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RESUMO

BONATI, M. P. Método baseado em aprendizado de maquina para reducio de artefatos
gerados por objetos metalicos em imagens de tomografia computadorizada. 2020. 78p.
Monografia (Trabalho de Conclusdo de Curso) - Escola de Engenharia de Sao Carlos,
Universidade de Sao Paulo, Sao Carlos, 2020.

A tomografia computadorizada (CT- Computed Tomography) é um método de diagndstico por
imagem que utiliza raios X para obter uma reprodu¢do de uma sec¢do do corpo humano. A
visualizagdo desse exame se da pela aplicacao de métodos de reconstrugdo, os quais utilizam os
sinais recebidos por sensores para converté-los em uma imagem digital. No entanto, se os raios
X atravessam um material muito denso durante o exame, tais como implantes metdlicos, tem-se
a geracdo de artefatos na imagem reconstruida, que podem prejudicar o diagndstico médico.
Estes artefatos sao faixas luminosas resultantes da interacdo dos fétons de raios X com objetos
metdalicos, que acabam por degradar a imagem. Devido a evolugdo das técnicas de aprendizado
de mdquina e inteligéncia artificial, nos ultimos anos, houve um aumento expressivo no desen-
volvimento de algoritmos na busca de reducao de artefatos em imagens de CT. O objetivo deste
trabalho é desenvolver um método para a reducdo de artefatos metélicos utilizando redes neu-
rais convolucionais aplicadas diretamente no senograma das imagens a serem reconstruidas. O
método proposto foi avaliado em imagens sintéticas geradas com o Phantom Shepp-Logan e
os resultados obtidos com a rede proposta foram comparados com os resultados dos métodos
tradicionais de substituicdo de valores corrompidos no senograma por valores vizinhos e por
interpolagdo. Os resultados sugerem que o método proposto produz imagens melhores que as
outras abordagens avaliadas para redugdo de artefatos, em termos de erro quadratico médio, re-
lacdo sinal-ruido de pico e indice de similaridade estrutural. Conclui-se que a utilizagdo deste
método com redes neurais convolucionais para complementagdo do senograma pode ser uma
alternativa vidvel para a reducdo de artefatos metalicos, aprimorando as imagens geradas pela

tomografia computadorizada.

Palavras-chave: Tomografia computadorizada, artefatos metélicos, CNN.






ABSTRACT

BONATI, M. P. . 2020. 78p. Monografia (Trabalho de Conclusao de Curso) - Escola de
Engenharia de Sao Carlos, Universidade de Sao Paulo, Sao Carlos, 2020.

Computed tomography (CT) is a diagnostic imaging method that uses X-rays to obtain a re-
production of a section of the human body. The exam is retrieved by applying reconstruction
methods, which use the signals received by the detector to convert them into a digital image.
However, if the X-rays pass through a very dense material during the examination, such as metal
implants, artifacts are generated in the reconstructed image, which can impair the medical diag-
nosis. These artifacts are luminous bands resulted from the interaction of X-ray photons with
metallic objects, which end up degrading the image. Due to the evolution of machine learning
techniques and artificial intelligence, in the last few years, there has been a significant increase
in the development of algorithms to reduce artifacts in CT images. The objective of this work
is to develop a method to reduce metal artifacts using convolutional neural networks applied
directly into the sinogram. The proposed method was evaluated on the Shepp-Logan phantom
and the results were compared with the results of the traditional methods such as interpolations.
The results indicated that the proposed method produces better images than the other approaches
evaluated for artifact reduction, in terms of mean squared error, peak signal-to-noise ratio and
structural similarity index. In conclusion, the proposed method may be a viable alternative to

reduce metal artifacts, improving the images generated by the CT exam.

Keywords: Computed tomography, metal artifacts, CNN.
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1 INTRODUGCAO

Resultados eficientes e precisos na representacao de aspectos anatomicos do corpo hu-
mano tém sido alguns dos fatores para o aumento significativo no uso de diagndstico por ima-
gens (RIBEIRO-ROTTA, 2004). Dentre as técnicas de aquisi¢ao de imagens, a tomografia com-
putadorizada, do inglés: Computed Tomography (CT), apresenta algumas vantagens sobre a
radiografia convencional, posto que: resulta em uma boa representacao de estruturas tridimen-
sionais, minimizando a sobreposicao de tecidos; € sensivel na diferenciacdo de estruturas pro-
ximas promovendo uma observacao mais rigorosa entre diferentes tecidos do corpo humano; e
comparativamente, apresenta um melhor delineamento das estruturas dsseas da base do cranio
e esqueleto facial (RODRIGUES; VITRAL, 2007).

A CT é realizada utilizando-se um tomdgrafo, aparelho que contém uma fonte de raios
X que rotaciona circularmente em torno de uma regido de interesse, como por exemplo, a ca-
beca do paciente. Esta fonte emite raios X em direcao a uma série de detectores localizados no
lado oposto da fonte, os quais transformam a radiacio recebida em sinais elétricos (JUNIOR;
YAMASHITA, 2001). Esses sinais passam por processos de quantizacdo, originando no compu-
tador uma imagem bidimensional representada em niveis de cinza, os quais variam de acordo
com o coeficiente de atenuacgdo linear médio do tecido em andlise (RODRIGUES; VITRAL,
2007).

O coeficiente de atenuacao linear € um parametro que varia de material para material.
Obturagdes dentdrias, quadris artificiais, implantes de coluna, cirurgias grampo e implantes
dentdrios sdo exemplos de materiais metalicos que apresentam coeficientes de atenuacao muito
maiores do que ossos ou tecidos moles (ZHANG et al., 2007). Estes objetos bloqueiam quase
totalmente a passagem de fétons, fazendo com que nao chegue informagao nenhuma, ou quase
nenhuma, no detector. Essa auséncia de dados faz com que sejam gerados artefatos na recons-

trucdo que degradam gravemente a qualidade da imagem (GJESTEBY et al., 2016).

Artefatos s@o estruturas observadas nas imagens reconstruidas (como listras claras ou
escuras) que ndo representam corretamente as estruturas reais (KUTEKEN et al., 2017). Es-
ses erros na reconstru¢do afetam a capacidade de diagndstico e impedem a distin¢c@o precisa
dos tipos de tecido. No planejamento da radioterapia para o tratamento do cancer isso € preju-
dicial pois, a localiza¢do inexata do tumor e a caracterizacio errada dos tecidos circundantes
podem resultar em erros de célculos que afetam gravemente o sucesso do tratamento (KILBY;
SAGE; RABETT, 2002). Um outro exemplo onde os artefatos metélicos afetam o diagndstico
€ na ortopedia pois, € exigida uma alta qualidade de imagem perto dos implantes metalicos
(ROBERTSON et al., 1988).
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Visando melhorar a qualidade da imagem para recuperar informagdes sobre todas as es-
truturas em andlise no exame de tomografia, muitos métodos e algoritmos de reducdo de artefa-
tos metalicos foram propostos e testados. Pode-se classificar as técnicas de redugao de artefatos
metalicos, do inglés: Metal Artifact Reduction (MAR), em diferentes categorias: otimizagao de
implantes metélicos; melhorias fisicas nos equipamentos; algoritmos mais avangados de recons-
trucdo; técnicas de pos-processamento; e técnicas de pré-processamento, como por exemplo a
complementacao da projecdo (GJESTEBY et al., 2016).

Uma abordagem bastante utilizada para a redugdo de artefatos metalicos diz respeito a
corre¢do e/ou substituicdo dos dados diretamente sobre o senograma da imagem (GJESTEBY
et al., 2016). O senograma corresponde a uma composi¢ao de diversas projecdes obtidas no
processo de tomografia, representando um conjunto de dados que servem de partida para o
processo de reconstrucao através de um método analitico chamado de retroprojecao filtrada, do
inglés: Filtered Back-Projection (FBP) (SCARFE; FARMAN, 2008).

Existem diversos métodos matematicos para a complementacdo do senograma, como
por exemplo a substituicdo por valores vizinhos ao metal (KALENDER, 2011) e interpolag¢do
linear. Apesar de computacionalmente simples, o sucesso da interpolacdo linear varia de acordo
com o caso, apresentando uma maior eficicia quando uma pequena fra¢do da projecao é oca, a
densidade distribuicao € simétrica ou a projecdo ndo muda muito na secdo interpolada (GJES-
TEBY et al., 2016). Uma outra abordagem corresponde a métodos baseados em aprendizagem
profunda para a correcio dos dados que geram artefatos por meio de redes neurais convolucio-

nais, tratando a imagem do senograma em todo o seu dominio (GHANI; KARL, 2018).

Dentre as técnicas de complementacdo do senograma a partir do uso de aprendizagem
profunda, pode-se citar: uso de redes neurais para estimar os dados perdidos no dominio do se-
nograma (CLAUS et al., 2017); correcao dos dados a partir da utilizacdo de uma rede totalmente
convolucional, do inglés: Fully Convolutional Network (FCN), a partir de anélises dos dados an-
tes da reconstru¢do, trabalhando totalmente no dominio do senograma (GHANI; KARL, 2018);
uso de redes neurais convolucionais, do inglés Convolutional Neural Network (CNN), que funde
as informagdes das imagens originais e corrigidas para suprimir artefatos (ZHANG; YU, 2018);
uso de aprendizagem profunda com operacdes residuais para complementar a correcao de arte-
fatos metdlicos apds uma passagem inicial em um processo de interpolacdo (GJESTEBY et al.,
2018); dentre outros.

1.1 Objetivo

Este estudo tem como objetivo: a) desenvolver um método de reducao de artefatos me-
talicos nas imagens reconstruidas com FBP, utilizando redes neurais convolucionais aplicadas
em senogramas; b) testar diferentes fungdes custo para a rede; ¢) avaliar o método proposto em
imagens sintéticas baseadas no phantom Shepp-Logan; d) comparar os resultados obtidos com

os métodos de complementagcdo do senograma (substituicao pelos valores vizinhos do metal e
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interpolacgdo linear) utilizando métricas de erro quadratico médio, relagcdo sinal-ruido de pico e

o indice de similaridade estrutural.
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2 FUNDAMENTAGAO TEORICA

2.1 Tomografia Computadorizada

A CT é um método de diagndstico por imagens cada dia mais utilizado na prética clinica,
sendo que a visualizagdo do exame é possivel devido aos diferentes indices de absorcao pelos
tecidos aos feixes de raios X emitidos pela mdquina. Historicamente, sua utilizacdo diagndstica
ocorreu pela primeira vez em 1971 visualizando um tumor cerebral em uma mulher de 41 anos.
O interesse inicial da aplica¢do deste exame foi em regides cerebrais e se deve ao fato de que
o tecido cerebral apresenta uma baixa atenuacdo dos feixes de raios X se comparada ao 0sso
cortical do cranio, sendo que uma boa visualiza¢cdo desta area era impossivel até a invengdo da
CT (MOURAO, 2018). A Figura 2.1 demonstra uma comparacio entre imagens obtidas a partir
da radiologia convencional e da CT, confirmando que a visualizagdo dessa drea craniofacial

apresenta um melhor delineamento nas imagens obtidas com a CT.

Figura 2.1 — Imagens radioldgicas da cabeca: comparacao entre radiologia convencional (a) e
imagens obtidas a partir da tomografia computadorizada (b) e (c).

Fonte: Adaptada de (MOURAO, 2018)

A matemdtica fundamental para o funcionamento da CT remonta a Johann Radon que
desenvolveu em 1917 um método para projetar um objeto 2-D ao longo de raios paralelos atra-
vés de seu trabalho com integrais de linhas (GONZALEZ; WOOQODS, 2000). O método conhe-
cido como Transformada de Radon contribuiu para que em 1964, Allan M. Cormack demons-
trasse os primeiros resultados de reconstru¢do de imagens de raios X obtidas em diferentes
direcdes angulares (GONZALEZ; WOODS, 2000). Em 1971, Godfrey Hounsfield, inventou e
apresentou o aparelho de CT como método diagndstico. Em 1979, o Prémio Nobel de medi-

cina foi entregue aos dois precursores da pesquisa de aparelhos de CT: Cormack e Hounsfield
(MOURAO, 2018).
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O primeiro aparelho de CT foi utilizado no Hospital Atkinson Morley em Londres, o
qual acomodava somente a cabega do paciente e apresentava um tempo elevado tanto para es-
canear uma fatia (cerca de 5 minutos) quanto para reconstruir a imagem no computador (cerca
de 2 minutos) (PARKS, 2000). A CT sofreu muitas evolugdes, tendo como grandes resultados
a reducdo do tamanho dos aparelhos e do tempo de aquisi¢do, a melhora da qualidade das ima-
gens, o surgimento de novas aplicagdes e uma maior flexibilidade no trato de dados (MOURAO,
2018).

O aparelho de tomografia computadorizada tradicional possui trés componentes prin-
cipais: O gantry, que apresenta em seu interior o tubo de raios X e um anel de detectores de
radiacdo, o qual é constituido de cristais de cintilagdo; a mesa, que corresponde a parte onde o
paciente permanece deitado, sendo que este € movimentado para o interior do gantry durante
0 exame; e o computador, responsdvel por reconstruir a imagem a partir dos dados recebidos
nos detectores (GARIB et al., 2007). A Figura 2.2 demonstra as partes de um tomdégrafo tipico,

apresentando o gantry e a mesa.

Figura 2.2 — Um tomégrafo tipico.

Fonte: Adaptada de (PRINCE; LINKS, 2006)

O aparelho de CT passou por diversas modificacdes ao longo dos anos, trazendo altera-
cOes nos parametros de aquisi¢do, formato dos detectores, tamanho dos tomdgrafos, tempo de
aquisi¢do, dentre outros (PRINCE; LINKS, 2006). Para a CT que emite feixes em formato de
leque, o exame ocorre da seguinte maneira: A fonte de raios X emite um feixe colimado e fil-
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trado em dire¢do a um anel estaciondrio com diversos detectores. No interior do gantry, o tubo
de raios X gira dentro deste anel. Os detectores emitem sinais que variam proporcionalmente a
intensidade dos feixes de raios X que recebem. Esta intensidade varia de acordo com o indice
de atenuacdo dos tecidos pelos quais o feixe passa. Sao feitas miltiplas projecdes no percurso
de 360° em torno do paciente, sendo que posteriormente todos esses dados sdo recebidos pelo
computador, o qual fica responsavel por reconstruir a imagem de uma sec¢do do corpo humano
(LANGLAIS; LANGLAND; NORTJE, 1995).

Uma parte dos tomégrafos utilizam uma unica fonte de raios X ja que isso reduz o custo
de manuten¢do do aparelho. Em geral, os tubos de raios X sdo iguais aos utilizados em uma
radiografia convencional, sendo necessdrios periodos de resfriamento entre as varreduras para
que danos sejam evitados por calor excessivo. Uma caracteristica dos raios X gerados na CT
de feixe em leque € que estes requerem colimacdo e filtragdo. A colimacdo se deve ao fato
da necessidade de projetar o feixe de raios X em formato de leque, sendo que este é feito ao
atravessar uma fenda gerada por duas pecas de chumbo. O processo de filtracdo, por sua vez,
serve para garantir que o feixe seja o mais monoenergético possivel, sendo que uma dessas
filtragens € feita com o uso de cobre seguido de aluminio, estreitando o espectro de energia do
feixe de raios X (PRINCE; LINKS, 2006).

Alguns tomdgrafos apresentam, por exemplo, detectores do estado sélido. Esses detec-
tores possuem um cristal cintilante, sendo que ao ser atingido por raios X ocorre o efeito foto-
elétrico, sendo produzido fotoelétrons. Este processo de cintilagcdo resulta em uma explosao de
luz, sendo esta convertida em corrente elétrica através de um fotodiodo de estado solido conec-
tado ao cintilador. Comumente, utilizam-se para essa funcdo materiais como cddmio, tungstato,
germanato de bismuto ou iodeto de césio (PRINCE; LINKS, 2006). A Figura 2.3 demonstra a
arquitetura desses detectores do estado sélido.

Dentre as evolucdes que ocorreram nos aparelhos de CT, uma importante diz respeito
as alteragdes que ocorreram tanto na emissao dos raios X como nos detectores. Os tomégrafos
conhecidos como 1¢ ou 2¢ gera¢@o possuem dados coleados a partir de raios paralelos, conforme
mostra a Figura 2.4 (a). A 3 ou 4* geracdo compartilham nas amostras de um unico foco de
projecdo para um ponto. Esse tipo de coleta de dados € chamada de proje¢dao em leque, conforme
mostrado na Figura 2.4 (b). Por fim, o terceiro modo de coleta de dados diz respeito a projecao
de feixe conico, representado pela Figura 2.4 (c). E possivel perceber que nessa modalidade
varios planos de feixe em leque sdo coletados simultaneamente para cobrir um volume. Nota-
se que, apesar disso, apenas um plano € perpendicular ao eixo de rotagdo, sendo o restante
inclinados em relacdo a este eixo. A partir dessa andlise, é possivel afirmar que conforme o

tempo passa, mais complexo se torna o padrdao de amostragem (PRINCE; LINKS, 2006).
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Figura 2.3 — Detectores do estado sélido.

raios X

\%43%43%43%
pe

cristais T
cintiladores fotodiodos

Fonte: Adaptada de (PRINCE; LINKS, 2006)

Figura 2.4 — Diferentes geometrias de amostragem: (a) feixe paralelo, (b) feixe em leque, (c)
feixe em cone.

detector

(a) (b)

Fonte: Adaptada de (PRINCE; LINKS, 2006)

As vantagens de utilizar o exame de CT € de se obter imagens de tecidos e 6rgaos inter-
nos do corpo humano minimizando os efeitos da sobreposi¢cao de estruturas. Além disso, para
o caso de CT de cabeca, € possivel obter um melhor delineamento das estruturas 6sseas da base
do cranio e esqueleto facial comparado a radiografia convencional. O seu poder de apresentar
uma melhor resolu¢do e minimizar as sobreposi¢des de tecidos resultam em significativas van-
tagens na avaliacdo de lesdes neopldsicas e traumadticas, apresentando bons resultados na regiao
da cabeca e pescoco. A CT também foi o primeiro exame que permitiu a obtencdo de imagens
diretas dos tecidos moles, ainda que deficientes. Como desvantagens deste exame, € importante

ressaltar a dose de radiacdo mais alta do que em exames convencionais e a formacao de artefatos
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causados por fatores como as estruturas dsseas compactas (especialmente na base do cranio) e
estruturas metdlicas (restauracoes e dispositivos dentdrios) (RIBEIRO-ROTTA, 2004)

2.2 Principios de Formacao de Imagens

A aquisicdo de imagens por meio da CT € possivel pois durante o exame, os feixes
de raios X emitidos pelo tubo sofrem distintas atenuagdes ao atravessarem o corpo do paciente.
Essas atenuacdes sdo resultantes das interagdes dos fétons de raios X com os tecidos (RIBEIRO-
ROTTA, 2004). Para entender melhor o processo de aquisicdo de imagens, € necessario estudar
sobre o processo de interagdes dos raios X com a matéria. Como dito na Secdo 2.1, o feixe é
filtrado para se tornar o mais monoenérgico possivel. A partir disso, é possivel afirmar que as
intensidades de raios X mensuradas na entrada e saida de um material uniforme, seguem a lei

de Beer-Lambert (HSIEH, 2003) representada matematicamente pela Equacao 2.1:

I = [je HA® 2.1)

onde [, representa a intensidade do feixe de raios X de entrada, [ a intensidade de saida, Ax
a espessura e p corresponde ao coeficiente de atenuacao linear do material. O coeficiente de
atenuacdo depende da energia do feixe, e o feixe de raios X normalmente nio € totalmente
monoenergético. Para contornar este problema, € utilizado o valor da energia eficaz. A partir
da Equacdo 2.1, fica evidente o fato de que para a mesma espessura de material, quanto maior
o coeficiente linear do material, mais atenuada serd a intensidade de saida. Para materiais ndo

uniformes, tem-se a representacdo da intensidade de saida através da Equagdo 2.2:

[ = embeg-mbag—pda _ (- TN mbe) 2.2)

Ou seja, a atenuag@o resultante para um material ndo uniforme pode ser calculada
dividindo-se o material em elementos menores. Dividindo-se ambos os lados da equacdo pela

intensidade 1inicial /; e tomando o negativo do logaritmo da intensidade, tem-se a Equacdo 2.3:

I N
—In ([—O) = pmAx (2.3)

n=1

Por fim, quando Az tende a zero, a Equacdo 2.3 se torna uma integracdo sobre a espes-

(L) - [ vt »

A Equacio 2.4 demonstra que o logaritmo da propor¢do da intensidade dos raios X de

sura do objeto:

entrada sobre a intensidade dos raios X de saida representam a integral de linha dos coeficientes
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de atenuacdo ao longo do caminho percorrido pelos raios X (HSIEH, 2003). Em um CT real, a
intensidade de referéncia I deve ser medida para cada detector, sendo esta uma parte importante
da etapa de calibracdo (PRINCE; LINKS, 2006).

Como dito na se¢do 2.1, cada tomdgrafo possui um tubo responsavel por gerar o feixe
de raios X utilizado no exame. Sabe-se que cada tubo possui uma prépria energia eficaz. Ou
seja, para padronizar os dados de diferentes tubos em diferentes scanners, foi desenvolvido o
nimero de CT (h), sendo este definido pela Equacao 2.5 (PRINCE; LINKS, 2006):

h = 1000 <M> 2.5)

Magua

onde 1 € o coeficiente de atenuacdo de um material qualquer e /1,4, € 0 coeficiente de atenuacio
linear da dgua. A Equacgdo 2.5 tem seu resultado expresso na escala Hounsfield (HU), a qual
foi construida através da atenuagdo no ar seco e na dgua pura a 25°C, sendo estes valores
respectivamente iguais a -1000 HU e 0 HU (RIBEIRO-ROTTA, 2004) .

2.3 Reconstrucao de imagens

Para melhor entender o processo de reconstru¢do de imagens a partir de projecoes,
propdem-se a andlise de um fundo uniforme que contém um objeto com maior indice de ate-
nuagdo, como mostra a Figura 2.5(a). Dado o caminho em que certa projecdo foi adquirida, se
tomarmos seu caminho reverso, temos um feixe como ilustrado na Figura 5(b). Conforme au-
menta o nimero de projecoes, a intensidade das retroproje¢des que ndo se cruzam diminui se
comparada a das regides nas quais as multiplas retroprojecdes se cruzam. Ou seja, as regides
mais claras irdo dominar o resultado e as retroprojecdes com pouca ou nenhuma interseccao
desaparecerdo no plano de fundo (GONZALEZ; WOODS, 2000).

Nota-se que apesar do formato do objeto ficar mais evidente conforme aumenta-se o
numero de proje¢des, € perceptivel também a formagdo de um borramento em torno do objeto,
sendo este efeito chamado de "halo", fendbmeno corrigido por processos de filtragens (GONZA-
LEZ; WOODS, 2000) que serao explicados posteriormente. Em resumo, j4 foi determinado que
€ possivel reconstruir uma imagem a partir de um conjunto de integrais de linhas dos coeficien-
tes de atenuacdo dos materiais. Para entender o processo matematico, consideram-se que X € y
sdo coordenadas em um plano. Uma linha reta em coordenadas cartesianas pode ser descrita na

sua representa¢do normal por:

xcos(0) + ysen(d) =1 (2.6)
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Figura 2.5 — (a) Regido plana mostrando um objeto simples. (b) a (e) reconstru¢do usando 1,
2, 3, e 4 projecdes com distancia de 45°. (f) reconstru¢do com 32 projecdes com
distancia de 5,625 °.

a-b
d-e

C-
f-

Fonte: Adaptada de (GONZALEZ; WOQODS, 2000)

sendo [ a posicdo lateral de uma linha e # o angulo de uma unidade normal a linha. A proje¢éo
de um feixe de raios paralelos pode ser formada por um conjunto dessas linhas. Um ponto

arbitrdrio no sinal da projecdo € dado pela soma de raios ao longo da linha:

xcos(0y) + ysen(0y) =1, (2.7)

para valores continuos, a soma de raios € dada por

o100 = [ N / " F(,y)d(acos(00) + ysen(6x) — 1;)dudy 2.8)

sendo que ¢ representa as propriedades da fungdo impulso. Se for considerado todos os valores

de [l e 0, a Equagao 2.8 é generalizada como:

g(1,0) = /_00 /_OO f(z,y)0(xzcos(0) + ysen(0) — l)dzxdy (2.9)

Para um 6 fixo, g(l, 0) é chamado de proje¢do; para todos os valores de [ e 6, g(l, ) é co-

nhecido como a Transformada 2-D de Radon de f(z,y). Esse processo matematico € ilustrado



32

pela Figura 2.6, onde f(z,y) representa o objeto com diferentes niveis de atenuagdo sendo a

projecdo para um valor de # fixo representada na parte inferior da Figura.

Figura 2.6 — A geometria das linhas e proje¢des.

Fonte: Adaptada de (PRINCE; LINKS, 2006)

No caso discreto, a Equacdo 2.9 passa a ser

T
2
.

g(1,6) = f(z,y)8 (zcos(8) + ysen() — 1) (2.10)

x

Il
o
<

Il
o

na qual z,y, [ e 6 agora sdo variaveis discretas. Ou seja, se mantido um valor de ¢ fixo e variar
o valor de [, serd perceptivel que a Equagdo 2.10 realiza uma soma dos pixels de f(x,y) ao
longo da linha definida pelos valores especificados desses dois parametros. Por outro lado, se
passar por todos os valores de [ com um 6 fixo, tem-se como resultado uma projecdo, sendo

estes dados fundamentais para a reconstru¢io da imagem de CT.
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2.4 Senograma

Quando a transformada de Radon g([, 0) é exibida como uma imagem com [ e 6 sendo
coordenadas retilinias, o resultado é chamado de senograma. Um senograma é uma representa-
¢ao da transformada de Radon que contém os dados necessdrios e suficientes para reconstruir
f(z,y) (GONZALEZ; WOODS, 2000). Um senograma ¢ formado pelo empilhamento de todas
as projecoes de diferentes vistas, de modo que uma projecdo tnica € representada por uma linha
horizontal. A proje¢do de um tinico ponto forma uma curva sinusoidal no espaco do senograma
(HSIEH, 2003). Isto pode ser observado através da Figura 2.7.

Figura 2.7 — Ilustragcdo do mapeamento entre o espaco do objeto (lado direito da Figura) e o
espaco do senograma (lado esquerdo da Figura).
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Fonte: Adaptada de (HSIEH, 2003)

Um senograma pode ser usado para analise dos dados de proje¢do, como por exemplo
na detec¢do de anormalidades do aparelho de CT. Um mau funcionamento momentaneo do tubo
de raios X ird produzir uma interrup¢ao em linhas na formacdo da imagem do senograma, ja
que cada linha representa a projecdo em um determinado tempo (HSIEH, 2003). O Senograma
¢ utilizado também para desenvolvimento de algoritmos tanto de reconstru¢cdo quanto para me-

lhorar a visualizacdo do exame, tendo como exemplo algoritmos para a reducdo de artefatos
(LEAO; MACEDO, 2014).

Um senograma pode ser facilmente interpretado quando este representa figuras simples,
mas isto se torna mais dificil conforme a complexidade do objeto aumenta. Para ilustrar essa di-
ferenca, consideram-se os objetos da Figura 2.8 (a) e 2.8 (c). Esses objetos sdo respectivamente
um retangulo uniforme e uma imagem sintética amplamente utilizada para simulacdes da drea
cerebral chamada de Phantom de Shepp-Logan (GONZALEZ; WOOQODS, 2000). As Figuras 2.8
(b) e 2.8(d) representam os senogramas do retangulo e do Shepp-Logan, respectivamente. Os

eixos verticais do senograma correspondem a 6 e os horizontais a [. Deduz-se facilmente na
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Figura 2.8 (b) que a linha inferior € a projecdo do retangulo na direcao horizontal e a linha do
meio € a projecdo na dire¢do do vertical, sendo estes valores para § = 0° e § = 90° respecti-
vamente. Com o senograma do phantom representado pela Figura 2.8 (d), s6 € possivel deduzir

um pouco de simetria da imagem original e nada mais que isso (GONZALEZ; WOODS, 2000).

Figura 2.8 — (a) Retangulo uniforme, (b)senograma do Retingulo uniforme, (c) phantom de
Shepp-Logan , (d) senograma do phantom de Shepp-Logan.

h 180

135
u 90

45

d 180

135
u 90

45

Fonte: Adaptada de (GOLDMAN, 2007)

O exame de CT tem como objetivo obter uma representacao 3-D de um volume a partir
de suas projecdes 2-D. Isso representa a necessidade de realizar a retroproje¢dao de cada pro-
jecdo, soma-las para gerar uma imagem (fatia) 2-D e empilha-las para a produ¢do do volume
(GONZALEZ; WOODS, 2000). A partir dos dados obtidos do senograma, o préximo passo €
processa-los para que se parecam com o objeto de onde foram criados. Este processo é chamado
de reconstrucdo, e embora existam diversos métodos para isso, serdo detalhados neste projeto

dois fundamentais: O Teorema da Fatia de Fourier e a FBP.

2.5 Reconstrucao: O teorema da Fatia de Fourier

Para deduzir um resultado fundamental de reconstru¢do € importante relacionar a trans-
formada de Fourier 1-D de uma projecao e a transformada de Fourier 2-D da regido a partir da

qual a projecdo foi obtida. Esta corresponde a base dos métodos de reconstruciao tendo como
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resultado a eliminacao do efeito de halo comentado na Secao 2.3. Inicialmente, toma-se a trans-

formada de Fourier 1-D de uma projecao em relacio a [ como:

Glw,6) = Finlo.0)} = [ glt.0)e ™l @1
onde w € uma varidvel de frequéncia. O préximo passo € substituir a expressao analitica para

g(l, 0) mostrado na Equagdo 2.10 o que resulta na Equag@o 2.14 apds as manipula¢des mostra-

das nas Equacdes 2.12 e 2.13:

G(w,0) = /00 /OO /00 f(z,y)0(zcos(0) + ysen(8) — 1) e 7> dudydl (2.12)

G(w,0) = / / f(x, y)/ §(zcos(0) + ysen(d) — 1)e > dudydl (2.13)
G’(w, 9) _ / / f(.%', y)e—j27rw (accos(@)-l—ysen(@))dxdy (2.14)
Antes de continuar a tratativa na Equacdo 2.14, é fundamental entender as propriedades

da func¢do impulso para 2-D. Seja um impulso §(¢, z) de duas varidveis continuas ¢ e z definidos
pela Equacao 2.15 (GONZALEZ; WOODS, 2000):

oo set=2z=0
it z) = (2.15)
0, c.c.

/OO /00 d(t, z)dtdz = 1 (2.16)

Assim como conhecido para 1-D, o impulso em 2-D apresenta a propriedade de penei-

ramento em relagdo a integracao:

/OO /OO f(t,2)d(t, z)dtd= = f(0,0) (2.17)

se considerado na origem, ou de maneira geral, um impulso localizado nas coordenadas (%o, zo):

/00 /OO f(t,2)0(t —tg, 2 — zo)dtdz = f(tg, 20) (2.18)
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Quando olha-se para varidveis discretas z e y, o impulso discreto 2-D é definido como:

1 sex=y=0
5(z,y) = . (2.19)

Relembrada a propriedade do impulso e considerando:

u = wcos(f)

(2.20)
v = wsen(d)

A expressdo final para G(w, ) é uma reminiscéncia da Transformada 2-D de Fourrier

para f(z,y) sendo definida como:

F(u,v) = / ) / " fa, gy (et doay .21)

a qual para os valores definidos anteriormente de u e v € traduzida como:

G(w,0) = F(wcos(0), wsen()) (2.22)

A Equagao 2.22 € conhecida como o teorema da fatia de Fourier, o qual afirma que a
transformada de Fourier de uma projecdo é uma fatia da transformada de Fourier 2-D da regido
a partir da qual a proje¢do foi obtida (PRINCE; LINKS, 2006). Ou seja, de cada proje¢ao obtém-
se uma linha na transformada de Fourier 2D do objeto executando a Transformada de Fourier
na projecdo. Se coletarmos um nimero suficiente de projecdes no intervalo de 0 a 6, pode-se
obter a reconstru¢do do objeto através da transformada inversa de Fourier (HSIEH, 2003).A
representacio grifica que deriva do Teorema da Fatia de Fourier estd representada na Figura
2.9.
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Figura 2.9 — Ilustracdo do Teorema da Fatia de Fourrier

Transformada de
Fourier 1-D

P8 ———~—~ F(wcosh,msind)

Fonte: Adaptada de (HSIEH, 2003)

O Tereoma da Fatia de Fourier entrega uma solu¢do simples e direta para a reconstru¢ao
da imagem tomogréfica. No entanto, existem alguns desafios para sua implementacdo. Um dos
problemas diz respeito ao fato de que o espaco de Fourier ndo é Cartesiano, o que faz com
que as amostras das projecdes caiam em uma grade de coordenadas polares. Para ser feita a
reconstru¢do, € necessdrio realizar a inversa da transformada de Fourier 2-D, sendo necessdrio
fazer um processo de interpolacdo. Essa interpolagdo no dominio da frequéncia € complexa
de ser feita, e qualquer erro nesse processo afeta na aparéncia de toda a imagem reconstruida.
Tendo em vista essa dificuldade, fez-se necessario o desenvolvimento de outros métodos de
reconstru¢dao (HSIEH, 2003).

2.6 Reconstrucao: Filtered Back Projection

Um dos métodos de reconstrugdo alternativos ao método da Teoria da Fatia de Fourier
mais utilizado € chamado de retroprojecdo filtrada, do inglés: Filtered Back-Projection (FBP)
(KAK; SLANEY; WANG, 2002). O método FBP é uma abordagem analitica de reconstrucao
de imagem, sendo este método vastamente utilizado por aparelhos de CT por um longo tempo
(DEAK et al., 2013). Este método utiliza a Transformada de Radon como modelo matematico
basico para as projecdes, retroprojecoes e reconstrucdes da imagem (GONZALEZ; WOODS,
2000). Para a dedu¢do do método FBP, parte-se inicialmente do fato de que a Transformada
de Fourier e a Inversa da Transformada de Fourier sdo operadores conjugados. Dessa forma, a
fun¢do de imagem dada por f(z,y) pode ser recuperada de sua transformada de Fourier F'(u, v)

pela inversa de Fourier, conforme a Equagdo 2.23:

flz,y) = /00 /OO F(u, v)ej27r(m+y”) dudv (2.23)
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A transformacio de coordenadas cartesianas para coordenadas polares pode ser repre-

sentada por:

u = wecos ()

(2.24)
v = wsen(d)
e

o o

ow 06
dudv = dwdf = wdwdb (2.25)

v Ov

ow 06

Substituindo as Equagdes 2.23 e 2.24 na Equacdo 2.25, tem-se:
2w oo )
flz,y) = / d@/ F(wcos(0), wsen(@))eaQw(mcos(eHysen(e))wdw (2.26)
0 0

A partir do uso do Teorema da Fatia de Fourier, pode-se trocar F'(wcos(f), wsin(6)) por

P(w, 0) sendo resultante a seguinte relacao:

2T 0
f(x’y) — / d@/ P(w, 0)€j2w(xcos(9)+ysin(9))wdw 2.27)
0 0

Se considerar a geometria de feixes paralelos, existe uma propriedade de simetria entre

as amostras da projecdo dada por:

p(t, 0+ ) = p(—t,0) (2.28)

Isso esté representado na Figura 2.10, que demonstra que proje¢des distanciadas de 180°

representam o mesmo conjunto de raios.
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Figura 2.10 — Ilustracdo de Simetria dos Raios Paralelos.

Fonte: Imagem adaptada de (HSIEH, 2003)

Com isso, uma relacdo semelhante existe para o par correspondente na transformada de
Fourier(HSIEH, 2003):

P(w,0 +7) = P(—w,0) (2.29)

Sendo possivel chegar na seguinte relacao:

f(x,y) — / de/ P(w’0)‘w‘ej%rw(wcos(@)-ﬁ-ysen(@))dw (230)
0 —00o

Passando a Equagdo 2.30 para o sistema de coordenadas (s,t), chega-se na seguinte
equagao:

flz,y) = /W do /00 P(w,0)|w|e’™™" dw (2.31)
0 —00

Na Equagéo 2.31, P(w, ) é a transformada de Fourier da proje¢ao no angulo 6. A in-
tegral interna € a inversa da transformada de Fourier da quantidade P(w, 6)|w|. No dominio do

espaco, representa uma projec¢ao filtrada por uma funcio cujo dominio da resposta em frequén-
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cia é |w| sendo portanto, chamada de "Projecao Filtrada". Se a notacdo da projecao filtrada no

angulo 6 por g(t, 0) representa a integral interna da Equacado 2.31, entdo:

g(t,0) = g(xcos(0) + ysen(d)) = / P(w, )|w|e’*™ (xcos(e)”se"(e))dw (2.32)

[e.9]

A Equacdo 2.31 pode ser rescrita como:

flz,y) = /O7T g(xcos(8) + ysen(d))dd (2.33)

A Equagido 2.33 demonstra que a imagem reconstruida f(z,y) no local (z,y) é a soma
de todas as amostras de projecao filtradas que passam por este ponto (HSIEH, 2003). Toda essa
tratativa remete a utilizacdo de feixes paralelos, devido a simplicidade do equacionamento. No
entanto, existem outros aparelhos de CT que utilizam feixes em formato de leque. Em seguida,
segue uma breve trativa das equagdes utilizadas no processo FBP. Para facilitar, toma-se como

base a Figura 2.11.

Figura 2.11 — Geometria do feixe em Formato de leque.

Fonte: Adaptada de (GONZALEZ; WOODS, 2000)

Inicialmente, sabe-se que uma amostra ¢(v, 5) em uma projec¢do de feixes em leque

pertenceria a uma amostra p(t, ) em uma projegdo paralela se as seguintes condi¢des forem
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satisfeitas:

=08+
t = Dsen(7)

(2.34)

sendo D a distancia a partir do centro da fonte até a origem do plano xy. Sabe-se que pelo

teorema da convolugdo a Equacao 2.33 pode ser reescrita como:

s tm
flz,y) = / df / p(t', 0)h(t —t')dt' (2.35)
0 —tm

A partir da equacdo 2.35, pode-se deduzir que:

flz,y) = /07r db /ttm p(t', 0)h(xcos(0) + ysen())dt’ (2.36)

Modificando-se a equacao para incluir todas as projecdes sobre 27 e expressando em

coordenadas polares (r, ¢) tem-se:

27 tm
f(r,p) = %/0 do /t p(t', 0)h(rcos(0 — ) —t")dt’ (2.37)

Na Equacao 2.37 ¢ utilizada a relagdo rcos(6 — ¢) = rcos(p)cos(0) + rsen(p)sen(0).
Para que toda a Equac@o seja escrita em termos de de (v, 5) ao invés de (¢, 6), substitui-se a

Equacdo 2.34 na Equacdo 2.37, resultando entdo:

1 [2m— Ym
fro) = 5 / dp q(7, B)h(rcos(B +~ — @) — Dseny) Dcos(vy)dy — (2.38)
Y —Ym

Sendo finalmente a Equacao 2.38 a representagdo fundamental da reconstrugao por fei-
xes em formato de leque baseada em retroprojecdes filtradas (HSIEH, 2003). Em resumo, pode-
se descrever o processo de geral de FBP nesta ordem: aplicar a transformada de Fourier nas
linhas paralelas a trajetdria do tubo; aplicar filtro de rampa; aplicar filtro de janela para reducao
de ruido; aplicar transformada inversa de Fourier; e por fim, projetar novamente os dados no
dominio espacial (VIMIEIRO; BORGES; VIEIRA, 2019).
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3 REVISAO BIBLIOGRAFICA

3.1 Geracao de Artefatos

Um problema que afeta a qualidade das imagens reconstruidas por CT € a criacdo de
artefatos. Os artefatos podem afetar estruturas importantes e podem fazer com que o exame seja
interpretado de forma equivocada, além de prejudicar a detec¢do correta e caracterizagao de
recursos de interesse. Existem diversos tipos de artefatos, os quais podem ser reconhecidos a

partir de suas origens, conforme serd descrito a seguir (PRINCE; LINKS, 2006).

O termo artefato na CT € aplicado a qualquer discrepancia sistematica entre os nime-
ros na imagem reconstruida e os verdadeiros coeficientes de atenuacao do objeto. As imagens
de CT sdo mais propicias a apresentarem artefatos se comparada as radiografias convencio-
nais, pois a imagem € reconstruida a partir de milhares de medi¢des de detectores independen-
tes. Dessa forma, qualquer erro nessa medic¢do refletird como um erro na imagem reconstruida
(BARRETT; KEAT, 2004). Diferentes artefatos geram diferentes problemas nas imagens resul-
tantes do exame, sendo possivel conhecé-los a partir de suas origens. Destacam-se: artefatos de
movimento, artefatos em anel, artefatos de ruido, artefatos de dispersdo, artefatos de extingao,
artefatos gerados por materiais muito densos, dentre outros (RUPRECHT, 2008). Exemplos de

diferentes tipos de artefatos podem ser visualizados na Figura 3.1

Artefatos de movimento sio gerados devido a movimentos do paciente durante o exame.
Isto pode ser amenizado colocando um apoio para a cabeca do paciente e/ou reduzindo o tempo
de exposicdo, ja que a probabilidade do paciente permanecer estatico durante o exame € maior
(SCARFE; FARMAN, 2008). Artefatos em anel recebem este nome pois aparecem nas imagens
como ruidos circulares e sdo causados devido a uma calibrag¢do incorreta do detector do tomé-
grafo. Este efeito pode ser reduzido com uma calibra¢do adequada no detector (SCHULZE et al.,
2011). Artefatos de ruido sdo gerados pelo fato de cada drea do sensor absorver uma diferente
quantidade real de fétons, ja que os processos de atenuacio e espalhamento sdo estocasticos
(LOUBELE et al., 2008).

Artefatos de dispersdo sao causados por fotons difratados de seus trajetos originais mas
que também acabam atingindo o receptor, aumentando erroneamente a intensidade de uma de-
terminada drea medida. Isto pode ser minimizado diminuindo o tamanho do detector (DRA-
ENERT et al., 2007). Diferentemente da superestimacao do nimero de fétons em uma drea,
exitem os artefatos de extingdo, que correspondem a valores préximos de zeros nos receptores,
fato que ocorre em processos no qual o objeto em questdo possui um ndmero grande de materi-
ais absorvedores (BELEDELLI; SOUZA, 2012). Por fim, os artefatos gerados por objetos muito
densos ocorrem pelo fato de que os fétons de menor energia sdo absorvidos por esses materiais

e os fotons de maior energia acabam atingindo os receptores. Este fendmeno € conhecido como
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efeito de endurecimento do feixe, e pode ocorrer por exemplo na presenca de objetos metélicos
(YAZDI; BEAULIEU, 2008).

Figura 3.1 — (a) artefato de movimento, (b) artefato gerado por objeto metalico, (c) artefato em
anel, (d) artefato por efeito de endurecimento do feixe

Fonte: Adaptada de (PRINCE; LINKS, 2006)

Existem protocolos que devem ser seguidos antes do procedimento do exame realizado
pela CT. Neste protocolo, uma das etapas € a retirada de todos os adornos metélicos para evitar
a interacdo dos feixes de raios X com esses, fato que faz com que sejam gerados artefatos (MIKI
et al., 2016). No entanto, sabe-se que ha casos que esse procedimento € invidvel, tendo como
exemplos pacientes com: préteses ortopédicas; restauracdes dentdrias; clips cerebrais; implantes

cocleares; clips de aneurismas; ou qualquer outro objeto metélico (SILVA, 2019).

Os objetos metdlicos possuem um coeficiente de atenuacdo muito mais alto do que 0ssos
e tecidos (ZHANG et al., 2007). Quando o objeto metdlico interage com os raios X, ocorre um
endurecimento do feixe, ou seja, os fétons de menor intensidade sdo absorvidos resultando em
um feixe de fétons mais enérgicos. Pode ocorrer também uma insuficiéncia de fotons, ja que os
indices de absorc¢do de materiais densos sdo altos (GUILFOILE; RAMPANT; HOUSE, 2017).

Os feixes que atravessam os objetos metdlicos geram sinais fracos ao atingir o detec-
tor, resultando em sombras na projecdo bruta de dados (ZHANG et al., 2007). Esta perda de
informacdes sobre a composicao original da anatomia faz com que, na reconstrucio da imagem,
sejam geradas faixas brilhantes que se sobrepdem as regides em torno do objeto metalico, difi-

cultando a visualizacdo destas dreas. Esses artefatos representam regides na imagem final que
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possuem valores de niveis de cinza saturados e distintos da densidade real do tecido (GUIL-
FOILE; RAMPANT; HOUSE, 2017).

Os artefatos gerados por endurecimento do feixe em CT odontolégico sdo bem comuns,
principalmente quando a regido de interesse possui implantes (DRAENERT et al., 2007). Este
fato faz com que a qualidade da imagem adquirida seja baixa, dificultando o diagndstico correto
nas dreas adjacentes aos implantes (AZEVEDO et al., 2008). Para corrigir os artefatos gerados
por endurecimento do feixe, os fabricantes dos tomdgrafos utilizam estratégias que podem ser
divididas em quatro diferentes classes: filtragem de hardware; energia dupla; reconstrucao poli-

cromdtica estatistica e linearizagdo (GOMPEL et al., 2011).

3.2 Métodos para reducao de artefatos metalicos

O surgimento de artefatos metalicos foi descrito na Secdo 3.1, no entanto, deve-se res-
saltar que dependendo da forma e da densidade do objeto de metal, a aparéncia deste tipo de
artefato pode ter uma variacao significativa. Basicamente, o objeto de metal pode produzir o
efeito de endurecimento do feixe, do ingl€s: beam hardening, subfaixas nas aquisi¢des de da-
dos ou extrapolar a faixa dindmica no processo de reconstru¢do (HSIEH, 2003). Os métodos
para reducgdo de artefatos metalicos cresceram com o passar dos anos ja que este € um problema
relevante no ramo da CT. Diversos estudos e abordagens se desenvolveram, buscando diferentes
maneiras de redugdo desses artefatos. Isso pode ser observado na Figura 3.2, que representa um
gréifico evolutivo do numero de publicacdes relacionados a métodos de MAR de 1995 a 2015
(GJESTEBY et al., 2016).

Pode-se dividir as técnicas de MAR em seis grupos diferentes de acordo com o enfo-
que de suas tratativas. Sao elas: otimizacdo de implantes metdlicos; melhora nos parametros
de aquisi¢do; técnicas de pré-processamento baseados nos efeitos fisicos resultantes (como por
exemplo beam hardening); reconstrucdes iterativas; técnicas de pds-processamento e comple-

mento da projecao.

O grupo de técnicas correspondentes a otimizacdo de implantes metélicos, tem como
principal objetivo a remog¢do do objeto metélico durante o exame, tratativa que muitas vezes
¢ invidvel devido a necessidade de algum procedimento cirdrgico invasivo (GJESTEBY et al.,
2016). Dentro deste grupo, existem também linhas de pesquisa para medir e comparar niveis
de atenuacdo dos metais, como por exemplo, o titdnio apresentar uma qualidade de imagem

superior ao uso do cromo-cobalto em regides proximas ao osso (HARAMATTI et al., 1994).

Quando se fala na melhora dos parametros de aquisi¢ao, tem-se a estratégia de que mu-
dar parametros como valores da tensao, corrente do tubo de raios X e dimensao do plano de
varredura reduzem a geracdo de artefatos (GJESTEBY et al., 2016). Como exemplo, a técnica
de aumentar a tensdo e/ou corrente do tubo para que fotons de energia mais altas sejam gera-

dos para penetrar nos objetos de metal, melhora a qualidade dos dados brutos em alguns casos.
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(MOON et al., 2008). O uso de CT com dupla energia, do inglés: dual energy também obtém
resultados satisfatdrios, tendo como exemplo o fato de que 130keV apresenta melhores resulta-
dos para redugdo de artefatos metdlicos comparado a valores inferiores como 40kel e 100keV
(ZHOU et al., 2011).

Figura 3.2 — Total de publicacdes sobre métodos MAR na CT no periodo de 1995 a 2015.

05
80
85
80
T4

70

63

&0

55

50

45

40

25

a0

25

20

15

w 1l
5

c -un-RN0LTTE I

g cgf‘&g’(?' c?«'ﬁm"»\q"i'-’-\h.»\h

A o
@ﬁﬁ o \ﬁ'@@m&?@ﬁ '19& o o

Ano

Publicagdes porano

Fonte: Adaptada de (GJESTEBY et al., 2016)

A linha de pesquisa das técnicas de pré-processamento baseado nos efeitos fisicos diz
respeito a modelar a causa fisica dos artefatos gerados para ser aplicado correcdes no dominio
da projecao antes do processo de reconstrucdo. Dentre as tratativas, tem-se a modelagem de
ruido local com um filtro adaptativo médio (HSIEH, 1998), a qual também pode ser combi-
nada com técnicas algébricas de reconstrucdo, do inglés: Algebraic reconstruction technique
(ART), para suprimir artefatos em listras (RANGAY YAN; GORDON, 1982). Tem também o
estudo de técnicas avancadas de interpolacdo para reducdo do efeito de beam hardening e o

desenvolvimento de algoritmos de corre¢do de dispersao (MEYER et al., 2012).

As reconstrugdes iterativas tem como objetivo reduzir a quantidade de artefatos a partir
de comparacdes entre uma projecao base e os dados obtidos a partir da CT, buscando minimizar
o erro entre os senogramas. Nesta abordagem, existem: algoritmos de remog¢do de manchas a
partir de uma maximizagdo de expectativa, do inglés Expectation Maximization (EM) e a ART
(WANG et al., 1996); criacdo de uma mdéscara de metal para isolar projecdes que necessitam

de correcao (AUGUST; KANADE, 2004); algoritmo baseados na transmissao da maxima ve-
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rossimilhanca que otimiza a probabilidade de dados de Poisson (MAN et al., 2000); algoritmo
iterativo de reconstru¢do policromatica também baseada na verossimilhanca (MAN et al., 2001);

dentre outros.

O grupo de técnicas menos popular corresponde aos métodos de pds processamento. Es-
ses métodos buscam reduzir artefatos apos a reconstru¢ao da imagem, sem depender dos dados
brutos de aquisi¢do (projecdes). Dentre essas técnicas, existem: normaliza¢do dos dados para
um determinado nivel de vinza (HENRICH, 1980); aplica¢do de filtros passa-baixa apds identifi-
car os valores das listras de artefatos através da aplica¢do de um valor Threshold (SOLTANIAN-
ZADEH; WINDHAM; SOLTANIANZADEH, 1996); aplicacao de filtros adaptativos radial em
imagens com baixo nivel de artefatos (BAL et al., 2005). Dentro desta perspectiva, existem
também a utilizagdo de métodos de pds-processamento para melhorar o resultado de etapas ini-
ciais aplicadas por outro grupo. Por exemplo, a combina¢do do método de interpolagdo linear
simples e o método de filtragem adaptativa multidimensional (WATZKE; KALENDER, 2004).

Por sua vez, o grupo de técnicas mais utilizado sdo os métodos para complementar a
projecdo. Em situagdes de presenca de metal nos exames de CT, os dados dessa regido sao
adquiridos incompletos ou até mesmo com valores totalmente corrompidos. Para corrigir isso,
deve-se sintetizar novos dados para a corre¢cdo do senograma. Uma maneira de se conseguir
isso € através de métodos de interpolacdo através dos dados vizinhos ou de algum modelo ma-
tematico (GJESTEBY et al., 2016). Dentre desses métodos tem como exemplo: a interpolagdo
linear (KALENDER, 2011); a interpolacdo de projecdes por contorno (IPC), onde se tem um
aumento do nimero de projecdes para reconstrucao da imagem (BRUYANT; SAU; MALLET,
2000); aplica¢do de método de reconhecimento de padrdoes (MORIN; RAESIDE, 1981); inter-
polacdo em duas dimensdes, utilizando informagdes em um eixo radial (MAHNKEN et al.,
2003); a utilizacdo da técnica conhecida como Total Variation Inpainting para complementar
dados faltantes no senograma (XUE et al., 2009), dentre outros.

Uma abordagem complementar as técnicas citadas anteriormente corresponde a norma-
lizag¢do dos dados. Inicialmente, foram feitos estudos analisando inicialmente reconstrugdes de
imagens ndo corrigidas para encontrar os objetos de metal e depois normalizando as projecdes
a partir do resultado obtido (MULLER; BUZUG, 2009). Foi entio desenvolvida uma técnica
conhecida como MAR normalizado, os quais normaliza os dados da proje¢do original de acordo
com os dados da projecao anterior. Esta imagem anterior sem artefatos é obtida por uma seg-
mentacdo da imagem original, apds o efeito de suavizacdo para definir regides de 0sso, ar e
tecido mole. Essa normalizacao feita sobre o senograma aumenta a homogeneidade das regides
onde a interpolacdo linear serd aplicada, levando a resultados mais precisos (MEYER et al.,
2010)

Em suma, algoritmos matematicos para reducao de artefatos gerados por objetos meté-
licos que buscam complementar a projecdo do senograma pode-se resumir em quatro etapas:

a corre¢do de pixels aplicando um limiar na escala Hounsfield; a projecdo (senograma) para
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identificar os pixels corrompidos; a remocao dos pixels corrompidos e a interpolacdo com esti-
mativas apropriadas; e a retroprojecdo do senograma interporlado gerando uma imagem correta
(KATSURA et al., 2018). Embora existam muitos métodos, eles deixam a desejar no quesito
da retirada total de artefatos nas imagens, em alguns casos, criando novos artefatos devido aos
métodos implementados. Nos ultimos anos, uma forte linha de pesquisa utilizando aprendizado
profundo, do inglés: Deep Learning (DL), para melhorar métodos existentes, tem ganhado forca

e apresenta resultados promissores (MAI; WAN, 2020).

3.3 Uso de redes neurais para diminuicao de artefatos metalicos

A area de aprendizado de médquina, do inglés: Machine Learning (ML), e o DL tem ga-
nhado grande popularidade como uma solucdo eficaz para problemas em diversos campos. Na
area de imagens médicas, as técnicas de DL tem ganhado grande destaque na parte de proces-
samento e andlise de imagens, sendo também uma nova abordagem para a reducao de artefatos
metalicos em imagens de CT (GJESTEBY et al., 2017). Uma classe de rede bastante utilizada
na area de processamento de imagens sao as redes neurais convolucionais, do inglés: Convoluti-
onal Neural Netowrks (CNN), apresentando poderosos resultados e uma grande capacidade de
extrair detalhes em um grande conjunto de dados (KRIZHEVSKY; SUTSKEVER; HINTON,
2017).

A CNN foi proposta pela primeira vez em 1947 e diferia dos estudos com redes neurais
existentes até entdo pois adicionava em sua arquitetura um algoritmo de retropropagacdo para
aprender os campos receptivos de unidades simples (LIANG; HU, 2015). A CNN se caracteriza
por apresentar conexdes locais, compartilhamento de pesos e pooling local. As duas primeiras
fazem com que o modelo descubra padrdes visuais locais com menos parametros ajustdveis. O

pooling local incorpora a rede um pouco de invariancia a translagdo (LIANG; HU, 2015).

Nos ultimos anos, muitas técnicas t€ém sido desenvolvidas para melhorar o desempenho
das CNN. A exemplo disso, pode-se citar: diversos estudos na drea da melhor fungdo de ati-
vacgdo, sendo a func¢do linear retificada (Relu) a mais comumente usada por ser resistente ao
desaparecimento do gradiente no algoritmo de retropropagacdo (GLOROT; BORDES; BEN-
GIO, 2011); utilizacdo de técnicas eficazes para evitar que as redes neurais se ajustem excessi-
vamente ao treinamento (SRIVASTAVA et al., 2014); uso de pooling maximo para melhorar a
capacidade do modelo que evita o ajuste excessivo (GOODFELLOW et al., 2013); incorpora-
¢do de uma classe recorrente (RCNN) para reconhecimento de objeto incorporando conexdes
em cada camada convolucional (LIANG; HU, 2015); o acoplamento de classes como a recente
desenvolvida Deep Generative Deconvolutional Network (DGDN) como um aprendizado semi-

supervisionado (PU et al., 2016), dentre outros.

Apesar de existirem hd muito tempo, as CNN apresentam algumas limitacdes. O uso
tipico dessas redes é em tarefas de classificacdo, onde a saida para uma imagem € apenas um

rétulo de classe unica. No entanto, dreas como processamento de imagens médicas apresentam
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a necessidade de identificar partes especificas da imagem, ou seja, atribuir um rétulo de classe
a cada pixel (RONNEBERGER; FISCHER; BROX, 2015). Para acelerar a convergéncia da
rede foi desenvolvida uma arquitetura com conexdes skip-layer, conhecida como RED-Net, do
inglés: very deep Residual Encoder-Decoder Networks (MAO; SHEN; YANG, 2016).

Um exemplo da arquitetura RED-Net pode ser visto na Figura 3.3. As camadas convolu-
cionais agem sdo extratores de recursos que codificam os componentes primarios do contetdo
da imagem, eliminando as partes corrompidas. As camadas deconvolucionais entdo decodificam
a abstracdo da imagem para recuperar os detalhes. As conexdes de salto, do inglés: skip con-
nections entre as conexdes convolucionais e deconvolucionais auxiliam na retropropagacao dos
gradientes para as camadas inferiores e passam os detalhes para as camadas superiores (MAO;
SHEN; YANG, 2016).

Na literatura existem diversas abordagens do uso de ML para melhorar e desenvolver
técnicas de MAR: técnicas desenvolvida utilizando DL com operacgdes residuais para corrigir
artefatos remanescentes de um primeiro passo de interpolagdo (GJESTEBY et al., 2018); mé-
todos que utilizam as projecdes das partes proximas das corrompidas para o treinamento do
modelo (MAI; WAN, 2020); aplica¢do de DL para fazer estimativas dos dados faltantes em um
senograma, utilizando uma rede com poucas camadas seguidas por um mapeamento de recur-
sos, tendo na dltima camada uma sintese mapeada dos dados ausentes (CLAUS et al., 2017);
estudo para eliminar o efeito de beam hardening durante a formacao do senograma utilizando a
arquitetura U-net para reparar as perdas de dados geradas por materiais metdlicos (PARK et al.,
2018); dentre outros.

Figura 3.3 — Arquitetura da rede RED-Net

Fonte: Adaptada de (MAO; SHEN; YANG, 2016)
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3.4 Funcoes Custo

O crescimento da utilizacdo de algoritmos de DL ao longo dos anos requer técnicas
mais avancadas para contribuir com a eficdcia destes métodos. A fung¢do custo é um dos fatores
mais significativos no quesito de desempenho dos algoritmos, apresentando resultados bem
diferentes em uma mesma arquitetura. Com isso, sao destacadas trés fun¢des (NIE; HU; LI,
2018):

3.4.1 Erro Quadratico Médio

O erro quadratico médio, do inglés: Mean Squared Error (MSE) é uma fungdo custo

que calcula o erro pixel a pixel entre a imagem de saida Y; e a imagem alvo Y;:

2

N
1 .
CMSE:N; Y, - Y, (3.1)

onde N € o numero de amostras de treinos e i representa uma amostra do treino (GJESTEBY et
al., 2018).

3.4.2 MSE com Perceptual Loss

O uso da funcdo custo MSE pode resultar em perdas devido a uma possivel suavizagdo
excessiva. A fungdo custo Perceptual Loss (PL) busca preservar a textura da imagem (GJES-
TEBY et al., 2018). A PL é uma funcao pré-treinada da rede VGG((SIMONYAN; ZISSER-
MAN, 2014)) sendo também utilizada na area de processamento de imagens. A funcio custo
PL pode ser definida pela Equagdo 3.2 a qual, neste caso, utiliza o erro quadratico médio para

medir as diferencgas:

2

1 N
Crr =5 X_; (3.2)

onde ¢ é a VGG treinada (GJESTEBY et al., 2018). A funcio custo combinada se dé pela soma

da funcdo custo MSE com a funcdo custo PL, sendo esta multiplicada por um fator o« = 1.17¢7?,

\qb(ﬁ) — 4D

conforme mostra a Equagdo 3.3:

Cuse+prr) = Cuse + aCpr (3.3)

343 SSIM

Em casos em que a rede tenha objetivo de apresentar imagens visualmentes parecidas,

a funcdo custo chamada de Indice de Similaridade Estrutural, do inglés: Structoral Similarity
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Index (SSIM), tem apresentado bons resultados (ZHAO et al., 2016). O SSIM esta representado
pela Equagdo 3.4:

2py iy ta1 209y +Co
(3 + i3+ c1 0L + 05 + e

SSIM(Y,Y) = (3.4)
onde /iy, [ty ,03 € oy sdo as médias e as variancias de YeYe 0y € a covariancia de YeY
(ZHAO et al., 2016). A funcdo custo SSIM € definido por

(ssiv =1 — SSIM(Y,Y) (3.5)
3.5 Meétricas de avaliacao de imagens

A medida de qualidade € um parametro importante para verificar a eficdcia de funcio-
nalidades. Quando trata-se de analisar imagens, a qualidade é o critério principal, podendo esta
ser avaliada através do uso de métricas. Dentro das diversas métricas usadas para mensurar a
qualidade de imagens, o MSE, o Pico da Relacdo Sinal-Ruido, do inglés: Peak Signal-to-Noise
Ratio (PSNR), e o SSIM sao frequentemente citados na literatura e classificados como métricas
de referéncia completa, pois consideram como referéncia a imagem original (SARA; AKTER;
UDDIN, 2019). O MSE e a SSIM foram definidos nas se¢des 3.4.2 e 3.4.3, respectivamente.

3.5.1 PSNR

O PSNR ¢é uma métrica derivada do erro quadratico médio e demonstra a razio entre a
intensidade maxima do pixel e a poténcia da distor¢ao. O cdlculo da PSNR € dada pela Equacao
3.6:

5 2
PSNR(Y,Y) = 10.log (&) (3.6)
MSE(Y,Y)

onde max representa 0 maximo valor dentre todos os pixels da imagem. Para o PSNR,
quanto maior o valor, melhor serd sua qualidade (LEAO; MACEDO, 2014).
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4 MATERIAIS E METODOS

Propdem-se um método para reducdo de artefatos metélicos através da adaptacdo de
uma rede neural CNN com uma arquitetura RED-Net para complementacdo dos dados cor-
rompidos no senograma, sendo que serdo testados trés diferentes funcdes custo: MSE, MSE
combinada com PL e SSIM.

4.1 Materiais
4.1.1 Phantom Shepp-Logan

As imagens foram geradas artificialmentes através do Software Matlab, com a fungdo
phantom, a qual retorna a imagem de um Shepp-Logan. A escolha deste phantom € devido a sua
ampla utilizag¢do para imagens médicas pois simula varios niveis de atenuacdo, conforme visto
na secao 2.4. As imagens foram geradas no tamanho 128x128 e entdo foram aplicadas nelas
a Transformada de Radon, com um angulo de varredura de 0° a 179° em passos de 1°, a qual
retorna o senograma desta imagem. Neste trabalho, para aproximar os senogramas da ideia de
um grafico sinusidal, serd assumido que o eixo-x corresponde aos valores de 6 e o eixo-y a [.

Os pares phantom original e senograma podem ser vistos pela Figura 4.1.

Quando se aplica a transformada de Radon em um phantom de tamanho 128x128 é
gerado um senograma 185x180. No entanto, para facilitar os procedimentos de divisdao que
ocorrem na rede, essas imagens foram modificadas para 180x180. Esse procedimento corres-
ponde a eliminar as 5 linhas iniciais do vetor, as quais em todos os casos eram contidas apenas

por zeros. Essas linhas sdo adicionadas posteriormente para realizar a reconstrugao.

Figura 4.1 — (a) Phantom Shepp-Logan original, (b) senograma do phantom Shepp-Logan origi-
nal.

Fonte: Elaborada pelo Autor (2020).
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4.1.2 Banco de imagens para a rede

Para o desenvolvimento do método foi necessério elaborar um banco de imagens sinté-
ticas. A rede possui uma imagem 180x180 de entrada e uma imagem 180x180 de saida. Cada
exemplo utilizado corresponde a um par de imagens, constituido por um senograma corrompido
por artefatos metalicos e um outro sem. Foram geradas 60 mil amostras e a divisdo do banco de

imagens esta descrita na Tabela 4.1. Neste trabalho ndo foi feita validagdo cruzada.

Tabela 4.1 — Divisdo do banco de imagens

Numero de amostras \ Conjunto ‘

33.500 treino
16.500 validagao
10.000 teste

Fonte: Elaborada pelo Autor (2020).

Como os exemplos de senogramas devem ser distintos, foi necessdrio variar os para-
metros de entrada da fung¢do phantom. Esses parametros correspondem a um vetor 1x6, onde
cada coluna corresponde a uma alteracio nas elipses contidas no interior do phantom. Vale res-
saltar que, para manter a forma do Shepp-Logan, nao foram alteradas as duas elipses externas
da imagem. A quantidade de novas elipses internas foi determinada em cada iteracdo, sendo
escolhida por um niimero inteiro aleatdrio entre um e oito. Os valores utilizados para desenhar

estas elipses estao representados na Tabela 4.2.

A primeira coluna do vetor representa o valor de intensidade aditiva da elipse. Para
qualquer pixel da imagem de saida, o valor do pixel € igual a soma dos valores de intensidade
aditiva de todas as elipses das quais o pixel faz parte. Se um pixel ndo faz parte de nenhuma
elipse, seu valor é zero. O valor de intensidade aditiva para uma elipse pode ser positivo ou
negativo; se for negativo, a elipse serd mais escura do que os pixels circundantes. Os valores da
segunda até a quinta coluna sdo coordenadas dentro do dominio [—1, 1] dos eixos x e y. A sexta

coluna por sua vez, apresenta os valores em graus.

Tabela 4.2 — Representagdo das colunas do vetor responsdvel por gerar elipses do phantom

] Coluna \ Parametro \ Valor Min. \ Valor Max. ‘
1° Altera o nivel de atenuacdo do material -0.5 0.2
2° Altera largura no eixo-x 0.01 0.4
3° Altera altura no eixo-y 0.01 0.4
4° Altera posicao no eixo-x -0.5 0.5
5° Altera posicao no eixo-y -0.5 0.5
6° Rotacgdo da figura 0° 360°

Fonte: Elaborada pelo Autor (2020).
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O phantom gerado aleatoriamente a partir dos dados da Tabela 4.2 serd entao acrescido
de metal. O principio de adi¢do do metal ao phantom é praticamente o mesmo da adicdo de elip-
ses, sendo diferente os valores minimos € maximos utilizados. O ndmero de metais adicionados
corresponde a um valor inteiro aleatério entre um e cinco gerado em cada iteracdo. Os valores

utilizados para desenhar estes metais estdo representados na Tabela 4.3.

Tabela 4.3 — Representagdo das colunas do vetor responsédvel por gerar metais no phantom

’ Coluna \ Parametro \ Valor Min. \ Valor Max. ‘
1° Altera o nivel de atenuacao do material 0.5 6.5
2° Altera largura no eixo-x 0.01 0.1
3° Altera altura no eixo-y 0.01 0.1
4° Altera posi¢ao no eixo-x -0.5 0.5
5° Altera posi¢ao no eixo-y -0.8 0.8
6° Rotagdo da figura 0° 360°

Fonte: Elaborada pelo Autor (2020).

Por fim, € necessdria uma etapa de simulac¢do do artefato metdlico no senograma cor-
rompido. Em uma situacio real de aquisicao de dados, os objetos metdlicos fazem com que
nao cheguem informagdes suficientes nos detectores para fazer uma reconstrugdo perfeita. No
caso simulado, o phantom apresenta todas as informacdes necessdrias para a reconstrucio. E
necessdrio entdo, localizar o local que o metal foi inserido e eliminar a informacdo em volta
deste metal, o que fard com que sejam gerados artefatos na etapa de reconstrucdo. Dessa forma,
o senograma (corrompido) ird responder corretamente no processo de reconstrugdo, simulando
a falta de informacdo daquele ponto onde estd o objeto metdlico independente do angulo de
projecdo (KUBICEK et al., 2015).

A Figura 4.2 apresenta exemplos das imagens geradas. A figura 4.3 apresenta uma pe-
quena amostra da base de imagens utilizada na rede. O processo de geracdo das imagens mos-

tradas estd descrito no fluxograma representado pela Figura 4.4.

Para fins de visualizacdo, foram geradas imagens a partir da adi¢cdo do metal em um
phantom Shepp-Logan. Foram gerados trés phantoms, sendo um ndo corrompido e dois com
presenca de metais. Em um phantom os metais sdo circulares e em outro sdo em formato elip-
tico. Para visualizar a eficdcia dos métodos de redugdo de artefatos, deve-se comparar as re-
construgdes realizadas com a reconstrucdo dos phantoms de exemplo. Para isso, foi aplicado a

inversa da Transformada de Radon em cada senograma, conforme mostra a Figura 4.5.
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Figura 4.2 — Exemplo de imagens geradas via Matlab.
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Figura 4.4 — Fluxograma do desenvolvimento do dataset utilizado para treinar a rede.
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Fonte: Elaborada pelo Autor (2020).

Figura 4.5 — Fluxo de criagdo das imagens para exemplo visual.
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Fonte: Elaborada pelo Autor (2020).
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4.2 Meétodos
4.2.1 Rede Neural Convolucional

Uma CNN com arquitetura RED-Net foi utilizada para a redug@o dos artefatos metalicos.
A rede possui como entrada uma imagem corrompida de tamanho 180x180, a qual corresponde
a um senograma com artefatos metalicos. Esses dados corrompidos sdo faixas brancas que serao
preenchidas pela rede. A rede proposta teve sua constru¢ao baseada em um Autoencoder para
remog¢do de ruido e estd disponivel em https://github.com/LAVI-USP/DMAR2dCT, sendo esta

adaptada para retornar um senograma 180x180 corrigido.

A rede possui uma arquitetura RED-Net. O encoder tem cinco camadas convolucio-
nais com trinta e dois filtros em cada. O decoder apresenta cinco camadas de-convolucionais
com trinta e dois filtros nas quatro primeiras e uma na ultima. Nesta arquitetura, existem skip-
connections entre algumas camadas e a utilizacdo de operagdes residuais. A rede possui 103.329

parametros treindveis. As Figuras 4.6 e 4.7 apresentam um resumo da arquitetura da rede

Para treino, foram utilizados pares de imagens 180x180, sendo um senograma corrom-
pido por metal e o outro ndo. Foi utilizado um batchsize = 16 e learning rate = 22107*. O
modelo foi treinado trés vezes utilizando diferentes fungdes custos, sao elas: MSE; MSE + PL;
e SSIM. O erro da validagdo era avaliado em cada época e se houvessem vinte épocas sem este

variar mais do que 121073, o treinamento era parado de forma automaética.

Figura 4.6 — Arquitetura do Encoder.

Model: "encoder”

conv2d (Conv2D) (None, 176, 176, 32]
re_lu (RelU) (None, 176, 176,
conv2d_1 (Conv2D) (None, 172,

re_lu 1 (RelU) (None, 172, 172,
conv2d_2 (Conv2D) (None, 168, 168, 32)
re_lu 2 (RelLU) (None, 168,

conv2d_3 (Conv2D) (None, 164, 164, 32)

re_lu 3 (ReLU) {None, 164, 164,

conv2d_4 (Conv2D) (None, 1686, 168, 32)

re_lu 4 (RelLU) (None, 168

183,368
Trainable params: 183,360
Non-trainable params: @

Fonte: Elaborada pelo Autor (2020).
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Figura 4.7 — Arquitetura do Decoder.

Model: "decoder”

Connected to

ayer (type) Output S
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164, 16
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> 164,
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v2d_transpos v2DTrans (None, 176
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weighted add (Weightedadd) (Mone,

re_lu_ 9 (RelU)

re_lu 5[e][e]
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re_lu e6[e][e]

ranspose 2[@][e]

add[@][@]
re_lu 7[e][e]
ranspose_3[@][e]

re_lu 8[e][e]

ranspose_4[@][e]

Fonte: Elaborada pelo Autor (2020).

4.2.2 Substituicdo por valores vizinhos e interpolagdo linear

Para fins de comparacao, foram utilizados outros dois métodos de reducdo de artefatos.

A literatura mostra que os métodos mais utilizados para a reducdo de artefatos metélicos cor-

respondem aos métodos de complementacdo do senograma, conforme descrito na Se¢do 3.2.

Dentre estes, pode-se citar modelos matemaéticos de substituicdo dos valores vizinhos corrom-
pidos pelo metal (GJESTEBY et al., 2016) e o método de interpolacdo linear (KALENDER,

2011). Neste trabalho, o método matemético de substituicao de valores vizinhos utilizado cor-

responde a capturar em cada projecao valores maiores que um Threshold, sendo este igual a

2,5 vezes o valor médio entre todas as atenuagdes naquela projecdo, juntar os valores sequenci-

ais em um vetor e substitui-los pela média aritmética entre os trés valores anteriores e os trés

valores posteriores a este vetor.
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5 RESULTADOS E DISCUSSOES

Neste trabalho sao apresentados resultados experimentais de um método proposto para

reducdo de artefatos gerados por objetos metalicos em CT.

5.1 Treinamento da Rede

A partir do treinamento da rede, obteve-se os grificos de Erro x Epocas para as trés

funcdes custos utilizadas: MSE, MSE + PL, SSIM, conforme demostrado na Figura 5.1.

Figura 5.1 — Gréfico Erro x Epocas das seguintes fung¢des custo: (a) MSE, (b) MSE + PL e (¢)
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Fonte: Elaborada pelo Autor (2020).



62

A partir dos graficos obtidos pode-se perceber que os treinos convergiram com quanti-
dades de épocas diferentes. Para a fun¢do custo MSE, convergiu com 27 épocas, MSE + PL em
torno de 150 épocas e SSIM com 120 épocas. O grafico épocas x erro foi construido utilizando
a média da loss em um Batch no treino e um Batch na validacio. E possivel observar que o
modelo melhorou ao longo do treino, e que os pesos utilizado para os testes seguintes foram
salvos quando o erro do treino e o erro da validacdo estavam estdveis, excedendo o critério de

parada determinado na Secdo 4.2.1.

5.2 Analise das Projecoes para um angulo fixo

Para analisar melhor a acdo dos métodos de redugdo de artefatos metdlicos no seno-
grama, € interessante observar as proje¢des para um determinado valor fixo, nesse caso, para
6 = 90°. A Figura 5.2 representa a comparagdo entre o senograma com metal circular e o

senograma sem metal.

Figura 5.2 — Proje¢des para # = 90° do senograma c/ metal e senograma s/ metal
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Fonte: Elaborada pelo Autor (2020).

Esses picos observados em torno dos canais 60 e 90 representam a presenca de metal.
A Figura 5.3 mostra as projecdes para o mesmo valor de § = 90° nos senogramas corrigidos

pelos métodos comparando ao senograma sem metal.

A partir da comparag@o entre os graficos com corre¢des pelos métodos propostos € o
gréfico de referéncia do senograma sem metal, € possivel observar que os senogramas corrigidos
pela rede neural apresentaram um melhor resultado. Tanto o método de substitui¢ao por valores

vizinhos quanto o método de interpolacdo, reduziram um pouco a intensidade do metal, mas
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apresentam valores ruidosos nesses canais. A substituicao de uma quantidade de valores acima
do threshold por um tnico valor ird gerar alteracdes bruscas nas proje¢des. Um outro motivo
para esses "impulsos"que apareceram na Figura 5.3 pode ser o fato de que o threshold pode nao

ter englobado todos os valores que representam projecdes metalicas.

Figura 5.3 — Projecdes para § = 90° do senograma corrigido pelos métodos comparado ao
senograma sem metal
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Fonte: Elaborada pelo Autor (2020).

As correcdes no senograma pela rede neural se aproximam mais da imagem de referén-
cia, apresentando curvas mais suaves e valores de projecdes mais proximos do esperado. Dentre
elas, a MSE fica um pouco mais distante das redes com MSE + PL e SSIM, sendo estas detento-
ras do melhor resultado. Este resultado é visualmente muito parecido e ficard mais claro quando
aplicadas as métricas de qualidade presentes nas proximas sessoes. Vale ressaltar também que
o resultado € apenas para o senograma com metais circulares, ja que para o senograma com

metais elipticos as diferengas nas respostas foram minimas.

5.3 Senogramas corrigidos e reconstrucoes

Essa secd@o apresenta os senogramas corrigidos pelos métodos propostos e os phantoms
com metais circulares e elipticos reconstruidos. As figura 5.4 e 5.6 apresentam os (a) senogra-
mas que geram artefato, (b) senogramas do phantom sem metal e os senogramas resultantes dos
métodos propostos. As Figuras 5.5 e 5.7 demonstram os resultados das aplicacdes do método

de reconstru¢do FBP nos senogramas apresentados.
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Figura 5.4 — Sao apresentados os seguintes senogramas (a) do phantom com metais circulares,
(b) do phantom referéncia s/ metal, (c) corrigido por substitui¢ao dos valores vizi-
nhos,(d) corrigido por interpolagdo, (e) corrigido pela rede ¢/ MSE, (f) corrigido
pela rede ¢/ MSE + PL, (g) corrigido pela rede ¢/ SSIM
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Fonte: Elaborada pelo Autor (2020).
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Figura 5.5 — Sdo apresentados os seguintes phantoms: (a) com metais circulares, (b) referéncia
s/ metal, (c) corrigido por substitui¢do dos valores vizinhos,(d) corrigido por inter-
polacgdo, (e) corrigido pela rede ¢/ MSE, (f) corrigido pela rede ¢/ MSE + PL, (g)
corrigido pela rede ¢/ SSIM

(a) Corrompida

(b) Referéncia (c) Sub. Val. Vizinhos

(d) Interpolacao (e) CNN + MSE

(f) CNN + MSE + PL (g) CNN + SSIM

Fonte: Elaborada pelo Autor (2020).
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Figura 5.6 — S@o apresentados os seguintes senogramas (a) do phantom com metais elipticos,
(b) do phantom referéncia s/ metal, (c) corrigido por substitui¢ao dos valores vizi-
nhos,(d) corrigido por interpolagdo, (e) corrigido pela rede ¢/ MSE, (f) corrigido
pela rede ¢/ MSE + PL, (g) corrigido pela rede ¢/ SSIM
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Fonte: Elaborada pelo Autor (2020).
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Figura 5.7 — Sao apresentados os seguintes phantoms: (a) com metais elipticos, (b) referéncia s/
metal, (c) corrigido por substituicdo dos Valores Vizinhos,(d) corrigido por inter-

polacgdo, (e) corrigido pela rede ¢/ MSE, (f) corrigido pela rede ¢/ MSE + PL, (g)
corrigido pela rede ¢/ SSIM

(a) Corrompida

(b) Referéncia (c) Sub. Val. Vizinhos

(d) Interpolacao (e) CNN + MSE

(f) CNN + MSE + PL (g) CNN + SSIM

Fonte: Elaborada pelo Autor (2020).
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A partir das Figuras apresentadas € possivel fazer algumas andlises visuais. Os senogra-
mas que apresentaram mais resquicios dos metais que estavam ali presentes foram os corrigi-
dos pelos métodos de substituicdo de valores por vizinhanga e interpolacdo, independente do
formato do metal do phantom. Consequentemente, as reconstrucdes desse método estdo visu-
almente corrompidas por auséncia de informacao nos lugares em que havia o metal. Em torno
desses locais € possivel ainda notar a presenca de alguns artefatos metalicos. No lugar em que
o metal estava presente, hd auséncia de informacao, sendo predominantemente dominado pela

cor preta no método de substitui¢do e por niveis de cinza variados nos métodos de interpolagao.

Analisando os senogramas corrigidos pelas redes neurais € possivel afirmar que a fun-
cdo custo MSE, apesar de remover as listras brancas referente ao metal, acabou "borrando"o
senograma e consequentemente, sua reconstrucao apresentou um resultado mais distante da fi-
gura de referéncia. Quando combinado com a func¢ao custo PL, o resultado se torna muito mais
proximo do esperado. Resultado este também observado na imagem corrigida pela rede com
SSIM, sendo visualmente complicado de diferenciar qual imagem apresentou o melhor resul-
tado. Os senogramas referentes a estes dois métodos citados anteriormente estao praticamente

sem nenhuma listra de metal e, visualmente, suas reconstru¢des ndo apresentam artefatos.

E interessante ressaltar que, os metais circulares e elipticos apresentaram resultados dis-
tintos nas metodologias sem o uso da rede neural, sendo que os metais elipticos estio mais
presentes nos senogramas e reconstrucdes. A rede apresentou praticamente os mesmos resulta-

dos independente do formato do metal presente.

5.4 Métricas de qualidade

As Tabelas 5.1, 5.2 e 5.3 mostram os resultados obtidos das métricas entre as reconstru-
coes corrigidas pelos métodos e a reconstrucao do phantom de referéncia. Nas trés tabelas, a
primeira linha refere-se as métricas aplicadas entre a reconstrug¢do do phantom corrompido por
metal e a imagem de referéncia, apenas para facilitar a visualizacdo dos resultados. As tabelas
apersentam o valor da média e do intervalo de confianca considerando um nivel de confiancga de
95%. A Tabela 5.1 corresponde aos valores MSE, a Tabela 5.2 aos valores de PSNR e a Tabela
5.3 aos valores de SSIM:

Tabela 5.1 — MSE entre as reconstru¢des corrigidas e a reconstrucao de referéncia.

] Método H Média \ Intervalo de confianga ‘
Phantom com Metal 0,2313 [0.2277; 0.2348]
Subst. Val. Vizinhanca || 0,0179 [0.01763; 0.01817]
Interpolacao 0,0169 | [0.01665;0.01715]
CNN + MSE 0,0027 | [0.00267; 0.00273]
CNN + MSE + PL 0,0021 [0.00205; 0.00215]
CNN + SSIM 0,0015 | [0.00146; 0.00154]

Fonte: Elaborada pelo Autor (2020).
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Tabela 5.2 — PSNR entre as reconstrucdes corrigidas e a reconstrucdo de referéncia.

] Método H Média [dB] \ Intervalo de confianca ‘
Phantom com Metal 7,82 [7.743;7.897]
Subst. Val. Vizinhanca 18,72 [18.663; 18.777]
Interpolagao 18,73 [18.671; 18.789]
CNN + MSE 26,06 [26.025; 26.094]
CNN + MSE + PL 28,29 [28.222; 28.359]
CNN + SSIM 29,58 [29.518; 29.642]

Fonte: Elaborada pelo Autor (2020).

Tabela 5.3 — SSIM entre as reconstrucdes corrigidas e a reconstrucdo de referéncia.

’ Método H Média \ Intervalo de confianca ‘
Phantom com Metal || 0,2339 | [0.23083; 0.23497]
Subst. Val. Vizinhanca || 0,4634 | [0.46094; 0.46586]
Interpolacao 0,4949 [0.49278; 0.49702]
CNN + MSE 0,7014 | [0.70019; 0.70261]
CNN + MSE + PL 0,8020 | [0.80057; 0.80343]
CNN + SSIM 0,8246 | [0.82324;0.82596]

Fonte: Elaborada pelo Autor (2020).

A partir da andlise da tabela é possivel confirmar que os valores corroboram com a ané-
lise visual feita anteriormente. A partir da tabela 5.1, € possivel afirmar que todos os métodos
conseguiram reduzir os artefatos na reconstrucao, sendo que o método proposto obteve os me-
lhores resultados. Dentre as fun¢des custo, a MSE combinada com a PL obteve um resultado

melhor do que a MSE sozinha. A melhor média foi obtida a partir da rede com SSIM.

A mesma andlise que a anterior pode ser observada nas Tabelas 5.2 e 5.3, sendo que estas
demonstram que os métodos utilizados na literatura melhoram a qualidade da imagem, mas o
método proposto apresenta resultados mais significativos. Uma observacdo € que, os métodos
de substituicdo por valores vizinhos e interpolacao sofriam grandes alteracdes quando variava-
se a quantidade e o coeficiente de absor¢do dos metais. No método proposto, independente da
funcdo custo, a complementagdo do senograma ndo passava por grandes alteracdes variando-se

essas caracteristicas, sendo este um possivel fator resultante nesses valores.

Por apresentarem valores de média muito préximos, foi feito um teste ¢-student entre
os valores de CNN + MSE + PL e CNN + SSIM. A hipétese nula correspondente € de que,
estatisticamente, as médias apresentam valores iguais. O teste feito no matlab com a funcao
ttest retornou, para as trés métricas, um valor igual a 1, rejeitando a hipétese nula. Ou seja, a
partir dos dados obtidos, € possivel observar que a rede com a fun¢do custo SSIM apresentou

a melhor performance em todas as métricas utilizadas, apesar destes valores serem muito pro-
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ximos dos resultados obtidos pela rede com MSE + PL. Por fim, vale ressaltar que todos os
métodos apresentaram resultados melhores do que os observados entre a imagem de referéncia
e a imagem corrompida, comprovando que os artefatos metalicos podem ser reduzidos através

da aplica¢dao de métodos de complementacio do senograma.
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6 CONCLUSAO

Este trabalho propde desenvolver um método para reducdo de artefatos gerados por
objetos metdlicos em imagens de TC. A justificativa do projeto se da pelo fato de que artefatos
metalicos degradam a qualidade das imagens, podendo gerar exames nao diagnosticdveis, sendo

este um grande problema na drea de processamento de imagem e tomografia computadorizada.

Anteriormente, diversos estudos foram realizados para reduzir artefatos. Dentre essas
abordagens, existem os métodos que buscam remover o metal e complementar os dados faltantes
do senograma com diferentes tratativas, tais como a substitui¢do destes por valores vizinhos,
substituicao por interpolacao e, mais recente, uso de redes neurais para preencher os espagos

vazios nas projecoes adquiridas.

Os métodos existentes na literatura: por substitui¢do de valores vizinhos e interpolagcao
sdo simples de serem implementados e apresentaram uma boa reducdo dos artefatos metélicos.
No entanto, a dificuldade de achar um bom valor de threshold e a geracdo de locais de alta
frequéncia nos graficos das projecdes faz com que sejam gerados novos artefatos e/ou nao
sejam removidos totalmente os valores em torno do metal. Vale ressaltar que estes métodos
apresentam uma grande diferenca variando um pouco o tamanho do metal. Isto pode ser um

problema para imagens que apresentem um nimero maior de metais com formatos variados.

O método proposto com o uso de redes neurais apresenta resultados satisfatorios, re-
movendo totalmente as listras brancas do senograma. E interessante notar que a fungdo custo
altera fortemente os resultados, comprovada por exemplo da fungdo custo MSE apresentar um
resultado abaixo das outras duas. No entanto, quando combinada com a PL, apresentou melho-
res resultados podendo comparar-se com a SSIM. Importante também citar o fato de que os
resultados nao tiveram grandes variagdes com a mudanca do formato do metal, fator que pode

ser importante para aplicacdes em outras imagens.

Apesar da melhora obtida nos resultados, € dificil determinar ao certo qual fun¢do custo
utilizar e qual a significancia clinica dos métodos empregados. Isso pelo fato de que, para trei-
nar a rede, € necessdrio um volume muito grande de imagens. Um outro problema € que, nos
métodos de complementar as proje¢des, por remover totalmente o metal da imagem, perde-se
quaisquer informagdes sobre ele no exame, podendo este ser um dado importante para a aplica-

¢ao clinica em questao.

Como trabalhos futuros, sugerem-se: uma investigacdo mais aprofundada nas diversas
funcgdes custos e suas combinacdes para o treino da rede neural, visto que é evidente a diferenca
de resultado que isto acarreta; trabalhar o desenvolvimento de imagens sintéticas que represen-
tem cada vez mais uma reproducdo fiel dos tecidos do corpo; um estudo nas novas arquiteturas

de redes neurais propostas; estudo utilizando a rede adversaria generativa, do inglés: Generative
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Adversarial Networks (GAN); e por fim, treinar a rede proposta com imagens clinicas, inserindo

metal artificialmente em imagens ndo corrompidas e aplicar a rede treinada em imagens reais.
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