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Resumo

O observável R(s) construído a partir da seção de choque inclusiva para o processo de espalha-
mento e+e− → (hadrons), tem um papel central na Cromodinâmica Quântica (QCD). Ele oferece
um campo de provas crucial para propriedades fundamentais da teoria, como o número de cargas de
cor, a natureza fracionária da carga elétrica dos quarks e o fenômeno da liberdade assintótica. Neste
trabalho, desenvolvemos a descrição de R(s) no regime da QCD perturbativa em ordens mais bai-
xas, aplicável a altas energias, e, em seguida, confrontamos os resultados teóricos obtidos com dados
experimentais, a fim de validar a precisão do modelo.

Palavras-chave: Espalhamento e+e−. Cromodinâmica Quântica. QCD perturbativa. R(s).

1 Introdução

A física de partículas estuda os constituintes fundamentais da matéria, as partículas elementares
e as interações entre elas. No século XX, esse ramo foi impulsionado pela unificação da Mecânica
Quântica e da Relatividade Especial, ao combinar a equação de Dirac, que descreve partículas de
spin-1/2, com a Teoria Clássica de Campos, um formalismo que culminou na Teoria Quântica de
Campos (TQC). Nessa teoria, os quanta dos campos são interpretados como partículas, e as interações
podem ser entendidas como uma troca de partículas chamadas virtuais.

O primeiro triunfo deste formalismo foi a Eletrodinâmica Quântica (QED) [1], que descreve a in-
teração entre férmions carregados, como os elétrons, e o campo eletromagnético quantizado, mediado
por fótons. O sucesso desta teoria foi consolidado pelo programa de renormalização. Desenvolvido
por Feynman, Schwinger, Tomonaga, Dyson e outros, este formalismo forneceu um método para lidar
com os infinitos que surgiam nos cálculos. Ao possibilitar previsões teóricas finitas e de maior preci-
são, o programa de renormalização levou a QED a um acordo surpreendente com os experimentos [2].

Paralelamente ao sucesso da QED, o novo formalismo foi utilizado para descrever um problema
da época, a estabilidade dos núcleos atômicos. A força nuclear forte, teorizada pela primeira vez
por Yukawa, é a interação responsável por compensar a repulsão Coulombiana entre os prótons e
garantir a estabilidade atômica. Diferentemente dos elétrons, os prótons e nêutrons não são partículas
elementares, eles são hádrons. Os hádrons são formados por quarks, partículas elementares de spin
1/2 e carga elétrica fracionária. As tentativas de descrição da força entre os quarks por meio de uma
teoria de calibre (ou gauge, em inglês) levaram ao desenvolvimento da Cromodinâmica Quântica
(QCD). Existem seis quarks diferentes, que se distinguem pelos sabores: up, down, strange, charm,

bottom e top, que se organizam em "gerações"com massas muito diferentes entre si, por exemplo
a massa do quark top é cerca de 78 mil vezes maior que a massa do quark up. Os hádrons são
classificados em dois tipos; os mésons, formados por um par quark-antiquark; e os bárions, formados
por três quarks distintos. Os prótons e nêutrons são exemplos de bárions, formados por dois quarks u
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Figura 1: Compilação geral dos dados experimentais para R(s) fornecidos pelo PDG [5]. A linha
tracejada verde indica a correção em ordem dominante, α0

s, e a linha vermelha indica a correção da
QCD perturbativa.

e um d e dois quarks d e um u, respectivamente.
Uma característica fundamental da interação na QCD é estar associada a três tipos de cargas, e

não a duas (positiva ou negativa), como na QED. As cargas dessa teoria são chamadas de carga de
cor, em analogia com as cores primárias vermelho, verde e azul, do inglês RGB. A interação entre
as partículas com carga de cor é mediada pela troca de glúons. Outra característica que a difere da
QED é que os glúons possuem carga de cor, ao contrário dos fótons, que não possuem carga elétrica.
Portanto, os glúons interagem entre si.

A auto-interação do glúon é a principal responsável por gerar um comportamento peculiar na evo-
lução da constante de acoplamento forte αs — análoga a constante de estrutura fina αem = e2/4πℏc ≈
1/137. Observa-se que a interação forte cresce com o aumento da distância, o que é equivalente a
regimes de baixa energia, e tende a zero em distâncias curtas, regime de altas energias. Essa pro-
priedade é a celebrada liberdade assintótica [3, 4]. O comportamento é compatível com o efeito de
confinamento de cor, que postula que partículas com carga de cor não se propagam livremente, fi-
cando confinadas em hádrons, estados singletos de cor. E também justifica o tratamento perturbativo
da QCD em altas energias.

Um bom laboratório de testes para a teoria da Cromodinâmica Quântica é o observável R(s),
construído a partir da seção de choque inclusiva da aniquilação elétron-pósitron em hádrons, que é
uma quantidade mensurável e muito bem conhecida experimentalmente, como visto na Fig. 1. Ele é
definido como

R(s) ≡ σ(e+e− → γ∗ → hadrons)
σ(e+e− → µ+µ−)|LO,mµ=0

, (1)

em que a seção de choque de normalização é referente à produção muônica calculada em ordem
árvore [6] e no limite sem massa. Em altas energias e longe de ressonâncias, o confinamento de
cor impõe que o processo de hadronização tem probabilidade um, logo a dualidade quark-hádron é
válida, e a seção de choque inclusiva pode ser calculada considerando somente quarks e glúons no
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estado final. Assim, a expressão teórica para o observável R(s) é obtida, neste regime, como uma
expansão perturbativa em potências da constante de acoplamento forte, αs.

A partir da comparação entre a descrição teórica de R(s) com os dados experimentais, é possível
realizar diferentes testes da QCD, como o número de cargas de cor (Nc = 3), a carga elétrica fra-
cionária dos quarks e também promover discussões sobre o confinamento de cor e a propriedade da
liberdade assintótica. O presente trabalho tem como objetivo desenvolver a expressão teórica para o
observável R(s) no contexto da QCD perturbativa. Na Seç. 2 será estabelecido o formalismo da Ele-
trodinâmica Quântica para os cálculos de diagramas de Feynman em ordem árvore. Então, na Seç. 3
será desenvolvido o cálculo de R(s) em ordem α0

s, incluindo também correções de massa dos quarks.
Em seguida, será discutida de forma qualitativa a correção de ordem αs para o R(s), juntamente com
o estudo da evolução de αs com a energia a um loop.

2 Eletrodinâmica Quântica (QED)

Em energias longe da escala eletrofraca, a produção de múons e a de quarks e glúons no estado
final do espalhamento e+e− é dominada pela troca de um fóton virtual (γ∗). Portanto, para a com-
preensão destes processos é necessária a descrição da interação eletromagnética entre férmions. O
formalismo adequado para tratar os processos de criação e aniquilação de partículas é a Teoria Quân-
tica de Campos (TQC). A Eletrodinâmica Quântica (QED) é a teoria que aplica os princípios da TQC
à interação eletromagnética, descrevendo a dinâmica de campos fermiônicos (ψ) e do campo de fótons
(Aµ) por meio de uma densidade lagrangiana.

As lagrangianas em TQC se decompõem em termos cinéticos e termos de interação. Diante disso,
na QED a lagrangeana que descreve o campo livre das partículas de spin 1/2, no sistema natural de
unidades (ℏ = c = 1)1, é [6]

L0 = iψ̄γµ∂µψ −mψ̄ψ, (2)

onde ψ e ψ̄ = ψγ0 representam o campo e o campo adjunto de Dirac e γµ são matrizes de Dirac, com
µ = 0, 1, 2, 3 cujas expressões são dadas por

γ0 =

(
I 0

0 −I

)
γ =

(
0 σ

−σ 0

)
, (3)

em que I é a matriz identidade e σ as matrizes de Pauli. Cada componente das matrizes da Eq. (3)
são blocos 2 × 2 e , portanto, γµ são matrizes 4 × 4. Essas matrizes respeitam a álgebra de Dirac,
{γµ, γν} = 2gµν , na qual gµν = diag(1,−1,−1,−1). Utilizando a equação de Euler-Lagrange

∂µ

[
∂L

∂(∂µψ)

]
=
∂L
∂ψ

, (4)

1Utilizaremos esse sistema de unidades durante todo o trabalho.
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aplicada na lagrangiana da Eq. (2), obtemos a expressão

iγµ∂µψ −mψ = 0 . (5)

Esta é precisamente a equação de Dirac para um férmion livre de spin 1/2, onde ψ é o spinor
de Dirac. Contudo, falta descrever a interação eletromagnética. Dentro do formalismo da QED, a
introdução de interações é realizada através da invariância de gauge (ou calibre) local.

Nesse contexto, partimos de uma simetria global já existente na lagrangiana livre L0, descrita na
Eq. (2), que é invariante sob transformações de fase U(1) globais, ou seja, sob a substituição

ψ(x) → ψ′(x) ≡ eiqθψ(x) , (6)

onde θ é uma fase real e constante. No entanto, se θ depender das coordenadas de espaço-tempo, a
lagrangiana L0 não será invariante, pois ela não é invariante por transformação U(1) local já que sua
derivada modifica-se para

∂µψ
′(x) → (∂µψ)

′(x) ≡ [∂µ + ie∂µθ(x)]e
ieθ(x)ψ(x). (7)

A estratégia para construir o termo de interação na lagrangiana da QED consiste em promover a
invariância global para uma invariância local [7]. Portanto, é necessário introduzir um campo vetorial
auxiliar, o campo de gauge Aµ(x), correspondente a uma partícula de spin 1. Este campo deve se
transformar de forma a cancelar o termo ∂µθ(x) problemático. A regra de transformação necessária
para Aµ(x) é, portanto,

Aµ(x) → A′
µ(x) ≡ Aµ(x)− ∂µθ(x), (8)

e define-se também uma derivada covariante,

Dµψ(x) ≡ (∂µ + ieAµ)ψ(x), (9)

que se transforma igual ao campo ψ na Eq. (6). Agora, podemos reescrever a lagrangiana da Eq. (2)
como

L = iψ̄(x)γµDµψ(x)−mψ̄(x)ψ(x) = L0 − qψ̄γµAµψ , (10)

que possui simetria U(1) local e inclui o termo de interação do elétron com o campo Aµ,

Lint = −qψ̄γµAµψ . (11)

O campoAµ, sendo um campo de uma partícula de spin 1 sem massa que interage com férmions de
spin 1/2, é identificado com o campo do fóton. Entretanto, para que o fóton seja um campo dinâmico,
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a lagrangiana total deve incluir também um termo cinético para Aµ,

L1 = −1

4
F µνFµν , (12)

onde Fµν = ∂µAν − ∂νAµ é o tensor eletromagnético de Faraday.
A soma das expressões estabelecidas nas Eq. (10) e Eq. (12) constitui a lagrangiana completa que

rege a QED,

LQED = iψ̄(x)γµDµψ(x)−mψ̄(x)ψ(x)− 1

4
F µνFµν . (13)

A partir da lagrangiana da QED, é possível derivar dois ingredientes fundamentais para as regras
de Feynman: propagadores e fatores de vértice. As regras de Feynman são um mecanismo utilizado
para calcular a amplitude de transição para um processo na QED, através de desenhos esquemáticos
das interações, chamados de diagramas de Feynman, a eles são aplicadas um conjunto de regras que
associam expressões matemáticas a cada linha e vértice do diagrama. Seguindo as regras, que incluem
a integração sobre momentos internos e a imposição da conservação do quadrimomento, é possível
calcular a amplitude de espalhamento M. As regras de Feynman para a QED são:

1. A cada linha externa associar um quadrimomento pi com sentido definido, e para cada linha
interna um quadrimomento qi também com um sentido estabelecido.

2. As linhas externas contribuem com os fatores:

férmion

inicial: u(p)

final: ū(p′)
, antiférmion

inicial: v̄(p)

final: v(p′)
, fótons

inicial: ϵµ(p)

final: ϵ∗µ(p
′)
,

em que u(p) e v(p) são os espinores de Dirac para partícula e antipartícula, respectivamente, e ϵµ
representa o vetor de polarização do fóton.

3. A cada vértice adicionar o fator igeγµ, chamado de fator de vértice da QED.
4. Para linhas internas de quadrimomento qi incluir os fatores que representam os propagadores

livres da teoria,

férmion:
i(γµqµ +m)

q2 −m2
, fóton: − i

gµν
q2

, (14)

5. Para cada vértice incluir uma função delta

(2π)4δ4(k1 + k2 + k3) ,

onde ki são os três quadrimomentos desse vértice. O sinal positivo significa que a partícula está indo
em direção ao vértice e o negativo que está saindo do vértice.

6. Para cada momento interno qi, multiplicar pelo fator

d4q

(2π)4
,
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Figura 2: Espalhamento de dois corpos no referencial do centro de massa. [6]

e integrar.
7. Cancelar o termo (2π)4δ4(p1 + p2 + ...− pn), correspondente a conservação total de energia e

momento, e o remanescente corresponde a iM, em que M é a amplitude do processo.
A correta aplicação das regras de Feynman exige atenção à ordem dos passos acima. Para evitar

erros na amplitude, é necessário ler cada linha fermiônica no sentido oposto ao fluxo da partícula [6].
Definidas as regras de Feynman, temos as ferramentas para calcular amplitudes de espalhamento na
QED. Portanto, aplicaremos estas regras na próxima seção para calcular as amplitudes dos processos
e+e− → µ+µ− e e+e− → qq̄, que formam, respectivamente, o denominador e o numerador de R(s)
em ordem dominante.

3 Cálculo de R(s) em ordem árvore

Na Eletrodinâmica Quântica, os diagramas de Feynman que têm maior contribuição para o cál-
culo de uma seção de choque são aqueles que possuem o menor número de vértices de interação.
Esses diagramas de ordem mais baixa, do inglês leading order (LO), também são conhecidos como
diagramas de ordem árvore. Nesse contexto, a produção muônica e a de um par quark-antiquark a
partir da aniquilação elétron-pósitron são ambas descritas por um único diagrama de ordem árvore.
Portanto, a primeira aproximação para a razãoR(s) será calculada considerando exclusivamente esses
diagramas.

3.1 Seção de choque diferencial para o espalhamento de dois corpos

A seção de choque diferencial é uma medida de probabilidade, expressa como área efetiva, que
descreve a distribuição angular das partículas após a colisão. Em nosso caso, para os dois processos
que estamos interessados, e+e− → µ+µ− e e+e− → qq, tem-se um espalhamento do tipo: 1 + 2 →
3+4 , em que a colisão de 1 e 2 produz as partículas 3 e 4. Neste caso, a expressão geral para a seção
de choque total, derivada da Regra de Ouro de Fermi, é dada por

σ =
S

4
√

(p1 · p2)2 − (m1m2)2

∫
|M|2(2π)4δ4(p1 + p2 − p3 − p4)

×
4∏

j=3

1

2
√

p2
j +m2

j

d3pj

(2π)3
,

(15)
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e tem-se que p0j =
√

p2
j +m2

j , pois as partículas estão na camada de massa. Nesta equação, pi
corresponde ao quadrimomento da partícula i, de massa mi e S é um fator estatístico para partículas
idênticas no estado final. Como no nosso caso não há produção de partículas idênticas no estado
final, S = 1. A dinâmica do processo está contida na amplitude invariante M(p1, p2, p3, p4), que
é uma função dos quadrimomentos, e é calculada pelos diagramas de Feynman apropriados. Já a
expressão da segunda linha representa o espaço de fase. Como a seção de choque total, σ, é um
invariante de Lorentz, ela pode ser calculada em qualquer referencial inercial. Nesse caso, a escolha
mais conveniente é o referencial do centro de massa (CM), como visto na Fig. 2, em que p1 = −p2.
Neste referencial tem-se a seguinte relação√

(p1 · p2)2 − (m1m2)2 = (E1 + E2)|p1|. (16)

Utilizando a expressão acima, a Eq. (15) se reduz a

σ =
1

64π2(E1 + E2)|p1|

∫
d3p3 d

3p4|M|2 δ
4(p1 + p2 − p3 − p4)√
p2
3 +m2

3

√
p2
4 +m2

4

. (17)

A delta quadridimensional, δ4(p1 + p2 − p3 − p4), pode ser reescrita como um produto entre as partes
temporal e espacial da seguinte forma:

δ4(p1 + p2 − p3 − p4) = δ
(
E1 + E2 − p03 − p04

)
δ3(p3 + p4). (18)

Dessa maneira, realizando a integral em p4,tem-se p4 = −p3. Substituindo isso na Eq. (17) a
seção de choque torna-se uma integral apenas sobre p3

σ =

(
1

8π

)2
1

(E1 + E2)|p1|

∫
d3p3|M|2 δ((E1 + E2)−

√
p2
3 +m2

3 −
√

(−p3)2 +m2
4)√

p2
3 +m2

3

√
(−p3)2 +m2

4

. (19)

Para isolar a dependência angular, reescrevemos o elemento de volume d3p3 em coordenadas
esféricas: d3p3 = |p3|2d|p3|dΩ. A seção de choque total é, portanto, σ =

∫ (
dσ
dΩ

)
dΩ. Identificando

o integrando de dΩ, a seção de choque diferencial é dada por

dσ

dΩ
=

(
1

8π

)2
1

(E1 + E2)|p1|

∫ ∞

0

dρ ρ2|M(r)|2 δ((E1 + E2)−
√
ρ2 +m2

3 −
√
ρ2 +m2

4)√
ρ2 +m2

3

√
ρ2 +m2

4

. (20)

Realizando a substituiçãoEi =
√
ρ2 +m2

i referente a energia da partícula i, a integral sobre a variável
ρ ≡ |p3| é resolvida pela identidade da função delta de Dirac. Esta propriedade filtra a expressão,
avaliando-a no momento final |pf | ditado pela conservação de energia, e a expressão final da seção
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Figura 3: Diagrama de Feynman para o espalhamento e+e− → µ+µ− em ordem árvore.

de choque diferencial no referencial do centro de massa é

dσ

dΩ
=

(
1

8π

)2 |M|2

(E1 + E2)2

∣∣pf

∣∣
|pi|

, (21)

em que |pi| é a magnitude das componentes espaciais dos quadrimomentos inicias. E ambos, |pi| e∣∣pf

∣∣, estão no referencial do centro de massa.

3.2 Cálculo da seção de choque e+e− → µ+µ−

Neste primeiro cálculo, iremos determinar a seção de choque para o processo de espalhamento
e+e− → µ+µ−, representado pelo diagrama da Fig. 3. Para isso, foi utilizada a seção de choque
diferencial definida na seção anterior. Então, para a determinação da amplitude, M, são aplicadas as
regras de Feynman para a QED no diagrama, obtendo-se a seguinte expressão

(2π)4
∫
d4q [u(3)(igeγ

µ)v(4)]

(
−igµν
q2

)
[v(2)(igeγ

ν)u(1)] δ4(q − p3 − p4)δ
4(p1 + p2 − q), (22)

em que definimos uma simplificação para os espinores; usj(pj) = u(j), tal que sj é o spin e pj
o quadrimomento da partícula j. Logo, ao integrar a função delta sobre o momento interno d4q o
termo no propagador do fóton, q2, é substituído por (p1 + p2)

2 devido à conservação de momento nos
vértices. Após a contração dos índices de Lorentz (ν com µ), tem-se a expressão para a amplitude
invariante no espaço de momento

M =
g2e

(p1 + p2)2
[u(3)γµv(4)] [v(2)γµu(1)] . (23)

A seção de choque, no entanto, depende do módulo da amplitude ao quadrado, |M|2, como mos-
trado na Eq. (21). Diante disso, precisamos do complexo conjugado da amplitude acima, utilizando a
propriedade γν = γν , teremos

M† =
g2e

(p1 + p2)2
[ū(1)γνv(2)] [v̄(4)γ

νu(3)] , (24)
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e concluímos que o módulo da amplitude ao quadrado é,

|M|2 = g4e
(p1 + p2)4

[ū(1)γνv(2)][v̄(4)γ
νu(3)][ū(3)γµv(4)][v̄(2)γµu(1)]. (25)

Como os experimentos normalmente não utilizam feixes polarizados e não medem os spins das partí-
culas finais, é necessário calcular a média dos spins iniciais, multiplicando por um fator de 1/4, uma
vez que há duas partículas no estado inicial com duas possibilidades de orientação, e também somar
todas as possíveis configurações dos spins finais. Portanto, ficamos com

〈
|M|2

〉
=

1

4

∑
spins

g4e
(p1 + p2)4

[ū(1)γνv(2)][v̄(2)γµu(1)][ū(3)γ
µv(4)][v̄(4)γνu(3)], (26)

e usando a relação de completude para partículas e antipartículas,∑
s

us(p)ūs(p) = /p+m,∑
s

vs(p)v̄s(p) = /p−m,
(27)

em que /p = γµpµ, é possível simplificar a soma sobre os produtos dos termos entre colchetes, em um
traço do produto de matrizes gama,

∑
spins

[u(a)Γ1u(b)] [u(a)Γ2u(b)]
∗ = Tr[Γ1( /pb +mb)Γ2( /pa +ma)]. (28)

Essa simplificação para obter a média final de spins para |M|2 é chamada de truque de Casimir [6].
Diante disso, a média do módulo da amplitude ao quadrado é reescrita como um produto de dois
traços, um para cada linha fermiônica,

〈
|M|2

〉
=

1

4

g4e
(p1 + p2)4

Tr
[
γµ/p4γ

ν
/p3

]
Tr
[
γµ/p1γν/p2

]
. (29)

O cálculo subsequente dos traços, através de identidades da álgebra de Dirac, por exemplo {γµ, γν} =

2gµν , e da contração dos índices de Lorentz, permite expressar a amplitude em função dos quadrimo-
mentos, 〈

|M|2
〉
=

8g4e
(p1 + p2)4

[(p1 · p4)(p2 · p3) + (p1 · p3)(p2 · p4)] . (30)

Supondo o regime de altas energias, onde todas as partículas podem ser tratadas como não massi-
vas, e empregando o referencial de centro de massa, ilustrado na Fig. 2, a energia das partículas Ei,
o quadrado da energia disponível no centro de massa, (p1 + p2)

2, e os produtos escalares requeridos



10

Figura 4: Diagrama de Feynman para o espalhamento e+e− → qq.

pela Eq. (30) resultam em

Ei = |pi|, (p1 + p2)
2 = 2p1 · p2 = 4E2

i ,

p1 · p3 = p2 · p4 = E2
i (1− cos θ), p1 · p4 = p2 · p3 = E2

i (1 + cos θ),
(31)

em que θ é o ângulo de espalhamento mostrado na Fig. 2.
A inserção destas relações cinemáticas na Eq. (30) permite explicitar a dependência angular da

amplitude ao quadrado média através de

〈
|M|2

〉
= g4e(1 + cos2 θ). (32)

Finalmente, é possível obter a seção de choque, inserindo a expressão final obtida na Eq. (32) na
seção de choque diferencial Eq. (21) e integrando sobre o ângulo sólido, dΩ. Diante disso, a expressão
final obtida para a seção de choque de normalização é

σ(e+e− → µ+µ−)|LO,mµ=0 =
4πα2

em

3s
, (33)

em que αem é a constante de estrutura fina em termos da constante de acoplamento eletromagnética,
ge, definida como αem = g2e/4π, em unidades naturais. A cinemática do processo é regida pela
variável de Mandelstam s = (p1 + p2)

2, que corresponde ao quadrado da energia disponível no
referencial do centro de massa.

3.3 Cálculo da seção de choque para e+e− → qq com mq = 0

O cálculo da seção de choque para o processo de espalhamento e+e− → qq é análogo ao caso
do espalhamento em múon-antimúon, discutido na seção anterior. Ambos os processos são descritos
por um diagrama de Feynman de ordem árvore, conforme ilustrado na Fig. 4. Adotando a mesma
aproximação de partículas sem massa e o mesmo referencial de centro de massa, a amplitude de
espalhamento assume uma forma semelhante à da Eq. (23):

Mi,j = Qq
g2e

(p1 + p2)2
[u(3)γµv(4)] [v(2)γµu(1)] δij. (34)
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Esta expressão difere da anterior em dois aspectos fundamentais. Primeiramente, o fator Qq re-
presenta a carga elétrica fracionária do quark em unidades da carga elementar e. Em segundo lugar,
a delta de Kronecker, δij , é introduzida para garantir a conservação da carga de cor. Uma vez que o
fóton mediador é neutro em cor, o quark i e o antiquark j produzidos devem possuir a mesma cor e
anticor, respectivamente. Em seguida, é aplicado novamente o truque de Casimir descrito na Eq. (28)
e a mesma composição dos quadrimomentos da Eq. (31). Chegando à seguinte expressão

〈
|Mi,j|2

〉
= (g2eQq)

2(1 + cos2 θ)δ2ij. (35)

No entanto, devemos somar todas as possíveis combinações de cor para o par quark-antiquark
final. Essa soma atua sobre o termo (δij)

2

Nc∑
i,j=1

(δij)
2 = Nc = 3, (36)

em que Nc, corresponde ao número de cargas de cor na QCD.
Combinando todos os elementos, o módulo da amplitude ao quadrado final, com média sobre os

spins iniciais e soma sobre os spins e cores finais, é

〈
|M|2

〉
= Nc(Qqg

2
e)

2(1 + cos2 θ). (37)

Logo, seguindo o mesmo procedimento de integração da seção de choque diferencial da Sec. 3.2,
obtemos a seção de choque total para a produção de um par quark-antiquark de um sabor f específico

σ(e+e− → qq)|LO,mq=0 =

(
4πα2

em

3s

)
NcQ

2
f . (38)

Finalmente, para obter a seção de choque hadrônica total em ordem dominante, devemos somar
as contribuições de todos os sabores de quarks f que são energeticamente acessíveis a uma dada
energia s,

σ(e+e− → qq)|LO,mq=0 =

(
4πα2

em

3s

)
NC

∑
f=u,d,s...

Q2
f . (39)

Com o desenvolvimento dos cálculos para as seções de choque, tanto hadrônica quanto muônica,
a derivação teórica em ordem árvore está completa. Agora, pode-se unir esses resultados para se
obter a previsão em ordem dominante para a razão R(s), o resultado obtido e suas implicações serão
discutidas na próxima seção.
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3.4 R(s) em ordem dominante

Após realizar os cálculos das duas seções de choque em ordem dominante para os processos
de espalhamento e+e− → µ+µ− e e+e− → qq é possível obter uma primeira aproximação para o
observável R(s), resultando na seguinte expressão,

R(s) ≈
σ(e+e− → qq)|LO,mq=0

σ(e+e− → µ+µ−)|LO,mµ=0

= Nc

∑
f=u,d,s...

Q2
f . (40)

Os sabores f sobre os quais se faz a soma são determinados pelo regime de energia, de modo que,
a baixas energias, apenas os quarks leves (u, d, s) contribuem para R(s), porém, à medida que a
energia aumenta, ela ultrapassa os limiares de produção para os quarks mais pesados, como o charm

e o bottom. Devido ao confinamento dos quarks da QCD, os quarks não são observados livremente;
o limiar físico para um novo sabor f corresponde, portanto, à energia necessária para criar um par do
méson mais leve que o contém, por exemplo para o quark charm o limiar é a energia de produção de
um par DD̄, pois o méson D é composto por um quark charm e um antiquark leve,

√
s = 2mD ≈

3, 74 GeV . Já para o quark b o limiar físico é
√
s = 2mB ≈ 10, 56 GeV [5]. A adição da contribuição

de cada novo sabor resulta em descontinuidades em R(s) com aumentos sucessivos em seu valor.
Portanto, o resultado numérico para R(s) em ordem dominante (LO) é

R(s) ≈



Ruds = Nc

[(
2
3

)2
+
(
−1

3

)2
+
(
−1

3

)2]
= 2,

√
s < 2× 1.87 GeV (u, d, s)

Rudsc = Ruds +Nc

(
2
3

)2
= 10

3
, 2× 1.87 <

√
s < 2× 5.28 GeV (u, d, s, c)

Rudscb = Rudsc +Nc

(
−1

3

)2
= 11

3
,

√
s > 2× 5.28 GeV (u, d, s, c, b)

É importante observar que esse resultado é sensível ao número de cargas de cor da teoria, Nc = 3,
e às cargas elétricas fracionárias dos quarks, portanto a comparação com os dados experimentais é
um bom teste desses aspectos quantitativos da Cromodinâmica Quântica.

Nesse contexto, a previsão teórica foi comparada, na Fig. 5, com os dados experimentais de 18
experimentos no intervalo de 1, 8 GeV ≲

√
s ≲ 10, 5 GeV, que abrange desde o regime dos quarks

leves, chamado de regime uds, e inclui também o regime udsc, para energias que superam o limiar do
quark charm. As incertezas dos dados experimentais foram obtidas por meio da soma quadrática dos
erros sistemáticos e estatísticos disponibilizados.

A previsão teórica em ordem dominante mostra maior concordância com os dados experimentais
para energias superiores a 3,7 GeV. Contudo, em energias inferiores (entre 1,8 GeV e 3,7 GeV), a
discrepância é significativamente maior, da ordem de 10%. Essa diferença de precisão ocorre por
conta da liberdade assintótica de αs, a constante de acoplamento da QCD, que torna a correção de
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Figura 5: Gráfico comparativo entre R(s) teórico em ordem dominante com os dados experimentais.
As referências originais dos experimentos podem ser encontradas na Ref. [8].

primeira ordem de R(s) mais significativa em regime de menor energia.

3.5 Caso massivo

Nesta subseção, iremos calcular a seção de choque hadrônica total em ordem árvore, adicionando
os termos de massas dos quarks. Dessa forma, temos a mesma amplitude M, da Eq. (34), e é aplicado
o truque de Casimir descrito na Eq. (28), para obter a média do módulo da amplitude ao quadrado,〈
|M|2

〉
. Também foi incluída a soma das possíveis combinações de cores; diante disso, obteve-se o

primeiro termo de massa,

〈∣∣M2
∣∣〉 = 8Nc

[
Qg2e

(p1 + p2)2

]2 [
(p1 · p4)(p2 · p3) + (p1 · p3)(p2 · p4) +m2

q(p1 · p2)
]
· (41)

Pelo fato de estarmos considerando quarks massivos, a energia das partículas massivas, Ei, e os
produtos escalares de quadrimomentos requeridos na Eq. (41) são

Ei =

√
m2

i + |pi|
2,

p1 · p3 = p2 · p4 = E2
i

(
1−

√
1− m2

i

E2
i

cos θ

)
,

p2 · p3 = p1 · p4 = E2
i

(
1 +

√
1− m2

i

E2
i

cos θ

)
.

(42)

O produto escalar dos quadrimomentos iniciais p1 e p2 não sofre alterações, uma vez que não estão
sendo consideradas as massas das partículas iniciais. Então, considerando as relações cinemáticas
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Figura 6: Gráfico comparativo de R(s) teórico com correção da massa do quark charm e os dados
experimentais. As referências originais dos experimentos podem ser encontradas na Ref. [8].

estabelecidas na Eq. (42), é explicitada a dependência angular de
〈
|M|2

〉
〈
|M|2

〉
= NcQ

2g4e

[
1 +

(mq

E

)2
+

(
1−

(mq

E

)2)
cos2 θ

]
. (43)

Portanto, seguindo o mesmo procedimento dos cálculos anteriores, foi utilizada novamente a ex-
pressão da seção de choque diferencial do espalhamento de dois corpos no referencial do centro de
massa, descrita na Eq. (21). A expressão resultante é então integrada sobre o ângulo sólido, dΩ, e
somada às contribuições de todos os sabores de quarks, f , energeticamente acessíveis, resultando em

σ(e+e− → qq)|LO =

(
4πα2

em

3s

)
NC

∑
f=u,d,s...

Q2
f

√
1−

4m2
f

s

(
1 +

2m2
f

s

)
. (44)

A partir deste resultado, podemos construir uma nova expressão para R(s), normalizando a seção de
choque hadrônica total com a Eq. (33). Agora, considerando as massas dos quarks, obtém-se um novo
resultado para R(s),

R(s) = NC

∑
f=u,d,s...

Q2
f

√
1−

4m2
f

s

(
1 +

2m2
f

s

)
, (45)

que também pode ser reescrito em termos da velocidade relativística βf ≡
√

1− 4m2
f/s, que repre-

senta a velocidade do quark f no CM, dessa forma tem-se

R(s) = NC

∑
f=u,d,s...

Q2
fβf

(
3− β2

f

2

)
. (46)
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O comportamento de R(s) com essa correção é ditado pelo termo da velocidade relativística, βf .
No limiar de produção,

√
s = 2mf , a velocidade βf é nula. Para energias ligeiramente acima do

limiar,
√
s > 2mf , o R(s) cresce linearmente com a velocidade ∝ βf . Finalmente, no limite de

altas energias, s ≫ 4m2
f , βf → 1 e a expressão converge para o resultado do caso não massivo dado

na Eq. (40). Conclui-se, portanto, que as correções de massa são relevantes na região de transição
próxima ao limiar, e garantem uma descrição contínua de R(s), que deixa de apresentar saltos em
cada limiar de produção como visto no gráfico da Fig. 5. Este comportamento é confirmado pelo
gráfico da Fig. 6, que mostra o resultado da Eq. (46) em comparação com os dados experimentais.

Nesse gráfico, utilizaram-se os mesmos dados experimentais e o cálculo das incertezas do grá-
fico anterior, exibido na Fig. 5. Na curva teórica, foi considerada apenas a correção de massa
para o quark charm, tratando os quarks leves como não massivos. Esta simplificação é justificada
quantitativamente. Em uma energia de

√
s = 4 GeV, o fator de correção Cf = βf (3 − β2

f )/2

para o quark strange, com ms(2GeV) = 92, 7 ± 0, 5 MeV2 [5], introduz uma modificação des-
prezível de aproximadamente 0, 0002%. Na mesma energia, no entanto, a correção do charm, com
mc(mc) = 1, 275± 0, 009 GeV [5], é significativa, ≈ 7, 2%. Destaca-se também que, para descrever
o limiar físico da produção de hádrons com charm, o modelo utiliza uma massa efetiva de 1, 87 GeV
(próxima à massa do méson D), em vez da massa de quark livre determinada pelo PDG.

Nesta seção, realizamos os cálculos do observável R(s) em ordem dominante, utilizando o for-
malismo da Eletrodinâmica Quântica, abordado na Sec. 2 deste trabalho. Também foram discutidas
algumas características da Cromodinâmica Quântica, como o número de carga de cor, a carga elétrica
fracionária e o confinamento dos quarks. Até o momento, obtivemos o primeiro termo da expansão
perturbativa, de ordem α0

s, para o nosso observável. Na próxima seção, exploraremos alguns aspectos
do processo de renormalização para encontrar a dependência explícita da energia para αs(s) a um
loop e, depois, adicionaremos as correções de ordem superior em R(s).

4 Correções de O(αs) para o R(s)

A correção que considera os efeitos da Cromodinâmica Quântica no observável R(s) é de ordem
αs , sendo de ordem superior, em inglês next leading order (NLO). Ela considera duas classes de
diagramas, a emissão de glúons reais pelo par quark-antiquark, e a troca de um glúon virtual entre
eles, ilustrados na Fig. 7. No entanto, para considerar essas contribuições, primeiro é necessário
entender o comportamento da própria constante de acoplamento αs.

2A massa dos quarks não é uma quantidade física; ela é um parâmetro definido em um esquema de renormalização,
que depende da energia. Por convenção, ms é dada em uma escala de 2 GeV, enquanto mc, em mc(mµ) = mµ GeV.
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Figura 7: Diagramas NLO para R(s): emissão real (os dois primeiros) e virtual (o último).

4.1 A evolução de αs a um loop

A constante de acoplamento forte da QCD, αs, não é constante, e seu valor depende da faixa
de energia que está sendo considerada. Em baixas energias, a constante de acoplamento é grande,
αs ∼ O(1), e nesse regime não se pode utilizar a teoria perturbativa. Felizmente, em altas energias,
αs torna-se suficientemente pequena e o tratamento perturbativo é válido. A evolução de αs com a
energia está intimamente relacionada ao processo de renormalização [9].

A renormalização da QCD é mais complexa que a da QED, principalmente devido à autointeração
dos glúons. Para a constante de acoplamento forte, αs, existem 3 classes de diagramas a um loop:
polarização do vácuo (4 diagramas), correção dos vértices (3 diagramas) e auto-energia dos quarks (1
diagrama) [10]. Os cálculos desses diagramas nos levam a integrais divergentes, por isso é adotado
um processo de renormalização que produzirá resultados finitos. No entanto, é necessário que as
quantidades físicas sejam independentes do processo de renormalização adotado, sendo essa exigên-
cia explicitada pela equação do grupo de renormalização (RGE). Então considerando uma quantidade
física R(q , as ,m), em que q é o momento externo, as ≡ αs(s)/π é a constante de acoplamento da
QCD em é a massa do quark renormalizadas por um parâmetro de escala de renormalização arbitrário
µ, sabe-se que a quantidade física é independente de µ, logo tem-se a RGE para R(q , as ,m) [11] :

µ
d

dµ
R(q, as,m) =

{
µ
∂

∂µ
+ µ

das
dµ

∂

∂as
+ µ

dm

dµ

∂

∂m

}
R(q, as,m) = 0, (47)

em que as(µ) e m(µ), e dessa equação são definidas3 as funções do grupo de renormalização β e γ

β(as) ≡ −µdas
dµ

= β1a
2
s + β2a

3
s + · · ·

γ(as) ≡ − µ

m

dm

dµ
= γ1as + γ2a

2
s + · · ·

Como estamos considerando somente correções de um loop em αs, é necessário conhecer apenas o
coeficiente β1 [11],

β1 =
1

6
(11Nc − 2Nf ). (48)

3Existem várias definições para essas funções na literatura. O sinal de nossa função β é oposto a definição tradicional,
de modo que em nossa definição β1 > 0.
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Figura 8: Evolução de αs(s) a um loop, para diferentes valores de entrada αs(µ1), conforme prevista
pela Eq. (51)

Note que β1 dependerá do número de cor, Nc = 3 e do número de sabores ativos, Nf ≤ 6, logo
β1 > 0. Dessa forma, a função β, em primeira ordem, se reduz a

β1a
2
s = −µdas

dµ
. (49)

Diante disso, pode-se resolver a equação diferencial ordinária da Eq. (49),

1

β1

∫ as(µ2)

as(µ1)

das
a2s

= −
∫ µ2

µ1

dµ

µ
= ln

µ1

µ2

, (50)

e ao realizar as integrais, encontramos a evolução da constante de acoplamento a um loop, supondo
conhecido αs(µ1) em uma escala de energia µ1, tem-se

αs(µ2) =
αs(µ1)

1− αs(µ1)
π

β1 ln(µ1/µ2)
. (51)

Como visto anteriormente, β1 > 0, logo αs(µ2) decresce com o aumento da energia µ2, e quando
µ2 → ∞, tem-se αs → 0 conforme ilustrado no gráfico da Fig. 8. Esse comportamento é a célebre
liberdade assintótica da QCD. Ela significa que a interação forte fica mais fraca em altas energias,
µ, o que equivale, pela relação r ∼ ℏc/µ, a curtas distâncias. É essa propriedade que valida o
uso da teoria de perturbação nesse regime. E em baixas energias, longas distâncias, αs ∼ O(1),
indicando um colapso da abordagem perturbativa. No gráfico, também é explicitado como a escolha
do seu valor de entrada para αs(µ1) influencia na evolução de αs(µ2) a um loop. A presença do
termo logarítmico ln(µ1/µ2), que aparece na Eq. (51), introduz um acúmulo de erro significativo se
as escalas forem muito distintas, diante disso, é preferível escolher a escala de referência µ1 próxima
as escalas de energia de µ2 de interesse. Essa influência da escolha da escala de referência, α(µ1),
diminui drasticamente quando se consideram as correções da função β a 5 loops.
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Figura 9: Correções de R(s) em NLO nos regimes uds (gráfico a esquerda) e udsc (gráfico da direita).
As referências originais dos experimentos podem ser encontradas na Ref. [8].

4.2 R(s) em NLO

Com a compreensão da evolução de αs(s) a um loop, pode-se considerar a primeira correção da
QCD ao observávelR(s). Embora o cálculo explícito das contribuições dos diagramas da Fig. 7 esteja
além do escopo deste trabalho, o resultado final incorpora uma modificação crucial na expressão de
R(s) [8],

R(s) = NC

∑
f=u,d,s...

Q2
f

(
1 +

αs(s)

π

)
. (52)

Esta correção permite uma análise quantitativa do impacto da QCD. Por exemplo, em uma escala
de energia de 2 GeV, no regime uds, onde αs(2 GeV) ≈ 0.295, o que resulta em R(s) = 2(1 +

0.094) ≈ 2.19, uma correção de aproximadamente 10% sobre o valor de ordem dominante. Em
contraste a 4 GeV, no regime udsc, a constante de acoplamento é menor, αs(4 GeV) ≈ 0.215, e a
correção NLO cai para 6, 84%. Esta diminuição na magnitude da correção com o aumento da energia
é uma manifestação da liberdade assintótica, como discutido na subseção anterior.

A previsão teórica para R(s) da Eq. (52) foi comparada com os mesmos dados experimentais
utilizados anteriormente. Os gráficos, apresentados na Fig. 9 realizam a comparação em dois regimes
distintos de energia, os regimes uds e udsc, respectivamente. As curvas teóricas nesses gráficos foram
geradas utilizando o valor de αs(s) para cada ponto de energia obtido através da evolução a um loop
descrita pela Eq. (51) e usando como valor de referência αs(2 GeV) = 0, 295 [8], para o regime uds

e αs(4GeV) = 0, 215 [5], para o regime udsc. É importante notar que, para gerar as curvas teóricas
em cada um dos regimes de energia plotados, utilizou-se um valor de referência αs(µ1) diferente para
iniciar a evolução. Conforme discutido na seção anterior, esta escolha visa minimizar a magnitude
do termo logarítmico na Eq. (51), otimizando assim a precisão da previsão perturbativa baseada na
evolução de αs a um loop. Observa-se nos gráficos uma melhora significativa na concordância entre a
teoria e os dados experimentais ao se incluir a correção de primeira ordem da QCD. Portanto, além de
R(s) testar o número de cargas de cor,Nc = 3, e a carga elétrica fracionária dos quarks, ele nos mostra
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que a dinâmica da QCD leva a correções significativas e está em bom acordo com o experimento.

5 Conclusão

Neste trabalho, estudamos o observável R(s) construído a partir da seção de choque inclusiva
para o processo de espalhamento e+e− → hadrons, no regime da QCD perturbativa, com o objetivo
de comparar as previsões do modelo com dados experimentais.

Primeiramente, foi desenvolvida a sua expressão teórica em ordem dominante (LO), de ordem α0
s,

utilizando o formalismo da Eletrodinâmica Quântica para diagramas de Feynman em ordem árvore.
Esta primeira aproximação demonstrou a sensibilidade fundamental de R(s) à carga elétrica fracio-
nária dos quarks e o número de cargas de cor, Nc = 3, permitindo a verificação experimental dessas
quantidades. A análise dos limiares de energia também permitiu uma discussão qualitativa do confi-
namento de cor da QCD, justificando que o limiar físico para um novo sabor corresponde à energia
de produção de um par de mésons, por exemplo para o quark charm, tem-se

√
s ≈ 2mD. Em seguida,

ainda com o formalismo da QED, foi calculada a correção de massa para os quarks do estado final,
com o objetivo de obter uma função contínua para R(s), tratando as descontinuidades nos limiares da
energia de produção.

Posteriormente, foi estudada a primeira correção da QCD a R(s) (NLO), que corrige o resultado
em LO por um termo de ordem αs. Nesse estudo, foram explorados alguns aspectos do processo
de renormalização para encontrar a dependência explicita da energia para αs(s) a um loop. Depois,
foi discutida a evolução de αs(s) a um loop, e foi levada em conta na correção de ordem superior a
R(s). A correção NLO sobre o valor dominante é de aproximadamente 10% em

√
s = 2 GeV, mas

cai para ≈ 6, 84% em
√
s = 4 GeV. Dessa forma, nossa expressão teórica indica que a interação forte

se torna mais fraca em energias mais altas, validando o uso da teoria de perturbação. Observou-se
que essa correção melhorou significativamente a concordância entre a teoria e os dados. Com isso,
foi mostrado que, ao considerar a dinâmica da QCD no cálculo de R(s) houve um bom acordo com o
experimento.

Em suma, este trabalho demonstrou como o observável R(s), analisado através da QCD perturba-
tiva, serve como uma ferramenta robusta para sondar e quantificar as propriedades fundamentais da
interação forte.
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