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RESUMO 

 

CARMO, M. E. B. do. Uso de Nomogramas para Análise dos Limites de Estabilidade de 

Tensão de Sistemas Elétricos de Potência. Trabalho de Conclusão de Curso – Escola de 

Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2015. 

 

Com a crescente utilização da energia elétrica nas mais variadas atividades, os Sistemas 

Elétricos de Potência (SEP) estão cada vez mais complexos e suscetíveis a variações de carga, 

que têm relação direta com o aparecimento de fenômenos relacionados à estabilidade de tensão. 

O entendimento e estudo destes efeitos são importantes para a operação e planejamento eficazes 

do sistema, e os nomogramas são uma ferramenta auxiliar nesse processo. Nomogramas são 

gráficos que representam de maneira simples e intuitiva os limites operativos e de estabilidade 

de um SEP, podendo ser utilizados para auxiliar a operação e planejamento da expansão do 

sistema. O fluxo de carga é a ferramenta básica para avaliar as condições normais e os limites 

de operação de um SEP, sendo utilizado para a obtenção dos dados para os nomogramas deste 

projeto. Inicialmente, propõe-se o desenvolvimento de métodos ponto a ponto de criação de 

nomogramas, um método de fácil implementação, porém com grande esforço computacional. 

Posteriormente, implementa-se o método da continuação, abrangendo o estudo do fluxo de 

carga continuado (CPFLOW), sendo o uso da abordagem preditor - corretor essencial para a 

redução do esforço computacional e aumento da eficiência geral e da confiabilidade dos 

nomogramas produzidos. As bifurcações, principalmente aquelas do tipo sela-nó e induzidas 

por limite, são comuns em casos de não-convergência do fluxo de carga, sendo, portanto, 

importante estudá-las para compreender a natureza desses fenômenos e analisar corretamente 

os resultados obtidos pelos nomogramas implementados. 

 

Palavras-chave: Sistemas Elétricos de Potência, Estabilidade de Tensão, Fluxo de Carga, Fluxo 

de Carga Continuado, Redespacho de Geração, Análise de Segurança. 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ABSTRACT 

 

CARMO, M. E. B. do. Use of Nomograms for Analysis of the Voltage Stability Limits in 

Electrical Power Systems. Trabalho de Conclusão de Curso – Escola de Engenharia de São 

Carlos, Universidade de São Paulo, São Carlos, 2015. 

 

With the constant growth of the use of electrical energy in many different activities, Electrical 

Power Systems (EPS) are becoming more complex and vulnerable to load variations, which 

have direct relation to the appearance of phenomena related to voltage stability. The 

understanding and study of these effects are important for the operation and efficient 

development of the system, and nomograms are a supporting tool in this process. Nomograms 

are graphs that represent in a simple and intuitive way the operational and stability limits of an 

EPS, making them viable for supporting the operation and expansion planning of the system. 

The power flow is the basic tool for evaluation of the normal conditions and operational limits 

of an EPS, and it is employed for obtainment of data used in the nomograms of this project. 

First, the development of a point-to-point method to create nomograms was suggested, which 

is an easy to implement technique, but with great computational effort. Later, the continued 

method is implemented, covering the continuous power flow (CPFLOW) study, and using the 

predictor – corrector approach to reduce the computational effort and increase the general 

efficiency and reliability of the resulting nomograms. The bifurcations, especially the saddle-

node and limit induced types, are common in cases where the power flow does not converge, 

making it important to study these relations to comprehend the nature of these phenomena and 

correctly analyze the results obtained with the nomograms. 

 

Keywords: Electrical Power Systems, Voltage Stability, Power Flow, Continuous Power Flow, 

Generation Dispatch, Security Analysis. 
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1. INTRODUÇÃO 

 

À medida que a dimensão dos Sistemas Elétricos de Potência (SEP) aumenta, os problemas 

relacionados à estabilidade de tensão tornam-se mais presentes e relevantes, e muitas vezes o sistema 

de transmissão opera próximo de sua capacidade máxima. A operação, assim como o planejamento e a 

expansão dos SEP são atividades naturalmente complexas e devem levar em consideração os limites 

operacionais dos elementos do sistema. Como o fornecimento de energia elétrica deve ser contínuo e 

com a maior qualidade possível, assegurar a segurança da operação do SEP é uma tarefa constante dos 

operadores, e as ferramentas que puderem auxiliar tais atividades são bem-vindas neste cenário. 

Nomogramas são gráficos que mostram a região de operação segura de um sistema elétrico e 

podem auxiliar o operador do sistema em avaliar a margem de segurança e projetar ações de controle 

preventivo para evitar interrupções do fornecimento de energia. As regiões de segurança são geralmente 

apresentadas em duas dimensões e são o resultado de avaliação de segurança de um sistema para uma 

faixa de variação de 2 variáveis de parametrização, tais como geração ou intercâmbio entre áreas. Os 

nomogramas têm como sua característica principal a maneira simples e intuitiva na exibição dos 

resultados. 

O Operador Nacional do Sistema Elétrico (ONS) possui ferramentas para auxiliar os seus 

operadores a assegurar o fornecimento de energia de forma segura e ininterrupta, que incluem diversos 

softwares, como o ANAREDE, utilizado para solucionar problemas de fluxo de carga e o Organon 

(QUADROS, 2008), que é um programa que engloba a solução de fluxos de carga e simulações de 

transitórios eletromecânicos para traçar os limites de segurança de dado sistema. O resultado fornecido 

pelo Organon pode ser representado de maneira gráfica por nomogramas, mostrando se o ponto de 

operação analisado está próximo aos limites operativos do mesmo, ou seja, próximo à fronteira de 

segurança do sistema. 

 

1.1. Proposta do Trabalho 

 

A proposta deste trabalho é desenvolver uma ferramenta computacional que traçará nomogramas 

úteis na operação e planejamento da expansão de um SEP. As regiões de segurança representadas nos 

nomogramas levarão em consideração a violação dos limites operativos de tensão em todas as barras do 

sistema e o limite de máximo carregamento do SEP e, portanto, será uma representação da região de 

segurança no contexto de análises estáticas de estabilidade de tensão. Além disto deseja-se traçar curvas 

λV, importantes para a análise dos limites de operação de um SEP. Dois métodos foram desenvolvidos: 

método ponto a ponto e método da continuação. O primeiro busca resolver fluxos de carga consecutivos 

com diferentes despachos de geração para encontrar os limites operativos do sistema, e o segundo utiliza 
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uma abordagem preditor-corretor para encontrar tais limites, o que aumenta a precisão e a eficiência 

computacional do traçado destes gráficos. A utilização do método da continuação será interessante pelo 

fato de que o fluxo de carga clássico apresenta problemas de convergência na fronteira de operação do 

sistema, ou seja, próximo a bifurcações sela-nó. A utilização do fluxo de carga continuado evitará este 

tipo de problema, pois nesta abordagem é possível traçar uma curva PV ou λV mesmo próxima ao ponto 

de máximo carregamento do SEP, já que a singularidade da matriz jacobiana na região do “nariz” da 

curva não será problema para o método preditor-corretor (CHIANG, 1995). Uma comparação entre os 

resultados destes dois métodos também será um objetivo deste trabalho. 

 

1.2. Estrutura da monografia 

 

Os capítulos que seguem estão divididos conforme o esquema que segue: 

 

 Capítulo 2: A abordagem clássica do problema do fluxo de carga é apresentada, e foi utilizada para 

obtenção do estado do sistema no traçado dos nomogramas; 

 Capítulo 3: Conceitos e o método do fluxo de carga continuado são apresentados, sendo ferramentas 

importantes para a obtenção de nomogramas mais precisos e construídos de maneira eficiente; 

 Capítulo 4: A maneira como os nomogramas foram traçados é apresentada, tanto para o método ponto 

a ponto como o da continuação, além do método de redespacho de geração utilizado; 

 Capítulo 5: Os resultados obtidos para o SEP escolhido são apresentados, assim como uma análise dos 

métodos propostos e utilizados; 

 Capítulo 6: As conclusões do projeto são apresentadas, também incluindo propostas para trabalhos 

futuros. 

 

 



 

2. FLUXO DE CARGA CLÁSSICO 

 

Apresenta-se nesta seção a modelagem clássica do problema do fluxo de carga (também 

conhecido como fluxo de potência), que fornece o estado (tensão e ângulo de todas as barras do sistema) 

para cada ponto de operação de um SEP em regime permanente. O modelo matemático de um fluxo de 

potência é basicamente um sistema de equações algébricas não lineares que representam a rede, nas 

quais os dados de entrada são os parâmetros da rede, as magnitudes das tensões em barras de geração, 

as cargas ativas e reativas das barras do SEP e gerações ativas das barras. O método de Newton-Raphson 

é atualmente o mais utilizado para a solução do sistema de equações de fluxo de carga, pois sua robustez 

e rápida convergência justificam sua escolha. A formulação matricial do método de Newton-Raphson 

também é apresentada neste capítulo. Além do uso do fluxo de carga para análise de estabilidade de 

tensão, ele também é útil para cálculos das tensões pré-falta de curto-circuito, análises de confiabilidade 

de SEP e fluxo de potência ótimo (BORGES, 2005). 

 

2.1. Nomenclatura Básica 

 

Todo o equacionamento que segue nas seções de Nomenclatura Básica e de Modelagem do 

Problema e dos Elementos da Rede (cm exceção dos transformadores) foi baseada no trabalho de 

(BORGES, 2005). 

Quatro variáveis podem ser associadas a cada barra de um SEP: 

 Vk: Módulo da tensão na barra k; 

 θk: Ângulo da tensão na barra k; 

 Pk: Injeção líquida de potência ativa na barra k; 

 Qk: Injeção líquida de potência reativa na barra k. 

Os ângulos θk estão defasados em relação a um referencial, que é a barra swing, slack, flutuante 

ou de referência. Assume-se que a injeção de potência ativa ou reativa na barra possui sinal positivo, e 

a saída de P ou Q para uma carga possui sinal negativo. 

Classifica-se as barras de um SEP em três grupos: 

 Barra de Referência: apenas uma barra pode ser deste tipo, e ela servirá como referência angular 

para o SEP, além de ser responsável por suprir as perdas existentes no mesmo, pois sua geração 

de potência ativa não é previamente estabelecida. São fornecidos Vk e θk para esta barra, e calcula-

se Pk e Qk; 

 Barras PV: são usualmente barras de geração ou barras de compensadores síncronos, nas quais 

são fornecidos Pk e Vk, e calculados Qk e θk. Nestas barras existe controle da magnitude das 

tensões geradas e da potência ativa fornecida; 
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 Barras PQ: são barras de carga, nas quais são fornecidos Pk e Qk, e calculados Vk e θk. 

 

2.2. Modelagem do Problema e dos Elementos da Rede 

 

2.2.1. Matriz Admitância e Injeção de Potência 

 

A matriz admitância (YBARRA) é importante para a solução do problema de fluxo de carga 

matricialmente, implementada neste trabalho. Ela possui elementos complexos em sua composição, é 

simétrica em relação à sua diagonal principal (caso a rede não possua transformadores defasadores, que 

será o caso das análises deste trabalho), quadrada e de dimensão n x n, sendo n o número de barras do 

SEP, esparsa, com elementos da diagonal principal com parte real positiva e, fora dela, negativa. O 

cálculo dos elementos de YBARRA pode ser descrito como: 

 Elementos da diagonal principal (Ykk): somatório das admitâncias diretamente conectadas à barra 

k; 

 Elementos fora da diagonal principal (Ykj): oposto da soma das admitâncias que ligam as barras 

k e j. 

 

Modela-se a injeção líquida de potência ativa, reativa e aparente em cada barra k, respectivamente, 

como: 

 𝑃𝑘 = 𝑃𝐺𝑘 − 𝑃𝐿𝑘 ( 1 ) 

 𝑄𝑘 = 𝑄𝐺𝑘 − 𝑄𝐿𝑘 ( 2 ) 

 𝑆̇𝑘 = 𝑃𝑘 + 𝑗𝑄𝑘 ( 3 ) 

 

Nas quais o índice G refere-se às grandezas geradas pela unidade geradora e L às grandezas 

consumidas pela carga. A notação fasorial utilizada para dada grandeza de magnitude 𝑉 e ângulo 𝜃 é 

𝑉̇ = 𝑉∠𝜃. 

A Figura 1 representa esta injeção de potência em uma barra k de um SEP, resultando em: 

 𝐼̇ = 𝑌𝐵𝐴𝑅𝑅𝐴 × 𝑉̇ ( 4 ) 

 
𝑆̇𝑘 = 𝑉̇𝑘 × 𝐼𝑘̇

∗ = 𝑃𝑘 + 𝑗𝑄𝑘 → 𝐼𝑘̇
∗ =

𝑃𝑘 + 𝑗𝑄𝑘

𝑉̇𝑘
 → 𝐼𝑘̇ = 

𝑃𝑘 + 𝑗𝑄𝑘

𝑉̇𝑘
∗

 

 

( 5 ) 

 

Das equações nodais obtêm-se: 

 𝐼𝑘̇ = ∑ 𝑌𝑘𝑚

𝑛

𝑚=1

× 𝑉̇𝑚 
( 6 ) 

 𝐼𝑘
∗̇ = ∑ 𝑌𝑘𝑚

∗

𝑛

𝑚=1

× 𝑉̇𝑚
∗  

( 7 ) 
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As equações do fluxo de potência resultam em: 

 
𝑆̇𝑘 = 𝑉̇𝑘 × 𝐼𝑘̇

∗ = 𝑃𝑘 + 𝑗𝑄𝑘 = 𝑉̇𝑘 × (∑ 𝑌𝑘𝑚
∗

𝑛

𝑚=1

× 𝑉̇𝑚
∗) , 𝑘 = 1,… , 𝑛 

 

( 8 ) 

 

            

Figura 1: Injeção de potência em uma barra k do SEP. 

 

Ik refere-se à injeção de corrente na barra k. As Equações 4 a 8 descrevem o fluxo de potência na 

forma complexa. Na sequência são apresentadas as equações do fluxo de carga na forma polar e com 

variáveis reais. 

 

2.2.2. Equações de Pk e Qk com Variáveis Reais 

 

É comum desmembrar a equação complexa de potência em duas equações reais, 9 e 10: 

 𝑃𝑘 = 𝑅𝑒{𝑆̇𝑘} ( 9 ) 

 𝑄𝑘 = 𝐼𝑚{𝑆̇𝑘} ( 10 ) 

 

Segue o equacionamento para potência ativa, Pk: 

 
𝑃𝑘 = 𝑅𝑒 {𝑉̇𝑘 × (∑ 𝑌𝑘𝑚

∗

𝑛

𝑚=1

× 𝑉̇𝑚
∗)} , 𝑘 = 1,… , 𝑛. 

 

( 11 ) 

 

Sabendo-se que 𝑉̇𝑘 = 𝑉𝑘∠𝜃𝑘, 𝑉̇𝑚 = 𝑉𝑚∠𝜃𝑚, 𝑌𝑘𝑚 = 𝐺𝑘𝑚 + 𝑗𝐵𝑘𝑚, obtêm-se: 

 

𝑃𝑘 = 𝑅𝑒 {𝑉𝑘∠𝜃𝑘 × (∑(𝐺𝑘𝑚 − 𝑗𝐵𝑘𝑚) × 𝑉𝑚∠−𝜃𝑚

𝑛

𝑚=1

)} , 𝑘

= 1,… , 𝑛. 
 

( 12 ) 

 

Introduzindo-se 𝑉𝑘∠𝜃𝑘 dentro do somatório, obtêm-se: 
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𝑃𝑘 = 𝑅𝑒 {∑ 𝑉𝑘∠𝜃𝑘 × (𝐺𝑘𝑚 − 𝑗𝐵𝑘𝑚) × 𝑉𝑚∠−𝜃𝑚

𝑛

𝑚=1

} , 𝑘 = 1,… , 𝑛. 

 

( 13 ) 

 𝑃𝑘 = 𝑅𝑒 {∑ 𝑉𝑘 × 𝑉𝑚∠(𝜃𝑘−𝜃𝑚) × (𝐺𝑘𝑚 − 𝑗𝐵𝑘𝑚)

𝑛

𝑚=1

} , 𝑘 = 1,… , 𝑛. 
( 14 ) 

 
𝑃𝑘 = 𝑅𝑒 {∑ 𝑉𝑘 × 𝑉𝑚 ×

𝑛

𝑚=1

 𝐺𝑘𝑚∠(𝜃𝑘−𝜃𝑚) − 𝑗𝑉𝑘 × 𝑉𝑚 × 𝐵𝑘𝑚∠(𝜃𝑘−𝜃𝑚)} , 𝑘 = 1,… , 𝑛. 

 

( 15 ) 

 

Extraindo a parte real da expressão e declarando 𝜃𝑘𝑚 = 𝜃𝑘 − 𝜃𝑚, obtêm-se: 

 

𝑃𝑘 = ∑{𝑉𝑘 × 𝑉𝑚 × 𝐺𝑘𝑚 × cos(𝜃𝑘𝑚) + 𝑉𝑘 × 𝑉𝑚 × 𝐵𝑘𝑚 × cos (𝜃𝑘𝑚 − 90°)}

𝑛

𝑚=1

, 𝑘

= 1,… , 𝑛. 
 

( 16 ) 

 

Retirando-se 𝑉𝑘 do somatório, colocando 𝑉𝑚 em evidência e utilizando a identidade 

trigonométrica cos(𝛼 − 90°) = 𝑠𝑒𝑛(𝛼), obtêm-se: 

 
𝑃𝑘 = 𝑉𝑘 × [∑ 𝑉𝑚 × {𝐺𝑘𝑚 × cos(𝜃𝑘𝑚) + 𝐵𝑘𝑚 × 𝑠𝑒𝑛(𝜃𝑘𝑚)}

𝑛

𝑚=1

] , 𝑘 = 1,… , 𝑛. 

 

( 17 ) 

 

Analogamente, segue o equacionamento para potência reativa, Qk: 

 
𝑄𝑘 = 𝐼𝑚 {𝑉̇𝑘 × (∑ 𝑌𝑘𝑚

∗

𝑛

𝑚=1

× 𝑉̇𝑚
∗)} , 𝑘 = 1,… , 𝑛. 

 

( 18 ) 

 

Sabendo-se que 𝑉̇𝑘 = 𝑉𝑘∠𝜃𝑘, 𝑉̇𝑚 = 𝑉𝑚∠𝜃𝑚, 𝑌𝑘𝑚 = 𝐺𝑘𝑚 + 𝑗𝐵𝑘𝑚, obtêm-se: 

 
𝑄𝑘 = 𝐼𝑚 {𝑉𝑘∠𝜃𝑘 × (∑(𝐺𝑘𝑚 − 𝑗𝐵𝑘𝑚) × 𝑉𝑚∠−𝜃𝑚

𝑛

𝑚=1

)} , 𝑘 = 1,… , 𝑛. 

 

( 19 ) 

 

Introduzindo-se 𝑉𝑘∠𝜃𝑘 dentro do somatório, obtêm-se: 

 
𝑄𝑘 = 𝐼𝑚 {∑ 𝑉𝑘∠𝜃𝑘 × (𝐺𝑘𝑚 − 𝑗𝐵𝑘𝑚) × 𝑉𝑚∠−𝜃𝑚

𝑛

𝑚=1

} , 𝑘 = 1,… , 𝑛. 

 

( 20 ) 

 
𝑄𝑘 = 𝐼𝑚 {∑ 𝑉𝑘 × 𝑉𝑚∠(𝜃𝑘−𝜃𝑚) × (𝐺𝑘𝑚 − 𝑗𝐵𝑘𝑚)

𝑛

𝑚=1

} , 𝑘 = 1,… , 𝑛. 

 

( 21 ) 

 𝑄𝑘 = 𝐼𝑚 {∑ 𝑉𝑘 × 𝑉𝑚 ×

𝑛

𝑚=1

 𝐺𝑘𝑚∠(𝜃𝑘−𝜃𝑚) − 𝑗𝑉𝑘 × 𝑉𝑚 × 𝐵𝑘𝑚∠(𝜃𝑘−𝜃𝑚)} , 𝑘 = 1,… , 𝑛. 
( 22 ) 
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Extraindo a parte imaginária da expressão e usando 𝜃𝑘𝑚 =  𝜃𝑘 − 𝜃𝑚, obtêm-se: 

 

𝑄𝑘 = ∑{𝑉𝑘 × 𝑉𝑚 × 𝐺𝑘𝑚 × sen(𝜃𝑘𝑚) + 𝑉𝑘 × 𝑉𝑚 × 𝐵𝑘𝑚

𝑛

𝑚=1

× sen (𝜃𝑘𝑚 − 90°)} , 𝑘 = 1,… , 𝑛. 
 

( 23 ) 

 

Retirando-se 𝑉𝑘 do somatório, colocando 𝑉𝑚 em evidência e utilizando a identidade 

trigonométrica sen(𝛼 − 90°) = −𝑐𝑜𝑠(𝛼), obtêm-se: 

 𝑄𝑘 = 𝑉𝑘 × [∑ 𝑉𝑚 × {𝐺𝑘𝑚 × sen(𝜃𝑘𝑚) − 𝐵𝑘𝑚 × 𝑐𝑜𝑠(𝜃𝑘𝑚)}

𝑛

𝑚=1

] , 𝑘 = 1,… , 𝑛. 
( 24 ) 

 

Para a solução de um fluxo de carga é necessário modelar também os elementos da rede elétrica 

em análise, basicamente suas linhas de transmissão e transformadores, uma vez que os gerados e cargas 

serão modelados como barras PV, slack ou PQ do sistema. Os modelos destes elementos são mostrados 

a seguir. 

 

2.2.3. Linhas de Transmissão 

 

Utiliza-se o modelo π de linhas de transmissão, também conhecido como modelo de linhas 

médias, para modelar estes elementos. Ele é composto por uma impedância em série 𝑍𝑘𝑚 = 𝑟𝑘𝑚 + 𝑗𝑥𝑘𝑚 

e susceptância shunt 𝑏𝑘𝑚
𝑠ℎ , conforme Figura 2: 

 

Figura 2: Modelo π utilizado para as linhas de transmissão. 

 

Neste modelo, 𝐸𝑘 representa o fasor de tensão em determinada barra k, explicitado como 𝐸𝑘 =

𝑉𝑘∠𝜃𝑘, com módulo 𝑉𝑘 e ângulo 𝜃𝑘 (MONTICELLI, 1983). A corrente que sai da barra k para m é 
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definida como 𝐼𝑘𝑚. A admitância série 𝑦𝑘𝑚 pode ser escrita em função da condutância série 𝑔𝑘𝑚 e da 

susceptância 𝑏𝑘𝑚, como segue: 

 𝑔𝑘𝑚 =
𝑟𝑘𝑚

𝑟𝑘𝑚
2 + 𝑥𝑘𝑚

2  ( 25 ) 

 𝑏𝑘𝑚 =
−𝑥𝑘𝑚

𝑟𝑘𝑚
2 + 𝑥𝑘𝑚

2  ( 26 ) 

 𝑦𝑘𝑚 = 𝑔𝑘𝑚 + 𝑗𝑏𝑘𝑚 
( 27 ) 

 

As correntes 𝐼𝑘𝑚 e 𝐼𝑚𝑘 podem ser expressas por: 

 
𝐼𝑘𝑚 = (𝑦𝑘𝑚 + 𝑗𝑏𝑘𝑚

𝑠ℎ )𝐸𝑘 − 𝑦𝑘𝑚𝐸𝑚 = 𝑦𝑘𝑚(𝐸𝑘 − 𝐸𝑚) + 𝑗𝑏𝑘𝑚
𝑠ℎ 𝐸𝑘 

 

( 28 ) 

 
𝐼𝑚𝑘 = (𝑦𝑘𝑚 + 𝑗𝑏𝑘𝑚

𝑠ℎ )𝐸𝑚 − 𝑦𝑘𝑚𝐸𝑘 = 𝑦𝑘𝑚(𝐸𝑚 − 𝐸𝑘) + 𝑗𝑏𝑘𝑚
𝑠ℎ 𝐸𝑚 

 

( 29 ) 

 

O fluxo de potência saindo da barra k rumo m pode ser representado como segue: 

 

 
𝑆𝑘𝑚
∗ = 𝑃𝑘𝑚 − 𝑗𝑄𝑘𝑚 = 𝐸𝑘

∗𝐼𝑘𝑚 = 𝑦𝑘𝑚𝑉𝑘𝑒
−𝑗𝜃𝑘(𝑉𝑘𝑒

𝑗𝜃𝑘 − 𝑉𝑚𝑒
𝑗𝜃𝑚) + 𝑗𝑏𝑘𝑚

𝑠ℎ 𝑉𝑘
2 

 

( 30 ) 

 

Os fluxos 𝑃𝑘𝑚 e 𝑄𝑘𝑚 podem ser obtidos separando as partes reais e imaginárias da equação (30), 

resultando em: 

 
𝑃𝑘𝑚 = 𝑉𝑘

2𝑔𝑘𝑚 − 𝑉𝑘𝑉𝑚𝑔𝑘𝑚𝑐𝑜𝑠(𝜃𝑘𝑚) − 𝑉𝑘𝑉𝑚𝑏𝑘𝑚𝑠𝑒𝑛(𝜃𝑘𝑚) 
 

( 31 ) 

 
𝑄𝑘𝑚 = −𝑉𝑘

2(𝑏𝑘𝑚 + 𝑏𝑘𝑚
𝑠ℎ ) + 𝑉𝑘𝑉𝑚𝑏𝑘𝑚𝑐𝑜𝑠(𝜃𝑘𝑚) − 𝑉𝑘𝑉𝑚𝑔𝑘𝑚𝑠𝑒𝑛(𝜃𝑘𝑚) 

 

( 32 ) 

 

Analogamente, os fluxos 𝑃𝑚𝑘 e 𝑄𝑚𝑘 são obtidos: 

 
𝑃𝑘𝑚 = 𝑉𝑚

2𝑔𝑘𝑚 − 𝑉𝑘𝑉𝑚𝑔𝑘𝑚𝑐𝑜𝑠(𝜃𝑘𝑚) + 𝑉𝑘𝑉𝑚𝑏𝑘𝑚𝑠𝑒𝑛(𝜃𝑘𝑚) 
 

( 33 ) 

 
𝑄𝑘𝑚 = −𝑉𝑚

2(𝑏𝑘𝑚 + 𝑏𝑘𝑚
𝑠ℎ ) + 𝑉𝑘𝑉𝑚𝑏𝑘𝑚𝑐𝑜𝑠(𝜃𝑘𝑚) + 𝑉𝑘𝑉𝑚𝑔𝑘𝑚𝑠𝑒𝑛(𝜃𝑘𝑚) 

 

( 34 ) 
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2.2.4. Transformadores 

 

Utiliza-se o modelo da Figura 3 para modelar os transformadores de um SEP. 

 

Figura 3: Modelo de transformador de SEP. 

 

Pode-se utilizar o modelo de transformador da Figura 3 para equacionar tanto transformadores 

em fase como os defasadores, pois o parâmetro 𝑡 pode assumir um valor numérico 𝑎 qualquer 

(caracterizando um transformador em fase), um valor 𝑒𝑗𝜑 (modelando um defasador puro) ou um valor 

𝑎𝑒𝑗𝜑 (representando um defasador). O equacionamento que segue para o modelo de transformador está 

baseado no trabalho de (ABRANTES, 2013). 

Este modelo possui relação entre as magnitudes das tensões dos nós terminais k e p igual a: 

 
𝑉𝑝

𝑉𝑘
= 𝑎 

( 35 ) 

 

Como 𝜃𝑘 = 𝜃𝑝 (transformador em fase), têm-se que: 

 

𝐸𝑝
𝐸𝑘
=
𝑉𝑝𝑒

𝑗𝜃𝑝

𝑉𝑘𝑒
𝑗𝜃𝑘
= 𝑎 

 

( 36 ) 

 

Como o transformador deste modelo é ideal, não existem perdas de potência ativa ou reativa entre 

os nós k e p, o que resulta em: 

 
𝐸𝑘𝐼𝑘𝑚

∗ + 𝐸𝑝𝐼𝑚𝑘
∗ = 0 

 

( 37 ) 

 

Pode-se reescrever a equação acima de forma e encontrar a relação entre as correntes 𝐼𝑘𝑚 e 𝐼𝑚𝑘, 

resultando em: 

 
𝐼𝑘𝑚
∗

𝐼𝑚𝑘
∗ =

𝐼𝑘𝑚
𝐼𝑚𝑘

= −𝑎 
( 38 ) 

 

Portanto, as correntes 𝐼𝑘𝑚 e 𝐼𝑚𝑘 estão defasadas de 180° e com magnitudes na razão a:1. As 

expressões para as correntes 𝐼𝑘𝑚 e 𝐼𝑚𝑘 podem ser escritas como: 
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𝐼𝑚𝑘 = 𝑦𝑘𝑚(𝐸𝑚 − 𝐸𝑝) = 𝑦𝑘𝑚(𝐸𝑚 − 𝑎𝐸𝑘) = (−𝑎𝑦𝑘𝑚)𝐸𝑘 + 𝑦𝑘𝑚𝐸𝑚 

 

( 39 ) 

 
𝐼𝑘𝑚 = −𝑎𝐼𝑚𝑘 = (𝑎

2𝑦𝑘𝑚)𝐸𝑘 + (−𝑎𝑦𝑘𝑚)𝐸𝑚 
 

( 40 ) 

 

2.2.5. Método de Newton-Raphson 

 

O número de equações a se resolver em um SEP é usualmente grande, pois existem muitas barras 

e muitas linhas de transmissão em sistemas reais. O número de equações para solucionar um fluxo de 

carga é igual a (2 × 𝑛 − 𝑣 − 2), sendo n o número de barras e v o número de barras com tensão 

controlada. Isto enfatiza a necessidade de um método robusto e eficiente para resolução das equações 

do fluxo de carga, especialmente para grandes sistemas, e neste contexto o método de Newton-Raphson 

possui destaque. Neste capítulo é apresentada a aplicação deste método na solução do problema do fluxo 

de potência. 

As equações básicas do fluxo de carga a serem solucionadas são aquelas obtidas em (41) e (42): 

 𝑃𝑘 = 𝑉𝑘 × [∑ 𝑉𝑚 × {𝐺𝑘𝑚 × cos(𝜃𝑘𝑚) + 𝐵𝑘𝑚 × 𝑠𝑒𝑛(𝜃𝑘𝑚)}

𝑛

𝑚=1

] , 𝑘 ∈  {𝑃𝑄, 𝑃𝑉}. 
( 41 ) 

 𝑄𝑘 = 𝑉𝑘 × [∑ 𝑉𝑚 × {𝐺𝑘𝑚 × sen(𝜃𝑘𝑚) − 𝐵𝑘𝑚 × 𝑐𝑜𝑠(𝜃𝑘𝑚)}

𝑛

𝑚=1

] , 𝑘 ∈  {𝑃𝑄}. 
( 42 ) 

 

Os resíduos de potência são representados como: 

 
∆𝑃𝑘 = 𝑃𝑘

(𝑒𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑑𝑜)
− 𝑃𝑘

(𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑑𝑜)(𝑉, 𝜃), 𝑘 ∈  {𝑃𝑄, 𝑃𝑉}. 
 

( 43 ) 

 
∆𝑄𝑘 = 𝑄𝑘

(𝑒𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑑𝑜)
− 𝑄𝑘

(𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑑𝑜)(𝑉, 𝜃), 𝑘 ∈  {𝑃𝑄}. 
 

( 44 ) 

 

O sistema a ser solucionado pelo método de Newton-Raphson é: 

 {
∆𝑃𝑘 = 0, 𝑘 𝜖 {𝑃𝑄, 𝑃𝑉}

∆𝑄𝑘 = 0, 𝑘 𝜖 {𝑃𝑄}
 

( 45 ) 

 

O sistema a ser resolvido pode ser colocado na forma matricial da seguinte maneira: 

 [
∆𝑃
∆𝑄
]
(𝑖)

= −𝐽(𝑖) × [
∆𝜃
∆𝑉
]
(𝑖)

 
( 46 ) 

 

E a atualização das variáveis de estado é calculada por: 

 [
𝜃
𝑉
]
(𝑖+1)

= [
𝜃
𝑉
]
(𝑖)

+ [
∆𝜃
∆𝑉
]
(𝑖)

 
( 47 ) 

 

A convergência do método ocorre quando o maior elemento de ∆𝑃 e o maior elemento de ∆𝑄 são 

menores, em módulo, do que dada tolerância 𝜀. J é a Matriz Jacobiana aplicada à solução do fluxo de 
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carga, explicitada abaixo. Sua dimensão é (𝑛 − 1 + 𝑙) × (𝑛 − 1 + 𝑙), na qual n é o número total de 

barras do sistema e l é o número de barras PQ do sistema. 

 

 
𝐽(𝑛−1+𝑙)×(𝑛−1+𝑙) =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝜕𝑃1
𝜕𝜃1

𝜕𝑃1
𝜕𝜃2

𝜕𝑃2
𝜕𝜃1

𝜕𝑃2
𝜕𝜃2

⋯
𝜕𝑃1
𝜕𝜃𝑛−𝑙

⋯
𝜕𝑃2
𝜕𝜃𝑛−𝑙

⋮ ⋮
𝜕𝑃𝑛−𝑙
𝜕𝜃1

𝜕𝑃𝑛−𝑙
𝜕𝜃2

⋱ ⋮

⋯
𝜕𝑃𝑛−𝑙
𝜕𝜃𝑛−𝑙

𝜕𝑃1
𝜕𝑉1

𝜕𝑃1
𝜕𝑉2

𝜕𝑃2
𝜕𝑉1

𝜕𝑃2
𝜕𝑉2

⋯
𝜕𝑃1
𝜕𝑉𝑙

⋯
𝜕𝑃2
𝜕𝑉𝑙

⋮ ⋮
𝜕𝑃𝑛−𝑙
𝜕𝑉1

𝜕𝑃𝑛−𝑙
𝜕𝑉2

⋱ ⋮

⋯
𝜕𝑃𝑛−𝑙
𝜕𝑉𝑙

𝜕𝑄1
𝜕𝜃1

𝜕𝑄1
𝜕𝜃2

𝜕𝑄2
𝜕𝜃1

𝜕𝑄2
𝜕𝜃2

⋯
𝜕𝑄1
𝜕𝜃𝑛−𝑙

⋯
𝜕𝑄2
𝜕𝜃𝑛−𝑙

⋮ ⋮
𝜕𝑄𝑙
𝜕𝜃1

𝜕𝑄𝑙
𝜕𝜃2

⋱ ⋮

⋯
𝜕𝑄𝑙
𝜕𝜃𝑛−𝑙

𝜕𝑄1
𝜕𝑉1

𝜕𝑄1
𝜕𝑉2

𝜕𝑄2
𝜕𝑉1

𝜕𝑄2
𝜕𝑉2

⋯
𝜕𝑄1
𝜕𝑉𝑙

⋯
𝜕𝑄2
𝜕𝑉𝑙

⋮ ⋮
𝜕𝑄𝑙
𝜕𝑉1

𝜕𝑄𝑙
𝜕𝑉2

⋱ ⋮

⋯
𝜕𝑄𝑙
𝜕𝑉𝑙 ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

( 48 ) 

Pode-se dividir a matriz J em quatro outras, H, N, M e L, como segue: 

 𝐽 =  − [
𝐻 𝑁
𝑀 𝐿

] 
( 49 ) 

 𝐻(𝑛−𝑙)×(𝑛−𝑙) = 
𝜕𝑃

𝜕𝜃
 

( 50 ) 

 𝑁(𝑛−𝑙)×𝑙 = 
𝜕𝑃

𝜕𝑉
 

( 51 ) 

 𝑀𝑙×(𝑛−𝑙) = 
𝜕𝑄

𝜕𝜃
 

( 52 ) 

 𝐿𝑙×𝑙 = 
𝜕𝑄

𝜕𝑉
 

( 53 ) 

 

O sistema matricial a ser resolvido pode ser representado, em termos de H, N, M e L, por: 

 [
∆𝑃
∆𝑄
]
(𝑖)

= − [
𝐻 𝑁
𝑀 𝐿

]
(𝑖)

× [
∆𝜃
∆𝑉
]
(𝑖)

 
( 54 ) 

 

Pode-se desenvolver as equações de H, N, M e L para os seus elementos da diagonal principal 

(índice kk subscrito) e fora dela (índice km subscrito), resultando em: 

 𝐻𝑘𝑚 =
𝜕𝑃𝑘
𝜕𝜃𝑚

= 𝑉𝑘 × 𝑉𝑚 × {𝐺𝑘𝑚 × 𝑠𝑒𝑛(𝜃𝑘𝑚) − 𝐵𝑘𝑚 × 𝑐𝑜𝑠(𝜃𝑘𝑚)} 
( 55 ) 

 𝐻𝑘𝑘 =
𝜕𝑃𝑘
𝜕𝜃𝑘

= −𝑉𝑘
2 × 𝐵𝑘𝑘 − 𝑉𝑘 × [∑ 𝑉𝑚 × {𝐺𝑘𝑚 × 𝑠𝑒𝑛(𝜃𝑘𝑚) − 𝐵𝑘𝑚 × 𝑐𝑜𝑠(𝜃𝑘𝑚)}

𝑚𝜖𝑘

] ( 56 ) 

 𝑁𝑘𝑚 =
𝜕𝑃𝑘
𝜕𝑉𝑚

= 𝑉𝑘 × {𝐺𝑘𝑚 × 𝑐𝑜𝑠(𝜃𝑘𝑚) + 𝐵𝑘𝑚 × 𝑠𝑒𝑛(𝜃𝑘𝑚)} 
( 57 ) 

 𝑁𝑘𝑘 =
𝜕𝑃𝑘
𝜕𝑉𝑘

= 𝑉𝑘 × 𝐺𝑘𝑘 +∑ 𝑉𝑚 × {𝐺𝑘𝑚 × 𝑐𝑜𝑠(𝜃𝑘𝑚) + 𝐵𝑘𝑚 × 𝑠𝑒𝑛(𝜃𝑘𝑚)}

𝑚𝜖𝑘

 ( 58 ) 

 𝑀𝑘𝑚 =
𝜕𝑄𝑘
𝜕𝜃𝑚

= −𝑉𝑘 × 𝑉𝑚 × {𝐺𝑘𝑚 × 𝑐𝑜𝑠(𝜃𝑘𝑚) + 𝐵𝑘𝑚 × 𝑠𝑒𝑛(𝜃𝑘𝑚)} 
( 59 ) 
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 𝑀𝑘𝑘 =
𝜕𝑄𝑘
𝜕𝜃𝑘

= −𝑉𝑘
2 × 𝐺𝑘𝑘 + 𝑉𝑘 × [∑ 𝑉𝑚 × {𝐺𝑘𝑚 × 𝑐𝑜𝑠(𝜃𝑘𝑚) + 𝐵𝑘𝑚 × 𝑠𝑒𝑛(𝜃𝑘𝑚)}

𝑚𝜖𝑘

] 
( 60 ) 

 𝐿𝑘𝑚 =
𝜕𝑄𝑘
𝜕𝑉𝑚

= 𝑉𝑘 × {𝐺𝑘𝑚 × 𝑠𝑒𝑛(𝜃𝑘𝑚) − 𝐵𝑘𝑚 × 𝑐𝑜𝑠(𝜃𝑘𝑚)} 
( 61 ) 

 𝐿𝑘𝑘 =
𝜕𝑄𝑘
𝜕𝑉𝑘

= −𝑉𝑘 × 𝐵𝑘𝑘 +∑ 𝑉𝑚 × {𝐺𝑘𝑚 × 𝑠𝑒𝑛(𝜃𝑘𝑚) − 𝐵𝑘𝑚 × 𝑐𝑜𝑠(𝜃𝑘𝑚)}

𝑚𝜖𝑘

 ( 62 ) 

 

Uma característica notável da matriz jacobiana é o fato de seus elementos fora da diagonal 

principal que são correspondentes a barras não diretamente conectadas são nulos, pois como 𝐻𝑘𝑚 =

𝑉𝑘 × 𝑉𝑚 × {𝐺𝑘𝑚 × 𝑠𝑒𝑛(𝜃𝑘𝑚) − 𝐵𝑘𝑚 × 𝑐𝑜𝑠(𝜃𝑘𝑚)}, se as barras k e m não estiverem diretamente 

conectadas, 𝐺𝑘𝑚 = 𝐵𝑘𝑚 = 0, o que resulta em 𝐻𝑘𝑚 = 0, tornando o jacobiano uma matriz esparsa; 

Segue o algoritmo para a solução do fluxo de carga pelo método de Newton-Raphson: 

1. Monta-se a matriz YBARRA com os dados do SEP; 

2. Escolhem-se condições iniciais arbitrárias para os estados (𝜃(0), 𝑉(0)) e inicia-se o contador de 

iterações em i = 1; 

3. Calcula-se ∆𝑃𝑘 e ∆𝑄𝑘 e verifica-se a convergência. Caso 𝑚𝑎𝑥{|∆𝑃𝑘|} ≤ 𝜀 e 𝑚𝑎𝑥{|∆𝑄𝑘|} ≤ 𝜀 o 

método é finalizado. Caso contrário, continua-se o método: 

 
∆𝑃𝑘 = 𝑃𝑘

(𝑒𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑑𝑜)
− 𝑃𝑘

(𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑑𝑜)
, 𝑘 ∈  {𝑃𝑄, 𝑃𝑉}. 

 

( 63 ) 

 
∆𝑄𝑘 = 𝑄𝑘

(𝑒𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑑𝑜)
−𝑄𝑘

(𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑑𝑜), 𝑘 ∈  {𝑃𝑄}. 
 

( 64 ) 

4. Aumenta-se o contador de iterações, i = i + 1. Monta-se a matriz jacobiana 𝐽(𝑖); 

5. Soluciona-se o sistema linearizado: 

 [
∆𝑃
∆𝑄
]
(𝑖)

= −𝐽(𝑖) × [
∆𝜃
∆𝑉
]
(𝑖)

 
( 65 ) 

6. Atualiza-se a solução do problema: 

 [
𝜃
𝑉
]
(𝑖+1)

= [
𝜃
𝑉
]
(𝑖)

+ [
∆𝜃
∆𝑉
]
(𝑖)

 
( 66 ) 

7. Volta-se ao passo 3. 

 

 



 

3. FLUXO DE CARGA CONTINUADO 

 

Apresenta-se neste capítulo a abordagem do fluxo de carga continuado utilizado para o traçado 

de nomogramas, além de conceitos importantes para o entendimento deste método. 

 

3.1. Uso de Métodos Continuados para Fluxos de Carga 

 

A justificativa do uso de métodos continuados para a resolução de fluxos de carga recai sobre o 

fato de que estes métodos são ferramentas adequadas ao traçado de curvas para sistemas de equações 

algébricas não-lineares com variação de seus parâmetros. Métodos do tipo ponto a ponto, baseados em 

resoluções sucessivas de fluxo de carga, possuem problemas de convergência nas proximidades do ponto 

de máximo carregamento do sistema elétrico. Consequentemente, deixam de convergir antes do sistema 

atingir o valor de máximo carregamento, o que pode resultar em avaliações conservadoras dos limites 

de carregamento de um sistema. O CPFLOW, proposto em (CHIANG,1995), é uma abordagem do fluxo 

de carga continuado para evitar os problemas de convergência do fluxo de carga convencional em 

situações próximas a uma bifurcação sela-nó do sistema (ponto de máximo carregamento do mesmo). 

Isto possibilita, por exemplo, o traçado de curvas PV ou λV mesmo próximo ao “nariz” da curva, e no 

caso dos nomogramas o método da continuação busca encontrar, para cada direção de crescimento de 

carga, o ponto real de máximo carregamento do SEP. Neste trabalho, o uso deste método busca, portanto, 

melhorar o processo de determinação dos pontos da fronteira de estabilidade de um sistema, além da 

fronteira dos limites de tensão estabelecidos. Busca-se aumentar a eficiência computacional do traçado 

dos nomogramas em relação à solução sucessiva de fluxos de carga e também a confiabilidade das 

respostas encontradas, pois o método da continuação implementado possui a característica de encontrar 

o ponto de máximo carregamento mesmo quando o fluxo de carga clássico apresenta singularidades na 

sua matriz jacobiana. 

 

3.2. Bifurcações em SEP 

 

Os SEP podem ser extensos e são naturalmente sistemas não-lineares e complexos, expostos a 

perturbações que afetam sua dinâmica e seu comportamento em regime permanente (SALIM, 2011). O 

foco deste trabalho são as variações lentas de parâmetros de um SEP, em especial as mudanças de carga 

e de geração. 

As perturbações podem aparecer devido a uma mudança na configuração do sistema, como uma 

contingência ou perda de determinado elemento da rede (linha de transmissão, ou transformador, por 

exemplo). Por outro lado, algumas perturbações não alteram a topologia do SEP, como é o caso das 
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alterações de carga, modeladas como variações lentas de parâmetros e com relação direta com o 

aparecimento de bifurcações em SEP. Neste contexto, abaixo estão apresentadas as bifurcações locais 

mais relevantes em SEP, baseadas nos trabalhos de (SALIM, 2011) e (ABRANTES, 2013). 

 

3.2.1. Bifurcações Sela-Nó (BSN) 

 

Neste tipo de bifurcação, a variação do parâmetro que descreve o comportamento do sistema faz 

com que dois pontos de equilíbrio se aproximem até se encontrar, desaparecendo. Além disto, esta 

bifurcação tem relação com a matriz Jacobiana, sendo que um autovalor real sobre o ponto fixo estável 

se aproxima de zero por valores negativos. O fenômeno da bifurcação sela-nó tem relação com o 

desaparecimento do ponto de equilíbrio estável de operação do SEP, o que ocorre comumente quando o 

sistema atinge seu limite máximo de transferência de potência, podendo resultar em um colapso de 

tensão. Neste trabalho, devido à modelagem das cargas como injeções constantes (as cargas são barras 

PQ constantes), o ponto de BSN coincide com o ponto de máxima transferência de potência do sistema. 

A Error! Reference source not found. ilustra este fato, e os estudos de estabilidade de tensão utilizam 

constantemente análise de curvas P-V e Q-V, como a da Figura 4. A parte de cima da curva, representada 

com o traço em negrito na Figura abaixo, é a região estável de operação do sistema, enquanto a parte 

inferior da curva, que possui um traçado suave, é a região instável. 

 

Figura 4: Curva P-V típica de uma barra de SEP. 
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Na Figura 4, 𝑉0 representa a tensão inicial da barra em análise, 𝑉𝑐𝑟𝑖𝑡 representa a tensão crítica 

próxima à instabilidade do sistema e 𝑃𝑚𝑎𝑥 é o máximo carregamento do SEP. A condição base de 

carregamento do sistema é a potência inicial. O Ponto de BSN é útil para a determinação da fronteira da 

região segura de operação de um SEP. 

 

3.2.2. Bifurcações Induzidas por Limites (BIL) 

 

Como explicado, a BSN tem relação próxima com o limite de capacidade de transmissão de um 

SEP. Por outro lado, a BIL tem relação com o limite de geração de potência reativa de geradores, 

podendo ocorrer, por exemplo, quando um aumento de carga no SEP implica em uma violação do limite 

de injeção de potência reativa de algum gerador, tornando um ponto de equilíbrio estável em um instável 

(ABRANTES, 2013). 

Se a carga e geração possuem uma variação unidirecional, ao alcançar um limite de reativos de 

um gerador, a equação que rege o sistema é alterada imediatamente, pois a barra de geração PV passa a 

ser modelada como uma barra de carga PQ, uma vez que se atingiu a potência reativa máxima que este 

gerador pode fornecer. O sistema com novo equacionamento pode ter um ponto de equilíbrio estável 

próximo ao da solução anterior ou passar a possuir um ponto de equilíbrio instável, resultando em 

colapso de tensão. Ambos os casos estão ilustrados na Figura 5. 

 

Figura 5: Representação da bifurcação induzida por limites devido à violação de limite de reativo. 

 

Na Figura 5, no primeiro caso, o limite de reativo de um gerador é violado, porém o sistema 

continua estável. No segundo caso, a violação do limite de reativo implica na instabilidade do ponto de 

operação e na formação de uma BIL, que ocorre antes da BSN do SEP. 

Uma variação de carga ou uma contingência pode tirar o sistema de seu estado de equilíbrio, como 

mostrado pelos exemplos de bifurcações apresentados. 
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As seções a seguir, referentes a modelagem, parametrização, predição, correção, controle do 

tamanho de passo e algoritmo do fluxo de carga continuado foram baseadas no trabalho de (CHIANG, 

1995). 

 

3.3. Modelagem 

 

A seguir está explicitada a modelagem do fluxo de carga continuado aplicado a SEP, incluindo a 

modelagem, parametrização, preditores, corretor, controle do tamanho de passo e, finalmente, o 

algoritmo da implementação. 

Os métodos continuados são também conhecidos como métodos preditor-corretor devido à 

necessidade de predizer o próximo ponto da solução e corrigir esta predição para obter o ponto real da 

curva. Estes métodos são usados no contexto de SEP para determinar limites de estabilidade do sistema 

em regime permanente (ZIMMERMAN, 2011). 

Considera-se um SEP com equacionamento como segue: 

 
𝑓(𝑥, 𝜆) = 0 

 
( 67 ) 

Na qual λ é um parâmetro de continuação (parâmetro de controle) e x representa as variáveis de 

estado do sistema. Vale ressaltar que 𝜆 ∈ ℝ e a equação (67) pode representar de forma compacta o 

fluxo de carga do SEP conforme capítulo 2 deste trabalho. Pode-se representar o processo continuado 

de obtenção de pontos como: 

 (𝑥𝑗, 𝜆𝑗)
𝑃𝑟𝑒𝑑𝑖𝑡𝑜𝑟
→      (𝑥𝑗+1, 𝜆̂𝑗+1)

𝐶𝑜𝑟𝑟𝑒𝑡𝑜𝑟
→      (𝑥𝑗+1, 𝜆𝑗+1) 

 

( 68 ) 

 

Na qual (𝑥𝑗, 𝜆𝑗) representa a solução atual, (𝑥𝑗+1, 𝜆̂𝑗+1) é a solução predita e (𝑥𝑗+1, 𝜆𝑗+1) é a 

próxima solução da curva. 

Reescrevendo a Equação (67) pode-se equacionar como o parâmetro λ influenciará a solução. 

 
𝑓(𝑥, 𝜆) = 𝑔(𝑥) − 𝜆𝑏 

 
( 69 ) 

 

Na qual b representa a direção da variação de algum parâmetro do sistema. Na construção de 

nomogramas, por exemplo, b é a direção da variação de geração de potência ativa. Variando-se o 

parâmetro b adequadamente é possível investigar os efeitos de variação de carga ou geração em 

determinadas porções de um SEP. 
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3.4. Parametrização 

 

Parametrização é o modo matemático de identificar cada solução de modo que a próxima solução 

ou a anterior possa ser quantificada. Há diversas maneiras de parametrizar os valores de (𝑥, 𝜆) ao longo 

da curva de solução, e algumas destas possibilidades são apresentadas abaixo (CHIANG, 1995). 

 

3.4.1. Parametrização Física ou Natural 

 

Este tipo de parametrização usa simplesmente λ como elemento para parametrização, sendo que 

a largura de passo é Δ𝜆. O novo λ é igual ao anterior somado ao tamanho do passo. A Figura 6 ilustra 

este tipo de parametrização. 

Uma desvantagem deste tipo de parametrização é o fato de que nas vizinhanças de um ponto de 

BSN pode haver problemas na resolução numérica do sistema, devido à singularidade da matriz 

jacobiana. O tamanho de passo também deve ser selecionado e controlado de maneira adequada para 

evitar que uma predição fuja muito do ponto real da curva, causando uma não convergência do corretor 

e possíveis falhas nas curvas traçadas. 

 

Figura 6: Parametrização física. 

 

3.4.2. Parametrização Local 

 

Neste tipo de parametrização utiliza-se qualquer componente do vetor das variáveis de estado x 

para parametrizar a curva de solução, incluindo λ. O tamanho de passo é Δ𝑥𝑘 ou Δ𝜆, sendo que 𝑥𝑘 

representa algum dos parâmetros de x. A Figura 7 ilustra este caso de parametrização, utilizando um 

parâmetro diferente de λ para parametrizar a curva. 

 



18  3.Fluxo de Carga Continuado 

 

Figura 7: Parametrização local. 

 

3.4.3. Parametrização por Comprimento de Arco 

 

Neste tipo de parametrização utiliza-se a seguinte relação: 

 Δ𝑠 = √{∑(𝑥𝑖 − 𝑥𝑖(𝑠))
2
+ (𝜆 − 𝜆(𝑠))

2
𝑛

𝑖=1

} 
( 70 ) 

 

Na qual Δ𝑠 é o tamanho do passo, que tem relação com a distância entre duas soluções 

consecutivas, λ e 𝑥𝑖 estão associados à solução anterior, 𝜆(𝑠) e 𝑥𝑖(𝑠) associados à predição da próxima 

solução. A Figura 8 ilustra este tipo de parametrização. 

 

 

Figura 8: Parametrização por comprimento de arco. 
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A utilização deste tipo de parametrização é mais interessante que a parametrização física ou local, 

uma vez que este método possui bom comportamento próximo a pontos de BSN, o que pode não ocorrer 

nas outras duas parametrizações citadas (CHIANG, 1995). 

Existem parametrizações por pseudocomprimento de arco, que basicamente utilizam a mesma 

formulação aqui apresentada, porém com fatores de pesos diferentes nos termos da equação. 

 

3.5. Preditor 

 

O preditor é utilizado para estimar a próxima solução da curva sendo traçada, e quanto melhor a 

predição, mais rápida será a convergência para a solução, pelo corretor. Duas grandes abordagens podem 

ser usadas para o preditor: métodos baseados em Equações Diferenciais Ordinárias (EDO), que usam a 

solução atual e suas derivadas para prever a próxima, e métodos baseados em extrapolação polinomial, 

que utilizam apenas a solução atual e anteriores para prever a próxima (CHIANG, 1995). 

Pode-se utilizar os dois preditores juntamente, partindo do método da tangente para obter uma 

solução e, tendo conhecimento desta solução e de uma inicial (caso base), partir para o uso do método 

da secante, menos custoso computacionalmente. 

 

3.5.1. Método da Tangente 

 

O método da tangente utiliza o cálculo das derivadas das variáveis de estado e de λ em relação ao 

comprimento de arco 𝑠 para realizar as predições. Partindo da Equação (67) e diferenciando-se em 

relação a 𝑠, obtêm-se: 

 𝑓𝑥
𝑑𝑥

𝑑𝑠
+ 𝑓𝜆

𝑑𝜆

𝑑𝑠
= 0 → 𝑓𝑥

𝑑𝑥

𝑑𝑠
+ 𝑓𝑥𝑛+1

𝑑𝑥𝑛+1
𝑑𝑠

= 0 
( 71 ) 

 

Na qual 𝜆 = 𝑥𝑛+1. A equação acima representa um sistema implícito de 𝑛 equações algébricas 

lineares e 𝑛 + 1 incógnitas, podendo ser representado de forma matricial como segue: 

 𝐷𝑓 =

[
 
 
 
 
 
 
 
𝜕𝑓1
𝜕𝑥1

𝜕𝑓1
𝜕𝑥2

⋯

𝜕𝑓2
𝜕𝑥1

𝜕𝑓2
𝜕𝑥2

⋯

𝜕𝑓1
𝜕𝑥𝑘

⋯
𝜕𝑓1
𝜕𝑥𝑛+1

𝜕𝑓2
𝜕𝑥𝑘

⋯
𝜕𝑓2
𝜕𝑥𝑛+1

⋮ ⋮ ⋮
𝜕𝑓𝑛
𝜕𝑥1

𝜕𝑓𝑛
𝜕𝑥2

⋯

⋮ ⋱ ⋮
𝜕𝑓𝑛
𝜕𝑥𝑘

⋯
𝜕𝑓𝑛
𝜕𝑥𝑛+1]

 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
𝑑𝑥1
𝑑𝑠
⋮
𝑑𝑥𝑘
𝑑𝑠
⋮

𝑑𝑥𝑛+1
𝑑𝑠 ]

 
 
 
 
 
 
 

= 0 
( 72 ) 

 

Na qual 1 ≤ 𝑘 ≤ 𝑛 + 1. 

Para garantir que 𝑠 é o comprimento de arco na curva, é necessário a seguinte equação: 

 (
𝑑𝑥1
𝑑𝑠
)
2

+⋯+ (
𝑑𝑥𝑛
𝑑𝑠
)
2

+ (
𝑑𝑥𝑛+1
𝑑𝑠

)
2

= 1 
( 73 ) 
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As Equações (71) e (73) formam um sistema de 𝑛 + 1 equações e 𝑛 + 1 incógnitas. Vale notar 

que (71) é um conjunto de equações lineares e (73) é não-linear. O procedimento a seguir pode ser 

utilizado para resolver este sistema de equações (CHIANG, 1995). 

Supondo que: 

 
𝑑𝑥𝑘
𝑑𝑠

≠ 0 
( 74 ) 

 

para 𝑘, respeitando 1 ≤ 𝑘 ≤ 𝑛 + 1, e seja 𝐷𝑓𝑘 a matriz de 𝐷𝑓 com a remoção da 𝑘-ésima coluna. 

Considerando que 𝐷𝑓𝑘 não é singular, a equação (71) pode ser resolvida para as incógnitas 

 

 
𝑑𝑥1
𝑑𝑠
,… ,

𝑑𝑥𝑘−1
𝑑𝑠

,
𝑑𝑥𝑘+1
𝑑𝑠

,… ,
𝑑𝑥𝑛+1
𝑑𝑠

 
( 75 ) 

 

na forma de 

 

𝑑𝑥𝑖
𝑑𝑠
= 𝛽𝑖

𝑑𝑥𝑘
𝑑𝑠
, 𝑖 ≠ 𝑘, 𝑖 = 1,… , 𝑛 + 1 

 

( 76 ) 

 

Utilizando-se o método da Eliminação de Gauss para a matriz 𝐷𝑓𝑘 pode-se obter os coeficientes 

𝛽𝑖. Substituindo-se (76) em (73) obtêm-se: 

 (
𝑑𝑥𝑘
𝑑𝑠
)
2

= (1 + ∑ 𝛽𝑖
2

𝑛+1

𝑖=1,𝑖≠𝑘

)

−1

 

 

( 77 ) 

 

As Equações (76) e (77) são a representação explícita das derivadas da curva 𝑥(𝜆) passando pelo 

j-ésimo ponto continuado (𝑥𝑖, 𝜆𝑖) em relação ao comprimento de arco 𝑠. Um passo do preditor pode ser 

completado pela integração um passo adiante na direção escolhida com largura de passo ℎ. 

 
𝑥𝑗
𝑖+1 = 𝑥𝑗

𝑗+1
+ ℎ

𝑑𝑥𝑖
𝑑𝑠
, 𝑗 = 1,… , 𝑛 + 1 

 

( 78 ) 

 

Do ponto de vista computacional, uma vez que o cálculo dos coeficientes 𝛽𝑖 envolvem a solução 

de um sistema de equações algébricas lineares, o tempo consumido por este método pode ser grande. 

 

3.5.2. Método da Secante 

 

O método da secante é baseado em extrapolação polinomial, usando apenas a solução atual e a 

anterior para prever a próxima. Um exemplo trivial de preditor deste método é um polinômio de ordem 

zero, no qual a solução atual é utilizada como aproximação para a próxima, ou seja: 
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(𝑥𝑖+1, 𝜆̂𝑖+1) = (𝑥𝑖, 𝜆𝑖) 

 

( 79 ) 

 

Um polinômio de primeira ordem proporciona ao preditor secante uma reta que passa pela atual 

solução e pela última para estimar a próxima, matematicamente: 

 
(𝑥𝑖+1, 𝜆̂𝑖+1) = (𝑥𝑖, 𝜆𝑖) + ℎ(𝑥𝑖 − 𝑥𝑖−1, 𝜆𝑖 − 𝜆𝑖−1) 

 

( 80 ) 

 

Na qual ℎ representa o tamanho de passo, que deve ser escolhido apropriadamente. Preditores 

baseados em polinômios de ordem mais alta podem ser obtidos de maneira semelhante, porém os de 

ordem mais baixa são mais eficientes na execução do fluxo de carga continuado (CHIANG, 1995). A 

Figura 9 representa o preditor pelo método da secante utilizando aproximação linear. 

 

 

Figura 9: Preditor pelo método da secante com predição de primeira ordem. 

 

É possível utilizar o método da secante após o método da tangente ter obtido dois pontos para 

aumentar a eficiência computacional do fluxo de carga continuado, pois o uso do preditor tangente é 

muito custoso do ponto de vista computacional (CHIANG, 1995). 

 

3.6. Corretor 

 

A princípio, qualquer método numérico efetivo para resolver um conjunto de equações algébricas 

não-lineares pode ser usado como corretor. Um bom preditor fornece uma aproximação próxima da 

solução real do sistema, o que faz com que o corretor convirja para esta solução em poucas iterações. 

Utilizou-se o método de Newton-Raphson como método corretor, já explicitado anteriormente. 
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3.7. Controle do Tamanho de Passo 

 

O controle do tamanho de passo é um elemento chave na eficiência computacional do fluxo de 

carga continuado. É seguro escolher um tamanho de passo pequeno e constante para qualquer método 

da continuação, porém isto diminui a eficiência computacional e implica em muitos passos em partes 

da curva que não sofrem muitas variações. Analogamente, um tamanho de passo grande pode causar 

que o preditor faça uma predição longe da real solução do sistema, o que implicará em muitas iterações 

do corretor ou até mesmo sua possível não-convergência. 

Idealmente, o tamanho de passo deve ser adaptado para cada trecho da solução, utilizando grande 

tamanho de passo na parte da curva na qual as variáveis de estado mudam pouco com variações no 

parâmetro e menor tamanho de passo quando a curva é acentuada. Pode-se utilizar uma estimação do 

erro entre a solução predita e a corrigida no passo anterior para adaptar o tamanho de passo 

(ZIMMERMAN, 2011). Outra abordagem é calcular o comprimento de arco no espaço de estados, 

forçando passos maiores nos trechos menos sensíveis à variações e passos menores nos trechos com 

maior variação dos estados em relação ao comprimento de arco (CHIANG, 1995). 

Vale ressaltar que existe uma relação entre velocidade e robustez do método da continuação, o 

que afeta a escolha dos preditores, corretores e das estratégias de controle do tamanho de passo. A 

velocidade diz respeito à total quantidade de esforço computacional utilizado para atingir a resposta com 

a tolerância desejada e a robustez tem relação com o uso do maior tamanho de passo possível e um 

preditor rápido (de baixa ordem) que esteja dentro dos limites de convergência da predição e correção. 

 

3.8. Algoritmo 

 

O algoritmo a seguir representa o procedimento adotado por (CHIANG, 1995) para o fluxo de 

carga continuado. 

1. Entrada de dados do SEP (dados de barra, de linhas, de áreas, entre outros); 

2. Inicialização: 

a. Roda-se um fluxo de carga padrão para verificar a solução do caso base e garantir que o 

procedimento partirá de um ponto na curva de solução; 

b. São construídos os padrões de demanda de potência ativa e reativa (𝑃𝑑
0, 𝑄𝑑

0) e de geração 

de potência ativa (𝑃𝑔
0), excluindo a barra Slack. 

3. Entrada das barras que sofrerão alterações de carga e/ou geração e a quantidade de variações: 

a. São construídos os padrões futuros de demanda de potência ativa e reativa (𝑃𝑑
1, 𝑄𝑑

1) e de 

geração de potência ativa (𝑃𝑔
1), excluindo a barra Slack; 
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b. Parametriza-se o padrão de demanda de carga (𝑃𝑑(𝜆), 𝑄𝑑(𝜆)) e o padrão de geração de 

potência ativa (𝑃𝑔(𝜆)) de modo que 

 
(𝑃𝑑(0), 𝑄𝑑(0), 𝑃𝑔(0)) = (𝑃𝑑

0, 𝑄𝑑
0, 𝑃𝑔

0) 

 

( 81 ) 

 
(𝑃𝑑(1), 𝑄𝑑(1), 𝑃𝑔(1)) = (𝑃𝑑

1, 𝑄𝑑
1 , 𝑃𝑔

1) 

 

( 82 ) 

4. Preditor (fase 1 - tangente): 

a. Calculam-se as derivadas 
𝑑𝑥1

𝑑𝑠
, … ,

𝑑𝑥𝑛

𝑑𝑠
,
𝑑𝑥𝑛+1

𝑑𝑠
 utilizando 𝛽′𝑠; 

b. Escolhe-se um tamanho de passo apropriado; 

c. Obtêm-se um ponto predito através da Equação (78). 

5. Preditor (fase 2 - secante): 

Quando ao menos duas soluções foram encontradas pode-se utilizar o método da secante, menos 

custoso computacionalmente: 

a. Escolhe-se um tamanho de passo apropriado; 

b. Obtêm-se um ponto aproximada através da Equação (80); 

6. Corretor: resolve-se o conjunto de Equações (67) e (70) partindo da aproximação dada pelo 

preditor; 

7. Critério de parada: caso deseja-se traçar mais pontos da curva, volta-se ao passo 4, caso contrário, 

fim do algoritmo. 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

4. NOMOGRAMAS 

 

Os nomogramas, quando aplicados a SEP, podem mostrar se um sistema está operando próximo 

aos limites de segurança, auxiliando na tomada de decisões caso o sistema esteja atingindo seus limites 

de máximo carregamento ou se suas barras estão extrapolando os limites pré-estabelecidos de tensão. 

Neste trabalho busca-se traçar tais gráficos para o auxílio da operação e expansão de um SEP, e para tal 

são utilizados dois métodos de construção de nomogramas apresentados nesta seção. 

O traçado da região de segurança (nomograma) de um sistema elétrico é feito de forma iterativa. 

A carga e a geração são aumentadas em certa direção até um determinado ponto em que as condições 

de segurança e ou estabilidade sejam violadas. Este ponto pertence a fronteira da região de segurança 

do sistema. Repete-se o procedimento para diversas direções de crescimento de carga e geração 

construindo-se uma região de segurança do sistema elétrico. 

A seguir são apresentados os procedimentos utilizados no redespacho de geração na construção 

dos nomogramas, tanto pelo método ponto a ponto como pelo método da continuação. 

 

4.1. Redespacho de Geração 

 

Optou-se por traçar os nomogramas em duas dimensões e, para tal, as unidades geradoras de 

determinado SEP analisado devem ser divididas em três grupos de geração: G1, G2 e G3. A soma da 

geração de potência ativa dos três grupos é mantida constante, matematicamente: 

 
𝑃𝐺1 + 𝑃𝐺2 + 𝑃𝐺3 = 𝐶 

 
( 83 ) 

Na qual C é uma constante. 

Os nomogramas representam no eixo horizontal a potência ativa gerada pelo grupo G1 e, no eixo 

vertical, a do G2. As barras a serem divididas nestes grupos são aquelas conhecidas como PV no fluxo 

de carga, ou seja, as barras de carga (PQ) e a de referência (Vθ) não participam desta divisão. A Figura 

10 representa, em uma direção, o método de obtenção dos pontos do nomograma. 
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Figura 10: Obtenção dos pontos do nomograma em uma dada direção de crescimento de carga. 

 

Percebe-se na Figura 10 que λi representa o acréscimo de geração de potência ativa em 

determinada direção, e θ é o ângulo em relação à horizontal da direção analisada. 

Foi definido que cada grupo de geração possui um fator de participação 𝐹𝑘, definido como: 

 
𝐹1 = 𝑐𝑜𝑠(𝜃) 

 
( 84 ) 

 
𝐹2 = 𝑠𝑒𝑛(𝜃) 

 
( 85 ) 

 
𝐹3 = −(𝑐𝑜𝑠(𝜃) + 𝑠𝑒𝑛(𝜃)) 

 

( 86 ) 

 

Esta definição para os fatores de participação implica em que a relação (83) seja respeitada, e as 

potências ativas geradas por cada grupo são descritas como: 

 
𝑃𝑘 = 𝑃𝑘

𝑏𝑎𝑠𝑒 + 𝜆𝐹𝑘 

 

( 87 ) 

 

Na qual 𝑃𝑘
𝑏𝑎𝑠𝑒 representa a soma de todas as potências ativas geradas pelos geradores do grupo k 

(𝐺𝑘) no caso base, matematicamente: 

 𝑃𝑘
𝑏𝑎𝑠𝑒 = ∑ 𝑃𝑖

𝑏𝑎𝑠𝑒

𝑖∈𝐺𝑘

 ( 88 ) 

 

O índice i indica as barras de geração do grupo k. 

O programa implementado utiliza os fatores de participação 𝐹𝑘 para determinar a geração de 

potência ativa dos grupos de geração, o ângulo θ para fornecer a direção de crescimento de potência dos 

grupos e λ é o parâmetro de acréscimo de geração, que a cada cálculo do fluxo de carga altera as 

potências ativas geradas de acordo com (87). O parâmetro λ é responsável, portanto, pela alteração do 
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padrão de geração de potência ativa dos grupos. Por exemplo, para um λ igual a 6 e dado um θ igual a 

0, o acréscimo de geração do grupo 1 seria de 6 p.u., de acordo com (87), uma vez que 𝑐𝑜𝑠(𝜃) = 1 neste 

caso. O passo com que λ é incrementado dita a velocidade com que se encontrará a fronteira de máximo 

carregamento do sistema (na qual o fluxo de carga deixa de convergir no método ponto a ponto). 

 

4.2. Nomogramas pelo Método Ponto a Ponto 

 

Como citado anteriormente, os nomogramas construídos pelo método ponto a ponto utilizam a 

solução de fluxos de carga sucessivos para obter os limites de estabilidade e de tensão de um SEP. Parte-

se do caso base e para cada direção de θ encontra-se dois pontos, um para o nomograma dos limites de 

estabilidade (não-convergência do fluxo de carga) e um para a extrapolação dos limites de tensão de 

alguma barra do SEP. O crescimento de geração em cada direção é dado por λ e os fatores de participação 

usados foram expressos em (84), (85) e (86). 

Este método possui um alto esforço computacional, uma vez que muitos fluxos de carga são 

resolvidos sucessivamente até encontrar os pontos desejados do sistema. Além disto, outra desvantagem 

desta abordagem é a falta de precisão nas regiões próximas às fronteiras de máximo carregamento, pois 

o fluxo de carga pode deixar de convergir antes do real limite de máximo carregamento do SEP, 

resultando em nomogramas conservadores. Isto justifica a utilização do método da continuação, descrito 

na seção seguinte. Grandes incrementos de λ podem fazer com que o último ponto de convergência do 

fluxo de carga encontre-se distante da fronteira da região de factibilidade, fornecendo estimativa 

conservadora para a fronteira da região de operação segura. 

Segue o algoritmo para o traçado de nomogramas pelo método ponto a ponto: 

1. Define-se o número de pontos desejados para o nomograma, inicializa-se 𝜃 = 0 e 𝜆 = 0; 

2. Calcula-se os fatores de participação 𝐹1 = 𝑐𝑜𝑠(𝜃), 𝐹2 = 𝑠𝑒𝑛(𝜃) e 𝐹3 = −(𝑐𝑜𝑠(𝜃) + 𝑠𝑒𝑛(𝜃)); 

3. Executa-se o fluxo de carga e verifica-se a convergência. Caso o fluxo de potência tenha 

convergido, incrementa-se λ e volta-se ao passo 2. Caso contrário, armazena-se λ e θ e faz-se 𝜆 =

0 e 𝜃𝑛𝑜𝑣𝑜 = 𝜃𝑎𝑛𝑡𝑖𝑔𝑜 +
360°

𝑛𝑝𝑜𝑛𝑡𝑜𝑠
, na qual npontos representa o número de pontos escolhido para o 

nomograma. O critério de parada é 𝜃 ≥ 360°, verificado a cada execução do passo 3. 

Além da não convergência do fluxo de carga analisou-se também a extrapolação dos limites de 

tensão das barras do SEP, e isto foi feito a cada solução obtida, armazenando o ponto do nomograma no 

qual alguma barra extrapola seu limite de tensão. O resultado serão dois nomogramas em um gráfico, e 

espera-se que o relativo à tensão seja sempre interior ao de estabilidade. 
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4.3. Nomogramas pelo Método da Continuação 

 

A utilização do método da continuação busca produzir nomogramas de maneira mais eficiente e 

mais fiéis à realidade, quando comparados aos nomogramas produzidos pelo método ponto a ponto, pois 

o método da continuação eliminará o problema de não-convergência do fluxo de carga próximo à 

fronteira de máximo carregamento (CHIANG, 1995). A construção dos nomogramas pelo método da 

continuação é muito semelhante àquela pelo método ponto a ponto, porém utilizando outra verificação 

intermediária, que é a comparação entre o 𝜆 da última solução e o 𝜆̂ estimado ao invés da verificação da 

convergência do método. Em algoritmo, este método pode ser representado como segue: 

1. Define-se o número de pontos desejados para o nomograma, inicializa-se 𝜃 = 0 e 𝜆 = 0; 

2. Calculam-se os fatores de participação 𝐹1 = 𝑐𝑜𝑠(𝜃), 𝐹2 = 𝑠𝑒𝑛(𝜃) e 𝐹3 = −(𝑐𝑜𝑠(𝜃) + 𝑠𝑒𝑛(𝜃)); 

3. Utiliza-se o preditor tangente para obter os primeiros dois pontos em dada direção de crescimento 

de carga, com o método de Newton Raphson como corretor; 

4. Utiliza-se o preditor secante, com o método de Newton Raphson como corretor. A solução atual 

possui determinado valor de 𝜆 e sua estimativa corrigida é 𝜆̂; 

5. Verifica-se se 𝜆̂ < 𝜆. Em caso afirmativo, armazena-se λ e θ, incrementa-se θ (𝜃𝑛𝑜𝑣𝑜 = 𝜃𝑎𝑛𝑡𝑖𝑔𝑜 +

360°

𝑛𝑝𝑜𝑛𝑡𝑜𝑠
, na qual npontos representa o número de pontos escolhido para o nomograma), faz-se 𝜆 =

0 e volta-se ao passo 2. Caso contrário, volta-se ao passo 4, incrementando 𝜆. O critério de parada 

é 𝜃 ≥ 360°. 

 

 

 

 



 

5. RESULTADOS 

 

Neste capítulo são apresentados os resultados obtidos na implementação das metodologias 

apresentadas. O sistema analisado possui 30 barras e está no padrão do IEEE, sendo utilizado 

amplamente para estudos de fluxo de potência, e sua configuração está representada na Figura 11, com 

seus dados de barra e de linhas no Apêndice. Os códigos foram executados em um computador pessoal 

com processador Intel® CoreTM i7-3840QM com oito núcleos operando a 2,8 GHz, e os gráficos gerados 

e apresentados neste capítulo foram obtidos pelo software Matlab®. 

 

 

Figura 11: Topologia do SEP analisado. 

 

 

 

 

 

 



30  5.Resultados 

5.1. Curvas λV 

 

As curvas PV ou as λV são úteis para verificar o comportamento da tensão nas barras de um SEP 

com a variação lenta da carga do mesmo. Além disto, elas mostram o ponto de máximo carregamento e 

a margem de estabilidade do sistema, ou seja, a distância do ponto de operação até o ponto de máximo 

carregamento, sendo recomendável operar com certa margem de segurança em relação a este limite de 

estabilidade. 

Vale ressaltar que todas as curvas λV, de todas as barras, possuem o mesmo ponto de máximo 

carregamento (usualmente conhecido como “nariz da curva λV”), apesar de que cada uma delas possuirá 

um perfil de tensão diferente. Isto se deve ao ponto de máximo carregamento ser uma característica do 

SEP como um todo e não de uma barra individualmente, sendo que este ponto depende apenas da direção 

de crescimento das potências ativas e reativas das barras do sistema. 

As curvas obtidas nesta seção utilizaram o método da continuação e o pacote MATPOWER 

referenciado em (ZIMMERMAN, 2011). As potências ativas e reativas de todas as cargas e geradores 

foram aumentadas em iguais proporções para o traçado das curvas λV. As Figuras Figura 12, Figura 13 

e Figura 14 representam as curvas λV para três barras diferentes do sistema. 

 

 

Figura 12: Curva λV relativa à barra 1 do SEP. 
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Figura 13: Curva λV relativa à barra 3 do SEP. 

 

 

Figura 14: Curva λV relativa à barra 30 do SEP. 

 

Percebe-se pelas Figuras Figura 12, Figura 13 e Figura 14 que a curva λV pode diferir muito entre 

diferentes barras do SEP. No primeiro caso, a barra de referência possui uma característica de não sofrer 

nenhuma alteração na sua tensão com variações de λ, ao contrário das barras 3 e 30, que são barras de 

carga e sofrem alterações marcantes na sua tensão com a variação de λ. Entretanto, o ponto de máximo 

carregamento é o mesmo para todas as barras, situado com λ entre 3,5 e 4 de acordo com as Figuras 

acima apresentadas. 
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5.2. Nomogramas 

 

A construção dos nomogramas exigiu a divisão das unidades geradores do SEP analisado em três 

grupos, definidos pela área de cada gerador. A barra de referência não foi incluída em nenhum dos três 

grupos definidos, como mostra a Tabela 1. Verificou-se nestes nomogramas apenas os limites de 

estabilidade do SEP e a extrapolação dos limites de tensão das barras. 

 

Tabela 1: Grupos de geração definidos para as barras PV. 

Grupo de Geração Barras PV do Grupo 

Grupo 1 
2 

5 

Grupo 2 
8 

11 

Grupo 3 13 

 

Os dados do SEP analisado estão contidos no Apêndice. Outras possibilidades de divisão dos 

grupos de geração são possíveis, e a divisão proposta na Tabela 1 foi escolhida devido à localização 

geográfica das unidades geradoras. 

 

5.2.1. Método Ponto a Ponto 

 

Para o método de Newton-Raphson foram utilizados os seguintes parâmetros na obtenção dos 

nomogramas pelo método ponto a ponto: 

 Tolerância usada como critério de parada escolhida como 𝜀 = 10−5; 

 Número máximo de iterações definido como 100. 

Uma vez que o método de Newton-Raphson converge rapidamente, um número máximo de 

iterações igual a 100 é suficiente para considerar que o sistema não convergiu caso atinja este limite. 

Analisou-se um sistema de 30 barras no padrão do IEEE, disponível online pelo departamento de 

engenharia elétrica da University of Washington e já citado anteriormente (CHRISTIE, 1999). 

Percebe-se a presença de seis unidades geradoras, o que implica que cinco delas serão divididas 

em grupos de acordo com a metodologia explicada no capítulo anterior e uma delas será utilizada como 

referência angular do SEP (de acordo com a Tabela 1). 

Os nomogramas da Figura 15 apresentam 100 pontos cada, ou seja, 100 pontos azuis que 

representam a extrapolação do limite de tensão de alguma barra do SEP e 100 pontos vermelhos que 

representam o limite de carregamento do sistema. Para cada direção de crescimento de carga (100 no 

total) a carga foi aumentada com fator de potência constante até se obter os pontos limites. Os círculos 

mais externos correspondem a maiores valores de λ e os ângulos de cada direção de crescimento de λ 
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são os θ’s Vale ressaltar que apenas alterou-se a geração de potência ativa dos grupos de geradores, 

mantendo-se a potência reativa dos mesmos inalterada. Os incrementos em λ foram de 0,1 a cada 

iteração. 

A Tabela 2 representa os tempos de execução dos principais trechos do programa executado, e 

facilmente percebe-se o esforço computacional exigido para o traçado de nomogramas por este método, 

uma vez que o tempo total de execução foi de mais de 500 segundos. Nos dois gráficos em função de 𝜃 

e 𝜆 apresentados (Figura 15 e Figura 17) a unidade de 𝜃 é graus e a de 𝜆 é p.u. 

 

Figura 15: Nomogramas pelo método ponto a ponto na forma polar (θ e λ). 
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Adotou-se para o nomograma de tensão que se alguma barra do SEP atingisse uma tensão inferior 

a 0,90 p.u. ou superior a 1,10 p.u. seria considerada extrapolação dos limites e o ponto seria salvo para 

posterior criação do nomograma. 

Tabela 2: Tempos de execução das principais funções do código ponto a ponto. 

Nome da Função Tempo decorrido [s] 

Programa Principal de nomogramas (ponto a ponto) 529,630 

Newton-Raphson geral 366,645 

Newton-Raphson tensão 154,490 

 

Além da representação dos nomogramas em 𝜃 e 𝜆, foi feita a representação com eixos cartesianos 

correspondentes às potências ativas geradas pelos grupos 1 e 2, como mostra a Figura 16. 

 

Figura 16: Nomogramas pelo método ponto a ponto na forma cartesiana. 
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Os pontos em azul na Figura 16 representam a fronteira na qual as barras do sistema apresentam 

problemas nas suas características de tensão, extrapolando seus limites superiores ou inferiores pré-

estabelecidos. Os pontos em vermelho são uma estimativa da fronteira de máximo carregamento do 

sistema obtida pelo método ponto a ponto. Observa-se neste caso que as tensões sempre violam o limite 

operativo antes do sistema atingir o nível de máximo carregamento em todas as direções de crescimento 

de carga consideradas. Verifica-se neste exemplo que o ponto de operação atual, representado pelo ponto 

verde, está distante dos limites de violação de tensão e dos limites de máximo carregamento do sistema. 

A menor margem de violação dos limites de tensão é de cerca de 200 MW, considerando a direção de 

crescimento de carga com 𝜃 = 30°. 

 

5.2.2. Método da Continuação 

 

Percebe-se na Tabela 3 que o tempo de execução para a obtenção do nomograma pelo método da 

continuação é menor que pelo método ponto a ponto e seu resultado é um gráfico externo ao obtido 

anteriormente, como mostra a Figura 17. Este resultado era esperado, pois o método ponto a ponto 

apresenta problemas de convergência nas proximidades da sua fronteira. 
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Figura 17: Nomogramas pelo método ponto a ponto e da continuação na forma polar (θ e λ). 

 

Tabela 3: Tempos de execução das principais funções do código continuado. 

Nome da Função Tempo decorrido [s] 

Programa Principal de nomogramas (continuado) 42,025 

runcpf 41,400 

 

 

Além da representação dos nomogramas em 𝜃 e 𝜆, foi feita novamente a representação com eixos 

cartesianos correspondentes às potências ativas geradas pelos grupos 1 e 2, como mostra a Figura 18. 

A fronteira mais externa, representada na cor preta na Figura 18, é a curva mais próxima da real 

fronteira de máximo carregamento do sistema, pois foi obtida com o método da continuação (fluxo de 
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carga continuado). Percebe-se que os pontos do nomograma obtidos pelo método ponto a ponto, 

representados em vermelho, ficaram interiores aos pontos do nomograma obtido com o fluxo de carga 

continuado, o que era esperado, pois a não convergência do fluxo de carga ocorre antes do ponto de 

máximo carregamento. Portanto, a fronteira encontrada pelo método ponto a ponto se mostrou mais 

conservadora do que a obtida pelo método da continuação. O maior erro percentual está por volta de 

9,7% na direção de 𝜃 = 39,6°  

 

Figura 18: Nomogramas pelo método ponto a ponto e da continuação na forma cartesiana. 

 

 



 

 

 

 

 

 

 

 



 

6. CONCLUSÃO 

 

Os problemas relacionados à estabilidade de tensão são desafios aos operadores de um SEP, e os 

nomogramas e curvas λV podem auxiliá-los nas tomadas de decisões do seu cotidiano, como entrada ou 

saída de unidades geradoras e linhas de transmissão. 

A construção de nomogramas pelo método ponto a ponto mostrou-se ineficiente do ponto de vista 

computacional, além de conservadora, pois o fluxo de carga pode deixar de convergir antes da real 

fronteira de estabilidade do sistema, fornecendo pontos incorretos ao nomograma. Já o método da 

continuação proporciona uma solução para este problema encontrado no método ponto a ponto, além de 

proporcionar um eficiente traçado das curvas λV, nas quais as bifurcações em determinadas condições 

de carregamento do sistema podem fazer com que o método ponto a ponto não seja capaz de traçar a 

curva. 

 

6.1. Pesquisas Futuras 

 

Propõe-se como possível objeto de estudo em trabalhos futuros a formulação das máximas 

capacidades de transmissão das linhas, uma vez que esta limitação não foi considerada no 

desenvolvimento deste projeto e inclui parâmetros de difícil obtenção, como os limites das linhas e os 

cabos usados no sistema, indisponíveis para o SEP em estudo neste trabalho. 

Além disto, estudos na área de fluxo de potência ótimo, com a minimização das perdas e de custos 

poderiam ser realizados, auxiliando no despacho econômico de geração. Existe no pacote MATPOWER, 

que foi utilizado para o fluxo de carga continuado, uma função específica para obtenção de fluxo de 

potência ótimo, que poderia ser utilizada para tais estudos com uma devida análise e estudo prévio. 

Pode-se também estudar o traçado dos nomogramas caminhando pela sua fronteira em trabalhos 

futuros, e os limites reativos dos geradores do sistema também podem ser levados em conta em outros 

projetos. 
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APÊNDICE – Arquivo de Texto Referente ao Sistema de 30 Barras Analisado 

 

 

Segue o arquivo texto disponível online do sistema de 30 barras utilizado, dividido em Bus Data 

e Branch Data, respectivamente, dados de barra e dados de linha. O arquivo texto aqui representado foi 

adaptado às necessidades deste trabalho, omitindo colunas de dados não relevantes nas análises aqui 

feitas. As colunas representam as grandezas relevantes ao fluxo de carga, como definidas nas tabelas 

abaixo. 

 

Tabela 4: Grandezas de Bus Data. 

Colunas de BUS DATA Grandeza Representada 

A Área da barra no SEP (geradores divididos em 3 áreas) 

T Tipo da barra (3=referência, 2=PV e 0=PQ) 

V Tensão da barra em p.u. 

Ang Ângulo da tensão da barra [°] 

Pl Potência ativa de carga na barra em p.u. 

Ql Potência reativa de carga na barra em p.u. 

Pg Potência ativa gerada na barra em p.u. 

Qg Potência reativa gerada na barra em p.u. 

Qsh Potência reativa shunt na barra em p.u. 

 

 

Tabela 5: Grandezas de Branch Data. 

Colunas de BRANCH DATA Grandeza Representada 

R Resistência da linha em p.u. 

X Reatância da linha em p.u. 

Bsh Capacitância shunt total da linha em p.u. 

Tap Tap do transformador em questão (valor entre 0 e 1) 

 

Para cada linha de Branch Data são lidos também os números referentes às barras nos extremos 

da linha de transmissão, e os números concordam com a nomenclatura utilizada em Bus Data. 

 

 

 

 

 

 

 

 

 

 



 

08/20/93 UW ARCHIVE           100.0  1961 W IEEE 30 Bus Test Case 

BUS DATA FOLLOWS   A     T   V     Ang       Pl       Ql      Pg      Qg     Qsh 

   1 Glen Lyn 132  0  1  3 1.060    0.0      0.0      0.0    260.2   -16.1   0.0 

   2 Claytor  132  1  1  2 1.043  -5.48     21.7     12.7     40.0    50.0   -40.0 

   3 Kumis    132  0  1  0 1.021  -7.96      2.4      1.2      0.0     0.0   0.0 

   4 Hancock  132  0  1  0 1.012  -9.62      7.6      1.6      0.0     0.0   0.0 

   5 Fieldale 132  1  1  2 1.010 -14.37     94.2     19.0      0.0    37.0   -40.0 

   6 Roanoke  132  0  1  0 1.010 -11.34      0.0      0.0      0.0     0.0   0.0 

   7 Blaine   132  0  1  0 1.002 -13.12     22.8     10.9      0.0     0.0   0.0 

   8 Reusens  132  2  1  2 1.010 -12.10     30.0     30.0      0.0    37.3   -10.0 

   9 Roanoke  1.0  0  1  0 1.051 -14.38      0.0      0.0      0.0     0.0   0.0 

  10 Roanoke   33  0  1  0 1.045 -15.97      5.8      2.0      0.0     0.0   0.0 

  11 Roanoke   11  2  1  2 1.082 -14.39      0.0      0.0      0.0    16.2   -6.0 

  12 Hancock   33  0  1  0 1.057 -15.24     11.2      7.5      0.0     0.0   0.0 

  13 Hancock   11  3  1  2 1.071 -15.24      0.0      0.0      0.0    10.6   -6.0 

  14 Bus 14    33  0  1  0 1.042 -16.13      6.2      1.6      0.0     0.0   0.0 

  15 Bus 15    33  0  1  0 1.038 -16.22      8.2      2.5      0.0     0.0   0.0 

  16 Bus 16    33  0  1  0 1.045 -15.83      3.5      1.8      0.0     0.0   0.0 

  17 Bus 17    33  0  1  0 1.040 -16.14      9.0      5.8      0.0     0.0   0.0 

  18 Bus 18    33  0  1  0 1.028 -16.82      3.2      0.9      0.0     0.0   0.0 

  19 Bus 19    33  0  1  0 1.026 -17.00      9.5      3.4      0.0     0.0   0.0 

  20 Bus 20    33  0  1  0 1.030 -16.80      2.2      0.7      0.0     0.0   0.0 

  21 Bus 21    33  0  1  0 1.033 -16.42     17.5     11.2      0.0     0.0   0.0 

  22 Bus 22    33  0  1  0 1.033 -16.41      0.0      0.0      0.0     0.0   0.0 

  23 Bus 23    33  0  1  0 1.027 -16.61      3.2      1.6      0.0     0.0   0.0 

  24 Bus 24    33  0  1  0 1.021 -16.78      8.7      6.7      0.0     0.0   0.0 

  25 Bus 25    33  0  1  0 1.017 -16.35      0.0      0.0      0.0     0.0   0.0 

  26 Bus 26    33  0  1  0 1.000 -16.77      3.5      2.3      0.0     0.0   0.0 

  27 Cloverdle 33  0  1  0 1.023 -15.82      0.0      0.0      0.0     0.0   0.0 

  28 Cloverdle132  0  1  0 1.007 -11.97      0.0      0.0      0.0     0.0   0.0 

  29 Bus 29    33  0  1  0 1.003 -17.06      2.4      0.9      0.0     0.0   0.0 

  30 Bus 30    33  0  1  0 0.992 -17.94     10.6      1.9      0.0     0.0   0.0 

-999 

 

 

 

 

 

 

 

 

 

 



 

BRANCH DATA FOLLOWS    R         X         Bsh         41 ITEMS             Tap   

   1    2  1  1 1 0  0.0192    0.0575      0.0528     0     0     0    0 0  0.0   

   1    3  1  1 1 0  0.0452    0.1652      0.0408     0     0     0    0 0  0.0   

   2    4  1  1 1 0  0.0570    0.1737      0.0368     0     0     0    0 0  0.0   

   3    4  1  1 1 0  0.0132    0.0379      0.0084     0     0     0    0 0  0.0   

   2    5  1  1 1 0  0.0472    0.1983      0.0418     0     0     0    0 0  0.0   

   2    6  1  1 1 0  0.0581    0.1763      0.0374     0     0     0    0 0  0.0   

   4    6  1  1 1 0  0.0119    0.0414      0.0090     0     0     0    0 0  0.0   

   5    7  1  1 1 0  0.0460    0.1160      0.0204     0     0     0    0 0  0.0   

   6    7  1  1 1 0  0.0267    0.0820      0.0170     0     0     0    0 0  0.0   

   6    8  1  1 1 0  0.0120    0.0420      0.0090     0     0     0    0 0  0.0   

   6    9  1  1 1 0  0.0       0.2080      0.0        0     0     0    0 0  0.978 

   6   10  1  1 1 0  0.0       0.5560      0.0        0     0     0    0 0  0.969 

   9   11  1  1 1 0  0.0       0.2080      0.0        0     0     0    0 0  0.0   

   9   10  1  1 1 0  0.0       0.1100      0.0        0     0     0    0 0  0.0   

   4   12  1  1 1 0  0.0       0.2560      0.0        0     0     0    0 0  0.932 

  12   13  1  1 1 0  0.0       0.1400      0.0        0     0     0    0 0  0.0   

  12   14  1  1 1 0  0.1231    0.2559      0.0        0     0     0    0 0  0.0   

  12   15  1  1 1 0  0.0662    0.1304      0.0        0     0     0    0 0  0.0   

  12   16  1  1 1 0  0.0945    0.1987      0.0        0     0     0    0 0  0.0   

  14   15  1  1 1 0  0.2210    0.1997      0.0        0     0     0    0 0  0.0   

  16   17  1  1 1 0  0.0524    0.1923      0.0        0     0     0    0 0  0.0   

  15   18  1  1 1 0  0.1073    0.2185      0.0        0     0     0    0 0  0.0   

  18   19  1  1 1 0  0.0639    0.1292      0.0        0     0     0    0 0  0.0   

  19   20  1  1 1 0  0.0340    0.0680      0.0        0     0     0    0 0  0.0   

  10   20  1  1 1 0  0.0936    0.2090      0.0        0     0     0    0 0  0.0   

  10   17  1  1 1 0  0.0324    0.0845      0.0        0     0     0    0 0  0.0   

  10   21  1  1 1 0  0.0348    0.0749      0.0        0     0     0    0 0  0.0   

  10   22  1  1 1 0  0.0727    0.1499      0.0        0     0     0    0 0  0.0   

  21   22  1  1 1 0  0.0116    0.0236      0.0        0     0     0    0 0  0.0   

  15   23  1  1 1 0  0.1000    0.2020      0.0        0     0     0    0 0  0.0   

  22   24  1  1 1 0  0.1150    0.1790      0.0        0     0     0    0 0  0.0   

  23   24  1  1 1 0  0.1320    0.2700      0.0        0     0     0    0 0  0.0   

  24   25  1  1 1 0  0.1885    0.3292      0.0        0     0     0    0 0  0.0   

  25   26  1  1 1 0  0.2544    0.3800      0.0        0     0     0    0 0  0.0   

  25   27  1  1 1 0  0.1093    0.2087      0.0        0     0     0    0 0  0.0   

  28   27  1  1 1 0  0.0       0.3960      0.0        0     0     0    0 0  0.968 

  27   29  1  1 1 0  0.2198    0.4153      0.0        0     0     0    0 0  0.0   

  27   30  1  1 1 0  0.3202    0.6027      0.0        0     0     0    0 0  0.0   

  29   30  1  1 1 0  0.2399    0.4533      0.0        0     0     0    0 0  0.0   

   8   28  1  1 1 0  0.0636    0.2000      0.0428     0     0     0    0 0  0.0   

   6   28  1  1 1 0  0.0169    0.0599      0.0130     0     0     0    0 0  0.0   

-999 


