 0.0, 0.0])

start_prob[last_output_state] = 1.0
model.startprob_ = start_prob
if len(angular_velocity) >= 100:
output_signal = signal.filtfilt (b, a, angular_veloc
else:
output_signal = angular_velocity[—15:]
[p, output_data] = model.decode (output_signal)

if len(output_data) >=2:

01,

1>") [01,
e>") 101,
s>")[01,

ity[—15:
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119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159

160

last_output_state = output_datall]
print (last_output_state)

print ("Finished acquisition™)

print ("Saving data™)

file_path = '<YOUR_FILE PATH>'
with open(file_path, 'w') as fp:

fp.write('\n'.join('{} {} {} {} {} {} {}'.format (x[0],
x[1], x[2], xI[31, x[4], x[5], x[6]) for x in saved_data

print ("Finished saving sata")
except (KeyboardInterrupt, SystemExit):
print ("end")

pass

# This function is called periodically from FuncAnimation
def animate (i, xs, ysl, ys2, ys3):

auxl round (float (datal4]), 2)

aux2 = round (float (data[5]), 2)

aux3 = round (float (data[6]), 2)

# Add x and y to lists
xs.append (dt.datetime.now () .strftime ('SH:$M:%S.%f"))
ysl.append (auxl)
ys2.append (aux2)
ys3.append (aux3)
if keyboard.is_pressed('p'):
while True:

pass

# Limit x and y lists to 20 items
xs = xs[—20:]

ysl = ysl[—20:]

ys2 = ys2[—20:]

ys3[—20:]

ys3

# Draw x and y lists

ax.clear ()

) )
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161
162
L63
164
L65
166
Le7
168
169
170
171
172
173
174
175
L76
L7
L78
L79
180
181
182
183
184
L85
186
187
188
189
190
191
192
193

194

if

ax.plot (xs, ysl, 'r') #Lateral (Direita +)
ax.plot (xs, ys2, 'b'") #Frente—tr s (Frente +)
ax.plot (xs, ys3, 'g'") #Vertical (Cima +)

# Format plot

plt.xticks (rotation=45, ha='right')
plt.subplots_adjust (bottom=0.30)
plt.title('Angular velocity over Time')
plt.ylabel ('"Angular velocity (rad/s)"'")

__name___ == "__main__":

x = threading.Thread(target=sensor_function, args=())
x.daemon = True

x.start ()

end_loop_thread = threading.Thread (target=stop_loop, args=())
end_loop_thread.daemon = True

end_loop_thread.start ()

fig = plt.figure()
ax = fig.add_subplot (1, 1, 1)
# Create figure for plotting

xs = []
ysl = []
ysz = [
ys3 = []

print ("Creating animation")

ani = animation.FuncAnimation(fig, animate, fargs=(xs,ysl, ys2,

plt.show ()

ys3),

i



	Folha de rosto
	Dedicatória
	Agradecimentos
	Epígrafe
	Resumo
	Abstract
	Lista de figuras
	Lista de tabelas
	Lista de abreviaturas e siglas
	Lista de símbolos
	Sumário
	Introdução
	Métodos
	Métodos de segmentação do caminhar humano
	Processos de Markov
	Exemplo simples de um Processo de Markov Homogêneo 

	Modelo Oculto de Markov
	Exemplo simples de um Modelo Oculto de Markov
	Problemas básicos relacionados a Modelos Ocultos de Markov
	Solução ao Problema 2
	Algoritmo de Viterbi de curta duração (On-line Viterbi)
	Solução ao Problema 3

	Modelagem Markoviana do caminhar humano
	Articulações divididas em setores
	Quatro fases da marcha humana


	Experimentos
	Derivação de uma MPT com base no modelo das articulações divididas em setores
	Sensores utilizados
	Realização

	Treinamento do Modelo Oculto de Markov do tipo left-right com quatro fases
	Sensores utilizados
	Escolha das saídas de interesse
	Realização


	Resultados
	Articulações divididas em setores
	Modelo oculto de Markov do tipo left-right com quatro fases
	Performance e comparação com outros trabalhos da literatura


	Discussão Geral e Conclusões
	Trabalhos futuros

	Referências
	Apêndices
	Códigos em MATLAB
	Código em Python


