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1. Introducao

Geralmente as medidas de permeabilidade oferecem duas
alternativas basicas para seu uso pratico:
1. suprir diretamente dados sobre as propriedades do fluxo em uma
estrutura porosa, e
2. prover meios para medidas indiretas de propriedades internas da

estrutura, como tamanho de poro e area superficial.

O objetivo do presente trabalho ¢ fazer uma revisdo tedrica da
permeabilidade como umg varidvel envolvida no processo de

filtragem e propor uma metodologia para anglise de permeabilidade

de materiais porosos.



2. Teoria
2.1 Tubos Capilares

Os modelos matematicos fornecem dados sobre o fluxo através
de tubos capilares podem ser representados de trés formas: Fluxo
Molecular, Laminar e Misto, dependendo da pressio de gis no
sistema, dimensdes do tubo, tipo de gis e temperatura a que o
mesmo  estd submetido. Antes de se iniciar o estudo de cada
modelo propriamente dito deve-se definir a velocidade e o livre

caminho médio das moléculas.
A velocidade das moléculas ao longo de um tubo capilar,

para baixas pressdes de gas, é proporcional a temperatura absoluta

dividida pelo peso molecular do fluido:

v=‘}§]-cz (1)
wm

onde v ¢ a velocidade molecular, k¥ é a constante de Boltzmann, T

a temperatura absoluta ¢ m o peso molecular.

A distdncia média percorrida pela molécula do gas, entre

colisdes intermoleculares, ou seja, seu livre caminho médio ¢



Inversamente dependente da densidade do gds, e portanto da

pressdo, como segue:

m

N )

onde A ¢ o livre caminho médio, p a densidade do gas e 6 o

didmetro da molécula.

2.1.1 O Fluxo Molecular ocorre para baixas pressdes de g4s, onde
a viscosidade do gas é independente da pressdo, podendo o fluxo
ser entendido como um processo de difusio que acontece quando o
didmetro do tubo (2a) ¢é 100 vezes menor que seu comprimento (1),
ou seja, quando o didmetro do poro é muito menor que o livre
caminho médio do fluxo gasoso. Tem-se como regra que o fluxo
molecular predomina quando a relagdo Ma ¢ maior que 1, sendo o
fluxo gasoso governado pela colisio das moléculas com as paredes

do tubo. A vazio do sistema ¢ dada por:
o 27 /(8/7) a’ AP J(kT /m) (3
=2 " N/
3L

onde O ¢ a vazio de fluido, sendo sua unidade definida como o
produto da vazio volumétrica pela pressdo na qual esta é medida,
a ¢ o raio do tubo, L o comprimento do tubo e AP a queda de

pressdo através do tubo, sendo a conversdo de Q para a vazio para



a vazdo padrio ¢ conseguida por sua divisio pela pressdo

atmosférica.

Sob condigdes normais, 3 temperatura ambiente e 32 uma
atmosfera de pressdo, o livre caminho médio para o nitrogénio ¢
0,064, sendo que a altas pressdes ou temperaturas este valor pode
ser ainda menor. O fluxo molecular pode ser conseguido para
pressdes absolutas de aproximadamente 0,02 atm em estruturas com

poros de tamanho menor oy igual a 3,0p.

212 O Fluxo Laminar, ou VISCOSO, ocorre quando hd o aumento
da pressio e por conseguinte da densidade, o que implica numa
diminuigdo do livre caminho médio fazendo com que as colisdes
intermoleculares predominem sobre as colisges com as paredes do
tubo. Quando a relagio Ma é menor que 0,01; ou seja, as
dimensdes do tubo sio muito maiores que o livre caminho médio
das moléculas, o fluxo viscoso pode ser tratado, para tubos retos,

pela equagdo de Hagen-Poisseuille:

—
Tq' P AP
Q ==—_

8l (4)

onde P ¢ a pressio média e ¢ a viscosidade do fluido.



2.1.3 O Fluxo Misto ocorre na faixa intermediaria onde 0 O1<Na< 1,
onde o fluxo £asoso ja ndo & independente  da pressio,
caracterizando-se por possuir componentes de fluxo VISCOSO e

molecular, portanto a equagdo do fluxo viscoso torna-se

Tq'P [1 +(40/a)] AP

Q= Sl

(5)

onde o coeficiente de escorregamento 6 pode ser igualado, em

primeira aproximagdo, ao livre caminho médio das moléculas de gas.

2.2 Estruturas Metslicas Porosas

Ha uma evidente analogia entre sistemas de geometria simples,
como tubos capilares, e¢ as estruturas porosas produzidas por
metalurgia do po.

As estruturas porosas metélicas  sdo compostas por uma
mntrincada rede de poros ndo-cilindricos, os quais possuem se¢des
transversais irregulares, comprimentos variados e um entrelacamento
tortuoso. A precisio no modelamento matematico, em relagdo aos

tubos capilares, diminui a medida que a complexidade de estrutura

aumenta.

A baixas pressdes, o fluxo através de uma amostra porosa

tem comportamento similar ao fluxo em tubos capilares. Desta



maneira, para o caso onde o livie caminho médio ¢

substancialmente maior que a dimensdo dos poros, temos:

Qz/ldi‘ﬁ(tfl/ﬁ) (6)

sendo 4 a é4rea da se¢do ftransversal, ¢ a €spessura da amostra e 0
uma constante do material relacionada com a geometria dos poros

que ndo pode ser deduzida a partir de consideragBes geométricas

simples.

Em primeira analise a permeabilidade de uma amostra porosa
num fluxo laminar ¢ dada pela Lei de Darcy. Para um fluido
incompressivel, o fluxo se relaciona com o gradiente de pressio da

seguinte forma:

0=t ()

onde ¢y, é o -coeficiente de permeabilidade para um fluido

incompressivel.

Aqui a vazio Q ¢ dada em termos de volume por unidade de

tempo sem um termo de pressao pois o fluido é Incompressivel.



Para um fluxo £as0s0, ou seja o fluido ¢é compressivel, a Lej

de Darcy torna-se:

0="ALA (g

sendo « o0 coeficiente de permeabilidade para um flido

compressivel relacionado com o, de acordo com a equagdo (10).

A geometria dos poros determina em grande parte o
coeficiente de permeabilidade, sendo qué a equagdo de Kozeny
fornece uma interpretagdo estrutural para este coeficiente como

segue:

; (9)

onde C ¢ chamado de constante de Kozeny (normalmente proximo
de 0,5), S ¢ a 4rea superficial de poros, ¢ a porosidade ¢ 7 3
tortuosidade, definida como 2 razio entre o comprimento efetivo do

poro e o comprimento da amostra.

Como ocorreu com o modelamento de tubos capilares, ha uma
regido de transicdo entre os fluxos molecular e viscoso. A existéncia
de escorregamento ¢ comum em fluxos gasosos através de materiais

porosos a  baixas pressdes; desta foma o coeficiente de

10



permeabilidade ¢ dependente da pressio como apontado por
Klinkenberg:

@ =g, (1 +bP) (10)

sendo b uma constante que depende do gis e da estrutura dos

poros.

Portanto a equagido de Darcy torna-se:

aoAAPF(l +%)
Q = oy

(11)

onde o pardmetro 5P do metal poroso esta relacionado com 6 para
tubos capilares (lembrando-se que 6 varia diretamente com o livre
caminho médio das moléculas €, portanto, inversamente com a

pressdo do gas).

A altas pressdes e velocidades observa-se maiores diferengas
entre o fluxo por capilares ¢ o fluxo por metais porosos. Para altas
velocidades de fluxo ocorrem perdas inerciais de energia, havendo
portanto necessidade de corre¢io da lei de Darcy por um termo de

atrito ndo linear, proposto por Forchheimer:;

11



ap =0 10O (12)
(84 A BA

Sendo B o coeficiente inercial de resisténcia.
A equagio (12) pode ser modificada para uma forma mais

pratica por racionalizagdo de (O para uma vazio volumétrica por

unidade de area em condigdes padrdo, ou seja m¥/m’, entio:

AP:QQJ’Q (13)
o B

Geralmente o coeficiente de permeabilidade ( ¢y, ) indica a
facilidade do fluxo £aS0s0 atravessar um material poroso, assim
como o coeficiente inercial () mede as perdas de energia devido
a mudangas de momento da fase gasosa pela tortuosidade do

caminho que o fluxo deve percorrer.

Para altas pressdes e velocidades de gas; ou seja, numeros
de Reynolds préximo a 200, a turbuléncia invalida a equagdo de
Darcy modificada. O comego da turbuléncia ¢ dependente da
velocidade real do fluido nos poros, iniciando-se por volta do

nmimero de Reynolds igual a 4.

A regido do mimero de Reynolds entre 4 o 200 corresponde

a uma diminuigdo na precisio das equagdes ( 12 ) e ( 13),

12



expressGes matematicas que descrevem o fluxo nesta faixa sdo
baseadas no conceito de fator de atrito, que ¢ inversamente
dependente do numero de Reynolds; sob estas condigdes o fluxo

tem forte dependéncia da densidade do gis.

Fluxo Vazio Vazio
Tubos Capilares Materiais Porosos
2m/(8/7) 4° AP [(kT/m) 3 VA AP (kT /m) 6
Molecular 3] (3) ¢ (6)
Tq' P AP o, AAP
. 4 =0T 7
Laminar 8ul, (4) wt (7)

Misto ﬂéﬁ[l +(46/a)]AP (5 )' OtoAAPF(l +%)
8ul

= (11)

Tabela I - Comparagéo entre o Modelamento de Fluxo Gasoso para

Tubos Capilares e Materiais Porosos.

A equagdio (13) é verificada para materiais porosos em uma
larga faixa de pressio e para diferentes gases, sendo aplicavel para
vazbes variando de 0,1 a 20 mYm’; ou seja uma faixa de

permeabilidade entre 3 e 3000 milidarcy.!

1Um material que possua a permeabilidade de 1 darcy terd um fluxo de 1 cmVs de um
liquido com 1 centipoise de viscosidade através da face de um cubo de 1 cm® sob acgdo de
um diferencial de pressio de 1 atm,

13




2.3 Modelos para os coeficientes de fluxo

Ha evidéncias que a porosidade interconectada (¢), a area

superficial de poros (S, ), o tamanho médio de poro (D) e o

tamanho médio das particulas (d) influenciam fortemente og
coeficientes de fluxo bara materiais porosos; além da forma da

particula e do poro serem fatores adicionais de dependéncia.

Pode-se dividir o estudo do correlacionamento dos coeficientes
de fluxo com os parAmetros estruturais dos materiais porosos em
trés linhas basicas:

1. Coeficiente de permeabilidade em fungdo da porosidade e tamanho
de poro: o= (e, DI ) ou o=ale, D, )

2. Andlise microestrutural; onde os coeficientes de permeabilidade
sdo relacionados com a fragdo volumétrica de porosidade e 4rea
superficial relacionados de poros por unidade de volume:

=alE, S, ) e f=B(ES, )

3. Coeficientes de permeabilidade em fungdo da porosidade e

tamanho médio de particula: o= o (e,d) e B=8 (¢ d);

2.3.1 Coeficiente de permeabilidade em fungdo da porosidade e
tamanho do poro:

Cliffel propds que o coeficiente de permeabilidade viscoso se

relaciona com o produto D, - & enquanto Smith e Brown mostraram

14



que o pode ser relacionado tanto com [) . & quanto com D" ¢

obtendo-se precisio equivalente, entfo:

1,871
o« =k,(e.D,) (14) Cliflel et alli
o =O.OO48(8,DP)L85 (15) Smith e Brown
o =0,00059 (g, pimr )™ (16) Smith e Brown

onde o ¢ o coeficiente de permeabilidade viscoso (m?), k, é um

fator de conversio ¢ D, ¢ o tamanho médio de poro determinado
por porosimetria de mercirio, [) ¢ o tamanho maximo de poro

determinado pelo teste do ponto de bolha. Sendo as equagles acima
aplicadas para a maioria das estruturas porosas pois foram obtidas
independentemente da  forma inicial, tamanho e condigdes de

processo.

2.3.2 Analise Microestrutural

A anilise microestrutural, em estrutras metalicas porosas,
relaciona os coeficientes de permeabilidade com a fragdo volumétrica
de porosidade e a area superficial de poros por unidade de volume,
ambos determinados por metalografia quantitativa; para tanto se
utiliza a equagfio de Kozeny (9), as expressoes propostas por Ergun

¢ Orming:

15



k.¢

Q=2 (17) Ergun e Orning
S, (1-¢)

g =——kﬁ; (17) Ergun e Orning
S, (1-¢)

onde k e k, sdo constantes geometricas e as particulas

consideradas sio esféricas.

Autores  como Kozeny, Carman, Ergun entre outros;
considerando o modelamento para um fluxo de fluido incompressivel

através de uma camada de po compactado, estimaram que a relagdo

enfre o, e e §, tem a seguinte forma:

& 19
s (19)

Este modelo nio leva em conta nem a dependéncia da
morfologia dos poros; ou seja, o caminho real que o fluido percorre
pode ser substancialmente maior que a dimensio da amostra na
dire¢do do fluxo, nem o possivel efeito da rugosidade superficial do

poro exceto aquele contido em §, . A andlise de dados em fluxo

VISCOSO para amostras Sugere que 7 ¢ & se relacionam através de:

16



r=1,25¢™ (20)

Entdo a partir da substitui¢do de (9) e (20) em (19)
obtém-se:

a=0,4(8§tj (21)

vV

Analogamente pode-se estimar o coeficiente inercial 8 pela

equagio de Meyer e Smith, para filtros metalicos produzidos a
partir de po6s atomizados a agua:

B=9,1(§—5—;J (22)

v

2.3.3 Coeficiente de Permeabilidade em fungdo da Porosidade e do
Tamanho Médio de Particula

Uma relagdo simplificada entre o coeficiente de permeabilidade

viscoso ( @) e o tamanho médio de particula é dada pela expressio:

o=k, J" (23) Robinson

onde k, é uma constante,

17



No caso de particulas com forma uniforme, a area superficial
de poros sers altamente dependente do tamanho inicial das
particulas. Um maior tamanho inicia] de particula ir4 diminuir a area
superficial de poros, para dado nivel de porosidade. Assim o
coeficiente de permeabilidade deve aumentar com a elevagdo do

nivel de porosidade e do tamanho de particula, portanto o= « (¢, d).

As equagdes (17) e (18) sugerem que o coeficiente inercial
¢ proporcional ao coeficiente de permeabilidade viscoso (a),

porosidade e 4rea superficial de poros, assim também B= 8 (¢, d).

German obteve para filtros de ago inéx 3161, as seguintes

relagdes:

o =4=6-10—“(do'73)(86’8) (24 )
8=3,9.10"(a"")(&") (25) o
6=5,5.10"(ap/d )" (26)

onde p=(1-¢).
Smith ¢ Marth apresentam, também para o ago inéx 316L,

consolidados a altas pressdes e sinterizados a baixas temperaturas

por curto periodo de tempo os seguintes dados:

18



o =4,8.10"(4")(g") (27)

6=4,8.10"(ap/d)" (28)

Qualitativamente, quando a forma do poro torna-se mais
arredondada o expoente da porosidade aumenta e o tamanho inicial
de particula tem menor influénecia sobre o coeficiente inercial. Em
ambos 0s casos a porosidade ¢ O tamanho de particula sio fatores

determinantes para as caracteristicas do fluxo.

19



3. Métodos para q predicdo  do comportamento quanto q

permeabilidade de Estruturas Porosas

A figura anexa no final do trabalho ilustra ésquematicamente
0 equipamento pelo qual se mede a vazio de gas em fungdo da
pressdo de entrada do sistema e do gradiente de pressio no flitro,
substituindo-se  esssa  varidveis ha equagio ( 12 ) tem-se os

coeficientes o ¢ .

Pelo desenvolvimento tedrico formulado anteriormente tem-se
que os coeficientes de permeabilidade podem ser avaliados por dois
métodos basicos:

1°. A partir da relagdo entre os coeficientes de permeabilidade
viscoso (o ) e inercial (B) e as varigveis de processamento & e
D, ou D' como nas equagdes (17 ) ou(18) ou a partir de ¢ ¢

d como mostrado nas equagbes (21 )e (22).

2°. Em relagdo a caracteristicas microestruturais, obtidas por
metalografia quantitativa: fragdo volumétrica de porosidade (&) e

area superficial de porosidade por unidade de volume da amostra
(S,) através das equagbes (24 )e (25) ou (27 )e(28).

A medigdo da porosidade total (g,.), no primeiro caso, é feita

por densidade hidrostatica e o nivel de porosidade interconectada (&),
¢ determinado por impregnagdo de 6leo de acordo com a norma

ASTM B328-73. A porosidade interconectada deve ser maior que

20



85%, ou seja, a fragdo de porosidade total g ndo deve ser menor
que 0,15, pois abaixo desse valor a conectividade diminui
bruscamente devido ao isolamento de grandes segmentos da rede de
poros. A diminuigdo da conectividade ¢ devido as forgas de
compactagdo ou ao excessivo crescimento de pescogo entre as

particulas durante os estagios avangados da sinterizacgdo.

Para se obter os parimetros microestruturais: ¢ e S, deve-se

utilizar métodos de anglise automatica de imagens numa amostra
seccionada, impregnada a vacuo com resina epoxi e polida

metalograficamente.

21



4. Aplicacbes da Metodologia

No uso de estruturas porosas em dispositivos para controle de
fluxo e para filtragdo, a vazio de gas, para um dado gradiente de
pressdo ¢ uma varigvel frequentemente especificada. Resolvendo-se 3
equagdo (13 )para a vazio volumétrica em fungdo do fluxo obtém-

S€ uma curva para uma faixa de gradientes de pressio.

Especificando-se a pressdo de saida, o tipo de gas ¢ a
espessura do filtro, pode-se comparar ou avaliar filtros simplesmente
empregando seus coeficientes o e B conseguidos através de ensaios
normalizados ( ¢ e ), (& e D,) e (¢ e D*) ou

metalograficamente por (e€e S ) sendo possivel a comparagio

com os coeficientes viscoso e inercial determinados por medidas de

permeabilidade.

Outro ponto a se destacar é a possibilidade de obtengdo de
filtros com caracteristicas de fluxo, tanto « quanto (3, similares
partindo-se de pés (no caso dos filtros metilicos produzidos por
sinterizagdo ) com diferentes tamanhos de particula e porosidade,
mantendo-se o ciclo de sinterizagdo; ou seja, estes filtros possuem
microestruturas bem diferentes no que diz respeito ao tamanho dog
poros e sua distribuigdo, mas a curva que relaciona a vazio com o

gradiente de pressdo através de amostra sfo proximas.
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Ndo ha duvidas que outras combinagSes de porosidade,
tamanho de particulas inicial do PO, pressio de compactagdo e
ciclos de sinterizagdo podem ser utilizadas na fabricagdo de filtros

para promover as mesmas caracteristicas de fluxo.

Assim mantendo-se uma dada permeabilidade, mas mudando g
estrutura de poros e densidade pode-se escolher mais de uma razio

de filtragem ( filter rating ) e/ou resistécia mecanica para uma
particular aplicagdo.

23



5. Materiais e Métodos

No presente trabalho foram estudados filtros de monel,
constituidos de 70% de Niquel ¢ 30% de Cobre, obtidos por

sinterizagdo de poés de diferentes granulometrias sob diferentes

pressdes.

Foram ainda conduzidos ensaios em filtros de a¢o inoxidavel
316L e em filtros de bronze, mas devido ao menor numero de

amostras os resultados obtidos ndo sdo aqui apresentados.

Os poés de monel utilizados para a confecgdo dos filtros

foram  separados por  peneiramento  ngs seguintes  faixas

granulométricas:
Tipo de pé
A B C
Granulometria -230+105 | -105+74 | -105+62

Tabela [T - Granulometria dos pos
O equipamento utilizado para as medidas foi um permeimetro

instalado no Departamento de Engenharia Metaltirgica ¢ de Materiais

da Universidade de Sdo Paulo.

24



A queda de pressio ¢ a vazio sdo medidas no equipamento,

sendo utilizado como fluido, de densidade e viscosidade conhecidas,

ar.

A vpartir dos valores obtidos para a pressdo de entrada, de
saida, vazio e das caracteristicas do filtro (4rea e espessura ), com a
ajuda de uma planilha de calculo & possivel converter os dados para
unidades padrio de modo 1 tornar aplicavel g equagdo de
Forchheimer (13). Por meio de um software grafico, plotam-se curvas
AP/t XOQ | fazendo regressdo por um polinémio de grau dois &
possivel obter os coeficientes o, (coeficiente de permeabilidade )e

B (coeficiente inercial de resisténcia ) caracteristicos do filtro.

25



6. Resultados

Na tabela

coeficientes de permeabilidade € inercial

abaixo sio

filtros de monel estudados:

apresentados

resultados

de resisténcia para os

Tipo Pressdo de lo B
de compactagdo (10" m") (10" m)
po (MPa)
Zero 817510 1602,30
A 200 20,991 449 43
300 73,726 11,185
400 9,3601 20,055
Zero 33,979 23,985
B 200 3,771 1,3962
300 2,3463 2,9666
400 1,9716 7,0103
Zero 14,716 592.20
C 200 4,1647 3,5444
300 1,2367 0,86893
400 10,830 0,34551
Tabela III - Pés com respectivas  pressies compactagdo,

coeficientes de permeabilidade e inercial de resisténcia.




7. Conclusdes

Através dos resultados obtidos foi possivel verificar a
dependéncia entre o tamanho da particula e a permeabilidade. Quanto

maior a faixa granulométrica maior a permeabilidade.

Da mesma forma pode-se relacionar a permeabilidade com a
pressdo de conformag3o. Quanto menor a pressdo de compactagio

maior a permeabilidade.

Alguns do resultados apresentados na tabela III podem parecer
a primeira vista discrepantes, entretanto podem ser explicados por
dos fatores: diferengas na fragio de porosidade interconectada e
ajuste da curva pelo sofiware. O software utilizado realiza g2
aproximagdo pela melhor curva ¢ ndo necessariamente pela familia

de curvas que rege o fenémeno.
Os valores para os coeficientes de permeabilidade e 1nercial
de resisténcia se encontram proximos a valores J& encontrados por

outros pesquisadores em filtros de aco inoxidavel 316L.

A partir desses coeficientes e baseando-se na formulagio

apresentada pode-se correlacionar outras propriedades do filtro.

A permeabilidade do filtro ¢ dependente, como Ja dito, do

tamanho da particula e da pressdo de compactagdo, entretanto é

28



possivle obter filtros com permeabilidades  similares ( valores
proximos de coeficientes de permeabilidade e inercial de resisténcia )
por meio de selegio de diferentes combinagdes de tamanho de
particula e pressio de compactagdo; o que permite escolher o filtro

adequado para as condi¢des de trabalho.
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8. Anexo [
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9. Anexo 11
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Tipo Pressdo de Coeficiente
de compactacdo de
po (MPa ) correlagdo
Zero 0,990762
A 200 0,992797
300 0,994676
400 0,993003
Zero 0,9753363
B 200 0,988963
300 0,992281
400 0,992841
ZET0 0,994783
C 200 0,958463
300 0,987737
400 0,985849

Tabela IV - Coeficientes de correlacéo para as curvas de

aproximacdo
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