
UNIVERSIDADE DE SÃO PAULO
ESCOLA DE ENGENHARIA DE SÃO CARLOS

Caio Kioshi Miyazaki

Redes neurais convolucionais para aprendizagem e
reconhecimento de objetos 3D

São Carlos

2017

Caio Kioshi Miyazaki

Redes neurais convolucionais para aprendizagem e
reconhecimento de objetos 3D

Monografia apresentada ao de Curso de En-
genharia Elétrica com Ênfase em Sistemas
de Energia e Automação, da Escola de En-
genharia de São Carlos da Universidade de
São Paulo, como parte dos requisitos para
obtenção do título de Engenheiro Eletricista.

Orientador: Prof. Dr. Vitor Campanholo Gui-
zilini

São Carlos
2017

AUTORIZO A REPRODUÇÃO TOTAL OU PARCIAL DESTE TRABALHO,
POR QUALQUER MEIO CONVENCIONAL OU ELETRÔNICO, PARA FINS
DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE.

Miyazaki, Caio Kioshi
 M685r Redes neurais convolucionais para aprendizagem e

reconhecimento de objetos 3D / Caio Kioshi Miyazaki;
orientador Vitor Campanholo Guizilini. São Carlos,
2017.

Monografia (Graduação em Engenharia Elétrica com
ênfase em Sistemas de Energia e Automação) -- Escola de
Engenharia de São Carlos da Universidade de São Paulo,
2017.

1. Aprendizado profundo. 2. Redes neurais
convolucionais. 3. Aprendizado de máquina. 4. Objetos
3D. 5. Nuvem de pontos. 6. Voxel. 7. ModelNet10. I.
Título.

Este trabalho é dedicado aos meus pais,
aos meus irmãos e minha namorada.

AGRADECIMENTOS

Aos meus pais, Celso e Ester, e meus irmãos, Caroline e Christian, por todo o apoio,
carinho e suporte em toda minha vida. Sempre me incentivando à aprender e estudar.

Gostaria de agradecer à minha amada namorada e melhor amiga Nathalia, pelo
companheirismo, conselhos e apoio. Apesar de estar passando por um período muito
atarefado, realizando estágio e faculdade, conseguiu dar tempo para me apoiar neste
trabalho.

Ao Vitor Campanholo Guizilini, pela imensa contribuição e orientação durante
todas as etapas deste trabalho. Sempre me incentivando e me fascinando pela área de
Aprendizado de Máquinas.

Ao professor Valdir Grassi Junior, pelo apoio e paciência devotada a mim, tornando
possível a realização deste projeto.

Aos todos amigos que fiz durante esta parte da minha jornada.

À Escola de Engenharia de São Carlos, todos os professores e técnicos que contri-
buíram durante minha formação.

"A morte do homem começa no instante
em que ele desiste de aprender ..."

Albino Teixeira

RESUMO

MIYAZAKI, C. K. Redes neurais convolucionais para aprendizagem e
reconhecimento de objetos 3D. 2017. 56p. Monografia (Trabalho de Conclusão de
Curso) - Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos,
2017.

O reconhecimento de objetos tridimensionais é um problema ainda pouco explorado, porém
de extrema importância em diversas áreas da visão computacional, evolvendo da medicina
até a robótica. Este trabalho propõe a utilização de Redes Neurais Convolucionais para
a identificação de 10 classes de objetos 3D. Para isto foi utilizado a base de dados de
modelos CAD 3D, o ModelNet10. Utilizando a representação dos objetos em nuvem de
pontos uma série de topologias foram determinadas variando os parâmetros da rede. Cada
topologia após configurada foi treinada e testada com conjunto de exemplos diferentes.
Como resultado, é discutido a importância da escolha de cada parâmetro de uma Rede
Neural Convolucional e sua influência no desempenho final. A topologia com o melhor
resultado obteve 89% de acurácia no conjunto de teste.

Palavras-chave: Aprendizado Profundo. Objetos 3D. Redes Neurais Convolucionais.
Aprendizado de Máquina. Nuvem de Pontos. Voxel ModelNet10

ABSTRACT

MIYAZAKI, C. K. Convolutional neural network for learning and recognition
of 3D objects. 2017. 56p. Monografia (Trabalho de Conclusão de Curso) - Escola de
Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2017.

The 3D objects recognition is a problem that has not been well explored yet, but it is
extremely important in several fields of computer vision, it has been used in medicine to
robotics. This paper uses Convolutional Neural Network for the identification of 10 classes
of 3D objects. The ModelNet10 was the 3D CAD model dataset used. Using point cloud as
the object representation, a set of topologies were defined by varying the parameters of the
network. Each topology configuration was trained and tested with separated example of
the dataset. As a result, the importance of selecting each parameter of the Convolutional
Neural Network corretly and its influence on final performance is discussed. The topology
with best result obtained 89% of accuracy on the test set.

Keywords: Machine Learning. Convolutional Neural Network. 3D Object. Deep Learning.
Point Cloud. ModelNet10

LISTA DE FIGURAS

Figura 1 – Exemplo de Representações 3D . 5
Figura 2 – Neurônio Artificial . 9
Figura 3 – Função Tangente Hiperbólica . 10
Figura 4 – Função Sigmóide . 10
Figura 5 – Função ReLU . 10
Figura 6 – Rede Neural Multicamadas . 11
Figura 7 – One-hot encoding . 12
Figura 8 – Arquitetura de uma Rede Neural Convolucional 16
Figura 9 – Operação de Convolução . 16
Figura 10 – Camadas Convolucionais . 17
Figura 11 – Preenchimento para filtro 5x5 . 18
Figura 12 – Exemplo de Fluxo de Dados Gráficos do TensorFlow 21
Figura 13 – Estrutura de Arquivo .off . 23
Figura 14 – Exemplos dos objetos em .off . 24
Figura 15 – Povoamento de um triângulo . 25
Figura 16 – Estrutura do conjunto de dados de entrada após preprocessados 27
Figura 17 – Topologia completa da CNN utilizada 28
Figura 18 – Exemplos de conversão da representação dos objetos 30
Figura 19 – Acurácia do treinamento para Objetos - Grade 32 32
Figura 20 – Acurácia do teste para Objetos - Grade 32 32
Figura 21 – Perda do treinamento para Objetos - Grade 32 33
Figura 22 – Perda do teste para Objetos - Grade 32 33
Figura 23 – Acurácia do treinamento para Objetos - Grade 16 34
Figura 24 – Acurácia do teste para Objetos - Grade 16 35
Figura 25 – Perda do treinamento para Objetos - Grade 16 35
Figura 26 – Perda do teste para Objetos - Grade 16 35

LISTA DE TABELAS

Tabela 1 – Conjunto de dados de treinamento e teste 22
Tabela 2 – One-hot encoding . 26
Tabela 3 – Desempenho das topologias de CNN para objetos com grade de 32 . . 31
Tabela 4 – Desempenho das topologias de CNN para objetos com grade de 16 . . 34
Tabela 5 – Valores Médios da Acurácia e Perda das Topologias para mesmo Número

de Camadas Convolucionais . 36
Tabela 6 – Valores Médios da Acurácia e Perda das Topologias para mesmo Número

de Camadas Totalmente Conectadas 37
Tabela 7 – Valores Médios da Acurácia e Perda das Topologias para mesmo Tama-

nho do Filtro . 37
Tabela 8 – Valores Médios da Acurácia e Perda das Topologias para mesma Taxa

de Aprendizagem . 38
Tabela 9 – Resultados obtidos por outros trabalhos 38

LISTA DE ABREVIATURAS E SIGLAS

TCC Trabalho de Conclusão de Curso

USP Universidade de São Paulo

GPU Unidades de Processamento Gráfico (Graphic Processing Unit)

IA Inteligência Artificial

ML Aprendizado de Máquina (Machine Learning)

DL Aprendizado Profundo (Deep Learning)

2D Bidimensional

3D Tridimensional

RNA Rede Neural Artificial

MLNN Rede Neural Multicamadas (Multi-layer Neural Network)

LR Taxa de Aprendizagem (Learning Rate)

GD Gradiente Descendente (Gradient Descendent)

SGD Gradiente Descendente Estocástico (Stochastic Gradient Descent)

CNN Redes Neurais Convolucionais (Convolutional Neural Network)

CL Camada Convolucional (Convolutional Layer)

FCL Camada Totalmente Conectada (Fully Connected Layer)

SUMÁRIO

Lista de figuras . xi

Lista de tabelas . xiii

1 INTRODUÇÃO . 3
1.1 Contextualização . 3
1.2 Motivação . 3
1.3 Objetivo Geral . 4
1.4 Objetivo Específico . 4
1.5 Organização do Trabalho . 4

2 RECONHECIMENTO DE OBJETOS 3D 5
2.1 Representações Tridimensionais . 5
2.1.1 Representação Mesh . 6
2.1.2 Representação em Nuvem de Pontos . 6
2.1.3 Representação Voxel . 6
2.2 Métodos de reconhecimento de padrões 3D 6

3 APRENDIZADO DE MÁQUINA . 9
3.1 Redes Neurais Artificiais . 9
3.1.1 Função de Ativação . 10
3.1.1.1 Função ReLU . 11
3.1.2 Rede Neural Multicamadas . 11
3.1.3 Função Softmax . 11
3.1.4 Codificação One-hot . 12
3.1.5 Função Custo . 12
3.1.6 Cross Entropy . 13
3.1.7 Método do Gradiente Descendente . 13
3.1.8 Sobre-ajuste e Sub-ajuste . 13
3.1.9 Treinamento de uma Rede Neural Artificial de Mútliplas Camadas 14
3.2 Aprendizado Profundo . 14
3.2.1 Método do Gradiente Descendente Estocástico 15
3.2.2 Dropout . 15
3.3 Redes Neurais Convolucionais . 15
3.3.1 Camada Convolucional . 17
3.3.1.1 Passo (stride) . 17
3.3.1.2 Preenchimento (padding) . 18

3.3.2 Camada de Pooling . 18
3.3.3 Camada Totalmente Conectada - FCL . 19

4 IMPLEMENTAÇÃO . 21
4.1 Materiais . 21
4.1.1 TensorFlow . 21
4.1.2 Base de Dados . 22
4.1.2.1 Formato OFF . 22
4.2 Pré-processamento . 23
4.2.1 Conversão da Representação 3D . 23
4.2.2 Grade . 23
4.2.3 Normalização . 23
4.2.4 Povoamento das Faces . 25
4.2.5 Codificação One-hot . 26
4.2.6 Conjunto de Dados de Treinamento e Teste 26
4.3 Treinamento da Rede Neural Convolucional 26

5 EXPERIMENTOS E RESULTADOS 29
5.1 Pré-processamento . 29
5.2 Treinamento e Teste da Rede Neural Convolucional 29
5.2.1 Objetos 3D com grade de 32 . 31
5.2.2 Objetos 3D com grade de 16 . 33
5.3 Análise da Variação dos Parâmetros 36
5.3.1 Tamanho da Grade . 36
5.3.2 Número de Camadas Convolucionais . 36
5.3.3 Número de Camadas Totalmente Conectadas 37
5.3.4 Variação do Tamanho do Filtro . 37
5.3.5 Variação da Taxa de Aprendizagem . 37
5.4 Desempenho de outros trabalhos . 38

6 CONCLUSÃO . 39
6.1 Trabalhos Futuros . 39

REFERÊNCIAS . 41

APÊNDICES 43

APÊNDICE A – CÓDIGO FONTE PARA O PRÉ-PROCESSAMENTO
DOS DADOS . 45

APÊNDICE B – CÓDIGO FONTE PARA O TREINAMENTO DAS
CNNS . 51

3

1 INTRODUÇÃO

1.1 Contextualização

Os desafios mais recentes que a Inteligência Artificial tenta resolver são problemas
com soluções intuitivas. Em outras palavras, são tarefas executadas de modo fáceis por
pessoas, porém difíceis de serem descritas formalmente como o reconhecimento da fala e
imagens. A intuição humana está relacionada com a habilidade de entender e interpretar
conhecimentos passados para predizer e ou resolver problemas atuais. Com isso surgiu o
Aprendizado de Máquina (do termo em inglês Machine Learning - ML), uma subárea da
IA, que utiliza métodos computacionais para emular esse processo de intuição humana.
Em ML, a aprendizagem é feita por meio de treinamentos em banco de dados, que
representam eventos e experiências passadas, possibilitando a construção de sistemas
capazes de aprender de forma automática (DUNDAS; CHIK, 2011).

Desde sua concepção, ML têm contribuído para o avanço de diversas áreas do
conhecimento. Atualmente, a Visão Computacional foi a que mais se beneficiou com o
surgimento do método, sendo um dos campos que vêm ganhado grande importância, tanto
pelo desenvolvimento quanto pela forma como as informações estão sendo expostas. Sua
importância pode ser vista em um estudo da Cisco, em que estima que em 2016 mais de
85 porcento de todo o tráfico da internet está na forma de pixels (LI, 2016).

Neste panorama geral da Visão Computacional e Aprendizado de Máquina, que
surgiu a motivação deste trabalho. Reconhecimento de imagens são problemas que até
pouco tempo atrás eram impossíveis de serem resolvidos pelas máquinas. Mas hoje, dada
sua importância, grandes esforços estão sendo direcionados no desenvolvimento de novas
técnicas para a aplicação em diversas áreas: desde imagens médicas, carros autônomos,
automação industrial, realidade aumentada, etc.

1.2 Motivação

Reconhecimento de objetos continua sendo um dos desafios fundamentais de siste-
mas de visão computacional. Atualmente muitos esforços estão concentrados na classificação
de categorias de objetos 2D. No entanto, há um constante crescimento na utilização de
formas 3D, fazendo necessário o desenvolvimento de novos métodos para classifica-los. Um
dos problemas mais recorrentes nestas formas é a obtenção de uma boa representação no
espaço tridimensional, interferindo diretamente no reconhecimento da imagem. A utilização
de Redes Neurais Convolucionais têm como objetivo suprir, em partes, esta necessidade
de boa representações.

4

1.3 Objetivo Geral

Este trabalho tem como objetivo utilizar redes neurais convolucional para iden-
tificação de objetos 3D a partir do banco de dados fornecidos pelo projeto Princeton
ModelNet10.

1.4 Objetivo Específico

• Estudar trabalhos correlatos e analisar o estado da arte;

• Entender o funcionamento de uma rede neural convolucional e suas diferentes
topologias;

• Realizar o treinamento e aplicação de uma rede neural artificial para reconheci-
mento de objetos 3D.

1.5 Organização do Trabalho

O Capítulo 1 apresenta uma contextualização ao tema de identificação de objetos
tridimensionais, trata da motivação e objetivos do trabalho, e por fim apresenta a estrutura
organizacional do trabalho.

O Capítulo 2 apresenta uma breve revisão bibliográfica sobre representações tridi-
mensionais e os métodos existentes de identificação de objetos 3D.

O Capítulo 3 abrange algumas áreas de Aprendizado de Máquina (ML) utilizadas
neste projeto. Os fundamentos teóricos de Redes Neurais Artificiais e seus novos métodos,
Aprendizado Profunda e Redes Neurais Convolucionais.

O Capítulo 4 descreve os materiais utilizados e a metodologia desenvolvida, baseada
em aspectos teóricos e práticos.

O Capítulo 5 apresentada os resultados e análises da fase de pré-processamento
dos objetos 3D, e da fase de treinamento das Redes Neurais Convolucionais.

Por fim, o Capítulo 6 traz conclusões do trabalho, e considerações acerca de
trabalhos futuros.

5

2 RECONHECIMENTO DE OBJETOS 3D

Este capítulo apresenta uma breve revisão bibliográfica sobre representações tridi-
mensionais e os métodos existentes de identificação de objetos 3D.

2.1 Representações Tridimensionais

Representações tridimensionais de objetos e cenários são cruciais para análises
visuais do mundo, pois retratam de forma mais fiel e compacta quando comparada
com a representação bidimensional (KRAUSE et al., 2013). Entretanto, são atualmente
subutilizadas em sistemas de visão computacional, principalmente por causa da falta de
boas representações genéricas (WU et al., 2015).

Modelos 3D podem ser divididos em duas categorias: sólidos e superfície. Modelos
sólidos definem volumes dos objetos, são os mais realísticos porém são mais difíceis de
construir. Comumente utilizados em simulações médicas e em engenharia, compõe as
seguintes representações: voxel, BSP tree, CSG, Sweep e Octree. Modelos de superfície
são mais fáceis de modelar pois representam somente a casca do objeto. Dentre alguns
exemplos destas representações temos: nuvem de pontos, superfícies poligonais e mesh.

As três representações mais utilizados para problemas de reconhecimento de objetos
3D encontrados na literatura são: nuvem de pontos, voxel e mesh. Neste trabalho serão
abordados a representação mesh, pois o banco de dados utilizado possui os objetos neste
formato, a representação nuvem de pontos, que é a representação intermediária para o
processo de discretização da representação e por fim é utilizada a representação voxel.

Figura 1: Exemplo de Representações 3D

(a) Mesh (b) Nuvem de pontos (c) voxel
Fonte: Garcia-Garcia et al. (2016)

6

2.1.1 Representação Mesh

Mesh são malhas poligonais, que são compostas por um conjunto de vértices e
arestas. A conexão entre eles formam as faces, ou polígonos, que compõem a superfície
da imagem. Os polígonos mais comuns utilizados são os triângulos e quadriláteros. Na
Figura 1 exemplo (a) é possível observar o conjunto de pequenas faces, que ligadas foram
a superfície do objeto.

2.1.2 Representação em Nuvem de Pontos

A nuvem de pontos é uma coleção de pontos colocados em um sistema de co-
ordenadas tridimensional, em geral, adquiridos de scanners ou da conversão de outras
representações 3D. Este tipo de dados são frequentemente encontrados em várias aplicações
desde robótica e visão até cosmologia (RAVANBAKHSH; SCHNEIDER; POCZOS, 2016).
A Figura 1 exemplo (b) ilustra esta representação que foi produzida a partir do exemplo
(a).

2.1.3 Representação Voxel

Assim como o pixel sugere um elemento da imagem em um espaço bidimensional,
o voxel analogamente sugere um elemento de volume em um espaço tridimensional. A
representação em voxel consiste em decompor o objeto 3D em células em forma de cubos
igualmente espaçados em uma grade (comumente referido em inglês como grid). A Figura
1 exemplo (c) mostra um exemplo desta representação em um cubo de 30x30x30 voxels.
Cada voxel possui uma densidade diferente, nos quais graficamente as cores mais escuras
indicam alta densidade e as cores mais claras, baixa densidade.

Apesar da representação voxel possuir propriedades interessantes, ela tende a
ser computacionalmente mais custosa em termos de memória em comparação à nuvem
de pontos (SIMONOVSKY; KOMODAKIS, 2017). Porém este custo traz resultados
significativos, dado que trabalhos no estado da arte em reconhecimento de objetos 3D
abordam a utilização desta representação.

2.2 Métodos de reconhecimento de padrões 3D

Uma das primeiras abordagens encontradas em reconhecimento de objetos se baseia
na criação de modelos matemáticos para os objetos. O modelo spline é um exemplo desta
abordagem, no qual o objeto pode ser deformando localmente e não afetar o resultado. A
criação de modelos matemáticos necessitam de muitos parâmetros, tornando uma técnica
muito lenta e de difícil implementação. São encontradas em aplicações cujos objetos
possuem poucos parâmetros e compactamente caracterizado, em especial reconhecimento
de modelos cilíndricos, esferas, pirâmides e prismas (BENVEGNÙ, 2017).

7

O método Scale-Invariant Feature Transform (SIFT) proposto por Lowe (1999),
marcou como um grande avanço para o reconhecimento de objetos. Esta técnica, comumente
utilizada em imagens 2D é invariante à escala e rotação, com isso pode ser utilizado também
em imagens 3D, apesar de possuir resultados pouco expressivos. Basicamente é composta
por duas partes: o detector e o descritor. O detector é utilizado para identificar os extremos
da imagem e utilizar a localização como pontos-chaves. O descritor define a orientação e
descrição destes pontos-chave (BATISTA, 2012). O algoritmo SIFT extrai as características
das imagens e transforma em vetores com características locais, e então estes são usados
para fazer correspondência entre as imagens e classificá-las.

Em Osada et al. (2002) é proposto um método que calcula as assinaturas dos
objetos utilizando modelos 3D poligonais arbitrários. Este método tem como objetivo
reduzir problemas de comparações das formas 3D, utilizando comparações com distribuição
probabilística, que são mais simples e não necessitam de métodos como registro de postura,
correspondência das características ou correspondência de modelos. O método realiza a
amostragem e normaliza o objeto, seguido da transformação do modelo arbitrário 3D em
uma função parametrizada, esta função pode então ser facilmente comparada com outras
funções.

Máquinas de Vetores de Suporte (do inglês Support Vector Machine - SVM) é
um classificador binário baseado na aprendizagem estatística. É um classificador muito
utilizado em classificação de padrões, reconhecimento de imagens, seleção de genes, e
outros. O SVM tenta estabelecer uma série de princípios para a obtenção de uma boa
generalização (LORENA; CARVALHO, 2007).

Por fim, o método de redes neurais artificiais é o mais amplamente utilizado hoje,
possui boa capacidade de generalização com aprendizagem de padrões e vêm apresentando
grandes resultados em tarefas de reconhecimento de objetos. Este método é utilizado neste
projeto e será discutido mais profundamente no capítulo 3.

9

3 APRENDIZADO DE MÁQUINA

Este capítulo têm como objetivo abranger algumas áreas de Aprendizado de
Máquina (ML) utilizadas neste projeto. Iniciando com uma breve introdução sobre Redes
Neurais Artificiais, mostrando algumas técnicas e termos, como por exemplo, regressão
logística, função Softmax, codificação one-hot e Cross entropy. Em seguida, será apresentado
os fundamentos teóricos de Aprendizagem Profunda (DL) e Redes Neurais Convolucionais
(CNN), com os principais métodos utilizados e seus benefícios.

3.1 Redes Neurais Artificiais

Redes Neurais Artificiais (RNA) são modelos computacionais de aprendizagem de
máquina inspirados em redes neurais biológicas, que originaram em 1943, no trabalho de
McCulloch e Pitts (1943). RNAs são muito utilizados em tarefas de reconhecimento de pa-
drões, como por exemplo, reconhecimento de fala, reconhecimento de objetos, identificação
de células cancerígenas, e outros (HAFEMANN, 2014).

Assim como uma rede neural biológica, as unidades básicas da RNA são os neurônios.
Cada neurônio artificial pode ser representado graficamente como na Figura 2.

Figura 2: Neurônio Artificial

Fonte: (SILVA; SCHIMIDT, 2016)

Onde cada elemento possui as seguintes funções:

a) Sinais de entrada (xm): conjunto de dados que servirão de base para o treina-
mento da rede.

b) Pesos Sinápticos (wkp): cada sinal de entrada é associado à um peso diferente,
de forma que durante o treinamento a RNA determina a influência da entrada

10

para o resultado final.

c) limiar de ativação (bk): parâmetro que aumenta os graus de liberdade, permitindo
melhor adaptação da rede.

d) Somatório: realiza a soma de todas entradas multiplicadas pelos pesos.

e) Função de ativação (ϕ(.)): aplica uma não-linearidade no valor do neurônio e
determina a forma como ele deverá ser ativado.

f) Saída (yk): resultado estimado pelo neurônio

Matematicamente, o neurônio artificial pode ser expresso por uma função com as
variáveis de entrada xm e saída yk, como descrito pela Equação 3.1:

yk = ϕ(
m∑

i=1
xiwki + bk) (3.1)

3.1.1 Função de Ativação

As funções de ativação são funções não-lineares conectadas ao final da estrutura de
um neurônio artificial (Figura 2), também são inspiradas biologicamente e definem a saída
com base nos dados de entrada e o limiar de ativação.

Figura 3: Função Tangente
Hiperbólica Figura 4: Função Sigmóide Figura 5: Função ReLU

Exemplos de funções de ativação - Fonte: Ferreira (2017)

A função sigmóide, Figura 4, é uma função do tipo:

ϕ(x) = 1
1 + e−x

(3.2)

Muito utilizada em problemas de classificação, tem como saída valores entre 0 e 1,
e resulta na probabilidade dos dados de entrada estarem contidos na classe analisada.

A função tangente hiperbólica, Figura 3, tem como saída valores entre -1 e 1 e é
baseada na função sigmóide:

tanh(x) = 2ϕ(2x)− 1 (3.3)

11

3.1.1.1 Função ReLU

Função Linear Retificada, do inglês Rectified Linear Unit (ReLU), é uma função
de ativação mais eficiente que a sigmóide e tangente hiperbólica, pois não faz uso de
expoentes. A Figura 5 representa esta função, onde é possível observar que é uma função
linear por partes.

ϕ(x) = max(0, x) (3.4)

3.1.2 Rede Neural Multicamadas

Um modelo básico de rede de apenas um neurônio é chamado Perceptron, ele é capaz
de classificar padrões, porém de forma limitada, pois agrupa apenas dados linearmente
separáveis. Como grande parte dos problemas existentes não são linearmente separável
surgiu uma arquitetura mais robusta chamada Rede Neural Multicamadas (Multi-layer
Neural Network - MLNN)(HAFEMANN, 2014).

MLNN é uma generalização do perceptron, no qual conjuntos de neurônios artificiais
são distribuídos em camadas. Cada camada pode ser nomeada como entrada, oculta
(também chamada de escondida) ou saída. A Figura 6 demonstra como cada perceptron é
definido como um nó, e a distribuição das camadas, sendo a primeira camada chamada de
entrada, a última de saída, e todas as camadas intermediárias são as ocultas.

Figura 6: Rede Neural Multicamadas

Fonte: (ALMEIDA,)

3.1.3 Função Softmax

Como explicado em Goodfellow, Bengio e Courville (2016), funções Softmax são co-
mumente utilizados como classificadores na camada de saída, têm como objetivo representar
a probabilidade de cada classe para cada valor de entrada.

12

Pela Equação 3.5 da Função softmax podemos notar que os resultados só podem
assumir valores entre 0 e 1, e que a soma da probabilidade de todas as classes é igual a 1.
Desta forma podemos determinar que a classe estimada pela rede é a que possui a maior
probabilidade.

softmax(zi) = exp(zi)∑
j exp(zj)

(3.5)

3.1.4 Codificação One-hot

Algoritmos de redes neurais artificiais possuem como entrada e saída valores
numéricos, portanto é necessário converter os rótulos de cada classe de objetos de modo
que a RNA consiga identificar na saída da rede.

Existem diversas formas de converter os rótulos das classes. Neste trabalho iremos
utilizar a codificação one-hot que é o processo que converte os rótulos em vetores binários.
Um exemplo desta conversão está representada na figura 7. Cada uma das classes: cachorro,
gato e rato, possuem um vetor único.

Figura 7: One-hot encoding

Fonte: Elaborado pelo autor

3.1.5 Função Custo

A função custo (em inglês loss) têm como objetivo parametrizar o quão longe a
rede está do resultado esperado. Ela é a média das distâncias dos vetores de saída e saída

13

desejada de toda a rede. Como podemos observar na equação do custo 3.6, o cálculo é
através da média de cada Cross Entropy.

L = 1
N

∑
i

D(S(wxi + b), Li) (3.6)

3.1.6 Cross Entropy

Cross Entropy é o método que mede a distância entre os valores da codificação
one-hot com a saída da rede. Na equação 3.7 o parâmetro Cross Entropy é representado
por "D", "S" é o vetor de saída do Softmax e "L" é o vetor da codificação one-hot.

D(S, L) = −
n∑
i

Lilog(Si) (3.7)

3.1.7 Método do Gradiente Descendente

O gradiente descendente (ou Gradient Descent - GD em inglês) é um método
de otimização que tenta minimizar o erro da rede neural. Esta minimização é realizada
modificando os pesos e os limiares de ativação com o objetivo de encontrar o mínimo local
da função perda. As equações 3.8 e 3.9 determinam o modo como os pesos e bias são
atualizados:

w ← w − α∆w L (3.8)

b← b− α∆b L (3.9)

O parâmetro α das equações representa a taxa de aprendizado (em inglês learning
rate - LR), ou seja, a taxa de variação dos pesos e bias para cada iteração. Esta taxa é
então multiplicada pela derivada da função perda com relação à cada peso e bias.

3.1.8 Sobre-ajuste e Sub-ajuste

De acordo com Goodfellow, Bengio e Courville (2016), o que separa Aprendizado
de Máquina de um problema de otimização é a necessidade de técnicas capazes de treinar
modelos que generalizem exemplos nunca antes processados. Ou seja, não é suficiente que
o modelo desenvolvido possua boa acurácia apenas na base de dados de treinamento, ele
necessita passar por uma validação do treinamento.

Para determinar o desempenho de generalização de uma rede neural é necessário
ter dois conjunto de dados: dados de treinamento e dados de teste. O objetivo é diminuir
tanto o erro de treinamento como de teste. Quando estes dois erros não caminham juntos,

14

ocorrem dois fenômenos definidos a seguir: subajuste (referenciado em muitas literaturas
no inglês underfitting) e sobre-ajuste (em inglês overfitting).

O sub-ajuste ocorre quando o erro de treinamento não reduz. Ou seja o modelo não
foi capaz de determinar uma relação entre os dados de treinamento. Geralmente quando
os modelos e/ou bases de dados são simples a rede não consegue aprender o padrão.

O sobre-ajuste ocorre quando o erro de treinamento decresce mas o de teste continua
alto. Ou seja, a rede não é capaz de generalizar para exemplos não vistos. Isto pode ocorrer
devido a utilização de pequena base de treinamento ou uso excessivo de características
(nós).

3.1.9 Treinamento de uma Rede Neural Artificial de Mútliplas Camadas

O treinamento de uma rede neural artificial consiste no ajuste dos pesos sinápticos
e bias de modo que o vetor de saída se aproxime da saída esperada. O processo ocorre
em duas etapas principais: a propagação (forward-propagation) e a retro-propagação
(back-propagation) (RUSSELL; NORVIG, 1995).

A primeira etapa de propagação ocorre quando aplicamos a Equação 3.1 de neurônio
artificial para cada um dos nós da rede. Como explicado por Hafemann (2014), para tarefas
de classificação, o fluxo de propagação segue da camada de entrada, passa pelas camadas
ocultas e termina na camada de saída. Nesta última camada é comum utilizar a Função
3.5 de Softmax, que produz uma saída adequada para compararmos com o rótulo esperado
da codificação one-hot.

Terminada a etapa de propagação, a rede entrega como saída os valores estimados
por ela. Estes valores de saída são comparados com o desejado e a função perda é definida,
estabelecendo então o desempenho da rede no instante. Se este desempenho não foi o
suficiente, é iniciada então a fase de retro-propagação, onde se deseja minimizar o erro da
estimação. Para isto é necessário calcular a função Cross Entropy e função perda descritas
pelas equações 3.7 e 3.6 e utilizar o método Gradiente Descendente.

A cada passo, de propagação e retro-propagação, o vetor de pesos é alterado na
direção que produz a maior queda ao longo da superfície de erro. Este processo continua
até atingir um erro mínimo local.

3.2 Aprendizado Profundo

O desenvolvimento de Aprendizado Profundo (do inglês Deep Learning - DL) foi
motivado em parte pela falha de algoritmos tradicionais em generalizar tarefas de IA
como reconhecimento de fala e objetos (GOODFELLOW; BENGIO; COURVILLE, 2016).
Aprendizagem Profunda refere-se à modelos de MLNN com mais de duas camadas ocultas
e técnicas que treinam este modelo de forma eficiente.

15

O aumento de camadas em uma RNA causa um crescimento considerável de
parâmetros que devem ser ajustados no algoritmo de aprendizagem, então dois fatores
são fundamentais para a viabilidade da ferramenta: alta capacidades de processamento e
extensos banco de dados (FERREIRA, 2017). Portanto, esta ferramenta de aprendizado só
se tornou viável recentemente, com o barateamento de sensores de qualidade, que geram
enormes volume de dados para o treinamento e o aumento da capacidade processamento
das máquinas com unidades de processamento gráfico (GPU - Graphic Processing Unit).

3.2.1 Método do Gradiente Descendente Estocástico

O método do Gradiente Descendente Estocástico (do inglês Stochastic Gradient
Descent - SGD) é um dos algoritmos de otimização em aprendizado de máquina e aprendi-
zado profunda mais utilizados (GOODFELLOW; BENGIO; COURVILLE, 2016). SGD é
uma adaptação do método GD apresentado na Subseção 3.1.7, no qual procura resolver o
problema do GD em conjuntos de dados muito grandes. Visto que o GD calcula a função
perda com o gradiente para cada dado de treinamento, em redes neurais com muitas
camadas e nós a utilização deste método pode torna-lo inviável. O método SGD tenta
contornar este problema calculando uma estimativa da perda, utilizando uma pequena
parte do conjunto de treinamento.

3.2.2 Dropout

O Dropout é uma técnica de regularização que consiste em remover aleatoriamente
a cada iteração de treinamento uma determinada porcentagem dos neurônios de uma
camada, re-adicionando-os na iteração seguinte. Essa técnica também confere à rede a
habilidade de aprender atributos mais robustos, uma vez que um neurônio não pode
depender da presença específica de outros neurônios (ARAÚJO; CARNEIRO; SILVA,
2017).

3.3 Redes Neurais Convolucionais

As Redes Neurais Convolucionais (Convolutional Neural Network - CNN) são
arquiteturas de aprendizado profundo que subdividem os dados para tentar extrair carac-
terísticas de cada conjunto. Um dos objetivos da CNN é reduzir o número de parâmetros
que deverão ser ajustados pela rede, e então melhorar o processo de treinamento. Uma
característica importante desta arquitetura está relacionada com sua invariância a escala,
a translação e outras transformações, ou seja, ela consegue reconhecer padrões de forma
mais robusta e automática.

As CNNs são MLNN muito utilizadas em tarefas com estruturas em grades, como
por exemplo, processamento de fala e entendimento da linguagem natural (1D, convoluções
temporais), segmentação e classificação de imagens (2D, convolução espacial), e análise de

16

Figura 8: Arquitetura de uma Rede Neural Convolucional

Fonte: Araújo, Carneiro e Silva (2017)

vídeos (3D, convolução volumétrica) (SIMONOVSKY; KOMODAKIS, 2017) (LECUN;
BENGIO; HINTON, 2015). As principais camadas e as quais utilizamos neste trabalho
são: convolucionais, de pooling e totalmente conectadas.

A Figura 8 ilustra um exemplo de uma CNN, a LeNet (??), que classifica as imagens
de entrada em células anormais ou normais. Na arquitetura, as camadas convolucionais são
responsáveis por extrair as características. As camadas de pooling reduzem a dimensionali-
dade da rede. As camadas totalmente conectadas estão no fim da rede, ligam todas saídas
da camada anterior e determinam utilizando de funções de ativação a saída da CNN.

Figura 9: Operação de Convolução

Fonte: Imagem adaptada do site https://www.vaetas.cz/blog/intro-convolutional-neural-
networks/

17

3.3.1 Camada Convolucional

As camadas convolucionais (Convolutional layer - CL) são conjuntos de filtros
não lineares que percorrem sequencialmente os dados de entrada (ou camada anterior) e
então produzem matrizes chamadas mapas de características (feature maps). A Figura 9
exemplifica a operação de convolução, onde o filtro de tamanho 3x3 sobrepõe uma região
dos dados, a multiplicação matricial entre eles é computada e então os valores somados
são passados para o mapa de características.

Durante o processo de treinamento, esses filtros são ajustados automaticamente
para que sejam ativados na presença de características relevantes, como orientação de
bordas ou manchas de cores (KARPATHY, 2017). Em cada camada convolucional diversos
filtros são usados, e os mapa de características produzidos são então empilhados, formando
uma matriz 3D para imagens 2D ou uma matriz 4D para imagens 3D. A Figura 10
demonstra a forma como estes mapas são empilhados e como cada camada então aumenta
sua profundidade (depth) em uma CNN com imagem 2D de entrada e matrizes 3D nas
camadas subsequentes.

Ainda observando a Figura 10, cada camada convolucional varia a largura (width)
e a altura (height) conforme os dados percorrem a CNN. Esta variação ocorre com a
mudança de dois parâmetros na operação de convolução: o passo dos filtros (stride) e o
preenchimento na camada que sofrerá a convolução (padding).

3.3.1.1 Passo (stride)

Conforme explicado anteriormente os filtros da operação de convolução deslizam
por toda matriz de forma sequencial. Este deslizamento ocorre em passos, passando de
pixels para pixel em uma imagem ou de posição para outra em uma matriz. Quando o
passo é igual a um, a altura e largura da camada de saída será igual a entrada. Quando
for dois, a saída possuirá metade do tamanho da entrada.

Figura 10: Camadas Convolucionais

Fonte: Karpathy (2017)

18

3.3.1.2 Preenchimento (padding)

Durante o deslizamento dos filtros, há diversas formas de lidar com as bordas, as
mais utilizadas são: valid padding ou same padding. No valid padding as bordas do
filtro não ultrapassam as bordas da imagem, enquanto no same padding as fronteiras da
imagem são preenchidas com 0 de modo a controlar a altura e largura na camada de saída.
Este preenchimento é determinado com a Equação 3.10 e podemos observar na Figura 11
como é feito para uma imagem de 32x32 e filtro de 5x5.

P = K − 1
2 (3.10)

onde K é o tamanho do filtro.

Figura 11: Preenchimento para filtro 5x5

Fonte: Deshpande (2016)

Após definir os parâmetros da convolução, é possível determinar a dimensão de
saída da CL utilizando a Equação 3.11.

O = (W −K − 2P)
S

+ 1 (3.11)

onde O é a dimensão da saída, W é a dimensão da entrada, K é o tamanho do filtro, P é o
preenchimento e S é o passo do filtro.

3.3.2 Camada de Pooling

A camada pooling, geralmente utilizada após uma camada convolucional, têm como
objetivo reduzir a dimensão da camada de entrada, para diminuir o custo computacional e
evitar overfitting. O método mais comum, chamado de Max Pooling, consiste em reduzir a
dimensão das camadas pegando o valor máximo de cada região. Desta forma, ele elimina
valores desprezíveis, criando uma invariância a pequenas mudanças e distorções locais
(ARAÚJO; CARNEIRO; SILVA, 2017).

19

3.3.3 Camada Totalmente Conectada - FCL

As camadas totalmente conectadas (em inglês Fully Connected Layer - FCL) são
camadas iguais às MLNNs convencionais, onde todos os neurônios da camada anterior estão
conectados com cada neurônio desta camada. Nesta camada, as características extraídas
nas camadas convolucionais e de pooling são classificadas e na última camada utiliza-se a
função de ativação softmax para predizer a classe do objeto de entrada.

21

4 IMPLEMENTAÇÃO

Neste capítulo serão descritos os materiais e métodos utilizados para a solução do
problema apresentado. A metodologia consiste no treinamento e validação de uma rede
neural convolucional para aprendizado de classificação de objetos tridimensionais a partir
de um banco de dados ModelNet10, para isto o experimento foi dividido em duas etapas
principais: pré-processamento da base de dados e treinamento da CNN.

4.1 Materiais

A rede neural convolucional e pré-processamento dos dados foram implementados
em Python, utilizando bibliotecas como TensorFlow, cuDNN e Numpy. Todos os códigos
foram feitos e rodados em um computador com CPU Intel(R) Core(TM) i7-5500U 2,40
GHz, GPU NVIDIA GeForce 840M e 8GB de memória RAM. Vale destacar a utilização de
processamento paralelo através da GPU e com auxílio as bibliotecas cuDNN e TensorFlow
com o objetivo de diminuir o tempo computacional.

4.1.1 TensorFlow

A biblioteca escolhida para a implementação da rede neural foi o TensorFlow.
Ele é um framework de código aberto para computação numérica e Machine Learning
implementado em Python (ABADI et al., 2016). Foi disponibilizado pelo Google Brain
Team em novembro de 2015 e está sendo amplamente utilizada em Machine Learning por
diversas empresas como: Google, Twitter, Intel, Dropbox, Ebay, entre outras.

Figura 12: Exemplo de Fluxo de Dados Gráficos do TensorFlow

Fonte: Abadi et al. (2016)

22

Como explicado em Zaccone (2016), a computação do TensorFlow pode ser descrita
como um fluxo de dados gráficos (Data Flow Graph), onde cada nó representa uma
instância de operação (multiplicação, ReLU, convolução, e outros) e os cantos (edges) são
vetores multidimensionais de dados chamados de tensores.

A Figura 12 representa um exemplo de fluxo de dados gráficos de uma rede neural
Perceptron, com dados entradas (tensor "x") multiplicados pelos pesos sinápticos (tensor
"W") e somados pelo limiar de ativação (tensor "b"). O tensor de custo de saída (C) é
obtido da função de ativação ReLU.

4.1.2 Base de Dados

A base de dados utilizada foi retirada do projeto Princeton ModelNet10. Este
projeto têm como objetivo fornecer modelos de objetos CAD 3D para pesquisadores em
visão computacional, robótica, cientistas cognitivos e outros (PRINCETON, 2017). A base
de dados ModelNet10 contêm 4899 modelos CAD 3D de diferentes objetos, separados em
10 categorias e em conjuntos de treinamento e teste. A Tabela 1 enumera a quantidade de
objetos em cada categoria da base de dados.

Tabela 1: Conjunto de dados de treinamento e teste

Objeto Dados de
treinamento Dados de teste

Cama 515 100
Cadeira 889 100
Banheira 106 50

Escrivaninha 200 86
Cabeceira 200 86
Cômoda 200 86
Monitor 465 100

Sofa 680 100
Mesa 392 100

Vaso sanitário 344 100
Total 3991 908

4.1.2.1 Formato OFF

A base de dados disponibilizada pelo ModelNet10, está em formato OFF (Object
File Format). Este formato representa geometricamente modelos 3D através de polígonos
em cada superfície do objeto. Estruturalmente cada arquivo de objeto segue os padrões
indicados na Figura 13. No cabeçalho são definidos o formato dos dados, o número de
vértices e número de faces. Logo abaixo do cabeçalho são listados os vértices com as
coordenadas x, y e z. Por fim, as faces são determinadas pelo número de vértices que serão
ligados, seguido do índice da lista de vértices.

23

Figura 13: Estrutura de Arquivo .off

Fonte: Elaborado pelo autor

Em Python, foi produzido um programa utilizando as bibliotecas Numpy, Matplotlib
e STL para produzir graficamente os objetos no formato OFF. A Figura 14 apresenta
alguns exemplos de cada classe de objetos do ModelNet10.

4.2 Pré-processamento

4.2.1 Conversão da Representação 3D

Conforme discutido no capítulo 2, existem diversas formas de representação 3D.
Neste projeto optou-se por trabalhar com a nuvem de pontos, dado sua facilidade e
aplicabilidade em CNN. Para isto, é necessário o pré-processamento da base de dados
convertendo da representação mesh para a nuvem de pontos. Esta conversão consiste em
povoar a superfície com pontos de ocupação em uma grade.

4.2.2 Grade

A nuvem de pontos é representada por um sistema de coordenadas tridimensionais
definido como grade. Neste trabalho, a grade receberá o valor de "1" quando a coordenada
está ocupada pelo objeto e o valor de "0" quando a coordenada não está ocupada. Os objetos
serão então convertidos para uma matriz de três dimensões delimitada pelo tamanho e
resolução desejados.

4.2.3 Normalização

A primeira etapa do pré-processamento consiste em normalizar o conjunto de
dados. A normalização dos dados de entrada, é um método muito comum e essencial
para evitar problemas de estabilidade numérica. Redes Neurais Artificiais com valores de
dados de entrada muito altos e/ou muito baixos não conseguem obter bons resultados de
generalização.

24

Figura 14: Exemplos dos objetos em .off

Fonte: Elaborado pelo autor

Neste trabalho foram utilizados as Equações 4.1, 4.2, 4.3 para a normalização
da figura de acordo com o tamanho da grade desejado. Cada coordenada é normalizada
para um intervalo de [0,1] e multiplicada pelo tamanho de grade. De modo a manter as
proporções do objeto, o denominador das equações deve ser a maior distância dentre os
eixos X, Y e Z (max(X,Y,Z)), definido pela Equação 4.4.

X̂ = X −min(X)
max(X, Y, Z) · grade (4.1)

Ŷ = Y −min(Y)
max(X, Y, Z) · grade (4.2)

25

Ẑ = Z −min(Z)
max(X, Y, Z) · grade (4.3)

max(X, Y, Z) = max(max(X)−min(X)), (max(Y)−min(Y)), (max(Z)−min(Z)))
(4.4)

4.2.4 Povoamento das Faces

O método de conversão utilizado, consiste em preencher as faces dos objetos com
pontos em uma grade. Como os polígonos das faces dos dados do ModelNet10 são triângulos,
o povoamento das faces se baseou no sistema de coordenadas baricêntricas, definida pela
Equação 4.5:

P = (1− u− v)A+ uB + vC (4.5)

u+ v = 1 (4.6)

onde P na Equação 4.5 representa um ponto no espaço delimitado pelos vértices do
triângulo A, B e C, e (u, v) são escalares que formam as coordenadas baricêntrica do
ponto P. Assim computacionalmente, por interações, podemos encontrar todos os pontos
P dentro do triângulo, variando (u, v) dentro da condição da Equação 4.6.

Figura 15: Povoamento de um triângulo

Fonte: Elaborado pelo autor

26

Para cada ponto contido no triângulo calculado pelo programa, a coordenada é
aproximada para um ponto na grade, recebendo então o valor "1". O dado de cada objeto
de resolução previamente definida da forma do exemplo da Figura 15.

4.2.5 Codificação One-hot

Conforme explicado anteriormente na Subseção 3.1.4, RNAs não podem operar
com rótulos diretamente. Por causa disso foi desenvolvido a Tabela 2 com a codificação
one-hot dos rótulos das classes de objetos. Na primeira coluna temos os rótulos de cada
classe de objetos, em seguida as linhas formam os vetores que irão representá-los.

Tabela 2: Codificação One-hot das classes de objetos
Cama 1 0 0 0 0 0 0 0 0 0

Cadeira 0 1 0 0 0 0 0 0 0 0
Banheira 0 0 1 0 0 0 0 0 0 0

Escrivaninha 0 0 0 1 0 0 0 0 0 0
Cabeceira 0 0 0 0 1 0 0 0 0 0
Cômoda 0 0 0 0 0 1 0 0 0 0
Monitor 0 0 0 0 0 0 1 0 0 0

Sofa 0 0 0 0 0 0 0 1 0 0
Mesa 0 0 0 0 0 0 0 0 1 0

Vaso sanitário 0 0 0 0 0 0 0 0 0 1

4.2.6 Conjunto de Dados de Treinamento e Teste

Após o preprocessamento, cada objeto representado em uma matriz 3D é linearizado
em um vetor e concatenado com o devido vetor do rótulo da classe do objeto. O vetor
resultante é então empilhado com os outros vetores de objetos, formando a matriz do
conjunto de dados. No total 4 arquivos de dados são produzidos, 2 arquivos com a matriz
dos dados de treinamento com grade de 16 e 32, e mais 2 arquivos para teste.

A Figura 16 exemplifica a estrutura de cada arquivo produzido pelo preprocessa-
mento. Cada linha representa um objeto com seu rótulo, para o arquivo dos dados de
treinamento com grade de 32, a matriz possui 3991 linhas e 323 + 10 colunas.

4.3 Treinamento da Rede Neural Convolucional

Após o pré-processamento dos dados de entrada da rede neural convolucional, a
rede esta apta para ser treinada. A determinação da topologia de CNN mais adequada
para resolução do problema é um processo empírico, portanto diversas topologias com
técnicas diferentes foram testadas, a fim de determinar a topologia que obtêm o melhor
resultado. Neste trabalho foram testados topologias variando o tamanho da grade dos
conjunto de dados, o número de camadas convolucionais, número de camadas totalmente
conectadas, tamanho dos filtros e taxa de aprendizagem.

27

Figura 16: Estrutura do conjunto de dados de entrada após preprocessados

Fonte: Elaborado pelo autor

Durante a configuração das CNNs os seguintes parâmetros são definidos como fixos
e não foram mudados no decorrer de todo o experimento:

1. Passo da camada convolucional = 1;

2. Passo da camada de Max Pooling = 2;

3. Tamanho do filtro do Max Pooling = 2;

4. Número de épocas = 1950;

5. Dropout = 0,50;

6. Número de mapas de características:

a) com 2 camadas convolucionais:

i. 1◦ CL = 32
ii. 2◦ CL = 64

b) com 3 camadas convolucionais:

i. 1◦ CL = 16
ii. 2◦ CL = 32
iii. 3◦ CL = 64

Fixado estes parâmetros, utilizou-se os 3991 dados de treinamento dos objetos 3D
com grade de 32 para o treinamento de diversas CNNs. Neste caso 16 topologias diferentes
foram testadas, compostas pela variação dos 4 parâmetros listados a seguir:

• Com taxa de aprendizado de 1 · 10−3 ou 1 · 10−4;

28

• Com 2 camadas convolucionais ou 3 camadas;

• Com 1 camada totalmente conectada ou 2 camadas;

• Com tamanho de filtro de 3x3 ou 5x5.

Figura 17: Topologia completa da CNN utilizada

Fonte: Elaborado pelo autor

A Figura 17 exemplifica a topologia mais completa com 3 camadas convolucionais
e 2 FC. Outras topologias descritas anteriormente são pequenas variações desta. Após o
treinamento de todas as topologias com os objetos com grade de 32, o mesmo processo foi
realizado, porém para grade de 16. Totalizando 32 topologias treinadas, os desempenhos
de cada uma foram gravados e serão apresentados no capítulo 5.

29

5 EXPERIMENTOS E RESULTADOS

Neste capítulo são apresentados de forma gráfica os resultados do pré-processamento
dos objetos 3D, com a análise da conversão para representação em nuvem de pontos e as
diferenças entre as imagens com diferentes tamanhos de grade. Será também apresentado
o desempenho de cada uma das arquiteturas das CNNs treinadas e discutidos a influência
de cada parâmetro variado.

5.1 Pré-processamento

Conforme definido no Capítulo 4, 4899 imagens foram pré-processadas para o
conjunto de objetos de treinamento e teste com grade 32 e mais 4899 imagens para os
objetos com grade de 16, totalizando 9798 imagens 3D. A Figura 18 compõe o resultado
deste processo com um exemplo de cada objeto. Na coluna do formato OFF estão presentes
os objetos com a representação original retirada do banco de dados ModelNet10. Na coluna
seguinte estão presentes os objetos processados em nuvem de pontos com grade de 32 e na
última coluna os objetos na grade de 16.

Devido a baixa resolução da nuvem de pontos (pequeno tamanho da grade), é
possível observar que as imagens preprocessadas não possuem o mesmo nível de detalhes
das imagens originais.

5.2 Treinamento e Teste da Rede Neural Convolucional

Para o treinamento de todas as topologias, foi desenvolvido um script em Python
para que uma sequência de treinamentos seja realizada, onde para cada treinamento
os parâmetros desejados eram alterados. O número de épocas de todos os treinamentos
foi determinado a partir de alguns treinamentos preliminares, onde 1950 épocas foi o
valor onde a função perda e a acurácia possuem variação menor que 0,1% por época.
Definido então o número de épocas e executado o treinamento, os resultados com valores
de acurácia e função perda de cada topologia são salvos e plotados utilizando a ferramenta
do TensorFlow chamada de Tensorboard.

30

Figura 18: Exemplos de conversão da representação dos objetos

Objeto Formato OFF Grade 32 Grade 16

C
am

a

C
ad

e
ir

a

B
an

h
ei

ra

Es
cr

iv
an

in
h

a

C
ab

e
ce

ir
a

C
ô

m
o

d
a

M
o

n
it

o
r

So
fá

M
es

a

V
as

o

Sa
n

it
á

ri
o

Fonte: Elaborado pelo autor

31

Durante a gravação dos resultados adotou-se uma nomenclatura para distinguir
cada topologia utilizada. Cada resultado foi salvo em um arquivo, cujo nome contêm todos
os parâmetros da topologia. Os parâmetros e sua nomenclaturas são enumeradas abaixo,
onde n é o valor atribuído ao parâmetro:

• Taxa de aprendizado: "lr_"+n;

• Número de camadas convolucionais: "conv="+n;

• Número de camadas totalmente conectadas: "fc="+n;

• Tamanho da grade do objeto: "img="+n;

• Tamanho do filtro: "ksize="+n.

Os treinamentos e testes da CNN foram separados em dois conjuntos: o treinamento
com objetos 3D com grade de 32 e o treinamento com objetos 3D com grade de 16. Nas
sub-seções a seguir serão apresentados os resultados de cada um destes conjuntos.

5.2.1 Objetos 3D com grade de 32

Para treinamento de todas as topologias com a grade de 32 foi utilizado o código
fonte presente no Apêndice B. Utilizando o hardware descrito anteriormente, o treinamento
levou 47 horas 36 minutos e 30 segundos para ser completado. Na Tabela 3 são apresentados
os resultados de cada topologia treinada.

Tabela 3: Desempenho das topologias de CNN para objetos com grade de 32

Taxa de
Aprendizagem

Número de
Camandas

Convolucionais

Número de
Camadas

FC

Tamanho
do Filtro

Treinamento Teste

Acurácia Custo Acurácia Custo

1E-3

2
1 3x3x3 0,3800 1,7960 0,2080 2,0430

5x5x5 0,1420 2,3030 0,1140 2,3030

2 3x3x3 0,9980 0,0004 0,8740 0,8716
5x5x5 0,1100 2,3030 0,0840 2,3030

3
1 3x3x3 0,5300 1,084 0,3900 1,5570

5x5x5 03540 1,8420 0,2080 2,1780

2 3x3x3 0,9940 0,0008 0,8900 0,3500
5x5x5 0,1020 2,3030 0,1200 2,3030

1E-4

2
1 3x3x3 0,7600 0,5849 0,5500 1,2370

5x5x5 0,3300 1,8330 0,2943 1,9380

2 3x3x3 0,9820 0,0437 0,8557 0,6206
5x5x5 0,1320 2,3030 0,1071 2,3030

3
1 3x3x3 0,5480 1,224 0,5157 1,4430

5x5x5 0,6360 0,9446 0,5114 1,9160

2 3x3x3 0,9880 0,0032 0,8871 0,6068
5x5x5 0,2480 2,095 0,2057 2,0260

32

Analisando os resultados, é observado que quatro topologias obtiveram acurácia
de treinamento próximo à 1, todas elas com 2 FCL e tamanho de filtros de 3x3x3. As
topologias que utilizaram filtros 5x5x5 em geral foram os que obtiveram os piores resultados.
O desempenho da CNN é analisado pelos resultados no conjunto de teste, sendo assim a
topologia "lr_1E-3,conv=3,fc=2,img=32,ksize=3" foi a que obteve melhor resultado, com
89% de acurácia e 0,35 de perda.

São ainda produzidos com auxílio da ferramenta Tensorboard os gráficos das Figuras
19, 20, 21 e 22. Estas figuras mostram o comportamento do treinamento de acordo com o
número de épocas. Em cada uma, é possível visualizar a influência da taxa de aprendizagem
e o desempenho das topologias para cada época.

Figura 19: Acurácia do treinamento para Objetos - Grade 32

Figura 20: Acurácia do teste para Objetos - Grade 32

33

Figura 21: Perda do treinamento para Objetos - Grade 32

Figura 22: Perda do teste para Objetos - Grade 32

5.2.2 Objetos 3D com grade de 16

Da mesma forma que o treinamento dos objetos com grade de 32, foi utilizado o
código fonte presente no Apêndice B, para o treinamento dos objetos 3D com grade de 16.
O treinamento de todas as topologias com o grade de 16 levou 5 horas 10 minutos e 15
segundos para ser completada. A Tabela 4 apresenta o resultado do treinamento destas
topologias.

A topologia com melhor desempenho das CNNs descritas na Tabela 4 é a "lr_1E-
4,conv=2,fc=2,img=16,ksize=3". Com 88,86% de acurácia e 0,3526 de perda, obteve um
resultado apenas 0,1% abaixo da melhor CNN para objetos com grade de 32, "lr_1E-
3,conv=3,fc=2,img=32,ksize=3".

34

Tabela 4: Desempenho das topologias de CNN para objetos com grade de 16

Taxa de
Aprendizagem

Número de
Camadas

Convolucionais

Número de
Camadas

FC

Tamanho
do Filtro

Treinamento Teste

Acurácia Custo Acurácia Custo

1E-3

2
1 3x3x3 0,3044 1,6080 0,2083 1,8980

5x5x5 0,4206 1,6470 0,3156 1,8590

2 3x3x3 0,9333 0,1451 0,8029 0,6473
5x5x5 0,1311 2,3030 0,1257 2,3030

3
1 3x3x3 0,4400 1,3370 0,3000 1,8870

5x5x5 0,1400 2,3030 0,0828 2,3030

2 3x3x3 0,1244 2,3030 0,1086 2,3030
5x5x5 0,1667 2,3030 0,1143 2,3030

1E-4

2
1 3x3x3 0,6556 0,9061 0,6514 0,8833

5x5x5 0,1444 2,3030 0,1143 2,3030

2 3x3x3 0,9667 0,0840 0,8886 0,3526
5x5x5 0,1200 2,3030 0,1114 2,3030

3
1 3x3x3 0,8356 0,6015 0,6486 1,1060

5x5x5 0,8178 0,5699 0,6229 1,2340

2 3x3x3 0,9422 0,1455 0,8143 0,4970
5x5x5 0,2133 2,072 0,1743 2,0590

Os gráficos das Figuras 23, 24, 25 e 26, mostram os resultados para cada época da
acurácia de treinamento, acurácia de teste, erro do treinamento e erro de teste, respecti-
vamente. Nestas figuras é possível verificar de modo qualitativo a influência da taxa de
aprendizagem e o desempenho das topologias para cada época de treinamento e teste.

Figura 23: Acurácia do treinamento para Objetos - Grade 16

35

Figura 24: Acurácia do teste para Objetos - Grade 16

Figura 25: Perda do treinamento para Objetos - Grade 16

Figura 26: Perda do teste para Objetos - Grade 16

36

5.3 Análise da Variação dos Parâmetros

Nesta secção é analisada a influência da variação dos parâmetros no resultado final
das CNNs. Pelas tabelas e gráficos mostrados na secção anterior, estes parâmetros são
fundamentais para um bom desempenho no treinamento de uma CNN e não há uma
fórmula para determinar a melhor topologia para cada problema.

5.3.1 Tamanho da Grade

Os tamanhos da grade testada são estabelecidos como dois problemas diferentes,
com a finalidade de mostrar a robustez das redes neurais convolucionais. Apesar da origem
dos objetos 3D antes do pré-processamento ser a mesma, os diferentes resultados obtidos
durante o processo de treinamento, mostram que os dados de entrada influenciam na
topologia à ser escolhida.

5.3.2 Número de Camadas Convolucionais

O desempenho geral com a variação do número de CLs pode ser determinado com
a média dos resultados com o mesmo número de camadas. A Tabela 5 faz a síntese dos
cálculos das médias, e nela é possível observar que no conjunto de dados com grade 32, o
aumento do número de camadas contribui positivamente para a acurácia e diminuição da
perda das CNNs. Para os objetos com grade 16, por outro lado, influencia negativamente
nos resultados.

Analisando estes resultados, no conjunto de objetos com grade 32, a melhoria do
desempenho das topologias com o aumento do número de CL já era esperado, pois o
aumento de uma terceira camada possibilita a extração de outras características.

Tabela 5: Valores Médios da Acurácia e Perda das Topologias para mesmo Número de
Camadas Convolucionais

Grade 32 Grade 16
Conv = 2 Conv = 3 Conv = 2 Conv = 3

Acurácia Treinamento 0,4792 0,5500 0,4595 0,4600
Teste 0,3859 0,4659 0,4023 0,3582

Custo Treinamento 1,3958 1,1871 1,4124 1,5686
Teste 1,7024 1,5475 1,4544 1,7115

O mesmo efeito não é observado nos objetos com grade 16. Isto porque após 2
camadas convolucionais e 2 max pooling o tamanho dos mapas de características passam
a ser 4x4x4. Com a adição de uma terceira camada convolucional e o preenchimento da
imagem com zeros, utilizando same padding, leva a extração de características onde 33%
(nos filtros de 3x3x3) dos valores não pertencem à imagem, e sim às bordas com zeros do
preenchimento. Como resultado, são gerados na saída mapas de características 2x2x2 que
não conseguem estabelecer um padrão para uma boa classificação.

37

5.3.3 Número de Camadas Totalmente Conectadas

A mesma análise foi realizada para a variação do número de camadas totalmente
conectadas. A Tabela 6 demonstra que independente dos objetos de entrada os desempenhos
durante a fase de teste foram melhores com duas camadas. Resultado já esperado, pois
segundo (LECUN et al., 1998), apesar de teoricamente uma única FCL ser suficiente para
classificar os objetos, foi observado que em situações práticas o uso de duas FCL pode
produzir melhores desempenhos.

Tabela 6: Valores Médios da Acurácia e Perda das Topologias para mesmo Número de
Camadas Totalmente Conectadas

Grade 32 Grade 16
FC = 1 FC = 2 FC = 1 FC = 2

Acurácia Treinamento 0,4600 0,5692 0,4698 0,4497
Teste 0,3489 0,5029 0,3680 0,3925

Custo Treinamento 1,4514 0,5029 1,4094 1,4573
Teste 1,8269 1,4230 1,6842 1,5960

5.3.4 Variação do Tamanho do Filtro

A Tabela 7 produzida com a média dos resultados de cada topologia, mostra o
efeito da aplicação de diferentes filtros na camada convolucional. Por causa dos tamanhos
das grades utilizadas, já era esperado que o filtro 5x5x5 está sobredimensionado para os
problemas. Este sobredimensionamento foi previsto da análise da segunda CL, onde as
imagens de entrada são 16x16x16 (grade 32) e 8x8x8 (grade 16), e a utilização de filtros
5x5x5 pode ser considerado muito grande para a extração de alguma característica nestas
imagens.

Tabela 7: Valores Médios da Acurácia e Perda das Topologias para mesmo Tamanho do
Filtro

Grade 32 Grade 16
Filtro 3x3x3 Filtro 5x5x5 Filtro 3x3x3 Filtro 5x5x5

Acurácia Treinamento 0,7725 0,2568 0,6503 0,2692
Teste 0,6463 0,2056 0,5528 0,2077

Custo Treinamento 0,5921 1,9908 0,8913 1,9755
Teste 1,0911 2,1588 1,1968 2,0834

5.3.5 Variação da Taxa de Aprendizagem

Na Tabela 8 é observado que a variação da taxa de aprendizagem contribui para
a melhora geral dos resultados. Mas vale enfatizar que esta melhora corresponde ao
desempenho médio de todas as topologias, e como foi determinado nos treinamentos há
topologias com taxa de aprendizagem de 10−3 melhores que taxas de 10−4.

38

Tabela 8: Valores Médios da Acurácia e Perda das Topologias para mesma Taxa de
Aprendizagem

Grade 32 Grade 16
LR = 1E-3 LR = 1E-4 LR = 1E-3 LR = 1E-4

Acurácia Treinamento 0,4513 0,5780 0,3326 0,5870
Teste 0,3610 0,4909 0,2573 0,5032

Custo Treinamento 1,4540 1,1289 1,7436 1,1231
Teste 1,7386 1,5113 1,9379 1,3422

5.4 Desempenho de outros trabalhos

Existem diversos trabalhos de classificação de objetos, que utilizaram o projeto
Princeton ModelNet10 como base de dados. No site do projeto, estão listados alguns destes
trabalhos e os respectivos resultados obtidos, a maioria deles utilizam CNNs como métodos
de classificação, mas utilizam diferentes modos de representação tridimensional. Na Tabela
9 são mostrados os resultados obtidos por estes trabalhos em comparação com o resultado
obtido neste experimento.

Tabela 9: Resultados obtidos por outros trabalhos
Algoritmo Abordagem Representação 3D Ano Acurácia

VRN Ensemble CNN Voxel 2016 97,14 %
Klokov and Lempitsky Kd network Nuvem de pontos 2017 94,00 %

ORION CNN Voxel 2017 93,80 %
LightNet CNN Voxel 2016 93,39 %
FusionNet CNN Voxel/Pixel 2016 93,11 %
Pairwise CNN Image Pair 2016 92,80 %
VoxNet CNN Nuvem de pontos 2015 92,00 %

Zanuttigh and Minto CNN Depth Maps 2017 91,50 %
PANORAMA-NN CNN Panorama 2017 91,10 %

3D-GAN CNN e Redes Adversariais Voxel 2017 91,00 %
ECC CNN Nuvem de pontos 2017 90,00 %

Presente Trabalho CNN Voxel 2017 89,00 %
Geometry Image CNN Mesh 2016 88,40 %
Xu and Todorovic CNN Voxel 2016 88,00 %

DeepPano CNN Panoramic view 2015 85,45 %
3DShapeNets CNN Voxel 2015 83,50 %
PointNet CNN Nuvem de pontos 2017 77,60 %

39

6 CONCLUSÃO

Reconhecimento de objetos tridimensionais é um problema emergente em visão
computacional, que só está se tornando possível com a facilidade na geração de grandes
bancos de dados e capacidade de processamento computacional cada vez maiores. Para
um bom reconhecimento de objetos são necessários dois processos principais: geração de
uma boa representação digital do objeto e métodos com capacidade de generalização para
a classificação deste objeto. Este trabalho demonstrou a importância destes dois processos
com a representação em nuvem de pontos e o método de aprendizagem de máquina, Rede
Neural Convolucional.

De forma geral a utilização de CNN para classificação de objetos 3D obteve
resultados muito acima do esperado. Apesar do baixo volume de exemplos do banco de
dados, e a escolha de grades de 32 e 16, devido a limitação de hardware disponível pelo
autor. O método se mostrou bastante robusto, com grande capacidade de generalização e
conseguiu classificar os objetos com bom nível de acurácia.

Um resultado interessante neste trabalho, está no fato das CNNs conseguirem
uma acurácia de 88% com o conjunto de objetos na grade de 16. Durante a fase de
conversão para a representação em nuvem de pontos, foi observado que muito objetos
ficam visualmente indistinguíveis. Demonstrando desta forma que CNNs são ferramentas
eficientes de extração de características.

6.1 Trabalhos Futuros

Este projeto tinha como objetivo a validação da ferramenta de aprendizagem de
máquina e abordar as técnica mais utilizadas para o treinamento da CNN. Além de muitas
técnicas não abordadas, o treinamento com objetos 3D com tamanho de grade maior,
pode proporcionar maior desempenho na classificação dos objetos. Para possíveis trabalhos
futuros são sugeridos os seguintes tópicos:

• Treinamento com grade da nuvem de pontos maior;

• Aumento artificial da base de dados, utilizando técnicas como: oclusão, cortes
parciais da imagem, rotação e translação;

• Utilização de outras técnicas para redução do sobre-ajuste: declínio da taxa de
aprendizagem, normalização L2;

• Validação das topologias de CNN no banco de dados ModelNet40, no qual possui
40 classes de objetos 3D.

41

REFERÊNCIAS

ABADI, M. et al. Tensorflow: Large-scale machine learning on heterogeneous distributed
systems. arXiv preprint arXiv:1603.04467, 2016.

ALMEIDA, T. Uma metodologia de reconhecimento de caracteres manuscritos utilizando
redes neurais embarcadas. Monografia - Faculdade 7 de Setembro, Fortaleza, Brazil. 2014.

ARAÚJO, F. H.; CARNEIRO, A. C.; SILVA, R. R. Redes neurais convolucionais com
tensorflow: Teoria e prática. 2017. III Escola Regional de Informática do Piauí. Livro
Anais - Artigos e Minicursos, v. 1, n. 1, p. 382-406.

BATISTA, J. N. F. Sistema de reconhecimento de objetos para demonstrador de
condução robótica autónoma. 2012. Tese de mestrado integrado. Engenharia Informática e
Computação. Faculdade de Engenharia. Universidade do Porto.

BENVEGNÙ, L. 3d object recognition without cad models for industrial robot
manipulation. 2017. Tese de mestrado. Corso Di Laurea Magistrale In Ingegneria
Informatica. Univerisita Degli Studi Di Padova.

DESHPANDE, A. A Beginner’s Guide To Understanding Convolutional
Neural Networks. 2016. Disponível em: <https://adeshpande3.github.io/A-Beginner\
%27s-Guide-To-Understanding-Convolutional-Neural-Networks-Part-2/>.

DUNDAS, J.; CHIK, D. Implementing human-like intuition mechanism in artificial
intelligence. arXiv preprint arXiv:1106.5917, 2011.

FERREIRA, A. E. T. Estimação do ângulo de direção por vídeo para veículos autônomos
utilizando redes neurais convolucionais multicanais. 2017. Trabalho de Conclusão de Curso
(Graduação) — Universidade de Brasília, Instituto de Ciências Exatas, Departamento de
Ciência da Computação.

GARCIA-GARCIA, A. et al. Pointnet: A 3d convolutional neural network for real-time
object class recognition. In: IEEE. Neural Networks (IJCNN), 2016 International
Joint Conference on. [S.l.], 2016. p. 1578–1584.

GOODFELLOW, I.; BENGIO, Y.; COURVILLE, A. Deep Learning. [S.l.]: MIT Press,
2016. <http://www.deeplearningbook.org>.

HAFEMANN, L. G. An analysis of deep neural networks for texture classification. 2014.
Master’s degree Dissertation. M.Sc. Program in Informatics, Universidade Federal do
Paraná.

KARPATHY, A. Convolutional neural networks for visual recognition. 2017.
Disponível em: <http://cs231n.github.io/convolutional-networks/>.

KRAUSE, J. et al. 3d object representations for fine-grained categorization. In:
Proceedings of the IEEE International Conference on Computer Vision
Workshops. [S.l.: s.n.], 2013. p. 554–561.

LECUN, Y.; BENGIO, Y.; HINTON, G. Deep learning. Nature, Nature Research, v. 521,
n. 7553, p. 436–444, 2015.

42

LECUN, Y. et al. Gradient-based learning applied to document recognition. Proceedings
of the IEEE, IEEE, v. 86, n. 11, p. 2278–2324, 1998.

LI, F.-F. CS231n Lecture 1 - Introduction and Historical Context. 2016.
Disponível em: <https://youtu.be/yp9rwI_LZX8>.

LORENA, A. C.; CARVALHO, A. C. de. Uma introdução às support vector machines.
Revista de Informática Teórica e Aplicada, v. 14, n. 2, p. 43–67, 2007.

LOWE, D. G. Object recognition from local scale-invariant features. In: IEEE. Computer
vision, 1999. The proceedings of the seventh IEEE international conference
on. [S.l.], 1999. v. 2, p. 1150–1157.

MCCULLOCH, W. S.; PITTS, W. A logical calculus of the ideas immanent in nervous
activity. The bulletin of mathematical biophysics, v. 5, Dec 1943. ISSN 1522-9602.
Disponível em: <https://doi.org/10.1007/BF02478259>.

OSADA, R. et al. Shape distributions. ACM Transactions on Graphics (TOG),
ACM, v. 21, n. 4, p. 807–832, 2002.

PRINCETON, V. Princeton modelnet project. In: . [s.n.], 2017. Disponível em:
<http://modelnet.cs.princeton.edu/>. Acesso em: 04 nov. 2017.

RAVANBAKHSH, S.; SCHNEIDER, J.; POCZOS, B. Deep learning with sets and point
clouds. arXiv preprint arXiv:1611.04500, 2016.

RUSSELL, S.; NORVIG, P. Artificial intelligence: A modern approach. Artificial
Intelligence. Prentice-Hall, Egnlewood Cliffs, 1995.

SILVA, S. R. e.; SCHIMIDT, F. Redução de Variáveis de Entrada de Redes Neurais
Artificiais a partir de Dados de Análise de Componentes Principais na Modelagem de
Oxigênio Dissolvido. Química Nova, v. 39, 04 2016. Disponível em: <http://www.scielo.
br/scielo.php?script=sci_arttext&pid=S0100-40422016000300273&nrm=iso>.

SIMONOVSKY, M.; KOMODAKIS, N. Dynamic edge-conditioned filters in convolutional
neural networks on graphs. arXiv preprint arXiv:1704.02901, 2017.

WU, Z. et al. 3d shapenets: A deep representation for volumetric shapes. In: Proceedings
of 28th IEEE Conference on Computer Vision and Pattern Recognition. [S.l.:
s.n.], 2015.

ZACCONE, G. Getting Started with TensorFlow. [S.l.]: Packt Publishing Ltd, 2016.

Apêndices

45

APÊNDICE A – CÓDIGO FONTE PARA O PRÉ-PROCESSAMENTO DOS
DADOS

1 ’ ’ ’
2 Preprocessamento Mesh to Voxel v9
3 Autor : Caio Kioshi Miyazaki
4 ’ ’ ’
5

6 import numpy as np
7 import matp lo t l i b . pyplot as p l t
8 from mpl_too lk i t s import mplot3d
9 from s t l import mesh

10 from mpl_too lk i t s . mplot3d import Axes3D
11 from mpl_too lk i t s . mplot3d . art3d import Poly3DCol lect ion
12 import time
13 import os
14

15 # Convert formato o f f para arqu ivo de nuvem de pontos de
treinamento e t e s t e

16 def o f f 2p c (gr id_s ize , n_classes , s t ep) :
17

18 obj = [’ bed ’ , ’ cha i r ’ , ’ bathtub ’ , ’ night_stand ’ , ’ d r e s s e r ’ , ’
desk ’ , ’ monitor ’ , ’ s o f a ’ , ’ t ab l e ’ , ’ t o i l e t ’]

19 ext = [’ t r a i n ’ , ’ t e s t ’]
20

21 for obj_c in obj :
22 for ext_c in ext :
23 path = obj_c+’ / ’+ext_c+’ / ’
24 f i l enames = next (os . walk (path)) [2]
25 train_data = np . z e r o s (shape=(len (f i l enames) , g r i d_s i z e ∗∗3) ,

dtype=bool)
26 example_n=0
27

28 for obj_n in f i l enames :
29 i f not obj_n . s t a r t sw i t h (" . ") :
30 # Import o b j e c t po in t s
31 print (" Lendo . . . ␣ "+ext_c+" / "+obj_n)
32

46

33 d i r F i l e = path+obj_n
34 f i l e = open(d i r F i l e)
35 f i l e . r e a d l i n e ()
36

37 n_vert ices , n_faces , n_edges , = [int (s) for s in f i l e .
r e a d l i n e () . s t r i p () . s p l i t (’ ␣ ’)]

38

39 ve r t s = []
40 for x_ver t i c e s in range (n_ver t i ce s) :
41 ve r t s . append ([f loat (s) for s in f i l e . r e a d l i n e () . s t r i p ()

. s p l i t (’ ␣ ’)])
42

43 f a c e s = []
44 for i_ face in range (n_faces) :
45 f a c e s . append ([int (s) for s in f i l e . r e a d l i n e () . s t r i p () .

s p l i t (’ ␣ ’)] [1 :])
46

47 f i l e . c l o s e ()
48

49 # Controi pontos
50 v = np . array (v e r t s)
51 f = np . array (f a c e s)
52

53 x = v [: , 0]
54 y = v [: , 1]
55 z = v [: , 2]
56

57 minX = min(x)
58 maxX = max(x)
59 minY = min(y)
60 maxY = max(y)
61 minZ = min(z)
62 maxZ = max(z)
63

64 maxCoord = max((maxX−minX) , (maxY−minY) , (maxZ−minZ))
65 # Desloca para zero , c e n t r a l i z a e normal iza o b j e t o pe l o

tamanho do g r i d e c e n t r a l i z a
66

67 v [: , 0] = (v [: , 0] ∗ (gr id_s ize −1)/(maxCoord)+(gr id_s ize−1−maxX

47

−minX) /2)
68 v [: , 1] = (v [: , 1] ∗ (gr id_s ize −1)/(maxCoord)+(gr id_s ize−1−maxY

−minY) /2)
69 v [: , 2] = (v [: , 2] ∗ (gr id_s ize −1)/(maxCoord)+(gr id_s ize−1−maxZ

−minZ) /2)
70

71 obj3D = mesh .Mesh(np . z e r o s (f . shape [0] , dtype=mesh .Mesh .
dtype))

72 for i , f c in enumerate (f) :
73 for j in range (3) :
74 obj3D . ve c t o r s [i] [j] = v [f c [j] , :]
75

76 # I n i c i a l i z a 3D gr i d
77 g r id = np . z e r o s (shape=(gr id_s ize , g r id_s ize , g r i d_s i z e) ,

dtype=bool)
78

79 # Popula os t r i a n g u l o s − Sup e r f i c i e
80 for t r i a n in obj3D :
81 A = t r i an [0 : 3]
82 B = t r i an [3 : 6]
83 C = t r i an [6 : 9]
84 xA, yA, zA = A
85 xB , yB , zB = B
86 xC , yC , zC = C
87

88 distAC = int (np . l i n a l g . norm(C − A))
89 distAB = int (np . l i n a l g . norm(B − A))
90

91 for u in np . arange (0 , distAC , s tep) :
92 for v in np . arange (0 , distAB , s tep) :
93 i f (u / distAC) + (v / distAB) < 1 :
94 # P = A + u∗(C−A)+v ∗(B−A)
95 x = int (xA + u / distAC ∗ (xC − xA) + v /

distAB ∗ (xB − xA))
96 y = int (yA + u / distAC ∗ (yC − yA) + v /

distAB ∗ (yB − yA))
97 z = int (zA + u / distAC ∗ (zC − zA) + v /

distAB ∗ (zB − zA))
98 g r id [x] [y] [z] = 1

48

99 else :
100 break
101

102 train_data [example_n] = gr id . f l a t t e n ()
103 example_n+=1
104 # train_data . append = gr i d . f l a t t e n ()
105

106 # Salva dados
107 f i l e = ’ data ’+str (g r i d_s i z e)+’ / ’+obj_c+’_ ’+ext_c+’_data ’
108 print (" Saving ␣ image . . . "+f i l e)
109 print (tra in_data . shape)
110 np . save (f i l e , tra in_data)
111

112 def img_gen (img_size , n_c las se s) :
113 marker_size = 30
114 # marker = ’ . ’
115 marker_color = ’ white ’
116

117 obj = [’ bed ’ , ’ cha i r ’ , ’ night_stand ’ , ’ d r e s s e r ’ , ’ monitor ’ , ’ s o f a ’ , ’
t ab l e ’ , ’ t o i l e t ’]

118 ext = [’ t r a i n ’ , ’ t e s t ’]
119

120 # Import o b j e c t po in t s
121 dir = ’ /data32/ ’
122

123 for obj_i in obj :
124 for ext_i in ext :
125 f i l e = dir+obj_i+’_ ’+ext_i+’_data . npy ’
126 data = np . load (f i l e)
127

128 for i in range (data . shape [0]) :
129 print (’ Reading␣%s␣%s␣%d ’ %(obj_i , ext_i , i))
130 print (’Data␣ shape : ␣ ’ , data . shape)
131 print (’Data␣ s i z e ’ , data . shape [0])
132 data_i = np . reshape (data [i] , (img_size , img_size , img_size))
133 x , y , z = data_i . nonzero ()
134

135 f i g = p l t . f i g u r e ()
136 ax = f i g . add_subplot (111 , p r o j e c t i o n=’ 3d ’)

49

137 ax . s c a t t e r (x , y , z , z d i r=’ z ’ , marker=’ . ’ , c= marker_color , s=
marker_size)

138 ax . set_xlim ([−1 , img_size +1])
139 ax . set_ylim ([−1 , img_size +1])
140 ax . set_zl im ([−1 , img_size +1])
141

142 save_img_dir = save_dir+obj_i+’ / ’+ext_i+’ / ’
143 i f not os . path . e x i s t s (save_img_dir) :
144 os . makedirs (save_img_dir)
145

146 img_f i l e = save_img_dir+obj_i+str (i)+’ . png ’
147 p l t . s a v e f i g (img_f i l e)
148 p l t . c l o s e ()
149

150 def mergeData (img_size , num_classes)
151 data_size = { ’ t r a i n ’ : 3991 , ’ t e s t ’ :908} # [tra in , t e s t]
152

153 obj = [’ bed ’ , ’ cha i r ’ , ’ bathtub ’ , ’ night_stand ’ , ’ d r e s s e r ’ , ’ desk ’ , ’
monitor ’ , ’ s o f a ’ , ’ t ab l e ’ , ’ t o i l e t ’]

154 ext = [’ t r a i n ’ , ’ t e s t ’]
155

156 for ext_c in ext :
157 labe l_pos = 0
158 al l_data=np . z e r o s ((data_size [ext_c] , img_size∗∗3+num_classes))
159 tmp=0
160 for obj_c in obj :
161 # Load f i l e s
162 f i l e = ’ data ’+str (img_size)+’ / ’+obj_c+’_ ’+ext_c+’_data . npy ’
163 data = np . load (f i l e)
164 print (" Lendo . . . ␣ "+f i l e)
165 num_examples = data . shape [0]
166 print (’ numero␣de␣ exemplos : ␣ ’ , num_examples)
167 # Labe l
168 l a b e l = np . z e r o s ((num_examples , num_classes))
169 l a b e l [: , labe l_pos] = 1
170 # Adiciona l a b e l
171 print (’ data␣ shape␣ ’ , data . shape)
172 print (’ l a b e l ␣ shape␣ ’ , l a b e l . shape)
173 data_wLabel = np . concatenate ((data , l a b e l) , ax i s=1)

50

174 print (’ data␣com␣ l a b e l : ␣ ’ , data_wLabel . shape)
175 print (tmp)
176 al l_data [tmp : tmp+num_examples , :] = data_wLabel
177 print (’ l a b e l : ␣ ’ , l a b e l [0])
178 print (’ labe l_pos ’ , labe l_pos)
179 labe l_pos+=1
180 tmp=tmp+num_examples
181 print (’ tmp ’ , tmp)
182 print (’

−−−
’)

183

184 print (type (a l l_data))
185 # Shu f f l e l i n h a s
186 np . random . s h u f f l e (a l l_data)
187

188 # al l_da ta=np . array (a l l_da ta)
189 print (a l l_data . shape)
190 # Salva v a l o r e s
191 f i l e = ’ data ’+str (img_size)+’ / ’+ext_c+’_data ’
192 print (" Saving ␣ image . . . "+f i l e)
193 np . save (f i l e , a l l_data)
194

195

196 def main () :
197 o f f 2p c (32 , 0 10 , . 5)
198 img_gen (32 ,10 , save_dir)
199 mergeData (32 , save_dir)
200

201 i f __name__ == ’__main__ ’ :
202 main ()

51

APÊNDICE B – CÓDIGO FONTE PARA O TREINAMENTO DAS CNNS

1 ’ ’ ’
2 Treinamento CNN v4
3 Autor : Caio Kioshi Miyazaki
4 ’ ’ ’
5 import t en so r f l ow as t f
6 import numpy as np
7 import os , time
8

9 os . env i ron [’CUDA_VISIBLE_DEVICES ’]= str (1)
10

11 # Parametros do modelo
12 n_c las se s = 10 # Numero de c l a s s e s de o b j e t o s
13 batch_size = 100
14 n_conv_strides = 1
15 n_pool_str ides = 2
16 n_pool_ksize = 2
17 n_epochs = 50 # Numero de epocas
18 drop=0.5
19

20 # Max poo l ing
21 def max_pool3d (channels_in) :
22 return t f . nn . max_pool3d (channels_in , k s i z e =[1 , n_pool_ksize ,

n_pool_ksize , n_pool_ksize , 1] ,
23 s t r i d e s =[1 , n_pool_str ides ,

n_pool_str ides , n_pool_str ides , 1] ,
padding=’SAME’)

24

25 # Camada Convo luc iona l
26 def conv3d_layer (input , n_conv_ksize , channels_in , channels_out ,

name=" conv ") :
27 with t f . name_scope (name) :
28 w = t f . Var iab le (t f . truncated_normal ([n_conv_ksize , n_conv_ksize

, n_conv_ksize , channels_in , channels_out] ,
29 stddev =0.1) , t f . f l o a t32 , name="W")
30 b = t f . Var iab le (t f . constant (0 . 1 , shape=[channels_out]) , t f .

f l o a t32 , name="B")

52

31 conv = t f . nn . conv3d (input ,w, s t r i d e s =[1 , n_conv_strides ,
n_conv_strides , n_conv_strides , 1] ,

32 padding=’SAME’)
33 act = t f . nn . r e l u (conv+t f . ca s t (b , t f . f l o a t 3 2))
34 t f . summary . histogram (" weights " ,w)
35 t f . summary . histogram (" b i a s e s " ,b)
36 t f . summary . histogram (" a c t i v a t i o n s " , act)
37 return max_pool3d (act)
38

39 # Camada Totalmente Conectada
40 def f c_ layer (input , channels_in , channels_out , name=" f c ") :
41 with t f . name_scope (name) :
42 w = t f . Var iab le (t f . truncated_normal ([channels_in , channels_out

] , stddev =0.1) , t f . f l o a t32 , name="W")
43 b = t f . Var iab le (t f . constant (0 . 1 , shape=[channels_out]) , t f .

f l o a t32 , name="B")
44 act = t f . nn . r e l u (t f . matmul (input ,w)+t f . ca s t (b , t f . f l o a t 3 2))
45 t f . summary . histogram (" weights " ,w)
46 t f . summary . histogram (" b i a s e s " ,b)
47 t f . summary . histogram (" a c t i v a t i o n s " , act)
48 return act
49

50

51 def CNN3D_model(l earn ing_rate , n_conv , n_fc , img_size , n_conv_ksize ,
hparam) :

52

53 # Dir e t o r i o s dos arqu i vo s
54 LOGDIR = ’ log / ’ #di r para l o g s
55 dir = ’ data ’+str (img_size)+’ / ’ #di r dos dados
56 t r a i n_ f i l e = ’ train_data . npy ’
57 t e s t _ f i l e = ’ test_data . npy ’
58 train_data = np . load (t r a i n_ f i l e)
59 test_data = np . load (t e s t _ f i l e)
60 num_of_examples = train_data . shape [0]
61 n_batches = int (num_of_examples/ batch_size)
62 n_test = test_data . shape [0]
63

64 t f . reset_default_graph ()
65

53

66 # Placeho l de r s and reshape data
67 x = t f . p l a c eho ld e r (t f . f l o a t32 , [None , img_size ∗∗3] , name="x ")
68 y = t f . p l a c eho ld e r (t f . f l o a t32 , [None , n_c las se s] , name=" l a b e l s ")
69 x_image = t f . reshape (x , [−1 , img_size , img_size , img_size , 1])
70

71 with t f . name_scope (’ dropout ’) :
72 keep_prob = t f . p l a c eho ld e r (t f . f l o a t 3 2)
73 t f . summary . s c a l a r (’ dropout_keep_probabi l i ty ’ , keep_prob)
74 # Numero de camadas convo luc i ona i s
75 i f n_conv == 1 :
76 conv1 = conv3d_layer (x_image , n_conv_ksize , 1 , 6 4 , " conv1 ")
77 conv_out = max_pool3d (conv1)
78 e l i f n_conv == 2 :
79 conv1 = conv3d_layer (x_image , n_conv_ksize , 1 , 3 2 , " conv1 ")
80 conv_out = conv3d_layer (conv1 , n_conv_ksize , 32 , 64 , " conv2 ")
81 e l i f n_conv == 3 :
82 conv1 = conv3d_layer (x_image , n_conv_ksize , 1 , 1 6 , " conv1 ")
83 conv2 = conv3d_layer (conv1 , n_conv_ksize , 16 , 32 , " conv2 ")
84 conv_out = conv3d_layer (conv2 , n_conv_ksize , 32 , 64 , " conv3 ")
85

86 s ize_out_layer = int ((np . c e i l (img_size / n_pool_str ides ∗∗n_conv))
∗∗3∗64)

87 f l a t t e n e d = t f . reshape (conv_out , [−1 , s i ze_out_layer])
88

89 # Numero de camadas to ta lmente conectadas
90 i f n_fc == 1 :
91 l o g i t s = fc_layer (f l a t t en ed , s ize_out_layer , n_classes , " f c ")
92 e l i f n_fc == 2 :
93 f c 1 = fc_laye r (f l a t t en ed , s ize_out_layer , 1024 , " f c 1 ")
94 t f . summary . histogram (" f c 1 / r e l u " , f c 1)
95 fc1_drop = t f . nn . dropout (fc1 , drop)
96 l o g i t s = fc_layer (fc1_drop ,1024 , n_classes , " f c 2 ")
97

98 with t f . name_scope (" c r o s s ") :
99 cross_entropy = t f . reduce_mean (

100 t f . nn . softmax_cross_entropy_with_logits (l a b e l s=y , l o g i t s=
l o g i t s) , name=" c r o s s ")

101 t f . summary . s c a l a r (" c r o s s " , cross_entropy)
102

54

103 with t f . name_scope (" t r a i n ") :
104 t ra in_step = t f . t r a i n . GradientDescentOptimizer (l ea rn ing_rate) .

minimize (cross_entropy)
105

106 with t f . name_scope (" accuracy ") :
107 co r r e c t_pr ed i c t i on = t f . equal (t f . argmax (l o g i t s , 1) , t f . argmax (

y , 1))
108 accuracy = t f . reduce_mean (t f . c a s t (co r r e c t_pred i c t i on , t f .

f l o a t 3 2))
109 t f . summary . s c a l a r (" accuracy " , accuracy)
110

111 summ = t f . summary . merge_all ()
112 t ra in_wr i t e r = t f . summary . F i l eWr i t e r (LOGDIR + hparam+’ / t r a i n ’)
113 t e s t_wr i t e r = t f . summary . F i l eWr i t e r (LOGDIR + hparam+’ / t e s t ’)
114

115 saver = t f . t r a i n . Saver ()
116 with t f . S e s s i on () as s e s s :
117 s e s s . run (t f . g l o b a l_v a r i a b l e s_ i n i t i a l i z e r ())
118

119 for epoch in range (n_epochs) :
120 np . random . s h u f f l e (tra in_data)
121 for j in range (n_batches) :
122 batch_xs = train_data [j ∗ batch_size : (j +1)∗batch_size ,:−

n_c las se s] # data
123 batch_ys = train_data [j ∗ batch_size : (j +1)∗batch_size ,−

n_c las se s :] # l a b e l
124 [summary , acc] =s e s s . run ([summ, tra in_step] , f eed_dict={x :

batch_xs , y : batch_ys , keep_prob : drop })
125 e = epoch∗n_batches+j
126 t ra in_wr i t e r . add_summary(summary , e)
127

128 i f e % 5 == 0 : # pr in t accuracy
129 # train_accuracy = accuracy . e va l (f e ed_d ic t={x : batch_xs , y_ :

batch_ys , keep_prob : 1 .0})
130 [tra in_accuracy , acc] = s e s s . run ([summ, accuracy] , f eed_dict

={x : batch_xs , y : batch_ys , keep_prob : 1 . 0})
131 print (’Epoch␣%s , ␣ t r a i n i n g ␣ accuracy ␣%s ’ % (e , acc))
132

133 i f e % 10 == 0 : # t e s t model

55

134 np . random . s h u f f l e (test_data)
135 for t e s t_ s l i c e in range (int (n_test / batch_size /4)) :
136 batch_test_xs = test_data [t e s t_ s l i c e ∗ batch_size : (

t e s t_ s l i c e +1)∗batch_size ,:− n_c las se s] # data
137 batch_test_ys = test_data [t e s t_ s l i c e ∗ batch_size : (

t e s t_ s l i c e +1)∗batch_size ,−n_c las se s :] # l a b e l
138 [summary , acc] = s e s s . run ([summ, accuracy] , f eed_dict={x :

batch_test_xs , y : batch_test_ys , keep_prob : 1 . 0})
139

140 t e s t_wr i t e r . add_summary(summary , e)
141 print (’Epoch␣%s , ␣ t e s t i n g ␣ accuracy ␣%s ’ % (e , acc))
142

143 model_name = LOGDIR + hparam+’ / ’
144 saver . save (s e s s , os . path . j o i n (model_name , "model . ckpt ") , epoch∗

int (n_batches))
145

146 def make_hparam_string (l earn ing_rate , n_conv , n_fc , img_size ,
n_conv_ksize) :

147 conv_param = " conv="+str (n_conv)
148 fc_param = " f c="+str (n_fc)
149 size_param = " img="+str (img_size)
150 ksize_param = " k s i z e="+str (n_conv_ksize)
151 return " lr_%.0E,%s ,%s ,%s ,%s " % (learn ing_rate , conv_param ,

fc_param , size_param , ksize_param)
152

153 def main () :
154

155 for img_size in [1 6 , 3 2] :
156 for l e a rn ing_rate in [1E−3, 1E−4] :
157 for n_conv in [2 , 3] :
158 for n_fc in [1 , 2] :
159 for n_conv_ksize in [3 , 5] :
160 start_time = time . time ()
161 print (’ S ta r t ␣Time : ␣%s ’ % start_time)
162 # Nome do arqu ivo baseando na nomenclatura (exemplo : "

lr_1E−3, f c =2,conv=2")
163 hparam = make_hparam_string (l earn ing_rate , n_conv , n_fc ,

img_size , n_conv_ksize)
164 print (’ S t a r t i ng ␣run␣ f o r ␣%s ’ % hparam)

56

165

166 # Roda a t o po l o g i a de CNN
167 CNN3D_model(l earn ing_rate , n_conv , n_fc , img_size ,

n_conv_ksize , hparam)
168 elapsed_time = time . time () − start_time
169 print (’ Elapsed␣Time : ␣%s ’ % elapsed_time)
170

171 print (’Done␣ t r a i n i n g ! ’)
172 print (’Run␣ ‘ tensorboard ␣−−l o g d i r=%s ‘ ␣ to ␣ see ␣ the ␣ r e s u l t s . ’ %

LOGDIR)
173

174 i f __name__ == ’__main__ ’ :
175 main ()

