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Resumo

Este trabalho investiga a aplicagcdo de redes neurais artificiais, especificamente
utilizando o modelo Long Short-Term Memory (LSTM), para previsao da volatilidade
realizada em ativos financeiros, destacando a relevancia desta medida no contexto de
opcdes financeiras. Abordando a complexidade inerente a previsao de volatilidade
futura, o estudo demonstra que o modelo LSTM ajuda a complementar métodos
tradicionais de previsao, através de uma analise pratica que incorpora desafios reais
de dados financeiros. Além de desenvolver o modelo preditivo, o trabalho visa detalhar
0s principais conceitos relacionados a derivativos, precificacdo de opgdes, tipos de
volatilidades e redes neurais artificiais, necessarios para a compreensao integral do

problema e da ferramenta.

Palavras-Chave: Derivativos, opg¢des, volatilidade, aprendizado de maquina, redes

neurais artificiais, LSTM.



Abstract

This work investigates the application of artificial neural networks, specifically using
the Long Short-Term Memory (LSTM) model, for the prediction of realized volatility in
financial assets, highlighting the relevance of this measure in the context of financial
options. Addressing the inherent complexity of predicting future volatility, the study
demonstrates that the LSTM model helps to complement traditional forecasting
methods through a practical analysis that incorporates real-world financial data
challenges. Beyond developing the predictive model, the work aims to detail the key
concepts related to derivatives, option pricing, types of volatilities, and artificial neural

networks, necessary for a comprehensive understanding of the problem and the tool.

Keywords: Derivatives, options, volatility, machine learning, artificial neural networks,
LSTM.
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1) Introdugao

Este trabalho visa desenvolver um modelo preditivo baseado em inteligéncia
artificial (IA) com o objetivo de estimar com maior acuracia a volatilidade esperada de
ativos financeiros. A volatilidade € um componente crucial que influencia o preco dos
ativos e, por extensao, afeta as estratégias empregadas em operagdes com opgoes.
Enquanto um modelo preditivo de volatilidade ja seria relevante para o manejo direto
de ativos, é nas opcdes que observamos uma influéncia mais direta e quantificavel

sobre 0s pregos.

Optou-se pelo uso de redes neurais artificiais (RNAs) como metodologia central
para a predicao. Esta escolha ¢é justificada pela competéncia das RNAs em identificar
padrées complexos de variacao, utilizando variaveis exdgenas, mas pertinentes, a

determinacao dos precos dos ativos.

A escolha no estudo da volatilidade futura, em contrapartida ao prego futuro do
ativo, decorre do entendimento de que a volatilidade € uma medida de dispersao dos
precos e nao necessariamente da tendéncia direcional de seus movimentos. Assim,
estima-se que o modelo proposto tera maior aplicabilidade e relevancia em contextos

praticos.

O escopo deste estudo nao se restringe a construgao e analise de um modelo
de IA genérico; ele se estende a aplicacao especifica desse modelo no contexto das
estratégias operacionais com opgdes. Para tal, serdo introduzidos conceitos
fundamentais de derivativos, estatistica e aprendizado de maquina, visando elucidar

as motivagdes, implicacdes e possiveis aplicacbes do modelo desenvolvido.

Uma abordagem didatica sera empregada na explicacdo dos conceitos,
abrangendo desde os mais elementares até os mais complexos, com o intuito de
tornar o conteudo acessivel até mesmo para leitores que possuam conhecimento
limitado nas areas pertinentes. De qualquer forma, € importante que o leitor tenha um
conhecimento basico de calculo numérico para uma compreensao integral dos

meétodos e aplicagdes discutidos neste trabalho.



2) Revisao de Literatura

A previsao de volatilidade apresenta desafios particulares devido a natureza
nao linear dos dados de volatilidade. Engle (1982)" superou os desafios de
agrupamento de volatilidade e a curtose da distribuicdo com o modelo ARCH (do
inglés, AutoRegressive Conditionally Heteroscedastic), utilizando termos de erro
defasados de uma equacdao meédia como variaveis independentes. Devido as
dificuldades em especificar o comprimento do /ag no modelo ARCH, Bollerslev (1986)?
avaliou o modelo GARCH (do inglés, Generalized ARCH), que inclui lags anteriores
da variancia, abrangendo efetivamente valores infinitos passados do erro quadrado
da equacao média. No entanto, o modelo GARCH pressup6e uma variancia de retorno
simétrica, enquanto observagdes indicam que retornos negativos impactam mais a

variancia futura do que positivos.

Além dos modelos do tipo ARCH, varios modelos de volatilidade estocastica
foram desenvolvidos, como os propostos por Hull e White (1987)3. Andersen,
Bollerslev, Diebold e Ebens (2001)* argumentaram que ambos os tipos de modelos
estavam mal especificados, ja que apenas um modelo poderia estar corretamente
especificado por vez. Isso os levou a propor uma estimativa de volatilidade livre de
erros de estimacgéo. Eles demostraram que € possivel fazer previsdes de volatilidade
usando modelos estatisticos padrdo sem fazer suposicbes sobre o processo
subjacente de geracdo de retorno. Além disso, também demostraram que a
volatilidade é altamente correlacionada serialmente em um nivel mensal,

contradizendo a crenga geral da época.

Miller et al. (1993)° calcularam a autocorrelagdo de 20 minutos de retornos

absolutos para a taxa de cambio USD/DEM usando a modelagem fractal de

LENGLE, R. F. Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom
inflation. Econometrica: Journal of the Econometric Society, v. 50, n. 4, p. 987, 1982. Disponivel em:
https://doi.org/10.2307/1912773. Acesso em: 11/11/2023.

2 ANDERSEN, T. G.; BOLLERSLEV, T.; DIEBOLD, F. X.; EBENS, H. The distribution of realized stock return volatility.
Journal of Financial Economics, v. 61, n. 1, p. 43-76, 2001. Disponivel em: https://doi.org/10.1016/S0304-
405X(01)00055-1. Acesso em: 11/11/2023.

3 HULL, J.; WHITE, A. The pricing of options on assets with stochastic volatilities. The Journal of Finance, v. 42, n.
2, p. 281-300, 1987. Disponivel em: https://doi.org/10.1111/j.1540-6261.1987.tb02568.x. Acesso em:
11/11/2023.

4 ANDERSEN, T. G.; BOLLERSLEV, T.; DIEBOLD, F. X.; EBENS, H. The distribution of realized stock return volatility.
Journal of Financial Economics, v. 61, n. 1, p. 43-76, 2001. Disponivel em: https://doi.org/10.1016/50304-
405X(01)00055-1. Acesso em: 11/11/2023.

5> MULLER, U. et al. Fractals and intrinsic time - A challenge to econometricians. UAM, 1993.



Mandelbrot (1963)8, encontrando anomalias em /ags de um dia e uma semana. Esses
achados apoiaram a Hipo6tese de Mercado Heterogéneo (HMH), que afirma que os
participantes do mercado diferem em horizonte de investimento e, portanto, diferem
em seu tempo de reagdo as noticias. Portanto, a volatilidade consiste em

componentes de curto, médio e longo prazo.

Inspirado por Andersen, Bollerslev, Diebold e Ebens (2001) e pela HMH, Corsi
(2009)" formulou a base para o modelo HAR (do inglés, Heterogeneous
AutoRegressive Realized Volatility), que inclui apenas trés termos: volatilidade diaria,
média mével semanal e mensal dessa volatilidade. Ao examinar a volatilidade do
retorno da taxa de cambio USD/CHF, comparando modelos GARCH e fractais ao
HAR, concluiu-se que o HAR tinha desempenho superior. O principal “motor” do
modelo HAR era a capacidade de modelar dependéncias de curto e longo prazo em
valores passados. Varias variagcbes do modelo HAR foram propostas, e ele € um dos

modelos mais utilizados para previsao de volatilidade.

Introduzindo as RNAs para predicdo de volatilidade, Karaali, Edelberg e
Higgins (1996)8, Modelling Volatility Derivatives Using Neural Networks apresenta uma
abordagem para prever a volatilidade do marco alemao (antiga moeda da Alemanha,
hoje em desuso) e a precificacdo de opgdes usando redes neurais. Sua metodologia
€ dupla, concentrando-se primeiro na criagdo de um modelo para prever um indice de
volatilidade e, em segundo lugar, no desenvolvimento de uma rede neural para

precificacado de op¢des com base nesse indice.

Para prever o indice de volatiidade, eles empregam uma rede de
backpropagation de trés camadas com uma estrutura de entrada de Rede Neural de
Atraso de Tempo (TDNN, do inglés Time Delay Neural Net). Essa rede é treinada com
dados histéricos de dois meses, compostos por 44 dias de negociagao, e incorpora
duas camadas ocultas com 20 e 10 neurbnios, respectivamente. Enquanto a rede

projetada para previsées de um més mostrou potencial, superando os modelos ARCH

5 MANDELBROT, B. The variation of certain speculative prices. The Journal of Business, v. 36, n. 4, p. 394, 1963.
Disponivel em: https://doi.org/10.1086/294632. Acesso em: 11/11/2023.

7 CORSI, F. A simple approximate long-memory model of realized volatility. Journal of Financial Econometrics, v.
7,n. 2, p. 174-196, 2009. Disponivel em: https://doi.org/10.1093/jjfinec/nbp001. Acesso em: 11/11/2023.

8 KARAALI, O.; EDELBERG, W.; HIGGINS, J. Modelling volatility derivatives using neural networks. In: Proceedings
of the IEEE/IAFE 1997 Computational Intelligence for Financial Engineering (CIFEr), New York, NY, USA, 1997. p.
280-286.



tradicionais, as redes de previsao de longo prazo (trés e seis meses) demonstraram
limitagbes, produzindo predominantemente valores médios histéricos. Esta
observacéao sugere que melhorar os dados de entrada com indicadores econémicos e
financeiros adicionais podem melhorar as capacidades preditivas da rede a longo

prazo.

Na precificacao de opgdes, os autores desenvolvem uma rede neural modular
composta por sete submodulos, projetada para calcular pregos de opgdes de compra
e venda para op¢des de um més no indice de volatilidade. Esta rede leva em
consideracgao o nivel atual do indice, o nivel de exercicio e a volatilidade histérica de
um més. Notavelmente, a rede neural demonstra uma capacidade notavel de prever
precos de opcgdes dentro e fora da amostra, depois de ter sido treinada em dados de
1991 a 1994 e testada em dados de 1995. Esta aplicagdo bem-sucedida de redes
neurais na precificacao de op¢des sublinha o potencial de tais modelos em areas onde
0os modelos financeiros tradicionais podem ser menos eficazes, marcando um avango
significativo na utilizacdo de técnicas de aprendizagem automatica em aplicagbes

financeiras.

Predicting Stock Index Volatility Using Artificial Neural Networks de Ola Johnson
(2018)°, concentra-se na previsao da volatilidade semanal dos principais indices de
acdes, especificamente os indices de agbes suecos (OMXS30), britanicos (FTSE100)
e australianos (S&P/ASX200), usando redes neurais artificiais (RNAs) e comparando
seu desempenho com modelos tradicionais do tipo ARCH (GARCH, EGARCH,
TGARCH).

No desenvolvimento de seu modelo, a tese emprega uma rede neural feed-
forward dindmica de trés camadas de backpropagation para representar a estrutura
da RNA. O objetivo principal do estudo & avaliar se as RNAs podem superar a precisao
de previsao dos modelos mais convencionais do tipo ARCH para volatilidade semanal
de indices de acgbes. Para isso, a tese utiliza uma metodologia de teste fora da
amostra, aplicando-a aos 20% mais recentes das observacbées de dados. Esta
metodologia permite uma comparacédo direta dos desempenhos de previsao de

volatilidade dos diferentes modelos em exame. Os critérios de avaliacdo incluem

9 JOHNSSON, Ola. Predicting Stock Index Volatility Using Artificial Neural Networks: An empirical study of the
OMXS30 FTSE100 & S&P/ASX200. Junho de 2018
10



métricas como Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Mean

Absolute Percentage Error (MAPE) e erro amostral fora da amostra.

No entanto, contrariamente as expectativas, os resultados deste estudo
abrangente ndao mostram nenhuma evidéncia de superioridade das RNAs na previsao
da volatilidade sobre os modelos do tipo ARCH para qualquer um dos trés indices de
acdes. Este resultado sugere que, embora as RNAs sejam ferramentas poderosas
para reconhecimento de padrdes e processamento de dados, sua eficacia na previsao
da volatilidade dos indices de a¢des, especialmente semanalmente, pode nao ser tao
pronunciada como em outras aplicagdes financeiras ou pode exigir arquiteturas de

modelos e variaveis de entrada mais personalizadas.

Dannstréom e Broang (2022)'° investigam a eficacia das redes neurais artificiais
(RNAs) na previsao da volatilidade realizada, examinando especificamente dois tipos
de RNAs: modelos de redes neurais feedforward (FNN) e memoria de longo e curto
prazo (LSTM). A pesquisa deles compara essas RNAs com o modelo autorregressivo
heterogéneo (HAR) em diferentes regimes de volatilidade, com foco em 23 agdes do
indice sueco OMXS30.

A metodologia do estudo inclui uma analise abrangente dos dados que quase
12 anos, entre 2010 e 2022. Incorpora varidveis de entrada endogenas (como
volatilidade histérica) e exégenas (volatilidade implicita de outros indices) para treinar
e avaliar os modelos. As RNAs sao testadas quanto ao seu desempenho de previsao
durante periodos de alta e baixa volatilidade, avaliando sua robustez e comparando

suas capacidades preditivas com o modelo HAR.

Dannstrém e Broang concluem que, embora as RNAs geralmente superem o
modelo HAR, seu desempenho ndo é uniformemente superior em todos os regimes
de volatilidade. Esta variacao é influenciada pelo regime de regularizacao empregado
nos modelos de RNA. O estudo revela que uma regularizagdo mais baixa ajuda a
aumentar a precisao durante os dias de alta volatilidade, enquanto uma regularizagao
mais alta beneficia o desempenho durante os periodos de baixa volatilidade. Além

disso, a pesquisa confirma um compromisso entre a complexidade do modelo e o

10 DANNSTROM, C. O.; BROANG, A. Volatility Forecasting with Artificial Neural Networks: Can we trust them?
2022. Dissertation. Disponivel em: https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-218673. Acesso em:
12/11/2023.

11



desempenho durante cenarios de alta versus baixa volatilidade nos modelos LSTM,
uma relagdo que esta condicionada a regularizagao utilizada. Essa compreensao
diferenciada do desempenho da RNA na previsao de volatilidade oferece insights
valiosos sobre sua aplicacao na previsao financeira, destacando a necessidade de

ajuste cuidadoso do modelo e consideragao das condi¢cdes de mercado.

Observa-se uma divergéncia notavel entre as conclusées do estudo de Dannstrom
e Broang (2022) e de Johnson (2018). Enquanto Dannstrém e Broang identificam uma
superioridade geral das RNAs em relacdo ao modelo HAR, a tese de 2017 nao
corrobora a superioridade frente aos modelos do tipo ARCH. Esta discrepancia pode
ser atribuida as diferencas nos conjuntos de dados utilizados, nas arquiteturas das

RNAs empregadas e nos diferentes regimes de volatilidade analisados.

Em sintese, os textos abordam que, enquanto as redes neurais possuem um
potencial significativo na previsao da volatilidade financeira, até em relagdo a modelos
de regresséo, sua aplicagéo eficaz requer uma analise minuciosa das especificidades

do mercado, das complexidades dos modelos e da natureza dos dados financeiros.

Esse trabalho focara direto no modelo de RNA e suas variagdes, para analisar a
volatilidade esperada especifica de uma commodity, que até agora, nao foi abordada
pelos estudos anteriores e comparando com um indice de volatilidade ja introduzido

no mercado.

12



3) Fundamentos dos Derivativos, Op¢oes e Volatilidade

A analise sobre a volatilidade esperada de ativos financeiros tem aplicagcées em
diversas situagdes, desde gestdo de riscos a estratégias especulativas, instigando o
desenvolvimento e estudo de modelos alternativos de previsdo. Este trabalho é
concebido a partir da perspectiva da negociagéo de opg¢des, buscando explorar como
um modelo de IA poderia contribuir para a concepcao de estratégias de negociacao

mais eficazes.

O proposito deste primeiro capitulo & fornecer uma exposicdo detalhada dos
conceitos chave sobre derivativos, opgdes, mecanismos de precificacao, volatilidade
e métodos estatisticos. Estes conceitos s&o fundamentais para estabelecer um
entendimento integral das bases que motivaram a pesquisa e analise dos modelos de

redes neurais artificiais, os quais seréo abordados nos capitulos subsequentes.
3.1) Fundamentos dos Derivativos

No contexto financeiro, um derivativo é definido como um instrumento financeiro
cujo valor deriva (ou seja, origina-se), de um ativo subjacente. Por sua vez, esse ativo
subjacente pode ser agdes, titulos de renda fixa, commodities, moedas, indices, taxas
de juros e entre outros. (Hull, 2012)"".

Intrinsecamente, o derivativo ndo possui valor préprio. Sua natureza é a de um
contrato que estabelece um acordo entre duas partes, onde as condi¢cdes de execug¢ao
e os resultados sao diretamente dependentes das variagdes de preco do ativo

subjacente ao longo do periodo contratual.

Os derivativos financeiros sdo empregados primordialmente em estratégias de
gestdo de riscos, comumente referenciadas pelo termo em inglés hedge. Este
mecanismo & projetado para mitigar riscos associados as flutuagdes em variaveis
como taxas de juros, taxas de cambio, precos de acdes e de commodities, além de
riscos de crédito. Adicionalmente, derivativos sao utilizados em estratégias de
arbitragem, que visam a obtencgao de lucros pela exploragdo de diferengas no prego

de um mesmo ativo em mercados distintos, e em operacbes de especulacéo

11 HULL, John C. Introducdo aos mercados futuros e opc¢des. 8. ed. S3o Paulo: BM&F Bovespa, 2012. xiv, 598 p.
13



financeira, onde investidores buscam rentabilidade por meio da assun¢ao consciente

de riscos.

Os derivativos possibilitam que as partes transfiram riscos financeiros especificos
para contrapartes que, seja por disposicdo ou capacidade, estdo mais bem
posicionadas para gerenciar tais exposi¢cdes. Dessa forma, os derivativos constituem
uma ferramenta essencial para o equilibrio e a eficiéncia do mercado financeiro,

contribuindo para a redugao da incerteza e a estabilizagcédo do sistema econémico.

Embora na maioria das operagcbées com derivativos o resultado ser apenas
financeiro, ha alguns casos, principalmente envolvendo moedas e commodities, onde

ha a possibilidade de entrega fisica do ativo subjacente ao término do contrato.
3.2) Tipos de Derivativos

O trabalho desdobrara em mais detalhes e desenvolvera um modelo a partir do
estudo das opgdes e suas especificidades. Antes disso, a Sec¢ao 3.2 introduzira os
demais tipos de derivativos financeiros, para tracar um panorama completo dessa
classe de instrumentos e, nas proximas se¢des, permitir uma comparagao com as

opgoes.
3.2.1) Contratos Futuros

Um contrato futuro representa um compromisso contratual padronizado entre duas
partes para a compra ou venda de um ativo em uma data futura especifica, com o
preco acordado antecipadamente. Estes contratos possuem padronizacdo em suas
especificacdes e sdao comercializados em bolsas de valores regulamentadas. Por
exemplo, os contratos futuros de commodities sdo definidos com especificacdes
padronizadas relativas as caracteristicas e ao volume da commodity, dispondo de

vencimentos distribuidos ao longo dos meses do ano.

E importante destacar que, nestes contratos, com frequéncia ocorre a entrega
fisica do ativo subjacente. Por isso, especuladores interessados apenas nos ajustes
financeiros devem estar cientes das datas de negociacao limite, que sé&o
estabelecidas e padronizadas nos contratos, para evitar a obrigacdo de entrega ou

recebimento fisico do ativo no vencimento.

14



Uma vantagem significativa dos contratos futuros € a eliminagao da necessidade
de desembolso imediato de capital ou entrega fisica do ativo no momento presente.
Por exemplo, uma empresa que procura fixar o preco futuro de um insumo negociado
em bolsa de valores e nao dispde atualmente dos recursos para aquisicdo. Os
contratos futuros emergem como instrumentos de previsibilidade de custos, sendo
particularmente eficientes por permitirem a fixagéo dos pregos sem a necessidade de

desembolso inicial.

Contudo, geralmente na pratica, é exigida uma margem de garantia com o
propésito de mitigar o risco de inadimpléncia das partes envolvidas. O desembolso
financeiro e a entrega do ativo ocorrem unicamente no vencimento do contrato. Caso
seja possivel reverter antecipadamente a operacao, a reversao € feita a partir das

condi¢cdes de mercado do momento da reversao e o ajuste € apenas financeiro.
3.2.2) Contratos a Termo (Fowards)

Contratos a termo, também conhecidos pelo termo em inglés “forwards”, possuem
semelhangas com os contratos futuros no sentido de estipular a compra ou venda de
um ativo por um preco acordado para uma data futura. Contudo, diferenciam-se pela
auséncia de padronizacao e por ndo serem negociados em mercados organizados,
como bolsas de valores. Os forwards sdo acordos privados em que as partes
envolvidas tém a liberdade de customizar os termos do contrato conforme suas

necessidades especificas.

Dado que os forwards sao transacionados no mercado de balcdo, um ambiente
menos regulamentado que permite a negociacado mais direta entre as partes, eles
carregam um risco inerente conhecido como risco de contraparte. Este risco decorre
da possibilidade de uma das partes nao cumprir com as obrigagdes estipuladas no

contrato.

Devido a natureza personalizavel e ao maior risco associado, os forwards sao
frequentemente utilizados por entidades que necessitam de solugdes financeiras mais
especificas em relacao aos contratos futuros e estdo dispostas a aceitar um nivel de

risco maior em troca dessa flexibilidade.
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3.2.3) Swaps

Os contratos de swap, como a propria denominagéo em inglés ja sugere (significa
"troca"), constituem um tipo de derivativo financeiro onde duas partes acordam trocar
entre elas fluxos de rentabilidade ou variagées de precos de determinados ativos ou
indices. Por exemplo, uma parte acorda em trocar a rentabilidade advinda de uma
taxa de juros totalmente pré-fixada por outra totalmente pés-fixada, ou trocar a

variagao de valor de uma moeda pér a de outra.

Em uma operacédo de swap, existem dois lados (também conhecidos como
“pernas”): o lado "ativo" se refere ao ativo subjacente cuja variagcao de valor é recebida
por uma parte, o lado "passivo" corresponde ao ativo subjacente cuja variagao de valor
deve ser paga. Assim, o que é considerado o lado ativo para uma parte constitui no
lado passivo da contraparte, e vice-versa. E importante notar que a variacdo de valor

no lado ativo pode ser negativa e a variagao no lado passivo pode ser positiva.

Na execucao pratica de um swap, nao ocorre um ajuste financeiro para cada lado
de maneira isolada; ao invés disso, o resultado para cada parte € a sua ponta ativa
menos sua ponta passiva. Adicionalmente, o swap pode ser estruturado com troca de
fluxos de caixa ao longo da operacao, normalmente utilizado para operagdes

envolvendo dividas ou ativos de renda fixa.

O ultimo tipo de derivativo s&o as opgdes, que sera estudada em mais detalhes na

secao a seguir.
3.3) Opgoes
3.3.1) Definicao

Um contrato de opcao caracteriza-se por ser um acordo bilateral, onde as partes
se comprometem com a compra ou venda de um ativo subjacente em uma data futura,
por um preco previamente estabelecido (denominado preco de exercicio ou strike).
Distintamente dos contratos futuros e a termo, no contrato de opg¢édo, o comprador

adquire o direito, e ndo a obrigacao, de executar a compra ou venda do ativo.

A aquisicao deste direito implica no pagamento de um prémio pelo comprador ao
vendedor da opc¢ao. Esse valor ndo é reembolsavel, contudo, o comprador da opcéao

pode recuperar esse custo inicial dependendo da performance do ativo subjacente e,
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por extensao, do resultado da operacéao financeira. O vendedor da opc¢éao, ao receber

0 prémio, assume o risco de uma possivel exigéncia do exercicio deste direito pelo

comprador, o que pode implicar em custos maiores que o valor do prémio,

dependendo da variagao de valor do ativo subjacente.

3.3.2) Tipos de Contratos de Opcgéao

Call (Contrato de Compra): O contrato de opgéo de compra confere ao titular
(comprador) o direito, mas nao a obrigacao, de adquirir um ativo subjacente a
um preco predeterminado (preco de exercicio), dentro de um periodo
especificado. O langcador (vendedor) deste contrato assume a obrigacao de
vender o ativo subjacente ao titular, caso este decida exercer seu direito.
Investidores adquirem contratos de compra com a expectativa de uma
valorizacao do ativo subjacente acima do preco de exercicio, buscando lucrar
com essa diferenca ou proteger-se contra aumentos de preco em posicdes
existentes. Caso o preco do ativo subjacente esteja igual ou inferior ao preco
de exercicio, exercer a op¢ao de compra torna-se economicamente inviavel.

Put (Contrato de Venda): O contrato de opgédo de venda oferece ao titular o
direito, mas nao a obrigacdo, de vender um ativo subjacente a um preco
predeterminado (preco de exercicio), dentro de um periodo especificado. O
lancador deste contrato tem a obrigacdo de comprar o ativo subjacente do
titular, caso este opte por exercer seu direito. Investidores que adquirem
contratos de venda geralmente antecipam uma depreciagdo no valor do ativo
subjacente abaixo do preco de exercicio, visando lucrar com a venda ou
proteger-se contra quedas de preco em suas posi¢cdes de ativos. Caso o preco
do ativo subjacente esteja igual ou superior ao prego de exercicio, exercer a

opcao de venda torna-se economicamente inviavel.

3.3.3) Tipos de Resultados (Payoff) de Contratos de Opgéao

Os resultados financeiros (payoffs) de contratos de opg¢ao podem ser realizados

de duas maneiras principais, dependendo das especificacbes do contrato e das

praticas de mercado:

Valor de Ajuste (Liquidagdo em Dinheiro): Na liquidacdo em dinheiro, o detentor

da opgéo, ao exercé-la, ndo recebe ou entrega o ativo subjacente. Em vez
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disso, € compensado pela diferenca entre o pre¢co de exercicio da opgao e o
preco de mercado atual do ativo subjacente. Esse método de liquidagao é mais
frequente em opgdes de indices e commodities.

¢ Entrega do Ativo (Liquidacao Fisica): Por outro lado, nos mercados de opc¢des
de agdes, € mais comum que a liquidagao ocorra por meio da entrega fisica do
ativo subjacente. Se a opc¢ao for exercida, o vendedor da opgao € obrigado a
entregar (no caso de uma call) ou comprar (no caso de uma put) o ativo

subjacente ao preco de exercicio.

Independentemente do tipo de opgao, seja ela liquidada em dinheiro ou por
entrega fisica, os termos especificos de liquidagdo dependem das regras da
plataforma ou bolsa onde o contrato &€ negociado. Além disso, certas opgdes podem
oferecer aos detentores a flexibilidade de escolher entre liquidacdo em dinheiro ou
entrega fisica, proporcionando maior adaptabilidade conforme as preferéncias ou

estratégias do investidor.
3.3.4) Moneyness

Outra diferenga nas opg¢des para contratos futuros e a termo € a possibilidade de
o comprador da opgéo escolher o preco de exercicio, independentemente do preco
atual do ativo subjacente, mas impactando o valor do prémio. Ha trés termos para a
relacdo entre preco do ativo e de exercicio, conhecido pelo termo em inglés,

moneyness):

e Forado Dinheiro (em inglés, Out of The Money, OTM): Uma opcéo esta fora do
dinheiro quando o exercicio atual nao é economicamente vantajoso com base
no precgo de exercicio em comparagao ao prec¢o do ativo subjacente. Para uma
call, isso ocorre quando o preco de exercicio € maior do que o preco atual do
ativo. Para uma opcéao de venda put, quando o pregco de exercicio € menor do
que o preco atual do ativo.

e No Dinheiro (em inglés, At the Money, ATM): Quando o preco de exercicio é
igual ao preco do ativo subjacente.

e Dentro do Dinheiro (em inglés, In the Money, ITM): Uma opc¢ao esta dentro do
dinheiro quando o exercicio da op¢ao é economicamente vantajoso. Para uma

call, isto significa que o prego de exercicio € menor do que o prego atual do
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ativo. Para uma put, significa que o preco de exercicio € maior do que o precgo

atual do ativo.

Opc¢des que estao dentro do dinheiro (ITM) possuem prémios mais altos devido

ao seu maior valor intrinseco (mais detalhes na Secéo 3.4.2). E importante notar que,

ao negociar op¢Oes para datas futuras, a referéncia de preco para determinar se a

opcao esta fora do dinheiro, no dinheiro ou dentro do dinheiro ndo é o preco a vista

atual do ativo, mas sim seu preco futuro (mais detalhes na Secao 3.4.1).

3.3.5) Tipos de Exercicios de Op¢des

Existem dois principais tipos de opgdes em relacao a quando é possivel realizar

0 exercicio do contrato.

[ ]

Opcodes Europeias: O exercicio dessas opgdes é restrito exclusivamente a data
de vencimento do contrato. O prec¢o de ajuste do ativo subjacente para o calculo
do valor de liquidacado geralmente corresponde ao pre¢co de fechamento do
ativo no ultimo dia util antes da data de vencimento. Esta data especifica para
a determinacao do preco de ajuste é conhecida como "data de fixing". Uma
limitac&o para o titular de uma opg¢ao europeia € o risco de que o precgo do ativo
subjacente nado seja favoravel na data de fixing, limitando as oportunidades de
lucro ou protecao.

Opcodes Americanas: Estas opgdes permitem que o exercicio ocorra a qualquer
momento durante a vida do contrato, incluindo a data de fixing. Se a op¢ao nao
for exercida antes do vencimento, o preco de ajuste final do ativo subjacente é
determinado da mesma forma que para as opgdes europeias, ou seja, baseado
no prego de fixing. A flexibilidade de exercicio das opgbes americanas é uma
vantagem significativa para o titular, permitindo a captura de oportunidades
favoraveis de mercado antes do vencimento. Por conta disso, o prémio pago
por opgdes americanas é, normalmente, mais alto em comparagao com opgdes

europeias.

3.3.6) Tipos de Estruturas de Opgdes

Concluindo os conceitos gerais sobre opg¢des, ao analisar suas estruturas,

podemos categoriza-las em dois grupos principais com base nas suas caracteristicas

e complexidades.
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e Opcodes Tradicionais (em inglés, Vanilla): Este grupo inclui as opgcbes mais
basicas e amplamente utilizadas, cujo resultado financeiro (payoff) depende
diretamente da relagdo entre o prego do ativo subjacente no momento do
exercicio (ou na data de fixing) e o pregco de exercicio. As calls e puts, tanto
americanas quanto europeias, se enquadram nesta categoria.

e Opcodes Exobticas: Este grupo abrange uma ampla gama de instrumentos
financeiros que apresentam caracteristicas mais complexas em comparacgao
com as opcgoes vanilla. As opgdes exdticas incluem condigdes adicionais que
afetam o payoff, como barreiras de pre¢o que ativam ou desativam a opgéo
(opgbes com barreira) ou mecanismos de calculo do payoff baseados em
meédias de precos durante um periodo especificado (conhecido como opgdes
asiaticas), entre outras variacdes. Essas opgdes permitem aos investidores
estruturarem produtos que se adequam melhor a necessidades especificas de
risco e retorno, mas também envolvem maior complexidade na avaliacao e

precificagao.

Para delimitar a discussao e permitir uma analise detalhada, especialmente no
contexto de incorporar sistemas de inteligéncia artificial, este trabalho se concentrara
exclusivamente em opc¢des tradicionais (vanilla). A complexidade adicional e os
cenarios especificos de uso das opgdes exoticas exigem consideragdes detalhadas
que vao além do escopo deste estudo. No préximo segmento, exploraremos as
metodologias de precificagdo aplicadas a derivativos e opgdes, detalhando os

fundamentos e as técnicas utilizadas para avaliar opgdes tradicionais.
3.4) Conceitos Gerais de Precificagao
3.4.1) Preco Futuro de um Ativo

Sempre que negociamos um ativo em uma data futura, precisamos corrigir seu
preco a partir de alguns fatores. Caso contrario, a negociacao futura abriria espago
para arbitragem (ou seja, ganhos sem riscos) e ndo compensaria para algumas das

partes.

e Custo de Carrego: Refere-se aos custos associados a manutencédo de um
ativo até uma data futura, incluindo armazenamento, transporte e seguro

para bens fisicos, além de custos financeiros como juros. Para ativos
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financeiros, o custo de carrego € influenciado pela taxa de juros livre de
risco. Esses custos tendem a aumentar o precgo futuro do ativo.

Custo de Oportunidade: Refere-se aos custos associados a manter liquidez
em vez de deter o ativo. Por exemplo, para agbes, os dividendos
representam um custo de oportunidade, ao rentabilizar o detentor da acao
ao longo do tempo. Dessa forma, a expectativa de dividendos (chamada de
dividen yield) é descontada do preco futuro. No caso de moedas, o custo de
oportunidade esta relacionado a taxa de juros estrangeira que poderia ser
remunerada ao converter e investir em moeda estrangeira. Commaodities
possuem um custo de oportunidade conhecido como “convenience yield’,
que reflete o beneficio de possui-las no presente devido a fatores de oferta

e demanda ou expectativas de custos de carrego menores no futuro.

A Equacao 1 demosntra a férmula para calcular o prego futuro de um ativo,
considerando os custos:

Custo de Carrego
Custo de Oportunidade

Preco Futuro = Prego a Vista x (1)

Para compreender o motivo de qualquer preco diferente da Equacao 1 abrir

espaco para arbitragem, tem-se o exemplo abaixo:

Preco a Vista (S,) = $100
Prazo (T) = 1 ano
Taxa de Juros (r) = 10%

Dividend Yield (d) = 5%

Calculando o prego futuro (S;):

(1+10%) _

S1 =100 = s

~$104,76 (2)

Se o preco futuro do ativo estiver sendo negociado por $106,00, surgiria uma

oportunidade de arbitragem. Seria possivel:

1.
2.

Vender o futuro a $106,00.

Tomar emprestado $100,00 a taxa de 10% para um custo de $10,00 ao final
do ano.

Comprar o ativo com os $100,00 para receber o dividend yield, resultando

em $5,00 no final do prazo.
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Caso o precgo do ativo, no vencimento, se manter em $100,00, recebemos mais
$6,00 do contrato futuro e o resultado fica $5,00+$6,00-$10,00 = $1,00. Se o preco for
para $110,00, pagamos $4,00 no contrato futuro, mas ganhamos $10,00 na
valorizagcéo do proprio ativo, o resultado fica $5,00+$10,00-$4,00-$10,00 = $1,00.

Este exemplo demonstra que, independentemente do valor final do ativo, a

estratégia daria lucro, caracterizando uma arbitragem.
3.4.2) Introducao a Precificacdo de Opc¢oes

A precificacdo de opcgbes representa um dos aspectos mais complexos e
debatidos no campo dos derivativos. O desafio central reside em avaliar uma forma
justa e livre de arbitragem o valor de um instrumento cujo resultado depende do pregco

futuro do ativo subjacente, que por sua vez, € impactado por diversas variaveis.

Embora a avaliagdo de estruturas exoticas ou ativos com tendéncias
especificas de pregos, como as taxas de juros, apresente complexidades adicionais,
0os principios basicos para a precificacdo de opgdes mais simples sdo bem

estabelecidos e amplamente compreendidos.

A Secéao 3.4.1 demonstrou como deduzir o precgo futuro livre de arbitragem de
um ativo, utilizando seus custos de carrego e oportunidade. Com op¢des, apesar de
ser um pouco mais complexo, os fundamentos da precificagdo séo parecidos; o valor
do prémio deve ser o mesmo do custo da estratégia de negociacdo que, no

vencimento, replica seu resultado.

Antes de aprofundar nesse conceito, vamos entender, de maneira

probabilistica, quais s&do os principais fatores que influenciam o pre¢o de uma opgéo:

e Moneyness e Valor Intrinseco: Quanto mais dentro do dinheiro, mais
provavel de a opcao ser exercida, logo, maior o custo do prémio. Essa
relacdo também & descrita como quanto maior o valor intrinseco da opc¢éao,
maior o valor do seu prémio. O valor intrinseco de uma opc¢éo € o resultado
financeiro que seria obtido em caso de exercicio naquele momento. Por
exemplo, uma call de strike $100 com precgo do ativo a vista em $110, tem
o valor intrinseco de $110 — $100 = $10. Caso o ativo esteja negociando a

$90, a opgao nao seria exercida e seu valor intrinseco é zero.
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e Vencimento: Quanto maior o prazo, mais chances de o prego do ativo
subjacente mover de forma favoravel a operagcéao, mais chances da opcao
ser exercida e maior o custo do prémio. O “valor tempo” decresce conforme
a estrutura se aproxima do vencimento.

e \olatilidade: Quanto maior a expectativa de variacdo do pregco do ativo
durante o periodo da operagao, maior a incerteza e risco do preco ir a favor

da operacéo, logo, maior o custo do prémio.

Outros fatores, como a taxa de juros e o custo de oportunidade, influenciam
indiretamente o prego da opg¢ao por meio de seu impacto no preco futuro esperado do
ativo subjacente. Esses elementos séo integrados as formulas de precificacdo de
opgdes, especialmente quando se considera o precgo a vista do ativo como base para

o calculo.
3.4.3) Aprofundando Modelos de Nao Arbitragem e Precificagao Binomial

Assim como precos futuros, o prémio da opgao precisa ser um valor que nao
permita arbitragem, caso contrario, 0 mercado de op¢des nao seria sustentavel. Isso
ocorreria ndo apenas por conta de uma das partes, sejam os compradores ou
lancadores das opg¢des, nao desejarem mais realizar negocios, mas também por néo

ser possivel realizar prote¢des (hedge) para as posi¢cdes em opcoes.

Boa parte das negociagdées no mercado de derivativos s6 ocorrem por conta de
instituicées que provém liquidez para as operagdes, conhecidos pelo termo em inglés,
market makers. Um dos principais objetivos dessas instituicbes € permitir que
contrapartes negociem derivativos, cobrando um custo nas operagbes, mas sem se
expor a riscos direcionais de mercado, ou seja, sem se expor a riscos de perda

financeira decorrentes de movimentos no preco do ativo subjacente.

Uma forma de se proteger contra os riscos direcionais de uma opg¢ao é criando
uma estratégia que replique o resultado esperado dessa opg¢ao, comprando ou
vendendo o ativo subjacente em quantidades especificas. Para que isso seja viavel,
o custo dessa estratégia (o prémio da opg¢éo) precisa ser igual ao custo de montar

essa protegao.

O modelo binomial de precificagdo de opgdes, embora ndo ser mais muito
utilizado, € util para entender a légica basica de como as opg¢des séo precificadas,
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além de servir de base para modelos mais avancados e para a gestao de riscos de

posicoes.

Por exemplo, supondo uma agao que custe $100 no instante de tempo {0. Ela

s6 possui dois resultados possiveis no instante de tempo {+17,;

1. Com 40% de chance, ela pode valorizar $2 e ter seu preco final em $102.

2. Com 60% de chance, ela pode desvalorizar $2 e ter seu preco final $ 98.

Considerando uma taxa de juros nula, queremos saber, em t0, o pre¢co de uma

call europeia, com preco de exercicio (k) em $101.

Primeiro, € necessario definir os possiveis resultados da operagcéo, que no

vencimento, sao os valores intrinsecos da opcgéao (V).

1. Se a agéo valorizar, o preco final seria $102 e a opg¢do de compra seria
exercida, resultando em V=$102-$101= $1.
2. Se a agao desvalorizar, o preco final seria $98, a opgéo de compra nao seria

exercida e a call teria o valor intrinseco de $0.

Desenhando o modelo binomial desse exemplo, tem-se o diagrama da Figura 1:

k = $101

V =5102 -E$101 =61

Figura 1 - Arvore Binomial Uniperiodo

Utilizando a medida de probabilidade real - que consiste em encontrar o valor
de uma operacgao a partir da soma dos possiveis cenarios e da probabilidade de cada
cenario ocorrer - para calcularmos o valor esperado da op¢ao, teriamos:

40% * $1 + 60% * $0 = $0,40 (3)

No entanto, para evitar arbitragem e riscos de mercado, esse nao poderia ser

o prémio. Por exemplo, se alguém comprar quatro lotes dessa opcéo, pagando o
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prémio total de $0,40*4=%$1,60 e, a0 mesmo tempo, vender um lote da acao,
recebendo $100'?, ainda considerando que a taxa de juros do periodo é 0%, os

cenarios em {+171 seriam:

1. Se o prego da agdo subir para $102, haveria um prejuizo de $2,00 no ativo
vendido, mas um lucro de $1,00 para cada lote da opg¢ao, totalizando $4,00.
O resultado total da operacgao seria a rentabilidade do ativo (-$2,00) somada
a rentabilidade da opgao (+$4,00), descontado o custo inicial das opg¢oes (-
$1,60), totalizando +$0,40 de lucro na operacgao total.

2. Se o preco da acado cair para $98, haveria um lucro de $2,00 no ativo
vendido, e nenhum resultado financeiro nas opg¢des. O resultado total da
operacao seria a rentabilidade do ativo (+$2,00), descontado o custo inicial

das opgdes (-$1,60), totalizando +$0,40 de lucro na operagéo total.

Assim, conclui-se que se o custo do prémio fosse o valor probabilistico
esperado, haveria espaco para arbitrar a operagéo. Além disso, seria impossivel para
o lancador da opcéao neutralizar o risco da operacao, pois se comprar uma ou mais
quantidades de agdes para cada opc¢éo vendida e o preco do ativo cair para $98, o
prejuizo seria de -$2,00 por acéo e o valor que receberia da venda da opgao ($0,40)

nao seria suficiente para cobrir o prejuizo.

Para solucionar esse problema de maneira correta, € necessario criar um
portfélio de valor P para o langador da opc¢éao, que consiste no custo do prémio (V, que
€ negativo para o langador da opcéo, pois ele precisa pagar a diferenca em caso de
alta no preco do ativo), somado as quantidades necessarias de ac¢des (A) para
neutralizar o risco dos resultados, vezes o pregco da agao (S). A formula geral é:

Pt=_Vt+A*St (4)

No vencimento da operacéao, o valor do prémio da opc¢ao é igual ao seu valor

intrinseco, logo, sabemos os valores de V.
1. No cenario de alta no pre¢o da acéo, temos:

Py =—1 + 1024 (5)

12 No mercado financeiro, é possivel tomar emprestado um ativo para vende-lo no presente, recomprando-o no
futuro para devolvé-lo. Isso permite lucrar com uma eventual baixa, mesmo sem possuir o ativo em carteira.
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2. No cenario de queda no preco da agao, temos:

P,y1 =0+ 984 =984 (6)

Para alguém que busca apenas proteger a posi¢ao, os valores absolutos finais
desse portifélio ndo importam, desde sejam iguais entre os dois cenarios. Dessa
forma, é possivel determinar o valor do delta (A), ao igualar as equacgdes.

984 = -1 + 1024 (7)
1 =44 (8)
A==0u025 (9)

Substituindo o valor A em qualquer equagao, descobrimos que o valor dos
portifélios em t+1 deve ser $24,50. Para achar o preco justo do prémio da opgéo, deve-
se encontrar o valor presente do portifélio, descontado pela taxa livre de risco (r) e

encontrar V no instante {0.

%=—Vt+d*5t (10)
%= —V,o + 0,25 %100 (1)
Vo = 0,50 (12)

Resolvendo a equacéo, calcula-se que o prego justo da opcao seria $0,50,
maior que o prego calculado com a medida de probabilidade real. Qualquer valor
diferente abre espaco para arbitragem; se for menor, como no exemplo anterior,
conseguimos arbitrar comprando a opcado (que esta barata) e vendendo certa
quantidade de ag¢des; se for maior, conseguimos arbitrar vendendo a op¢éao (que esta
cara) e comprando certa quantidade de agdes. Assim, foi demonstrado porque o preco

de uma opcéo precisa ser igual ao custo da estratégia que replica seu resultado.

Apesar do exemplo simplificado, o0 modelo é preciso e possivel de estender
para casos reais. Ao inveés de apenas um periodo, seriam n periodos, estendo a arvore
binomial para mais de dois estados e a probabilidade de alta ou baixa poderia ser

calculada por um fator derivado da volatilidade do ativo.

Para concluir a secao, é importante indicar que, na pratica, o mercado opera
com diferentes pregcos para compra e venda de ativos, opgdes e contratos de taxa de

juros. Essa diferenga (conhecida pelo termo inglés de spread) que permite aos market
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makers lucrarem com as negociagdes sem tomar risco de mercado, além de dificultar

0 processo de arbitragem, mesmo em casos de pre¢os destoantes.
3.5) Volatilidade e Curvas de Distribuicao

Ao compreender os fundamentos da precificagcdo de uma opgéo, € possivel
seguir para uma analise das variaveis que impactam seu preco. Essa secao explorara
como definir os valores para a variagdo esperada do preco do ativo e para as
probabilidades dessas variagdes ocorrerem. A volatilidade dos retornos do ativo € o

ponto inicial desse tema.
3.5.1) Volatilidade Histérica

Avolatilidade € uma medida estatistica que representa o grau de dispersao dos
retornos de preco de um ativo financeiro em um determinado periodo. Como quanto
mais dispersos os retornos de um ativo, maior seu risco, em outras palavras, a
volatilidade € uma forma de quantificar o risco ou a incerteza relacionada a variagcao

do preco de um ativo.

Matematicamente, o calculo da volatilidade é o desvio padrao da variacao de
precos, portanto, um numero em percentual. Para calcular a volatilidade histérica
anual de um ativo, precisa-se calcular primeiro as variagbées diarias de preco do

periodo desejado:

__ Precoe

i Pregos_q (13)
Onde X; é a variagao diaria. Depois, calcula-se a média aritmética simples das

variagoes:

X Xi

Numero de Amostras (n)

X =

(14)

O préximo passo é calcular a variancia amostral'® 62 dos retornos, utilizado
para definir o quao distante, em média, os valores do conjunto estdo da média de
retornos. Calcula-se a diferenca de cada elemento para a média, elevando ao

quadrado para evitar numeros negativos e dar mais peso a valores extremos (nao sera

13 para calcular a volatilidade, quase sempre é utilizado um determinado periodo de observac3o dos retornos e
ndo todos, logo, precisamos considerar amostras e ndo a populagdo inteira de retorno para os calculos de
variancia e desvio padrdo.
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feita a demonstracdo do porqué isso acontece). As diferencas quadraticas sao

somadas e o resultado é dividido pelo numero de amostras (n), menos 1:

2 T(Xi—X)*
n—-1

o

(15)

Para encontrar o desvio padréao o, € calculado a raiz quadrada da variancia.

Esse valor ja é definido como a volatilidade diaria.

o= FO;‘%)Z = Volatilidade Diaria (16)

Para encontrar a volatilidade anualizada, multiplica-se o resultado por raiz
quadrada de 252 — utiliza-se esse valor pois, nhormalmente, € a quantidade de dias

que um ativo é negociado ao ano.

o anualizada = \/Z();‘%)z * 252 (17)

Como exemplo, um ativo que tem a média de retornos 0,10%, variancia de
0,0004 e desvio padrao (volatilidade diaria) de 2,00%, € um bom indicativo que a maior
parte dos retornos diarios histéricos esta entre 0,10% (média) + 2,00% (desvio padrao)
€ que, em um dia tipico de negociagao, o ativo variou 2,00% para cima ou para baixo.

A volatilidade anual do ativo foi de ,/0,0004 = 252 = ~31,75%, ou seja, no
decorrer de um ano, espera-se que a maioria dos retornos anuais do ativo esteja
dentro de uma faixa de, aproximadamente, 31,75% acima ou abaixo da média anual.

Veremos que essa suposi¢cao nao totalmente precisa, ao nao englobar alguns fatores.

Note que os calculos foram feitos a partir de dados passados. Essa volatilidade
€ conhecida como volatilidade histérica e ndo necessariamente refletira a volatilidade
futura. Ao precificar opgdes, o mercado normalmente utiliza a volatilidade histérica

mais como uma referéncia do que o valor final para a volatilidade esperada.
3.5.2) Distribuicées Amostrais

Embora a volatilidade ja tenha sido definida, permitindo a compreenséao geral
para as proje¢cdes do modelo proposto, é pertinente introduzir alguns conceitos
complementares sobre a distribuicdo amostral dos retornos, que transcendem a
capacidade explicativa da média e do desvio padrao e que também s&o importantes

para modelos de precificacao de ativos e opgdes.
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O desvio padrao diario oferece uma estimativa histérica sobre a variacao
esperada de um ativo em um dia comum. No entanto, a proposi¢cao de que a maioria
dos retornos diarios passados se encontram dentro de um desvio padrao da média
nao ocorre em todos os casos. A analise das propriedades de uma curva de
distribuicdo nos permite compreender com maior profundidade como os retornos se

distribuem em torno da média e do desvio padrao.

Tal curva é essencialmente um grafico que indica a frequéncia ou probabilidade
de ocorréncia de diferentes resultados dentro de um espectro de valores. No eixo
horizontal séao representados os resultados possiveis — no caso deste estudo, seriam
as variagdes diarias do preco de um ativo — e no eixo vertical sdo apresentadas a
frequéncia correspondentes a cada resultado. A integral da curva sobre seu dominio
(ou seja, a area do grafico) € igual a 1, refletindo a totalidade do espago amostral, ou
seja, ao considerar todos os retornos passados, temos 100% das amostras de

retornos.

Resumindo, a fungcao da curva demonstrar a frequéncia com que determinados
retornos ocorrem. Com a analise historica dos dados e uma compreensao da forma
da curva de distribuicdo, pode-se melhorar a acuidade das projecdes de volatilidade

para diferentes cenarios futuros.

s

Antes de aprofundar na analise de uma curva de distribuicdo, & importante
definir outros dois conceitos estatisticos: a mediana, que representa o ponto central
de um conjunto de dados, e a moda, que € o valor que aparece com maior frequéncia.
Arelacao entre esses dois indicadores e a média fornece uma avaliagao preliminar da

assimetria da distribuicado, que sera examinada adiante.
3.5.3) Curva de Distribuigdo Normal

Conhecida também como Distribuicdo Gaussiana e curva sino, € o0 modelo
distribuicdo tedrica mais utilizado em modelos estatisticos e financeiros. O modelo
consiste na curva em que a média, mediana e moda sao iguais entre si, refletindo uma
distribuicdo dos resultados simétrica em relagdo a média. Sua principal propriedade &

a relacao de distribuicao dos resultados:

e 68,3% dos resultados estdo a um desvio padrdo da média (X + o).

e 95,5% dos resultados estzo a dois desvios padrao da média (X + 20).
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e 99,7% dos resultados estéo a trés desvios padrao da média (X + 30).

Embora utilizado em muitos modelos estatisticos e até modelos de precificacao
de opgdes, como demonstrado por Opdyke (2007)', poucos casos de amostras reais
de retornos resultam em uma distribuicdo normal. Segundo Bussab e Morettin (2017)
15 a distribuigdo normal tem como base o Teorema do Limite Central, que diz ao somar
um numero alto de amostras aleatérias e independentes, sem que nenhuma seja

dominante, deve ter uma distribuicdo aproximadamente normal.

Nao ha um numero minimo de amostras para ser considerada grande e,
aplicando na pratica, vemos algumas divergéncias do modelo. Ao observar 5 mil
retornos do S&P 500 (um dos principais indices de agbes do EUA e do mundo), de
14/11/2003 até 27/09/2023, considerando apenas dias com pregao, temos uma média
de retornos diaria em 0,04% e volatilidade diaria em 1,21%. A mediana e moda do
modelo sdo iguais entre si e proximas a média, 0,07%, no entanto, a curva de

distribuicdo n&o segue a propriedade de resultado da normal (Figura 2).
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Figura 2 — Curva de Distribuigdo dos Retornos do S&P 500 (14/11/2003 - 27/09/2023).

Em resumo, considerando um desvio padréo para mais ou menos, a amostra

concentrou 80,86% dos resultados, com 42,68% um desvio padrdo a mais que a

14 OPDYKE, J. D. Comparing Sharpe ratios: So where are the p-values?. Journal of Asset Management, v. 8, p. 308-
336, 2007. Disponivel em: https:// https://papers.ssrn.com/sol3/papers.cfm?abstract_id=886728. Acesso em:
11/10/2023.
15 BUSSAB, Wilton de O.; MORETTIN, Pedro A. Estatistica Basica. 9. ed. S3o Paulo: Saraiva, 2017. xx, 568 p.
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meédia e 38,18% um desvio padrao a menos que a média. Para dois e trés desvios

padrao, ficou proximo da distribuicdo normal, em 95,24% e 98,34%, respectivamente.

Observa-se, entdo, que ha alguns outros fatores a considerar em uma

distribuicdo para analisar o retorno de um ativo.
3.5.4) Assimetria

Segundo Pearson (1895)16, a assimetria (em inglés, skewness) € uma medida que
descreve o grau de distorcao da distribuicdo de uma variavel aleatéria em relacéo a
distribuicdo normal. Essencialmente, ela indica em qual direcdo os dados estao

"inclinados".

Formula geral da assimetria amostral (g1):

3

_ n Xi—Y
91 = (n—1)(n—2)2( o ) (18)

e Assimetria positiva: a maior parte dos resultados (moda) estdo concentrados
na parte esquerda da distribuicdo e cauda aponta para a direita. Isso significa
gue a média é tipicamente maior que a mediana e moda do conjunto e que a
maior parte dos resultados estao a um desvio padrédo a menos da média.

e Assimetria negativa: a maior parte dos resultados (moda) estdo concentrados
na parte direita da distribuicao e a cauda aponta para a esquerda. Isso significa
que a média é tipicamente menor que a mediana e moda do conjunto e que a

maior parte dos resultados estdo a um desvio padrao a mais da média.

Em uma distribuicdo normal, a assimetria & zero. Mesmo que visualmente néo
pareca, no exemplo do S&P 500 (Figura 2), a assimetria &, aproximadamente, -
25,39%.

3.5.5) Curtose

Mesmo que alguns textos definam curtose como a altura do “pico” da curva, na

realidade, segundo Oakes (2007)', ela € mais uma medida que indica se os dados

16 PEARSON, K. Contributions to the mathematical theory of evolution.—II. Skew variation in homogeneous
material. Philosophical Transactions of the Royal Society of London. Series A, v. 186, p. 343-414, 1895. Disponivel
em: http://doi.org/10.1098/rsta.1895.0010. Acesso em: 11/10/2023.
17 OAKES, M. Ord's criterion with word length spectra for the discrimination of texts, music and computer
programs. In: Communications in Statistics - Theory and Methods. [S.l.], v. 48, p. 2286-2304, 2007. Disponivel em:
https://doi.org/10.1515/9783110894219.509. Acesso em: 11/10/2023.
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estao concentrados mais préximos ou distantes da média, consequentemente, explica
com que frequéncia as observag¢des do conjunto de dados podem cair nos extremos

(caudas) ou no centro da curva.

Férmula geral da curtose amostral (g2):

— 4 2
g2 = { nn+1) 5 (xi—x) }_ 3(n—-1) (19)

(n-1)(n—-2)(n—-3) o (n—-2)(n—-3)

Tipos de curtose:

e Mesocurtica (curtose = 3): € o tipo da curtose presente na distribuicao
normal, logo, curvas mesocurticas possuem certa simetria na distribuicao
de resultados em relagao a média.

e Platicurtica (curtose < 3): sado curvas com picos mais baixos e largos, com
a distribuicao de resultados mais proximos da média.

e Leptocurtica (curtose > 3): sdo curvas com picos mais altos e finos, com a
distribuicdo de resultados mais distantes da média e mais resultados

concentrados nas caudas.

Excesso de curtose - ou seja, caso o resultado dela seja maior do que 3 - é
interpretado como maior probabilidade de o ativo estar suscetivel a uma variagao de
preco extrema. A curtose sozinha ndo consegue quantificar esse risco, apenas indica-

lo.

No exemplo do S&P 500, a curtose amostral era de, aproximadamente, 12,90,
com excesso alto, conforme ja era possivel observar no grafico. Esse valor de curtose
faz sentido, ao analisar o indice S&P 500 dentro de um contexto de riscos de mercado.
Considerando apenas momentos de caudas, em crises que impactaram a economia,
por exemplo, na crise dos subprime em 2008 e na pandemia do COVID 19 em 2020,

o indice caiu consideravelmente, levando a curtose aumentar.

Nao ha uma relagdo quantitativa direta entre a curtose ou assimetria com a
volatilidade. Por exemplo, é possivel ocorrer casos de ativos com volatilidade baixa,
mas curtoses e assimetrias altas, indicando que, na maior parte do tempo, o ativo
varia pouco de prec¢o, possui tendencias de alta ou baixa constantemente e, em

eventos extremos, o preco muda abruptamente, mas tende a retornar a média.
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No entanto, casos reais desse exemplo sao pouco provaveis e muitos
operadores observam essas duas caracteristicas para precificar a volatilidade futura
de diferentes niveis de preco de exercicio, conforme sera detalhado na Segéo 3.6.2.

3.6) Aprofundando Conceitos de Precificagao e Volatilidade
3.6.1) O Método de Monte Carlo

Em modelos de precificagcdo de opg¢des, a volatilidade histérica pode servir
como uma referéncia de calculo para a projecéo de precgos futuros, combinando com
a média de variagdes e aplicando-as em métodos estocasticos, que resultaram em
numeros aleatérios, a partir de uma distribuicdo normal dos retornos e do desvio-

padrao.

Um dos mais conhecidos métodos que aplicam essa técnica € o de Monte
Carlo, que pode modelar diferentes precgos futuros de um ativo (e, consequentemente,
o preco de opgdes), em um processo estocastico que nao pode ser facilmente previsto

devido a intervencao de variaveis aleatorias.

Segundo Boyle (1977)'®, o conceito por trds do método é criar diferentes
cenarios (também chamados de “caminhos”) para o pre¢co do ativo. Supondo que
queiram calcular 100 cenarios para o pre¢co de um ativo em 1 ano (252 dias de
negociagcao). Para cada cenario, o método calcula uma variagéo diaria de preg¢o do
ativo, a partir da média, volatiidade e um termo de Movimento Browniano - uma
variavel aleatéria normalmente distribuida - até chegar no final do periodo

determinado, no 252° dia. A equagéo da variagao é:

AS = uSAt + oSAW (20)
Onde:

[ ]

AS: Variacao no preco do ativo para a determinada variagao do tempo.

[ ]

S: Preco atual do ativo.

u: Média de retornos do ativo.

At: Variagao do tempo.

o: Volatilidade ajustada para o periodo de At.

18 BOYLE, P. P. Options: A Monte Carlo approach. Journal of Financial Economics, v. 4, n. 3, p. 323-338, 1977. ISSN
0304-405X. Disponivel em: https://doi.org/10.1016/0304-405X(77)90005-8. Acesso em: 15/10/2023.
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o AW: Termo de movimento Browniano, que é uma variavel aleatéria

normalmente distribuida com média zero e variagao At.

A simulacao resultaria em 100 caminhos diferentes da variacao do preco do
ativo até o 252° dia, distribuidos normalmente. Como o preco futuro € o preco atual
multiplicado por um termo aleatério, mas positivo, ele nunca assumira um valor
negativo. A média dos valores de cada caminho no dia final pode ser utilizado como
uma estimagcao do modelo para o precgo futuro do ativo. Outra utilidade do método
refere-se em estabelecer um intervalo de confianga de onde o valor real se encontra

entre um intervalo de valores simulados.

Juntando aos conceitos vistos na precificacdo binomial, o método de Monte
Carlo pode ser util em precificar opgdes ao simular o valor futuro do ativo e, com isso,

podemos calcular o payoff das op¢des e precifica-las.

Para analisar a eficiéncia de método Monte Carlo, o trabalho de Lerche e
Mudford (2005)"°, em uma simulag&o para pregos futuros de ativos de energia, com
1600 caminhos e 99,00% de confianga, a diferenca entre o valor real e valor simulado

nao ficou maior do que 4%, mostrando certa eficiéncia no modelo.

Estudos como o de McCrary (2015)%°, implementaram ao método as
assimetrias e curtoses das distribui¢coes, através de combinag¢des do método de poder
de Fleishman (traduzido do inglés, Fleishman’s Power Method?"), para a distribuicao
futura poder ser mais préxima de movimentos passados. Apesar de mostrar instrugoes
de como implementar, o estudo ndo detalha a eficiéncia em comparagdo a modelos

tradicionais e foge do escopo desse trabalho explorar esse assunto.

A maior parte das aplicagbes do método de Monte Carlo em finangas considera
a volatiidade como uma variavel constante. Trabalhos como o de Sandmann e

Koopman (1998)?2, permitem que a volatilidade varie ao longo do tempo de acordo

19 LERCHE, I.; MUDFORD, B. S. How Many Monte Carlo Simulations Does One Need to Do? Energy Exploration &
Exploitation, v. 23, n. 6, p. 405-427, 2005. DOI: 10.1260/014459805776986876.

20 MCCRARY, S. Implementing a Monte Carlo Simulation: Correlation, Skew, and Kurtosis. Berkeley Research Group
[S.L], 23 set. 2015. Disponivel em: https://www.thinkbrg.com/insights/publications/implementing-a-monte-
carlo-simulation-correlation-skew-and-kurtosis/. Acesso em: 15/10/2023.

21 FLEISHMAN, A. I. A Method for Simulating Non-Normal Distributions. Psychometrika, v. 43, n. 4, p. 521-532,
1978.

22 SANDMANN, G.; KOOPMAN, S. J. Estimation of stochastic volatility models via Monte Carlo maximum
likelihood. Journal of Econometrics, v. 87, n. 2, p. 271-301, 1998. ISSN 0304-4076. DOI:
https://doi.org/10.1016/S0304-4076(98)00016-5. Acesso em: 15/10/2023.

34



com um processo estocastico préprio. A aplicacdo deste modelo também foge do
escopo desse trabalho, pois a volatilidade sera tratada ndo como algo latente nao

diretamente observavel, mas sim como uma variavel influenciavel por demais fatores.

Na precificacdo de uma opgéo por Monte Carlo, a volatilidade constante nao é
exatamente um ponto negativo, pois ela € uma estimativa de variagdo média diaria do
ativo da data de precificacao até o vencimento. O maior desafio & definir um namero

que faca sentido para a volatilidade em determinados cenarios.
3.6.2) O Modelo de Black-Scholes e a Volatilidade Implicita.

Em 1973, a publicacao de The Pricing of Options and Corporate Liabilities, por
Black e Scholes??, introduziu uma equacéo diferencial parcial que permitia calcular o
preco de opgdes europeias. A ideia inicial € similar a explorada no modelo de
precificagcdo binomial; uma replicacao dindmica, onde uma carteira é continuamente

ajustada para replicar o payoff da opg¢ao, evitando arbitragem.

Assume-se que o prec¢o do ativo subjacente segue um movimento browniano
geomeétrico com uma taxa de retorno constante e uma volatilidade constante. Também
se assume que nao ha dividendos pagos, os mercados sao eficientes e ndo existem

custos de transagao.
A férmula de precificagdo de uma call (C) é dada por:

C(S,t) = S;N(dy) — Ke " TIN(d,) (21)
Onde:

[ ]

S;: Preco atual do ativo subjacente.

K: Precgo de exercicio.

T: Tempo até a expiragao da opcgao.

[ ]

t. Tempo atual.

[ ]

r: Taxa de juros livre de risco, anualizada.

N(d,) e N(d,) sdo os valores da funcdo de distribuicdo cumulativa da

distribuicdo normal padrao para d, e d,, respectivamente:

23 BLACK, Fischer; SCHOLES, Myron. The Pricing of Options and Corporate Liabilities. Journal of Political
Economy, v. 81, n. 3, p. 637-654, 1973. Disponivel em: http://www.jstor.org/stable/1831029. Acesso em:
16/10/2023.
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ln(%)+(r+a72)(T—t)

d; = —— (22)
d,=d,—oJT —t (23)
Onde:
e 0 Volatilidade anualizada do retorno do ativo subjacente.
A férmula de precificagcdo de uma put (P) é dada por:
P(S,t) = KeT"T"YN(-d,) — S;N(—d,) (24)

Apesar de sua formulagdo preceder as primeiras aplicacbes do método de
Monte Carlo na precificacdo de opcdes e de apresentar algumas limitagcbes — como a
aplicabilidade restrita a opgdes europeias —, 0 modelo de Black-Scholes permanece

amplamente utilizado no mercado financeiro contemporaneo.

Um conceito central discutido neste trabalho e diretamente abordado pela
férmula de Black-Scholes, € a volatilidade implicita. Considerando op¢des de mesmo
vencimento, o preco do ativo subjacente, o dividend yield, a taxa de juros livre de risco
e 0 prazo até o vencimento sao constantes entre as op¢des. No entanto, € comum

observar variagcées nos prémios, em diferentes precos de exercicio.

Devido a estratégias de risco especificas para certos ativos e cenarios, os
mercados atribuem diferentes niveis de volatilidade a diferentes graus de moneyness.
Como a equacao de Black-Scholes é diferencial, a volatilidade implicita para cada
preco de exercicio pode ser inferida mantendo-se as demais variaveis constantes,

possibilitando a construcao da curva de volatilidade, conhecida como volatility skew.

Nesta curva, o eixo horizontal representa os precos de exercicio e o eixo
vertical, os niveis de volatilidade implicita, expressos em percentagem. Uma mesma
curva abrange tanto as calls quanto as puts, de forma que ambas possuem o mesmo
preco de exercicio ATM; uma call de preco de exercicio x OTM é uma put ITM para o
mesmo precgo de exercicio e; uma put de preco de exercicio x OTM & uma call ITM

para 0 mesmo prec¢o de exercicio.

Partindo de um principio de nao arbitragem, similar ao visto na Secao 3.4.3 de
arvores binomiais, para um mesmo prec¢o de exercicio, a volatilidade implicita da call

e da put tendem a ser os mesmos. O conceito de put-call parity, revela que a diferenca
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entre o pregco da call e o pregco da put € igual a diferengca entre o preco do ativo

subjacente e o valor presente do prego de exercicio.

Em outras palavras, a compra de uma call e a venda de uma put de mesmo
preco de exercicio e vencimento, devem ter o mesmo retorno que comprar o ativo
subjacente, financiando essa compra através do empréstimo do montante equivalente
ao preco de exercicio a valor presente. Esse trabalho ndo demonstrara exemplos
desse conceito, de qualquer forma, se essas op¢des possuem volatilidades implicitas
diferentes, a precificacdo delas sdo impactadas, put-call parity ndo se aplica e abre

espaco para arbitragem

Em alguns casos reais, isso pode ocorrer, principalmente em mercados com
menos negociagdes (iliquidos), mas a arbitragem é dificultada pelos demais fatores,

como menor liquidez no ativo em si, spread e custos operacionais.

Voltando as curvas de volatilidade, observa-se uma inclinagao positiva na curva
quando as calls OTM apresentam volatilidades implicitas mais altas que puts OTM,
indicando que o mercado espera elevagao nos prec¢os. Ja a inclinagao negativa é vista
onde as puts OTM exibem volatilidades implicitas maiores que calls OTM, refletindo
preocupacdes com potenciais quedas nos precos. Relembrando que a volatilidade

implicita maior implica em um prémio mais caro.

Um padrao em forma de sorriso (smile) ocorre quando tanto as calls quanto as
puts OTM e ITM apresentam volatilidades implicitas mais altas em comparagdo com
as opg¢bes mais proximas do dinheiro (ATM), indicando uma elevada incerteza ou
expectativa de movimentos significativos de preco em ambas as dire¢gdes. Por outro
lado, uma curva plana (flat) sugere uma volatilidade uniforme para todas as opc¢oes,
independentemente do preco de exercicio, denotando uma expectativa de mercado

de movimentos de preco menos expressivos.

Em resumo, a volatilidade implicita &€ essencialmente uma projecdo da
volatilidade diaria, anualizada, do ativo subjacente, da data de negociacédo até o
vencimento da op¢éo. Ela pode ser negociada no mercado como uma medida de risco,

refletindo diferentes expectativas de variagdo de precos para um ativo especifico.

Essa variacdo pode ser direcional, indicando, por exemplo, uma maior

volatilidade implicita para precos de exercicio mais distantes do dinheiro, sinalizando
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uma tendéncia do mercado em se proteger ou especular em uma direcao especifica

do prego do ativo.

A volatilidade implicita pode ser diferente em determinados niveis de precos de
exercicio, no entanto, a volatilidade realizada de um ativo € uma s6. Isso torna mais
dificil a interpretacao de qual nivel de volatilidade realizada o mercado espera de fato

e dificulta a aplicacdo de um modelo de RNA para predi¢ao de volatilidade.

A pentultima secao do capitulo detalha um método para calcular uma estimativa
unica de volatilidade, que engloba todos os pregcos de exercicio para determinado

vencimento,
3.6.3) indice de Volatilidade CVOL

Através da volatilidade implicita, as op¢des se tornaram importantes
instrumentos para a avaliagédo do risco futuro. Contudo, as abordagens convencionais
que utilizam precos de opg¢des para mesurar riscos frequentemente néo englobam a

totalidade das informacgdes disponiveis.

Por exemplo, a volatilidade implicita no dinheiro (ATM), € um indicador
comumente utilizado para estimar o nivel de risco atual refletido nos precos das
opgdes, entretanto, conforme verificado na Sec¢éo 3.6.2, o mercado pode precificar
diferentes niveis de volatilidade para um mesmo ativo e vencimento, dependendo do
preco de exercicio da op¢ao. Para compreender na totalidade o risco precificado de

um ativo, € necessario considerar todos os niveis de precos de exercicio.

Nesse contexto, a CME Group Inc., grupo norte americano responsavel pela
operacao de um dos principais mercados de derivativos do mundo, elaborou um
método de calcular a volatilidade implicita que incorpora um espectro mais amplo de
precos de opgdes e nomeou de CVOL.

A formulagdo envolve o calculo da estimativa de varidncia abrangendo
informacdes de toda a curva de volatilidade, ou seja, obtida considerando as calls e
puts OTM para um vencimento especifico. O modelo considera todas as op¢dées OTM
até o valor ATM, para montar uma curva na qual o eixo horizontal sdo os precos de
exercicio e o eixo vertical o valor do prémio das opg¢des, conforme demonstrado na

Figura 3. A area da curva é a variancia implicita para as opg¢bes desse ativo e
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vencimento, logo, a raiz quadrada dessa variancia € o desvio padrao para o periodo.

Ao anualizar esse valor, tem-se a volatilidade implicita para todo o conjunto de dados.
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Figura 3 - Exemplo da area a ser calculada para encontrar a varidncia e, consequentemente,
a volatilidade implicita dos pregos de exercicios para um mesmo ativo e vencimento. Prego futuro
(ATM) em 117,75.

Demonstrar completamente os calculos do indice foge do escopo desse
trabalho, mas resumidamente, as calls e puts OTM séo organizadas em uma tabela
de duas colunas (precos de exercicio e prémios). O prémio utilizado ATM & o menor
valor entre a call e put desse preco de exercicio. Encontra-se a area de cada preco
de exercicio, multiplicando o prémio (altura) pela variagao do preco de exercicio (base)
e somando todos esses resultados. O resultado é levado a valor futuro pois, como
visto na Equacgéao 21 e 24 (Black-Scholes), as opg¢des sao trazidas a valor presente,
depois, o valor é dividido pelo preco futuro do ativo ao quadrado, encontrando a

variancia.

A partir desse ponto, é possivel aplicar as Equacbes 16 e 17 para calcular a
volatilidade e atualiza-la. O resultado indica, de forma mais abrangente, a expectativa

de volatilidade que o mercado precifica implicitamente nas opgées. O CME Group
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disponibiliza em seu website?* o valor atual e historico do CVOL para diferentes ativos,

inclusive, para o ativo sera utilizado no modelo pratico.
3.7) Consideragodes Finais do Capitulo 3

Comecando de maneira ampla com fundamentos gerais de derivativos e
transcorrendo por temas mais especificos, como o indice de volatilidade implicita, o
capitulo abordou os conceitos de mercados e derivativos necessarios para
compreender o objeto de analise do modelo de RNA a ser desenvolvido no capitulo 5.
O intuito foi fornecer de maneira completa, até para leitores com menos familiaridade,
as ferramentas necessarias para analisar os resultados do modelo de predicao da
volatilidade realizada.

Considerando um portifélio sem risco, o debate da expectativa da volatilidade
pode nao ser uma parte crucial da operagcdo. Como no portifélio sdo negociadas
quantidades do ativo subjacente junto as opgdes, mesmo que a volatilidade realizada
seja diferente da volatilidade calculada no inicio, realizando ajustes nas quantidades

do ativo posicionadas, € possivel neutralizar esse risco diferencial.

No entanto, para um especulador e até para quem utiliza op¢gées como hedge
de operagdes fora do mercado financeiro - por exemplo, um produtor de soja que
compra puts do contrato futuro de soja, para se proteger da queda do prego -, o valor

da volatilidade € importante para decisdes de investimento.

Com isso, conclui-se o capitulo 3. A seguir, o trabalho abordara os principais
conceitos sobre inteligéncia artificial, modelos de redes neurais artificiais e como eles

podem auxiliar na predigao de volatilidade.

24 CME GROUP. CME Group Volatility Indexes. Disponivel em: https://www.cmegroup.com/market-data/cme-
group-benchmark-administration/cme-group-volatility-indexes.html. Acesso em: 05/11/2023.
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4) Modelos de Redes Neurais Artificiais

Supondo um problema onde ha diferentes pontos (x,y) em um plano, mas nao
se sabe a fungao f(x) que produzem esses pontos. Ao encontrar ou construir uma
aproximacao dessa funcao, seria possivel calcular o valor de y para determinado valor

de x que ndo estava originalmente na base de dados.

Ainda que nao exata, mas com uma boa aproximacao da fungao real, calcular-
se-ia, com certa segurancga, os valores de y mesmo se a base de dados possua um
pouco de ruido (aleatoriedade), pois a fungcao capturaria o padrao geral dos dados,
resultando em valores de y que, na maioria, ndo sao perfeitos, mas ainda Uteis para

aplicagao.

Logo, que precisamos para solucionar o problema & de um “aproximador” de

funcdes e, de maneira geral, é esse o objetivo de uma rede neural artificial.
4.1) Fundamentos das Redes Neurais e do Modelo Feedfoward

Conforme o nome ja sugere, redes neurais artificiais (RNAs) sao estruturas
inspiradas no cérebro humano, que utilizam algoritmos e fun¢cées matematicas para
aprender e reconhecer padrées complexos em dados. Segundo Nielsen (2015)%,
dentro das redes neurais, um neurénio € como uma fungdo matematica, que recebe
varias entradas de dados e produz um resultado (saida), comumente referida como

“ativacao’.

Uma rede neural basica possui trés tipos principais camadas de neurénios; a
de entrada, onde os dados sao incluidos; as intermediarias (conhecidas como
camadas ocultas), onde ocorrem a maior parte dos calculos; e a de saida, onde a rede

apresenta seu resultado quantitativo para determinado problema.

O estudo sobre RNAs partira de um dos modelos mais simples, para depois
introduzir algumas variagées. Conhecido pelo termo inglés feedfoward, com os
neurdnios totalmente conectados entre as camadas, nesse modelo, o neurénio de

uma camada produz a saida para todos os outros neurdnios da camada seguinte, em

25 NIELSEN, Michael A. Neural Networks and Deep Learning. Determination Press, 2015. Disponivel em:
http://neuralnetworksanddeeplearning.com/. Acesso em: 08/10/2023.
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um fluxo unidirecional, ou seja, sem quaisquer conexdes de feedback para camadas

anteriores.

O intuito das camadas €, ao adicionarmos dados dentro da camada de entrada,
o modelo realizara calculos para identificar padrdes e apresentar a provavel resposta

ao problema na camada de saida.

As RNAS sao capazes de realizar diferentes tarefas, abrangendo diferentes
dominios e complexidades. Alguns principais exemplos dos tipos de tarefas realizadas

por uma RNA sao:

o Classificacdo Binaria: Realiza a classificacdo dos dados em duas classes.
Utilizado, por exemplo, para classificar e-mails em spam e ndo spam.

o Classificacao Multiclasse: Classifica as entradas em mais de duas classes.
Utilizado, por exemplo, para reconhecimento de fotos.

o Regressao: Prevé um valor continuo de saida para o conjunto de dados.

Utilizado, por exemplo, para prever precos de ativos financeiros.

Os neurbnios da camada de entrada s&o as variaveis independentes iniciais do
problema, logo, a ativagdo de um neurdnio dessa camada é igual ao valor da variavel.
Cada neurbnio da camada seguinte atribui diferentes pesos (w) as ativagbes da
camada anterior (x). A soma ponderada das ativagées mais um viés técnico (também
conhecido como bias, b) passam por uma fung¢ao de ativacao (f), que gera uma saida,

a ativagao desse neurbnio para as camadas seguintes.

As ativagbes dos neurbnios das camadas posteriores a camada de entrada

podem ser demostradas matematicamente pela Equacao 25 abaixo:

a = fIX (g = wy) + b] (25)
A partir das ativagbes da camada intermediaria anterior, as ativagdes dos
neurénios da camada de saida apresentam os resultados preditos pelo modelo. Cada

etapa do processo sera detalhada nas prdéximas sec¢oes.

Abaixo, a Figura 4 refere-se a uma representacao de uma rede neural artificial

feedfoward totalmente conectada.
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Camada de Camadas Camada de
Entrada IntermediariasfOcultas Saida

Figura 4 - Exemplo de um modelo de rede neural artificial feedfoward totalmente conectada.

No exemplo da Figura 4, a camada de entrada possui trés neurénios, ha duas
camadas ocultas com quatro neurdnios cada e a camada de saida possui apenas um
neurénio. As quantidades de neurbnios por camada e de camadas ocultas podem
variar em cada modelo, as quantidades demonstradas na Figura 4 foram definidas

apenas para exemplificar um modelo.

Como cada neurfnio envia uma ativagcao para cada neurdnio da camada
seguinte, onde € atribuido um peso, a soma ponderada € somada com um Vviés e,
entao, tem-se os parametros para a formula de ativacao, considerando todos os pesos
(60) e vieses (9) do exemplo, tem-se um total de 69 “n6s” que fazem o modelo se
comportar de maneiras diferentes, dependendo dos seus valores. O processo de
aprendizagem refere-se a fazer com que a maquina que executa o modelo encontre

os valores corretos para os pesos e vieses e consiga solucionar o problema proposto.

Como o processo de ativagao, que inclui definir os pesos e vieses, ocorrem em
cada neurdnio, € possivel organiza-los em uma expressao de vetores e matrizes. As
ativacdes iniciais sdo organizadas em um vetor.

X0

(26)
Xn
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Os pesos para as ativagoes, definidos em cada neurénio da camada atual, sao
organizados em uma matriz, em que cada linha corresponde a conexao das ativagdes
iniciais com cada neurdnio da camada atual.

Woo ** Won

: (27)
Wko ° Wkn

’

Os vieses de cada neurbnio da camada atual sdo organizados em um vetor.

by
[] (28)
by

Conforme visto na Equacgéao 25, a matriz de pesos € multiplicada pelo vetor das
ativacoes e, depois, somada ao vetor dos vieses.
Woo - Won]|x, b,
P : N I (29)
Wk,O o Wkrn Xn bn
ApOs a aplicacao da funcao de ativagao na Equacgao 29, é possivel demonstrar
em uma expressao relativamente simples a transicdo completa de ativagdes de uma
camada para a outra. “Traduzir’” o modelo em operagdes com matrizes facilita até na
programacao computacional, visto que muitas linguagens de programacao possuem

ferramentas que trabalham essas operagdes de maneiras relativamente simples.

Woo = Won]|x, b,

Ativacio (a) = f oo i I I (30)
Wio =t Winl|x, by

a=f(Wx+b) (31)

Onde:

x: Vetor de entrada/ativagdes da camada anterior.

W: Matriz de pesos associados a cada x.

b: Vetor de viés.

f: Fungao de ativacao.

Em esséncia, uma rede neural pode ser entendida como um “aproximador”

universal de fungdes ao tentar estimar a relagdo funcional subjacente entre um
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conjunto de entradas e saidas correspondentes, especialmente quando a forma exata

dessa relagao € complexa e desconhecida.
4.2) Detalhes das Camadas de uma Rede Neural Artificial
4.2.1) Camada de Entrada

A camada de entrada € a primeira etapa no fluxo de informagcao de uma RNA
€, como 0 nome sugere, € onde os dados “entram” no modelo para serem processados
pelas camadas subsequentes. Essa camada que recebe os vetores das
caracteristicas (conhecidos pelo termo em inglés, features), que sao as variaveis

independentes incluidas ao modelo para treinamento e predicao.

O numero de neurbnios nesta camada, geralmente, corresponde a
dimensionalidade dos seus dados de entrada. Por exemplo, se cada amostra de
dados é um vetor com 10 elementos (10 variaveis independentes), entdo, a camada

de entrada teria 10 neuroénios.

Nenhum calculo é realizado nessa etapa e a camada de entrada nao possui
uma fungao de ativacao, seus neurdnios apenas repassam os dados para a proxima
camada. De qualquer forma, para um bom desempenho do modelo, € importante que
os dados incluidos tenham passado por algum tipo de normalizacdo ou pré-

processamento antes de serem alimentados na rede.
4.2.2) Camadas Intermediarias/Ocultas

Sao as camadas onde ocorrem a maior parte dos calculos de ativacao, vistos
na Secao 4.1, como a equacgédo 30. Um modelo de RNA pode conter uma ou mais
camadas ocultas, dependendo do objetivo e dos dados com os quais 0 modelo esta

trabalhando.

Em linhas gerais, as camadas intermediarias tém a funcao de capturar padrées
complexos entre cada variavel, que nao seriam facilmente identificaveis para outros
métodos (por exemplo, para uma regresséo linear). Elas efetuam transformacées nas
informacdes de entrada, com o objetivo de simplificar a tarefa computacional que sera

realizada pela camada de saida.

Nao ha um numero exato para a quantidade ideal de camadas ocultas e de
neurdénios em cada uma dessas camadas. Ao estruturar um modelo, normalmente,
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sao testadas diferentes quantidades, para identificar quais produzem os melhores

resultados e se encaixam melhor na capacidade computacional da maquina.

De qualquer forma, observa-se um padrao em diferentes modelos. Quando ha
mais camadas intermediarias e/ou mais neurénios nas camadas que 0 necessario
para o sistema, o modelo pode ajustar demais aos dados de treinamento, capturando
mais um “ruido” do que padrdes gerais dos dados, problema chamado pelo termo em
inglés “overfitting”, detalhado na Segao 4.4.5. Além disso, o modelo pode enfrentar
dificuldades para atualizar seus pesos, que leva a uma aprendizagem menos eficiente

e resultados insatisfatorios.

Quando ha menos camadas intermediarias e/ou menos neurbnios nas
camadas que o necessario, o modelo fica muito simples e tem dificuldades em
capturar relagdes complexas entre as os dados, problema chamado pelo termo em

inglés “underfitting”, detalhado também na Secéo 4.4.5.
4.2.3) Camada de Saida

E a camada final do modelo, onde a rede realiza os ultimos calculos de ativacao
e fornece suas previsdes ou classificagdes. O numero de neurdnios na camada de

saida depende da tarefa especifica, por exemplo:

e Classificacao Binaria: Geralmente, utiliza-se um Unico neurdnio € uma
funcéo de ativagdo que produz uma saida entre 0 e 1. O valor pode ser
interpretado como a probabilidade de pertencer a uma das duas classes.

o Classificacao Multiclasse: Geralmente, o niumero de neurdnios corresponde
ao numero de classes. Por exemplo, um modelo que busca classificar
imagens em 10 diferentes categorias, ele teria 10 neurdnios na camada de
saida.

e Regressao: Geralmente, ha apenas um neurénio que fornece um valor

continuo.
4.3) Detalhes da Equacao de uma Rede Neural Artificial

A Secao 4.1 introduziu a Equacao 31. Através dela, os neurénios realizam os
calculos necessarios para tenta solucionar o problema proposto. A Secédo 4.3

desdobrara cada aspecto da Equacao 31.
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4.3.1) Pesos

Dentro da arquitetura de uma RNA feedfoward totalmente conectada, os pesos
sinapticos séo parametros atribuidos para cada ativagdo da camada anterior e
ajustados iterativamente, com o intuito de identificar e codificar padrées nas variaveis
independentes de entrada, que sao predicativos para o resultado desejado do

problema abordado.
4.3.2) Viés Técnico (Bias)

Assim como o0s pesos, 0 viés técnico € outro parametro do modelo. Seu
propésito & conferir um grau adicional de liberdade a funcao de ativagao, facilitando a
ativacao dos neurdénios mesmo na auséncia de entradas ou quando as entradas,
ponderadas pelos respectivos pesos, ndo sao suficientes para alcangar o limiar

requerido para ativacao.

Em um plano, o viés possibilita o deslocamento da curva caracteristica da
funcdo de ativacao ao longo do eixo horizontal (eixo x). Esse deslocamento é
fundamental para a capacidade da rede de aprender padrées intrincados, dado que,
em muitas situacdes, € necessario ajustar o ponto onde a fungao de ativacao atinge
um valor especifico para se adequar melhor a distribuicdo dos dados.

Por exemplo, em um problema de classificagéo binaria, o modelo trabalha com
uma funcao de ativagao que restringe os valores em um intervalo entre 0 e 1 no eixo
y. O viés técnico pode determinar o ponto no eixo x no qual a fungao produzira um
valor de saida especifico, como 0,5, ajudando o modelo definir se a ativagao esta mais
proxima da classificacdo 0 ou 1. Isso beneficia o processo de aprendizado,
especialmente em situacdes em que as classes nao estao centradas ao redor do zero

ou onde a simetria entre as classes nao é desejavel.

Em sintese, o viés técnico colabora na modulacédo da sensibilidade da funcéo
de ativacdo as entradas da rede, permitindo um ajuste mais fino que favorece a

aprendizagem de padrées complexos presentes nos dados da entrada.
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4.3.3) Fungdes de Ativacao

As fungbes de ativagcao introduzem néao-linearidades ao modelo. Esta nao-
linearidade permite que a rede neural aprenda e modele relacées complexas e

intricadas entre os dados de entrada e de saida.

A linearidade é referente a relagéo proporcional de variagdo entre dois dados
do modelo, representando por um grafico de linha reta. Por exemplo, uma relagao
que, ao dobrar uma variavel, a outra dobra junto, o que nao ocorre na maior parte dos

casos reais.

Sem as fung¢des de ativacao, uma rede neural, independentemente de quantas
camadas possuisse, funcionaria apenas como um classificador linear, incapaz de
resolver problemas além daqueles que sado linearmente separaveis, limitando sua

aplicacao em problemas reais.

Outro objetivo das fungdes é organizar os dados de uma maneira que torne a
aprendizagem do modelo mais facil e traduza melhor os valores de saida. Por
exemplo, para limitar uma ativagado a assumir um numero dentro um intervalo, como

de 0 a 1, utiliza-se uma funcao especifica para isso.

Uma mesma camada pode possuir diferentes fungdes de ativagcédo entre seus
neurdnios e, em modelos mais elaborados, até um mesmo neurdnio pode possuir
diferentes fungcdes de ativacido. A Secao 4.5.2 introduz um tipo de RNA que aborda

esse conceito.
4.3.4) Principais Funcgdes de Ativacao

e Funcao Linear: A mais simples dentre as alternativas, onde a saida é
proporcional a entrada. Esta funcao nao realiza calculos nos dados de entrada,

assim, a saida é exatamente igual a entrada.

flx) =x (32)

¢ Funcao Sigmoide: Converte valores de entrada em uma faixa entre 0 e 1, com
uma curva em forma de “s”. Normalmente utilizada apenas em camadas de
saida para problemas de classificacao binaria e de probabilidades, pois mapeia
qualquer intervalo entre 0 e 1. Em camadas ocultas, nao é tao utilizada devido

ao problema de desaparecimento do gradiente (mais detalhes na Secgéo 4.4.4).
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1
1+e™*

Flx) = (33)

Funcao Tanh (Tangente Hiperbdlica): Semelhante a sigmoide, mas mapeia os
valores de entrada para uma faixa entre -1 e 1. Geralmente utilizada em
camadas ocultas quando a centralizagdo (normalizacédo) dos dados é mais
critica.

eX—e™*
eX+e™x

f(x) = tanh (x) = (34)

Funcao RelLU (Unidade Linear Retificada): Mantém os valores positivos como
estdo (propriedade conhecida como “nao saturacdo”) e converte valores
negativos em zero. E mais eficiente na convergéncia do treinamento e em
mitigar o desaparecimento do gradiente, comparado com fung¢des sigmoide e

tanh.

f(x) = max (0,x) (35)

Funcao Leaky ReLU: Semelhante a ReLU, mantendo os valores positivos como
estdo, mas permite um pequeno gradiente quando x é menor que zero.
Normalmente é utilizada para prevenir a morte de neurdénios em RNAs mais
profundas (ou seja, com mais camadas ocultas) e convolucionais. Um neurdnio

‘morre” quando para de responder a variagdes nos dados de erro.

f(x) = max (ax,x) (36)

Onde a, conhecido como taxa de vazamento, € um pequeno valor
constante (por exemplo, 0,01). A eficiéncia do modelo depende da escolha de

um bom parametro a, deixando sua aplicagéo ligeiramente mais complexa.

Ha outras fungdes que sao uteis para tarefas especificas, como exemplo, a

funcao softmax, utilizada para problemas de classificacdo. Devido ao escopo do

trabalho, ndo ha necessidade em apresentar essas demais fungdes.

4.4) Outros Hiperparametros

Os hiperparametros sao todas as configuracdes ajustaveis em um algoritmo de

aprendizado de maquina, definidas antes do processo de treinamento e que governam

como o modelo € estruturado e treinado. Diferentemente dos parametros do modelo,

como 0s pesos e vieses técnicos, que sao ajustados ao longo do treinamento, os
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hiperparametros devem ser pré-estabelecidos e sdo mais contantes ao longo do

treinamento.

As secbes anteriores ja apresentaram alguns hiperparametros, como as
camadas, numeros de neurénios e as fungcbes de ativacdo. Essa secédo detalhara

outros hiperparametros, também essenciais para estruturar um modelo de RNA.
4.4.1) Numero de Epocas (Epochs)

Uma época refere-se a uma passagem completa do algoritmo pelo conjunto de
dados de treinamento. Durante cada época, o algoritmo de aprendizado ajusta os

pesos da rede com base no erro entre as saidas esperadas e as reais.

Supondo que o modelo tenha 100 conjuntos de dados para treinamento, uma

época representa uma passagem completa do modelo por todos esses dados.

Nas primeiras épocas, € comum observar uma melhoria significativa no
desempenho do modelo, a medida que ele comecga a aprender com os dados. Com o
passar das épocas, o modelo tende a convergir para um estado onde faz previsdes
mais precisas e, idealmente, a diferenca entre o erro de treinamento e o erro de teste

diminuem (mais detalhes sobre essa dindmica na Secao 4.4.5).

Nao ha um numero padrao de épocas aplicavel em todos os modelos, ele varia
dependendo da complexidade do modelo, do tamanho e da natureza do conjunto de
dados e do algoritmo especifico de aprendizado utilizado. Assim como os demais
hiperparametros, geralemente, o numero de épocas €& ajustado conforme

experimentacao.

Um numero de épocas baixo pode levar o modelo a nao capturar a
complexidade dos dados (underfitting), por outro lado, muitas épocas podem levar o

modelo a se ajustar demais aos dados (overfitting).
4.4.2) Tamanho do Lote (Batch Size)

As vezes, uma época pode conter muitos dados para o modelo avaliar de uma
vez, entdo, os dados precisam ser divididos em subgrupos (lotes). O tamanho do lote
€ um hiperparametro que determina a quantidade total de conjunto de dados
presentes nos subgrupos de treinamento, que serao utilizados em uma unica iteragao
do algoritmo.
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O tamanho maximo do lote € igual ao numero de conjunto de dados e seu
menor tamanho é igual a um. Quanto maior o lote, o gradiente do modelo (conceito
explorado na Sec¢éo 4.5.2) é baseado em mais dados, que leva a uma estimativa mais
precisa, mas demanda mais trabalho computacional e pode trazer problemas com a

generalizacao do modelo (overfiting).

No exemplo de 100 conjuntos de dados, ao dividi-los em 2 lotes, o “tamanho”

seria de 50 conjuntos em cada.
4.4.3) Iteragdes

As iteragcbes sao os numeros de lotes necessarios para completar uma época.
No exemplo de 100 conjuntos de dados, 2 lotes de 50 conjuntos em cada, o modelo
precisaria de 2 iteragées para completar uma época.

Ha outros importantes hiperparametros, como a taxa de aprendizado e a
regularizagcao do modelo, que serdo introduzidos e explorados ao longo do capitulo.

4.5) Como as Redes Neurais Artificiais Aprendem?

Recapitulando, a aprendizagem em redes neurais refere-se ao processo no
qual o modelo busca definir os valores corretos de pesos e viéses para cada ativacao,
aproximando uma funcgao universal para o problema em questao. Apés treinada, a
funcéo precisa apresentar um resultado satisfatério de predicées em um conjunto de

dados néo apresentado no treinamento, chamado de conjunto de teste.

Dessa forma, todo modelo necessita de um conjunto de variaveis
independentes (features) para treino e outro para teste. Além dos vetores de entrada
(variaveis independentes), os conjuntos de dados necessitam de um vetor de saida,

com os valores esperados que a rede neural indique (variaveis dependentes).

Por exemplo, em um conjunto de dados para um problema de classificacao de
imagens, além das proprias imagens para treinamento e teste (varidveis
independentes), & necessario indicar qual classificagdo (variavel dependente) que o

modelo deve responder para cada imagem do conjunto.

Para a predicdo da volatilidade realizada de um ativo em um determinado
periodo, o conjunto de variaveis independentes - exdgenas e enddgenas - que o
modelo tentara correlacionar com a volatilidade seriam as features e o valor da
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volatilidade realizada de fato naquele determinado periodo seria o valor esperado

(variavel dependente).

Em sintese, ap6s a concluséo do treinamento, é considerado que o modelo
aprendeu e elaborou uma fungéo satisfatéria quando o algoritmo tem um bom
desempenho na predicdo em novas entradas n&o vistas anteriormente, conceito

conhecido como generalizacéo.
As proximas sec¢des detalhardo mais sobre cada etapa desse processo.
4.4.1) Funcéao Erro

Ao iniciar o treinamento de uma rede neural, os pesos e vieses iniciais podem
ser atribuidos de maneira aleatéria. Esta inicializagao aleatéria conduz ativagées na
camada de saida que sao igualmente aleatérias e, provavelmente, desvinculadas dos

resultados esperados ou da realidade subjacente dos dados.

Para orientar o modelo em direcéo a estimativas mais precisas, implementa-se
uma funcdo de erro (também chamada de funcédo custo ou perda). Esta fungéo
mensura o quao distante as predicdes do modelo estdo dos valores reais desejados.
Através dela, o modelo realizara ajustes nos parametros, com intuito de minimiza-la

e, consequentemente, realizar predicdes melhores (mais detalhes na Secéo 4.4.2).

Uma forma comum da fungéo erro € a soma dos erros quadraticos, onde cada
erro é a diferenca entre o valor previsto pela ativacdo da camada de saida e o valor
real ou esperado. Matematicamente, a fungao de erro quadratica de um unico conjunto

Ser expressa como.

E= 3" (q,® -2 (37)

Onde a;® é o valor predito pela rede neural e ch(S) € o valor esperado para a i-
ésima amostra da camada de saida s. Em outras palavras, a funcao erro fornece uma
medida agregada da diferenca entre as predigcdes do modelo e os valores esperados

para todas as amostras processadas.

Quando a rede neural tem um Unico neurdnio de saida, o erro é calculado com
base na diferenca entre a predicao desse neurdnio e do valor esperado. Se a rede
possui multiplos neurdnios de saida, o erro € a soma das diferencas quadraticas
individuais para cada neurdnio de saida.
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Geralmente, o erro sera maior quando as predigcdes estao mais distantes dos
valores reais. Conforme novas amostras sao introduzidas durante o treinamento, o
erro médio é recalculado, refletindo a média dos erros quadraticos de todas as

amostras processadas até o momento.

Logo, a funcéo de Erro Quadratico Médio (Mean Squared Error, MSE) da rede

neural € expressa por:

MSE = —Z%E (38)
Onde n é o numero de conjunto de amostras de dados.
E possivel variar a fungéo erro, para se adequar melhor a diferentes problemas.
Por exemplo, a fungdo da Raiz Quadrada do Erro-Médio (Root Mean Squared Error,
RMSE), demonstrada na Equacéao 39, extrai a raiz quadrada da Equacéao 38 (MSE).

Como o MSE sao os erros levados ao quadrado, os resultados ficam fora de escala,

podendo dificultar a interpretacao. Utilizar a raiz quadrada retorna o erro a escala

RMSE = |2=if (39)
n

Outra opcéo é utilizar apenas as diferengas simples entre os valores preditos

original.

e reais, deixando o erro em valores absolutos. Essa fungcéo, demonstrada na Equacéao
40 abaixo, € chamada de Erro Médio Absoluto (Mean Absolute Error, MAE), em
contrapartida do MSE e RMSE, que penalizam erros maiores, o MAE penaliza todos

0S €Iros na mesma proporgao.

MAE (40)

Ha uma diferenca entre a funcéo erro que o modelo tentara minimizar e as
utilizadas como métricas de avaliagao. Por exemplo, um modelo pode utilizar a MSE
como funcgéo erro e a partir dos seus resultados, realizara os ajustes nos parédmetros
com intuito de minimizar o erro. No entanto, como o MSE produz resultados fora de
escala, utiliza-se as funcbes RMSE e MAE nas predi¢ées finais do modelo apenas

para avalia-lo.
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4.4.2) Descida de Gradiente

O papel central inicial do algoritmo de aprendizado € ajustar os pesos e vieses
da rede neural de forma a minimizar a funcao erro. Utilizando algoritmos, como o
gradiente descendente, a rede neural é capaz de aprender iterativamente, alterando

0s pesos e vieses para produzir predigdes cada vez mais precisas.

O gradiente de uma funcao qualquer f(x) sdo as derivadas parciais de cada
variavel da funcao, denotado por Vf(x), indica a dire¢do do maior aumento da fungao.

Por exemplo, para a Equacgéo 41, o gradiente é Vf(x,y) = [2x, 2y].

floy) =x%+y? (41)

Na descida do gradiente, 0 modelo se move na diregcado oposta ao gradiente

para encontrar o ponto critico, subtraindo um multiplo do gradiente do ponto atual.
Para a Equacéo 41, no ponto (1,1), o gradiente em f(1,1) € [2,2], ou seja, indica que a
funcédo crescera mais rapidamente no ponto (2,2). Dessa forma, para o modelo

minimizar o valor, precisa se mover direcao oposta.

Para evitar com que o modelo “salte” pelos pontos criticos e deixe a descida
mais eficiente, ao invés de subtrair a diferenca do gradiente e seu vetor, utiliza-se uma
taxa de atualizacao (aprendizado) n, que € multiplicada ao gradiente. O resultado &
subtraido do vetor, conforme a Equagéao 42.

(", y") = (x,y) = nlx,y] (42)

A definicao do valor da taxa de aprendizado n pode ser feita por experimentagao

ou com alguma técnica de otimizacao (exemplo demonstrado na Secao 4.5.3). Uma
taxa de aprendizado alta acelerara o treinamento, mas pode nao encontrar pontos
criticos ao “saltar” sobre os valores. Uma taxa baixa leva a ajustes mais precisos, mas
demanda mais tempo e aumenta o risco do modelo estacionar em um minimo local

(mais detalhes adiante).

No exemplo da Equacéao 41, utilizando n = 0,1, o modelo subtrairia 0,1 * 2 = 0,2
de cada valor, chegando em um novo pontode 1 —-0,2 =0,8, (0,8; 0,8). O processo
seria repetido até encontrar um ponto critico ou atingir o niumero maximo de iteragdes

definidas.
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Ponto importante, note que o modelo ajusta seus parametros a partir das
iteragcbes, ou seja, em cada lote do conjunto de treinamento (e ndo em cada época),
o modelo realiza os ajustes e calcula o novo erro de treinamento. Apds processar
todos os lotes e, consequentemente, todo o conjunto de treinamento, ainda dentro da
mesma época, o0 modelo é entdo testado com um conjunto separado para essa tarefa.
Apenas apds essa etapa que se conclui a época vigente e o modelo segue para a

préxima época, com os parametros utilizados no ultimo lote de treinamento.

Pode ser simples de deduzir o ponto minimo do exemplo da Equacgéo 41, mas
no caso das redes neurais artificiais, que cada variavel da equagao € um peso ou viés,

a tarefa toma dimens6es mais desafiadoras.

Os pontos criticos sdo aqueles onde o gradiente (ou derivada) da funcao € zero

e, na descida de gradiente, podem ser:

e Ponto minimo local: Onde uma fung¢ao atinge um valor menor do que
todos os outros valores na sua vizinhanga imediata, mas nao
necessariamente o menor de toda a funcgao.

¢ Ponto minimo global: Onde a fung¢éo atinge o seu valor mais baixo em
toda a sua extensao.

e Ponto de sela: Posicao onde a fungao tem uma inclinagéo nula, mas néao
se trata de um extremo local. E o ponto sobre uma superficie na qual a

elevacao é maxima numa dire¢cao e minima noutra direcao.

A otimizacado em aprendizado profundo frequentemente envolve fungées com
muitos minimos locais e pontos de sela, o que torna a tarefa de encontrar um minimo

global mais trabalhosa.

Aplicando esses conceitos as RNAs, o gradiente é a derivada parcial da funcao
erro em relagcéo a todos os pesos e vieses da rede. Esse € o “gradiente” que o modelo

busca minimizar durante o treinamento.

6t =6t — nVj(6) (43)
Onde:
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e 0. Parametros (pesos e vieses) do modelo. Expressa o conjunto de matrizes
de pesos e vetores de vieses. E possivel expressar 8 = {W1,b1,W2,b2
, o, Wn, bn}.

e 1: Taxa de aprendizagem.

e VJ(6): Gradiente da fungéo erro /] em relacdo aos parametros 6. E um vetor
que contém as derivadas parciais de /] em relacao as matrizes de pesos e

vetor de vieses.
4.4.3) Retropropagacao (Backpropagation)

Ao apresentar os fundamentos gerais sobre a funcéo erro e métodos para sua
minimizagéao, o trabalho segue com a analise do algoritmo de otimiza¢ao utilizado no
modelo para fazé-lo “aprender”. Trata-se do backpropagation, cujo objetivo é calcular
o gradiente da fungao erro em relagdo a cada peso do modelo, fornecendo a diregcao

na qual os pesos devem ser ajustados para minimizar a funcao de custo.

Em uma rede feedfoward, o processo comega com a propagacgao para a frente,
onde as entradas sao repassadas para a camada de saida através dos neurénios,
gerando as saidas e erros iniciais. A medida de erro &, entao, propagada de volta pela
rede (por isso o termo "backpropagation"), camada por camada, retrocedendo do final
para o inicio da rede. Durante esse processo, os gradientes da fungao erro em relagao

a cada peso sao calculados utilizando a regra da cadeia.

Em termos gerais, a regra da cadeia no calculo diferencial € uma ferramenta
para calcular a derivada de fungdes compostas. Se ha duas fungdes, uma composta
na outra, a regra da cadeia permite calcular a derivada dessa fungao composta.
Embora os detalhes matematicos fundamentais da regra nao sejam aqui explorados,

€ importante entender seu papel nas RNAs.

Durante o processo de backpropagation, a regra de cadeia € aplicada pois cada
neurdnio (ou fungéo) nado opera isoladamente, mas depende da saida de outros
neurénios. Assim, a regra da cadeia é utilizada para calcular as derivadas parciais dos
pesos e vieses em relacdo ao erro, necessarias para ajusta-los de forma eficiente,

tendo em vista a natureza interconectada das fungdes na rede.

Em sintese, um modelo pode alterar a ativagcdo de um neurdnio ao alterar os
pesos que esse determinado neurbnio atribuiu as ativagbes da camada anterior;
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alterando seu viés técnico ou; voltando para as camadas anteriores e ajustando

novamente esses fatores, até chegar na camada inicial.

A partir da fungao erro do conjunto de treinamento e do gradiente descendente,
o algoritmo determina o que e quanto alterar, priorizando o ajuste das variaveis que
mais impactam o modelo. O modelo “verifica” quais as variaveis de maior peso ao

analisar o impacto da alteracao delas no valor do erro.

O algoritmo realiza os ajustes até encontrar um ponto critico ou ao atingir um
ndmero maximo de iteragdes. E importante realizar o treinamento com diferentes
exemplos, para o modelo aprender impactos gerais das variaveis independentes e

ndo apenas um unico cenario, ficando mais eficiente na predigéo.
4.4.4) Principais Problemas na Minimizag¢ao do Erro

Ha dois principais problemas em relagdo aos gradientes, que ocorrem

principalmente em redes neurais mais profundas:

e Desaparecimento do Gradiente: ocorre quando os gradientes se aproximam
de zero durante o backpropagation, sem encontrar um ponto critico. Isso é
mais comum em redes neurais profundas, quando utilizado fungbes como a

sigmoide e tanh, que tendem a produzir gradientes menores.

A medida que o erro é propagado de volta pela rede, esses pequenos
gradientes sao multiplicados varias vezes, tornando-se insignificantes. Em
outras palavras, o gradiente faz com que o modelo realize passos muito
pequenos de ajuste, chegando ao numero maximo de iteracbes antes de
encontrar um ponto critico. Medidas comuns para evitar esse problema sao
fungdes como Rel U, ajustes nas iniciagbes de pesos e outras medidas de

normalizacao.

e Explosdao do Gradiente: O oposto do desaparecimento do gradiente,
acontece devido a multiplicagao do gradiente por valores altos ao longo de
varias camadas, o que pode levar a atualizagbes de peso muito grandes e
dificulta o modelo encontrar um ponto critico. Pode ser evitado limitando o
valor maximo de gradientes durante o treinamento, utilizando taxas de
aprendizagem adaptativas, ajustes nas iniciagcbes de pesos e outras

medidas de normalizagao.
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4.4.5) Avaliando a Capacidade de uma Rede Neural Artificial

Recapitulando alguns conceitos abordados na Secao 4.4, o objetivo geral de
um modelo de RNA & encontrar uma fungéo generalizada para determinado conjunto
de dados. Esse conjunto, com variaveis independentes e dependentes, € dividido em

amostras para treinamento e outras para testes do modelo.

A partir de iteragdes com o conjunto de treinamento, o método de aprendizagem
consiste em minimizar a diferenca entre o valor predito e o esperado (chamado de

erro), através de ajustes nos pesos e vieses da rede.

Ha uma distingao entre erro do conjunto de dados de treinamento e o de teste.
O processo de backpropagation consiste em minimizar erro de treinamento, no
entanto, o modelo torna-se eficiente e aplicavel ao minimizar o erro do conjunto de
teste, conhecido também como erro de generalizagdo. Goodfellow, Bengio, Courville
(2016) 26, discutem o processo de separagdo de dados e da avaliagéo da “capacidade”

de um modelo.

O erro de teste refere-se a capacidade de um modelo de aprendizagem de
magquina ter bons resultados em dados nao vistos durante o treinamento. O valor do
erro no teste € estimado medindo o desempenho do modelo em um conjunto de

valores separados para essa funcao e nao utilizado durante o treinamento.

Por sua vez, a capacidade de um modelo € considerada, informalmente, como
a sua habilidade de se adequar a uma ampla variedade de conjunto de dados. Em
outras palavras, a capacidade pode ser medida considerando-se a simplicidade e

(énfase no “e”) a eficacia com que ele se ajusta aos dados de treinamento e teste.

Técnicas como da validacao cruzada podem ser Uteis para avaliar a capacidade
de generalizagdo de um modelo de aprendizado de maquina. Ela estima como o
modelo se comportara em um conjunto de dados independente e ajuda a mitigar
problemas de ajuste. O processo envolve dividir os conjuntos de variaveis
independentes em multiplos subconjuntos. Em cada iteragdo da validagao cruzada,

diferentes subconjuntos sdo usados para treinamento e teste. Isso permite que o

26 GOODFELLOW, lan; BENGIO, Yoshua; COURVILLE, Aaron. Deep Learning. Cambridge: MIT Press, 2016.110.
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modelo seja testado em varias configuragdes de dados, proporcionando uma

avaliagao mais robusta de sua capacidade de generalizagéo.

Ha diferentes maneiras de dividir os subconjuntos de dados, mas os detalhes
nao serdo abordados nesse trabalho. De qualquer forma, essa divisdo oferece uma
avaliagdo mais realista de como o modelo se comportara com dados novos e nao

vistos.

A avaliagdo pode ser feita a partir da comparacdo dos desempenhos nos
conjuntos de treinamento e teste, ao identificar como o modelo esta se ajustando aos
dados de treinamento. Para aprofundar nesse conceito, segue um exemplo de
conjunto de dados qualquer, para modelo com duas variaveis, conforme apresentado

na Figura 5.

ce

\ 4

®Treinamento OTeste

Figura 5 - Exemplo de um conjunto de dados qualquer. Cada ponto é um dado do conjunto.

Um modelo de RNA teria o objetivo de encontrar uma fungéo universal para
esse conjunto, que relacione o eixo horizontal com o vertical. Na pratica, o modelo
possuiria apenas uma variavel independente, com os valores no eixo horizontal x, que
determinaria o resultado da variavel dependente, exposta no eixo y. Supondo que a

funcéo desejada seria representada pela curva tragada da Figura 6.
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Figura 6 - Exemplo de um conjunto de dados com a curva da fungdo desejada.

Para ilustrar o processo de treinamento do modelo, foram separados apenas

os dados do conjunto de treinamento, conforme a Figura 7.

\ 4

® Treinamento

Figura 7 - Exemplo de um conjunto de dados para treinamento com a curva da fungéo desejada.
Supondo que, nas primeiras interagcdes, o modelo resultou em uma regressao
linear pelo Método dos Minimos Quadrados (MMQ), calculando uma reta que minimiza
0 erro ou, como o home do método sugere, que minimiza a soma dos quadrados das

diferencas entre os valores estimados e reais, conforme a Figura 8.
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Figura 8 - Exemplo de um conjunto de dados para treinamento com a reta da regresséo linear em tom
mais claro e a fungdo desejada tragada.

Ao comparar com a curva da funcédo desejada, observa-se que o modelo ndo
conseguiu tragar uma reta que divida satisfatoriamente os conjuntos de dados. Mesmo
alterando a posicéao e inclinacdo, ndo ha qualquer reta que aproxime o erro do

treinamento a zero.

Esse problema é conhecido como underfitting, ou “subajuste”, no qual o modelo
nao consegue capturar adequadamente a complexidade dos dados. As causas
incluem, mas nao se limitam, a um modelo de RNA muito simples e com
hiperparametros mal estabelecidos. Por exemplo, um modelo com poucas camadas
ocultas, poucos neurénios, restricées de regularizacao, poucas épocas e com fungdes

de ativagao inadequadas.

Também é possivel referir-se ao underfitting como a incapacidade do modelo
em reduzir o viés estatistico (ndo confundir com o viés técnico, presente na equagcao
de ativacao das RNAs). Por conta de a fungao criada pelo modelo ser uma linha reta
que nao se “curva” como a fungao esperada para o conjunto, é dito que ela possui um

viés estatistico alto.

Supondo que, ap6és ajustes, o algoritmo diminui o viés estatistico e foi capaz de
tracar uma funcao representada por uma curva ondulada, que passa exatamente

sobre todos os pontos, conforme a Figura 9.
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Figura 9 - Exemplo de um conjunto de dados para treinamento com a curva ondulada de exemplo em
tom mais claro e a fungéo desejada tragada.

Agora, o erro de treinamento é zero, nao houve quaisquer diferengas entre os
valores preditos e esperados. No entanto, repara-se que a curva ainda é diferente da
esperada para a fungéo. Ao introduzir os conjuntos de dados de teste, fica mais
evidente que o resultado ainda nao é ideal, conforme a Figura 10.
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Figura 10 - Exemplo de um conjunto de dados para treinamento e teste com a curva ondulada do
treinamento em tom mais claro e a fungéo desejada tragada.

Apesar de o modelo ter diminuido o viés estatistico, se adaptando totalmente a

relacado entre as variaveis do conjunto de treinamento e, consequentemente, levando
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o erro de treinamento a zero, ao introduzi-lo para um conjunto de teste com novos

dados, o erro de teste - ou erro de generalizagao - foi consideravel.

Na linguagem de aprendizado de maquina, a diferenca entre os erros de
treinamento e teste € chamado de variancia. No exemplo da Figura 10, quando o
modelo se adapta muito ao conjunto de dados de treinamento e falha em capturar
generalizagdes, mantendo a varidncia alta, é considerado que ele possui um

oveffitting ou “sobreajuste”.

Em contraste com o underfitting, o overfitting pode ser causado por modelos
com muitos parametros, tempos de treinamento longos e muitas épocas, ou que
possuam caracteristicas irrelevantes (ruidos) nos dados, que fazem o modelo

aprender caracteristicas nao aplicaveis no mundo real.

A Figura 11 € um exemplo de como o comportamento dos erros de treinamento
e teste deve seguir através das épocas, em um modelo com o conjunto de dados bem
tratados e os hiperparametros bem definidos. O erro de teste comega caindo,
conforme o modelo vai aprendendo padrées nos dados de treinamento. No entanto,
apos um determinado numero de épocas, ele estabiliza e comeca a subir, sinalizando
que o modelo esta se ajustando muito aos dados de treinamento e perdendo

capacidade de generalizacao.

—— HErode Teste/Generalizaggo
Zona de Zona de
“Underfitting" “Overfitting™

R Erro de Treinamento

Erro

Lacuna de Generalizagao

Figura 11 - Exemplo de relag&o entre o numero de épocas e os erros de teste e treinamento de um
modelo ndo regularizado.
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Observa-se também que ha um certo numero 6timo de épocas, que minimiza a
variancia do modelo. Uma forma de tentar encontra-la € através da “parada
antecipada”, que consiste em parar o treinamento ao verificar que o erro de tese

estagnou, antes de comecar a subir. No entanto, essa tarefa é controversa.

Por exemplo, em ambientes com alta variabilidade de dados ou ruido, o erro de
validacao pode variar. Isso torna dificil determinar um ponto claro para parar, pois o
modelo pode parecer sobreajustado temporariamente devido ao ruido nos dados, mas

na verdade, ainda possui um viés estatistico alto, que sera reduzido com mais épocas.

A Figura 11 pode induzir que encontrar o ponto 6timo de épocas é algo simples,
mas na pratica, a variancia nado € medida diretamente ao longo das épocas; o que é
monitorado sédo os erros dos conjuntos em cada época. Dessa forma, muitas vezes
um aumento na variancia inicia em algum lote e sé se torna evidente depois de

comecgar a fazer efeito.

A parada antecipada &€ mais uma solugao complementar, ao nao abordar as
causas principais do overfitting, como muitos parametros ou dados de treinamento
insuficientes. Outros métodos de regularizagao, abordam diretamente estas questdes,
impondo restricdes a complexidade do modelo ou introduzindo sangdes para modelos

complexos.

Antes de seguir com a préxima sec¢ao, vale concluir que a aprendizagem do
modelo sé se torna eficiente ndo ao reduzir apenas o erro de treinamento, mas
também ao reduzir o erro de teste. Isso depende dos dados apresentados e na

capacidade do modelo em se adequar e generalizar a relagao desses dados.
4.4.6) Regularizacao

A regularizagéo tem o intuito de evitar o overfitting do modelo, com métodos
que penalizam a complexidade excessiva da rede neural. Isso € realizado através da
adicao de um termo de penalidade a fungao erro do modelo ou através de técnicas de

treinamento. Para técnicas de penalizacao, temos:

e L1-Regularizagao Lasso (abreviado do inglés Least Absolute Shrinkage
and Selection Operator): Técnica que consiste em adicionar a soma dos
valores absolutos dos pesos do modelo no calculo da fungéo erro,

penalizando o modelo por pesos altos. O método estimula a redugéo dos
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pesos, até desativando alguns neurbnios quando sua ativacao fica
zerada, deixando o modelo esparso. Dessa forma, o método é utilizado
em modelos com muitas variaveis, para auxiliar na selegcdo de apenas
as mais importantes.

e L2 - Regularizacao Ridge: Técnica que consiste em adicionar a soma
dos quadrados dos pesos do modelo no calculo da fungao erro,
penalizando ainda mais os pesos mais altos. O método estimula os
pesos ficarem menores e mais distribuidos, sendo eficaz em casos de
multicolinearidade, nos quais as variaveis sao muito correlacionadas.

o FElastic Net (Rede Elastica): Método que combina L1 e L2,

proporcionando uma solucao intermediaria entre os dois.

Os métodos de penalizagao utilizam um parametro lambda (A, entre 0 e 1) para
controlar a forca da penalidade. Ao multiplicar o parametro na soma dos valores
absolutos ou dos quadrados dos pesos (no caso da rede elastica, um parametro para
cada regularizagao), busca-se equilibrar a regularizagcéo para evitar o overfitting e

manter um bom nivel de generalizacéo.

Um lambda muito alto aumenta o viés estatistico do modelo, mas reduz a
variancia. Majoritariamente por experimentacao, € possivel determinar o lambda étimo
do modelo. A Figura 12 ilustra essa relacdo, ao demonstrar o erro de teste, viés

estatistico e variancia, através da capacidade (eficiéncia) do modelo.

—— HErode Teste/Generalizagio
—_-— Viés Estatistico

........ Variancia

Zona de Zona dfa
"Underfitting" "overfitting”

o Capacidade Otima Capacidade

Figura 12 - Exemplo de relagdo entre erro de teste, viés estatistico e varidncia de um modelo
regularizado.
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A ultima técnica que sera apresentada nao é relacionada a penalizacdo, mas
sim ao treino, como a parada antecipada introduzida na Sec¢éo 4.4.5. A técnica em
questao chama-se dropout (abandono), e similar a L1, busca tirar a dependéncia do
modelo em relagdo a um neurdnio especifico. Em cada interacao, os neurénios das
camadas de entrada e intermediarias tem uma probabilidade p de serem
temporariamente abandonados, ou seja, nao contribuirao para a propagacao direta e
backpropagation durante a iteracao vigente.

Ao utilizar os métodos de penalizagdo de forma eficiente, o dropout pode nao
ser necessario, inclusive, pode conflitar com os demais métodos e aumentar o viés

estatistico do modelo.

Esse foi o ultimo conceito da Secado 4.4, que apresentou o0s principais
fundamentos do aprendizado de uma RNA, desde um panorama dos calculos e
processos envolvidos no treinamento do modelo, até maneiras de avaliar seu
desempenho. A préxima secao abordara conceitos mais avangados, mas necessarios

para compreender o modelo pratico do préximo capitulo.
4.6) Variagcoes do Modelo Apresentado

O capitulo introduziu, até o momento, os conceitos gerais sobre aprendizado
de maquina, que ja seriam suficientes para criar um modelo na pratica. No entanto, as
RNAs feedfoward, que o trabalho utilizou como modelo base para apresentar seus
fundamentos, ndo costumam a desempenhar resultados satisfatérios em problemas

de séries temporais, como o problema em questao de predi¢cao da volatilidade.

As redes feedfoward sao mais eficientes em tarefas nas quais os dados podem
ser analisados sem a necessidade de considerar relagdes temporais ou espaciais
entre eles, como exemplo, alguns problemas de classificacdo. Além disso, sua
estrutura menos elaborada, é util para introduzir de maneira mais didatica os conceitos

gerais das RNAs.

Essa secao apresentara duas variagées de redes neurais e, por ultimo, um

otimizador que colabora para o treinamento e desempenho da rede.
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4.6.1) Redes Neurais Recorrentes (RNR)

As Redes Neurais Recorrentes (RNRs) representam um dos principais modelos
de aprendizado de maquina, geralmente utilizado em problemas de dados de séries
temporais. Estas redes distinguem-se pela sua arquitetura que Ihes permite reter e
utilizar informagdes de entradas de dados anteriores, tornando-as particularmente

eficazes em cenarios onde os dados sao inerentemente sequenciais.

A arquitetura de uma RNR envolve neurdnios com conexdes autorreferenciais,
ou seja, as ativagdes de um conjunto de dados podem ser repassadas para o conjunto
da préxima série temporal, possibilitando uma forma de meméria no modelo, essencial

para tarefas onde o contexto histérico é relevante.

Em uma camada oculta de instante t, ao invés de o conjunto de neurdnios
repassar as ativagdes para uma camada de saida, eles repassam para cada neurénio
da camada oculta do instante seguinte t+7, que junto com as préprias novas entradas
do conjunto de dados t+7, formam ativacdes que guardam informacgdes temporais,
conforme representado na Figura 13.

v

L C

=

Camada
Camada de . Camada de
Intermediaria

Entrada Rainrraate Saida

Figura 13 - Exemplo de um modelo de rede neural recorrente, com apenas uma camada intermediaria
recorrente.
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A Figura 13 presume que os neurdnios da camada intermediaria, ao invés de
apenas repassar as ativagoes para sua camada de saida, repassam também para os
neurbnios da camada intermediaria da préxima série temporal. A Figura 14

complementa esse conceito.

Camada de
Entrada ¢

Camada de
Entrada #+1

Camada
Intermedidria
Recorrente?

Camada
Intermedidria
Recorrente
1

Camada de
Saidaz+l

Figura 14 - Exemplo de como os neurbnios intermediérios repassam as ativagbes para a proxima
série temporal.

Explicando a Figura 14, o modelo busca prever um valor para a variavel
dependente no instante {+1. A camada oculta em t+1 utiliza as ativagdes da mesma
camada no instante t, além das proprias ativacées da camada de entrada t+17, para
calcular suas ativacdes e repassa-las para a camada de saida t+7. Dessa forma, a
ativacao do neurénio na camada de saida t+1 seria o resultado do modelo. No instante
t também ha uma camada de saida, no entanto, sua ativagdo nao seria utilizada nesse

exemplo.

Caso houvesse mais um instante, t+2, as ativacdes da camada intermediaria
t+1 seriam utilizados junto com as ativagbes da camada de entrada t+2, para gerar as
ativagcdes da camada intermediaria {+2 e o resultado do modelo seria a ativacao do
neurdnio na camada de saida t+2 e assim em diante para todos os instantes de tempo.
Note que as ativagbes da camada intermediaria t ja sdo computadas nas ativagdes
t+1.

A equacao geral da ativagdo em um neurdnio da camada oculta de um modelo

RNR é dada pela Equacao 44.
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ar = f(Wyq * x¢ + Wy * ar_q1 + by) (44)
Onde:

e q;: Ativacao do neurdnio da camada oculta no instante t.

o W,,: Matriz de pesos para as conexdes do neurdnio com as ativagdes
da camada imediatamente anterior de mesmo instante t.

e x;: Vetor das entradas ou ativacbes das camadas anteriores do mesmo
instante de tempo.

e W,,: Matriz de pesos para as conexdes recorrentes com as ativagdes
dos neurénios da camada oculta de instante t-1.

e a;_;: Vetor das ativagdes dos neurbnios da camada oculta de instante -
1.

e b, Vetor dos vieses técnicos para aquela camada.

e f Funcao de ativacgao.

Ambas as matrizes de pesos e o vetor de viés técnico tem os mesmos valores
em todos os instantes de tempo. Isso permite que o modelo aplique os mesmos
parametros de aprendizado (pesos e vieses técnicos) em diferentes partes da entrada
sequencial e crie a “memoria” que captura tendencias temporais. Note que os vetores

X; € a;_, Sao os que possuem valores diferentes em cada instante de tempo.

O algoritmo de backpropagation precisa de adaptagcdes especificas para lidar
com a natureza sequencial das RNRs. Uma dessas adaptacdes € o Backpropagation
Through Time (BPTT), que transforma a RNR em uma representacao semelhante a
uma rede feedforward, onde cada camada oculta corresponde a um passo de tempo

especifico, similar ao que a Figura 14 ilustra.

Neste processo, o gradiente da fungao de custo é calculado para cada instante
de tempo, levando em consideragcao ndo apenas o impacto imediato de um peso na
saida atual, mas também como esse peso afeta as saidas em passos de tempo
subsequentes. Esta caracteristica do BPTT é essencial para compreender um dos
principais desafios das RNRs, especialmente em contextos em que a sequéncia de

dados é extensa.

Devido a natureza da matriz de pesos W,,, que é compartilhada entre diferentes
instantes de tempo e mantém seus valores constantes, quando os valores dessa
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matriz sao consistentemente maiores do que 1, a multiplicacao repetida dos pesos ao
longo de muitos instantes de tempo pode levar a uma explosao de gradiente (conceito
explicado na Secdo 4.4.4). Isso ocorre porque os valores das ativagdes - e
consequentemente os gradientes - tendem a aumentar exponencialmente a cada

instante de tempo.

Por outro lado, se os valores dos pesos W,, séo consistentemente menores
que 1, o efeito cumulativo ao longo dos instantes de tempo pode causar um
desvanecimento de gradiente (conceito também explicado na Secao 4.4.4). Neste
cenario, as ativagdes - e os gradientes - diminuem progressivamente, tornando-se
insignificantes e dificultando o aprendizado de dependéncias de longo prazo, pois as
informacgdes dos passos de tempo anteriores sdo progressivamente perdidas.

Esses problemas néo sdo causados apenas pela magnitude dos pesos, mas
também sao influenciados pelas fungbes de ativacao utilizadas nas RNRs, por
exemplo, as funcbes de ativacdo tanh e sigmoide. Suas derivadas podem ser

pequenas, exacerbando os efeitos de desvanecimento de gradiente.

Dessa forma, modelos de RNR podem ficar menos eficientes em determinadas

tarefas, demandando variagées no modelo.
4.6.2) Long Short-Term Memory (LSTM)

A Long Short-Term Memory (LSTM, traduzido livremente como meméria de
longo e curto prazo) € uma arquitetura de RNR, concebida para superar as limitagées
dos modelos tradicionais na aprendizagem de dependéncias temporais extensas. A
capacidade das LSTMs em preservar informagdes por intervalos de tempo
prolongados, independentemente da duragcao destes, as torna mais adequadas para
a classificagdo, processamento e previsao de séries temporais que arquiteturas de
RNR mais simples.

A estrutura de uma LSTM é composta por cinco componentes principais — trés
portdes (forget gate, input gate, e output gate) e dois estados (estado da célula e
estado oculto) — que juntos, formam os cinco estagios que regulam o fluxo de
informacéao através da unidade, conforme a Figura 15. Essa divisdo em estagios que
permite o modelo discriminar quais informagbes devem ser armazenadas,

modificadas, ou descartadas ao longo do tempo.
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A Figura 15 representa um unico neurdénio com uma unidade de LSTM. O
modelo divide a memdédria em duas partes, de longo e curto prazo. Ao longo dos
estagios, os dados de longo prazo sao incorporados aos dados de curto prazo.

As linhas continuas do canto superior, representando e ligando as memoérias
de longo prazo, sao conhecidas como “estado da célula” (cell state). Nao ha pesos e
vieses técnicos que modificam diretamente esse estado, apenas uma operacao de
multiplicagdo e outra de soma, evitando os problemas das RNRs de explosdo ou

desvanecimento do gradiente.

As linhas continuas do canto inferior, representando e ligando as memérias de
curto prazo, sdo conhecidas como “estado oculto” (hidden state). Elas atribuem
diferentes pesos em cada estagio do modelo, tanto para as memarias de curto prazo

de instante t-1, quanto para as ativacdes da camada anterior de instante t.

A camada anterior de mesmo instante pode ser tanto uma camada de entrada
quanto outra camada intermediaria, inclusive, poderia ser até outra camada
intermediaria com arquitetura LSTM. As ativagbes da camada anterior de instante ¢
sao tratadas como um vetor Unico, assim, a arquitetura atribui pesos especificos para
cada estagio, mas dentro de um mesmo estagio, as ativacdes da camada anterior

possuem os mesmos pesos entre elas.

No primeiro estagio, a LSTM atribui pesos especificos para a memoria de curto
prazo de instante -1 e para o vetor de ativacado da camada anterior de instante . Os
valores ponderados sao somados, junto com um viés técnico especifico desse
estagio. O resultado das somas passa por uma fungédo sigmoide, que por sua vez,
resulta em um nimero de 0 a 1. O resultado dessa fungéo é multiplicado pela meméria

de longo prazo de instante t-1.

Por conta dessa dindmica que o Estagio 1 é definido como o percentual da
memoria de longo prazo que o modelo deve esquecer. Por exemplo, se o resultado
da funcao sigmoide desse estagio for zero, o modelo “esquecera” toda a memoéria de
longo prazo. O Estagio 1 € o unico no primeiro “portdo” do modelo, conhecido como

Forget Gate.
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O segundo e terceiro estagio formam o /nput Gate. Esses estagios também
atribuem seus pesos para a memoaria de curto prazo -1 e para o vetor de ativacao da
camada anterior de instante {. Os valores ponderados também s&o somados, junto

com um viés técnico, especifico para cada estagio.

O Estagio 3, por possuir uma funcao tanh, resulta em um namero entre -1 e 1,
que reflete o valor potencial da meméria de curto prazo a ser adicionado a meméria
de longo prazo. O Estagio 2, por possuir novamente a fungao sigmoide, é responsavel
por definir o percentual do valor potencial que sera de fato adicionado. Os resultados
desses estagios sao multiplicados e, assim, o modelo define o valor da Input Gate,

que é somado a memoéria de longo prazo.

O quarto e quinto estagio formam o Output Gate. Este portdo controla as
informacdes a serem emitidas a partir do estado da célula atual. O Estagio 5 define, a
partir do valor da meméria de longo prazo (ja incrementada com o valor da Input Gate),

através de uma fungao tanh, o novo valor potencial da meméria de curto prazo.

O Estagio 4 atribui seus pesos a memoria de curto prazo t-1 e ao vetor de
ativacao da camada anterior de instante t. Também soma os resultados a um viés
técnico especifico para esse estagio e, através uma fungcao sigmoide, define o
percentual do resultado do Estagio 5 que sera utilizado como a nova meméria de curto

prazo. Em outras palavras, o Output Gate define o novo valor do estado oculto.

O resultado do estado oculto - ou de curto prazo - no ultimo instante de tempo
€ a ativacao que o modelo repassara para as préximas camadas de mesmo instante
de tempo. O estado de célula, normalmente, é utilizado apenas como uma estrutura

interna da unidade de LSTM ou entre camadas LSTM.

Uma pratica comum em modelos de processamento de sequéncia temporal &
implementar multiplas camadas LSTM, onde a primeira camada é encarregada de
extrair e processar dependéncias temporais e os padrées ao longo do tempo dos
dados. As camadas LSTM posteriores se concentram na agregacao e interpretacao
global dos dados, condensando toda a informacao da sequéncia em um unico vetor

de caracteristicas.
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Esta abordagem facilita a captura de padrées em multiplas escalas temporais,
aprimorando a capacidade do modelo em realizar predigdes acuradas e classificagcdes

baseadas em sequéncias completas.

4.6.3) Adaptive Moment Estimation (Otimizador Adam)

O otimizador Adam, uma abreviacao de "Adaptive Moment Estimation", € uma
técnica de otimizacao utilizada no treinamento de RNAs. Desenvolvido por Diederik P.
Kingma e Jimmy Ba e introduzido em seu artigo de 201427, o Adam é reconhecido por
combinar propriedades de outros dois algoritmos, Adaptive Gradient Algorithm
(AdaGrad) e Root Mean Square Propagation (RMSProp), para “otimizar” a taxa de
aprendizado do modelo.

O AdaGrad € um otimizador que ajusta a taxa de aprendizagem de cada
parametro de forma individualizada, aumentando a eficiéncia em cenarios com dados
esparsos, ou seja, em cenarios que ha muitos dados préximos ou iguais a zero. Seu
diferencial estda na capacidade de realizar passos menores para parametros
atualizados com mais frequéncia e passos maiores para parametros atualizados com
menos frequéncia, por meio do ajuste da taxa de aprendizagem com base no histérico
acumulado a soma dos quadrados dos gradientes para cada parametro ao longo do
tempo. Isso permite que o AdaGrad se adapte ao comportamento especifico de cada
parametro, otimizando o desempenho do modelo, especialmente em tarefas com

gradiente esparso.

Por outro lado, por utilizar o histérico completo do gradiente, o AdaGrad pode sofrer
com um problema de taxa de aprendizagem monotonamente decrescente, a ponto de
ela ficar muito préxima de zero e interromper o aprendizado. O RMSProp surge como
uma extensao do AdaGrad, proposto para contornar esse obstaculo, ajustando a taxa

de aprendizagem de uma maneira que ela nao diminua tanto.

O RMSProp ajusta a taxa de aprendizagem em cada parédmetro do modelo
individualmente. O fator pelo qual a taxa de aprendizagem é ajustada para cada
parametro € determinado pelo quadrado médio dos gradientes recentes desse

parametro. Isso significa que o ajuste é feito ndo com base no histérico completo do

27 KINGMA, Diederik P.; BA, Jimmy. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.
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gradiente, mas sim nos gradientes mais recentes, permitindo uma convergéncia mais

rapida e eficiente em muitos casos.

O Adam integra caracteristicas dessas duas abordagens, para buscar um
desempenho mais robustos nos modelos. Ele calcula dois tipos de "momentums" para
cada parametro: o primeiro momentum refere-se a média mével dos gradientes, que
ajuda a capturar a direcaéo da tendéncia dos gradientes ao longo do tempo; o segundo
momentum refere-se a média movel dos quadrados dos gradientes, que ajuda a

capturar a variabilidade dos gradientes.

As médias méveis sao estimativas consideradas viesadas porque sao inicializadas
em zero e tendem a ser menores durante as primeiras iteragdes do treinamento. Isso
pode levar a uma estimativa inicialmente tendenciosa tanto da direcdo quanto da

variabilidade dos gradientes, que, por sua vez, afeta a aprendizagem.

Para compensar o viés inicial e assegurar que as estimativas dos momentos sejam
precisas, o Adam ajusta as estimativas com base no numero de iteragdes ja
realizadas. Os calculos fogem do escopo do trabalho, mas em linhas gerais, o ajuste
e feito através de fatores de correcao que levam em conta quantas vezes o algoritmo
atualizou os parametros (ou seja, o numero de iteragdes). Os fatores de correcdo sao
calculados de tal forma que o viés das estimativas diminua a medida que o niumero

de iteragbes aumenta.

O objetivo desse ajuste é fazer com que as estimativas corrigidas dos primeiros e
segundos momentos se aproximem de seus valores "reais" ou esperados, ou seja, 0s
valores que elas teriam se ndo houvesse viés inicial. Isso € importante pois permite
que o Adam ajuste as taxas de aprendizagem de forma mais precisa e eficaz, levando
em conta a magnitude e a variabilidade reais dos gradientes ao atualizar os pesos do

modelo.

Ao aproximar as estimativas de seus valores reais, o Adam pode otimizar o

processo de treinamento, facilitando a convergéncia para pontos criticos do gradiente.

Esse é o ultimo conceito introduzido na secao e capitulo. Conclui-se, assim, as
apresentacdes sobre os fundamentos basicos de uma RNA e o trabalho segue para a
aplicagao pratica de um modelo.
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5) Modelo de Predicao de Volatilidade

Nesse capitulo, sera desenvolvido um estudo de caso pratico, englobando todos
os conceitos previamente discutidos. O objeto de estudo selecionado para esta
analise pratica sera os contratos futuros de soja, com vencimento em novembro de
diferentes anos, negociados na Chicago Board of Trade (CBOT). Considerando-se a
relevancia e o volume de negociacdo desta commodity, torna-se mais simples a
definicho de algumas provaveis variaveis que influenciam seu prego e,

consequentemente, sua volatilidade.
5.1) Estrutura do Modelo
5.1.1) Caracteristicas do Ativo e Preparacao dos Precos Historicos

A soja é uma planta originaria da Asia, utilizada principalmente para
alimentacdo de animais, mas também na alimentacdo de humanos, produgcdo de
biodiesel, 6leo, entre outros derivados. O processo de “esmagamento” (“crushing”) da
soja consiste em remover a casca e enrola-la em flocos, que sdo embebidos em
solvente e submetidos a um processo de destilagdo para produzir 6leo de soja bruto
puro. Apds a extracao do 6leo, os flocos de soja sdo secos, torrados e moidos em
farelo de soja.

z

E uma das principais commodities agricolas em areas plantadas anualmente.
Apesar de sua origem, segundo o United States Department of Agriculture (USDA)?8,
em 2023, a maior parte da producgao do grao de soja é feita, em ordem descendente,
no Brasil (40% da producéao total do mundo), Estados Unidos (28%), Argentina (12%)
e apenas em quarto um pais asiatico, a China (5%), seguido pela india (3%). Ja em
relacdo ao consumo, a China fica em primeiro, tanto em consumo doméstico quanto

em importacdes anuais, seja em semente, 6leo ou farelo de soja.

Apesar do Brasil ser o principal produtor, por conta de facilidades na coleta de
dados, o trabalho analisara os contratos futuros referentes a safra americana. O

plantio ocorre normalmente entre os meses de maio e junho, a colheita entre setembro

28 Soybean 2023World Production. USDA. Disponivel em:
https://ipad.fas.usda.gov/cropexplorer/cropview/commodityView.aspx?cropid=2222000. Acesso em:
24/12/2023.
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e outubro e a maior parte das entregas ocorrem em novembro, més também referente

ao contrato futuro com mais negociagdes anuais na bolsa.

Dessa forma, o contrato analisado sera o negociado na bolsa de Chicago
(CBOT), com vencimento em novembro. Conforme introduzido no capitulo 3, todo o
contrato futuro de um mesmo ativo possui caracteristicas padronizadas de
negociacao, no caso da soja, o contrato &€ negociado em centavos de délar por bushel

- uma medida equivalente a 27,2155 kgs — e cada contrato possui 5 mil bushels.

Cada contrato fica disponivel, aproximadamente, um ano € meio antes da data
de vencimento e ap6s vencer, ndo ha mais atualizacao de precos. Para o estudo, sera
feito uma série diaria continua de precos, de 2002 até 2023. O valor sera sempre
baseado no pregco futuro de vencimento no novembro mais proximo. Apds o
vencimento do contrato, a série de dados utiliza os valores do contrato de novembro

do ano seguinte.

Por exemplo, o primeiro dia de dados da base € 15/11/2002, o primeiro dia util
apo6s o vencimento do contrato de novembro de 2022. Nesse dia, além das demais
variaveis independentes, o0 modelo utilizara o pregco de fechamento do contrato com
vencimento em novembro de 2003 como referéncia. No dia 15/11/2003, primeiro dia
util apés o vencimento do contrato de novembro de 2003, o modelo comega a utilizar

os pregos do contrato de vencimento em novembro de 2024 e assim em diante.

Assim, é possivel ter uma série continua de pregcos de contratos com
vencimento em novembro de cada ano, o0 més mais utilizado para negociagdes de

precos referentes a safra americana de soja.
5.1.2) Variavel Dependente

A variavel dependente - ou a variavel que o modelo tenta prever - é a
volatilidade anualizada (em dias uteis, base 252) do contrato vigente, do dia de

referéncia até o vencimento.

Como exemplo, no primeiro dia de dados, 15/11/2002, o valor da variavel
dependente sera a volatilidade realizada, a partir desse dia até o vencimento do
contrato vigente, em 14/11/2003. O valor da volatilidade ao periodo é transformado

em um valor ao ano para padronizar a variavel.
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Para o ultimo dia de negociagdo, como nao € possivel calcular a volatilidade

para um unico valor, € repetido o valor do dia util imediatamente anterior.
5.1.3) Definindo as Variaveis Independentes

O modelo constara quatro grupos de variaveis independentes. O primeiro
referente as datas de observacao e caracteristicas de prazo dos contratos; o segundo
referente aos dados historicos de precos; o terceiro referente a oferta de soja e o
ultimo a demanda de soja. Cada grupo constara com diferentes quantidades de

variaveis independentes.

As variaveis serao escolhidas buscando independéncia de relagao entre elas,
para evitar os erros de colinearidade ou multicolinearidade, que se referem a uma

relacéo linear exata ou muito préxima entre duas ou mais variaveis, respectivamente.

Por exemplo, um fator que impacta consideravelmente a oferta e, por tanto, o
preco da soja € a condicdo das plantas, que esta diretamente relacionada as
condi¢bes climaticas. Utilizar uma variavel para a condicao da safra e outra para a
condicao climatica pode apresentar uma relagao de colinearidade, dificultando a
determinacao do efeito individual de cada variavel independente sobre a variavel

dependente, porque ambas as variaveis independentes se movem juntas.

Mesmo a colinearidade e multicolinearidade serem problemas mais graves em
modelos de regressao linear do que em redes neurais, por conta de caracteristicas de
cada modelo, tratar esses aspectos tornam mais simples a interpretacao e ajustes da
rede neural, além de melhorar a eficiéncia computacional e diminuir riscos de

ovefitting.
5.1.4) Variaveis Independentes Temporais

O primeiro grupo tem o intuito organizar os dados, permitir com que o modelo
capture tendencias de curto prazo, longo prazo e sazonais, além de identificar a
mudanca do contrato de referéncia. Como foi feito uma série continua de contratos
futuros de soja com vencimento em novembro, € fundamental colocar caracteristicas

de prazos de cada contrato para o modelo identificar mudancas de contrato.

As datas das observagdes foram divididas em dias, meses e anos para facilitar

a captura de padrdes entre anos e meses, mantendo os dados em sequéncia. Todas
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as demais variaveis independentes, incluindo de outros grupos, tem o valor referente

a data exata, ou seja, € o dado mais recente disponivel para aquele determinado dia,

més e ano.

Variaveis:

Dia da Observacao.

Més da Observacao.

Ano da Observacao.

Dias Passados Desde o Inicio do Contrato Vigente: Nesse caso, nao é referente
a emissao ou primeira negociacao do contrato no mercado, mas sim ao primeiro
dia que o modelo comecgou utilizar aquele determinado contrato como
referéncia para variagbes de preco na soja. Por exemplo, como estamos
utilizando sempre o contrato de novembro como referéncia, o dia seguinte ao
vencimento de um contrato reinicia esse numero para zero.

Dias até o Vencimento do Contrato Vigente.

5.1.5) Variaveis Independentes de Historicos de Negociagao

Esse grupo refere-se aos precos histéricos e volumes de negociacao do

contrato vigente, além das demais medidas possiveis de deduzir observando apenas

o preco histérico. Como o modelo ndo é capaz de realizar célculos estatisticos, é

importante explicitar algumas medidas para compreender possiveis impactos na

predicao de volatilidade.

[ ]

Variaveis:

Preco de Fechamento: Ultimo preco negociado do contrato vigente no dia
referente.

Curtose da Distribuicdo de Pregcos Desde o Inicio do Contrato Vigente: Caso
sejam os primeiros trés dias de referéncia de preco do contrato vigente, serdo
repetidos o ultimo valor da variavel do contrato anterior.

Assimetria da distribuicdo de Precos Desde o Inicio do Contrato Atual: Caso
sejam os primeiros dois dias de referéncia de preco do contrato vigente, serao

repetidos o ultimo valor da variavel do contrato anterior.
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e Diferenca Entre o Preco de Fechamento e o Preco Médio do Contrato Atual:
Caso seja o primeiro dia de negociacao do contrato vigente, sera repetido o
ultimo valor da variavel do contrato anterior.

e Volume Negociado do Contrato Vigente no Dia de Referéncia.

e Volatilidade Desde o Inicio da Observacdo do Contrato Vigente: Caso seja o
primeiro dia de negociagao, sera repetido o ultimo valor da variavel do contrato

anterior.
5.1.6) Variaveis Independentes de Oferta

Em relacdo as variaveis exégenas ao prego, o primeiro grupo refere-se aos
fatores que impactam a oferta de soja. Ele contera a maior parte das variaveis
exdgenas, pois uma ideia inicial € que a demanda por soja tende a sempre crescer no
longo prazo, devido ao aumento populacional. Dessa forma, a oferta acaba

englobando a maior parte das variaveis reais que afetam o preco do ativo.
Variaveis:

e Oceanic Nifio Index: O clima é um dos principais fatores que impactam a
producdo da soja. Se o nivel de chuvas e temperatura forem muito

inconstantes, a expectativa de produgao varia junto.

O El Nifo € um fenédmeno relacionado ao aquecimento anormal das
aguas do Oceano Pacifico em sua porgao equatorial, responsavel por um clima
mais quente e seco no norte dos EUA — parte que possui a maior parte das
plantacdes de soja — sendo menos favoravel para a colheita. Ja La Nifia é o
oposto do El Nifio, caracterizando-se pelo resfriamento das aguas superficiais
do Oceano Pacifico equatorial, trazendo climas mais frios € hiumidos.

O indice mede a variacao da temperatura no oceano Pacifico acima da
média histoérica, em graus celsius. Um valor acima de 0,5 sinaliza El Nifio e um

valor negativo abaixo de -0,5 sinaliza La Nifa.

Os valores do indice foram adaptados em uma média mével de 90 dias,
com o principio de que os fendmenos demoram um tempo para impactar o clima
nos EUA.
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e Taxade Juros Livre De Risco Dos EUA (Fed Funds Rate — Upper Limit): Refere-
se ao limite superior da taxa de fundos federais dos EUA, que € a taxa de juros
livre de risco do pais. O Federal Reserve (Fed), banco central dos Estados
Unidos, define essa taxa como parte de sua politica monetaria.

Uma taxa mais alta pode refletir em empréstimos mais caros, que por
sua vez, podem impactar nas condi¢cdes de crédito e financiamento das safras
de soja e sua negociagdo. E possivel argumentar que essa variavel pode
impactar tanto a oferta quanto a demanda do ativo.

e Estoques Iniciais de Soja na Safra dos EUA: Refere-se ao volume, em
toneladas, de soja ja em estoques no inicio do periodo da safra nos EUA, em
maio de cada ano. Por exemplo, se o numero for maior que a média de anos
anteriores, a oferta inicial esta relativamente mais alta e os pregos podem
tender a variar mais conforme formem as expectativas da safra atual.

e Estoques Iniciais de Soja na Safra da China: Ideia similar aos estoques iniciais
dos EUA, com excecgéo que na China o inicio da safra & considerado na metade
de abril. Apesar da producdo chinesa ser menos expressiva, por eles
possuirem a maior demanda, uma maior oferta no préprio pais também pode
impactar na demanda por soja externa.

e Estoques Finais de Soja na Safra do Brasil: A safra brasileira termina entre maio
e junho, préximo do inicio da safra nos EUA. Como o Brasil € o maior produtor,
em toneladas, de soja, a oferta do pais pode impactar os pregos globais mesmo

apos sua safra, principalmente se os estoques estiverem altos.
5.1.7) Variaveis Independentes de Demanda

e Global CIX Soybean Crush Margin. Refere-se a média da margem de
esmagamento global da soja. Quanto menor a margem, assume-se que
havera uma demanda menor por soja. Mais detalhes sobre o esmagamento
podem ser encontrados na Secao 5.1.1.

e Balanga Comercial da China com os EUA: Como boa parte do volume de
soja produzido nos EUA tem o destino a China, utiliza-se essa variavel para

medir um possivel potencial de como a demanda por soja pode comportar.
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5.1.8) Divisdo de Dados e Hiperparametros do Modelo

Essa secao visa descrever as caracteristicas que estarao presentes em todos os

modelos testados.
A estrutura de RNA escolhida foi LSTM com:

¢ Uma camada de entrada com o numero de neurbnios iguais ao numero de
features;

¢ Duas camadas LSTM intermediarias, sendo a primeira processa os dados em
sequencias e a segunda condensa esses dados (conforme detalhado na Sec¢éo
4.5.2). Os numeros de neurdnios dessas camadas variam ao longo dos testes;

e Uma camada intermediaria densa totalmente conectada, utilizada para reduzir
a dimensionalidade das caracteristicas aprendidas, combinar caracteristicas de
maneiras nao lineares e preparar os dados para a camada de saida. O numero
de neurénios e a fungao de ativacao dessa camada variam ao longo dos testes;

¢ Uma camada de saida, com um unico neurdnio e uma fungao de ativacao linear

(conforme apresentado na sec¢ao 4.2.3.

A funcao erro para treinamento sera o erro médio quadratico (MSE), com o
intuito de penalizar erros maiores. No entanto, apenas com o intuito de avaliar e
interpretar os resultados, serdo utilizadas as funcbées RMSE e MAE nos valores

preditos na ultima iteracado do modelo.

Ao invés de utiliza um valor fixo para a taxa de aprendizagem, o modelo

constara com o otimizador Adam para ajustar ao longo do treinamento.

A base de dados foi dividida da seguinte forma; os 80% primeiros dados sao
utilizados para treinamento do modelo e; os 20% dos dados restantes sao utilizados
para teste do modelo. Dessa forma, do dia 15/11/2002 (primeiro dia da base de dados)
até 30/08/2019, as variaveis sao utilizadas para treinamento e a partir do dia
03/09/2019 (primeiro dia util apds a data limite de treinamento) até 14/11/2023 (ultimo

dia da base de dados), as variaveis sao utilizadas para teste.

As variaveis independentes que nao possuem um valor entre 0 e 1 passaram
por um processo de normalizacao, através da Equacao 45. Isso facilita o treinamento
e convergéncia do modelo. Como a variavel dependente € um percentual, com os

valores entre 0 e 1, ndo é necessario normaliza-la.
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(45)

Onde:

e Vyorm : Valor normalizado do valor V.
e I/ : Valor a ser normalizado.
o  Vyin : Valor minimo dentro do conjunto de dados ao qual V pertence.

o  Vyax - Valor maximo dentro do conjunto de dados ao qual V pertence.

O modelo foi programado em ambiente Python. Os c6digos do modelo podem

ser encontrados nos apéndices do trabalho.
5.2) Aplicagoes e Ajustes do Modelo

O primeiro teste sera feito apenas com as variaveis temporais € o preco
histérico. O intuito é testar se o modelo produz resultados satisfatérios em uma

estrutura simples e com menos features.

O teste inicial foi feito com ambas as camadas LSTM com 25 neurénios
(unidades) cada e 25 neurbnios na camada intermediaria densa. Nao houve qualquer
tipo de regularizacdo de dados, o treinamento foi feito com 200 épocas — valor
normalmente considerado alto, mas definido assim por conta da complexidade baixa
do modelo - e tamanho do lote (batch size) de 32.

Os resultados foram os demonstrados nas figuras 16 e 17 a seguiir.
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Figura 16 - Teste 1, Base de Dados 1, grafico da fun¢do erro (MSE).
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Figura 17 - Teste 1, Base de Dados 1, grafico dle valores reais e valores previstos no teste na ultima
época.

Na Figura 16 e nas demais figuras de grafico de fungao erro (loss, perda em
inglés), o eixo Y refere-se aos valores em percentual do MSE e o eixo X as épocas do
modelo. Na Figura 17 e nas demais figuras de graficos de valores, o eixo Y refere-se
a volatilidade anualizada, em percentual, e o eixo X aos dias passados do conjunto de
dados separados para teste. Por exemplo, no primeiro dia do conjunto separado para

teste, o valor do eixo X é zero. Como o conjunto de dados tenta criar uma série
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continua, ou seja, que nao possui um vencimento, os valores em dias podem ser

generalizados dessa forma.

Ainda sobre a Figura 17, é possivel observar momentos de variagao abrupta
dos valores dos resultados reais. Isso ocorre por conta da preparacéo feita para criar
a série continua, onde a volatilidade realizada dos contratos préxima ao vencimento
pode variar muito e, quando a base altera o contrato vigente para o proximo

vencimento, ela retorna ao padréo de variagao, criando esses choques.

Algumas alternativas para contornar o problema seriam repetir os valores da
variavel dependente nos ultimos dias de negociagado do contrato vigente ou mudar
para o proximo contrato de referéncia alguns dias antes do vencimento do contrato
vigente. No entanto, a base de dados sera mantida dessa forma para avaliar com a
rede neural lida com esse problema. Algumas variaveis independentes temporais e de

histéricos de negociacao podem auxiliar o modelo a interpretar esses choques.

Voltando ao teste, o primeiro ponto que chama atencéao esta na Figura 16, onde
o erro de teste do modelo comega baixo, mas aumenta nas primeiras épocas. Isso
pode ser causado tanto pelo otimizador Adam, que ajusta parametros no inicio, quanto
algum ruido na base de dados. Como o erro reduz apés algumas épocas, nao

aparenta ser um problema tao grave ao modelo.

Por outro lado, préximo da época 25, o erro de teste comeca a reduzir,
indicando que o modelo esta conseguindo aprender, mas volta a subir apos a época
110, sinalizando overfitting.

AFigura 16 demonstra a diferencga entre os valores previstos no teste, na ultima
iteracao, e os valores reais. A média dessas diferencas (MAE) foi de 7,0494%, ou seja,
o resultado previsto pelo modelo foi, em média, 7,0494% maior ou menor que o valor

real.

Reforcando que essa medida de erro é para complementar a analise do
modelo; nao é a medida utilizada para treinamento da RNA, onde o modelo utiliza
como referéncia para tentar reduzir os erros de treinamento (no caso, o MSE € a
funcao erro). O MAE é importante para capturar a dispersdao média dos erros, pois
todas as diferencas de valores ttm o mesmo peso, diferente do MSE, que penaliza

mais 0s erros maiores.
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Para comparacéao, no Teste 2, foi reduzido o numero de épocas de 200 para

110. Os resultados sédo observados nas Figuras 18 e 19
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Figura 18 - Teste 2, Base de Dados 1, gréfico da fungéo erro (MSE).
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Figura 19 - Teste 2, base de dados 1, grafico dle valores reais e valores previstos no teste na ultima
época.

A diferengca média entre os valores previstos de teste e valores reais (MAE) foi
de 4,3714%, ou seja, reduziu consideravelmente e a Figura 18 apresenta o erro de
teste caindo sem sinais de overfitting. No entanto, nota-se na Figura 19 que o modelo
perdeu o viés estatistico, ao ndo conseguir “curvar” a linha de projecao para os valores

reais, comparado com a Figura 17.
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Esse exemplo demonstra a importancia em estruturar melhor o modelo em
relacéo a regularizacéo e complexidade do que apenas reduzir o numero de épocas.
Por outro lado, aumentar muito a complexidade para um modelo com poucas variaveis
— como no exemplo atual — ou com um numero baixo de observagdes, também nao

traz melhoras significativas.

Para demonstrar essa observagdo, mantendo as demais caracteristicas e
voltando para 200 épocas, caso seja feita uma regularizagdo L2 em apenas 0,0001
na primeira camada LSTM (que processa os dados em sequéncia), o modelo aumenta

ainda mais o viés estatistico e o underfitting.
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Figura 20 - Teste 3, Base de Dados 1, gréafico da fung&o erro (MSE).
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Real vs Predicted Values
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Figura 21 - Teste 3, Base de Dados 1, grafico de valores reais e valores previstos no teste na ultima
época.

Por conta de poucas quantidades de variaveis independentes diferentes, ao
aplicar métricas de regularizacdo, o modelo fica muito simples e nao captura a
complexidade que afeta a volatilidade do ativo. Ainda com a mesma base de dados,
seria ainda possivel testar um aumento no nimero de neurdnios nas camadas ou
diminuir o tamanho do lote e, assim, aplicar uma regularizacdo. Mesmo com esses
ajustes, os resultados n&o produzem melhorias significativas em relagdo aos

parametros iniciais.

Incrementando a complexidade do modelo, foram incluidos na Base de Dados
2 as demais variaveis de preco (diferenca para a média, curtose, assimetria,
volatilidade histérica desde o inicio do contrato e volume negociado). No primeiro teste
com essa nova base de dados, manteve-se 25 neurdnios por camada, 200 épocas e

tamanho do lote de 32.
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Figura 22 - Teste 4, Base de Dados 2, grafico da fungdo erro (MSE).
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Figura 23 - Teste 4, Base de Dados 2, grafico de valores reais e valores previstos no teste na ultima
época.

Visualmente, ja € possivel notar uma melhoria na previsao em relagao ao Teste

1, das Figuras 16 e 17. O MAE na Figura 23 foi de 5,3924%, também representando
uma melhoria em relagéo ao Teste 1, mas ainda mais alto que nos testes 2 e 3.

Analisando a Figura 22, percebe-se também que, a partir da época 110, o erro
de teste comeca aumentar, indicando overfitting. Como foi uma caracteristica similar
ao Teste 1, para o préximo teste, o numero de épocas sera reduzido para 110. Os

resultados sdo os demonstrados nas Figuras 24 e 25 abaixo.
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Figura 24 - Teste 5, Base de Dados 2, gréfico da fungdo erro (MSE).
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Figura 25 - Teste 5, Base de Dados 2, grafico de valores reais e valores previstos no teste na ultima
época.

O overfitting foi reduzido e o MAE caiu para 4,3549%. Diferentemente do Teste
2, representados nas Figuras 18 e 19, o modelo conseguiu manter o viés estatistico
mais baixo, é possivel observar essa caracteristica com os valores previstos, que se

“curvaram” melhor aos valores reais.

Analisando os numeros os erros de treinamento e teste, da ultima época, os
valores respectivos em erros quadraticos médios (MSE), foram 0,2773% e 0,1766%.

Para facilitar a analise e manter o erro na mesma unidade da volatilidade anualizada,
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extrai-se a raiz quadrada desses valores — assim surge a medida raiz quadrada do
erro médio (RMSE) - e os numeros ficam em 5,2658% e 4,2023%.

Relembrando, o MSE aparenta ser mais eficiente na aprendizagem do modelo
por penalizar mais os erros de maior magnitude. O RMSE deixa-os na mesma base
de comparacgéo da volatilidade anualizada, mas € utilizado apenas na analise dos
erros. Ja o MAE é mais eficiente como uma medida direta da magnitude do erro. Para
avaliar o modelo é necessaria uma interpretacéo de todas as medidas e os proximos

testes devem buscar reduzir todas as medidas de analise do erro.

Aumentar as épocas junto com a adicao da regularizacdo L1 e/ou L2 nao
demonstraram resultados melhores, pelo contrario, diminuiram a capacidade do
modelo. Alteragdes no lote também nao foram eficientes, tdo pouco alterar fungdes

ativacao das camadas.

A alteracao mais eficiente foi aumentar o nimero de neurénios apenas da
primeira camada LSTM, de 25 para 50. Com o aumento de complexidade, as 110
épocas nao sinalizaram overfitting e demonstraram o modelo poderia reduzir mais os
erros com mais épocas. Dessa forma, aumenta-se o numero de épocas para 145 para

o Teste 6 e os resultados sdo demonstrados nas Figuras 26 e 27.

Model Loss

0.010 — Train Loss
—— Test Loss

0.008 -

v 0.006 A

0.004
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Epoch

Figura 26 - Teste 6, Base de Dados 2, grafico da fun¢do erro (MSE).
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Real vs Predicted Values
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Figura 27 - Teste 6, Base de Dados 2, grafico de valores reais e valores previstos no teste na ultima
época.

A RMSE de treinamento e teste para a ultima época foram, respectivamente,
4,5324% (de 5,2658%) e 4,0056% (de 4,2023%), uma reducgao consideravel tanto nos
valores dos erros quanto na variancia (antes em 1,0635%, agora em 0,5268%). Por
outro lado, o MAE aumentou para 4,7190% (de 4,3549%).

A medida de erro MSE - consequentemente, o RMSE também - e variancia
diminuirem, mas o MAE de teste aumentar, pode indicar uma distribuicao diferente
dos erros no modelo, no qual ele esta errando menos valores altos, mas esta desviado
mais em valores menores. Isso ocorre, provavelmente, por conta dos ajustes feitos
para deixar os contratos como uma série continua e das préprias variagdes sazonais,

que criam picos de variagao muito elevados quando ha uma mudanca de contrato.

Preferir um RMSE ou MAE de teste menor depende da aplicacao, objetivos de
quem utiliza um modelo e momento de mercado. Por exemplo, alguém que avalia a
volatilidade para hedge e tem receio de riscos de cauda, pode preferir os parametros
do Teste 6 (RMSE menor). Por outro lado, alguém que busca especular em operagdes
de curto prazo com volume exposto controlado, no qual o risco de cauda pode nao ser

tao relevante, o parametro anterior (MAE menor) pode ser mais interessante.

Nem sempre sera possivel reduzir todos os parametros de erro do modelo.
Como nos testes feitos o RMSE e variancia reduziram mais que o aumento do MAE,

além do modelo mais complexo ter mais chances de funcionar melhor com o
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incremento de mais features, o trabalho seguira com os paradmetros do Teste 6,

conforme vistos nas Figuras 26 e 27.

Os proximos testes serao feitos com a adicao de variaveis que impactam tanto
a oferta de soja— indice Nifio, taxa de juros basica dos EUA, estoques iniciais da safra
dos EUA e China. e estoques finais da safra do Brasil —, quanto a demanda de soja —

margens de esmagamento, balangca comercial entre China e EUA.

A base de dados sera avaliada em etapas diferentes. Com excec¢ao do volume
de negociagdo, como o prego histdérico dos contratos e as demais variaveis
relacionadas aos precos de negociagcao podem ser influenciadas pelas variaveis de
oferta e demanda, utilizar todas as variaveis de preco, oferta e demanda pode nao ser

a melhor alternativa inicial para testar o modelo.

O principal intuito da divisdo em etapas ndao € contornar uma possivel
colinearidade com o preco histérico - até porque enquanto as variaveis de pregos
mudam diariamente, algumas das variaveis de oferta e demanda possuem alteracbes
periodicas -, mas sim para estudar quais features sao mais eficientes no contexto do

problema.

O Teste 7 inclui apenas o volume de negociagéo e as variaveis de oferta e
demanda, excluindo no momento o preco histérico e as demais variaveis relacionadas
ao preco de negociacdo. Os hiperparametros do modelo permaneceram iguais ao
Teste 6; 50 neurbnios na camada LSTM sequencial, 25 na camada LSTM néo
sequencial e 25 neurbnios na camada densa intermediarias; lotes de tamanho 32; 145

épocas e; sem regularizacdo. O resultado esta na Figura 28 abaixo.
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Figura 28 - Teste 7, Base de Dados 3, grafico da fun¢éo erro (MSE).

Observa-se que o ovefitting no modelo foi alto, com o erro de teste maior que
o erro de treinamento em quase todas as épocas. O erro de treinamento variar para
cima e para baixo no final pode indicar uma complexidade maior no modelo do que o

necessario para a base de dados.

Aplicacdes de regularizacao e reducdo na complexidade do modelo, como
diminuir o numero de neurbnios da camada LSTM sequencial, nao produziram
resultados satisfatérios e o erro de teste continuou elevado. Dessa forma, testa-se
uma nova base de dados adicionando apenas o preco histérico do ativo a base

vigente. Os hiperparametros do modelo permaneceram inalterados.
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Figura 29 - Teste 8, Base de Dados 4, grafico da fungéo erro (MSE).
Ao adicionar o preco histérico, houve uma semelhanca com o Teste 7 (Figura
28). Apds a época 80, os erros de treinamento e, principalmente, de teste comegaram
a variar muito, indicando novamente certa complexidade do modelo para a base

apresentada.

Por outro lado, préximo da época 10 o modelo apresentou uma queda
consideravel no erro de teste, algo que nao ocorreu no modelo da Figura 28. Os
valores proximos da época 40 aparentaram ser os melhores no modelo, dessa forma,

o proximo teste apenas reduzira de 145 épocas para 45 épocas.
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Figura 30 - Teste 9, Base de Dados 4, grafico da fungéo erro (MSE).

Real vs Predicted Values
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Figura 31 - Teste 9, Base de Dados 4, grafico de valores reais e valores previstos no teste na ultima
época.

Os resultados iniciais da Figura 30 aparentam ser melhores, com ambos os
erros de teste e treinamento diminuindo até a ultima época. Comparando o Teste 9
com a Base de Dados 2, que continha todas e apenas as variaveis de histérico de
negociacao, no Teste 6 (Figuras 26 e 27) que possuia os melhores resultados até
agora, os valores do RMSE na ultima época do modelo e teste atual, foram 4,6151%
no treinamento (contra 4,5324%) e 3,5470% no teste (contra 4,0056%).
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A Figura 31 aparenta ter resultados piores que a Figura 27 — ou pelo menos
mostra-se com viés estatistico menor — no entanto, o MAE do Teste 9 foi 4,1932%
(contra 4,7190%). Dessa forma, com exceg¢éao do erro de treinamento, o0 modelo atual

apresentou os melhores resultados dentre os demais.

O MSE e RMSE maiores no treinamento, comparando com Teste 6, podem
indicar principalmente dois fatores; ha uma diferengca no comportamento dos dados
separados para treinamento, o que pode ocorrer por conta das demais variaveis
independentes incluidas na Base de Dados 4 e; o modelo com menos épocas tem
menos tempo de minimizar o erro de treinamento (em uma linguagem mais didatica,

tem menos tempo para aprender os dados de treinamento).

De qualquer forma, o Teste 9 foi o melhor em generalizar os dados, sem indicar
um underfitting, ao manter os erros de teste menores. Além disso, menos épocas
podem sdo uma vantagem por demandar menos esforco computacional.
Relembrando a Secao 4.4.5, a capacidade de um modelo refere-se a sua simplicidade

e eficiéncia em trabalhar dados diferentes.

Alguns ajustes nos hiperparametros foram testados para tentar melhorar mais
a eficiéncia do modelo, no entanto, nenhum promoveu resultados satisfatérios que
compensassem uma mudancga. As alteragdes que mais chegaram proximas foram;
aumentar os neurdnios das demais camadas intermediarias para 50; aplicar uma
regularizacao L2 de 0,0005 na camada intermediaria densa; alterar a funcao da
camada intermediaria densa de linear para Leaky ReLu com alpha em 0,01 e;

aumentar o numero de épocas de 45 para 50.

Os resultados desses ajustes sao demonstrados abaixo, nas Figuras 32 e 33.
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Figura 32 - Teste 10, Base de Dados 4, gréfico da fungdo erro (MSE).

O RMSE diminuiu, no erro de teste foi para 3,4159% (de 3,5470%) e no
treinamento foi para 4,6114% (de 4,6151%).

Real vs Predicted Values
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Figura 33 - Teste 10, Base de Dados 4, grafico de valores reais e valores previstos no teste na Gltima

época.

O MAE aumentou para 4,5300% (de 4,1932%). Como o modelo ficou mais

complexo e o aumento do MAE foi mais consideravel que a queda no RMSE de teste,

a proxima base de dados (numero 5) utilizara como hiperparametros iniciais 0s

mesmos do Teste 9, das Figuras 30 e 31.

98



Recapitulando esses hiperparametros, o modelo inicial para a Base de Dados
5 seguira com 45 épocas, tamanho dos lotes em 32, uma camada LSTM sequencial
com 50 neurbnios, uma camada LSTM nao sequencial com 25 neurdnios, uma
camada intermediaria densa de 25 neurdnios com funcao linear. Nao ha qualquer tipo

de regularizacgao.

As Bases de Dados 1 e 2 demostraram que o incremento de todas as features
relacionadas ao histérico de negociacéo colaboraram para diminuir os erros do
modelo. As Bases de Dados 3 e 4 demostraram que as features de oferta e demanda,
sozinhas, nao sao satisfatorias para treinar o modelo, mas ao incrementar os dados

de preco histérico, ja produzem resultados mais promissores.

A Base de Dados 5, a ultima que sera aplicada, constara com todas as variaveis
independentes disponiveis - temporais, de histérico de negociacgao, oferta e demanda.
As Figuras 34 e 35 demostram os resultados do primeiro teste com a Base de Dados
5.
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Figura 34 - Teste 11, Base de Dados 5, gréfico da fungéo erro (MSE).

99



Real vs Predicted Values

—— Real

03091 — predicted

0.25 1

0.20 A

Volatility
o
s
un

0.10 A

0.05 A

0'00 = T T T T T T
0 200 400 600 800 1000
Time

Figura 35 - Teste 11, Base de Dados 5, gréfico de valores reais e valores previstos no teste na dltima
época.

O Teste 11 teve resultados iniciais promissores. Na ultima época, o RMSE de
treinamento caiu para 4,3012% (de 4,6151% no Teste 9), de teste para 3,5283% (de
3,5470% no Teste 9) e o MAE de teste para 4,1620% (de 4,1932% no Teste 9). Além
disso, o modelo perde capacidade de generalizagdo proximo da época 35, entéo, o
préximo teste apenas reduzira as épocas, de 45 para 35. Resultados demonstrados

nas Figuras 36 e 37.
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Figura 36 - Teste 12, Base de Dados 5, gréfico da fungéo erro (MSE).

100



Real vs Predicted Values

— Real
—— Predicted

0.30 A

0.25 A

0.20 A

o
-
w

\Volatility

0.05 1

0.00 +— : - . - -
0 200 400 600 800 1000
Time

Figura 37 - Teste 12, Base de Dados 5, grafico de valores reais e valores previstos no teste na Gltima
época.

Apoés o ajuste de épocas, na ultima, o RMSE de treinamento aumentou para
4,5684% (de 4,3012%), como era possivel de se esperar, dado 0 menor numero de
épocas. O RMSE de teste reduziu para 3,3594% (de 3,5283%) e o MAE teve uma
alta, para 4,2114% (de 4,1620%). Como a redugcdo do RMSE de teste foi
proporcionalmente maior que o aumento no MAE, até o momento, o modelo atual

demonstra ser o mais efetivo.

No entanto, conforme ja visto nessa secao, apenas reduzir as épocas pode nao
ser a melhor alternativa para o overffiting. No caso da Base de Dados 5, como ela ja
inclui mais variaveis independentes, € importante testar alternativas de regularizagao

do modelo.

O primeiro ajuste foi aumentar para 50 neurbnios as demais camadas
intermediarias, que estavam em 25. Na segunda camada intermediaria LSTM, foi
aplicado uma regularizacdo L2 em 0,1% e na camada densa intermediaria, L2 em
0,5%. Relembrando, a regularizagdo L2 tem o intuito de reduzir problemas de
multicolinearidade. O numero de épocas foi aumentado, de 35, para 70.

Por ultimo, a funcado ativagcdo da camada intermediaria densa foi alterada de
linerar para Leaky RelLU, com alpha de 0,01. Relembrando, essa fungdo normalmente

é eficiente na convergéncia do treinamento, em mitigar o desaparecimento do
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gradiente e em evitar que neurénios parem de responder a variagdes no treinamento.

Resultados das alteracbes demonstrados nas Figuras 38 e 39 abaixo.
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Figura 38 - Teste 13, Base de Dados 5, gréfico da fungédo erro (MSE).
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Figura 39 - Teste 13, Base de Dados 5, gréfico de valores reais e valores previstos no teste na ultima
época.

Note-se que se parasse o treinamento na época 45, conforme feito no Teste 11,
nas Figuras 34 e 35, o erro ainda seria alto. Incrementando mais épocas no Teste 13,
o modelo reduziu ambos RMSE. Para treinamento, na ultima época, o RMSE foi de
4,4598% (de 4,5684% no Teste 12 e 4,3012% no Teste 11) e o RMSE de teste, para
2,9812% (de 3,3594% no Teste 12).
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O MAE aumentou para 4,4148% (de 4,2114% no Teste 12 e 4,1620% no Teste
11), demonstrando novamente que o modelo foi eficiente em reduzir sua fungao erros

para valores mais relevantes, mas aumenta a diferenga dos erros menores.

A aplicagédo de novos ajustes no modelo nao produziu resultados satisfatérios.
Dessa forma, como toda a base de dados de variaveis disponivel para esse trabalho
ja foi aplicada e ha uma quantidade satisfatéria de testes de modelos realizados,

conclui-se essa secao.
5.3) Analisando o Modelo

O Teste 13 demonstrou ser o mais eficiente, logo, a analise sera feita a partir

dele.

Ao considerar que a volatilidade realizada anualizada da base de dados, na
média, fica em torno de 23%, o erro RMSE no Teste 13 em 2,9812% representa,
aproximadamente, 13% do valor médio da volatilidade realizada. JA o MAE em

4.4148% representa quase 19,2% do valor total.

Em outras palavras, esse resultado significa que a dimenséo do erro €, na
média, a um quinto do valor real. E possivel debater se esse valor € um bom resultado
ou nao. Por um lado, ao utilizar o MAE como referéncia, o modelo captura um pouco
mais de 80% da tendencia de variagédo real de uma variavel impactada por diversos
fatores. Por outro lado, a dimensao do erro ainda em 20% do valor médio, pode levar

a uma decisao de operacao equivocada.

Para aprofundar a analise, compara-se os resultados do modelo com o indice
de volatilidade CVOL (explorado na Secéo 3.6.3) para o primeiro contrato futuro de
soja. Em setembro de 2019, o indice CVOL teve um erro médio absoluto comparado
aos valores reais de ~3,26%, menor que o modelo LSTM, de ~3,98% no periodo. Ja
em outubro de 2019, por exemplo, o erro absoluto médio do indice CVOL foi ~6,57%
e o modelo LSTM em ~4,74%.

A comparacao inicial foi feita nos meses de setembro e outubro pois o CVOL
utiliza o primeiro vencimento futuro para calcular o indice. Logo, nesses dois meses,
o indice considera as opg¢des com vencimento em novembro para calculos. Ao utilizar
o CVOL em um periodo diferente, por exemplo, em margo de 2020, o indice utilizara

como referéncia as opgdes de vencimento em abril, dificultando a comparacgéo.
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De qualquer maneira, a partir dos valores projetados em margo de 2020 pelo
CVOL, comparando com a volatilidade realizada real para novembro de 2020, a
diferenca absoluta média foi de ~6,32% contra ~2,84% no modelo LSTM. Esse
periodo foi no inicio da pandemia de COVID-19, no qual houve um momento de forte

aversao a risco e a maioria dos ativos financeiros aumentaram a volatilidade.

Essa comparacao reforca a tese de que, devido a funcao erro da RNA ser MSE,
que prioriza diminuir 0s erros maiores e que, por sua vez, acontecem em momentos

de maior volatilidade, o modelo LSTM obteve resultados mais satisfatoérios.

Conclui-se que nenhuma das ferramentas — seja o indice CVOL ou o modelo
LSTM — sempre produzira resultados muito proximos da realidade. No entanto, utilizar

ambas como referéncia para tomadas de decisao parece ser uma boa alternativa

Novamente, um possivel ajuste na base de dados, principalmente em relagao
a variavel dependente e a preparacao feita para deixa-la como uma série continua,
poderia aprimorar os resultados do modelo. Os ruidos presentes na base impactaram
o desempenho em relagao aos erros absolutos. Ainda assim, em algumas situacoes,
o algoritmo ja teve melhor performance do que as projecbes do mercado,

demonstradas pelo indice CVOL.

Isso demonstra um promissor potencial em aplicar modelos LSTM para esse

tipo de problema.

104



6) Conclusao

No terceiro capitulo, foram discutidas as problematicas inerentes ao objeto de
investigacado e a questao norteadora desta pesquisa. A volatilidade esperada de um
ativo financeiro exerce influéncia significativa sobre o valor das opcdes e, por
extensdo, sobre as estratégias de negociagcao correspondentes. A determinagao de
um valor para a volatilidade futura constitui uma tarefa de complexa, dessa forma,
ferramentas analiticas capazes de auxiliar nesta definicdo permitem ao participante

de mercado melhorar sua eficiéncia nas operagdes com opgées.

O capitulo subsequente, o quarto, dedicou-se a exposicdo detalhada da
ferramenta proposta para a resolugdo do problema em analise, abrangendo desde
aspectos gerais de RNAs até conceitos mais especificos e importantes para a plena

compreensao do modelo que sera desenvolvido na presente sec¢éo.

Por fim, no quinto capitulo realizou-se um estudo pratico que englobou os
conceitos discorridos no terceiro e quarto capitulo. O resultado demonstrou um bom
potencial em utilizar modelos LSTM para prever a volatilidade de ativos financeiros.
Mesmo em uma tarefa mais complexa, devido a base de dados ter sido manipulada
para criar uma série continua, a partir de contratos com vencimentos especificos, o
modelo de RNA conseguiu mais acuracia em algumas situagdes do que ferramentas

convencionais.

Ademais, conforme exposto no capitulo introdutério, o escopo deste trabalho
transcende a simples apresentacao de um modelo preditivo de volatilidade; ele visa a
realizar um estudo abrangente sobre a volatilidade no contexto das op¢des financeiras
e elucidar como um modelo baseado em técnicas de aprendizado de maquina pode

ser estruturado para auxiliar na predicéo da volatilidade de ativos.

O propésito, especialmente no que tange as RNAs, consistiu ndo em discutir
conceitos de alta complexidade, mas sim em possibilitar que até leitores com pouca
familiaridade com os temas possam adquirir uma base de conhecimento robusta,
suficiente para compreender integralmente o modelo proposto e, potencialmente,

aplicar estes conhecimentos em contextos diversos.

Um bom caminho de investigacao para trabalhos futuros seria se aprofundar em

variagcbes dos modelos RNAs; testar a capacidade do modelo apresentado no

105



Capitulo 5 em diferentes ativos ou com uma diferente manipulacéo da base de dados
e, comparar os resultados com mais ferramentas, por exemplo, com regressées

lineares.
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Apéndice | — Codigo Geral Utilizado Para Criar o Modelo LSTM em Python

O cédigo abaixo pode ser copiado e colado em um notebook em Python. A biblioteca
“Tensor Flow” possui estruturas prontas para executar modelos de RNAs. Os
parametros do modelo, que podem ser alteradas conforme experimentacdo, estao
identificadas como #Variavel no codigo.

# Importando as bibliotecas necessarias. Pode ser necessario a instalagéo prévia.
import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import tensorflow as tf

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import LSTM, Dense, Dropout, LeakyRelLU

from tensorflow.keras.optimizers import Adam

from tensorflow.keras import regularizers

from tensorflow.keras.metrics import RootMeanSquaredError

from sklearn.metrics import mean_squared_error, mean_absolute_percentage_error,
r2_score

from sklearn.model_selection import train_test_split

from math import sqrt

# Inicializag&o aleatdria.
np.random.seed(1)

tf.random.set_seed(1)

# Carregando o arquivo da base de dados.
data = pd.read_csv(#NOME DO ARQUIVO EM .CSV, sep="", encoding="1SO-8859-1')

# Separando os valores das variaveis independentes (Features) e da variavel
dependente, assumindo que todas as colunas, com excegéo da ultima, s&o features.
X = data.iloc[:, :-1].values

y = data.iloc[:, -1].values
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# Dividindo os dados em ftreinamento e teste. No exemplo abaixo, 20% (0.20) dos
dados sé&o para teste e o resto (80%) para treinamento.
X _train, X_test, y_train, y _test = train_test_split(X, y,  test_size=0.20,

random_state=42, shuffle=False)

# Reestruturando a entrada de dados para ser [amostra, passo temporal, variavel

independente].
X_train = X_train.reshape((X_train.shape[0], 1, X_train.shape[1]))
X_test = X_test.reshape((X_test.shape[0], 1, X_test.shape[1]))

# Criando o modelo LSTM

# Definindo Hiperparédmetros

batch_size= 32 #Variavel, tamanho do lote.

epochs= 50 #Variavel, nimero de épocas.

loss_function="mean_squared_error' #A fung&o de erro deve ser incluida a partir das
fungbes disponiveis na biblioteca Tensor Flow. No caso, utilizou-se erros quadrados
médios.

optimizer='adam' #Os otimizadores, caso utilizados, devem também ser incluidos

conforme disponivel na biblioteca Tensor Flow.

# Definindo parédmetros do modelo. Cada ‘model.add’ € uma adigdo de camada apdos
a camada de entrada, que podem ser LSTM, densa ou outra categoria disponivel no
Tensor Flow.

#Variaveis de cada camada; ‘units’, numero de neurdnios; ‘return_sequences’,
determina se a camada LSTM deve processar os dados sequencialmente; ‘dropout’,
taxa de dropout; ‘11’ e I12’, taxa para cada tipo de regularizagéo.

def create_model():

model = Sequential()

model.add(LSTM(units= 50, return_sequences=True,
input_shape=(X_train.shape[1], X_train.shape[2)), dropout=0.0000,
kernel_regularizer=regularizers.l1_I2(11=0.000, 12=0.000)))

model.add(LSTM(units= 50, return_sequences=False,

kernel_reqularizer=reqularizers.l1_12(11=0.000, 12=0.000)))

111



model.add(Dense(units=25))

#Caso deseje adicionar a fungéo erro Leaky ReLU na camada densa, utilizar a linha
de codigo abaixo.

#model.add(LeakyRelLU(alpha=0.01))

model.add(Dense(units=1)) #Camada de saida.

model.compile(optimizer=optimizer, loss=loss_function,
metrics=[RootMeanSquaredError()]) #Calcula também o RMSE em cada época,
apenas como uma métrica adicional, ndo de treinamento.

return model

# Nomeando o modelo.

model = create_model()

# Treinando o Modelo
history = modelfit(X_train, y_train, epochs=epochs, batch_size=batch_size,

validation_data=(X_test, y_test), shuffle=False, verbose=0)

# Avaliagéo do Modelo
history_df = pd.DataFrame(history.history, columns=[loss’, 'val_loss,

'root_mean_squared_error’, 'val_root_mean_squared_error’])

# Exibir a tabela de dados
print(history_df)

# Exibir os graficos da fung&o erro de treinamento e teste em relagéo as épocas.
plt.plot(history_dfl'loss’], label="Train Loss', color="black’)
plt.plot(history_df['val_loss], label="Test Loss’, color='grey’)

plt.title('Model Loss', color="black’)

plt.ylabel('Loss', color="black’)

plt.xlabel('Epoch’, color='black’)

plt.legend()

plt.show()
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# Organizando a variavel de valores previstos pelo modelo.
y_pred = model.predict(X_test, verbose=0)]

# Criando grafico dos valores reais e previstos na ultima época.
plt.plot(y_test, label='"Real’, color="black’)

plt.plot(y_pred, label="Predicted’, color="grey’)

plt.title('Real vs Predicted Values', color="black’)
plt.xlabel('Time', color="black’)

plt.ylabel('Volatility', color="black’)

plt.legend()

plt.show()

# Calcula e apresenta a diferenga absoluta média.

average_difference = np.mean(np.abs(y_pred - y_test))

print('‘Average Difference:’, average_difference)

plt.scatter(y_test, y_pred, alpha=0.5,color="grey’)

plt.plot([y_test. min(), y_test.max()], [y_test.min(), y_test. max()], '--k) # Line y = x
plt.xlabel(’Actual’)

plt.ylabel('Predicted’)

plt.title('Actual vs. Predicted’)

plt.show()
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Apéndice Il — Tabela Consolidada de Testes e Resultados do Modelo

Teste

Base de Dados

Figuras

Variaveis Utilizadas

N° Neurdnios 12
Camada LSTM

N° Neurdnios 22
Camada LSTM

N° Neurdnios
Camada Densa

Funcao Ativacao
Camada Densa

Tamanho do
Lote

Epocas

Regularizagao

RMSE (Teste)

MAE (Teste)

16,17

Temporais (Todas); Histéricos de
Negociacgéo (Preco Histérico).

25

25

25

Linear

32

200

N/A

9.70%

7.05%

18,19

Temporais (Todas); Histéricos de
Negociagao (Preco Histérico).

25

25

25

Linear

32

110

N/A

6.16%

4.37%

20,21

Temporais (Todas); Histéricos de
Negociagao (Preco Histérico).

25

25

25

Linear

32

200

LSTM1:L2 (0.0001)

5.48%

4.32%

22,23

Temporais (Todas); Histéricos de
Negociagéo (Todas).

25

25

25

Linear

32

200

N/A

4.90%

5.39%

24,25

Temporais (Todas); Histéricos de
Negociacéo (Todas).

25

25

25

Linear

32

110

N/A

4.20%

4.35%

26,27

Temporais (Todas); Histéricos de
Negociagéo (Todas).

50

25

25

Linear

32

145

N/A

4.01%

4.72%

28

Temporais (Todas); Histéricos de
Negociagao (Volumede
Negociagédo); Oferta (Todas);
Demanda (Todas).

50

25

25

Linear

32

145

N/A

6.93%

5.18%

29

Temporais (Todas); Histéricos de
Negociagéo (Volumede
Negociacdo, Preco de
Negociagdo); Oferta (Todas);
Demanda (Todas).

50

25

25

Linear

32

145

N/A

5.29%

4.87%

30,31

Temporais (Todas); Histéricos de
Negociagao (Volumede
Negociagéo, Preco de
Negociacao); Oferta (Todas);
Demanda (Todas).

50

25

25

Linear

32

45

N/A

3.55%

4.19%

10

32,33

Temporais (Todas); Histéricos de
Negociagéo (Volume de
Negociagéo, Preco de
Negociagdo); Oferta (Todas);
Demanda (Todas).

50

50

50

Leaky ReLu (0.01)

32

50

Densa: L2 (0.0005)

3.42%

4.53%

11

34,35

Temporais (Todas); Histéricos de
Negociagéo (Todas); Oferta
(Todas); Demanda (Todas).

50

25

25

Linear

32

45

N/A

3.53%

4.16%

12

36,37

Temporais (Todas); Histéricos de
Negociagéo (Todas); Oferta
(Todas); Demanda (Todas).

50

25

25

Linear

32

35

N/A

3.36%

4.21%

13

38,39

Temporais (Todas); Histéricos de
Negociagéo (Todas); Oferta

(Todas); Demanda (Todas).

50

50

50

Leaky ReLu (0.01)

32

70

LSTM2:12(0.0001);
Densa: L2 (0.0005)

2.98%

4.41%
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