
UNIVERSIDADE DE SÃO PAULO
Escola de Engenharia de São Carlos
Departamento de Engenharia Elétrica e de Computação

Aplicação Móvel iOS com Realidade Aumentada
Aplicada a uma Plataforma de Ensino de

Programação para Crianças

Ivo Gimenes Dutra

São Carlos - SP

Ivo Gimenes Dutra

Aplicação Móvel iOS com
Realidade Aumentada Aplicada a

uma Plataforma de Ensino de
Programação para Crianças

Trabalho de Conclusão de Curso apresentado

à Escola de Engenharia de São Carlos, da

Universidade de São Paulo

Curso de Engenharia Elétrica

com ênfase em Eletrônica

ORIENTADORA: Prof. Dra. Kalinka Regina L. J. C. Branco

USP – São Carlos

2019

AUTORIZO A REPRODUÇÃO TOTAL OU PARCIAL DESTE TRABALHO,
POR QUALQUER MEIO CONVENCIONAL OU ELETRÔNICO, PARA FINS
DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE.

Ficha catalográfica elaborada pela Biblioteca Prof. Dr. Sérgio Rodrigues Fontes da
EESC/USP com os dados inseridos pelo(a) autor(a).

Dutra, Ivo Gimenes

 D975a Aplicação Móvel iOS com Realidade Aumentada
Aplicada a uma Plataforma de Ensino de Programação para
Crianças / Ivo Gimenes Dutra; orientadora Kalinka
Regina L. J. C. Branco. São Carlos, 2019.

Monografia (Graduação em Engenharia Elétrica com

ênfase em Eletrônica) -- Escola de Engenharia de São
Carlos da Universidade de São Paulo, 2019.

1. Realidade Aumentada. 2. Aplicação Móvel iOS.

3. Ensino de Programação para Crianças. I. Título.

Eduardo Graziosi Silva - CRB - 8/8907

Powered by TCPDF (www.tcpdf.org)

 1 / 1

Aos meus pais, famı́lia, e a todos que compartilharam comigo esta jornada. . .

“Stay Hungry,

Stay Foolish”

— Steve Jobs

Agradecimentos

Aos meus pais, minha famı́lia e minha namorada por todo o amor e

por me guiarem na vida.

Agradecimentos especiais à Profa. Dra. Kalinka R. C. Branco e ao

Kaique Lupo Leite pela confiança e pelo apoio no projeto.

A todos os meus amigos da Apple Developer Academy pela paciência,

aprendizado e amizades.

A esta universidade por ter tornado posśıvel inúmeras experiências

vividas, profissionais e pessoais, no Brasil e no exterior.

E, é claro, a todos os amigos que São Carlos me proporcionou que

fizeram parte desta jornada.

Ivo Gimenes Dutra.

Resumo

Realidade aumentada, que trata da sobreposição de objetos virtuais ao mundo

real, é um conceito que remonta à década de 1960. Muito se avançou nesta tecnologia

desde então e, ao que tudo indica, devido a popularização de dispositivos móveis,

ela se tornará mais presente no cotidiano nos próximos anos. Inserido neste con-

texto, este trabalho tem o intuito de mostrar as etapas do desenvolvimento de uma

aplicação em realidade aumentada para iOS aplicada a uma plataforma de ensino de

programação para crianças, o FEPSE. O projeto detalha o funcionamento da plata-

forma, bem como aspectos da arquitetura de um projeto iOS, como o modelo MVC

(Model-View-Controller). O framework adotado, ARKit, também foi discutido em

detalhe. Por fim, os resultados obtidos podem ser vistos como uma prova de conceito

para uma posśıvel integração da plataforma com a aplicação.

Palavras-Chave: Realidade Aumentada, Aplicação Móvel iOS, Ensino de

Programação para Crianças.

Abstract

Augmented reality, which deals with the composition of virtual objects in the

real world, is a concept that goes back to the 1960s. Since then a lot of progress

has been made in this technology and due to the popularization of mobile devices,

it will probably become more and more present in the next years. Whithin this

context, this paper shows the development steps of an augmented reality application

for iOS applied to a children’s programming learning platform, FEPSE. The project

reveals details of this platform, as well as architectural aspects of an iOS project,

such as the MVC (Model-View-Controller) model. The adopted framework, ARKit,

was also discussed in details. Finally, the results can be seen as a proof of concept

for a possible integration of the platform with the application.

Key-Words: Augmented reality, iOS Mobile Applications, Programming

Learning for Children.

Lista de Figuras

2.1 Sistema de RA por Sutherland . 24

2.2 Touring Machine de Steve Feiner . 25

2.3 Sistema de marcação CyberCode . 26

2.4 Primeira linha amarela em um jogo de futebol americano 27

2.5 ARToolKit: calibração do HMD por meio do marcador de referência . 28

2.6 Jogo ARquake . 29

2.7 HoloLens 2 permite interação com objetos virtuais 30

2.8 Pokémon GO . 31

2.9 GeoGebra AR auxilia no aprendizado de matemática 32

2.10 Camadas do iOS . 33

2.11 Estrutura de um aplicativo móvel baseado no modelo MVC 36

3.1 Carrinho FEPSE . 40

3.2 Crianças posicionam obstáculos para o carrinho 41

3.3 Exemplo de programa utilizando a linguagem desenvolvida pelo FEPSE 42

3.4 Feature points em amarelo: quanto mais contraste e detalhes uma

imagem tiver, mais pontos serão detectados 43

3.5 Estrutura das aplicações do ARKit 45

4.1 Organização do projeto de acordo com a arquitetura MVC 49

4.2 Configuração do ARKit . 50

4.3 Código para detecção do plan . 51

4.4 Etapa 1. Animação de marcas de pneu apontam superf́ıcie plana de-

tectada. Feature points em amarelo 52

4.5 Etapa 2, criança posiciona seus próprios obstáculos 54

4.6 Etapa 3, objeto car percorre caminho descrito pelo programa 56

Siglas

RA Realidade Aumentada

AR Augmented Reality

FEPSE Framework de Ensino de Programação e Sistemas Embarcados

HDM Head Mounted Display

CRT Cathode Ray Tube

NFL National Football League

GPS Global Positioning System

MVC Model-View-Controller

VANTs Véıculos Aéreos Não Tripulados

WWDC Worldwide Developers Conference

17

Sumário

1 Introdução 19

1.1 Motivação . 20

1.2 Objetivos do Trabalho . 20

1.3 Organização do Trabalho . 21

2 Embasamento Teórico 23

2.1 Considerações Iniciais . 23

2.2 Realidade aumentada (RA) . 23

2.2.1 Histórico . 24

2.2.2 Aplicações atuais da RA . 29

2.3 Aplicativos móveis iOS . 33

2.3.1 Arquitetura do iOS . 33

2.3.2 MVC - Model-View-Controller 35

2.4 Considerações Finais . 37

3 Materiais e Métodos 39

3.1 Considerações iniciais . 39

3.2 FEPSE - Framework de Ensino de Programação e Sistemas Embarcados 39

18

3.3 ARKit . 42

3.4 Considerações finais . 46

4 Resultados e Discussões 47

4.1 Considerações Iniciais . 47

4.2 Organização da Aplicação . 47

4.2.1 Organização das etapas . 47

4.2.2 Organização do projeto . 48

4.3 Detecção do plano . 49

4.4 Posicionamento dos obstáculos . 52

4.5 Visualização da execução do programa 54

4.6 Considerações Finais . 56

5 Conclusões 57

5.1 Trabalhos Futuros . 58

19

Caṕıtulo 1

Introdução

É raro no Brasil que se encontre escolas de ensino fundamental onde haja

aulas de programação. Esta disciplina não só oferece um aprendizado de diversas

habilidades e conhecimentos para crianças e jovens, mas também os insere na atual

sociedade informatizada em que vivemos.

Contudo, este ensino deve ser realizado de forma especial e adequado ao seu

público-alvo. De acordo com [1], as linguagens de programação mais tradicionais não

são as mais indicadas para estas aulas, já que estas não possuem uma forma fácil e

efetiva de serem ensinadas para crianças de 8 e 9 anos.

Neste contexto, o FEPSE (Framework de Ensino de Programação e Sistemas

Embarcados) [2] tem como principal objetivo ensinar programação e lógica para

crianças de 5 a 12 anos de um modo divertido, interativo, prático e colaborativo

com a preocupação de ser acesśıvel a todas as classes sociais. Esta plataforma, que

nasceu como um projeto de iniciação cient́ıfica do então aluno Kaique Lupo Leite

sob orientação da Prof. Dra. Kalinka Regina L. J. C. Branco, possui a sua própria

linguagem de programação, a qual utiliza figuras e não texto. Cada figura é impressa

em um cartão contendo um código de barras, de forma que cada figura possa ser lida

20

por um celular. Os cartões representam, por fim, instruções básicas de lógica [3].

1.1 Motivação

O FEPSE funciona hoje utilizando sistemas embarcados para que a criança

ou jovem veja seu programa em execução. Entretanto, haverá situações nas quais o

sistema embarcado pode não se fazer presente, seja por motivos de manutenção, seja

pelo fato da pessoa estar fora do ambiente de sala de aula.

Neste cenário, a realidade aumentada (RA, ou AR - augumented reality em

inglês) pode ser uma solução. RA pode ser definido como sendo a tecnologia a

qual sobrepõe objetos virtuais (considerados objetos aumentados) no mundo real.

Esta tecnologia pode então facilitar o aprendizado por ajudar os alunos a engajarem

em explorações no mundo real, aumentando a motivação dos mesmos bem como

melhorando suas habilidades investigativas. [4]

1.2 Objetivos do Trabalho

Pelas razões apresentadas anteriormente, o objetivo deste trabalho é estender

o atual FEPSE para o campo da realidade aumentada por meio de uma simulação

apresentada pelo aplicativo móvel. Isto permitirá que a criança de continuidade ou

inicie uma nova atividade fora do ambiente da sala de aula ou na ausência do sistema

embarcado.

Para tanto são apresentados os conceitos de RA e da arquitetura de uma

aplicação iOS, plataforma adotada para o trabalho.

Tem-se, como resultado, uma prova de conceito da aplicação de RA para o

FEPSE, dado o estágio em que a tecnologia de RA se encontra no presente momento.

21

1.3 Organização do Trabalho

A monografia está dividida da seguinte forma: o caṕıtulo 2 apresenta todo

o conhecimento teórico necessário para o desenvolvimento do trabalho, em especial,

conceitos de RA e da arquitetura de uma aplicação móvel iOS. A seguir, no caṕıtulo

3, são apresentados a plataforma FEPSE e o funcionamento do framework ARKit.

O caṕıtulo 4 apresenta os resultados do trabalho como um todo. Por fim, no caṕıtulo

5, as conclusões finais do trabalho e os trabalhos futuros são apresentados.

22

23

Caṕıtulo 2

Embasamento Teórico

2.1 Considerações Iniciais

Este caṕıtulo compila a bibliografia necessária para o entendimento e o de-

senvolvimento deste projeto, abordando o conceito de RA, seu histórico e principais

aplicações, além do desenvolvimento de um aplicativo móvel iOS.

2.2 Realidade aumentada (RA)

Há na comunidade cient́ıfica diversas definições para RA. A definição mais

tradicional desta tecnologia traz qualquer sistema o qual satisfaça três caracteŕısticas

[5]:

• Combina elementos do mundo real e do virtual;

•• Possui interação em tempo real;

• Ajusta objetos virtuais no espaço tridimensional.

24

Uma definição mais ampla traz RA como sendo qualquer tecnologia que mis-

tura informação real com virtual de uma forma significativa. Ou seja, também seria

considerado RA como sendo qualquer contexto do mundo real o qual é sobreposto

dinamicamente com informações virtuais relativas ao mesmo [6].

2.2.1 Histórico

O primórdio da RA muito se confunde com o da realidade virtual. Ao traçar

uma linha do tempo, muitos especialistas começam por experiências com o cinema

no começo da década de 1960, por Morton Heiling. Mas a primeira experiência

considerada realidade aumentada veio em 1968 por Ivan Sutherland, utilizando um

”óculos”, ou dispositivo de display, HDM (Head Mounted Display) [7]. O dispositivo

era composto por dois displays CRT (Cathode Ray Tube) e, como ilustrado na Figura

2.1, dispunha de conexões diretas ao computador e no teto. A ideia básica por trás

deste experimento era projetar uma imagem na retina do usuário a qual se deslocava

de acordo com o movimento de sua cabeça. Criava-se, assim, uma ilusão de um

objeto em três dimensões.

Figura 2.1: Sistema de RA por Sutherland

(a) Sua versão do dispositivo HDM
(b) Conexões do equipamento

Fonte: [8]

25

Entretanto, este dispositivo foi inventado antes mesmo do próprio termo ”re-

alidade aumentada ser cunhado. Isso aconteceu em 1992, quando dois pesquisadores,

Dave Mizell e Tom Caudell, escreveram um artigo sobre o desenvolvimento de um

dispositivo para auxiliar a montagem de cabos em aeronaves na Boeing cujo objetivo

era substituir os manuais de instruções [9].

Após a divulgação deste artigo, muitas companhias começaram a investir

nesta tecnologia para aplicações industriais. Em 1993 Louis Rosenberg desenvol-

veu para um laboratório militar americano a primeira experiência de RA interativa,

Virtual Fixtures. Nela, o usuário controlava braços robóticos a distância com so-

breposição de informações virtuais que auxiliavam a execução de tarefas espećıficas

[10].

Neste mesmo ano, um grupo do pesquisador Steve Feiner na Universidade

de Columbia, Estados Unidos, desenvolveu um sistema com óculos de RA capaz de

mostrar como realizar a manutenção em uma impressora. O projeto ficou conhecido

como KARMA [11]. Alguns anos depois, em 1999, Feiner e seu grupo de pesquisa

desenvolveram um outro protótipo de óculos, desta vez móvel, chamado de Touring

Machine (Figura 2.2).

Figura 2.2: Touring Machine de Steve Feiner

(a) Equipamento com mochila (b) Informações sobre os prédios

Fonte: [12]

26

Este óculos fornecia informações sobre os prédios do campus da sua universi-

dade com base na sua posição pelo GPS (Global Positioning System) [13]. Apesar do

protótipo oferecer certo grau de mobilidade, ainda era preciso que o usuário utilizasse

uma mochila para transportar os circuitos necessários, como ilustrado na Figura 2.2.

Foi em 1996 que o primeiro sistema de marcação por referência (fiducial mar-

kers) para RA foi desenvolvido dentro da Sony por Jun Rekimoto, chamado de

CyberCode. Tratava-se de identificador retangular constitúıdo de tons de branco e

preto os quais formavam um padrão que poderia ser facilmente reconhecido pelas

câmeras de notebooks [14]. Este identificador era então utilizado como ponto de re-

ferência para um modelo 3D da realidade aumentada, como ilustrado na Figura 2.3.

Esta técnica permitia que, caso a imagem de referência no mundo real se mexesse,

o objeto virtual a acompanharia. Muitos trabalhos em RA utilizam marcadores de

referência desde então.

Figura 2.3: Sistema de marcação CyberCode

Fonte: [15]

Como hoje realidade aumentada possui um conceito mais amplo, pode-se

identificar seu uso também na televisão. Em 1998 uma empresa chamada Sport-

vision desenvolveu a primeira linha computadorizada do 1st & Ten (Figura 2.4) e

27

transmitiu em um jogo ao vivo de futebol americano da NFL (National Football Le-

ague) [16]. Para a época isto foi um grande feito pelo fato da linha aparecer embaixo

dos jogadores, além de ajudar a aproximar o público da RA.

Figura 2.4: Primeira linha amarela em um jogo de futebol americano

Fonte: [17]

A primeira biblioteca open source (código aberto) de desenvolvimento para

RA veio em 1999, chamada de ARToolKit [18]. Foi desenvolvida por Hirokazu Kato e

Mark Billinghurst e inicialmente era focada em oferecer um método para reconhecer

os marcadores de referência (parecidos com o CyberCode) bem como calibrar os

dispositivos HMD (Figura 2.5). Esta biblioteca é utilizada até os dias de hoje,

sendo uma das primeiras a estar dispońıvel para aplicações móveis. Seu código está

dispońıvel no GitHub [19].

28

Figura 2.5: ARToolKit: calibração do HMD por meio do marcador de referência

Fonte: [18]

Considerado o primeiro jogo em realidade aumentada, Bruce Thomas desen-

volveu em 2000 o ARquake [20]. O jogo se propunha a ser uma adaptação do jogo

para desktop Quake, um jogo em primeira pessoa. Ele poderia ser jogado tanto em

áreas internas quanto externas e funcionava utilizando uma bússola digital, sistema

GPS e marcadores de referência. A Figura 2.6 ilustra a visão em primeira pessoa do

jogo e também todo o equipamento que era acoplado aos óculos.

Alguns anos depois, em 2008, a fabricante de automóveis BMW foi a pri-

meira empresa a utilizar RA como instrumento para o marketing na campanha do

MINI [21]. Na propaganda, ao invés de conter a foto do novo modelo, vinha apenas

um marcador de referência com a frase: The MINI Convertible in your hands (O

converśıvel MINI em suas mãos). Ao entrar na página web da empresa era posśıvel

então apontar uma webcam normal para o marcador e o modelo 3D do novo MINI

aparecia na tela.

29

Figura 2.6: Jogo ARquake

(a) Visualização de objetos do jogo

(b) Equipamento necessário para realização
do jogo

Fonte: [20]

Já em 2010, em meio ao crescimento da popularidade dos smartphones, é

fundada uma startup dentro da Google, chamada Niantic [22]. Ela foi formada

com o objetivo de explorar como dispositivos móveis e o conhecimento sobre mapas

poderia ser utilizado para promover uma exploração de novos lugares bem como a

interação do mundo real com as pessoas. Pouco tempo depois da sua fundação, a

empresa começou a pesquisar como criar jogos em realidade aumentada. Cinco anos

depois esta empresa se torna independente da Alphabet (holding da Google).

2.2.2 Aplicações atuais da RA

A partir desse histórico, percebe-se que as aplicações para RA são das mais

variadas, indo do marketing para entretenimento, bem como educação e ferramenta

de produtividade. Abaixo são listadas algumas das principais aplicações atuais para

RA, além do que algumas das maiores empresas do mundo estão desenvolvendo a

respeito desta tecnologia.

30

Óculos

A Google lançou o dispositivo Goggle Glass em 2012 e abriu sua venda apenas

para um público seleto em 2014. O aparelho era semelhante a um par de óculos, que

fixados em um dos olhos, disponibiliza uma pequena tela acima do campo de visão.

A divulgação do novo produto na época foi dada por um v́ıdeo no qual o usuário era

capaz de verificar eventos na sua agenda, acessar a previsão do tempo, tirar foto e

tocar música, todos comandos acionados por voz. Apesar do seu caráter disruptivo,

debates sobre seu impacto na privacidade das pessoas ao redor do usuário, além do seu

design futurista pouco atraente e preço não acesśıvel, culminaram no encerramento

das vendas em 2015 [23]. Entretanto, a Google anunciou em 2019 a nova versão

do projeto, Glass Enterprise, voltada única e exclusivamente para o ambiente de

trabalho, podendo ser utilizado por médicos até operadores de máquinas [24].

Já o dispositivo HoloLens (Figura 2.7), da Microsoft, busca cunhar o conceito

de realidade misturada (mixed reality).

Figura 2.7: HoloLens 2 permite interação com objetos virtuais

Fonte: [25]

31

O projeto deste aparelho surgiu através de uma tentativa de transportar a

tecnologia do Kinect (sensor de movimentos da Microsoft) para um dispositivo HMD.

A primeira versão foi lançada em 2016 e a versão mais atual, HoloLens 2, foi anun-

ciada em fevereiro de 2019 [26]. Ao contrário do Glass, HoloLens 2 ocupa todo o

campo de visão e permite a visualização de objetos 3D sobrepostos no mundo real.

No evento do lançamento também foi demonstrado que os óculos reconhecem as mãos

do usuário, o que permite a interação em tempo real com objetos virtuais.

Jogos

Lançado em 2016, Pokémon GO (Figura 2.8) é até hoje o aplicativo de rea-

lidade aumentada mais baixado do mundo, e também o mais rentável. Até 2018, o

jogo rendeu quase 2 bilhões de dólares e foi baixado mais de 800 milhões de vezes

[22][27]. Desenvolvido pela Niantic em colaboração com o The Pokémon Company

e com a Nintendo, o jogo utiliza a localização GPS real do usuário para capturar e

batalhar as criaturas Pokémon, em localizações do mundo real.

Figura 2.8: Pokémon GO

(a) Visualização dos pokemóns no ambi-
ente

(b) Evento organizado pelo app

Fonte: [22]

32

Um fenômeno de popularidade, até estudos sobre o impacto do uso do Pokémon

GO na saúde das pessoas foram realizados, concluindo que, no curto prazo, houve

melhora no ńıvel de atividade f́ısica do jogador [28].

Educação

Muitas aplicações notáveis no campo da educação auxiliam o aluno na com-

preensão da dimensão espacial. Este é o caso do aplicativo Complete Anatomy Plat-

form 2020, da 3D4Medical [29]. Ele permite que o usuário visualize, em detalhes e

em tamanho real, o interior do corpo humano. Modelos 3D sobre anatomia do corpo

foram refinados ao longo de 15 anos de pesquisa.

De forma similar, o aplicativo GeoGebra Augmented Reality (Figura 2.9) tem

o intuito de projetar gráficos matemáticos e objetos geométricos em 3D em realidade

aumentada de forma que seja posśıvel caminhar por eles, permitindo uma interati-

vidade que não seria posśıvel apenas por uma simulação. O app também conta com

aulas guiadas para ensinar alunos sobre os mais diversos assuntos de geometria.

Figura 2.9: GeoGebra AR auxilia no aprendizado de matemática

Fonte: [30]

33

Investimentos

Hoje há um grande investimento por parte das maiores companhias em soft-

ware mobile que existem, havendo frameworks tanto para iOS quanto para Android,

o que permite desenvolvedores ao redor do mundo criarem as mais diversas soluções

[31].

2.3 Aplicativos móveis iOS

2.3.1 Arquitetura do iOS

O sistema operacional iOS é dividido em camadas. Normalmente, aplicativos

desenvolvidos para esta plataforma “conversam” com o hardware do dispositivo por

meio de um sistema de interfaces desenvolvido para proteger o aplicativo de alterações

súbitas, sem acesso direto [32].

Esse sistema de interfaces é ilustrado na Figura 2.10. As camadas inferiores

representam serviços e tecnologias fundamentais para o funcionamento do dispositivo.

Já as camadas mais altas representam serviços e tecnologias mais sofisticados [32].

Figura 2.10: Camadas do iOS

Fonte: [32]

34

Core OS

A camada mais fundamental, Core OS, é a camada de mais baixo ńıvel que

contém todas as funcionalidades sobre as quais as demais camadas são constrúıdas.

Qualquer situação que envolva algo relativo à segurança ou à comunicação com outros

dispositivos externos é tratada por esta camada. Aqui destacam-se os seguintes

frameworks e suas funcionalidades:

• Accelerate Framework : processamento digital de sinais;

•• Core Bluetooth Framework : comunicação via Bluetooth Low-Energy ;

• Security Framework : segurança de dados, certificados e criptografia;

• System: kernel, drivers, e todas as interfaces UNIX de baixo ńıvel.

Core Services

Core Services contém os serviços fundamentais que as aplicações irão utili-

zar. Mesmo que não se utilize diretamente estes serviços, muitas partes do sistema

são constrúıdas a partir deles. Aqui destacam-se os seguintes frameworks e suas

funcionalidades:

• Core Foundation Framework : conjunto de interfaces em C, para tratamento

básico de dados;

•• Core Location Framework : obtém a latitude e longitude do dispositivo;

• Core Data Framework : cuida do banco de dados do usuário.

Media

Esta camada é responsável por controlar os dados multimı́dia do dispositivo,

ou seja, é responsável pelo tratamento dos dados gráficos e de áudio. Aqui destacam-

se os seguintes frameworks e suas funcionalidades:

35

• Core Graphics Framework : renderiza imagens vetorizadas 2D;

•• Core Animation Framework : suporte avançado para animações;

• AV Foundation Framework : processamento de áudio, recursos audiovisuais.

Cocoa Touch

O termo Cocoa refere-se ao conjunto de frameworks e tecnologias principais

utilizadas para desenvolver aplicações iOS. Aqui se fornece uma infraestrutura básica

para funções como multitasking, toque na tela, notificações e outros serviços consi-

derados de alto ńıvel. Aqui destacam-se os seguintes frameworks e tecnologias:

• UIKit Framework : principal biblioteca para implementar aplicativos gráficos

no iOS. Apresenta suporte para reconhecimento de toque, multitasking, noti-

ficações, entre outros;

•• Address Book UI Framework : interface para criar e adicionar novos contatos;

• Auto Layout : torna o design das telas responsivo ao tamanho do aparelho.

2.3.2 MVC - Model-View-Controller

O padrão de arquitetura de software MVC (Model-View-Controller, ou Modelo-

Visualização-Controle) é o recomendado pela Apple para ser utilizado no desenvol-

vimento de aplicações iOS [33]. Este padrão não só agrupa os diferentes objetos da

aplicação de acordo com a funcionalidade que desempenham, mas também define

como é a comunicação entre eles. Esta arquitetura de código é ilustrada na Figura

2.11.

36

Figura 2.11: Estrutura de um aplicativo móvel baseado no modelo MVC

Fonte: [34]

Model

A camada Model encapsula todos os objetos relativos ao tratamento de da-

dos do app bem como toda a lógica que processa esses dados. Estes objetos não só

expressam uma lógica espećıfica para resolver determinados problemas, mas também

são constrúıdos de tal forma que possam ser reutilizados para resolver problemas si-

milares. Isso implica no fato de, idealmente, objetos desta camada não se preocupam

com a interface do usuário ou na forma a que os dados são apresentados.

Por isso a sua comunicação é estrita com objetos da camada Controller :

quando um objeto Model é alterado (por exemplo, novos dados são recebidos por

uma conexão de rede), ele notifica um objeto Controller, que por sua vez atualiza os

objetos de exibição apropriados.

View

A camada View, ou Visualização, concentra todos os objetos da aplicação

que o usuário enxerga. Eles sabem, portanto, como devem ser desenhados e como

devem tratar as interações do usuário. A principal função deles é mostrar os dados da

37

camada Model e permitir que os mesmos possam ser editados. Apesar desta suposta

conexão, objetos desta camada são desassociados dos da camada Model.

Os objetos da View exibem informações sobre alterações nos dados da Model

por meio dos objetos Controller do aplicativo, e vice-versa. Por exemplo, se um

texto for inserido em um campo de texto, os objetos da View comunicam alterações

iniciadas pelo usuário aos objetos Model, por meio dos objetos Controller.

Controller

Um objeto Controller atua como intermediário entre um (ou mais) objetos

da View e um (ou mais) objetos da Model. Ele atua, portanto, como um canal por

meio do qual os objetos View se informam sobre mudanças nos objetos Model e

vice-versa. Os objetos Controller também podem executar tarefas de configuração e

coordenação da aplicação móvel e gerenciar os ciclos de vida de outros objetos.

A comunicação, portanto, é com as duas camadas. Um objeto Controller

interpreta as ações do usuário feitas nos objetos da View e comunica dados novos

ou alterados à camada Model. Quando os objetos Model são alterados, um objeto

Controller comunica esses novos dados aos objetos da View para que eles possam

exibi-los.

2.4 Considerações Finais

Este caṕıtulo apresentou o embasamento e as informações necessárias para a

realização de um aplicativo móvel iOS o qual se faz uso da realidade aumentada.

A tecnologia da realidade aumentada, descrita neste caṕıtulo, é um campo

muito extenso e não é algo de exclusividade de aplicações iOS. No entanto, a Apple

fornece ferramentas próprias as quais tornam o seu desenvolvimento mais fácil, de

forma que desenvolvedores possam focar mais no conteúdo de suas aplicações.

O próximo caṕıtulo demonstra como esta tecnologia foi empregada.

38

39

Caṕıtulo 3

Materiais e Métodos

3.1 Considerações iniciais

Para construir a aplicação móvel iOS deste projeto, utilizou-se o ambiente de

desenvolvimento da Apple Xcode, o framework para realidade aumentada da Apple

ARKit, um celular iPhone XR e a estrutura do FEPSE. Este caṕıtulo detalha o que

é e como o projeto se relaciona com o FEPSE, bem como aspectos e requisitos do

framework adotado.

3.2 FEPSE - Framework de Ensino de Programação

e Sistemas Embarcados

Desenvolvido em 2017, o FEPSE nasceu como um projeto de iniciação ci-

ent́ıfica do então aluno Kaique Lupo Leite sob orientação da Prof. Dra. Kalinka

Regina L. J. C. Branco. É uma plataforma de ensino de baixo custo voltada ao

ensino de programação e lógica para crianças de 5 a 12 anos. Ela tem como objetivo

40

ensinar conceitos de sistemas embarcados, computação tanǵıvel e programação visual

de uma forma divertida, prática, interativa e acesśıvel a todas as classes sociais [3].

A ideia central do FEPSE está na solução de problemas (ou atividades) pro-

postos pelo educador por meio de algoritmos de computação, utilizando a sua própria

linguagem de programação. Estes algoritmos são então executados em sistemas em-

barcados como VANTs (Véıculos Aéreos Não Tripulados), carros de controle remoto,

barcos de controle remoto entre outros. Para efeito deste trabalho em realidade au-

mentada, o carrinho FEPSE, ilustrado na Figura 3.1, foi modelado em 3D.

Figura 3.1: Carrinho FEPSE

(a) Vista completa (b) Vista do interior

Fonte: [3]

As atividades propostas são práticas pois não se necessita de equipamen-

tos além do próprio carrinho. Como ilustrado na Figura 3.2, as próprias crianças

desenvolvem seus desafios, ou seja, são elas que posicionam os obstáculos (objetos

dispońıveis em sala de aula, como caderno e lápis) e na sequência programam o

caminho pelo qual o carrinho deverá percorrer para concluir ou sair de tal labirinto.

A computação tanǵıvel (interação com um sistema digital por meio de objetos

f́ısicos) é utilizada na forma da linguagem de programação. Ela representa de modo

direto e simples suas instruções por meio de peças impressas em papel comum e

encaixadas umas as outras como um quebra cabeça. Nestes cartões, instruções como

ińıcio e término do programa, ir para frente ou para trás, para o lado, instruções

de repetição, entre outras, são representadas por śımbolos. Desta forma, a criança

41

Figura 3.2: Crianças posicionam obstáculos para o carrinho

Fonte: Dados do arquivo do Laboratório de Sistemas Embarcados Cŕıticos

utiliza uma interface amigável sem utilizar periféricos como teclado ou mouse, além

do fato dela não precisar ser alfabetizada para reconhecer as figuras.

Para estas peças serem identificadas pelo computador, foi utilizado código de

barras devido a sua simplicidade e baixo custo. Estes códigos são então identificados

por visão computacional por meio de uma câmera, traduzindo para o computador

qual instrução deve ser executada. Uma vez lidas e compreendidas as instruções,

o programa é então transmitido para o sistema embarcado por meio de um cabo

p2. Um exemplo de programa, utilizando os cartões de instruções e seus respectivos

códigos de barra é ilustrado na Figura 3.3.

Dado que toda a parte de leitura e compreensão das instruções já foi imple-

mentada pelo FEPSE, este trabalho de aplicação móvel não contempla esta parte

de visão computacional, já implementada e validada. Como o escopo deste projeto

42

é estudar a realidade aumentada, os dados que deveriam ser obtidos por meio desta

ponte foram adquiridos por um mock (simulação). Por isso, este projeto tem em

seu diretório raiz o arquivo Input.txt, o qual representa a sequência de instruções

previamente programadas.

Figura 3.3: Exemplo de programa utilizando a linguagem desenvolvida pelo FEPSE

Fonte: [3]

3.3 ARKit

ARKit é o framework da Apple para o desenvolvimento de aplicações móveis

iOS com realidade aumentada. Para isso, ARKit integra a câmera do dispositivo

a sensores de movimento e a processamentos de imagem avançados para projetar

objetos virtuais no mundo visto pela tela do dispositivo, de forma que eles pareçam

43

de fato pertencerem ao mundo real. Ele permite a projeção de objetos tanto 2D

quanto 3D, tanto na câmera traseira quanto na frontal do iPhone [35].

Para que as imagens obtidas em tempo real pela câmera possam ser processa-

das e cálculos como a distância da câmera até objetos possam ser realizados, o ARKit

utiliza os chamados feature points. Feature points são pontos detectados na imagem

da câmera os quais representam caracteŕısticas notáveis de objetos, tais como: can-

tos, linhas de estrutura, caracteŕısticas do tecido, gradientes, alterações na cor, forma

ou bordas de objetos. Observa-se que quanto mais contraste e detalhes uma ima-

gem tiver, mais feature points serão detectados. Na Figura 3.4 é ilustrado como

a aplicação detecta estes pontos: a Figura 3.4a quase não apresenta feature points

(representados pelos pontos amarelos) devido a sua predominância monocromática.

O mesmo não ocorre na Figura 3.4b, a qual possui uma variedade de cores.

Figura 3.4: Feature points em amarelo: quanto mais contraste e detalhes uma imagem
tiver, mais pontos serão detectados

(a) Imagem com poucos detalhes (b) Imagem com mais detalhes

Fonte: O autor

Uma das funcionalidades mais importantes do ARKit está na sua habilidade

44

de rastrear a posição de um objeto virtual enquanto o celular se move. Ou seja,

manter o objeto virtual fixo em relação ao seu sistema de coordenadas, também

chamado de world tracking. Para que isto ocorra, o ARKit utiliza uma técnica cha-

mada de visual-inertial odometry. Esse processo combina informações do hardware

de detecção de movimento do iPhone com métodos de visão computacional da cena

viśıvel pela câmera do dispositivo. O ARKit detecta os feature points na imagem da

cena, rastreia diferenças nas posições desses pontos nos frames de v́ıdeo e compara

essas informações com dados de detecção de movimento coletados pelos sensores do

dispositivo. O resultado é um modelo de alta precisão da posição e movimento do

aparelho móvel [36].

Código

Em termos de código, a primeira coisa que se deve fazer é criar um ARSession,

algo como o cerne de toda aplicação deste tipo. Objetos do tipo ARSession são

responsáveis por interpretar todos os dados captados pelos sensores de movimento,

controlar a câmera do dispositivo e realizar a análise da imagem. Estes objetos são

então configurados pela classe ARWorldSessionConfiguration. Lá é posśıvel optar

por habilitar funções como detecção de plano ou capturar a distância entre objetos.

Iniciado o processamento de imagem, ARKit retorna um ARFrame, o que representa

um frame do v́ıdeo atual da câmera com informações adicionais. Uma delas é a

posição da câmera em relação ao mundo real (ARCamera). Outra é dado pelas

ARAnchors, que representam as posições e orientações de objetos em relação ao

mundo real. Essas ”âncoras”podem ser programaticamente adicionadas ou podem

ser automaticamente criadas pelo ARSession quando este estiver detectando objetos

(como um plano, por exemplo). Por último, ARFrame também carrega os feature

points associados à imagem [37][38].

Este esquema de como as aplicações de ARKit são constrúıdas é ilustrado na

Figura 3.5.

45

Figura 3.5: Estrutura das aplicações do ARKit

Fonte: [38]

Limitações

Mesmo com ARKit oferecendo o estado da arte da tecnologia atual, o world

tracking não é ciência exata. Por isso há um conjunto de três boas práticas para

melhorar o resultado desses tipos de aplicações [36]:

• Utilizar iluminação adequada e objetos com alto contraste: a qualidade do

rastreamento é reduzida quando a câmera não consegue ver detalhes, como

quando a câmera está apontada para uma parede em branco ou a cena está

muito escura;

•• Mover o celular adequadamente: o ARKit desenvolve uma melhor compreensão

da cena se o dispositivo estiver em movimento, mesmo se o dispositivo se mover

apenas sutilmente;

• Dar tempo para que a detecção de plano possa produzir resultados claros e

desativar a detecção de plano quando obter os resultados necessários;

46

Ressalta-se ainda que este framework só é posśıvel de ser executado em dis-

positivos cujo iOS ou iPadOS seja superior ou igual ao iOS 11 e processador A9 [39].

Logo, esta aplicação pode ser executada a partir do iPhone 6s [40]. Para efeito deste

projeto, foi utilizado um iPhone XR.

3.4 Considerações finais

Este caṕıtulo apresentou os materiais e métodos utilizados para o desenvol-

vimento desta aplicação móvel iOS. Foi apresentado o FEPSE, a plataforma a qual

este projeto se propõe a estender para o campo da realidade aumentada. Também

foi apresentado o funcionamento do framework do ARKit, essencial para o desenvol-

vimento desta aplicação.

O próximo caṕıtulo descreve detalhes do software desta aplicação e os respec-

tivos resultados obtidos.

47

Caṕıtulo 4

Resultados e Discussões

4.1 Considerações Iniciais

Como descrito na seção 1.2, o objetivo deste trabalho é o de estender o pro-

jeto do FEPSE para o campo da realidade aumentada. Para tanto, foi realizada

uma aplicação móvel utilizando o sistema operacional iOS 12, arquitetura MVC e

linguagem de programação Swift.

Nesse caṕıtulo a organização da solução é apresentada, bem como o detalhe

de cada uma das soluções implementadas em cada uma das etapas. Na seção 4.2, o

fluxo do app e a organização do projeto são apresentados, enquanto que as demais

seções trazem detalhes de cada uma das etapas.

4.2 Organização da Aplicação

4.2.1 Organização das etapas

Esta aplicação foi dividida em três etapas diferentes:

48

• Detecção do plano: posiciona a cena constrúıda no mundo real;

•• Posicionamento dos obstáculos: etapa interativa da aplicação;

• Visualização da execução do programa: carrinho FEPSE modelado em

3D executa o programa.

A detecção do plano é parte crucial da aplicação pois é a responsável por

posicionar a cena constrúıda no mundo real, ou seja, substitui os marcadores de

referência. Já a segunda etapa visa reproduzir a Figura 3.2 em RA: primeiro o usuário

constrói seu próprio labirinto e depois programa o caminho do carrinho FEPSE para

que este então chegue na sáıda ou no objetivo final. Por último, o véıculo executa o

programa previamente constrúıdo pela criança utilizando os cartões da Figura 3.3.

É importante frisar que como este trabalho visa o aprendizado em RA, optou-

se por realizar a integração desta aplicação com a aplicação web do FEPSE no futuro.

Desta forma, a leitura dos cartões (competência da aplicação web do FEPSE) foi dada

por meio de um mock, ou seja, simulada pela leitura do arquivo Input.txt.

4.2.2 Organização do projeto

Como explicado na seção 2.3.2, este projeto procurou seguir a arquitetura

MVC. A organização dos arquivos do projeto é ilustrada na Figura 4.1.

LaunchScreen.storyboard contém as Views que são chamadas apenas no mo-

mento quando o aplicativo está carregando. Todas as outras Views do projeto são

organizadas pelo arquivo Main.storyboard. Este, por sua vez, contém apenas uma

tela, controlada pela classe ViewController. Os demais arquivos ViewController são

extensões da mesma, cada um com uma função determinada. Por exemplo, a princi-

pal View do projeto é uma do tipo ARSCNView, a qual é controlada com métodos

que seguem o protocolo ARSCNViewDelegate. A rigor, o arquivo MainScene.swift

não necessariamente seria um do tipo Model, no entanto ele contém todos os dados

e as referências aos modelos 3D da cena a ser apresentada pela ARSCNView.

49

Figura 4.1: Organização do projeto de acordo com a arquitetura MVC

Fonte: O autor

4.3 Detecção do plano

A detecção do plano substitui os marcadores de referência neste projeto.

Quando a câmera do celular detecta uma superf́ıcie plana (ou mais especificamente,

um conjunto de feature points que remetem a uma superf́ıcie plana), é posśıvel criar

uma referência nesta posição no mundo real. Em outras palavras, no momento em

que a aplicação é iniciada, cria-se um sistema de coordenadas com sua origem sendo

a posição atual do dispositivo móvel. Ao detectar este conjunto espećıfico de pontos,

o dispositivo é capaz de medir a distância entre ele mesmo para com a superf́ıcie,

criando assim uma referência. Nota-se que a referência permanece mesmo quando o

celular se move.

Como descrito na seção 3.3, a primeira coisa que se deve fazer é criar um

50

objeto ARSession. Isto foi feito dentro da função ViewWillAppear, da classe View-

Controller, como ilustrado na Figura 4.2.

Figura 4.2: Configuração do ARKit

Fonte: O autor

Iniciado a ARSession, é posśıvel utilizar os métodos do protocolo ARSCN-

ViewDelegate. A função renderer(, updateAtT ime) é chamada constantemente a

intervalos de milissegundos e tem o dever de realizar qualquer tipo de atualização

na cena. Como ela é chamada constantemente, implementou-se uma máquina de

estados para controlar esse método de acordo com a etapa da aplicação. Logo, o

primeiro ciclo deste método é a própria detecção do plano horizontal, chamado de

placeGrid(). Grid remete ao campo quadriculado da cena.

Este ciclo começa com a função intŕınseca ao ARKit, chamada de hitTest,

a qual procura por objetos ou superf́ıcies do mundo real detectados por meio do

processamento da imagem da câmera. No caso, procura por feature points que re-

presentem um plano horizontal. Esta função retorna um vetor contendo diversas

informações sobre o ponto, porém foi utilizada apenas a matriz 4x4 worldTransform,

a qual contém as informações de translação e orientação do objeto ou superf́ıcie de-

tectada. Dada a origem do sistema de coordenadas como a posição inicial do celular,

a própria translação é a posição do objeto, dado pelos elementos M41,M42 e M43. Em

seguida utiliza-se um SCNNode (objeto que representa um elemento gráfico da cena)

51

apelidado de trackerNode, para apontar para o usuário onde exatamente a superf́ıcie

se encontra. Por fim, se atualiza então a posição do trackerNode para a posição

da superf́ıcie quando houver um conjunto maior do que 45 feature points, número

empiricamente testado que oferece uma estabilidade relativamente boa. Esta parte

do código é ilustrada na Figura 4.3.

Figura 4.3: Código para detecção do plan

Fonte: O autor

Importante ressaltar que diferentemente de outros apps de RA tais como

GeoGebra Augmented Reality, este projeto não utiliza nenhuma forma de texto para

apontar para o usuário onde o plano se encontra, pois o projeto tem também como

objetivo a inclusão de crianças analfabetas. Portanto, ao invés de textos, utilizou-

se uma animação de marcas de pneu para apontar a localização no mundo real do

carrinho FEPSE. Tal animação é definida pela classe MaterialSpriteScene, a qual

cria uma cena utilizando o SpriteKit, framework da Apple para criação de jogos

2D. A animação se dá por uma sequência de fotos. Esta cena é então utilizada como

material para criação do objeto trackerNode, em detrimento de uma imagem estática.

52

O resultado final é ilustrado na Figura 4.4.

Figura 4.4: Etapa 1. Animação de marcas de pneu apontam superf́ıcie plana detec-
tada. Feature points em amarelo

Fonte: O autor

4.4 Posicionamento dos obstáculos

Uma vez posicionada a cena, o aplicativo entra em seu próximo ciclo: po-

sicionamento de obstáculos. Uma vez estabelecida a posição dos obstáculos, estes

permanecem “parados” até o próximo ciclo, quando o carrinho finalmente se movi-

menta.

53

Assim que ocorre o posicionamento, aparecem 3 objetos: grid, car e flag. O

objeto grid representa todo o campo pelo qual o carrinho pode se movimentar. A

linguagem de programação do FEPSE restringe a movimentação do carrinho para

movimentos nos 4 sentidos, logo grid possui formato quadriculado. Já car e flag

representam, respectivamente, o carrinho FEPSE e uma bandeira, apontada como

”linha de chegada”. Na tela são ainda apresentadas outras Views, como a mira para

o posicionamento, contador de quantos blocos restam e um botão de reset.

Este ciclo também utiliza a função hitTest, porém desta vez com outros

parâmetros e objeto de retorno. Desta vez a aplicação projeta o seu ponto cen-

tral da tela na cena e retorna, caso exista, o objeto pelo qual a projeção atravessa.

Sendo assim, verifica-se continuamente se o objeto detectado é o próprio grid. Utili-

zando a propriedade localCoordinates obtém-se a posição da projeção em relação ao

próprio grid. Desta forma é posśıvel analisar se a projeção aponta para algum ponto

do campo quadriculado e, em caso positivo, o obstáculo pode ser posicionado.

Quando houver a possibilidade de posicionamento, o objeto blockPreviewNode

aparece, o qual tem o mesmo formato e tamanho do obstáculo (blockNode), porém

tem uma leve transparência e é esverdeado. Caso a criança aperte o botão acceptBtn,

um objeto do tipo blockNode é criado na posição do blockPreviewNode. Além disso,

se o objeto detectado for um obstáculo já posicionado, o próximo obstáculo aparece

acima do mesmo.

O resultado final é ilustrado na Figura 4.5.

54

Figura 4.5: Etapa 2, criança posiciona seus próprios obstáculos

(a) Objeto blockPreviewNode aparece (b) Posição não válida

Fonte: O autor

4.5 Visualização da execução do programa

Nesta etapa do programa, com os obstáculos agora posicionados, o carrinho

FEPSE irá por fim executar o programa constrúıdo a partir da leitura dos cartões

ilustrados na Figura 3.3 no momento em que o botão playBtn for acionado. Impor-

tante ressaltar que futuramente haverá uma etapa prévia à execução do programa,

que seria a integração deste projeto com a aplicação web do próprio FEPSE, a qual

é responsável pela leitura e interpretação dos cartões. Como o escopo do projeto era

55

justamente o aprendizado da tecnologia RA, a programação do carrinho foi feita por

meio de um mock contido no arquivo Input.txt.

Neste arquivo há quatro tipos de instruções posśıveis: f, b, l, r, que são, res-

pectivamente, forward, backward, left, right (frente, trás, direita, esquerda). Cada

um destes comandos, quando lidos, acionam funções diferentes as quais fazem o car-

rinho se mover no sentido desejado independente da sua direção e sentido atual.

Diferentemente do carrinho FEPSE real, o objeto deste carro possui uma posição

e sentido no sistema de coordenadas iniciado pela ARSession. Portanto, instruções

como ir para frente ou para trás mudam conforme a sua orientação no sistema de co-

ordenadas XY Z. Utilizando a propriedade simdWorldFront, no entanto, é posśıvel

obter a orientação do objeto utilizando com referência para frente o eixo −Z. A

partir desta propriedade, inicia-se uma custom action do tipo SCNAction para mo-

ver o carro no sentido desejado pelo comando. Animações extras também foram

adicionadas ao movimento com o intuito de aproximá-lo ao máximo da realidade.

Caso o objeto carro colida com algum obstáculo, o carro irá parar devido a

implementação dos métodos do protocolo SCNPhysicsContactDelegate. Foi atribúıda

uma máscara binária de contato diferente para os objetos car, flag e blockNode.

Caso qualquer tipo de contato seja detectado, o botão resetBtn aparece novamente

possibilitando a renovação do ciclo do aplicativo.

O resultado final da última etapa é ilustrado na Figura 4.6.

56

Figura 4.6: Etapa 3, objeto car percorre caminho descrito pelo programa

Fonte: O autor

4.6 Considerações Finais

Neste caṕıtulo, foram apresentadas as três etapas da aplicação FEPSE AR:

detecção de plano, posicionamento dos obstáculos e a visualização da execução do

programa. Crédito pelos elementos gráficos e tipografia para [41] [42] [43].

O próximo caṕıtulo exibe as conclusões e os posśıveis trabalhos a serem rea-

lizados no futuro.

57

Caṕıtulo 5

Conclusões

Este projeto estudou e implementou uma aplicação móvel iOS utilizando uma

tecnologia de realidade aumentada, o qual estendeu uma plataforma de ensino de

programação para crianças, o FEPSE.

A realidade aumenta foi utilizada com o intuito de auxiliar a visualização das

atividades na ausência dos sistemas embarcados. Para garantir familiaridade com a

plataforma, o carrinho FEPSE foi modelado em 3D e a mesma identidade visual foi

adotada.

Os resultados obtidos na primeira etapa do projeto foram promissores, pois

asseguraram a acessibilidade da aplicação para crianças analfabetas, um dos valo-

res base da plataforma FEPSE. O posicionamento de obstáculos foi constrúıdo de

forma a explorar a interatividade proporcionada pela tecnologia, permitindo que a

criança se movimente pelo campo. Já as animações realizadas pelo carrinho dentro

da plataforma visaram se aproximar ao máximo do movimento real.

A aplicação atua, portanto, como prova de conceito de que a realidade aumen-

tada pode ser aplicada a esta plataforma. Terminada a integração deste aplicativo

móvel com a sua aplicação web, a validação do projeto nas escolas parceiras poderá

58

ser realizada.

Por fim, espera-se que este trabalho contribua para aqueles que gostariam

de ter mais contato com aplicações em realidade aumentada. Apesar do fato das

aplicações em RA serem estudadas popularmente desde a década de 1990, não há

ainda um volume substancial de estudos sobre sua aplicabilidade na área da educação.

Há aqueles que defendem que RA diminui o esforço cognitivo, outros dizem que RA

promove sobrecarga [4].

O que se sabe, entretanto, é que as maiores empresas de tecnologia estão rea-

lizando investimentos enormes na área, seja em realidade aumentada ou virtual. Fa-

cebook (Oculos), Sony (Playstation) e Samsung (Gear) possuem todas suas próprias

versões de óculos de realidade virtual. Microsoft com HoloLens 2 e Google com Glass

Enterprise entre outros são grandes nomes para os óculos de realidade aumentada,

além do rumor que a Apple irá lançar a sua própria versão em breve [31].

De acordo com a empresa MarketsandMarkets, o valor do mercado de RA

vai saltar dos 4,21 bilhões de dólares em 2017 para 60,55 bilhões em 2023 [44].

Definitivamente, muito se falará sobre realidade aumentada nos próximos anos.

5.1 Trabalhos Futuros

A primeira funcionalidade a ser desenvolvida futuramente seria a integração

deste aplicativo móvel com a aplicação web FEPSE. Desta forma, este projeto estaria

pronto para ser testado nas escolas parceiras da plataforma, pois as crianças seriam

capazes de realizar a leitura dos cartões e ver em tempo real qual instrução está

sendo executada.

Existem também outras funcionalidades do framework ARKit que não foram

exploradas por este projeto que, futuramente, poderiam agregar valor à aplicação. A

primeira delas seria o multiplayer, ou seja, quando dois dispositivos móveis compar-

tilham a mesma cena. Isso possibilitará que duas crianças (ou mais) compartilhem

a mesma instância do campo e posicionem, juntas, os obstáculos.

59

Na WWDC19 (Apple Worldwide Developers Conference 2019) foi anunci-

ada a nova versão do ARKit, o ARKit 3, e um novo framework voltado para RA,

RealityKit. Além do ARKit 3 possuir melhorias internas no processamento da ima-

gem (o que melhora a detecção do plano), foram adicionadas funcionalidades como

oclusão de pessoas e captura de movimento de pessoas em tempo real. Já o Rea-

lityKit é uma ferramenta nativa para tornar os objetos virtuais mais próximos da

realidade, principalmente através de animações em 3D.

Utilizar então o RealityKit neste projeto para criação dos objetos virtuais

poderia tornar o app mais imersivo. Atualizar para a nova versão do ARKit poderia

abrir novas possibilidades de interação: oclusão de pessoas contribuiria em aproximá-

lo da realidade, enquanto que a captura dos movimentos poderia permitir que as

crianças posicionassem ou criassem os obstáculos de forma mais lúdica.

60

61

Referências Bibliográficas

[1] KRALEVA, R.; KRALEV, V.; KOSTADINOVA, D. Investigating some pro-

gramming languages for children to 8 years. In: . c2016. v. 5. p. 4–6.

[2] LEITE, K. L. Fepse - framework de ensino de programação e sistemas embar-

cados. https://fepse.com.br, 2019. Acesso em 01 de Outubro de 2019.

[3] LEITE, K. L. Plataforma de ensino de programação para crianças e jovens

usando sistemas embarcados, storytelling, computação tanǵıvel e programação

visual. https://fepse.com.br/docs/FAPESP FEPSE Kaique Lupo.pdf, 2016.

Acesso em 01 de Outubro de 2019.

[4] AKÇAYIR, M.; AKÇAYIR, G. Advantages and challenges associated with aug-

mented reality for education: A systematic review of the literature. Educational

Research Review, v. 20, p. 1–11, 2017.

[5] AZUMA, R. T. A survey of augmented reality. Presence: Teleoperators &

Virtual Environments, v. 6, n. 4, p. 355–385, 1997.

[6] WU, H.-K.; LEE, S. W.-Y.; CHANG, H.-Y.; LIANG, J.-C. Current status,

opportunities and challenges of augmented reality in education. Computers &

education, v. 62, p. 41–49, 2013.

[7] BERRYMAN, D. R. Augmented reality: a review. Medical reference services

quarterly, v. 31, n. 2, p. 212–218, 2012.

62

[8] SUTHERLAND, I. E. A head-mounted three dimensional display. In: . c1968.

p. 757–764.

[9] CAUDELL, T. P.; MIZELL, D. W. Augmented reality: An application of heads-

up display technology to manual manufacturing processes. In: . c1992. v. 2. p.

659–669.

[10] ROSENBERG, L. B. Virtual fixtures: Perceptual tools for telerobotic manipu-

lation. In: . c1993. p. 76–82.

[11] FEINER, S.; MACINTYRE, B.; SELIGMANN, D. Knowledge-based augmen-

ted reality. Communications of the ACM, v. 36, n. 7, p. 53–62, 1993.

[12] COLUMBIA. Steven feiner and salvatore stolfo elevated to ieee fel-

low. https://www.cs.columbia.edu/2017/steven-feiner-and-salvatore-stolfo-

elevated-to-ieee-fellow/, 2019. Acesso em 09 de Outubro de 2019.

[13] FEINER, S.; MACINTYRE, B.; HÖLLERER, T.; WEBSTER, A. A touring

machine: Prototyping 3d mobile augmented reality systems for exploring the

urban environment. Personal Technologies, v. 1, n. 4, p. 208–217, 1997.

[14] REKIMOTO, J.; AYATSUKA, Y. Cybercode: designing augmented reality

environments with visual tags. In: . c2000. p. 1–10.

[15] SONY. Cybercode. https://www.sonycsl.co.jp/tokyo/320/, 2019. Acesso em 09

de Outubro de 2019.

[16] OLNEY, A. Augmented reality. Beyond Reality: Augmented, Virtual, and

Mixed Reality in the Library, p. 1, 2019.

[17] HOFHEIMER, B. Virtual yellow 1st and ten line debuted on espn 15 ye-

ars ago today. https://www.espnfrontrow.com/2013/09/virtual-yellow-1st-and-

ten-line-debuted-on-espn-15-years-ago-today/, 2019. Acesso em 05 de Outubro

de 2019.

63

[18] KATO, H.; BILLINGHURST, M. Marker tracking and hmd calibration for a

video-based augmented reality conferencing system. In: . c1999. p. 85–94.

[19] ARTOOLKIT. Aartoolkit. https://github.com/artoolkit, 2019. Acesso em 3 de

Setembro de 2019.

[20] PIEKARSKI, W.; THOMAS, B. Arquake: the outdoor augmented reality ga-

ming system. Communications of the ACM, v. 45, n. 1, p. 36–38, 2002.

[21] BMW. The convertible in your hands! https://www.press.bmwgroup.com/

middle-east/article/detail/T0048960EN, 2008. Acesso em 12 de Outubro de

2019.

[22] NIANTIC. A história da niantic. https://nianticlabs.com/pt br/about/, 2019.

Acesso em 12 de Outubro de 2019.

[23] GUARDIAN, T. The rebirth of google glass shows the merit of fai-

lure. https://www.theguardian.com/commentisfree/2017/jul/23/the-return-of-

google-glass-surprising-merit-in-failure-enterprise-edition, 2019. Acesso em 10

de Outubro de 2019.

[24] GOOGLE. Glass enterprise edition 2: faster and more helpful. https://www.

blog.google/products/hardware/glass-enterprise-edition-2/, 2019. Acesso em 10

de Outubro de 2019.

[25] TV, M. B. A. Microsoft hololens 2 demo - mobile world congress 2019 (ju-

lia schwarz). https://www.youtube.com/watch?v=8wHC2Rb46H4&t=2s, 2019.

Acesso em 10 de Outubro de 2019.

[26] WIRED. Microsoft’s hololens 2 puts a full-fledged computer on your face. https:

//www.wired.com/story/microsoft-hololens-2-headset/, 2019. Acesso em 10 de

Outubro de 2019.

[27] CHAMARY, J. Why ’pokémon go’ is the world’s most important

game. https://www.forbes.com/sites/jvchamary/2018/02/10/pokemon-go-

64

science-health-benefits/#3e3743153ab0, 2018. Acesso em 12 de Outubro de

2019.

[28] ALTHOFF, T.; WHITE, R. W.; HORVITZ, E. Influence of pokémon go on

physical activity: study and implications. Journal of medical Internet research,

v. 18, n. 12, p. e315, 2016.

[29] 3D4MEDICAL. Complete anatomy 2020. https://3d4medical.com, 2019. Acesso

em 12 de Outubro de 2019.

[30] ARTOOLKIT. Bring math to life with apple arkit. https://www.geogebra.org/

m/R8Qd7U8y, 2019. Acesso em 17 de Setembro de 2019.

[31] FINUCANE, B. The next technological revolution: Investing in augmen-

ted and virtual reality. https://financial-news-now.com/the-next-technological-

revolution-investing-in-augmented-and-virtual-reality/, 2019. Acesso em 1 de

Novembro de 2019.

[32] APPLE. ios technology overview. http://pooh.poly.asu.edu/Mobile/

ClassNotes/Papers/MobilePlatforms/iOSTechnicalOverview.pdf, 2012. Acesso

em 5 de Agosto de 2019.

[33] APPLE. About app development with uikit. https://developer.apple.

com/documentation/uikit/about app development with uikit#3004320, 2019.

Acesso em 5 de Agosto de 2019.

[34] APPLE. Model-view-controller. https://developer.apple.com/library/archive/

documentation/General/Conceptual/DevPedia-CocoaCore/MVC.html#//

apple ref/doc/uid/TP40008195-CH32-SW1, 2018. Acesso em 6 de Agosto de

2019.

[35] APPLE. Arkit — apple developer documentation. https://developer.apple.

com/documentation/arkit, 2019. Acesso em 01 de Julho de 2019.

65

[36] APPLE. Understanding world tracking. https://developer.apple.com/

documentation/arkit/understanding world tracking, 2019. Acesso em 15 de Ou-

tubro de 2019.

[37] RAYWENDERLICH. Augmented reality and arkit tutorial. https://www.

raywenderlich.com/378-augmented-reality-and-arkit-tutorial, 2017. Acesso em

15 de Outubro de 2019.

[38] RAYWENDERLICH. Getting started with arkit with swift 4 - xcode 9, ios

11 - augmented reality in swift. https://www.youtube.com/watch?v=zcwPnU-

XVtQ, 2018. Acesso em 15 de Outubro de 2019.

[39] APPLE. Augmented reality. https://www.apple.com/lae/ios/augmented-

reality/, 2019. Acesso em 6 de Agosto de 2019.

[40] APPLE. Apple introduces iphone 6s and iphone 6s plus. https://www.apple.

com/newsroom/2015/09/09Apple-Introduces-iPhone-6s-iPhone-6s-Plus/,

2015. Acesso em 6 de Agosto de 2019.

[41] STARLINE. Background assets. https://www.freepik.com/free-photos-vectors/

background, 2019. Acesso em 1 de Outubro de 2019.

[42] GRAPHICBURGER. Mobile game ui. https://graphicburger.com/mobile-

game-gui/, 2019. Acesso em 1 de Outubro de 2019.

[43] ADAMS, V. Carter one. https://fonts.google.com/specimen/Carter+One, 2019.

Acesso em 1 de Outubro de 2019.

[44] MARKETSANDMARKETS. Augmented reality market. https:

//www.marketsandmarkets.com/Market-Reports/augmented-reality-market-

82758548.html, 2019. Acesso em 1 de Novembro de 2019.

