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RESUMO

BONATI, M. P. Método baseado em aprendizado de máquina para redução de artefatos
gerados por objetos metálicos em imagens de tomografia computadorizada. 2020. 78p.
Monografia (Trabalho de Conclusão de Curso) - Escola de Engenharia de São Carlos,
Universidade de São Paulo, São Carlos, 2020.

A tomografia computadorizada (CT- Computed Tomography) é um método de diagnóstico por
imagem que utiliza raios X para obter uma reprodução de uma secção do corpo humano. A
visualização desse exame se dá pela aplicação de métodos de reconstrução, os quais utilizam os
sinais recebidos por sensores para convertê-los em uma imagem digital. No entanto, se os raios
X atravessam um material muito denso durante o exame, tais como implantes metálicos, tem-se
a geração de artefatos na imagem reconstruída, que podem prejudicar o diagnóstico médico.
Estes artefatos são faixas luminosas resultantes da interação dos fótons de raios X com objetos
metálicos, que acabam por degradar a imagem. Devido à evolução das técnicas de aprendizado
de máquina e inteligência artificial, nos últimos anos, houve um aumento expressivo no desen-
volvimento de algoritmos na busca de redução de artefatos em imagens de CT. O objetivo deste
trabalho é desenvolver um método para a redução de artefatos metálicos utilizando redes neu-
rais convolucionais aplicadas diretamente no senograma das imagens a serem reconstruídas. O
método proposto foi avaliado em imagens sintéticas geradas com o Phantom Shepp-Logan e
os resultados obtidos com a rede proposta foram comparados com os resultados dos métodos
tradicionais de substituição de valores corrompidos no senograma por valores vizinhos e por
interpolação. Os resultados sugerem que o método proposto produz imagens melhores que as
outras abordagens avaliadas para redução de artefatos, em termos de erro quadrático médio, re-
lação sinal-ruído de pico e índice de similaridade estrutural. Conclui-se que a utilização deste
método com redes neurais convolucionais para complementação do senograma pode ser uma
alternativa viável para a redução de artefatos metálicos, aprimorando as imagens geradas pela
tomografia computadorizada.

Palavras-chave: Tomografia computadorizada, artefatos metálicos, CNN.





ABSTRACT

BONATI, M. P. . 2020. 78p. Monografia (Trabalho de Conclusão de Curso) - Escola de
Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2020.

Computed tomography (CT) is a diagnostic imaging method that uses X-rays to obtain a re-
production of a section of the human body. The exam is retrieved by applying reconstruction
methods, which use the signals received by the detector to convert them into a digital image.
However, if the X-rays pass through a very dense material during the examination, such as metal
implants, artifacts are generated in the reconstructed image, which can impair the medical diag-
nosis. These artifacts are luminous bands resulted from the interaction of X-ray photons with
metallic objects, which end up degrading the image. Due to the evolution of machine learning
techniques and artificial intelligence, in the last few years, there has been a significant increase
in the development of algorithms to reduce artifacts in CT images. The objective of this work
is to develop a method to reduce metal artifacts using convolutional neural networks applied
directly into the sinogram. The proposed method was evaluated on the Shepp-Logan phantom
and the results were compared with the results of the traditional methods such as interpolations.
The results indicated that the proposed method produces better images than the other approaches
evaluated for artifact reduction, in terms of mean squared error, peak signal-to-noise ratio and
structural similarity index. In conclusion, the proposed method may be a viable alternative to
reduce metal artifacts, improving the images generated by the CT exam.

Keywords: Computed tomography, metal artifacts, CNN.
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1 INTRODUÇÃO

Resultados eficientes e precisos na representação de aspectos anatômicos do corpo hu-
mano têm sido alguns dos fatores para o aumento significativo no uso de diagnóstico por ima-
gens (RIBEIRO-ROTTA, 2004). Dentre as técnicas de aquisição de imagens, a tomografia com-
putadorizada, do inglês: Computed Tomography (CT), apresenta algumas vantagens sobre a
radiografia convencional, posto que: resulta em uma boa representação de estruturas tridimen-
sionais, minimizando a sobreposição de tecidos; é sensível na diferenciação de estruturas pró-
ximas promovendo uma observação mais rigorosa entre diferentes tecidos do corpo humano; e
comparativamente, apresenta um melhor delineamento das estruturas ósseas da base do crânio
e esqueleto facial (RODRIGUES; VITRAL, 2007).

A CT é realizada utilizando-se um tomógrafo, aparelho que contém uma fonte de raios
X que rotaciona circularmente em torno de uma região de interesse, como por exemplo, a ca-
beça do paciente. Esta fonte emite raios X em direção a uma série de detectores localizados no
lado oposto da fonte, os quais transformam a radiação recebida em sinais elétricos (JÚNIOR;
YAMASHITA, 2001). Esses sinais passam por processos de quantização, originando no compu-
tador uma imagem bidimensional representada em níveis de cinza, os quais variam de acordo
com o coeficiente de atenuação linear médio do tecido em análise (RODRIGUES; VITRAL,
2007).

O coeficiente de atenuação linear é um parâmetro que varia de material para material.
Obturações dentárias, quadris artificiais, implantes de coluna, cirurgias grampo e implantes
dentários são exemplos de materiais metálicos que apresentam coeficientes de atenuação muito
maiores do que ossos ou tecidos moles (ZHANG et al., 2007). Estes objetos bloqueiam quase
totalmente a passagem de fótons, fazendo com que não chegue informação nenhuma, ou quase
nenhuma, no detector. Essa ausência de dados faz com que sejam gerados artefatos na recons-
trução que degradam gravemente a qualidade da imagem (GJESTEBY et al., 2016).

Artefatos são estruturas observadas nas imagens reconstruídas (como listras claras ou
escuras) que não representam corretamente as estruturas reais (KUTEKEN et al., 2017). Es-
ses erros na reconstrução afetam a capacidade de diagnóstico e impedem a distinção precisa
dos tipos de tecido. No planejamento da radioterapia para o tratamento do câncer isso é preju-
dicial pois, a localização inexata do tumor e a caracterização errada dos tecidos circundantes
podem resultar em erros de cálculos que afetam gravemente o sucesso do tratamento (KILBY;
SAGE; RABETT, 2002). Um outro exemplo onde os artefatos metálicos afetam o diagnóstico
é na ortopedia pois, é exigida uma alta qualidade de imagem perto dos implantes metálicos
(ROBERTSON et al., 1988).
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Visando melhorar a qualidade da imagem para recuperar informações sobre todas as es-
truturas em análise no exame de tomografia, muitos métodos e algoritmos de redução de artefa-
tos metálicos foram propostos e testados. Pode-se classificar as técnicas de redução de artefatos
metálicos, do inglês: Metal Artifact Reduction (MAR), em diferentes categorias: otimização de
implantes metálicos; melhorias físicas nos equipamentos; algoritmos mais avançados de recons-
trução; técnicas de pós-processamento; e técnicas de pré-processamento, como por exemplo a
complementação da projeção (GJESTEBY et al., 2016).

Uma abordagem bastante utilizada para a redução de artefatos metálicos diz respeito à
correção e/ou substituição dos dados diretamente sobre o senograma da imagem (GJESTEBY
et al., 2016). O senograma corresponde a uma composição de diversas projeções obtidas no
processo de tomografia, representando um conjunto de dados que servem de partida para o
processo de reconstrução através de um método analítico chamado de retroprojeção filtrada, do
inglês: Filtered Back-Projection (FBP) (SCARFE; FARMAN, 2008).

Existem diversos métodos matemáticos para a complementação do senograma, como
por exemplo a substituição por valores vizinhos ao metal (KALENDER, 2011) e interpolação
linear. Apesar de computacionalmente simples, o sucesso da interpolação linear varia de acordo
com o caso, apresentando uma maior eficácia quando uma pequena fração da projeção é oca, a
densidade distribuição é simétrica ou a projeção não muda muito na seção interpolada (GJES-
TEBY et al., 2016). Uma outra abordagem corresponde a métodos baseados em aprendizagem
profunda para a correção dos dados que geram artefatos por meio de redes neurais convolucio-
nais, tratando a imagem do senograma em todo o seu domínio (GHANI; KARL, 2018).

Dentre as técnicas de complementação do senograma a partir do uso de aprendizagem
profunda, pode-se citar: uso de redes neurais para estimar os dados perdidos no domínio do se-
nograma (CLAUS et al., 2017); correção dos dados a partir da utilização de uma rede totalmente
convolucional, do inglês: Fully Convolutional Network (FCN), a partir de análises dos dados an-
tes da reconstrução, trabalhando totalmente no domínio do senograma (GHANI; KARL, 2018);
uso de redes neurais convolucionais, do inglês Convolutional Neural Network (CNN), que funde
as informações das imagens originais e corrigidas para suprimir artefatos (ZHANG; YU, 2018);
uso de aprendizagem profunda com operações residuais para complementar a correção de arte-
fatos metálicos após uma passagem inicial em um processo de interpolação (GJESTEBY et al.,
2018); dentre outros.

1.1 Objetivo

Este estudo tem como objetivo: a) desenvolver um método de redução de artefatos me-
tálicos nas imagens reconstruídas com FBP, utilizando redes neurais convolucionais aplicadas
em senogramas; b) testar diferentes funções custo para a rede; c) avaliar o método proposto em
imagens sintéticas baseadas no phantom Shepp-Logan; d) comparar os resultados obtidos com
os métodos de complementação do senograma (substituição pelos valores vizinhos do metal e
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interpolação linear) utilizando métricas de erro quadrático médio, relação sinal-ruído de pico e
o índice de similaridade estrutural.
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2 FUNDAMENTAÇÃO TEÓRICA

2.1 Tomografia Computadorizada

A CT é um método de diagnóstico por imagens cada dia mais utilizado na prática clínica,
sendo que a visualização do exame é possível devido aos diferentes índices de absorção pelos
tecidos aos feixes de raios X emitidos pela máquina. Historicamente, sua utilização diagnóstica
ocorreu pela primeira vez em 1971 visualizando um tumor cerebral em uma mulher de 41 anos.
O interesse inicial da aplicação deste exame foi em regiões cerebrais e se deve ao fato de que
o tecido cerebral apresenta uma baixa atenuação dos feixes de raios X se comparada ao osso
cortical do crânio, sendo que uma boa visualização desta área era impossível até a invenção da
CT (MOURÃO, 2018). A Figura 2.1 demonstra uma comparação entre imagens obtidas a partir
da radiologia convencional e da CT, confirmando que a visualização dessa área craniofacial
apresenta um melhor delineamento nas imagens obtidas com a CT.

Figura 2.1 – Imagens radiológicas da cabeça: comparação entre radiologia convencional (a) e
imagens obtidas a partir da tomografia computadorizada (b) e (c).

Fonte: Adaptada de (MOURÃO, 2018)

A matemática fundamental para o funcionamento da CT remonta à Johann Radon que
desenvolveu em 1917 um método para projetar um objeto 2-D ao longo de raios paralelos atra-
vés de seu trabalho com integrais de linhas (GONZALEZ; WOODS, 2000). O método conhe-
cido como Transformada de Radon contribuiu para que em 1964, Allan M. Cormack demons-
trasse os primeiros resultados de reconstrução de imagens de raios X obtidas em diferentes
direções angulares (GONZALEZ; WOODS, 2000). Em 1971, Godfrey Hounsfield, inventou e
apresentou o aparelho de CT como método diagnóstico. Em 1979, o Prêmio Nobel de medi-
cina foi entregue aos dois precursores da pesquisa de aparelhos de CT: Cormack e Hounsfield
(MOURÃO, 2018).
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O primeiro aparelho de CT foi utilizado no Hospital Atkinson Morley em Londres, o
qual acomodava somente a cabeça do paciente e apresentava um tempo elevado tanto para es-
canear uma fatia (cerca de 5 minutos) quanto para reconstruir a imagem no computador (cerca
de 2 minutos) (PARKS, 2000). A CT sofreu muitas evoluções, tendo como grandes resultados
a redução do tamanho dos aparelhos e do tempo de aquisição, a melhora da qualidade das ima-
gens, o surgimento de novas aplicações e uma maior flexibilidade no trato de dados (MOURÃO,
2018).

O aparelho de tomografia computadorizada tradicional possui três componentes prin-
cipais: O gantry, que apresenta em seu interior o tubo de raios X e um anel de detectores de
radiação, o qual é constituído de cristais de cintilação; a mesa, que corresponde a parte onde o
paciente permanece deitado, sendo que este é movimentado para o interior do gantry durante
o exame; e o computador, responsável por reconstruir a imagem a partir dos dados recebidos
nos detectores (GARIB et al., 2007). A Figura 2.2 demonstra as partes de um tomógrafo típico,
apresentando o gantry e a mesa.

Figura 2.2 – Um tomógrafo típico.

Fonte: Adaptada de (PRINCE; LINKS, 2006)

O aparelho de CT passou por diversas modificações ao longo dos anos, trazendo altera-
ções nos parâmetros de aquisição, formato dos detectores, tamanho dos tomógrafos, tempo de
aquisição, dentre outros (PRINCE; LINKS, 2006). Para a CT que emite feixes em formato de
leque, o exame ocorre da seguinte maneira: A fonte de raios X emite um feixe colimado e fil-
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trado em direção a um anel estacionário com diversos detectores. No interior do gantry, o tubo
de raios X gira dentro deste anel. Os detectores emitem sinais que variam proporcionalmente à
intensidade dos feixes de raios X que recebem. Esta intensidade varia de acordo com o índice
de atenuação dos tecidos pelos quais o feixe passa. São feitas múltiplas projeções no percurso
de 360◦ em torno do paciente, sendo que posteriormente todos esses dados são recebidos pelo
computador, o qual fica responsável por reconstruir a imagem de uma secção do corpo humano
(LANGLAIS; LANGLAND; NORTJÉ, 1995).

Uma parte dos tomógrafos utilizam uma única fonte de raios X já que isso reduz o custo
de manutenção do aparelho. Em geral, os tubos de raios X são iguais aos utilizados em uma
radiografia convencional, sendo necessários períodos de resfriamento entre as varreduras para
que danos sejam evitados por calor excessivo. Uma característica dos raios X gerados na CT
de feixe em leque é que estes requerem colimação e filtração. A colimação se deve ao fato
da necessidade de projetar o feixe de raios X em formato de leque, sendo que este é feito ao
atravessar uma fenda gerada por duas peças de chumbo. O processo de filtração, por sua vez,
serve para garantir que o feixe seja o mais monoenergético possível, sendo que uma dessas
filtragens é feita com o uso de cobre seguido de alumínio, estreitando o espectro de energia do
feixe de raios X (PRINCE; LINKS, 2006).

Alguns tomógrafos apresentam, por exemplo, detectores do estado sólido. Esses detec-
tores possuem um cristal cintilante, sendo que ao ser atingido por raios X ocorre o efeito foto-
elétrico, sendo produzido fotoelétrons. Este processo de cintilação resulta em uma explosão de
luz, sendo esta convertida em corrente elétrica através de um fotodiodo de estado sólido conec-
tado ao cintilador. Comumente, utilizam-se para essa função materiais como cádmio, tungstato,
germanato de bismuto ou iodeto de césio (PRINCE; LINKS, 2006). A Figura 2.3 demonstra a
arquitetura desses detectores do estado sólido.

Dentre as evoluções que ocorreram nos aparelhos de CT, uma importante diz respeito
às alterações que ocorreram tanto na emissão dos raios X como nos detectores. Os tomógrafos
conhecidos como 1a ou 2a geração possuem dados coleados a partir de raios paralelos, conforme
mostra a Figura 2.4 (a). A 3a ou 4a geração compartilham nas amostras de um único foco de
projeção para um ponto. Esse tipo de coleta de dados é chamada de projeção em leque, conforme
mostrado na Figura 2.4 (b). Por fim, o terceiro modo de coleta de dados diz respeito à projeção
de feixe cônico, representado pela Figura 2.4 (c). É possível perceber que nessa modalidade
vários planos de feixe em leque são coletados simultaneamente para cobrir um volume. Nota-
se que, apesar disso, apenas um plano é perpendicular ao eixo de rotação, sendo o restante
inclinados em relação à este eixo. A partir dessa análise, é possível afirmar que conforme o
tempo passa, mais complexo se torna o padrão de amostragem (PRINCE; LINKS, 2006).
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Figura 2.3 – Detectores do estado sólido.

Fonte: Adaptada de (PRINCE; LINKS, 2006)

Figura 2.4 – Diferentes geometrias de amostragem: (a) feixe paralelo, (b) feixe em leque, (c)
feixe em cone.

Fonte: Adaptada de (PRINCE; LINKS, 2006)

As vantagens de utilizar o exame de CT é de se obter imagens de tecidos e órgãos inter-
nos do corpo humano minimizando os efeitos da sobreposição de estruturas. Além disso, para
o caso de CT de cabeça, é possível obter um melhor delineamento das estruturas ósseas da base
do crânio e esqueleto facial comparado à radiografia convencional. O seu poder de apresentar
uma melhor resolução e minimizar as sobreposições de tecidos resultam em significativas van-
tagens na avaliação de lesões neoplásicas e traumáticas, apresentando bons resultados na região
da cabeça e pescoço. A CT também foi o primeiro exame que permitiu a obtenção de imagens
diretas dos tecidos moles, ainda que deficientes. Como desvantagens deste exame, é importante
ressaltar a dose de radiação mais alta do que em exames convencionais e a formação de artefatos
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causados por fatores como as estruturas ósseas compactas (especialmente na base do crânio) e
estruturas metálicas (restaurações e dispositivos dentários) (RIBEIRO-ROTTA, 2004)

2.2 Princípios de Formação de Imagens

A aquisição de imagens por meio da CT é possível pois durante o exame, os feixes
de raios X emitidos pelo tubo sofrem distintas atenuações ao atravessarem o corpo do paciente.
Essas atenuações são resultantes das interações dos fótons de raios X com os tecidos (RIBEIRO-
ROTTA, 2004). Para entender melhor o processo de aquisição de imagens, é necessário estudar
sobre o processo de interações dos raios X com a matéria. Como dito na Seção 2.1, o feixe é
filtrado para se tornar o mais monoenérgico possível. A partir disso, é possível afirmar que as
intensidades de raios X mensuradas na entrada e saída de um material uniforme, seguem a lei
de Beer-Lambert (HSIEH, 2003) representada matematicamente pela Equação 2.1:

I = I0e
−µ∆x (2.1)

onde I0 representa a intensidade do feixe de raios X de entrada, I a intensidade de saída, ∆x

a espessura e µ corresponde ao coeficiente de atenuação linear do material. O coeficiente de
atenuação depende da energia do feixe, e o feixe de raios X normalmente não é totalmente
monoenergético. Para contornar este problema, é utilizado o valor da energia eficaz. A partir
da Equação 2.1, fica evidente o fato de que para a mesma espessura de material, quanto maior
o coeficiente linear do material, mais atenuada será a intensidade de saída. Para materiais não
uniformes, tem-se a representação da intensidade de saída através da Equação 2.2:

I = I0e
−µ1∆xe−µ2∆xe−µ3∆x = I0e

(
−

∑N
n=1 µn∆x

)
(2.2)

Ou seja, a atenuação resultante para um material não uniforme pode ser calculada
dividindo-se o material em elementos menores. Dividindo-se ambos os lados da equação pela
intensidade inicial I0 e tomando o negativo do logaritmo da intensidade, tem-se a Equação 2.3:

−ln

(
I

I0

)
=

N∑
n=1

µn∆x (2.3)

Por fim, quando ∆x tende a zero, a Equação 2.3 se torna uma integração sobre a espes-
sura do objeto:

−ln

(
I

I0

)
=

∫
L

µ(x)dx (2.4)

A Equação 2.4 demonstra que o logaritmo da proporção da intensidade dos raios X de
entrada sobre a intensidade dos raios X de saída representam a integral de linha dos coeficientes
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de atenuação ao longo do caminho percorrido pelos raios X (HSIEH, 2003). Em um CT real, a
intensidade de referência I0 deve ser medida para cada detector, sendo esta uma parte importante
da etapa de calibração (PRINCE; LINKS, 2006).

Como dito na seção 2.1, cada tomógrafo possui um tubo responsável por gerar o feixe
de raios X utilizado no exame. Sabe-se que cada tubo possui uma própria energia eficaz. Ou
seja, para padronizar os dados de diferentes tubos em diferentes scanners, foi desenvolvido o
número de CT (h), sendo este definido pela Equação 2.5 (PRINCE; LINKS, 2006):

h = 1000

(
µ− µagua

µagua

)
, (2.5)

onde µ é o coeficiente de atenuação de um material qualquer e µagua é o coeficiente de atenuação
linear da água. A Equação 2.5 tem seu resultado expresso na escala Hounsfield (HU), a qual
foi construída através da atenuação no ar seco e na água pura a 25◦C, sendo estes valores
respectivamente iguais a -1000 HU e 0 HU (RIBEIRO-ROTTA, 2004) .

2.3 Reconstrução de imagens

Para melhor entender o processo de reconstrução de imagens a partir de projeções,
propõem-se a análise de um fundo uniforme que contém um objeto com maior índice de ate-
nuação, como mostra a Figura 2.5(a). Dado o caminho em que certa projeção foi adquirida, se
tomarmos seu caminho reverso, temos um feixe como ilustrado na Figura 5(b). Conforme au-
menta o número de projeções, a intensidade das retroprojeções que não se cruzam diminui se
comparada à das regiões nas quais as múltiplas retroprojeções se cruzam. Ou seja, as regiões
mais claras irão dominar o resultado e as retroprojeções com pouca ou nenhuma intersecção
desaparecerão no plano de fundo (GONZALEZ; WOODS, 2000).

Nota-se que apesar do formato do objeto ficar mais evidente conforme aumenta-se o
número de projeções, é perceptível também a formação de um borramento em torno do objeto,
sendo este efeito chamado de "halo", fenômeno corrigido por processos de filtragens (GONZA-
LEZ; WOODS, 2000) que serão explicados posteriormente. Em resumo, já foi determinado que
é possível reconstruir uma imagem a partir de um conjunto de integrais de linhas dos coeficien-
tes de atenuação dos materiais. Para entender o processo matemático, consideram-se que x e y
são coordenadas em um plano. Uma linha reta em coordenadas cartesianas pode ser descrita na
sua representação normal por:

xcos(θ) + ysen(θ) = l (2.6)
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Figura 2.5 – (a) Região plana mostrando um objeto simples. (b) a (e) reconstrução usando 1,
2, 3, e 4 projeções com distância de 45◦. (f) reconstrução com 32 projeções com
distância de 5,625 ◦.

Fonte: Adaptada de (GONZALEZ; WOODS, 2000)

sendo l a posição lateral de uma linha e θ o ângulo de uma unidade normal à linha. A projeção
de um feixe de raios paralelos pode ser formada por um conjunto dessas linhas. Um ponto
arbitrário no sinal da projeção é dado pela soma de raios ao longo da linha:

xcos(θk) + ysen(θk) = lj (2.7)

para valores contínuos, a soma de raios é dada por

g(lj, θk) =

∫ ∞

−∞

∫ ∞

−∞
f(x, y)δ(xcos(θk) + ysen(θk)− lj)dxdy (2.8)

sendo que δ representa as propriedades da função impulso. Se for considerado todos os valores
de l e θ, a Equação 2.8 é generalizada como:

g(l, θ) =

∫ ∞

−∞

∫ ∞

−∞
f(x, y)δ(xcos(θ) + ysen(θ)− l)dxdy (2.9)

Para um θ fixo, g(l, θ) é chamado de projeção; para todos os valores de l e θ, g(l, θ) é co-
nhecido como a Transformada 2-D de Radon de f(x, y). Esse processo matemático é ilustrado
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pela Figura 2.6, onde f(x, y) representa o objeto com diferentes níveis de atenuação sendo a
projeção para um valor de θ fixo representada na parte inferior da Figura.

Figura 2.6 – A geometria das linhas e projeções.

Fonte: Adaptada de (PRINCE; LINKS, 2006)

No caso discreto, a Equação 2.9 passa a ser

g(l, θ) =
M−1∑
x=0

N−1∑
y=0

f(x, y)δ
(
xcos(θ) + ysen(θ)− l

)
(2.10)

na qual x, y, l e θ agora são variáveis discretas. Ou seja, se mantido um valor de θ fixo e variar
o valor de l, será perceptível que a Equação 2.10 realiza uma soma dos pixels de f(x, y) ao
longo da linha definida pelos valores especificados desses dois parâmetros. Por outro lado, se
passar por todos os valores de l com um θ fixo, tem-se como resultado uma projeção, sendo
estes dados fundamentais para a reconstrução da imagem de CT.
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2.4 Senograma

Quando a transformada de Radon g(l, θ) é exibida como uma imagem com l e θ sendo
coordenadas retilínias, o resultado é chamado de senograma. Um senograma é uma representa-
ção da transformada de Radon que contém os dados necessários e suficientes para reconstruir
f(x, y) (GONZALEZ; WOODS, 2000). Um senograma é formado pelo empilhamento de todas
as projeções de diferentes vistas, de modo que uma projeção única é representada por uma linha
horizontal. A projeção de um único ponto forma uma curva sinusoidal no espaço do senograma
(HSIEH, 2003). Isto pode ser observado através da Figura 2.7.

Figura 2.7 – Ilustração do mapeamento entre o espaço do objeto (lado direito da Figura) e o
espaço do senograma (lado esquerdo da Figura).

Fonte: Adaptada de (HSIEH, 2003)

Um senograma pode ser usado para análise dos dados de projeção, como por exemplo
na detecção de anormalidades do aparelho de CT. Um mau funcionamento momentâneo do tubo
de raios X irá produzir uma interrupção em linhas na formação da imagem do senograma, já
que cada linha representa a projeção em um determinado tempo (HSIEH, 2003). O Senograma
é utilizado também para desenvolvimento de algoritmos tanto de reconstrução quanto para me-
lhorar a visualização do exame, tendo como exemplo algoritmos para a redução de artefatos
(LEAO; MACEDO, 2014).

Um senograma pode ser facilmente interpretado quando este representa figuras simples,
mas isto se torna mais difícil conforme a complexidade do objeto aumenta. Para ilustrar essa di-
ferença, consideram-se os objetos da Figura 2.8 (a) e 2.8 (c). Esses objetos são respectivamente
um retângulo uniforme e uma imagem sintética amplamente utilizada para simulações da área
cerebral chamada de Phantom de Shepp-Logan (GONZALEZ; WOODS, 2000). As Figuras 2.8
(b) e 2.8(d) representam os senogramas do retângulo e do Shepp-Logan, respectivamente. Os
eixos verticais do senograma correspondem à θ e os horizontais à l. Deduz-se facilmente na
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Figura 2.8 (b) que a linha inferior é a projeção do retângulo na direção horizontal e a linha do
meio é a projeção na direção do vertical, sendo estes valores para θ = 0◦ e θ = 90◦ respecti-
vamente. Com o senograma do phantom representado pela Figura 2.8 (d), só é possível deduzir
um pouco de simetria da imagem original e nada mais que isso (GONZALEZ; WOODS, 2000).

Figura 2.8 – (a) Retângulo uniforme, (b)senograma do Retângulo uniforme, (c) phantom de
Shepp-Logan , (d) senograma do phantom de Shepp-Logan.

Fonte: Adaptada de (GOLDMAN, 2007)

O exame de CT tem como objetivo obter uma representação 3-D de um volume a partir
de suas projeções 2-D. Isso representa a necessidade de realizar a retroprojeção de cada pro-
jeção, somá-las para gerar uma imagem (fatia) 2-D e empilhá-las para a produção do volume
(GONZALEZ; WOODS, 2000). A partir dos dados obtidos do senograma, o próximo passo é
processá-los para que se pareçam com o objeto de onde foram criados. Este processo é chamado
de reconstrução, e embora existam diversos métodos para isso, serão detalhados neste projeto
dois fundamentais: O Teorema da Fatia de Fourier e a FBP.

2.5 Reconstrução: O teorema da Fatia de Fourier

Para deduzir um resultado fundamental de reconstrução é importante relacionar a trans-
formada de Fourier 1-D de uma projeção e a transformada de Fourier 2-D da região a partir da
qual a projeção foi obtida. Esta corresponde à base dos métodos de reconstrução tendo como
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resultado a eliminação do efeito de halo comentado na Seção 2.3. Inicialmente, toma-se a trans-
formada de Fourier 1-D de uma projeção em relação à l como:

G(w, θ) = F1D{g(l, θ)} =

∫ ∞

−∞
g(l, θ)e−j2πwldl (2.11)

onde w é uma variável de frequência. O próximo passo é substituir a expressão analítica para
g(l, θ) mostrado na Equação 2.10 o que resulta na Equação 2.14 após as manipulações mostra-
das nas Equações 2.12 e 2.13:

G(w, θ) =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
f(x, y)δ

(
xcos(θ) + ysen(θ)− l

)
e−j2πwldxdydl (2.12)

G(w, θ) =

∫ ∞

−∞

∫ ∞

−∞
f(x, y)

∫ ∞

−∞
δ
(
xcos(θ) + ysen(θ)− l

)
e−j2πwldxdydl (2.13)

G(w, θ) =

∫ ∞

−∞

∫ ∞

−∞
f(x, y)e−j2πw

(
xcos(θ)+ysen(θ)

)
dxdy (2.14)

Antes de continuar a tratativa na Equação 2.14, é fundamental entender as propriedades
da função impulso para 2-D. Seja um impulso δ(t, z) de duas variáveis contínuas t e z definidos
pela Equação 2.15 (GONZALEZ; WOODS, 2000):

δ(t, z) =

∞ se t = z = 0

0, c.c.
(2.15)

e

∫ ∞

−∞

∫ ∞

−∞
δ(t, z)dtdz = 1 (2.16)

Assim como conhecido para 1-D, o impulso em 2-D apresenta a propriedade de penei-
ramento em relação à integração:

∫ ∞

−∞

∫ ∞

−∞
f(t, z)δ(t, z)dtdz = f(0, 0) (2.17)

se considerado na origem, ou de maneira geral, um impulso localizado nas coordenadas (t0, z0):

∫ ∞

−∞

∫ ∞

−∞
f(t, z)δ(t− t0, z − z0)dtdz = f(t0, z0) (2.18)
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Quando olha-se para variáveis discretas x e y, o impulso discreto 2-D é definido como:

δ(x, y) =

1 se x = y = 0

0, c.c.
(2.19)

Relembrada a propriedade do impulso e considerando:

u = wcos(θ)

v = wsen(θ)
(2.20)

A expressão final para G(w, θ) é uma reminiscência da Transformada 2-D de Fourrier
para f(x, y) sendo definida como:

F (u, v) =

∫ ∞

−∞

∫ ∞

−∞
f(x, y)e−j2π

(
xu+yv

)
dxdy (2.21)

a qual para os valores definidos anteriormente de u e v é traduzida como:

G(w, θ) = F
(
wcos(θ), wsen(θ)

)
(2.22)

A Equação 2.22 é conhecida como o teorema da fatia de Fourier, o qual afirma que a
transformada de Fourier de uma projeção é uma fatia da transformada de Fourier 2-D da região
a partir da qual a projeção foi obtida (PRINCE; LINKS, 2006). Ou seja, de cada projeção obtém-
se uma linha na transformada de Fourier 2D do objeto executando a Transformada de Fourier
na projeção. Se coletarmos um número suficiente de projeções no intervalo de 0 a θ, pode-se
obter a reconstrução do objeto através da transformada inversa de Fourier (HSIEH, 2003).A
representação gráfica que deriva do Teorema da Fatia de Fourier está representada na Figura
2.9.



37

Figura 2.9 – Ilustração do Teorema da Fatia de Fourrier

Fonte: Adaptada de (HSIEH, 2003)

O Tereoma da Fatia de Fourier entrega uma solução simples e direta para a reconstrução
da imagem tomográfica. No entanto, existem alguns desafios para sua implementação. Um dos
problemas diz respeito ao fato de que o espaço de Fourier não é Cartesiano, o que faz com
que as amostras das projeções caiam em uma grade de coordenadas polares. Para ser feita a
reconstrução, é necessário realizar a inversa da transformada de Fourier 2-D, sendo necessário
fazer um processo de interpolação. Essa interpolação no domínio da frequência é complexa
de ser feita, e qualquer erro nesse processo afeta na aparência de toda a imagem reconstruída.
Tendo em vista essa dificuldade, fez-se necessário o desenvolvimento de outros métodos de
reconstrução (HSIEH, 2003).

2.6 Reconstrução: Filtered Back Projection

Um dos métodos de reconstrução alternativos ao método da Teoria da Fatia de Fourier
mais utilizado é chamado de retroprojeção filtrada, do inglês: Filtered Back-Projection (FBP)
(KAK; SLANEY; WANG, 2002). O método FBP é uma abordagem analítica de reconstrução
de imagem, sendo este método vastamente utilizado por aparelhos de CT por um longo tempo
(DEÁK et al., 2013). Este método utiliza a Transformada de Radon como modelo matemático
básico para as projeções, retroprojeções e reconstruções da imagem (GONZALEZ; WOODS,
2000). Para a dedução do método FBP, parte-se inicialmente do fato de que a Transformada
de Fourier e a Inversa da Transformada de Fourier são operadores conjugados. Dessa forma, a
função de imagem dada por f(x, y) pode ser recuperada de sua transformada de Fourier F (u, v)

pela inversa de Fourier, conforme a Equação 2.23:

f(x, y) =

∫ ∞

−∞

∫ ∞

−∞
F (u, v)ej2π

(
xu+yv

)
dudv (2.23)
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A transformação de coordenadas cartesianas para coordenadas polares pode ser repre-
sentada por:

u = wcos(θ)

v = wsen(θ)
(2.24)

e

dudv =


∂u

∂w

∂u

∂θ

∂v

∂w

∂v

∂θ

 dwdθ = wdwdθ (2.25)

Substituindo as Equações 2.23 e 2.24 na Equação 2.25, tem-se:

f(x, y) =

∫ 2π

0

dθ

∫ ∞

0

F (ωcos(θ), ωsen(θ))ej2ω
(
xcos(θ)+ysen(θ)

)
ωdω (2.26)

A partir do uso do Teorema da Fatia de Fourier, pode-se trocar F (ωcos(θ), ωsin(θ)) por
P (ω, θ) sendo resultante a seguinte relação:

f(x, y) =

∫ 2π

0

dθ

∫ ∞

0

P (ω, θ)ej2ω
(
xcos(θ)+ysin(θ)

)
ωdω (2.27)

Se considerar a geometria de feixes paralelos, existe uma propriedade de simetria entre
as amostras da projeção dada por:

p(t, θ + π) = p(−t, θ) (2.28)

Isso está representado na Figura 2.10, que demonstra que projeções distanciadas de 180◦

representam o mesmo conjunto de raios.
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Figura 2.10 – Ilustração de Simetria dos Raios Paralelos.

Fonte: Imagem adaptada de (HSIEH, 2003)

Com isso, uma relação semelhante existe para o par correspondente na transformada de
Fourier(HSIEH, 2003):

P (ω, θ + π) = P (−ω, θ) (2.29)

Sendo possível chegar na seguinte relação:

f(x, y) =

∫ π

0

dθ

∫ ∞

−∞
P (ω, θ)|ω|ej2πω

(
xcos(θ)+ysen(θ)

)
dω (2.30)

Passando a Equação 2.30 para o sistema de coordenadas (s, t), chega-se na seguinte
equação:

f(x, y) =

∫ π

0

dθ

∫ ∞

−∞
P (ω, θ)|ω|ej2πωtdω (2.31)

Na Equação 2.31, P (ω, θ) é a transformada de Fourier da projeção no ângulo θ. A in-
tegral interna é a inversa da transformada de Fourier da quantidade P (ω, θ)|ω|. No domínio do
espaço, representa uma projeção filtrada por uma função cujo domínio da resposta em frequên-
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cia é |ω| sendo portanto, chamada de "Projeção Filtrada". Se a notação da projeção filtrada no
ângulo θ por g(t, θ) representa a integral interna da Equação 2.31, então:

g(t, θ) = g(xcos(θ) + ysen(θ)) =

∫ ∞

−∞
P (ω, θ)|ω|ej2πω

(
xcos(θ)+ysen(θ)

)
dω (2.32)

A Equação 2.31 pode ser rescrita como:

f(x, y) =

∫ π

0

g(xcos(θ) + ysen(θ))dθ (2.33)

A Equação 2.33 demonstra que a imagem reconstruída f(x, y) no local (x, y) é a soma
de todas as amostras de projeção filtradas que passam por este ponto (HSIEH, 2003). Toda essa
tratativa remete a utilização de feixes paralelos, devido à simplicidade do equacionamento. No
entanto, existem outros aparelhos de CT que utilizam feixes em formato de leque. Em seguida,
segue uma breve trativa das equações utilizadas no processo FBP. Para facilitar, toma-se como
base a Figura 2.11.

Figura 2.11 – Geometria do feixe em Formato de leque.

Fonte: Adaptada de (GONZALEZ; WOODS, 2000)

Inicialmente, sabe-se que uma amostra q(γ, β) em uma projeção de feixes em leque
pertenceria a uma amostra p(t, θ) em uma projeção paralela se as seguintes condições forem
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satisfeitas:

θ = β + γ

t = Dsen(γ)
(2.34)

sendo D a distância a partir do centro da fonte até a origem do plano xy. Sabe-se que pelo
teorema da convolução a Equação 2.33 pode ser reescrita como:

f(x, y) =

∫ π

0

dθ

∫ tm

−tm

p(t′, θ)h(t− t′)dt′ (2.35)

A partir da equação 2.35, pode-se deduzir que:

f(x, y) =

∫ π

0

dθ

∫ tm

−tm

p(t′, θ)h(xcos(θ) + ysen(θ))dt′ (2.36)

Modificando-se a equação para incluir todas as projeções sobre 2π e expressando em
coordenadas polares (r, φ) tem-se:

f(r, φ) =
1

2

∫ 2π

0

dθ

∫ tm

−tm

p(t′, θ)h(rcos(θ − φ)− t′)dt′ (2.37)

Na Equação 2.37 é utilizada a relação rcos(θ − φ) = rcos(φ)cos(θ) + rsen(φ)sen(θ).
Para que toda a Equação seja escrita em termos de de (γ, β) ao invés de (t, θ), substitui-se a
Equação 2.34 na Equação 2.37, resultando então:

f(r, φ) =
1

2

∫ 2π−γ

−γ

dβ

∫ γm

−γm

q(γ, β)h
(
rcos(β + γ − φ)−Dsenγ

)
Dcos(γ)dγ (2.38)

Sendo finalmente a Equação 2.38 a representação fundamental da reconstrução por fei-
xes em formato de leque baseada em retroprojeções filtradas (HSIEH, 2003). Em resumo, pode-
se descrever o processo de geral de FBP nesta ordem: aplicar a transformada de Fourier nas
linhas paralelas à trajetória do tubo; aplicar filtro de rampa; aplicar filtro de janela para redução
de ruído; aplicar transformada inversa de Fourier; e por fim, projetar novamente os dados no
domínio espacial (VIMIEIRO; BORGES; VIEIRA, 2019).
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3 REVISÃO BIBLIOGRÁFICA

3.1 Geração de Artefatos

Um problema que afeta a qualidade das imagens reconstruídas por CT é a criação de
artefatos. Os artefatos podem afetar estruturas importantes e podem fazer com que o exame seja
interpretado de forma equivocada, além de prejudicar a detecção correta e caracterização de
recursos de interesse. Existem diversos tipos de artefatos, os quais podem ser reconhecidos a
partir de suas origens, conforme será descrito a seguir (PRINCE; LINKS, 2006).

O termo artefato na CT é aplicado a qualquer discrepância sistemática entre os núme-
ros na imagem reconstruída e os verdadeiros coeficientes de atenuação do objeto. As imagens
de CT são mais propícias a apresentarem artefatos se comparada às radiografias convencio-
nais, pois a imagem é reconstruída a partir de milhares de medições de detectores independen-
tes. Dessa forma, qualquer erro nessa medição refletirá como um erro na imagem reconstruída
(BARRETT; KEAT, 2004). Diferentes artefatos geram diferentes problemas nas imagens resul-
tantes do exame, sendo possível conhecê-los a partir de suas origens. Destacam-se: artefatos de
movimento, artefatos em anel, artefatos de ruído, artefatos de dispersão, artefatos de extinção,
artefatos gerados por materiais muito densos, dentre outros (RUPRECHT, 2008). Exemplos de
diferentes tipos de artefatos podem ser visualizados na Figura 3.1

Artefatos de movimento são gerados devido à movimentos do paciente durante o exame.
Isto pode ser amenizado colocando um apoio para a cabeça do paciente e/ou reduzindo o tempo
de exposição, já que a probabilidade do paciente permanecer estático durante o exame é maior
(SCARFE; FARMAN, 2008). Artefatos em anel recebem este nome pois aparecem nas imagens
como ruídos circulares e são causados devido a uma calibração incorreta do detector do tomó-
grafo. Este efeito pode ser reduzido com uma calibração adequada no detector (SCHULZE et al.,
2011). Artefatos de ruído são gerados pelo fato de cada área do sensor absorver uma diferente
quantidade real de fótons, já que os processos de atenuação e espalhamento são estocásticos
(LOUBELE et al., 2008).

Artefatos de dispersão são causados por fótons difratados de seus trajetos originais mas
que também acabam atingindo o receptor, aumentando erroneamente a intensidade de uma de-
terminada área medida. Isto pode ser minimizado diminuindo o tamanho do detector (DRA-
ENERT et al., 2007). Diferentemente da superestimação do número de fótons em uma área,
exitem os artefatos de extinção, que correspondem a valores próximos de zeros nos receptores,
fato que ocorre em processos no qual o objeto em questão possui um número grande de materi-
ais absorvedores (BELEDELLI; SOUZA, 2012). Por fim, os artefatos gerados por objetos muito
densos ocorrem pelo fato de que os fótons de menor energia são absorvidos por esses materiais
e os fótons de maior energia acabam atingindo os receptores. Este fenômeno é conhecido como
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efeito de endurecimento do feixe, e pode ocorrer por exemplo na presença de objetos metálicos
(YAZDI; BEAULIEU, 2008).

Figura 3.1 – (a) artefato de movimento, (b) artefato gerado por objeto metálico, (c) artefato em
anel, (d) artefato por efeito de endurecimento do feixe

Fonte: Adaptada de (PRINCE; LINKS, 2006)

Existem protocolos que devem ser seguidos antes do procedimento do exame realizado
pela CT. Neste protocolo, uma das etapas é a retirada de todos os adornos metálicos para evitar
a interação dos feixes de raios X com esses, fato que faz com que sejam gerados artefatos (MIKI
et al., 2016). No entanto, sabe-se que há casos que esse procedimento é inviável, tendo como
exemplos pacientes com: próteses ortopédicas; restaurações dentárias; clips cerebrais; implantes
cocleares; clips de aneurismas; ou qualquer outro objeto metálico (SILVA, 2019).

Os objetos metálicos possuem um coeficiente de atenuação muito mais alto do que ossos
e tecidos (ZHANG et al., 2007). Quando o objeto metálico interage com os raios X, ocorre um
endurecimento do feixe, ou seja, os fótons de menor intensidade são absorvidos resultando em
um feixe de fótons mais enérgicos. Pode ocorrer também uma insuficiência de fótons, já que os
índices de absorção de materiais densos são altos (GUILFOILE; RAMPANT; HOUSE, 2017).

Os feixes que atravessam os objetos metálicos geram sinais fracos ao atingir o detec-
tor, resultando em sombras na projeção bruta de dados (ZHANG et al., 2007). Esta perda de
informações sobre a composição original da anatomia faz com que, na reconstrução da imagem,
sejam geradas faixas brilhantes que se sobrepõem às regiões em torno do objeto metálico, difi-
cultando a visualização destas áreas. Esses artefatos representam regiões na imagem final que
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possuem valores de níveis de cinza saturados e distintos da densidade real do tecido (GUIL-
FOILE; RAMPANT; HOUSE, 2017).

Os artefatos gerados por endurecimento do feixe em CT odontológico são bem comuns,
principalmente quando a região de interesse possui implantes (DRAENERT et al., 2007). Este
fato faz com que a qualidade da imagem adquirida seja baixa, dificultando o diagnóstico correto
nas áreas adjacentes aos implantes (AZEVEDO et al., 2008). Para corrigir os artefatos gerados
por endurecimento do feixe, os fabricantes dos tomógrafos utilizam estratégias que podem ser
divididas em quatro diferentes classes: filtragem de hardware; energia dupla; reconstrução poli-
cromática estatística e linearização (GOMPEL et al., 2011).

3.2 Métodos para redução de artefatos metálicos

O surgimento de artefatos metálicos foi descrito na Seção 3.1, no entanto, deve-se res-
saltar que dependendo da forma e da densidade do objeto de metal, a aparência deste tipo de
artefato pode ter uma variação significativa. Basicamente, o objeto de metal pode produzir o
efeito de endurecimento do feixe, do inglês: beam hardening, subfaixas nas aquisições de da-
dos ou extrapolar a faixa dinâmica no processo de reconstrução (HSIEH, 2003). Os métodos
para redução de artefatos metálicos cresceram com o passar dos anos já que este é um problema
relevante no ramo da CT. Diversos estudos e abordagens se desenvolveram, buscando diferentes
maneiras de redução desses artefatos. Isso pode ser observado na Figura 3.2, que representa um
gráfico evolutivo do número de publicações relacionados a métodos de MAR de 1995 à 2015
(GJESTEBY et al., 2016).

Pode-se dividir as técnicas de MAR em seis grupos diferentes de acordo com o enfo-
que de suas tratativas. São elas: otimização de implantes metálicos; melhora nos parâmetros
de aquisição; técnicas de pré-processamento baseados nos efeitos físicos resultantes (como por
exemplo beam hardening); reconstruções iterativas; técnicas de pós-processamento e comple-
mento da projeção.

O grupo de técnicas correspondentes à otimização de implantes metálicos, tem como
principal objetivo a remoção do objeto metálico durante o exame, tratativa que muitas vezes
é inviável devido a necessidade de algum procedimento cirúrgico invasivo (GJESTEBY et al.,
2016). Dentro deste grupo, existem também linhas de pesquisa para medir e comparar níveis
de atenuação dos metais, como por exemplo, o titânio apresentar uma qualidade de imagem
superior ao uso do cromo-cobalto em regiões próximas ao osso (HARAMATI et al., 1994).

Quando se fala na melhora dos parâmetros de aquisição, tem-se a estratégia de que mu-
dar parâmetros como valores da tensão, corrente do tubo de raios X e dimensão do plano de
varredura reduzem a geração de artefatos (GJESTEBY et al., 2016). Como exemplo, a técnica
de aumentar a tensão e/ou corrente do tubo para que fótons de energia mais altas sejam gera-
dos para penetrar nos objetos de metal, melhora a qualidade dos dados brutos em alguns casos.
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(MOON et al., 2008). O uso de CT com dupla energia, do inglês: dual energy também obtém
resultados satisfatórios, tendo como exemplo o fato de que 130keV apresenta melhores resulta-
dos para redução de artefatos metálicos comparado a valores inferiores como 40keV e 100keV
(ZHOU et al., 2011).

Figura 3.2 – Total de publicações sobre métodos MAR na CT no período de 1995 a 2015.

Fonte: Adaptada de (GJESTEBY et al., 2016)

A linha de pesquisa das técnicas de pré-processamento baseado nos efeitos físicos diz
respeito a modelar a causa física dos artefatos gerados para ser aplicado correções no domínio
da projeção antes do processo de reconstrução. Dentre as tratativas, tem-se a modelagem de
ruído local com um filtro adaptativo médio (HSIEH, 1998), a qual também pode ser combi-
nada com técnicas algébricas de reconstrução, do inglês: Algebraic reconstruction technique

(ART), para suprimir artefatos em listras (RANGAYYAN; GORDON, 1982). Tem também o
estudo de técnicas avançadas de interpolação para redução do efeito de beam hardening e o
desenvolvimento de algoritmos de correção de dispersão (MEYER et al., 2012).

As reconstruções iterativas tem como objetivo reduzir a quantidade de artefatos a partir
de comparações entre uma projeção base e os dados obtidos a partir da CT, buscando minimizar
o erro entre os senogramas. Nesta abordagem, existem: algoritmos de remoção de manchas a
partir de uma maximização de expectativa, do inglês Expectation Maximization (EM) e a ART
(WANG et al., 1996); criação de uma máscara de metal para isolar projeções que necessitam
de correção (AUGUST; KANADE, 2004); algoritmo baseados na transmissão da máxima ve-
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rossimilhança que otimiza a probabilidade de dados de Poisson (MAN et al., 2000); algoritmo
iterativo de reconstrução policromática também baseada na verossimilhança (MAN et al., 2001);
dentre outros.

O grupo de técnicas menos popular corresponde aos métodos de pós processamento. Es-
ses métodos buscam reduzir artefatos após a reconstrução da imagem, sem depender dos dados
brutos de aquisição (projeções). Dentre essas técnicas, existem: normalização dos dados para
um determinado nível de vinza (HENRICH, 1980); aplicação de filtros passa-baixa após identifi-
car os valores das listras de artefatos através da aplicação de um valor Threshold (SOLTANIAN-
ZADEH; WINDHAM; SOLTANIANZADEH, 1996); aplicação de filtros adaptativos radial em
imagens com baixo nível de artefatos (BAL et al., 2005). Dentro desta perspectiva, existem
também a utilização de métodos de pós-processamento para melhorar o resultado de etapas ini-
ciais aplicadas por outro grupo. Por exemplo, a combinação do método de interpolação linear
simples e o método de filtragem adaptativa multidimensional (WATZKE; KALENDER, 2004).

Por sua vez, o grupo de técnicas mais utilizado são os métodos para complementar a
projeção. Em situações de presença de metal nos exames de CT, os dados dessa região são
adquiridos incompletos ou até mesmo com valores totalmente corrompidos. Para corrigir isso,
deve-se sintetizar novos dados para a correção do senograma. Uma maneira de se conseguir
isso é através de métodos de interpolação através dos dados vizinhos ou de algum modelo ma-
temático (GJESTEBY et al., 2016). Dentre desses métodos tem como exemplo: a interpolação
linear (KALENDER, 2011); a interpolação de projeções por contorno (IPC), onde se tem um
aumento do número de projeções para reconstrução da imagem (BRUYANT; SAU; MALLET,
2000); aplicação de método de reconhecimento de padrões (MORIN; RAESIDE, 1981); inter-
polação em duas dimensões, utilizando informações em um eixo radial (MAHNKEN et al.,
2003); a utilização da técnica conhecida como Total Variation Inpainting para complementar
dados faltantes no senograma (XUE et al., 2009), dentre outros.

Uma abordagem complementar às técnicas citadas anteriormente corresponde à norma-
lização dos dados. Inicialmente, foram feitos estudos analisando inicialmente reconstruções de
imagens não corrigidas para encontrar os objetos de metal e depois normalizando as projeções
a partir do resultado obtido (MÜLLER; BUZUG, 2009). Foi então desenvolvida uma técnica
conhecida como MAR normalizado, os quais normaliza os dados da projeção original de acordo
com os dados da projeção anterior. Esta imagem anterior sem artefatos é obtida por uma seg-
mentação da imagem original, após o efeito de suavização para definir regiões de osso, ar e
tecido mole. Essa normalização feita sobre o senograma aumenta a homogeneidade das regiões
onde a interpolação linear será aplicada, levando a resultados mais precisos (MEYER et al.,
2010)

Em suma, algoritmos matemáticos para redução de artefatos gerados por objetos metá-
licos que buscam complementar a projeção do senograma pode-se resumir em quatro etapas:
a correção de pixels aplicando um limiar na escala Hounsfield; a projeção (senograma) para
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identificar os pixels corrompidos; a remoção dos pixels corrompidos e a interpolação com esti-
mativas apropriadas; e a retroprojeção do senograma interporlado gerando uma imagem correta
(KATSURA et al., 2018). Embora existam muitos métodos, eles deixam a desejar no quesito
da retirada total de artefatos nas imagens, em alguns casos, criando novos artefatos devido aos
métodos implementados. Nos últimos anos, uma forte linha de pesquisa utilizando aprendizado
profundo, do inglês: Deep Learning (DL), para melhorar métodos existentes, tem ganhado força
e apresenta resultados promissores (MAI; WAN, 2020).

3.3 Uso de redes neurais para diminuição de artefatos metálicos

A área de aprendizado de máquina, do inglês: Machine Learning (ML), e o DL tem ga-
nhado grande popularidade como uma solução eficaz para problemas em diversos campos. Na
área de imagens médicas, as técnicas de DL tem ganhado grande destaque na parte de proces-
samento e análise de imagens, sendo também uma nova abordagem para a redução de artefatos
metálicos em imagens de CT (GJESTEBY et al., 2017). Uma classe de rede bastante utilizada
na área de processamento de imagens são as redes neurais convolucionais, do inglês: Convoluti-

onal Neural Netowrks (CNN), apresentando poderosos resultados e uma grande capacidade de
extrair detalhes em um grande conjunto de dados (KRIZHEVSKY; SUTSKEVER; HINTON,
2017).

A CNN foi proposta pela primeira vez em 1947 e diferia dos estudos com redes neurais
existentes até então pois adicionava em sua arquitetura um algoritmo de retropropagação para
aprender os campos receptivos de unidades simples (LIANG; HU, 2015). A CNN se caracteriza
por apresentar conexões locais, compartilhamento de pesos e pooling local. As duas primeiras
fazem com que o modelo descubra padrões visuais locais com menos parâmetros ajustáveis. O
pooling local incorpora a rede um pouco de invariância à translação (LIANG; HU, 2015).

Nos últimos anos, muitas técnicas têm sido desenvolvidas para melhorar o desempenho
das CNN. A exemplo disso, pode-se citar: diversos estudos na área da melhor função de ati-
vação, sendo a função linear retificada (Relu) a mais comumente usada por ser resistente ao
desaparecimento do gradiente no algoritmo de retropropagação (GLOROT; BORDES; BEN-
GIO, 2011); utilização de técnicas eficazes para evitar que as redes neurais se ajustem excessi-
vamente ao treinamento (SRIVASTAVA et al., 2014); uso de pooling máximo para melhorar a
capacidade do modelo que evita o ajuste excessivo (GOODFELLOW et al., 2013); incorpora-
ção de uma classe recorrente (RCNN) para reconhecimento de objeto incorporando conexões
em cada camada convolucional (LIANG; HU, 2015); o acoplamento de classes como a recente
desenvolvida Deep Generative Deconvolutional Network (DGDN) como um aprendizado semi-
supervisionado (PU et al., 2016), dentre outros.

Apesar de existirem há muito tempo, as CNN apresentam algumas limitações. O uso
típico dessas redes é em tarefas de classificação, onde a saída para uma imagem é apenas um
rótulo de classe única. No entanto, áreas como processamento de imagens médicas apresentam
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a necessidade de identificar partes específicas da imagem, ou seja, atribuir um rótulo de classe
a cada pixel (RONNEBERGER; FISCHER; BROX, 2015). Para acelerar a convergência da
rede foi desenvolvida uma arquitetura com conexões skip-layer, conhecida como RED-Net, do
inglês: very deep Residual Encoder-Decoder Networks (MAO; SHEN; YANG, 2016).

Um exemplo da arquitetura RED-Net pode ser visto na Figura 3.3. As camadas convolu-
cionais agem são extratores de recursos que codificam os componentes primários do conteúdo
da imagem, eliminando as partes corrompidas. As camadas deconvolucionais então decodificam
a abstração da imagem para recuperar os detalhes. As conexões de salto, do inglês: skip con-

nections entre as conexões convolucionais e deconvolucionais auxiliam na retropropagação dos
gradientes para as camadas inferiores e passam os detalhes para as camadas superiores (MAO;
SHEN; YANG, 2016).

Na literatura existem diversas abordagens do uso de ML para melhorar e desenvolver
técnicas de MAR: técnicas desenvolvida utilizando DL com operações residuais para corrigir
artefatos remanescentes de um primeiro passo de interpolação (GJESTEBY et al., 2018); mé-
todos que utilizam as projeções das partes próximas das corrompidas para o treinamento do
modelo (MAI; WAN, 2020); aplicação de DL para fazer estimativas dos dados faltantes em um
senograma, utilizando uma rede com poucas camadas seguidas por um mapeamento de recur-
sos, tendo na última camada uma síntese mapeada dos dados ausentes (CLAUS et al., 2017);
estudo para eliminar o efeito de beam hardening durante a formação do senograma utilizando a
arquitetura U-net para reparar as perdas de dados geradas por materiais metálicos (PARK et al.,
2018); dentre outros.

Figura 3.3 – Arquitetura da rede RED-Net

Fonte: Adaptada de (MAO; SHEN; YANG, 2016)
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3.4 Funções Custo

O crescimento da utilização de algoritmos de DL ao longo dos anos requer técnicas
mais avançadas para contribuir com a eficácia destes métodos. A função custo é um dos fatores
mais significativos no quesito de desempenho dos algoritmos, apresentando resultados bem
diferentes em uma mesma arquitetura. Com isso, são destacadas três funções (NIE; HU; LI,
2018):

3.4.1 Erro Quadrático Médio

O erro quadrático médio, do inglês: Mean Squared Error (MSE) é uma função custo
que calcula o erro pixel a pixel entre a imagem de saída Ỹi e a imagem alvo Yi:

ζMSE =
1

N

N∑
i=1

∣∣∣∣∣∣∣∣Ỹi − Yi

∣∣∣∣∣∣∣∣2 (3.1)

onde N é o número de amostras de treinos e i representa uma amostra do treino (GJESTEBY et
al., 2018).

3.4.2 MSE com Perceptual Loss

O uso da função custo MSE pode resultar em perdas devido a uma possível suavização
excessiva. A função custo Perceptual Loss (PL) busca preservar a textura da imagem (GJES-
TEBY et al., 2018). A PL é uma função pré-treinada da rede VGG((SIMONYAN; ZISSER-
MAN, 2014)) sendo também utilizada na área de processamento de imagens. A função custo
PL pode ser definida pela Equação 3.2 a qual, neste caso, utiliza o erro quadrático médio para
medir as diferenças:

ζPL =
1

N

N∑
i=1

∣∣∣∣∣∣∣∣ϕ(Ỹi)− ϕ(Yi)

∣∣∣∣∣∣∣∣2 (3.2)

onde ϕ é a VGG treinada (GJESTEBY et al., 2018). A função custo combinada se dá pela soma
da função custo MSE com a função custo PL, sendo esta multiplicada por um fator α = 1.17e−5,
conforme mostra a Equação 3.3:

ζ(MSE+PL) = ζMSE + αζPL (3.3)

3.4.3 SSIM

Em casos em que a rede tenha objetivo de apresentar imagens visualmentes parecidas,
a função custo chamada de Índice de Similaridade Estrutural, do inglês: Structoral Similarity
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Index (SSIM), tem apresentado bons resultados (ZHAO et al., 2016). O SSIM está representado
pela Equação 3.4:

SSIM(Ỹ , Y ) =
2µỸ µY + c1
µ2
Ỹ
+ µ2

Y + c1

2σỸ Y + c2
σ2
Ỹ
+ σ2

Y + c2
(3.4)

onde µỸ , µY ,σỸ e σY são as médias e as variâncias de Ỹ e Y e σỸ Y é a covariância de Ỹ e Y

(ZHAO et al., 2016). A função custo SSIM é definido por

ζSSIM = 1− SSIM(Ỹ , Y ) (3.5)

3.5 Métricas de avaliação de imagens

A medida de qualidade é um parâmetro importante para verificar a eficácia de funcio-
nalidades. Quando trata-se de analisar imagens, a qualidade é o critério principal, podendo esta
ser avaliada através do uso de métricas. Dentro das diversas métricas usadas para mensurar a
qualidade de imagens, o MSE, o Pico da Relação Sinal-Ruído, do inglês: Peak Signal-to-Noise

Ratio (PSNR), e o SSIM são frequentemente citados na literatura e classificados como métricas
de referência completa, pois consideram como referência a imagem original (SARA; AKTER;
UDDIN, 2019). O MSE e a SSIM foram definidos nas seções 3.4.2 e 3.4.3, respectivamente.

3.5.1 PSNR

O PSNR é uma métrica derivada do erro quadrático médio e demonstra a razão entre a
intensidade máxima do pixel e a potência da distorção. O cálculo da PSNR é dada pela Equação
3.6:

PSNR(Ỹ , Y ) = 10.log

(
max2

MSE(Ỹ , Y )

)
(3.6)

onde max representa o máximo valor dentre todos os pixels da imagem. Para o PSNR,
quanto maior o valor, melhor será sua qualidade (LEAO; MACEDO, 2014).
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4 MATERIAIS E MÉTODOS

Propõem-se um método para redução de artefatos metálicos através da adaptação de
uma rede neural CNN com uma arquitetura RED-Net para complementação dos dados cor-
rompidos no senograma, sendo que serão testados três diferentes funções custo: MSE, MSE
combinada com PL e SSIM.

4.1 Materiais

4.1.1 Phantom Shepp-Logan

As imagens foram geradas artificialmentes através do Software Matlab, com a função
phantom, a qual retorna a imagem de um Shepp-Logan. A escolha deste phantom é devido a sua
ampla utilização para imagens médicas pois simula vários níveis de atenuação, conforme visto
na seção 2.4. As imagens foram geradas no tamanho 128x128 e então foram aplicadas nelas
a Transformada de Radon, com um ângulo de varredura de 0◦ a 179◦ em passos de 1◦, a qual
retorna o senograma desta imagem. Neste trabalho, para aproximar os senogramas da ideia de
um gráfico sinusidal, será assumido que o eixo-x corresponde aos valores de θ e o eixo-y à l.
Os pares phantom original e senograma podem ser vistos pela Figura 4.1.

Quando se aplica a transformada de Radon em um phantom de tamanho 128x128 é
gerado um senograma 185x180. No entanto, para facilitar os procedimentos de divisão que
ocorrem na rede, essas imagens foram modificadas para 180x180. Esse procedimento corres-
ponde a eliminar as 5 linhas iniciais do vetor, as quais em todos os casos eram contidas apenas
por zeros. Essas linhas são adicionadas posteriormente para realizar a reconstrução.

Figura 4.1 – (a) Phantom Shepp-Logan original, (b) senograma do phantom Shepp-Logan origi-
nal.

Fonte: Elaborada pelo Autor (2020).
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4.1.2 Banco de imagens para a rede

Para o desenvolvimento do método foi necessário elaborar um banco de imagens sinté-
ticas. A rede possui uma imagem 180x180 de entrada e uma imagem 180x180 de saída. Cada
exemplo utilizado corresponde a um par de imagens, constituído por um senograma corrompido
por artefatos metálicos e um outro sem. Foram geradas 60 mil amostras e a divisão do banco de
imagens está descrita na Tabela 4.1. Neste trabalho não foi feita validação cruzada.

Tabela 4.1 – Divisão do banco de imagens

Número de amostras Conjunto
33.500 treino
16.500 validação
10.000 teste

Fonte: Elaborada pelo Autor (2020).

Como os exemplos de senogramas devem ser distintos, foi necessário variar os parâ-
metros de entrada da função phantom. Esses parâmetros correspondem a um vetor 1x6, onde
cada coluna corresponde a uma alteração nas elipses contidas no interior do phantom. Vale res-
saltar que, para manter a forma do Shepp-Logan, não foram alteradas as duas elipses externas
da imagem. A quantidade de novas elipses internas foi determinada em cada iteração, sendo
escolhida por um número inteiro aleatório entre um e oito. Os valores utilizados para desenhar
estas elipses estão representados na Tabela 4.2.

A primeira coluna do vetor representa o valor de intensidade aditiva da elipse. Para
qualquer pixel da imagem de saída, o valor do pixel é igual à soma dos valores de intensidade
aditiva de todas as elipses das quais o pixel faz parte. Se um pixel não faz parte de nenhuma
elipse, seu valor é zero. O valor de intensidade aditiva para uma elipse pode ser positivo ou
negativo; se for negativo, a elipse será mais escura do que os pixels circundantes. Os valores da
segunda até a quinta coluna são coordenadas dentro do domínio [−1, 1] dos eixos x e y. A sexta
coluna por sua vez, apresenta os valores em graus.

Tabela 4.2 – Representação das colunas do vetor responsável por gerar elipses do phantom

Coluna Parâmetro Valor Min. Valor Max.
1◦ Altera o nível de atenuação do material -0.5 0.2
2◦ Altera largura no eixo-x 0.01 0.4
3◦ Altera altura no eixo-y 0.01 0.4
4◦ Altera posição no eixo-x -0.5 0.5
5◦ Altera posição no eixo-y -0.5 0.5
6◦ Rotação da figura 0◦ 360◦

Fonte: Elaborada pelo Autor (2020).
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O phantom gerado aleatoriamente a partir dos dados da Tabela 4.2 será então acrescido
de metal. O princípio de adição do metal ao phantom é praticamente o mesmo da adição de elip-
ses, sendo diferente os valores mínimos e máximos utilizados. O número de metais adicionados
corresponde à um valor inteiro aleatório entre um e cinco gerado em cada iteração. Os valores
utilizados para desenhar estes metais estão representados na Tabela 4.3.

Tabela 4.3 – Representação das colunas do vetor responsável por gerar metais no phantom

Coluna Parâmetro Valor Min. Valor Max.
1◦ Altera o nível de atenuação do material 0.5 6.5
2◦ Altera largura no eixo-x 0.01 0.1
3◦ Altera altura no eixo-y 0.01 0.1
4◦ Altera posição no eixo-x -0.5 0.5
5◦ Altera posição no eixo-y -0.8 0.8
6◦ Rotação da figura 0◦ 360◦

Fonte: Elaborada pelo Autor (2020).

Por fim, é necessária uma etapa de simulação do artefato metálico no senograma cor-
rompido. Em uma situação real de aquisição de dados, os objetos metálicos fazem com que
não cheguem informações suficientes nos detectores para fazer uma reconstrução perfeita. No
caso simulado, o phantom apresenta todas as informações necessárias para a reconstrução. É
necessário então, localizar o local que o metal foi inserido e eliminar a informação em volta
deste metal, o que fará com que sejam gerados artefatos na etapa de reconstrução. Dessa forma,
o senograma (corrompido) irá responder corretamente no processo de reconstrução, simulando
a falta de informação daquele ponto onde está o objeto metálico independente do ângulo de
projeção (KUBICEK et al., 2015).

A Figura 4.2 apresenta exemplos das imagens geradas. A figura 4.3 apresenta uma pe-
quena amostra da base de imagens utilizada na rede. O processo de geração das imagens mos-
tradas está descrito no fluxograma representado pela Figura 4.4.

Para fins de visualização, foram geradas imagens a partir da adição do metal em um
phantom Shepp-Logan. Foram gerados três phantoms, sendo um não corrompido e dois com
presença de metais. Em um phantom os metais são circulares e em outro são em formato elíp-
tico. Para visualizar a eficácia dos métodos de redução de artefatos, deve-se comparar as re-
construções realizadas com a reconstrução dos phantoms de exemplo. Para isso, foi aplicado a
inversa da Transformada de Radon em cada senograma, conforme mostra a Figura 4.5.
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Figura 4.2 – Exemplo de imagens geradas via Matlab.

Fonte: Elaborada pelo Autor (2020).

Figura 4.3 – Base de imagens para a rede.

Fonte: Elaborada pelo Autor (2020).
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Figura 4.4 – Fluxograma do desenvolvimento do dataset utilizado para treinar a rede.

Fonte: Elaborada pelo Autor (2020).

Figura 4.5 – Fluxo de criação das imagens para exemplo visual.

Fonte: Elaborada pelo Autor (2020).
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4.2 Métodos

4.2.1 Rede Neural Convolucional

Uma CNN com arquitetura RED-Net foi utilizada para a redução dos artefatos metálicos.
A rede possui como entrada uma imagem corrompida de tamanho 180x180, a qual corresponde
a um senograma com artefatos metálicos. Esses dados corrompidos são faixas brancas que serão
preenchidas pela rede. A rede proposta teve sua construção baseada em um Autoencoder para
remoção de ruído e está disponível em https://github.com/LAVI-USP/DMAR2dCT, sendo esta
adaptada para retornar um senograma 180x180 corrigido.

A rede possui uma arquitetura RED-Net. O encoder tem cinco camadas convolucio-
nais com trinta e dois filtros em cada. O decoder apresenta cinco camadas de-convolucionais
com trinta e dois filtros nas quatro primeiras e uma na última. Nesta arquitetura, existem skip-

connections entre algumas camadas e a utilização de operações residuais. A rede possui 103.329
parâmetros treináveis. As Figuras 4.6 e 4.7 apresentam um resumo da arquitetura da rede

Para treino, foram utilizados pares de imagens 180x180, sendo um senograma corrom-
pido por metal e o outro não. Foi utilizado um batchsize = 16 e learning rate = 2x10−4. O
modelo foi treinado três vezes utilizando diferentes funções custos, são elas: MSE; MSE + PL;
e SSIM. O erro da validação era avaliado em cada época e se houvessem vinte épocas sem este
variar mais do que 1x10−3, o treinamento era parado de forma automática.

Figura 4.6 – Arquitetura do Encoder.

Fonte: Elaborada pelo Autor (2020).
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Figura 4.7 – Arquitetura do Decoder.

Fonte: Elaborada pelo Autor (2020).

4.2.2 Substituição por valores vizinhos e interpolação linear

Para fins de comparação, foram utilizados outros dois métodos de redução de artefatos.
A literatura mostra que os métodos mais utilizados para a redução de artefatos metálicos cor-
respondem aos métodos de complementação do senograma, conforme descrito na Seção 3.2.
Dentre estes, pode-se citar modelos matemáticos de substituição dos valores vizinhos corrom-
pidos pelo metal (GJESTEBY et al., 2016) e o método de interpolação linear (KALENDER,
2011). Neste trabalho, o método matemático de substituição de valores vizinhos utilizado cor-
responde a capturar em cada projeção valores maiores que um Threshold, sendo este igual a
2,5 vezes o valor médio entre todas as atenuações naquela projeção, juntar os valores sequenci-
ais em um vetor e substituí-los pela média aritmética entre os três valores anteriores e os três
valores posteriores a este vetor.
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5 RESULTADOS E DISCUSSÕES

Neste trabalho são apresentados resultados experimentais de um método proposto para
redução de artefatos gerados por objetos metálicos em CT.

5.1 Treinamento da Rede

A partir do treinamento da rede, obteve-se os gráficos de Erro x Épocas para as três
funções custos utilizadas: MSE, MSE + PL, SSIM, conforme demostrado na Figura 5.1.

Figura 5.1 – Gráfico Erro x Épocas das seguintes funções custo: (a) MSE, (b) MSE + PL e (c)
SSIM

Fonte: Elaborada pelo Autor (2020).
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A partir dos gráficos obtidos pode-se perceber que os treinos convergiram com quanti-
dades de épocas diferentes. Para a função custo MSE, convergiu com 27 épocas, MSE + PL em
torno de 150 épocas e SSIM com 120 épocas. O gráfico épocas x erro foi construído utilizando
a média da loss em um Batch no treino e um Batch na validação. É possível observar que o
modelo melhorou ao longo do treino, e que os pesos utilizado para os testes seguintes foram
salvos quando o erro do treino e o erro da validação estavam estáveis, excedendo o critério de
parada determinado na Seção 4.2.1.

5.2 Análise das Projeções para um ângulo fixo

Para analisar melhor a ação dos métodos de redução de artefatos metálicos no seno-
grama, é interessante observar as projeções para um determinado valor fixo, nesse caso, para
θ = 90◦. A Figura 5.2 representa a comparação entre o senograma com metal circular e o
senograma sem metal.

Figura 5.2 – Projeções para θ = 90◦ do senograma c/ metal e senograma s/ metal

Fonte: Elaborada pelo Autor (2020).

Esses picos observados em torno dos canais 60 e 90 representam a presença de metal.
A Figura 5.3 mostra as projeções para o mesmo valor de θ = 90◦ nos senogramas corrigidos
pelos métodos comparando ao senograma sem metal.

A partir da comparação entre os gráficos com correções pelos métodos propostos e o
gráfico de referência do senograma sem metal, é possível observar que os senogramas corrigidos
pela rede neural apresentaram um melhor resultado. Tanto o método de substituição por valores
vizinhos quanto o método de interpolação, reduziram um pouco a intensidade do metal, mas
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apresentam valores ruidosos nesses canais. A substituição de uma quantidade de valores acima
do threshold por um único valor irá gerar alterações bruscas nas projeções. Um outro motivo
para esses "impulsos"que apareceram na Figura 5.3 pode ser o fato de que o threshold pode não
ter englobado todos os valores que representam projeções metálicas.

Figura 5.3 – Projeções para θ = 90◦ do senograma corrigido pelos métodos comparado ao
senograma sem metal

Fonte: Elaborada pelo Autor (2020).

As correções no senograma pela rede neural se aproximam mais da imagem de referên-
cia, apresentando curvas mais suaves e valores de projeções mais próximos do esperado. Dentre
elas, a MSE fica um pouco mais distante das redes com MSE + PL e SSIM, sendo estas detento-
ras do melhor resultado. Este resultado é visualmente muito parecido e ficará mais claro quando
aplicadas as métricas de qualidade presentes nas próximas sessões. Vale ressaltar também que
o resultado é apenas para o senograma com metais circulares, já que para o senograma com
metais elípticos as diferenças nas respostas foram mínimas.

5.3 Senogramas corrigidos e reconstruções

Essa seção apresenta os senogramas corrigidos pelos métodos propostos e os phantoms

com metais circulares e elípticos reconstruídos. As figura 5.4 e 5.6 apresentam os (a) senogra-
mas que geram artefato, (b) senogramas do phantom sem metal e os senogramas resultantes dos
métodos propostos. As Figuras 5.5 e 5.7 demonstram os resultados das aplicações do método
de reconstrução FBP nos senogramas apresentados.
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Figura 5.4 – São apresentados os seguintes senogramas (a) do phantom com metais circulares,
(b) do phantom referência s/ metal, (c) corrigido por substituição dos valores vizi-
nhos,(d) corrigido por interpolação, (e) corrigido pela rede c/ MSE, (f) corrigido
pela rede c/ MSE + PL, (g) corrigido pela rede c/ SSIM

Fonte: Elaborada pelo Autor (2020).
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Figura 5.5 – São apresentados os seguintes phantoms: (a) com metais circulares, (b) referência
s/ metal, (c) corrigido por substituição dos valores vizinhos,(d) corrigido por inter-
polação, (e) corrigido pela rede c/ MSE, (f) corrigido pela rede c/ MSE + PL, (g)
corrigido pela rede c/ SSIM

Fonte: Elaborada pelo Autor (2020).
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Figura 5.6 – São apresentados os seguintes senogramas (a) do phantom com metais elípticos,
(b) do phantom referência s/ metal, (c) corrigido por substituição dos valores vizi-
nhos,(d) corrigido por interpolação, (e) corrigido pela rede c/ MSE, (f) corrigido
pela rede c/ MSE + PL, (g) corrigido pela rede c/ SSIM

Fonte: Elaborada pelo Autor (2020).
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Figura 5.7 – São apresentados os seguintes phantoms: (a) com metais elípticos, (b) referência s/
metal, (c) corrigido por substituição dos Valores Vizinhos,(d) corrigido por inter-
polação, (e) corrigido pela rede c/ MSE, (f) corrigido pela rede c/ MSE + PL, (g)
corrigido pela rede c/ SSIM

Fonte: Elaborada pelo Autor (2020).
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A partir das Figuras apresentadas é possível fazer algumas análises visuais. Os senogra-
mas que apresentaram mais resquícios dos metais que estavam ali presentes foram os corrigi-
dos pelos métodos de substituição de valores por vizinhança e interpolação, independente do
formato do metal do phantom. Consequentemente, as reconstruções desse método estão visu-
almente corrompidas por ausência de informação nos lugares em que havia o metal. Em torno
desses locais é possível ainda notar a presença de alguns artefatos metálicos. No lugar em que
o metal estava presente, há ausência de informação, sendo predominantemente dominado pela
cor preta no método de substituição e por níveis de cinza variados nos métodos de interpolação.

Analisando os senogramas corrigidos pelas redes neurais é possível afirmar que a fun-
ção custo MSE, apesar de remover as listras brancas referente ao metal, acabou "borrando"o
senograma e consequentemente, sua reconstrução apresentou um resultado mais distante da fi-
gura de referência. Quando combinado com a função custo PL, o resultado se torna muito mais
próximo do esperado. Resultado este também observado na imagem corrigida pela rede com
SSIM, sendo visualmente complicado de diferenciar qual imagem apresentou o melhor resul-
tado. Os senogramas referentes à estes dois métodos citados anteriormente estão praticamente
sem nenhuma listra de metal e, visualmente, suas reconstruções não apresentam artefatos.

É interessante ressaltar que, os metais circulares e elípticos apresentaram resultados dis-
tintos nas metodologias sem o uso da rede neural, sendo que os metais elípticos estão mais
presentes nos senogramas e reconstruções. A rede apresentou praticamente os mesmos resulta-
dos independente do formato do metal presente.

5.4 Métricas de qualidade

As Tabelas 5.1, 5.2 e 5.3 mostram os resultados obtidos das métricas entre as reconstru-
ções corrigidas pelos métodos e a reconstrução do phantom de referência. Nas três tabelas, a
primeira linha refere-se às métricas aplicadas entre a reconstrução do phantom corrompido por
metal e a imagem de referência, apenas para facilitar a visualização dos resultados. As tabelas
apersentam o valor da média e do intervalo de confiança considerando um nível de confiança de
95%. A Tabela 5.1 corresponde aos valores MSE, a Tabela 5.2 aos valores de PSNR e a Tabela
5.3 aos valores de SSIM:

Tabela 5.1 – MSE entre as reconstruções corrigidas e a reconstrução de referência.

Método Média Intervalo de confiança
Phantom com Metal 0,2313 [0.2277; 0.2348]

Subst. Val. Vizinhança 0,0179 [0.01763; 0.01817]
Interpolação 0,0169 [0.01665; 0.01715]
CNN + MSE 0,0027 [0.00267; 0.00273]

CNN + MSE + PL 0,0021 [0.00205; 0.00215]
CNN + SSIM 0,0015 [0.00146; 0.00154]

Fonte: Elaborada pelo Autor (2020).
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Tabela 5.2 – PSNR entre as reconstruções corrigidas e a reconstrução de referência.

Método Média [dB] Intervalo de confiança
Phantom com Metal 7,82 [7.743; 7.897]

Subst. Val. Vizinhança 18,72 [18.663; 18.777]
Interpolação 18,73 [18.671; 18.789]
CNN + MSE 26,06 [26.025; 26.094]

CNN + MSE + PL 28,29 [28.222; 28.359]
CNN + SSIM 29,58 [29.518; 29.642]

Fonte: Elaborada pelo Autor (2020).

Tabela 5.3 – SSIM entre as reconstruções corrigidas e a reconstrução de referência.

Método Média Intervalo de confiança
Phantom com Metal 0,2339 [0.23083; 0.23497]

Subst. Val. Vizinhança 0,4634 [0.46094; 0.46586]
Interpolação 0,4949 [0.49278; 0.49702]
CNN + MSE 0,7014 [0.70019; 0.70261]

CNN + MSE + PL 0,8020 [0.80057; 0.80343]
CNN + SSIM 0,8246 [0.82324; 0.82596]

Fonte: Elaborada pelo Autor (2020).

A partir da análise da tabela é possível confirmar que os valores corroboram com a aná-
lise visual feita anteriormente. A partir da tabela 5.1, é possível afirmar que todos os métodos
conseguiram reduzir os artefatos na reconstrução, sendo que o método proposto obteve os me-
lhores resultados. Dentre as funções custo, a MSE combinada com a PL obteve um resultado
melhor do que a MSE sozinha. A melhor média foi obtida a partir da rede com SSIM.

A mesma análise que a anterior pode ser observada nas Tabelas 5.2 e 5.3, sendo que estas
demonstram que os métodos utilizados na literatura melhoram a qualidade da imagem, mas o
método proposto apresenta resultados mais significativos. Uma observação é que, os métodos
de substituição por valores vizinhos e interpolação sofriam grandes alterações quando variava-
se a quantidade e o coeficiente de absorção dos metais. No método proposto, independente da
função custo, a complementação do senograma não passava por grandes alterações variando-se
essas características, sendo este um possível fator resultante nesses valores.

Por apresentarem valores de média muito próximos, foi feito um teste t-student entre
os valores de CNN + MSE + PL e CNN + SSIM. A hipótese nula correspondente é de que,
estatisticamente, as médias apresentam valores iguais. O teste feito no matlab com a função
ttest retornou, para as três métricas, um valor igual a 1, rejeitando a hipótese nula. Ou seja, a
partir dos dados obtidos, é possível observar que a rede com a função custo SSIM apresentou
a melhor performance em todas as métricas utilizadas, apesar destes valores serem muito pró-
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ximos dos resultados obtidos pela rede com MSE + PL. Por fim, vale ressaltar que todos os
métodos apresentaram resultados melhores do que os observados entre a imagem de referência
e a imagem corrompida, comprovando que os artefatos metálicos podem ser reduzidos através
da aplicação de métodos de complementação do senograma.
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6 CONCLUSÃO

Este trabalho propõe desenvolver um método para redução de artefatos gerados por
objetos metálicos em imagens de TC. A justificativa do projeto se dá pelo fato de que artefatos
metálicos degradam a qualidade das imagens, podendo gerar exames não diagnosticáveis, sendo
este um grande problema na área de processamento de imagem e tomografia computadorizada.

Anteriormente, diversos estudos foram realizados para reduzir artefatos. Dentre essas
abordagens, existem os métodos que buscam remover o metal e complementar os dados faltantes
do senograma com diferentes tratativas, tais como a substituição destes por valores vizinhos,
substituição por interpolação e, mais recente, uso de redes neurais para preencher os espaços
vazios nas projeções adquiridas.

Os métodos existentes na literatura: por substituição de valores vizinhos e interpolação
são simples de serem implementados e apresentaram uma boa redução dos artefatos metálicos.
No entanto, a dificuldade de achar um bom valor de threshold e a geração de locais de alta
frequência nos gráficos das projeções faz com que sejam gerados novos artefatos e/ou não
sejam removidos totalmente os valores em torno do metal. Vale ressaltar que estes métodos
apresentam uma grande diferença variando um pouco o tamanho do metal. Isto pode ser um
problema para imagens que apresentem um número maior de metais com formatos variados.

O método proposto com o uso de redes neurais apresenta resultados satisfatórios, re-
movendo totalmente as listras brancas do senograma. É interessante notar que a função custo
altera fortemente os resultados, comprovada por exemplo da função custo MSE apresentar um
resultado abaixo das outras duas. No entanto, quando combinada com a PL, apresentou melho-
res resultados podendo comparar-se com a SSIM. Importante também citar o fato de que os
resultados não tiveram grandes variações com a mudança do formato do metal, fator que pode
ser importante para aplicações em outras imagens.

Apesar da melhora obtida nos resultados, é difícil determinar ao certo qual função custo
utilizar e qual a significância clínica dos métodos empregados. Isso pelo fato de que, para trei-
nar a rede, é necessário um volume muito grande de imagens. Um outro problema é que, nos
métodos de complementar as projeções, por remover totalmente o metal da imagem, perde-se
quaisquer informações sobre ele no exame, podendo este ser um dado importante para a aplica-
ção clínica em questão.

Como trabalhos futuros, sugerem-se: uma investigação mais aprofundada nas diversas
funções custos e suas combinações para o treino da rede neural, visto que é evidente a diferença
de resultado que isto acarreta; trabalhar o desenvolvimento de imagens sintéticas que represen-
tem cada vez mais uma reprodução fiel dos tecidos do corpo; um estudo nas novas arquiteturas
de redes neurais propostas; estudo utilizando a rede adversária generativa, do inglês: Generative
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Adversarial Networks (GAN); e por fim, treinar a rede proposta com imagens clínicas, inserindo
metal artificialmente em imagens não corrompidas e aplicar a rede treinada em imagens reais.
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