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Resumo

O observavel R(s) construido a partir da se¢do de choque inclusiva para o processo de espalha-
mento ete~ — (hadrons), tem um papel central na Cromodinidmica Quéntica (QCD). Ele oferece
um campo de provas crucial para propriedades fundamentais da teoria, como o nimero de cargas de
cor, a natureza fraciondria da carga elétrica dos quarks e o fendmeno da liberdade assintética. Neste
trabalho, desenvolvemos a descri¢do de R(s) no regime da QCD perturbativa em ordens mais bai-
xas, aplicdvel a altas energias, e, em seguida, confrontamos os resultados teéricos obtidos com dados

experimentais, a fim de validar a precisao do modelo.

Palavras-chave: Espalhamento e™e~. Cromodindmica Quéntica. QCD perturbativa. R(s).

1 Introducao

A fisica de particulas estuda os constituintes fundamentais da matéria, as particulas elementares
e as interagdes entre elas. No século XX, esse ramo foi impulsionado pela unificacio da Mecanica
Quantica e da Relatividade Especial, ao combinar a equagdo de Dirac, que descreve particulas de
spin-1/2, com a Teoria Classica de Campos, um formalismo que culminou na Teoria Quantica de
Campos (TQC). Nessa teoria, os quanta dos campos sdo interpretados como particulas, e as interacoes
podem ser entendidas como uma troca de particulas chamadas virtuais.

O primeiro triunfo deste formalismo foi a Eletrodindmica Quantica (QED) [1], que descreve a in-
teracdo entre férmions carregados, como os elétrons, e 0 campo eletromagnético quantizado, mediado
por fétons. O sucesso desta teoria foi consolidado pelo programa de renormaliza¢do. Desenvolvido
por Feynman, Schwinger, Tomonaga, Dyson e outros, este formalismo forneceu um método para lidar
com os infinitos que surgiam nos cdlculos. Ao possibilitar previsdes tedricas finitas e de maior preci-
sd0, o programa de renormalizacdo levou a QED a um acordo surpreendente com os experimentos [2].

Paralelamente ao sucesso da QED, o novo formalismo foi utilizado para descrever um problema
da época, a estabilidade dos nucleos atbmicos. A forca nuclear forte, teorizada pela primeira vez
por Yukawa, é a interagdo responsavel por compensar a repulsio Coulombiana entre os prétons e
garantir a estabilidade atdomica. Diferentemente dos elétrons, os prétons e néutrons nao sdo particulas
elementares, eles sdo hddrons. Os hddrons sao formados por quarks, particulas elementares de spin
1/2 e carga elétrica fraciondria. As tentativas de descricdo da forga entre os quarks por meio de uma
teoria de calibre (ou gauge, em inglés) levaram ao desenvolvimento da Cromodindmica Quantica
(QCD). Existem seis quarks diferentes, que se distinguem pelos sabores: up, down, strange, charm,
bottom e top, que se organizam em "geracdes"com massas muito diferentes entre si, por exemplo
a massa do quark fop é cerca de 78 mil vezes maior que a massa do quark up. Os hadrons sdo
classificados em dois tipos; os mésons, formados por um par quark-antiquark; e os bdrions, formados

por trés quarks distintos. Os préotons e néutrons sdo exemplos de barions, formados por dois quarks u
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Figura 1: Compilagdo geral dos dados experimentais para R(s) fornecidos pelo PDG [5]. A linha
tracejada verde indica a corre¢do em ordem dominante, a?, e a linha vermelha indica a corre¢io da
QCD perturbativa.

e um d e dois quarks d e um u, respectivamente.

Uma caracteristica fundamental da interacdo na QCD ¢ estar associada a trés tipos de cargas, e
ndo a duas (positiva ou negativa), como na QED. As cargas dessa teoria sdo chamadas de carga de
cor, em analogia com as cores primdrias vermelho, verde e azul, do inglés RGB. A interagdo entre
as particulas com carga de cor é mediada pela troca de glions. Outra caracteristica que a difere da
QED ¢ que os glions possuem carga de cor, ao contrario dos fétons, que nao possuem carga elétrica.
Portanto, os glions interagem entre si.

A auto-interacao do glion € a principal responsdvel por gerar um comportamento peculiar na evo-
lugdo da constante de acoplamento forte o, — analoga a constante de estrutura fina o, = > [Amhe ~
1/137. Observa-se que a intera¢do forte cresce com o aumento da distincia, o que é equivalente a
regimes de baixa energia, e tende a zero em distincias curtas, regime de altas energias. Essa pro-
priedade € a celebrada liberdade assintética [3, 4]. O comportamento € compativel com o efeito de
confinamento de cor, que postula que particulas com carga de cor ndo se propagam livremente, fi-
cando confinadas em hddrons, estados singletos de cor. E também justifica o tratamento perturbativo
da QCD em altas energias.

Um bom laboratério de testes para a teoria da Cromodindmica Quéntica é o observavel R(s),
construido a partir da se¢do de choque inclusiva da aniquilagdo elétron-pdsitron em héddrons, que é
uma quantidade mensurdvel e muito bem conhecida experimentalmente, como visto na Fig. 1. Ele é

definido como
o(ete” — v* — hadrons)

olete™ = ) Lom.=o’

R(s) o))

em que a se¢do de choque de normalizacdo € referente a produ¢cdo mudnica calculada em ordem
arvore [6] e no limite sem massa. Em altas energias e longe de ressonancias, o confinamento de
cor impde que o processo de hadronizacdo tem probabilidade um, logo a dualidade quark-hddron é

vdlida, e a secdo de choque inclusiva pode ser calculada considerando somente quarks e glions no



estado final. Assim, a expressdo tedrica para o observdvel R(s) é obtida, neste regime, como uma
expansdo perturbativa em poténcias da constante de acoplamento forte, o.

A partir da comparagio entre a descrig@o tedrica de R(s) com os dados experimentais, é possivel
realizar diferentes testes da QCD, como o niimero de cargas de cor (/N. = 3), a carga elétrica fra-
ciondria dos quarks e também promover discussdes sobre o confinamento de cor e a propriedade da
liberdade assintética. O presente trabalho tem como objetivo desenvolver a expressao tedrica para o
observavel R(s) no contexto da QCD perturbativa. Na Seg. 2 serd estabelecido o formalismo da Ele-
trodinamica Quantica para os célculos de diagramas de Feynman em ordem arvore. Entdo, na Seg. 3
serd desenvolvido o cdlculo de R(s) em ordem o, incluindo também corre¢des de massa dos quarks.
Em seguida, serd discutida de forma qualitativa a corre¢do de ordem o para o R(s), juntamente com

o estudo da evolugdo de g com a energia a um loop.

2 Eletrodinimica Quantica (QED)

Em energias longe da escala eletrofraca, a produ¢ao de muons e a de quarks e gliions no estado
final do espalhamento e*e~ é dominada pela troca de um féton virtual (*). Portanto, para a com-
preensdo destes processos € necessaria a descricao da interag@o eletromagnética entre férmions. O
formalismo adequado para tratar os processos de criacao e aniquilagdo de particulas € a Teoria Quan-
tica de Campos (TQC). A Eletrodinamica Quantica (QED) € a teoria que aplica os principios da TQC
a interagdo eletromagnética, descrevendo a dinamica de campos fermionicos (/) e do campo de fétons
(A,) por meio de uma densidade lagrangiana.

As lagrangianas em TQC se decompdem em termos cinéticos e termos de interagcdo. Diante disso,
na QED a lagrangeana que descreve o campo livre das particulas de spin 1/2, no sistema natural de
unidades (h = c = 1), é [6]

Lo = wWpy"dp — mapyp, (2)

onde ¢ e 1) = 1)7" representam o campo e o campo adjunto de Dirac e y* sdo matrizes de Dirac, com
1w =0,1,2, 3 cujas expressdes sao dadas por
0 I 0 0 o

p— p— 5 3
Y 0 —I Y o 0 (3)

em que / € a matriz identidade e o as matrizes de Pauli. Cada componente das matrizes da Eq. (3)
s@o blocos 2 x 2 e, portanto, y* sdo matrizes 4 x 4. Essas matrizes respeitam a dlgebra de Dirac,

{7, "} = 2¢", na qual g"” = diag(1, —1,—1, —1). Utilizando a equagio de Euler-Lagrange

oL oL
O [exa—m} ~ a0 )

IUtilizaremos esse sistema de unidades durante todo o trabalho.




aplicada na lagrangiana da Eq. (2), obtemos a expressao
iyt —myp = 0. (5)

Esta é precisamente a equagdo de Dirac para um férmion livre de spin 1/2, onde v é o spinor
de Dirac. Contudo, falta descrever a interacdo eletromagnética. Dentro do formalismo da QED, a
introdugdo de interacOes € realizada através da invariancia de gauge (ou calibre) local.

Nesse contexto, partimos de uma simetria global ja existente na lagrangiana livre £, descrita na

Eq. (2), que é invariante sob transformacdes de fase U(1) globais, ou seja, sob a substitui¢do

P(z) = ¢ (x) = (x), (6)

onde 6 é uma fase real e constante. No entanto, se 6 depender das coordenadas de espago-tempo, a
lagrangiana £, ndo serd invariante, pois ela ndo € invariante por transformagio U (1) local ja que sua

derivada modifica-se para
O, (2) = (9,10) () = [0, + 1€0,0(x))e" @ ah(x). (7

A estratégia para construir o termo de intera¢do na lagrangiana da QED consiste em promover a
invariancia global para uma invariancia local [7]. Portanto, é necessario introduzir um campo vetorial
auxiliar, o campo de gauge A,(x), correspondente a uma particula de spin 1. Este campo deve se
transformar de forma a cancelar o termo 0,,6(x) problematico. A regra de transformagdo necessaria
para A, (z) é, portanto,

Au(z) = Al (r) = Au(x) — 9,0(x), (8)

e define-se também uma derivada covariante,

Duth() = (9, + ieA, (), ©)

que se transforma igual ao campo 1) na Eq. (6). Agora, podemos reescrever a lagrangiana da Eq. (2)

Ccomo
L = i(x)y"Dytb(z) — mip(z)(z) = Lo — gy A, (10)

que possui simetria U(1) local e inclui o termo de intera¢do do elétron com o campo A,,,

Line = —qy" At (11

O campo A,,, sendo um campo de uma particula de spin 1 sem massa que interage com férmions de

spin 1/2, € identificado com o campo do féton. Entretanto, para que o féton seja um campo dinamico,



a lagrangiana total deve incluir também um termo cinético para A,

1

£1 == _ZIFMVF (12)

e

onde F,, = 0,A, — 0,A, é o tensor eletromagnético de Faraday.
A soma das expressoes estabelecidas nas Eq. (10) e Eq. (12) constitui a lagrangiana completa que
rege a QED,

Larp = WDy () — m (@) (z) — 3P Fp. (13)

A partir da lagrangiana da QED, € possivel derivar dois ingredientes fundamentais para as regras
de Feynman: propagadores e fatores de vértice. As regras de Feynman sdo um mecanismo utilizado
para calcular a amplitude de transi¢do para um processo na QED, através de desenhos esquematicos
das interacdes, chamados de diagramas de Feynman, a eles sdo aplicadas um conjunto de regras que
associam expressOes matematicas a cada linha e vértice do diagrama. Seguindo as regras, que incluem
a integracdo sobre momentos internos € a imposicdo da conservacdo do quadrimomento, € possivel
calcular a amplitude de espalhamento M. As regras de Feynman para a QED sio:

1. A cada linha externa associar um quadrimomento p; com sentido definido, e para cada linha
interna um quadrimomento ¢; também com um sentido estabelecido.

2. As linhas externas contribuem com os fatores:

_ inicial:  u(p) ‘ ‘ inicial:  (p) inicial: €,(p)
férmion , antiférmion , fotons ,
final:  a(p) final:  v(p') final: € (p)

em que u(p) e v(p) sdo os espinores de Dirac para particula e antiparticula, respectivamente, ¢ €,
representa o vetor de polariza¢do do féton.

3. A cada vértice adicionar o fator 7g.v"*, chamado de fator de vértice da QED.

4. Para linhas internas de quadrimomento ¢; incluir os fatores que representam os propagadores
livres da teoria,

férmion: , foton: — =, (14)

5. Para cada vértice incluir uma fung¢do delta
(27‘(’)454(/{71 + /{72 + kg) y

onde k; sdo os trés quadrimomentos desse vértice. O sinal positivo significa que a particula estd indo
em dire¢do ao vértice e o negativo que estd saindo do vértice.

6. Para cada momento interno ¢;, multiplicar pelo fator
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Figura 2: Espalhamento de dois corpos no referencial do centro de massa. [6]

e integrar.

7. Cancelar o termo (27)*0%(p; + pa + ... — p,), correspondente a conservagdo total de energia e
momento, € o remanescente corresponde a :.M, em que M € a amplitude do processo.

A correta aplicacdo das regras de Feynman exige atencdo a ordem dos passos acima. Para evitar
erros na amplitude, € necessdrio ler cada linha fermidnica no sentido oposto ao fluxo da particula [6].
Definidas as regras de Feynman, temos as ferramentas para calcular amplitudes de espalhamento na
QED. Portanto, aplicaremos estas regras na proxima se¢do para calcular as amplitudes dos processos
ete”™ = utu~ eete” — ¢g, que formam, respectivamente, o denominador e o numerador de R(s)

em ordem dominante.

3 Calculo de R(s) em ordem arvore

Na Eletrodinamica Quantica, os diagramas de Feynman que t€m maior contribui¢do para o cél-
culo de uma secdo de choque sdo aqueles que possuem o menor nimero de vértices de interagao.
Esses diagramas de ordem mais baixa, do inglés leading order (LO), também sdo conhecidos como
diagramas de ordem drvore. Nesse contexto, a producdo muonica e a de um par quark-antiquark a
partir da aniquilagdo elétron-pdsitron sdo ambas descritas por um unico diagrama de ordem arvore.
Portanto, a primeira aproximagao para a razdo R(s) serd calculada considerando exclusivamente esses

diagramas.

3.1 Secao de choque diferencial para o espalhamento de dois corpos

A secao de choque diferencial € uma medida de probabilidade, expressa como drea efetiva, que
descreve a distribui¢do angular das particulas apds a colisdo. Em nosso caso, para os dois processos
que estamos interessados, ete”™ — putu~ e ee” — ¢, tem-se um espalhamento do tipo: 1+ 2 —
344, em que a colisdo de 1 e 2 produz as particulas 3 e 4. Neste caso, a expressio geral para a secio

de choque total, derivada da Regra de Ouro de Fermi, é dada por

S
o = M 2 T 454 ) -
44/(p1 - p2)? — (myma)? /‘ "(2m)°6"(p1 + P2 — p3 — pa)

4 1 d3pj

R e

15)

X



e tem-se que p? = ,/p? + mjg-, pois as particulas estdo na camada de massa. Nesta equagdo, p;
corresponde ao quadrimomento da particula ¢, de massa m,; e S é um fator estatistico para particulas
idénticas no estado final. Como no nosso caso ndo hd producdo de particulas idénticas no estado
final, S = 1. A dinimica do processo estd contida na amplitude invariante M (py, pa, p3,p4), que
¢ uma funcdo dos quadrimomentos, e € calculada pelos diagramas de Feynman apropriados. Ja a
expressdo da segunda linha representa o espaco de fase. Como a secdo de choque total, o, € um
invariante de Lorentz, ela pode ser calculada em qualquer referencial inercial. Nesse caso, a escolha
mais conveniente € o referencial do centro de massa (CM), como visto na Fig. 2, em que p; = —p,.

Neste referencial tem-se a seguinte relacio

V(p1 - p2)2 — (mama)? = (E; + Es)|pyl. (16)

Utilizando a expressdo acima, a Eq. (15) se reduz a

1
 64m2(E, + E,

/d3p3d3p4|M12 SURSIRS ST a7
)|p1] VP35 +miy/pi +mj

A delta quadridimensional, §*(p; + p2 — ps — p4), pode ser reescrita como um produto entre as partes

temporal e espacial da seguinte forma:

6 (p1 +p2 — p3 — p1) = 6 (E1 + Eo — p§ — p)) 6°(p3 + pa). (18)

Dessa maneira, realizando a integral em p,.,tem-se p, = —p;. Substituindo isso na Eq. (17) a

secdo de choque torna-se uma integral apenas sobre p;

S((Er + E,) — \/P% + m% — \/(_p3)2 +mi).

1 2
oo (LY L M (19)
() Gy [ e N SRR

Para isolar a dependéncia angular, reescrevemos o elemento de volume d*ps; em coordenadas
esféricas: d®ps = |ps|?d|ps|dQ. A se¢o de choque total é, portanto, o = [ (92) d). Identificando

o integrando de df2, a se¢c@o de choque diferencial é dada por

|25 ((E1 + E3) — \/p* +m3 — \/p?>+m3) Q0

do 1 2
O () —— [ apAM(r
) (&r) G+ Epr] J, M) P r P w2

Realizando a substitui¢do F; = +/p? + m? referente a energia da particula 7, a integral sobre a varidvel
p = |ps| é resolvida pela identidade da fun¢do delta de Dirac. Esta propriedade filtra a expressao,

avaliando-a no momento final |p| ditado pela conservacdo de energia, e a expressdo final da segdo



Figura 3: Diagrama de Feynman para o espalhamento e™e~ — u* 1~ em ordem drvore.

de choque diferencial no referencial do centro de massa é

df2 8t ) (Er+ Es)? |p,|’

em que |p,| € a magnitude das componentes espaciais dos quadrimomentos inicias. E ambos, |p,| e

|p |- estdo no referencial do centro de massa.

3.2 Cilculo da secio de choque eTe™ — putpu~

Neste primeiro célculo, iremos determinar a se¢do de choque para o processo de espalhamento

te~ — utp, representado pelo diagrama da Fig. 3. Para isso, foi utilizada a se¢do de choque

(&
diferencial definida na secdo anterior. Entdo, para a determinacio da amplitude, M, sdo aplicadas as

regras de Feynman para a QED no diagrama, obtendo-se a seguinte expressao

— . _Zg v . . v

(2m)* / d'q [a(3)(igen*)v(4)] ( qf ) [0(2)(igey” )u(1)] 6*(q — ps — pa)d* (01 + p2 — @), (22)

em que definimos uma simplificagdo para os espinores; u* (p;) = u(j), tal que s; é o spin e p;

o quadrimomento da particula j. Logo, ao integrar a funcio delta sobre 0 momento interno d*q o

termo no propagador do féton, ¢2, é substituido por (p; + p2)? devido a conservagio de momento nos

vértices. Apods a contracdo dos indices de Lorentz (v com p), tem-se a expressdo para a amplitude
invariante no espago de momento

92
M= ——="—Tu(3)v"v(4)] [0(2)y,u(1)]. (23)
o TN o] 21
A seg¢do de choque, no entanto, depende do médulo da amplitude ao quadrado, | M |2, COmo mos-
trado na Eq. (21). Diante disso, precisamos do complexo conjugado da amplitude acima, utilizando a

propriedade 7¥ = ~”, teremos

[a(Dnv(2)] [0(4)7"u(3)], 24)



e concluimos que o médulo da amplitude ao quadrado €,

2 _ 93 _ " _
M = s U )y a3 a3 o)) 21 (25)

Como os experimentos normalmente nao utilizam feixes polarizados € ndo medem os spins das parti-
culas finais, € necessario calcular a média dos spins iniciais, multiplicando por um fator de 1/4, uma
vez que ha duas particulas no estado inicial com duas possibilidades de orientag@o, e também somar

todas as possiveis configuracdes dos spins finais. Portanto, ficamos com

(IMP) = 1 3 i1 QI DEG @ @) @6

spins

e usando a relagdo de completude para particulas e antiparticulas,
Z u® =p+m,
Zv =p-m

em que p = y*p,, € possivel simplificar a soma sobre os produtos dos termos entre colchetes, em um

27)

traco do produto de matrizes gama,

> [@(a)Tyu(d)] [@(a)Tau(d)]" = Te[Ty (gh + my)Ta(ph + ma)]. (28)

spins

Essa simplificagdo para obter a média final de spins para | M|? é chamada de truque de Casimir [6].
Diante disso, a média do médulo da amplitude ao quadrado é reescrita como um produto de dois
tracos, um para cada linha fermidnica,

(IM*) = iﬁﬂ [7u¢47up3] Tr [%pl%%} . (29)

O célculo subsequente dos tragos, através de identidades da algebra de Dirac, por exemplo {7#, 7"}
2g"", e da contracdo dos indices de Lorentz, permite expressar a amplitude em funcdo dos quadrimo-

mentos,
(IMP) = =2 (i) ) + (- )2 o). 60)
(p1 + p2)*
Supondo o regime de altas energias, onde todas as particulas podem ser tratadas como nao massi-
vas, e empregando o referencial de centro de massa, ilustrado na Fig. 2, a energia das particulas I,

o quadrado da energia disponivel no centro de massa, (p; + p2)?, € os produtos escalares requeridos
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Figura 4: Diagrama de Feynman para o espalhamento e™e™ — ¢q.

pela Eq. (30) resultam em

E; = |pil, (p1 + p2)? = 2p1 - pp = 4E7,

(31
p1-p3 =po-ps = E(1 —cosf), P1-ps=po-p3 = EF(1+cosb),

em que # € o angulo de espalhamento mostrado na Fig. 2.
A insercdo destas relagdes cinemadticas na Eq. (30) permite explicitar a dependéncia angular da

amplitude ao quadrado média através de
(M) = g2(1 + cos? 0). (32)

Finalmente, € possivel obter a secdo de choque, inserindo a expressao final obtida na Eq. (32) na
secao de choque diferencial Eq. (21) e integrando sobre o angulo sélido, df2. Diante disso, a expressao

final obtida para a se¢ao de choque de normalizagao é

2
dras,,

3s '

+

ole"e™ = ) |Lomu—o0 = (33)

em que a,, ¢ a constante de estrutura fina em termos da constante de acoplamento eletromagnética,
e, definida como «a,, = ¢?/4m, em unidades naturais. A cinemdtica do processo é regida pela
varidvel de Mandelstam s = (p; + p2)?, que corresponde ao quadrado da energia disponivel no

referencial do centro de massa.

3.3 Cailculo da seciio de choque para ete™ — gq com m, = 0

O cdlculo da se¢do de choque para o processo de espalhamento eTe™ — ¢g é andlogo ao caso
do espalhamento em muon-antimuon, discutido na se¢do anterior. Ambos 0s processos sao descritos
por um diagrama de Feynman de ordem arvore, conforme ilustrado na Fig. 4. Adotando a mesma
aproximacdo de particulas sem massa € o mesmo referencial de centro de massa, a amplitude de

espalhamento assume uma forma semelhante a da Eq. (23):

2

—Q— @ Ho v u
Mi,j - Qq (p1 +p2)2 [ (3)7 (4)][ (2>’7,LL (1)] 52] (34)
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Esta expressdo difere da anterior em dois aspectos fundamentais. Primeiramente, o fator (), re-
presenta a carga elétrica fraciondria do quark em unidades da carga elementar e. Em segundo lugar,
a delta de Kronecker, ;;, é introduzida para garantir a conservacdo da carga de cor. Uma vez que o
féton mediador € neutro em cor, o quark ¢ e o antiquark j produzidos devem possuir a mesma cor e
anticor, respectivamente. Em seguida, € aplicado novamente o truque de Casimir descrito na Eq. (28)

e a mesma composicao dos quadrimomentos da Eq. (31). Chegando a seguinte expressao
(IMij|*) = (92Qq)*(1 + cos® )82 (35)
No entanto, devemos somar todas as possiveis combinagdes de cor para o par quark-antiquark

final. Essa soma atua sobre o termo (;;)?

Ne

> (6i)? =N.=3, (36)

ij=1

em que N, corresponde ao numero de cargas de cor na QCD.
Combinando todos os elementos, o0 médulo da amplitude ao quadrado final, com média sobre os

spins iniciais e soma sobre os spins e cores finais, é
(IMP) = Ne(Qqg2)*(1 + cos”6). (37)

Logo, seguindo o mesmo procedimento de integracdo da se¢do de choque diferencial da Sec. 3.2,

obtemos a se¢do de choque total para a producdo de um par quark-antiquark de um sabor f especifico

2
drag,,

3s

_ _ 2
o(efe” — QQ)|Lo,mq:0 = ( ) Nch‘ (38)
Finalmente, para obter a se¢do de choque hadronica total em ordem dominante, devemos somar
as contribuicdes de todos os sabores de quarks f que sdo energeticamente acessiveis a uma dada

energia s,

4o
a(e*ew@)ho,mq:o—( m) Ne Y. @ (39)

3s f=u,d,s...
Com o desenvolvimento dos cdlculos para as se¢cdes de choque, tanto hadronica quanto muodnica,
a derivacdo tedrica em ordem darvore estd completa. Agora, pode-se unir esses resultados para se
obter a previsdo em ordem dominante para a razdo R(s), o resultado obtido e suas implicagdes serdo

discutidas na préxima secao.
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3.4 R(s) em ordem dominante

ApOs realizar os célculos das duas se¢des de choque em ordem dominante para 0s processos
de espalhamento eTe™ — utp~ e ete” — ¢q é possivel obter uma primeira aproximagdo para o

observdvel R(s), resultando na seguinte expressao,

0-(€+€7 — QQ)‘LOm =0 2
R(s) ~ — = N, : 40
(5) olete — M+M_)|Lo,mﬂzo f§8 Qf 0

Os sabores f sobre os quais se faz a soma sido determinados pelo regime de energia, de modo que,
a baixas energias, apenas os quarks leves (u, d, s) contribuem para R(s), porém, a medida que a
energia aumenta, ela ultrapassa os limiares de produgdo para os quarks mais pesados, como o charm
e o bottom. Devido ao confinamento dos quarks da QCD, os quarks ndo sao observados livremente;
o limiar fisico para um novo sabor f corresponde, portanto, a energia necessaria para criar um par do
méson mais leve que o contém, por exemplo para o quark charm o limiar € a energia de producdo de
um par DD, pois o méson D é composto por um quark charm e um antiquark leve, /s = 2mp ~
3,74 GeV . Ja para o quark b o limiar fisico é /s = 2mp ~ 10, 56 GeV [5]. A adi¢do da contribui¢do
de cada novo sabor resulta em descontinuidades em R(s) com aumentos sucessivos em seu valor.

Portanto, o resultado numérico para R(s) em ordem dominante (LO) é

p

Rugs = N |37+ (-3 + (-3 =2 V5 <2x187CeVw d 9

R(s) 2 4 Rygse = Ruas + Ne (2)" = X0 2 x 1.87 < /5 < 2x 5.28 GeV (u, d, s, ¢)

| Rudses = Rudse + Ne (—3)" = 1L V5 >2x528GeV (u,d, s, ¢, b)

E importante observar que esse resultado é sensivel ao ndmero de cargas de cor da teoria, N, = 3,
e as cargas elétricas fraciondrias dos quarks, portanto a comparacdo com os dados experimentais €
um bom teste desses aspectos quantitativos da Cromodinamica Quantica.

Nesse contexto, a previsdo tedrica foi comparada, na Fig. 5, com os dados experimentais de 18
experimentos no intervalo de 1,8 GeV < /s < 10,5 GeV, que abrange desde o regime dos quarks
leves, chamado de regime uds, e inclui também o regime udsc, para energias que superam o limiar do
quark charm. As incertezas dos dados experimentais foram obtidas por meio da soma quadratica dos
erros sistemdticos e estatisticos disponibilizados.

A previsdo tedrica em ordem dominante mostra maior concordancia com os dados experimentais
para energias superiores a 3,7 GeV. Contudo, em energias inferiores (entre 1,8 GeV e 3,7 GeV), a
discrepéncia € significativamente maior, da ordem de 10%. Essa diferenca de precisio ocorre por

conta da liberdade assintética de oy, a constante de acoplamento da QCD, que torna a correcao de
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Figura 5: Grafico comparativo entre R(s) teérico em ordem dominante com os dados experimentais.
As referéncias originais dos experimentos podem ser encontradas na Ref. [8].

primeira ordem de R(s) mais significativa em regime de menor energia.

3.5 Caso massivo

Nesta subsecdo, iremos calcular a secao de choque hadronica total em ordem arvore, adicionando
os termos de massas dos quarks. Dessa forma, temos a mesma amplitude M, da Eq. (34), e é aplicado
o truque de Casimir descrito na Eq. (28), para obter a média do médulo da amplitude ao quadrado,
<|M|2> Também foi incluida a soma das possiveis combinagdes de cores; diante disso, obteve-se o

primeiro termo de massa,

Qg?

(p1 -i-pg)Q} [(p1 pa)(p2 - p3) + (p1-p3) (P2 pa) + mg(pl 'p2>] ' @1

() =5, |

Pelo fato de estarmos considerando quarks massivos, a energia das particulas massivas, F;, € 0s

produtos escalares de quadrimomentos requeridos na Eq. (41) sdo

E; = \/ m? + |pi|27

p1L-p3s=po-ps = B} , (42)

pe-ps=pi-pa=E |1+

O produto escalar dos quadrimomentos iniciais p; € p» ndo sofre alteragdes, uma vez que ndo estao

sendo consideradas as massas das particulas iniciais. Entdo, considerando as relagdes cinematicas
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Figura 6: Grafico comparativo de R(s) tedrico com corre¢do da massa do quark charm e os dados
experimentais. As referéncias originais dos experimentos podem ser encontradas na Ref. [8].

estabelecidas na Eq. (42), é explicitada a dependéncia angular de <M/l \2>

2 2
(IMI*) = N.Q%g¢ |1+ (%> +(1- (ﬂ) cos? 6| . (43)
E E
Portanto, seguindo o mesmo procedimento dos célculos anteriores, foi utilizada novamente a ex-
pressdo da secao de choque diferencial do espalhamento de dois corpos no referencial do centro de

massa, descrita na Eq. (21). A expressdo resultante € entdo integrada sobre o angulo sélido, df2, e

somada as contribuicdes de todos os sabores de quarks, f, energeticamente acessiveis, resultando em

Ao 4m? 2m>
oe*e” = q@ho = ( 3;’“) Ne Y, Qu1-—7 (1 + Tf) . (44)
f=u,d,s...

A partir deste resultado, podemos construir uma nova expressao para R(s), normalizando a se¢do de

choque hadronica total com a Eq. (33). Agora, considerando as massas dos quarks, obtém-se um novo

Am2 2m?>
R(s)=Nc > Q¥f1- Sf(1+ Sf), (45)
f=u,d,s...

que também pode ser reescrito em termos da velocidade relativistica 3y = /1 — 4mfc /s, que repre-
senta a velocidade do quark f no CM, dessa forma tem-se

resultado para R(s),

3 — 2
R(s)=Nc Y. chﬁf( Qﬁf). (46)

f=u,d,s...
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O comportamento de R(s) com essa corre¢do € ditado pelo termo da velocidade relativistica, (.
No limiar de producdo, /s = 2my, a velocidade ; é nula. Para energias ligeiramente acima do
limiar, \/s > 2my, o R(s) cresce linearmente com a velocidade o< ;. Finalmente, no limite de
altas energias, s > 4mf£, Br — 1 e a expressdo converge para o resultado do caso ndo massivo dado
na Eq. (40). Conclui-se, portanto, que as correcdes de massa sdo relevantes na regido de transicao
préxima ao limiar, e garantem uma descri¢do continua de R(s), que deixa de apresentar saltos em
cada limiar de producdo como visto no grifico da Fig. 5. Este comportamento € confirmado pelo
gréafico da Fig. 6, que mostra o resultado da Eq. (46) em comparag¢do com os dados experimentais.

Nesse gréfico, utilizaram-se os mesmos dados experimentais e o célculo das incertezas do gra-
fico anterior, exibido na Fig. 5. Na curva tedrica, foi considerada apenas a correcdo de massa
para o quark charm, tratando os quarks leves como niao massivos. Esta simplificacdo € justificada
quantitativamente. Em uma energia de /s = 4 GeV, o fator de corregdo Cy = [(3 — f7)/2
para o quark strange, com m,(2GeV) = 92,7 & 0,5 MeV? [5], introduz uma modificacdo des-
prezivel de aproximadamente 0,0002%. Na mesma energia, no entanto, a corre¢do do charm, com
me(me) = 1,275+ 0,009 GeV [5], € significativa, ~ 7, 2%. Destaca-se também que, para descrever
o limiar fisico da producdo de hadrons com charm, o modelo utiliza uma massa efetiva de 1,87 GeV
(préxima a massa do méson D)), em vez da massa de quark livre determinada pelo PDG.

Nesta sec¢do, realizamos os cdlculos do observdvel R(s) em ordem dominante, utilizando o for-
malismo da Eletrodindmica Quéntica, abordado na Sec. 2 deste trabalho. Também foram discutidas
algumas caracteristicas da Cromodinamica Quantica, como o nimero de carga de cor, a carga elétrica
fraciondria e o confinamento dos quarks. Até o momento, obtivemos o primeiro termo da expansao
perturbativa, de ordem 2, para o nosso observavel. Na préxima se¢do, exploraremos alguns aspectos
do processo de renormaliza¢do para encontrar a dependéncia explicita da energia para a,(s) a um

loop e, depois, adicionaremos as corre¢des de ordem superior em R(s).

4 Correcoes de O (o) para o R(s)

A corre¢do que considera os efeitos da Cromodindmica Quéntica no observavel R(s) é de ordem
as , sendo de ordem superior, em inglés next leading order (NLO). Ela considera duas classes de
diagramas, a emissdo de gldons reais pelo par quark-antiquark, e a troca de um gldon virtual entre
eles, ilustrados na Fig. 7. No entanto, para considerar essas contribuicdes, primeiro € necessario

entender o comportamento da prépria constante de acoplamento .

%A massa dos quarks nio é uma quantidade fisica; ela é um pardmetro definido em um esquema de renormalizacio,
que depende da energia. Por convencdo, m¢ € dada em uma escala de 2 GeV, enquanto m., em m, (mu) =m, GeV.
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Figura 7: Diagramas NLO para R(s): emissdo real (os dois primeiros) e virtual (o dltimo).

4.1 A evolucao de a; a um loop

A constante de acoplamento forte da QCD, «,, ndo € constante, e seu valor depende da faixa
de energia que estd sendo considerada. Em baixas energias, a constante de acoplamento € grande,
as ~ O(1), e nesse regime ndo se pode utilizar a teoria perturbativa. Felizmente, em altas energias,
as torna-se suficientemente pequena e o tratamento perturbativo € valido. A evolucdo de o, com a
energia estd intimamente relacionada ao processo de renormalizacdo [9].

A renormaliza¢do da QCD € mais complexa que a da QED, principalmente devido a autointeragao
dos glions. Para a constante de acoplamento forte, o, existem 3 classes de diagramas a um loop:
polarizacdo do vacuo (4 diagramas), corre¢ao dos vértices (3 diagramas) e auto-energia dos quarks (1
diagrama) [10]. Os cdlculos desses diagramas nos levam a integrais divergentes, por isso é adotado
um processo de renormalizacdo que produzird resultados finitos. No entanto, é necessdrio que as
quantidades fisicas sejam independentes do processo de renormaliza¢ido adotado, sendo essa exigén-
cia explicitada pela equacdo do grupo de renormalizacdo (RGE). Entao considerando uma quantidade
fisica R(q, as, m), em que ¢ ¢ 0 momento externo, a; = «,(s)/m é a constante de acoplamento da
QCD e m € amassa do quark renormalizadas por um parametro de escala de renormalizagdo arbitrario

1, sabe-se que a quantidade fisica é independente de 1, logo tem-se a RGE para R(q, a5, m) [11]:

'ud,u q, as, - H’alu Mdﬂ aas /“’Ldlu am

} R(q,as,m) =0, 47)

em que a, (1) € m(u), e dessa equagio sdo definidas® as funcdes do grupo de renormalizagdo [3 € vy

dag

Blas) = —p—= = Brag + Bra + -+
m
dm

y(ae) = L2 — yia, 4 ypa + -
m dp

Como estamos considerando somente corre¢des de um loop em «,, € necessario conhecer apenas o
coeficiente 5y [11],
1
b = 6(11Nc — 2Ny). (48)

3Existem vdrias definicdes para essas funcdes na literatura. O sinal de nossa fungio 3 é oposto a definicdo tradicional,
de modo que em nossa defini¢do 3, > 0.
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Figura 8: Evolucdo de a,(s) a um loop, para diferentes valores de entrada (), conforme prevista
pela Eq. (51)

Note que 3; dependerd do nimero de cor, N, = 3 e do nimero de sabores ativos, N; < 6, logo

B1 > 0. Dessa forma, a fun¢io /3, em primeira ordem, se reduz a

(49)

Diante disso, pode-se resolver a equacao diferencial ordindria da Eq. (49),

1 as(u2) g . H2 g
_/ izz_/ gy (50)
A as(u1) s wm M 2

e ao realizar as integrais, encontramos a evolucio da constante de acoplamento a um loop, supondo

conhecido a,(j41) em uma escala de energia fi;, tem-se

O‘S(/ll)
1 — 23, In(py / pz)

as(pi2) = &1y

Como visto anteriormente, 3; > 0, logo «(f2) decresce com o aumento da energia /1o, € quando
fo — 00, tem-se a; — O conforme ilustrado no gréfico da Fig. 8. Esse comportamento € a célebre
liberdade assintotica da QCD. Ela significa que a interacao forte fica mais fraca em altas energias,
i, o que equivale, pela relacdo r ~ hc/pu, a curtas distincias. E essa propriedade que valida o
uso da teoria de perturbagdo nesse regime. E em baixas energias, longas distancias, a; ~ O(1),
indicando um colapso da abordagem perturbativa. No grafico, também € explicitado como a escolha
do seu valor de entrada para c(y) influencia na evolugdo de aj(u2) a um loop. A presenca do
termo logaritmico In(zx; /pus), que aparece na Eq. (51), introduz um actimulo de erro significativo se
as escalas forem muito distintas, diante disso, é preferivel escolher a escala de referéncia j; proxima
as escalas de energia de uo de interesse. Essa influéncia da escolha da escala de referéncia, o),

diminui drasticamente quando se consideram as correcdes da funcdo S a 5 loops.
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Figura 9: Corre¢des de R(s) em NLO nos regimes uds (gréafico a esquerda) e udsc (grafico da direita).
As referéncias originais dos experimentos podem ser encontradas na Ref. [8].

42 R(s) em NLO

Com a compreensio da evolugdo de a;(s) a um loop, pode-se considerar a primeira corre¢io da
QCD ao observavel R(s). Embora o célculo explicito das contribui¢des dos diagramas da Fig. 7 esteja
além do escopo deste trabalho, o resultado final incorpora uma modificag¢do crucial na expressao de
R(s) (8],

R(s)=Ne Y. @ (1 + O‘S<S)) . (52)

f=ud,s... T

Esta correcdo permite uma andlise quantitativa do impacto da QCD. Por exemplo, em uma escala
de energia de 2 GeV, no regime uds, onde a4(2 GeV) =~ 0.295, o que resulta em R(s) = 2(1 +
0.094) ~ 2.19, uma corre¢do de aproximadamente 10% sobre o valor de ordem dominante. Em
contraste a 4 GeV, no regime udsc, a constante de acoplamento é menor, (4 GeV) ~ 0.215, ¢ a
corre¢do NLO cai para 6, 84%. Esta diminui¢do na magnitude da corre¢do com o aumento da energia
¢ uma manifestacdo da liberdade assintética, como discutido na subsecdo anterior.

A previsdo tedrica para R(s) da Eq. (52) foi comparada com os mesmos dados experimentais
utilizados anteriormente. Os graficos, apresentados na Fig. 9 realizam a comparag@o em dois regimes
distintos de energia, os regimes uds e udsc, respectivamente. As curvas tedricas nesses graficos foram
geradas utilizando o valor de a,(s) para cada ponto de energia obtido através da evolugdo a um loop
descrita pela Eq. (51) e usando como valor de referéncia a(2 GeV) = 0,295 [8], para o regime uds
e as(4GeV) = 0,215 [5], para o regime udsc. E importante notar que, para gerar as curvas tedricas
em cada um dos regimes de energia plotados, utilizou-se um valor de referéncia o () diferente para
iniciar a evolu¢do. Conforme discutido na secdo anterior, esta escolha visa minimizar a magnitude
do termo logaritmico na Eq. (51), otimizando assim a precisdo da previsdo perturbativa baseada na
evolucdo de oz a um loop. Observa-se nos graficos uma melhora significativa na concordancia entre a
teoria e os dados experimentais ao se incluir a corre¢@o de primeira ordem da QCD. Portanto, além de

R(s) testar o nimero de cargas de cor, N, = 3, e a carga elétrica fraciondria dos quarks, ele nos mostra
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que a dinamica da QCD leva a corre¢des significativas e estd em bom acordo com o experimento.

5 Conclusao

Neste trabalho, estudamos o observavel R(s) construido a partir da se¢do de choque inclusiva
para o processo de espalhamento ete™ — hadrons, no regime da QCD perturbativa, com o objetivo

de comparar as previsdes do modelo com dados experimentais.
0

s

Primeiramente, foi desenvolvida a sua expressao tedrica em ordem dominante (LO), de ordem «
utilizando o formalismo da Eletrodinamica Quantica para diagramas de Feynman em ordem &arvore.
Esta primeira aproximagdo demonstrou a sensibilidade fundamental de R(s) a carga elétrica fracio-
ndria dos quarks e o numero de cargas de cor, /N, = 3, permitindo a verificacdo experimental dessas
quantidades. A andlise dos limiares de energia também permitiu uma discussao qualitativa do confi-
namento de cor da QCD, justificando que o limiar fisico para um novo sabor corresponde a energia
de produgio de um par de mésons, por exemplo para o quark charm, tem-se /s ~ 2mp. Em seguida,
ainda com o formalismo da QED, foi calculada a corre¢ao de massa para os quarks do estado final,
com o objetivo de obter uma fungdo continua para R(s), tratando as descontinuidades nos limiares da
energia de producao.

Posteriormente, foi estudada a primeira corre¢éo da QCD a R(s) (NLO), que corrige o resultado
em LO por um termo de ordem . Nesse estudo, foram explorados alguns aspectos do processo
de renormalizac@o para encontrar a dependéncia explicita da energia para «,(s) a um loop. Depois,
foi discutida a evolugdo de a,(s) a um loop, e foi levada em conta na corre¢do de ordem superior a
R(s). A corre¢do NLO sobre o valor dominante é de aproximadamente 10% em /s = 2 GeV, mas
cai para =~ 6,84% em /s = 4 GeV. Dessa forma, nossa expressio tedrica indica que a interagdo forte
se torna mais fraca em energias mais altas, validando o uso da teoria de perturbagcdo. Observou-se
que essa corre¢ao melhorou significativamente a concordancia entre a teoria e os dados. Com isso,
foi mostrado que, ao considerar a dindmica da QCD no cdlculo de R(s) houve um bom acordo com o
experimento.

Em suma, este trabalho demonstrou como o observavel R(s), analisado através da QCD perturba-
tiva, serve como uma ferramenta robusta para sondar e quantificar as propriedades fundamentais da

interagdo forte.
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