UNIVERSIDADE DE SAO PAULO
ESCOLA DE ENGENHARIA DE SAO CARLOS

Caio Kioshi Miyazaki

Redes neurais convolucionais para aprendizagem e

reconhecimento de objetos 3D

Sao Carlos

2017

Caio Kioshi Miyazaki

Redes neurais convolucionais para aprendizagem e

reconhecimento de objetos 3D

Monografia apresentada ao de Curso de En-
genharia Elétrica com Enfase em Sistemas
de Energia e Automacao, da Escola de En-
genharia de Sao Carlos da Universidade de
Sao Paulo, como parte dos requisitos para
obtenc¢ao do titulo de Engenheiro Eletricista.

Orientador: Prof. Dr. Vitor Campanholo Gui-
zilini

Sao Carlos
2017

AUTORIZO A REPRODUGAO TOTAL OU PARCIAL DESTE TRABALHO,
POR QUALQUER MEIO CONVENCIONAL OU ELETRONICO, PARA FINS
DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE.

Miyazaki, Caio Kioshi

M685r Redes neurais convolucionais para aprendizagem e
reconhecimento de objetos 3D / Caio Kioshi Miyazaki;
orientador Vitor Campanholo Guizilini. S&o Carlos,
2017.

Monografia (Graduacdo em Engenharia Elétrica com

énfase em Sistemas de Energia e Automacdo) -- Escola de
Engenharia de S&o Carlos da Universidade de Sdo Paulo,
2017.

1. Aprendizado profundo. 2. Redes neurais
convolucionais. 3. Aprendizado de maquina. 4. Objetos
3D. 5. Nuvem de pontos. 6. Voxel. 7. ModelNetlO. I.
Titulo.

FOLHA DE APROVACAO

Nome: Caio Kioshi Miyazaki

Titulo: “Redes neurais convolucionais para aprendizagem e
reconhecimento de objetos 3D”

Trabalho de Concluséo de Curso defendido e aprovado
em 21 11 14

com NoTA . 2 (Mo a Mede), pela Comissio Julgadora:

Prof. Dr. Vitor Campanholo Guizilini - Orientador -
The University of Sydney

Prof. Dr. Valdir Grassi Junior - SEL/EESC/USP

Prof. Dr. Fernando Santos Osério - SSC/ICMC/USP

Coordenador da CoC-Engenharia Elétrica - EESC/USP:
Prof. Associado Rogério Andrade Flauzino

Este trabalho € dedicado aos meus pais,

aos meus irmaos e minha namorada.

AGRADECIMENTOS

Aos meus pais, Celso e Ester, e meus irmaos, Caroline e Christian, por todo o apoio,

carinho e suporte em toda minha vida. Sempre me incentivando a aprender e estudar.

Gostaria de agradecer a minha amada namorada e melhor amiga Nathalia, pelo
companheirismo, conselhos e apoio. Apesar de estar passando por um periodo muito

atarefado, realizando estagio e faculdade, conseguiu dar tempo para me apoiar neste
trabalho.

Ao Vitor Campanholo Guizilini, pela imensa contribui¢ao e orientagao durante
todas as etapas deste trabalho. Sempre me incentivando e me fascinando pela area de

Aprendizado de Maquinas.

Ao professor Valdir Grassi Junior, pelo apoio e paciéncia devotada a mim, tornando

possivel a realizacao deste projeto.
Aos todos amigos que fiz durante esta parte da minha jornada.

A Escola de Engenharia de Sdo Carlos, todos os professores e técnicos que contri-

buiram durante minha formacao.

"A morte do homem comeca no instante
em que ele desiste de aprender ..."

Albino Teizeira

RESUMO

MIYAZAKI, C. K. Redes neurais convolucionais para aprendizagem e
reconhecimento de objetos 3D. 2017. 56p. Monografia (Trabalho de Conclusao de
Curso) - Escola de Engenharia de Sdo Carlos, Universidade de Sdo Paulo, Sao Carlos,
2017.

O reconhecimento de objetos tridimensionais é um problema ainda pouco explorado, porém
de extrema importancia em diversas areas da visao computacional, evolvendo da medicina
até a robotica. Este trabalho propoe a utilizacao de Redes Neurais Convolucionais para
a identificacao de 10 classes de objetos 3D. Para isto foi utilizado a base de dados de
modelos CAD 3D, o ModelNet10. Utilizando a representagao dos objetos em nuvem de
pontos uma série de topologias foram determinadas variando os parametros da rede. Cada
topologia apds configurada foi treinada e testada com conjunto de exemplos diferentes.
Como resultado, é discutido a importancia da escolha de cada pardmetro de uma Rede
Neural Convolucional e sua influéncia no desempenho final. A topologia com o melhor

resultado obteve 89% de acurdcia no conjunto de teste.

Palavras-chave: Aprendizado Profundo. Objetos 3D. Redes Neurais Convolucionais.
Aprendizado de Maquina. Nuvem de Pontos. Voxel ModelNet10

ABSTRACT

MIYAZAKI, C. K. Convolutional neural network for learning and recognition
of 3D objects. 2017. 56p. Monografia (Trabalho de Conclusao de Curso) - Escola de
Engenharia de Sao Carlos, Universidade de Sao Paulo, Sao Carlos, 2017.

The 3D objects recognition is a problem that has not been well explored yet, but it is
extremely important in several fields of computer vision, it has been used in medicine to
robotics. This paper uses Convolutional Neural Network for the identification of 10 classes
of 3D objects. The ModelNet10 was the 3D CAD model dataset used. Using point cloud as
the object representation, a set of topologies were defined by varying the parameters of the
network. Each topology configuration was trained and tested with separated example of
the dataset. As a result, the importance of selecting each parameter of the Convolutional
Neural Network corretly and its influence on final performance is discussed. The topology

with best result obtained 89% of accuracy on the test set.

Keywords: Machine Learning. Convolutional Neural Network. 3D Object. Deep Learning.
Point Cloud. ModelNet10

LISTA DE FIGURAS

Figura 1 — Exemplo de Representagoes 3D, D
Figura 2 — Neuronio Artificial 9
Figura 3 — Funcao Tangente Hiperbdlica 10
Figura 4 — Funcao Sigméide o 10
Figura 5 — Funcao ReLU o o 10
Figura 6 — Rede Neural Multicamadas 11
Figura 7 — One-hot encoding L. 12
Figura 8 — Arquitetura de uma Rede Neural Convolucional 16
Figura 9 — Operagao de Convolugdo 16
Figura 10 — Camadas Convolucionais 17
Figura 11 — Preenchimento para filtro 5x5 18
Figura 12 — Exemplo de Fluxo de Dados Graficos do TensorFlow 21
Figura 13 — Estrutura de Arquivo .offo 0. 23
Figura 14 — Exemplos dos objetos em .off 24
Figura 15 — Povoamento de um triangulo, 25
Figura 16 — Estrutura do conjunto de dados de entrada apos preprocessados 27
Figura 17 — Topologia completa da CNN utilizada 28
Figura 18 — Exemplos de conversao da representacao dos objetos 30
Figura 19 — Acurédcia do treinamento para Objetos - Grade 32 32
Figura 20 — Acurédcia do teste para Objetos - Grade 32 32
Figura 21 — Perda do treinamento para Objetos - Grade 32 33
Figura 22 — Perda do teste para Objetos - Grade 32. 33
Figura 23 — Acurédcia do treinamento para Objetos - Grade 16 34
Figura 24 — Acuracia do teste para Objetos - Grade 16 35
Figura 25 — Perda do treinamento para Objetos - Grade 16 35

Figura 26 — Perda do teste para Objetos - Grade 16 35

Tabela 1
Tabela 2
Tabela 3
Tabela 4
Tabela 5
Tabela 6
Tabela 7

Tabela 8

Tabela 9

LISTA DE TABELAS

Conjunto de dados de treinamento e teste
One-hot encoding oo
Desempenho das topologias de CNN para objetos com grade de 32
Desempenho das topologias de CNN para objetos com grade de 16
Valores Médios da Acurécia e Perda das Topologias para mesmo Numero
de Camadas Convolucionais
Valores Médios da Acurécia e Perda das Topologias para mesmo Ntumero
de Camadas Totalmente Conectadas
Valores Médios da Acuracia e Perda das Topologias para mesmo Tama-
nho do Filtro
Valores Médios da Acuracia e Perda das Topologias para mesma Taxa
de Aprendizagem

Resultados obtidos por outros trabalhos

TCC

USP

GPU

IA

ML

DL

2D

3D

RNA

MLNN

LR

GD

SGD

CNN

CL

FCL

LISTA DE ABREVIATURAS E SIGLAS

Trabalho de Conclusao de Curso

Universidade de Sao Paulo

Unidades de Processamento Grafico (Graphic Processing Unit)
Inteligéncia Artificial

Aprendizado de Maquina (Machine Learning)

Aprendizado Profundo (Deep Learning)

Bidimensional

Tridimensional

Rede Neural Artificial

Rede Neural Multicamadas (Multi-layer Neural Network)
Taxa de Aprendizagem (Learning Rate)

Gradiente Descendente (Gradient Descendent)

Gradiente Descendente Estocastico (Stochastic Gradient Descent)
Redes Neurais Convolucionais (Convolutional Neural Network)
Camada Convolucional (Convolutional Layer)

Camada Totalmente Conectada (Fully Connected Layer)

1.1
1.2
1.3
1.4
1.5

2.1
2.1.1
2.1.2
2.1.3
2.2

3.1
3.1.1
3111
3.1.2
3.1.3
3.14
3.15
3.1.6
3.1.7
3.1.8
3.1.9
3.2
3.2.1
3.2.2
3.3
3.3.1
3311
3.3.1.2

SUMARIO

Listadefiguras e Xi
Listadetabelas xiii
INTRODUCAO i ittt e et e et e et e 3
Contextualizacdao o 3
Motivacao 3
Objetivo Geral 4
Objetivo Especifico 4
Organizacao do Trabalho 4
RECONHECIMENTO DEOBJETOS 3D 5
Representacdes Tridimensionais 5
Representacao Mesh 6
Representacao em Nuvem de Pontos 6
Representacao Voxelo o 6
Métodos de reconhecimento de padroes 3D 6
APRENDIZADO DEMAQUINA 9
Redes Neurais Artificiais 9
Funcdo de Ativacdo 10
Funcao ReLU oo 11
Rede Neural Multicamadas L. 11
Funcdo Softmax 11
Codificacdo One-hot 12
Funcdo Custo L 12
Cross Entropy 13
Método do Gradiente Descendente 13
Sobre-ajuste e Sub-ajuste 13
Treinamento de uma Rede Neural Artificial de Mutliplas Camadas 14
Aprendizado Profundoo 14
Método do Gradiente Descendente Estocastico 15
Dropout 15
Redes Neurais Convolucionais 15
Camada Convolucional 17
Passo (stride) 17

Preenchimento (padding) 18

3.3.2
3.33

4.1
41.1
4.1.2
4121
4.2
421
4.2.2
423
424
425
4.2.6
4.3

5.1
5.2
521
522
5.3
53.1
5.3.2
533
53.4
5.35
54

Camada de Pooling 18

Camada Totalmente Conectada - FCL 19
IMPLEMENTACAO it e et e et e 21
Materiais. 21
TensorFlow 21
Basede Dados 22
Formato OFF 22
Pré-processamento 23
Conversao da Representacao 3D 23
Grade e 23
Normalizacdo 23
Povoamentodas Faces 25
Codificacdo One-hot 26
Conjunto de Dados de Treinamento e Teste 26
Treinamento da Rede Neural Convolucional 26
EXPERIMENTOS E RESULTADOS 29
Pré-processamento 29
Treinamento e Teste da Rede Neural Convolucional 29
Objetos 3D comgradede 32 31
Objetos 3D comgradede 16 L. 33
Anadlise da Variacao dos Parametros 36
Tamanhoda Grade 36
Nidmero de Camadas Convolucionais 36
Nimero de Camadas Totalmente Conectadas 37
Variacdo do Tamanho do Filtro. 37
Variacdo da Taxa de Aprendizagem 37
Desempenho de outros trabalhos 38
CONCLUSAO e e e 39
Trabalhos Futuros 39
REFERENCIAS e e 41
APENDICES 43

APENDICE A - CODIGO FONTE PARA O PRE-PROCESSAMENTO
DOSDADOS. 45

APENDICE B - CODIGO FONTE PARA O TREINAMENTO DAS

1 INTRODUCAO

1.1 Contextualizacao

Os desafios mais recentes que a Inteligéncia Artificial tenta resolver sdo problemas
com solugoes intuitivas. Em outras palavras, sao tarefas executadas de modo faceis por
pessoas, porém dificeis de serem descritas formalmente como o reconhecimento da fala e
imagens. A intuicdo humana esta relacionada com a habilidade de entender e interpretar
conhecimentos passados para predizer e ou resolver problemas atuais. Com isso surgiu o
Aprendizado de Méquina (do termo em inglés Machine Learning - ML), uma subérea da
IA, que utiliza métodos computacionais para emular esse processo de intuicdo humana.
Em ML, a aprendizagem ¢ feita por meio de treinamentos em banco de dados, que
representam eventos e experiéncias passadas, possibilitando a construcao de sistemas
capazes de aprender de forma automatica (DUNDAS; CHIK, 2011).

Desde sua concepg¢ao, ML tém contribuido para o avanco de diversas areas do
conhecimento. Atualmente, a Visdo Computacional foi a que mais se beneficiou com o
surgimento do método, sendo um dos campos que vém ganhado grande importancia, tanto
pelo desenvolvimento quanto pela forma como as informacoes estao sendo expostas. Sua
importancia pode ser vista em um estudo da Cisco, em que estima que em 2016 mais de

85 porcento de todo o trafico da internet estd na forma de pizels (LI, 2016).

Neste panorama geral da Visao Computacional e Aprendizado de Maquina, que
surgiu a motivagao deste trabalho. Reconhecimento de imagens sao problemas que até
pouco tempo atras eram impossiveis de serem resolvidos pelas maquinas. Mas hoje, dada
sua importancia, grandes esforcos estao sendo direcionados no desenvolvimento de novas
técnicas para a aplicacdo em diversas areas: desde imagens médicas, carros autonomos,

automacao industrial, realidade aumentada, etc.

1.2 Motivacdo

Reconhecimento de objetos continua sendo um dos desafios fundamentais de siste-
mas de visdo computacional. Atualmente muitos esforgos estao concentrados na classificagao
de categorias de objetos 2D. No entanto, ha um constante crescimento na utilizacao de
formas 3D, fazendo necesséario o desenvolvimento de novos métodos para classifica-los. Um
dos problemas mais recorrentes nestas formas é a obtencao de uma boa representagdo no
espaco tridimensional, interferindo diretamente no reconhecimento da imagem. A utilizacao
de Redes Neurais Convolucionais tém como objetivo suprir, em partes, esta necessidade

de boa representagoes.

1.3 Objetivo Geral

Este trabalho tem como objetivo utilizar redes neurais convolucional para iden-
tificagdo de objetos 3D a partir do banco de dados fornecidos pelo projeto Princeton

ModelNet10.

1.4 Objetivo Especifico

o Estudar trabalhos correlatos e analisar o estado da arte;
e Entender o funcionamento de uma rede neural convolucional e suas diferentes
topologias;

» Realizar o treinamento e aplicacao de uma rede neural artificial para reconheci-

mento de objetos 3D.

1.5 Organizacao do Trabalho

O Capitulo 1 apresenta uma contextualizacdo ao tema de identificacdo de objetos
tridimensionais, trata da motivacao e objetivos do trabalho, e por fim apresenta a estrutura

organizacional do trabalho.

O Capitulo 2 apresenta uma breve revisao bibliografica sobre representacoes tridi-

mensionais e os métodos existentes de identificacao de objetos 3D.

O Capitulo 3 abrange algumas areas de Aprendizado de Maquina (ML) utilizadas
neste projeto. Os fundamentos tedricos de Redes Neurais Artificiais e seus novos métodos,

Aprendizado Profunda e Redes Neurais Convolucionais.

O Capitulo 4 descreve os materiais utilizados e a metodologia desenvolvida, baseada

em aspectos tedricos e praticos.

O Capitulo 5 apresentada os resultados e analises da fase de pré-processamento

dos objetos 3D, e da fase de treinamento das Redes Neurais Convolucionais.

Por fim, o Capitulo 6 traz conclusoes do trabalho, e consideragoes acerca de

trabalhos futuros.

2 RECONHECIMENTO DE OBJETOS 3D

Este capitulo apresenta uma breve revisao bibliografica sobre representacoes tridi-

mensionais e os métodos existentes de identificacao de objetos 3D.

2.1 Representacoes Tridimensionais

Representacoes tridimensionais de objetos e cenarios sao cruciais para andlises
visuais do mundo, pois retratam de forma mais fiel e compacta quando comparada
com a representagao bidimensional (KRAUSE et al., 2013). Entretanto, sao atualmente
subutilizadas em sistemas de visdo computacional, principalmente por causa da falta de

boas representagoes genéricas (WU et al., 2015).

Modelos 3D podem ser divididos em duas categorias: sélidos e superficie. Modelos
solidos definem volumes dos objetos, sdo os mais realisticos porém sao mais dificeis de
construir. Comumente utilizados em simulagoes médicas e em engenharia, compoe as
seguintes representagoes: vozel, BSP tree, CSG, Sweep e Octree. Modelos de superficie
sao mais faceis de modelar pois representam somente a casca do objeto. Dentre alguns

exemplos destas representagoes temos: nuvem de pontos, superficies poligonais e mesh.

As trés representacoes mais utilizados para problemas de reconhecimento de objetos
3D encontrados na literatura sdo: nuvem de pontos, voxel e mesh. Neste trabalho serao
abordados a representacao mesh, pois o banco de dados utilizado possui os objetos neste
formato, a representacao nuvem de pontos, que € a representacao intermediaria para o

processo de discretizacao da representacao e por fim é utilizada a representacao voxel.

Figura 1: Exemplo de Representacoes 3D

(a) Mesh (b) Nuvem de pontos (c) voxel
Fonte: Garcia-Garcia et al. (2016)

2.1.1 Representacao Mesh

Mesh sao malhas poligonais, que sao compostas por um conjunto de vértices e
arestas. A conexao entre eles formam as faces, ou poligonos, que compéem a superficie
da imagem. Os poligonos mais comuns utilizados sdo os triangulos e quadrilateros. Na
Figura 1 exemplo (a) é possivel observar o conjunto de pequenas faces, que ligadas foram

a superficie do objeto.

2.1.2 Representacao em Nuvem de Pontos

A nuvem de pontos é uma cole¢do de pontos colocados em um sistema de co-
ordenadas tridimensional, em geral, adquiridos de scanners ou da conversao de outras
representacoes 3D. Este tipo de dados sao frequentemente encontrados em varias aplicagoes
desde robdtica e visao até cosmologia (RAVANBAKHSH; SCHNEIDER; POCZOS, 2016).

A Figura 1 exemplo (b) ilustra esta representagao que foi produzida a partir do exemplo

(a).

2.1.3 Representagao Voxel

Assim como o pizel sugere um elemento da imagem em um espago bidimensional,
o vozel analogamente sugere um elemento de volume em um espacgo tridimensional. A
representacao em wvozel consiste em decompor o objeto 3D em células em forma de cubos
igualmente espagados em uma grade (comumente referido em inglés como grid). A Figura
1 exemplo (c¢) mostra um exemplo desta representagao em um cubo de 30x30x30 vozels.
Cada vozel possui uma densidade diferente, nos quais graficamente as cores mais escuras

indicam alta densidade e as cores mais claras, baixa densidade.

Apesar da representacdao voxel possuir propriedades interessantes, ela tende a
ser computacionalmente mais custosa em termos de meméria em comparagao a nuvem
de pontos (SIMONOVSKY; KOMODAKIS, 2017). Porém este custo traz resultados
significativos, dado que trabalhos no estado da arte em reconhecimento de objetos 3D

abordam a utilizacao desta representacao.

2.2 Métodos de reconhecimento de padrées 3D

Uma das primeiras abordagens encontradas em reconhecimento de objetos se baseia
na criagdo de modelos matematicos para os objetos. O modelo spline ¢ um exemplo desta
abordagem, no qual o objeto pode ser deformando localmente e nao afetar o resultado. A
criacao de modelos matematicos necessitam de muitos pardmetros, tornando uma técnica
muito lenta e de dificil implementagao. Sao encontradas em aplicagoes cujos objetos
possuem poucos parametros e compactamente caracterizado, em especial reconhecimento
de modelos cilindricos, esferas, piramides e prismas (BENVEGN U, 2017).

O método Scale-Invariant Feature Transform (SIFT) proposto por Lowe (1999),
marcou como um grande avango para o reconhecimento de objetos. Esta técnica, comumente
utilizada em imagens 2D ¢ invariante a escala e rotagao, com isso pode ser utilizado também
em imagens 3D, apesar de possuir resultados pouco expressivos. Basicamente é composta
por duas partes: o detector e o descritor. O detector ¢é utilizado para identificar os extremos
da imagem e utilizar a localizacao como pontos-chaves. O descritor define a orientacao e
descricao destes pontos-chave (BATISTA, 2012). O algoritmo SIFT extrai as caracteristicas
das imagens e transforma em vetores com caracteristicas locais, e entao estes sdo usados

para fazer correspondéncia entre as imagens e classifica-las.

Em Osada et al. (2002) é proposto um método que calcula as assinaturas dos
objetos utilizando modelos 3D poligonais arbitrarios. Este método tem como objetivo
reduzir problemas de comparacoes das formas 3D, utilizando comparagoes com distribuicao
probabilistica, que sao mais simples e nao necessitam de métodos como registro de postura,
correspondéncia das caracteristicas ou correspondéncia de modelos. O método realiza a
amostragem e normaliza o objeto, seguido da transformacao do modelo arbitrario 3D em
uma fungao parametrizada, esta funcao pode entao ser facilmente comparada com outras

funcgoes.

Maquinas de Vetores de Suporte (do inglés Support Vector Machine - SVM) é
um classificador bindrio baseado na aprendizagem estatistica. E um classificador muito
utilizado em classificacao de padroes, reconhecimento de imagens, selegao de genes, e
outros. O SVM tenta estabelecer uma série de principios para a obtencao de uma boa
generalizacao (LORENA; CARVALHO, 2007).

Por fim, o método de redes neurais artificiais ¢ o mais amplamente utilizado hoje,
possui boa capacidade de generalizacdo com aprendizagem de padroes e vém apresentando
grandes resultados em tarefas de reconhecimento de objetos. Este método é utilizado neste

projeto e sera discutido mais profundamente no capitulo 3.

3 APRENDIZADO DE MAQUINA

Este capitulo tém como objetivo abranger algumas dreas de Aprendizado de
Maéquina (ML) utilizadas neste projeto. Iniciando com uma breve introdugio sobre Redes
Neurais Artificiais, mostrando algumas técnicas e termos, como por exemplo, regressao
logistica, fungdo Softmaz, codificagdo one-hot e Cross entropy. Em seguida, serd apresentado
os fundamentos tedricos de Aprendizagem Profunda (DL) e Redes Neurais Convolucionais

(CNN), com os principais métodos utilizados e seus beneficios.

3.1 Redes Neurais Artificiais

Redes Neurais Artificiais (RNA) sdo modelos computacionais de aprendizagem de
maquina inspirados em redes neurais bioldgicas, que originaram em 1943, no trabalho de
McCulloch e Pitts (1943). RNAs sdo muito utilizados em tarefas de reconhecimento de pa-
droes, como por exemplo, reconhecimento de fala, reconhecimento de objetos, identificagao
de células cancerigenas, e outros (HAFEMANN, 2014).

Assim como uma rede neural biolégica, as unidades basicas da RNA sao os neuronios.

Cada neurdnio artificial pode ser representado graficamente como na Figura 2.

Figura 2: Neuronio Artificial
bias

e b
X1 o—>» k

I Funcao de

ativacao
XZH@_\ G
N u Saida
Sinais de J k o) |—»
entrada Yk
: somatorio I

Ok

Threshold

_Pesos (limiar)
sinapticos

Fonte: (SILVA; SCHIMIDT, 2016)

Onde cada elemento possui as seguintes fungoes:

a) Sinais de entrada (z,,): conjunto de dados que servirao de base para o treina-

mento da rede.

b) Pesos Sinapticos (wy,): cada sinal de entrada é associado a um peso diferente,

de forma que durante o treinamento a RNA determina a influéncia da entrada

10

para o resultado final.

c¢) limiar de ativagao (bg): pardmetro que aumenta os graus de liberdade, permitindo

melhor adaptacao da rede.
d) Somatorio: realiza a soma de todas entradas multiplicadas pelos pesos.

e) Fungao de ativacao (¢(.)): aplica uma nao-linearidade no valor do neuré6nio e

determina a forma como ele deverd ser ativado.
f) Saida (yx): resultado estimado pelo neurdnio

Matematicamente, o neurdnio artificial pode ser expresso por uma fungao com as

variaveis de entrada x,, e saida y;, como descrito pela Equacao 3.1:

Yk = SO(i Tiwy; + by) (3.1)

i=1
3.1.1 Fungao de Ativagao

As funcgoes de ativagdo sao fungdes nao-lineares conectadas ao final da estrutura de
um neurénio artificial (Figura 2), também sdo inspiradas biologicamente e definem a saida

com base nos dados de entrada e o limiar de ativacao.

Figura 3: Funcao Tangente

Hiperbélica Figura 4: Funcao Sigmdide Figura 5: Funcao ReLLU

10
8

6

Exemplos de fungoes de ativagao - Fonte: Ferreira (2017)

A funcao sigmdide, Figura 4, é uma funcao do tipo:

B 1
14w

() (3.2)

Muito utilizada em problemas de classificacao, tem como saida valores entre 0 e 1,

e resulta na probabilidade dos dados de entrada estarem contidos na classe analisada.

A fungao tangente hiperbdlica, Figura 3, tem como saida valores entre -1 e 1 e é

baseada na funcao sigmoéide:

tanh(z) = 2¢p(2z) — 1 (3.3)

11

3.1.1.1 Funcao ReLLU

Fungao Linear Retificada, do inglés Rectified Linear Unit (ReLU), é uma fungao
de ativagao mais eficiente que a sigméide e tangente hiperbdlica, pois nao faz uso de
expoentes. A Figura 5 representa esta funcao, onde é possivel observar que é uma funcao

linear por partes.

o(x) = max(0,) (3.4)

3.1.2 Rede Neural Multicamadas

Um modelo bésico de rede de apenas um neurdnio é chamado Perceptron, ele é capaz
de classificar padroes, porém de forma limitada, pois agrupa apenas dados linearmente
separaveis. Como grande parte dos problemas existentes nao sao linearmente separavel
surgiu uma arquitetura mais robusta chamada Rede Neural Multicamadas (Multi-layer
Neural Network - MLNN)(HAFEMANN, 2014).

MLNN ¢é uma generalizagao do perceptron, no qual conjuntos de neurénios artificiais
sao distribuidos em camadas. Cada camada pode ser nomeada como entrada, oculta
(também chamada de escondida) ou saida. A Figura 6 demonstra como cada perceptron é
definido como um né, e a distribuicdo das camadas, sendo a primeira camada chamada de

entrada, a ultima de saida, e todas as camadas intermediarias sao as ocultas.

Figura 6: Rede Neural Multicamadas

Camada Camada
oculta #1 oculta #2

SZoSde

Entradas Saida

X 7O
ERLOSRO
JRROFR0
\\\V// X\ ~

Fonte: (ALMEIDA,)

Pesos Pesos

3.1.3 Fungao Softmax

Como explicado em Goodfellow, Bengio e Courville (2016), fungoes Softmaz sao co-
mumente utilizados como classificadores na camada de saida, tém como objetivo representar

a probabilidade de cada classe para cada valor de entrada.

12

Pela Equacao 3.5 da Funcao softmax podemos notar que os resultados s6 podem
assumir valores entre 0 e 1, e que a soma da probabilidade de todas as classes é igual a 1.
Desta forma podemos determinar que a classe estimada pela rede é a que possui a maior
probabilidade.

softmaz(z;) = _eaplz) (3.5)

Zj exp(zj)

3.1.4 Codificagao One-hot

Algoritmos de redes neurais artificiais possuem como entrada e saida valores
numéricos, portanto é necessario converter os rotulos de cada classe de objetos de modo

que a RNA consiga identificar na saida da rede.

Existem diversas formas de converter os rétulos das classes. Neste trabalho iremos
utilizar a codificacao one-hot que é o processo que converte os rotulos em vetores binérios.
Um exemplo desta conversao esta representada na figura 7. Cada uma das classes: cachorro,

gato e rato, possuem um vetor Unico.

Figura 7: One-hot encoding

Fonte: Elaborado pelo autor

3.1.5 Funcao Custo

A funcao custo (em inglés loss) tém como objetivo parametrizar o quao longe a

rede esta do resultado esperado. Ela é a média das distancias dos vetores de saida e saida

13

desejada de toda a rede. Como podemos observar na equacgao do custo 3.6, o calculo é

através da média de cada Cross Entropy.
1

3.1.6 Cross Entropy

Cross Entropy é o método que mede a distancia entre os valores da codificagao
one-hot com a saida da rede. Na equagao 3.7 o parametro Cross Entropy é representado

por 'D" "S" é o vetor de saida do Softmazx e "L" é o vetor da codificacao one-hot.
D(S,L) = = Lilog(S;) (3.7)

3.1.7 M¢étodo do Gradiente Descendente

O gradiente descendente (ou Gradient Descent - GD em inglés) é um método
de otimizagao que tenta minimizar o erro da rede neural. Esta minimizacgao é realizada
modificando os pesos e os limiares de ativa¢ao com o objetivo de encontrar o minimo local
da funcao perda. As equacoes 3.8 e 3.9 determinam o modo como os pesos e bias sao

atualizados:
w—w—al,L (3.8)

b b—al,L (3.9)

O parametro « das equagoes representa a taxa de aprendizado (em inglés learning
rate - LR), ou seja, a taxa de variagao dos pesos e bias para cada iteragdo. Esta taxa é

entao multiplicada pela derivada da funcao perda com relagdo a cada peso e bias.

3.1.8 Sobre-ajuste e Sub-ajuste

De acordo com Goodfellow, Bengio e Courville (2016), o que separa Aprendizado
de Méaquina de um problema de otimizacao é a necessidade de técnicas capazes de treinar
modelos que generalizem exemplos nunca antes processados. Ou seja, ndo é suficiente que
o modelo desenvolvido possua boa acuracia apenas na base de dados de treinamento, ele

necessita passar por uma validagao do treinamento.

Para determinar o desempenho de generalizacao de uma rede neural é necessario
ter dois conjunto de dados: dados de treinamento e dados de teste. O objetivo é diminuir

tanto o erro de treinamento como de teste. Quando estes dois erros ndao caminham juntos,

14

ocorrem dois fendmenos definidos a seguir: subajuste (referenciado em muitas literaturas

no inglés underfitting) e sobre-ajuste (em inglés overfitting).

O sub-ajuste ocorre quando o erro de treinamento nao reduz. Ou seja o modelo nao
foi capaz de determinar uma relacao entre os dados de treinamento. Geralmente quando

os modelos e/ou bases de dados sao simples a rede nao consegue aprender o padrao.

O sobre-ajuste ocorre quando o erro de treinamento decresce mas o de teste continua
alto. Ou seja, a rede nao é capaz de generalizar para exemplos nao vistos. Isto pode ocorrer
devido a utilizacao de pequena base de treinamento ou uso excessivo de caracteristicas

(nods).

3.1.9 Treinamento de uma Rede Neural Artificial de Mutliplas Camadas

O treinamento de uma rede neural artificial consiste no ajuste dos pesos sinapticos
e bias de modo que o vetor de saida se aproxime da saida esperada. O processo ocorre
em duas etapas principais: a propagacao (forward-propagation) e a retro-propagacao
(back-propagation) (RUSSELL; NORVIG, 1995).

A primeira etapa de propagacao ocorre quando aplicamos a Equacao 3.1 de neurdnio
artificial para cada um dos nds da rede. Como explicado por Hafemann (2014), para tarefas
de classificagao, o fluxo de propagacao segue da camada de entrada, passa pelas camadas
ocultas e termina na camada de saida. Nesta ultima camada é comum utilizar a Funcao
3.5 de Softmaz, que produz uma saida adequada para compararmos com o rétulo esperado

da codificagao one-hot.

Terminada a etapa de propagacao, a rede entrega como saida os valores estimados
por ela. Estes valores de saida sao comparados com o desejado e a fungao perda é definida,
estabelecendo entao o desempenho da rede no instante. Se este desempenho nao foi o
suficiente, é iniciada entdao a fase de retro-propagacao, onde se deseja minimizar o erro da
estimagao. Para isto é necessario calcular a funcao Cross Entropy e funcao perda descritas

pelas equacoes 3.7 e 3.6 e utilizar o método Gradiente Descendente.

A cada passo, de propagacao e retro-propagacao, o vetor de pesos é alterado na
dire¢do que produz a maior queda ao longo da superficie de erro. Este processo continua

até atingir um erro minimo local.

3.2 Aprendizado Profundo

O desenvolvimento de Aprendizado Profundo (do inglés Deep Learning - DL) foi
motivado em parte pela falha de algoritmos tradicionais em generalizar tarefas de TA
como reconhecimento de fala e objetos (GOODFELLOW; BENGIO; COURVILLE, 2016).
Aprendizagem Profunda refere-se a modelos de MLNN com mais de duas camadas ocultas

e técnicas que treinam este modelo de forma eficiente.

15

O aumento de camadas em uma RNA causa um crescimento consideravel de
parametros que devem ser ajustados no algoritmo de aprendizagem, entao dois fatores
sao fundamentais para a viabilidade da ferramenta: alta capacidades de processamento e
extensos banco de dados (FERREIRA, 2017). Portanto, esta ferramenta de aprendizado s6
se tornou viavel recentemente, com o barateamento de sensores de qualidade, que geram
enormes volume de dados para o treinamento e o aumento da capacidade processamento

das maquinas com unidades de processamento grafico (GPU - Graphic Processing Unit).

3.2.1 Método do Gradiente Descendente Estocastico

O método do Gradiente Descendente Estocéstico (do inglés Stochastic Gradient
Descent - SGD) é um dos algoritmos de otimizagao em aprendizado de maquina e aprendi-
zado profunda mais utilizados (GOODFELLOW; BENGIO; COURVILLE, 2016). SGD é
uma adaptagao do método GD apresentado na Subsecao 3.1.7, no qual procura resolver o
problema do GD em conjuntos de dados muito grandes. Visto que o GD calcula a funcao
perda com o gradiente para cada dado de treinamento, em redes neurais com muitas
camadas e nos a utilizacdo deste método pode torna-lo inviavel. O método SGD tenta
contornar este problema calculando uma estimativa da perda, utilizando uma pequena

parte do conjunto de treinamento.

3.2.2 Dropout

O Dropout é uma técnica de regularizacao que consiste em remover aleatoriamente
a cada iteracao de treinamento uma determinada porcentagem dos neurdnios de uma
camada, re-adicionando-os na iteracao seguinte. Essa técnica também confere a rede a
habilidade de aprender atributos mais robustos, uma vez que um neurénio nao pode
depender da presenca especifica de outros neurénios (ARAUJO; CARNEIRO; SILVA,
2017).

3.3 Redes Neurais Convolucionais

As Redes Neurais Convolucionais (Convolutional Neural Network - CNN) sao
arquiteturas de aprendizado profundo que subdividem os dados para tentar extrair carac-
teristicas de cada conjunto. Um dos objetivos da CNN ¢é reduzir o niimero de parametros
que deverao ser ajustados pela rede, e entao melhorar o processo de treinamento. Uma
caracteristica importante desta arquitetura esta relacionada com sua invariancia a escala,
a translacao e outras transformacoes, ou seja, ela consegue reconhecer padroes de forma

mais robusta e automatica.

As CNNs sao MLNN muito utilizadas em tarefas com estruturas em grades, como
por exemplo, processamento de fala e entendimento da linguagem natural (1D, convolugoes

temporais), segmentacao e classificagdo de imagens (2D, convolugao espacial), e andlise de

16

Figura 8: Arquitetura de uma Rede Neural Convolucional

Camadas
convolucionais

% anormal
% normal

E“';i;g;;;"E \ P

de
entrada

Camada
Camadas de totalmente

pooling conectada

Fonte: Aratijo, Carneiro e Silva (2017)

videos (3D, convolugao volumétrica) (SIMONOVSKY; KOMODAKIS, 2017) (LECUN;
BENGIO; HINTON, 2015). As principais camadas e as quais utilizamos neste trabalho

sao: convolucionais, de pooling e totalmente conectadas.

A Figura 8 ilustra um exemplo de uma CNN;, a LeNet (?7), que classifica as imagens
de entrada em células anormais ou normais. Na arquitetura, as camadas convolucionais sao
responsaveis por extrair as caracteristicas. As camadas de pooling reduzem a dimensionali-
dade da rede. As camadas totalmente conectadas estdo no fim da rede, ligam todas saidas

da camada anterior e determinam utilizando de fung¢des de ativagao a saida da CNN.

Figura 9: Operacao de Convolucgao

0ofo ofjojo|o o

0fo 21po0ojo|o0 o 0 |106

08 71§0j0 /|0 O 0o 0|1

0 |250/231 /127 63| 3 0 O | 0 1|0 —

0 |250 252 250|209| 56 O 100

0 |250 252 250|250| 83 O Filtro

Mapa de Caracteristicas

o0 o0 0|00 O

Imagem 2D

Fonte: Imagem adaptada do site https://www.vaetas.cz/blog/intro-convolutional-neural-
networks/

17

3.3.1 Camada Convolucional

As camadas convolucionais (Convolutional layer - CL) sao conjuntos de filtros
nao lineares que percorrem sequencialmente os dados de entrada (ou camada anterior) e
entdo produzem matrizes chamadas mapas de caracteristicas (feature maps). A Figura 9
exemplifica a operagdo de convolugao, onde o filtro de tamanho 3x3 sobrepde uma regiao
dos dados, a multiplicagao matricial entre eles é computada e entao os valores somados

sao passados para o mapa de caracteristicas.

Durante o processo de treinamento, esses filtros sao ajustados automaticamente
para que sejam ativados na presenca de caracteristicas relevantes, como orientacao de
bordas ou manchas de cores (KARPATHY, 2017). Em cada camada convolucional diversos
filtros sao usados, e os mapa de caracteristicas produzidos sao entdo empilhados, formando
uma matriz 3D para imagens 2D ou uma matriz 4D para imagens 3D. A Figura 10
demonstra a forma como estes mapas sao empilhados e como cada camada entdo aumenta
sua profundidade (depth) em uma CNN com imagem 2D de entrada e matrizes 3D nas

camadas subsequentes.

Ainda observando a Figura 10, cada camada convolucional varia a largura (width)
e a altura (height) conforme os dados percorrem a CNN. Esta variagao ocorre com a
mudanga de dois pardmetros na operac¢ao de convolugao: o passo dos filtros (stride) e o

preenchimento na camada que sofrerd a convolucao (padding).

3.3.1.1 Passo (stride)

Conforme explicado anteriormente os filtros da operagao de convolugao deslizam
por toda matriz de forma sequencial. Este deslizamento ocorre em passos, passando de
pixels para pixel em uma imagem ou de posi¢ao para outra em uma matriz. Quando o
passo ¢ igual a um, a altura e largura da camada de saida sera igual a entrada. Quando

for dois, a saida possuird metade do tamanho da entrada.

Figura 10: Camadas Convolucionais

depth

S5 height
- OO0 ~—7

OOOOOMwidth

Fonte: Karpathy (2017)

18

3.3.1.2 Preenchimento (padding)

Durante o deslizamento dos filtros, ha diversas formas de lidar com as bordas, as
mais utilizadas sao: valid padding ou same padding. No valid padding as bordas do
filtro nao ultrapassam as bordas da imagem, enquanto no same padding as fronteiras da
imagem sao preenchidas com 0 de modo a controlar a altura e largura na camada de saida.
Este preenchimento é determinado com a Equacao 3.10 e podemos observar na Figura 11

como ¢ feito para uma imagem de 32x32 e filtro de 5x5.

P=— (3.10)
onde K é o tamanho do filtro.

Figura 11: Preenchimento para filtro 5x5

32x32
36

o|lo|olo|o|o|lo|o|o|le|a|lae

o|lo|olo|o|o|o|o|o|le|a|ae

o|lo|olo|o|o|o|o|o|lo|a|lo
o|lo|lo|lo|a|la|le|a|a|le|ae|e

36

Fonte: Deshpande (2016)

Apés definir os pardmetros da convolucao, é possivel determinar a dimensao de

salda da CL utilizando a Equacao 3.11.

(W — K —2P)
S

onde O ¢é a dimensao da saida, W ¢ a dimensao da entrada, K é o tamanho do filtro, P é o

= +1 (3.11)

preenchimento e S é o passo do filtro.

3.3.2 Camada de Pooling

A camada pooling, geralmente utilizada apés uma camada convolucional, tém como
objetivo reduzir a dimensao da camada de entrada, para diminuir o custo computacional e
evitar overfitting. O método mais comum, chamado de Maz Pooling, consiste em reduzir a
dimensao das camadas pegando o valor maximo de cada regiao. Desta forma, ele elimina

valores despreziveis, criando uma invariancia a pequenas mudancas e distorgoes locais

(ARAUJO; CARNEIRO; SILVA, 2017).

19

3.3.3 Camada Totalmente Conectada - FCL

As camadas totalmente conectadas (em inglés Fully Connected Layer - FCL) sao
camadas iguais as MLNNs convencionais, onde todos os neuronios da camada anterior estao
conectados com cada neuronio desta camada. Nesta camada, as caracteristicas extraidas
nas camadas convolucionais e de pooling sao classificadas e na ultima camada utiliza-se a

funcao de ativacao softmax para predizer a classe do objeto de entrada.

21

4 IMPLEMENTACAO

Neste capitulo serao descritos os materiais e métodos utilizados para a solucao do
problema apresentado. A metodologia consiste no treinamento e validagao de uma rede
neural convolucional para aprendizado de classificacao de objetos tridimensionais a partir
de um banco de dados ModelNet10, para isto o experimento foi dividido em duas etapas

principais: pré-processamento da base de dados e treinamento da CNN.

4.1 Materiais

A rede neural convolucional e pré-processamento dos dados foram implementados
em Python, utilizando bibliotecas como TensorFlow, cuDNN e Numpy. Todos os codigos
foram feitos e rodados em um computador com CPU Intel(R) Core(TM) i7-5500U 2,40
GHz, GPU NVIDIA GeForce 840M e 8GB de memoéria RAM. Vale destacar a utilizagao de
processamento paralelo através da GPU e com auxilio as bibliotecas cuDNN e TensorFlow

com o objetivo de diminuir o tempo computacional.

4.1.1 TensorFlow

A biblioteca escolhida para a implementacao da rede neural foi o TensorFlow.
Ele é um framework de cédigo aberto para computagao numérica e Machine Learning
implementado em Python (ABADI et al., 2016). Foi disponibilizado pelo Google Brain
Team em novembro de 2015 e estda sendo amplamente utilizada em Machine Learning por

diversas empresas como: Google, Twitter, Intel, Dropbox, Ebay, entre outras.

Figura 12: Exemplo de Fluxo de Dados Gréficos do TensorFlow

©

R

v G
¢

Fonte: Abadi et al. (2016)

22

Como explicado em Zaccone (2016), a computagao do TensorFlow pode ser descrita
como um fluxo de dados gréaficos (Data Flow Graph), onde cada né representa uma
instancia de operagdo (multiplicacdo, ReLU, convolugao, e outros) e os cantos (edges) sao
vetores multidimensionais de dados chamados de tensores.

A Figura 12 representa um exemplo de fluxo de dados graficos de uma rede neural
Perceptron, com dados entradas (tensor "x") multiplicados pelos pesos sinapticos (tensor
"W") e somados pelo limiar de ativa¢ao (tensor "b"). O tensor de custo de saida (C) é

obtido da func¢ao de ativagdo ReLU.

4.1.2 Base de Dados

A base de dados utilizada foi retirada do projeto Princeton ModelNet10. Este
projeto tém como objetivo fornecer modelos de objetos CAD 3D para pesquisadores em
visdo computacional, robética, cientistas cognitivos e outros (PRINCETON, 2017). A base
de dados ModelNet10 contém 4899 modelos CAD 3D de diferentes objetos, separados em
10 categorias e em conjuntos de treinamento e teste. A Tabela 1 enumera a quantidade de

objetos em cada categoria da base de dados.

Tabela 1: Conjunto de dados de treinamento e teste

Objeto D.ados de Dados de teste
treinamento

Cama 515 100
Cadeira 889 100
Banheira 106 50
Escrivaninha, 200 86
Cabeceira 200 86
Coémoda 200 86
Monitor 465 100
Sofa, 680 100
Mesa 392 100
Vaso sanitario 344 100
Total 3991 908

4.1.2.1 Formato OFF

A base de dados disponibilizada pelo ModelNet10, esta em formato OFF (Object
File Format). Este formato representa geometricamente modelos 3D através de poligonos
em cada superficie do objeto. Estruturalmente cada arquivo de objeto segue os padroes
indicados na Figura 13. No cabegalho sao definidos o formato dos dados, o niimero de
vértices e numero de faces. Logo abaixo do cabecalho sao listados os vértices com as
coordenadas x, y e z. Por fim, as faces sao determinadas pelo nimero de vértices que serao

ligados, seguido do indice da lista de vértices.

23

Figura 13: Estrutura de Arquivo .off

OFF

Cabecalho
numVertices numFaces
x1l vyl z1
X2 y2 z2 — Vértices
NVertices vl v2 v3 ... VN
MVertices vl v2 v3 ... vM — Faces

Fonte: Elaborado pelo autor

Em Python, foi produzido um programa utilizando as bibliotecas Numpy, Matplotlib
e STL para produzir graficamente os objetos no formato OFF. A Figura 14 apresenta

alguns exemplos de cada classe de objetos do ModelNet10.

4.2 Pré-processamento
4.2.1 Conversao da Representacao 3D

Conforme discutido no capitulo 2, existem diversas formas de representacao 3D.
Neste projeto optou-se por trabalhar com a nuvem de pontos, dado sua facilidade e
aplicabilidade em CNN. Para isto, é necessario o pré-processamento da base de dados
convertendo da representacao mesh para a nuvem de pontos. Esta conversao consiste em

povoar a superficie com pontos de ocupagao em uma grade.

4.2.2 Grade

A nuvem de pontos é representada por um sistema de coordenadas tridimensionais
definido como grade. Neste trabalho, a grade receberd o valor de "1" quando a coordenada
estéd ocupada pelo objeto e o valor de "0" quando a coordenada nao esta ocupada. Os objetos
serao entao convertidos para uma matriz de trés dimensoes delimitada pelo tamanho e

resolugao desejados.

4.2.3 Normalizacao

A primeira etapa do pré-processamento consiste em normalizar o conjunto de
dados. A normalizacao dos dados de entrada, é um método muito comum e essencial
para evitar problemas de estabilidade numérica. Redes Neurais Artificiais com valores de
dados de entrada muito altos e/ou muito baixos nao conseguem obter bons resultados de

generalizacao.

24

Figura 14: Exemplos dos objetos em .off

Monitor Coémoda Cabeceira Escrivanin Banheira Cadeira Cama

Sofa

Mesa

Fonte: Elaborado pelo autor

Neste trabalho foram utilizados as Equagoes 4.1, 4.2, 4.3 para a normalizacao
da figura de acordo com o tamanho da grade desejado. Cada coordenada é normalizada
para um intervalo de [0,1] e multiplicada pelo tamanho de grade. De modo a manter as
proporcoes do objeto, o denominador das equagoes deve ser a maior distancia dentre os
eixos X, Y e Z (max(X,Y,Z)), definido pela Equagao 4.4.

s X —min(X)

X=——-——""F"- 4.1
max(X,Y, Z) grade (41)

o~ Y —min(Y)

Y =—————"-grade (4.2)

max(X,Y, Z)

25

s Z—min(Z)
J=—"—"". d 4.3
max(X,Y, 7Z) graace (43)

max(X,Y, Z) = max(mazx(X) — min(X)), (max(Y) — min(Y)), (max(Z) — min(Z2)))
(4.4)

4.2.4 Povoamento das Faces

O método de conversao utilizado, consiste em preencher as faces dos objetos com
pontos em uma grade. Como os poligonos das faces dos dados do ModelNet10 sdo triangulos,
o povoamento das faces se baseou no sistema de coordenadas baricéntricas, definida pela

Equacao 4.5:

P=(1-u—v)A+uB+vC (4.5)

ut+v=1 (4.6)

onde P na Equacao 4.5 representa um ponto no espago delimitado pelos vértices do
triangulo A, B e C, e (u,v) s@o escalares que formam as coordenadas baricéntrica do
ponto P. Assim computacionalmente, por interagoes, podemos encontrar todos os pontos

P dentro do tridngulo, variando (u,v) dentro da condigao da Equacao 4.6.

Figura 15: Povoamento de um tridngulo

CRERRERXE NN]
RN NN NN
I EER N NN

eoo0o00e
eceooe
L)
L

e e

°

0

|

=

o

Jccoonnn|o>
—
o

coo00000 @S

o.
|
3

40

50 60 47

Fonte: Elaborado pelo autor

26

Para cada ponto contido no tridngulo calculado pelo programa, a coordenada é
aproximada para um ponto na grade, recebendo entao o valor "1". O dado de cada objeto

de resolucao previamente definida da forma do exemplo da Figura 15.

4.2.5 Codificagdo One-hot

Conforme explicado anteriormente na Subsecao 3.1.4, RNAs nao podem operar
com roétulos diretamente. Por causa disso foi desenvolvido a Tabela 2 com a codificagao
one-hot dos rotulos das classes de objetos. Na primeira coluna temos os rétulos de cada

classe de objetos, em seguida as linhas formam os vetores que irdo representa-los.

Tabela 2: Codificagao One-hot das classes de objetos

Cama 1 0 0 0 0 0 0 0 0 0
Cadeira 0 1 0 0 0 0 0 0 0 0
Banheira 0 0 1 0 0 0 0 0 0 0
Escrivaninha, 0 0 0 1 0 0 0 0 0 0
Cabeceira 0 0 0 0 1 0 0 0 0 0
Coémoda 0 0 0 0 0 1 0 0 0 0
Monitor 0 0 0 0 0 0 1 0 0 0
Sofa, 0 0 0 0 0 0 0 1 0 0
Mesa, 0 0 0 0 0 0 0 0 1 0
Vaso sanitario 0 0 0 0 0 0 0 0 0 1

4.2.6 Conjunto de Dados de Treinamento e Teste

Apds o preprocessamento, cada objeto representado em uma matriz 3D é linearizado
em um vetor e concatenado com o devido vetor do rétulo da classe do objeto. O vetor
resultante é entao empilhado com os outros vetores de objetos, formando a matriz do
conjunto de dados. No total 4 arquivos de dados sao produzidos, 2 arquivos com a matriz

dos dados de treinamento com grade de 16 e 32, e mais 2 arquivos para teste.

A Figura 16 exemplifica a estrutura de cada arquivo produzido pelo preprocessa-
mento. Cada linha representa um objeto com seu rétulo, para o arquivo dos dados de

treinamento com grade de 32, a matriz possui 3991 linhas e 323 + 10 colunas.

4.3 Treinamento da Rede Neural Convolucional

Apés o pré-processamento dos dados de entrada da rede neural convolucional, a
rede esta apta para ser treinada. A determinacao da topologia de CNN mais adequada
para resolucao do problema é um processo empirico, portanto diversas topologias com
técnicas diferentes foram testadas, a fim de determinar a topologia que obtém o melhor
resultado. Neste trabalho foram testados topologias variando o tamanho da grade dos
conjunto de dados, o nimero de camadas convolucionais, nimero de camadas totalmente

conectadas, tamanho dos filtros e taxa de aprendizagem.

27

Figura 16: Estrutura do conjunto de dados de entrada apds preprocessados

Objeto linearizado Rétulo em codificagédo one-hot
| |
I 1N 1
11011 11011 0 0j0]o0
010 110]0J0]1]0 0]0]| 0
1 [1 1,1/0/0]0 0 1 0
11110 0j0ojo0ofoj0]oO 0]1]0

Fonte: Elaborado pelo autor

Durante a configuracao das CNNs os seguintes parametros sao definidos como fixos

e nao foram mudados no decorrer de todo o experimento:

1. Passo da camada convolucional = 1;

2. Passo da camada de Max Pooling = 2;
3. Tamanho do filtro do Max Pooling = 2;
4. Numero de épocas = 1950;

5. Dropout = 0,50;

6. Numero de mapas de caracteristicas:

a) com 2 camadas convolucionais:
i. 1° CL = 32
ii. 2° CL = 64

b) com 3 camadas convolucionais:

i. 1°CL =16
ii. 2° CL = 32
iii. 3° CL = 64

Fixado estes parametros, utilizou-se os 3991 dados de treinamento dos objetos 3D
com grade de 32 para o treinamento de diversas CNNs. Neste caso 16 topologias diferentes

foram testadas, compostas pela variacdo dos 4 parametros listados a seguir:

« Com taxa de aprendizado de 1-1073 ou 1-107%;

28

e Com 2 camadas convolucionais ou 3 camadas;
e Com 1 camada totalmente conectada ou 2 camadas;

¢« Com tamanho de filtro de 3x3 ou 5x5.

Figura 17: Topologia completa da CNN utilizada

Cross train accuracy
\
init labels
fc2 train
save
3
dropout_1 train
i
£
init
fcl train

save

Reshape_1
shape O train

init
conv3 train

save

init
conv2 train

save

init
convl train

save

%

I e I — I
&~
Yo

%
Reshape
shape O train

dropout

Fonte: Elaborado pelo autor

A Figura 17 exemplifica a topologia mais completa com 3 camadas convolucionais
e 2 FC. Outras topologias descritas anteriormente sdo pequenas variacoes desta. Apds o
treinamento de todas as topologias com os objetos com grade de 32, o mesmo processo foi
realizado, porém para grade de 16. Totalizando 32 topologias treinadas, os desempenhos

de cada uma foram gravados e serdo apresentados no capitulo 5.

29

5 EXPERIMENTOS E RESULTADOS

Neste capitulo sao apresentados de forma grafica os resultados do pré-processamento
dos objetos 3D, com a andlise da conversao para representacdo em nuvem de pontos e as
diferencas entre as imagens com diferentes tamanhos de grade. Sera também apresentado
o desempenho de cada uma das arquiteturas das CNNs treinadas e discutidos a influéncia

de cada parametro variado.

5.1 Pré-processamento

Conforme definido no Capitulo 4, 4899 imagens foram pré-processadas para o
conjunto de objetos de treinamento e teste com grade 32 e mais 4899 imagens para os
objetos com grade de 16, totalizando 9798 imagens 3D. A Figura 18 compde o resultado
deste processo com um exemplo de cada objeto. Na coluna do formato OFF estao presentes
os objetos com a representacao original retirada do banco de dados ModelNet10. Na coluna
seguinte estdo presentes os objetos processados em nuvem de pontos com grade de 32 e na

ultima coluna os objetos na grade de 16.

Devido a baixa resolugdo da nuvem de pontos (pequeno tamanho da grade), é
possivel observar que as imagens preprocessadas nao possuem o mesmo nivel de detalhes

das imagens originais.

5.2 Treinamento e Teste da Rede Neural Convolucional

Para o treinamento de todas as topologias, foi desenvolvido um script em Python
para que uma sequéncia de treinamentos seja realizada, onde para cada treinamento
os parametros desejados eram alterados. O nimero de épocas de todos os treinamentos
foi determinado a partir de alguns treinamentos preliminares, onde 1950 épocas foi o
valor onde a funcao perda e a acurdcia possuem variacao menor que 0,1% por época.
Definido entdo o niimero de épocas e executado o treinamento, os resultados com valores
de acuracia e funcao perda de cada topologia sao salvos e plotados utilizando a ferramenta

do TensorFlow chamada de Tensorboard.

30

Figura 18: Exemplos de conversao da representacao dos objetos

Objeto Formato OFF Grade 32 Grade 16

Sofa Monitor COmoda Cabeceira Escrivaninha Banheira Cadeira Cama

Mesa

Vaso
Sanitario

Fonte: Elaborado pelo autor

31

Durante a gravacao dos resultados adotou-se uma nomenclatura para distinguir
cada topologia utilizada. Cada resultado foi salvo em um arquivo, cujo nome contém todos
os parametros da topologia. Os parametros e sua nomenclaturas sao enumeradas abaixo,

onde n ¢ o valor atribuido ao parametro:

Taxa de aprendizado: "Ir "+4n;

Numero de camadas convolucionais: "conv="+n;

Nimero de camadas totalmente conectadas: "fc="+n;

Tamanho da grade do objeto: "img="+n;

Tamanho do filtro: "ksize="+n.

Os treinamentos e testes da CNN foram separados em dois conjuntos: o treinamento
com objetos 3D com grade de 32 e o treinamento com objetos 3D com grade de 16. Nas

sub-secoes a seguir serao apresentados os resultados de cada um destes conjuntos.

5.2.1 Objetos 3D com grade de 32

Para treinamento de todas as topologias com a grade de 32 foi utilizado o cédigo
fonte presente no Apéndice B. Utilizando o hardware descrito anteriormente, o treinamento
levou 47 horas 36 minutos e 30 segundos para ser completado. Na Tabela 3 sao apresentados

os resultados de cada topologia treinada.

Tabela 3: Desempenho das topologias de CNN para objetos com grade de 32

Taxa de Nimero de Nimero de Tamanho Treinamento Teste
Aprendizagem Camandas Camadas do Filtro
Convolucionais FC Acuréacia | Custo | Acuracia | Custo
1 3x3x3 0,3800 1,7960 0,2080 2,0430
9 5x5x5 0,1420 2,3030 0,1140 2,3030
9 3x3x3 0,9980 0,0004 0,8740 0,8716
1E.3 5x5xbH 0,1100 2,3030 0,0840 2,3030
1 3x3x3 0,5300 1,084 0,3900 1,5570
3 5x5x5 03540 1,8420 0,2080 2,1780
) 3x3x3 0,9940 | 0,0008 | 0,8900 | 0,3500
5x5x5 0,1020 2,3030 0,1200 2,3030
1 3x3x3 0,7600 0,5849 0,5500 1,2370
9 5x5xbH 0,3300 1,8330 0,2943 1,9380
9 3x3x3 0,9820 0,0437 0,8557 0,6206
1Ed 5x5x5 0,1320 2,3030 0,1071 2,3030
1 3x3x3 0,5480 1,224 0,5157 1,4430
3 5x5x5 0,6360 0,9446 0,5114 1,9160
9 3x3x3 0,9880 0,0032 0,8871 0,6068
5x5x5 0,2480 2,095 0,2057 2,0260

32

Analisando os resultados, é observado que quatro topologias obtiveram acuracia
de treinamento préoximo a 1, todas elas com 2 FCL e tamanho de filtros de 3x3x3. As
topologias que utilizaram filtros 5x5x5 em geral foram os que obtiveram os piores resultados.
O desempenho da CNN ¢ analisado pelos resultados no conjunto de teste, sendo assim a
topologia "lIr1E-3,conv=3,fc=2,img=32,ksize=3" foi a que obteve melhor resultado, com
89% de acuracia e 0,35 de perda.

Sao ainda produzidos com auxilio da ferramenta Tensorboard os graficos das Figuras
19, 20, 21 e 22. Estas figuras mostram o comportamento do treinamento de acordo com o
numero de épocas. Em cada uma, é possivel visualizar a influéncia da taxa de aprendizagem

e o desempenho das topologias para cada época.

Figura 19: Acuracia do treinamento para Objetos - Grade 32

1.00

0.900

0.800

0700

0.600

0.000 2000 4000 6000 800.0 1000k 1.200k 1.400k 1.600k 1800k
Epocas

Figura 20: Acuracia do teste para Objetos - Grade 32

0.900

0.800
0.700

0.600

0.400 -
0300 | &
If

0.200

Acuracia

0.100

000

0.000 2000 4000 6000 8000 1.000k 1.200k 1400k 1.600k 1.800k
Epocas

33

Figura 21: Perda do treinamento para Objetos - Grade 32

0.000 2000 4000 600.0 8000 1000k 1200k L400k 1600k L1800k
Epocas

Figura 22: Perda do teste para Objetos - Grade 32

Perda

0000 2000 000 6000 8000 L000K 1200k 1400k LE00K LB00K
Epocas

5.2.2 Objetos 3D com grade de 16

Da mesma forma que o treinamento dos objetos com grade de 32, foi utilizado o
codigo fonte presente no Apéndice B, para o treinamento dos objetos 3D com grade de 16.
O treinamento de todas as topologias com o grade de 16 levou 5 horas 10 minutos e 15
segundos para ser completada. A Tabela 4 apresenta o resultado do treinamento destas

topologias.

A topologia com melhor desempenho das CNNs descritas na Tabela 4 é a "Ir 1E-
4,conv=2,fc=2,img=16 ksize=3". Com 88,86% de acurdacia e 0,3526 de perda, obteve um
resultado apenas 0,1% abaixo da melhor CNN para objetos com grade de 32, "Ir_ 1E-
3,conv=3,fc=2img=32 ksize=3".

34

Tabela 4: Desempenho das topologias de CNN para objetos com grade de 16

Taxa de Nimero de Niimero de Tamanho Treinamento Teste
Aprendizagem Camadas Camadas do Filtro
Convolucionais FC Acuréacia | Custo | Acuréacia | Custo
1 3x3x3 0,3044 1,6080 0,2083 1,8980
9 5x5x5 0,4206 1,6470 0,3156 1,8590
9 3x3x3 0,9333 0,1451 0,8029 0,6473
1E-3 5x5x5 0,1311 2,3030 0,1257 2,3030
1 3x3x3 0,4400 1,3370 0,3000 1,8870
3 5x5x5 0,1400 2,3030 0,0828 2,3030
9 3x3x3 0,1244 2,3030 0,1086 2,3030
5x5x5 0,1667 2,3030 0,1143 2,3030
1 3x3x3 0,6556 0,9061 0,6514 0,8833
9 5x5x5 0,1444 2,3030 0,1143 2,3030
9 3x3x3 0,9667 0,0840 0,8886 0,3526
1EA 5x5xH 0,1200 2,3030 0,1114 2,3030
1 3x3x3 0,8356 0,6015 0,6486 1,1060
3 5xHxH 0,8178 0,5699 0,6229 1,2340
9 3x3x3 0,9422 0,1455 0,8143 0,4970
5x5xb5 0,2133 2,072 0,1743 2,0590

Os graficos das Figuras 23, 24, 25 e 26, mostram os resultados para cada época da
acuracia de treinamento, acuracia de teste, erro do treinamento e erro de teste, respecti-
vamente. Nestas figuras é possivel verificar de modo qualitativo a influéncia da taxa de

aprendizagem e o desempenho das topologias para cada época de treinamento e teste.

1.00
0.900
0.800
0.700
0.800
0.500

0.400

Acuricia

0.300

Figura 23: Acuracia do treinamento para Objetos - Grade 16

0.200 25

0.100-§

0.00
0.000

500.0

1.500k

2.00C

Ir_1E-04,c:

35

Acurdcia

Perda

Perda

1.00

0.900

0.800

0.700

0.600

0.500

0.400

0.300

0.200

0.100

0.00

0.000

10.0
8.00

6.00

0.000

10.0
8.00

6.00

4.00

0.000

Figura 24: Acuracia do teste para Objetos - Grade 16

Name
Ir_1E-0:

Ir_1E-0¢
Ir_1E-O¢
Ir_1E-O¢
Ir_1E-O2
Ir_1E-O2
Ir_1E-OF

Ir_1E-03,
Ir_1E-04,
Ir_1E-0
Ir_1E-0
Ir_1E-04,

Ir_1E-04,

Ir_1E-0
Ir_1E-0
Ir_1E-0

500.0 1.000k 1.500K 2.000K
Epocas

Figura 25: Perda do treinamento para Objetos - Grade 16

00008000 ©

500.0 1.000k 1.500k
Epocas

Figura 26: Perda do teste para Objetos - Grade 16

Name
Ir_1E-0
Ir_1E-0
Ir_1E-0
Ir_1E-0
Ir_1E-0
Ir_1E-0
Ir_1E-0
Ir_1E-0
Ir_1E-0
Ir_1E-04,
Ir_1E-04,

Ir_1E-04,
Ir_1E-04,
Ir_1E-04,
Ir_1E-04,

Ir_1E-04,

Epocas

36

5.3 Andlise da Variacao dos Parametros

Nesta seccao é analisada a influéncia da variacao dos parametros no resultado final
das CNNs. Pelas tabelas e graficos mostrados na secgdo anterior, estes parametros sao
fundamentais para um bom desempenho no treinamento de uma CNN e nao ha uma

formula para determinar a melhor topologia para cada problema.

5.3.1 Tamanho da Grade

Os tamanhos da grade testada sdao estabelecidos como dois problemas diferentes,
com a finalidade de mostrar a robustez das redes neurais convolucionais. Apesar da origem
dos objetos 3D antes do pré-processamento ser a mesma, os diferentes resultados obtidos
durante o processo de treinamento, mostram que os dados de entrada influenciam na

topologia a ser escolhida.

5.3.2 Numero de Camadas Convolucionais

O desempenho geral com a variagao do nimero de CLs pode ser determinado com
a média dos resultados com o mesmo nimero de camadas. A Tabela 5 faz a sintese dos
calculos das médias, e nela é possivel observar que no conjunto de dados com grade 32, o
aumento do niimero de camadas contribui positivamente para a acuracia e diminuicao da
perda das CNNs. Para os objetos com grade 16, por outro lado, influencia negativamente

nos resultados.

Analisando estes resultados, no conjunto de objetos com grade 32, a melhoria do
desempenho das topologias com o aumento do niimero de CL ja era esperado, pois o

aumento de uma terceira camada possibilita a extracao de outras caracteristicas.

Tabela 5: Valores Médios da Acuracia e Perda das Topologias para mesmo Numero de
Camadas Convolucionais

Grade 32 Grade 16
Conv =2 | Conv =3 | Conv = 2 | Conv = 3
Acuricia Treinamento 0,4792 0,5500 0,4595 0,4600
Teste 0,3859 0,4659 0,4023 0,3582
Custo Treinamento 1,3958 1,1871 1,4124 1,5686
Teste 1,7024 1,5475 1.4544 1,7115

O mesmo efeito nao é observado nos objetos com grade 16. Isto porque apés 2
camadas convolucionais e 2 mazx pooling o tamanho dos mapas de caracteristicas passam
a ser 4x4x4. Com a adigdo de uma terceira camada convolucional e o preenchimento da
imagem com zeros, utilizando same padding, leva a extracao de caracteristicas onde 33%
(nos filtros de 3x3x3) dos valores nao pertencem a imagem, e sim as bordas com zeros do
preenchimento. Como resultado, sao gerados na saida mapas de caracteristicas 2x2x2 que

nao conseguem estabelecer um padrao para uma boa classificagao.

37

5.3.3 Numero de Camadas Totalmente Conectadas

A mesma andlise foi realizada para a variagao do nimero de camadas totalmente
conectadas. A Tabela 6 demonstra que independente dos objetos de entrada os desempenhos
durante a fase de teste foram melhores com duas camadas. Resultado ja esperado, pois
segundo (LECUN et al., 1998), apesar de teoricamente uma tunica FCL ser suficiente para
classificar os objetos, foi observado que em situacoes praticas o uso de duas FCL pode

produzir melhores desempenhos.

Tabela 6: Valores Médios da Acuracia e Perda das Topologias para mesmo Numero de
Camadas Totalmente Conectadas

Grade 32 Grade 16

FC=1|FC=2|FC=1|FC =2

Acurécia Treinamento | 00,4600 0,5692 0,4698 0,4497
Teste 0,3489 0,5029 0,3680 0,3925

Custo Treinamento | 1,4514 0,5029 1,4094 1,4573
Teste 1,8269 1,4230 1,6842 1,5960

5.3.4 Variacao do Tamanho do Filtro

A Tabela 7 produzida com a média dos resultados de cada topologia, mostra o
efeito da aplicacao de diferentes filtros na camada convolucional. Por causa dos tamanhos
das grades utilizadas, ja era esperado que o filtro 5x5x5 estd sobredimensionado para os
problemas. Este sobredimensionamento foi previsto da andlise da segunda CL, onde as
imagens de entrada sdo 16x16x16 (grade 32) e 8x8x8 (grade 16), e a utilizacao de filtros
5x5xH pode ser considerado muito grande para a extracao de alguma caracteristica nestas

imagens.

Tabela 7: Valores Médios da Acuracia e Perda das Topologias para mesmo Tamanho do

Filtro
Grade 32 Grade 16
Filtro 3x3x3 | Filtro 5x5x5 | Filtro 3x3x3 | Filtro 5x5x5
Acurécia Treinamento 0,7725 0,2568 0,6503 0,2692
Teste 0,6463 0,2056 0,5528 0,2077
Custo Treinamento 0,5921 1,9908 0,8913 1,9755
Teste 1,0911 2,1588 1,1968 2,0834

5.3.5 Variagdo da Taxa de Aprendizagem

Na Tabela 8 é observado que a variagao da taxa de aprendizagem contribui para
a melhora geral dos resultados. Mas vale enfatizar que esta melhora corresponde ao
desempenho médio de todas as topologias, e como foi determinado nos treinamentos ha

topologias com taxa de aprendizagem de 1073 melhores que taxas de 1074

38

Tabela 8: Valores Médios da Acuracia e Perda das Topologias para mesma Taxa de

Aprendizagem
Grade 32 Grade 16
LR =1E-3 | LR = 1E-4 | LR = 1E-3 | LR = 1E-4
Acuracia Treinamento 0,4513 0,5780 0,3326 0,5870
Teste 0,3610 0,4909 0,2573 0,5032
Custo Treinamento 1,4540 1,1289 1,7436 1,1231
Teste 1,7386 1,5113 1,9379 1,3422

5.4 Desempenho de outros trabalhos

Existem diversos trabalhos de classificacao de objetos, que utilizaram o projeto

Princeton ModelNet10 como base de dados. No site do projeto, estao listados alguns destes

trabalhos e os respectivos resultados obtidos, a maioria deles utilizam CNNs como métodos

de classificacdo, mas utilizam diferentes modos de representagao tridimensional. Na Tabela

9 sao mostrados os resultados obtidos por estes trabalhos em comparagao com o resultado

obtido neste experimento.

Tabela 9: Resultados obtidos por outros trabalhos

Algoritmo Abordagem Representacao 3D | Ano | Acuracia
VRN Ensemble CNN Voxel 2016 | 97,14 %
Klokov and Lempitsky Kd network Nuvem de pontos 2017 | 94,00 %
ORION CNN Voxel 2017 | 93,80 %
LightNet CNN Voxel 2016 | 93,39 %
FusionNet CNN Voxel /Pixel 2016 | 93,11 %
Pairwise CNN Image Pair 2016 | 92,80 %
VoxNet CNN Nuvem de pontos | 2015 | 92,00 %
Zanuttigh and Minto CNN Depth Maps 2017 | 91,50 %
PANORAMA-NN CNN Panorama 2017 | 91,10 %
3D-GAN CNN e Redes Adversariais Voxel 2017 | 91,00 %

ECC CNN Nuvem de pontos | 2017 | 90,00 %
Presente Trabalho CNN Voxel 2017 | 89,00 %
Geometry Image CNN Mesh 2016 | 88,40 %
Xu and Todorovic CNN Voxel 2016 | 88,00 %
DeepPano CNN Panoramic view 2015 | 85,45 %
3DShapeNets CNN Voxel 2015 | 83,50 %
PointNet CNN Nuvem de pontos 2017 | 77,60 %

39

6 CONCLUSAO

Reconhecimento de objetos tridimensionais é um problema emergente em visao
computacional, que s6 esta se tornando possivel com a facilidade na geracao de grandes
bancos de dados e capacidade de processamento computacional cada vez maiores. Para
um bom reconhecimento de objetos sao necessarios dois processos principais: geracao de
uma boa representacao digital do objeto e métodos com capacidade de generalizagao para
a classificagdo deste objeto. Este trabalho demonstrou a importancia destes dois processos
com a representacao em nuvem de pontos e o método de aprendizagem de maquina, Rede

Neural Convolucional.

De forma geral a utilizacao de CNN para classificacao de objetos 3D obteve
resultados muito acima do esperado. Apesar do baixo volume de exemplos do banco de
dados, e a escolha de grades de 32 e 16, devido a limitag¢ao de hardware disponivel pelo
autor. O método se mostrou bastante robusto, com grande capacidade de generalizacao e

conseguiu classificar os objetos com bom nivel de acuracia.

Um resultado interessante neste trabalho, estd no fato das CNNs conseguirem
uma acuracia de 88% com o conjunto de objetos na grade de 16. Durante a fase de
conversao para a representacdo em nuvem de pontos, foi observado que muito objetos
ficam visualmente indistinguiveis. Demonstrando desta forma que CNNs sao ferramentas

eficientes de extragao de caracteristicas.

6.1 Trabalhos Futuros

Este projeto tinha como objetivo a validacao da ferramenta de aprendizagem de
maquina e abordar as técnica mais utilizadas para o treinamento da CNN. Além de muitas
técnicas nao abordadas, o treinamento com objetos 3D com tamanho de grade maior,
pode proporcionar maior desempenho na classificacao dos objetos. Para possiveis trabalhos

futuros sao sugeridos os seguintes topicos:
e Treinamento com grade da nuvem de pontos maior;

o Aumento artificial da base de dados, utilizando técnicas como: oclusao, cortes
parciais da imagem, rotacao e translagao;
» Utilizagado de outras técnicas para reducao do sobre-ajuste: declinio da taxa de

aprendizagem, normalizagao L2;

» Validacao das topologias de CNN no banco de dados ModelNet40, no qual possui
40 classes de objetos 3D.

41

REFERENCIAS

ABADI, M. et al. Tensorflow: Large-scale machine learning on heterogeneous distributed
systems. arXiv preprint arXiv:1603.04467, 2016.

ALMEIDA, T. Uma metodologia de reconhecimento de caracteres manuscritos utilizando
redes neurais embarcadas. Monografia - Faculdade 7 de Setembro, Fortaleza, Brazil. 2014.

ARAUJO, F. H.; CARNEIRO, A. C.; SILVA, R. R. Redes neurais convolucionais com
tensorflow: Teoria e pratica. 2017. IIT Escola Regional de Informatica do Piaui. Livro
Anais - Artigos e Minicursos, v. 1, n. 1, p. 382-406.

BATISTA, J. N. F. Sistema de reconhecimento de objetos para demonstrador de
condugao robdtica autéonoma. 2012. Tese de mestrado integrado. Engenharia Informatica e
Computacao. Faculdade de Engenharia. Universidade do Porto.

BENVEGNU, L. 3d object recognition without cad models for industrial robot
manipulation. 2017. Tese de mestrado. Corso Di Laurea Magistrale In Ingegneria
Informatica. Univerisita Degli Studi Di Padova.

DESHPANDE, A. A Beginner’s Guide To Understanding Convolutional
Neural Networks. 2016. Disponivel em: <https://adeshpande3.github.io/A-Beginner\
%27s-Guide- To- Understanding-Convolutional-Neural-Networks-Part-2/>.

DUNDAS, J.; CHIK, D. Implementing human-like intuition mechanism in artificial
intelligence. arXiv preprint arXiv:1106.5917, 2011.

FERREIRA, A. E. T. Estimagao do angulo de dire¢ao por video para veiculos auténomos
utilizando redes neurais convolucionais multicanais. 2017. Trabalho de Conclusao de Curso
(Graduagao) — Universidade de Brasilia, Instituto de Ciéncias Exatas, Departamento de
Ciéncia da Computacao.

GARCIA-GARCIA, A. et al. Pointnet: A 3d convolutional neural network for real-time
object class recognition. In: IEEE. Neural Networks (IJCNN), 2016 International
Joint Conference on. [S.1.], 2016. p. 1578-1584.

GOODFELLOW, I.; BENGIO, Y.; COURVILLE, A. Deep Learning. [S.1.]: MIT Press,
2016. <http://www.deeplearningbook.org>.

HAFEMANN, L. G. An analysis of deep neural networks for texture classification. 2014.
Master’s degree Dissertation. M.Sc. Program in Informatics, Universidade Federal do
Parana.

KARPATHY, A. Convolutional neural networks for visual recognition. 2017.
Disponivel em: <http://cs231n.github.io/convolutional-networks/>.

KRAUSE, J. et al. 3d object representations for fine-grained categorization. In:
Proceedings of the IEEE International Conference on Computer Vision
Workshops. [S.1.: s.n.], 2013. p. 554-561.

LECUN, Y.; BENGIO, Y.; HINTON, G. Deep learning. Nature, Nature Research, v. 521,
n. 7553, p. 436444, 2015.

42

LECUN, Y. et al. Gradient-based learning applied to document recognition. Proceedings
of the IEEE, IEEE, v. 86, n. 11, p. 2278-2324, 1998.

LI, F.-F. CS231n Lecture 1 - Introduction and Historical Context. 2016.
Disponivel em: <https://youtu.be/yp9rwl LZX8>.

LORENA, A. C.; CARVALHO, A. C. de. Uma introdugao as support vector machines.
Revista de Informatica Tedrica e Aplicada, v. 14, n. 2, p. 43-67, 2007.

LOWE, D. G. Object recognition from local scale-invariant features. In: IEEE. Computer
vision, 1999. The proceedings of the seventh IEEE international conference
on. [S.1], 1999. v. 2, p. 1150-1157.

MCCULLOCH, W. S.; PITTS, W. A logical calculus of the ideas immanent in nervous
activity. The bulletin of mathematical biophysics, v. 5, Dec 1943. ISSN 1522-9602.
Disponivel em: <https://doi.org/10.1007/BF02478259>.

OSADA, R. et al. Shape distributions. ACM Transactions on Graphics (TOG),
ACM, v. 21, n. 4, p. 807-832, 2002.

PRINCETON, V. Princeton modelnet project. In: . [s.n.], 2017. Disponivel em:
<http://modelnet.cs.princeton.edu/>. Acesso em: 04 nov. 2017.

RAVANBAKHSH, S.; SCHNEIDER, J.; POCZOS, B. Deep learning with sets and point
clouds. arXiv preprint arXiv:1611.04500, 2016.

RUSSELL, S.; NORVIG, P. Artificial intelligence: A modern approach. Artificial
Intelligence. Prentice-Hall, Egnlewood Cliffs, 1995.

SILVA, S. R. e.; SCHIMIDT, F. Reducao de Variaveis de Entrada de Redes Neurais
Artificiais a partir de Dados de Analise de Componentes Principais na Modelagem de
Oxigénio Dissolvido. Quimica Nova, v. 39, 04 2016. Disponivel em: <http://www.scielo.
br /scielo.php?script=sci_ arttext&pid=S0100-40422016000300273&nrm=iso>.

SIMONOVSKY, M.; KOMODAKIS, N. Dynamic edge-conditioned filters in convolutional
neural networks on graphs. arXiv preprint arXiv:1704.02901, 2017.

WU, Z. et al. 3d shapenets: A deep representation for volumetric shapes. In: Proceedings
of 28th IEEE Conference on Computer Vision and Pattern Recognition. [S.1.:
s.n.], 2015.

ZACCONE, G. Getting Started with TensorFlow. [S.1.|: Packt Publishing Ltd, 2016.

Apéndices

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

32

APENDICE A - CODIGO FONTE PARA O PRE-PROCESSAMENTO DOS

DADOS

)0

Preprocessamento Mesh to Voxel v9
Autor : Caio Kioshi Miyazaki

)0

import numpy as np

import matplotlib.pyplot as plt

from mpl toolkits import mplot3d

from stl import mesh

from mpl toolkits. mplot3d import Axes3D

from mpl toolkits.mplot3d.art3d import Poly3DCollection
import time

import os

Convert formato off para arquivo de nuvem de pontos de
treinamento e teste

def off2pc(grid size ,n_classes ,step):

obj = [’bed’, ’chair’, ’bathtub’, ’'night stand’, ’'dresser’
desk’, 'monitor’, ’sofa’, ’table’, ’toilet’]
ext = ['train’, test’]

for obj ¢ in obj:

for ext ¢ in ext:
path = obj c+’/ '+ext_c+'/’
filenames = next(os.walk(path))[2]

train_data = np.zeros(shape=(len(filenames) , grid sizexx3),

dtype=bool)

example n=0

for obj n in filenames:
if not obj_n.startswith("."):
Import object points
print ("Lendo ... "+ext_c+'"/"+obj n)

45

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

46

dirFil

e = path4obj n

file = open(dirFile)
file . readline ()

n_vertices, n_faces, n_edges, = [int(s) for s in file.
readline ().strip ().split(’7)]

verts

[]

for x_vertices in range(n_ vertices):

verts.append ([float (s) for s in file.readline().strip ()
.split (707)])

faces

[]

for i_face in range(n_faces):

faces.append ([int(s) for s in file.readline().strip ().
split (707)][1:])

file.close ()

Controi pontos

v = np.

f = np.

minX =
maxX =
minY =
maxY =
minZ =

max/Z =

array (verts)

array (faces)

maxCoord = max((maxX—minX) , (maxY—minY) ,(maxZ—minZ))

Desloca para zero, centraliza e normaliza objeto pelo

tamanho do grid e centraliza

v[:,0]

(v[:,0]*(grid_size —1)/(maxCoord)+(grid__size —1—-maxX

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

47

—minX) /2)

vi:,1] = (v[:,1]*(grid size —1)/(maxCoord)+(grid size —1-maxY
—minY') /2)

v]:,2] = (v[:,2]%(grid_size —1)/(maxCoord)+(grid_size —1—maxZ
—minZ) /2)

obj3D = mesh.Mesh(np.zeros (f.shape[0], dtype=mesh.Mesh.
dtype))
for i, fc in enumerate(f):
for j in range(3):
obj3D.vectors[i][j] = v[fc[]j], :]

Inicializa 3D grid
grid = np.zeros (shape=(grid_size, grid_ size, grid_size),

dtype=bool)

Popula os triangulos — Superficie
for trian in obj3D:

A = trian [0:3]

B = trian [3:6

C = trian[6:9

]
]
A
xB, yB, zB =B
C

xA, yA, zA =
xC, yC, zC =

distAC = int(np.linalg .norm(C — A))
distAB = int (np.linalg .norm(B — A))

for u in np.arange (0, distAC, step):
for v in np.arange (0, distAB, step):
if (u / distAC) + (v / distAB) < 1:

P =A+ ux(GC-A)+vx(B-A)

x = int(xA + u / distAC * (xC — xA) + v /
distAB % (xB — xA))

y = int (yA + u / distAC x (yC — yA) + v /
distAB x (yB — yA))

z = int (zA + u / distAC x (zC — zA) + v /
distAB % (zB — zA))

grid [x][y][z] =1

99

100

101

102

103

104

105

106

107

108

109

110

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

48

else:
break

train_data [example n] = grid. flatten ()

example n+=1

train__data.append = grid. flatten ()

Salva dados

file

"data '+str (grid__size)+’/ '+obj_c+’_ '4ext_c+’_data’

print ("Saving, image ... "+file)

print (train_data.shape)

np.save(file ,train_data)

def img gen(img_ size ,n_classes):

marker size = 30

marker = 7.7

marker color = ’white’

obj = [’bed’, chair’, 'night_stand’, dresser’, monitor’, sofa’,

table’ ’toilet ']

["train’, test ']

ext =

Import object points
dir = ’/data32/’

for obj i in obj:

for ext i in ext:
file = dir+obj_ i+’ ’'4ext_ i+’ data.npy’
data = np.load (file)

for i in range(data.shape[0]):
print ('Reading %s %s, %d’ %(obj_i,ext_i,i))

print ('Data shape: ' ,data.shape)

print (’Data, size’, data.shape[0])

data_i = np.reshape(data[i],(img_size,img size,img_size))
x,y,z = data_i.nonzero ()

fig = plt.figure()

ax

fig .add_subplot(111, projection="3d")

)

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

49

ax.scatter (x, y, z, zdir="z’, marker="." ¢= marker_color 6 s=

marker_ size)
ax.set_xlim ([—1,img_size+1])
ax.set_ylim ([—1,img_size+1])

ax.set zlim([—1,img size+1])

save img dir = save_dirtobj i+’/’4ext i+’/’

if not os.path.exists(save_img dir):

os . makedirs (save img_dir)

img_file = save_img dir+obj it+str(i)+ .png’

plt.savefig(img_file)
plt.close ()

def mergeData(img_size ,num_ classes)
data_size = {’train :3991, test ":908} # [train, test]

monitor ', ’sofa’, ’table’, "toilet |

ext = ['train’, test’]

for ext _c¢ in ext:
label _pos = 0
all data=np.zeros ((data_size[ext c]|,img sizexx3+num_ classes))
tmp=0

for obj ¢ in obj:

Load files

file = ’'data’+str(img_size)+’/ ’+obj_c+’ ’4ext_c+’ data.npy’

data = np.load (file)
print ("Lendo ... '+file)

num_ examples = data.shape [0]

print ('numero, de exemplos: ' ,num_examples)

Label

label = np.zeros ((num_examples, num_ classes))

label [:,label _pos] =1

Adiciona label

print ("data shape,’, data.shape)
print ('label shape,’, label.shape)

data_wLabel = np.concatenate ((data,label) axis=1)

obj = [’bed’, ’chair’, ’bathtub’, 'night_ stand’, ’dresser’, ’desk’,’

50

174 print ("data,com label: ', data_wLabel.shape)
175 print (tmp)

176 all data [tmp:tmp+num_examples ,:| = data_wLabel
177 print (’label: 7, ,label [0])

178 print ('label pos’, label pos)

179 label pos+=1

180 tmp=tmp+num__examples

181 print ("tmp’ ;tmp)

182 print (’

)
183
184 print (type(all data))
185 # Shuffle linhas
186 np.random.shuffle (all_data)
187
188 # all_data=np.array(all_data)
189 print(all_data.shape)
190 # Salva valores
191 file = ’data’+str(img_size)+’/ +ext_c+’' data’
192 print("Saving image..."+file)
193 np.save(file ,all data)
194
195
196 def main():
197 off2pc(32,010,.5)
198 img gen(32,10,save_dir)
199 mergeData(32,save_ dir)
200
200 if name =— ' main ’:

202 main ()

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

APENDICE B - CODIGO FONTE PARA O TREINAMENTO DAS CNNS

20

Treinamento CNN v/
Autor: Caio Kioshi Miyazaki

200

import tensorflow as tf
import numpy as np

import os, time
os.environ ["CUDA_VISIBLE DEVICES’]|=str (1)

Parametros do modelo

n_classes = 10 # Numero de classes de objetos
batch size = 100

n_conv_strides =1

n_pool strides = 2

n_pool ksize = 2

n_epochs = 50 # Numero de epocas

drop=0.5

Mazx pooling
def max_pool3d(channels_in):
return tf.nn.max_pool3dd(channels in, ksize=[1, n_pool_ ksize,
n_pool_ ksize, n_pool_ ksize, 1],
strides=[1, n_pool strides,
n_pool strides, n_pool strides, 1],
padding="SAME")

Camada Convolucional
def conv3d_layer(input, n_conv_ksize, channels in, channels out
name="conv"):

with tf.name_ scope(name) :

51

Y

w = tf.Variable (tf.truncated normal ([n_conv_ksize,n_conv_ ksize

,n__conv_ksize ,channels_in ,channels_out],
stddev=0.1) ,tf.float32 ,name="W")
b = tf.Variable(tf.constant (0.1,shape=[channels_out]) ,tf.
float32 ,name="B")

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

52

conv = tf.nn.conv3dd(input,w, strides=[1,n_conv_strides,
n_conv_strides,n_conv_strides ,1],
padding="SAME")
act = tf.nn.relu(conv+tf.cast(b,tf.float32))
tf.summary . histogram ("weights" ,w)
tf.summary . histogram (" biases" ,b)
tf.summary. histogram ("activations" act)

return max_pool3d(act)

Camada Totalmente Conectada
def fc_layer (input, channels in, channels out, name="fc"):
with tf.name scope(name):
w = tf.Variable(tf.truncated normal ([channels in, channels out
|,stddev=0.1),tf.float32 ,name="W")
b = tf.Variable(tf.constant (0.1,shape=[channels out]) ,tf.
float32 ,name="B")
act = tf.nn.relu(tf.matmul(input,w)+tf.cast (b, tf.float32))
tf.summary . histogram ("weights"' ,w)
tf.summary . histogram (" biases" ,b)

tf.summary. histogram ("activations" act)

return act

def CNN3D_model(learning rate ,n_conv,n_fc,img size,n_ conv_ksize,

hparam) :

Diretorios dos arquivos

LOGDIR = ’log/’ #dir para logs

dir = ’data’'+str (img_size)+'/’ #dir dos dados
train_file = ’train_data.npy’

test file = ’'test data.npy’

train__data = np.load(train_ file)

test_data = np.load(test file)
num_ of examples = train_data.shape[0]
n_batches = int (num_of examples/batch_size)

n_test = test_data.shape[0]

tf.reset default graph ()

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

53

Placeholders and reshape data

x = tf.placeholder (tf.float32, [None, img size*x3],name="x")

y = tf.placeholder (tf.float32, [None, n_classes],name="labels")

x_image = tf.reshape(x, [—1,img size,img_ size,img size,

with tf.name scope(’dropout’):
keep_prob = tf.placeholder(tf.float32)

1])

tf.summary. scalar ("dropout__keep_probability ’ keep_ prob)

Numero de camadas convolucionais

if n conv — 1:
convl = conv3d_layer(x_image,n_conv_ksize,1,64,"convl")
conv_out = max_pool3d(convl)
elif n conv — 2:
convl = conv3d_layer(x_image,n_ conv_ksize,1,32,"convl")
conv_out = conv3d_layer(convl,n_conv_ksize,32,64,"conv2")
elif n conv — 3:
convl = conv3d_ layer(x_ image,n conv_ksize,1,16,"convl")
conv2 = conv3d_layer(convl ,n_conv_ksize,16,32,"conv2")
conv_out = conv3d_layer(conv2,n_conv_ksize,32,64,"conv3")
size_out_layer = int ((np.ceil (img_size/n_pool_ strides*xn_conv))
*xk3%64)
flattened = tf.reshape(conv_out, [—1,size_out_layer])

Numero de camadas totalmente conectadas
if n fc = 1:
logits = fc_layer(flattened ,size_out_layer ,n_classes '
elif n fc = 2:
fcl = fc_layer(flattened ,size out_ layer 1024 ,"fcl")
tf.summary. histogram (" fcl/relu", fcl)
fcl _drop = tf.nn.dropout(fcl drop)
logits = fc_layer(fcl _drop,1024,n_classes,"fc2")

with tf.name_scope("cross"):
cross_entropy = tf.reduceimean(
tf.nn.softmax_cross_entropy_with logits(labels=y,
logits), name="cross")

tf.summary.scalar ("cross' cross_entropy)

fC“)

logits=

54

103 with tf.name_scope("train"):

104 train_step = tf.train.GradientDescentOptimizer(learning_ rate).
minimize (cross__entropy)

105

106 with tf.name_ scope("accuracy"):

107 correct__prediction = tf.equal(tf.argmax(logits, 1), tf.argmax(
y, 1))

108 accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.
float32))

109 tf.summary.scalar ("accuracy' 6 accuracy)

110

111 summ = tf.summary.merge all()

112 train_writer = tf.summary. FileWriter (LOGDIR + hparam+’/train)
13 test__writer = tf.summary. FileWriter (LOGDIR + hparam+’/test)
114

115 saver = tf.train.Saver ()

116 with tf.Session() as sess:

17 sess.run(tf.global_ variables initializer())

118

119 for epoch in range(n_epochs):

120 np.random. shuffle (train_data)

121 for j in range(n_batches):

122 batch xs = train_data[j*batch_ size:(j+1)xbatch_size,:—

n_classes| # data

123 batch_ys = train_data[jxbatch_size:(j+1)xbatch_size,—
n_classes:| # label

124 [summary, acc] =sess.run ([summ, train_step],feed dict={x:

batch_xs, y: batch_ys, keep_ prob: drop})

125 e = epochxn_ batches+]j

126 train_writer.add summary (summary , e)

127

128 if e %5 = 0: # print accuracy

129 # train__accuracy = accuracy.eval(feed_ dict={x: batch_zs, y
batch__ys, keep_prob: 1.0})

130 [train__accuracy , acc| = sess.run ([summ,accuracy],feed dict
={x: batch_xs, y: batch_ys, keep_prob: 1.0})

131 print ("Epoch, %s , training accuracy %s’ % (e, acc))

132

133 if e % 10 = 0: # test model

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

55

np.random. shuffle (test_data)

for test slice in range(int(n_test/batch size/4)):

batch test xs = test data[test_slicexbatch_size:(
test_slice41)xbatch_size,:—n_ classes]| # data

batch_ test ys = test_ data[test_slicexbatch_size:(
test__slice+1)xbatch_size,—n_classes:|] # label

[summary, acc] = sess.run ([summ,accuracy]|,feed dict={x:
batch_test_xs, y: batch_ test_ys, keep_prob: 1.0})

test writer.add summary(summary,e)

print (’Epoch, %s , testing accuracy %s’ % (e, acc))

model name = LOGDIR + hparam+’/’
saver.save(sess ,o0s.path.join (model name,"model.ckpt") epochx
int (n_batches))

def make hparam string(learning rate, n_conv, n_fc,img size,

n_conv_ ksize):

conv_param = "conv="+str (n_conv)
fc_param = "fc="+str(n_fc)

size__param = "img="+4str (img_size)
ksize_param = "ksize="+str(n_conv_ ksize)

return "Ir_ %.0E,%s,%s,%s,%s" % (learning rate, conv_param,

fc_param, size param , ksize param)

def main():

for img size in [16,32]:
for learning rate in [1E-3, 1E—4]:
for n_conv in [2,3]:
for n_fc in [1,2]:
for n conv_ksize in [3,5]:
start__time = time.time ()
print (’Start, Time: %s’ % start_time)
Nome do arquivo baseando na nomenclatura (exemplo: '
Ir 1E—3,fc=2,conv=2")
hparam = make_ hparam_string(learning_ rate, n_conv, n_fc,
img_size ,n_conv_ ksize)

print (’'Starting run, for %s’ % hparam)

56

165

166 # Roda a topologia de CNN

167 CNN3D_model(learning rate ,n_conv,n_fc,img size,
n_conv_ ksize ,hparam)

168 elapsed_time = time.time() — start_time

169 print ('Elapsed, Time: %s’ % elapsed_time)

170

171 print(’'Done training!’)

172 print ('Run,, ‘tensorboard, —logdir="s ‘ to,see the results.’” %
LOGDIR)

173

174 if name =— ' main ’:

175 main ()

