
Trabalho de Conclusão de Curso

Submetido em 2024

Aplicação de Machine Learning para Identificação e Distinção de

Movimentos da Mão Baseados em Dados Eletromiográficos do Antebraço

Autores

Bárbara Nery de Souza

Vitor Ferreira Paschoal

Departamento de Engenharia Elétrica e de Computação - EESC/USP

Orientador

Profº Dr. Alberto Cliquet Junior

Departamento de Engenharia Elétrica e de Computação - EESC/USP

São Carlos, SP

Novembro de 2024

1

AUTORIZO A REPRODUÇÃO E DIVULGAÇÃO TOTAL OU PARCIAL DESTE
TRABALHO, POR QUALQUER MEIO CONVENCIONAL OU ELETRÔNICO,
PARA FINS DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE.

Ficha catalográfica elaborada pela Biblioteca Prof. Dr. Sérgio Rodrigues
Fontes da EESC/USP

 Souza, Bárbara Nery de

S729a Aplicação de machine learning para identificação e

distinção de movimentos da mão baseados em dados

eletromiográficos do antebraço / Bárbara Nery de Souza,

Vitor Ferreira Paschoal; orientador Alberto Cliquet

Junior. -– São Carlos, 2024.

 Monografia (Graduação em Engenharia Elétrica com Ênfase

em Eletrônica) -- Escola de Engenharia de São Carlos da

Universidade de São Paulo, 2024.

 1. Inteligência artificial. 2. Classes.

3. Classificação. 4. Movimentos. 5. Acuracia. 6. Precisão.

7.Matriz de confusão. I. Paschoal, Vitor Ferreira.

II. Titulo.

Elaborado por Elena Luzia Palloni Gonçalves – CRB 8/4464

FOLHA DE APROVAÇÃO

Nome: Bárbara Nery de Souza

Título: "Aplicação de Machine Learning para Identificação e
Distinção de Movimentos da Mão Baseados em Dados
Eletromiográficos do Antebraço"

Trabalho de Conclusão de Curso defendido e aprovado
em..?1 /...!!,__/co2J,

./

com NOTA ~/ ~ (n ll vt.. , u..,, LO). pela Comissão Julgadora:

Prof. Titular Alberto Cliquet Júnior - Orientador - SEL/EESC/USP

Dr~ Orivaldo Lopes da Silva - EESC/USP

Prof. Titular Ivan Nunes da Silva - SEL/EESC/USP

Coordenador da Coe-Engenharia Elétrica - EESC/USP:
Professor Associado José Carlos de Melo Vieira Júnior

This document was created by an application that isn't licensed to use nova PDF.
Purchase a license to generate PDF files without this notice.

https://v3.camscanner.com/user/download

Agradecimentos

Eu, Vitor Paschoal, gostaria de agradecer, antes de tudo, à minha família, Carlos,

Silvia e Mariana. Sou muito grato por todo apoio que me deram, todas as dificuldades

que passaram para me fazer chegar onde estou agora e por sempre estarem comigo em

cada passo da minha caminhada. Agradeço à minha namorada Isadora por ter me ajudado

sempre que precisava e por me apoiar a cada dia. Sou muito feliz por ter vocês em minha

vida e tenho certeza que se não fosse por ter todos ao meu lado seria mais difícil chegar

aqui. Agradeço à Deus por ter me dado saúde e entendimento para poder desenvolver

esse trabalho. E, por fim, agradeço ao professor Alberto Cliquet por fazer com que esse

trabalho se tornasse possível.

Eu, Bárbara Nery, agradeço à minha família (Edla, Debora, Aírto e Rodney) e aos

meus amigos Harumy, Marielle, Beatriz, Vitor e Norberto por todo suporte e amor; agra-

deço por, em momentos diferentes, terem tido o zelo de me colocar em pé no caminho da

vida. Agradeço à mãe USP pelo presente que foram esses intensos anos de engenharia e

vivência universitária na história dessa sertaneja peregrina, curiosa demais para se limi-

tar geograficamente. E, por fim, agradeço ao professor Alberto Cliquet pelas cuidadosas

orientações e esforço constante em despertar nos alunos o amor pela área.

Sumário

1 Introdução Médica 10

1.1 Células Neuronais e Contração Muscular 10

1.1.1 Impulsos Elétricos pela Bainha de Mielina 16

1.2 Fisiologia do Músculo Esquelético . 17

1.3 Anatomia e Função dos Músculos do Antebraço 19

1.4 Formas de Captação e Características dos Sinais Eletromiográficos 22

1.5 Impacto médico-social . 24

2 Introdução à Base de Dados 25

3 IAs e suas Diferentes Estruturas 34

3.1 Funcionamento de uma IA . 34

3.2 Tipos de IA . 35

3.2.1 Inteligência Artificial Estreita (ANI) 35

3.2.2 Artificial General Intelligence (AGI) 36

3.2.3 Artificial Super Intelligence (ASI) 36

3.3 Etapas de Funcionamento . 36

3.4 Modelos de Treinamento de Inteligência Artificial 37

3.4.1 Aprendizado Supervisionado . 37

3.4.2 Aprendizado Não Supervisionado 38

3.5 Estruturas e Bibliotecas Empregadas . 40

3.5.1 TensorFlow . 40

3.5.2 Keras . 40

3.5.3 NumPy . 41

3.5.4 Pandas . 41

3.5.5 Matplotlib . 41

3.5.6 Scikit-learn . 41

3.5.7 Seaborn . 41

3.5.8 Graphviz . 42

3.5.9 OS . 42

4 Análise dos Dados 42

4.1 K-means e o Método do Cotovelo . 42

3

4.1.1 Código . 44

4.1.2 Estrutura do Código . 45

4.1.3 Output . 48

4.2 Criação do Código K-NN Classifiers . 49

4.2.1 Código . 50

4.2.2 Estrutura do Código (Primeira Parte) 52

4.2.3 Estrutura do Código (Segunda Parte) 56

4.2.4 Output . 58

4.3 Criação do Código Decision Tree . 58

4.3.1 Código . 60

4.3.2 Estrutura do Código . 62

4.3.3 Output . 67

4.4 Criação do Código Scatter Maps . 67

4.4.1 Estrutura do Código . 69

4.4.2 Output . 73

4.5 Criação do Código Scatter Maps 3D . 75

4.5.1 Output . 77

4.6 Criação do código Matriz de Confusão Multi-Classe com K-NN 79

4.6.1 Output Inicial . 81

4.6.2 Aperfeiçoando a Visão dos Dados 81

4.6.3 Output . 83

4.7 Criação do código Matriz de Confusão Multi-Classe com DT 85

4.7.1 Output . 86

4.8 K-means para Análise das Classes . 88

4.8.1 Output . 90

4.9 Análises Secundárias . 91

4.9.1 Naive Bayes . 91

4.9.2 Gradient Boost Decision Trees . 96

4.9.3 Random Forest . 97

5 Comparação da Análise com os Movimentos 98

6 Decisões Sobre Quais Movimentos e Eletrodos 98

6.1 Diminuição dos sensores de entrada . 99

4

6.2 Filtragem de classes . 100

6.2.1 Retirada da classe 6 . 100

6.2.2 Somente as 6 primeiras classes . 102

6.2.3 3 classes mais importantes . 104

7 MLP Final 106

7.1 Código . 106

7.1.1 Importações de Bibliotecas . 111

7.1.2 Funções Principais . 112

7.1.3 Carregamento dos Dados . 112

7.1.4 Preparação dos Dados . 112

7.1.5 Criação e Compilação do Modelo 113

7.1.6 Treinamento do Modelo . 113

7.1.7 Avaliação do Modelo . 113

7.1.8 Visualização . 113

7.1.9 Importante Destacar . 113

7.2 Output . 114

7.2.1 Arquitetura . 114

7.2.2 Última época . 114

7.2.3 Gráfico de Perda . 115

7.2.4 Parâmetro da época 10 . 116

7.2.5 Teste do modelo . 117

8 Conclusões 119

5

Lista de Figuras

1 Representação dos neurônios motor (a) e sensorial (b) [1]. 11

2 Propagação do impulso no nervo [2]. 13

3 Diferentes perspectivas da placa motora: A - corte longitudinal através

da placa motora; B - visão da superfície da placa motora; C - aspecto na

micrografia eletrônica do ponto de contato entre um terminal isolado de

um axônio e a membrana da fibra muscular. [3]. 14

4 Liberação de acetilcolina das vesículas sinápticas na membrana neural da

junção neuromuscular. [3]. 15

5 Organização do músculo esquelético do nível macroscópio ao molecular,

onde as letras F,G,H e I indicam cortes transversais. [3]. 18

6 Neurônio motor. Adaptado de [4]. 19

7 Representação esquemática da geração do sinal eletromiográfico de um mús-

culo a partir da somatória dos trens de MUAPs das n unidades motoras

desse tecido [5]. 22

8 Eletromiogramas e potenciais de ação da unidade motora. A) mostra o

torque de flexão plantar durante uma contração de rampa isométrica, de

0 a 40% MVC. EMGs de superfície e intramusculares registrados do mús-

culo gastrocnêmio medial estão representados em B) e C), respectivamente.

Breves epoches desses sinais são mostrados em D) e E). [6]. 23

9 Diagrama de blocos simplificado mostrando cada uma das principais eta-

pas referentes à aquisição de eletromiogramas de superfície: (1) a detecção

dos potenciais mioelétricos com eletrodos de superfície e um eletrodo de

referência, ilustrados esquematicamente no epicôndilo medial do úmero;

(2) a amplificação desses potenciais com amplificadores diferenciais; (3)

filtragem analógica dos potenciais amplificados para evitar aliasing e, fi-

nalmente; (4) a amostragem do eletromiograma de superfície em valores

digitais de voltagem para serem armazenados em um computador (5) [6]. . 24

10 Antebraço na posição neutra (0) . 26

11 Antebraço com pulso estendido (1) . 27

12 Antebraço com pulso flexionado (2) . 27

13 Antebraço com desvio ulnar (3) . 28

14 Antebraço com desvio radial (4) . 29

6

15 Antebraço com punho fechado (5) . 30

16 Antebraço com abdução dos dedos (6) . 31

17 Antebraço com adução dos dedos (7) . 32

18 Antebraço na posição supinada (8) . 33

19 Antebraço na posição pronada (9) . 34

20 Fluxo de trabalho de aprendizagem supervisionada [7]. 38

21 Fluxo de trabalho de aprendizagem não supervisionada [7]. 39

22 Fluxo de trabalho de aprendizagem não supervisionada [7]. 40

23 Output k-means (método do cotovelo). 48

24 Output K-NN. 58

25 Output Decision Tree. 67

26 Output Scatter Maps. 75

27 Output Scatter Maps 3D sensores 1, 2 e 3. 77

28 Output Scatter Maps 3D sensores 1, 2 e 4. 78

29 Output Scatter Maps 3D sensores 1, 3 e 4. 78

30 Output Scatter Maps 3D sensores 2, 3 e 4. 79

31 Output Inicial da Matriz de Confusão Multi-Classe com K-NN. 81

32 Output Matriz de Confusão Multi-Classe com K-NN. 84

33 Output Matriz de Confusão Multi-Classe com DT. 88

34 Distância entre os centroides dos clusters. 91

35 Acurácia Naive Bayes Classifier. 95

36 Acurácia do K-NN sem os sensores 1 e 3 99

37 Distância entre clusters sem os sensores 1 e 3 100

38 Acurácia do K-NN sem a classe 6 . 101

39 Distância entre clusters sem a classe 6 . 101

40 Acurácia do K-NN somente das 6 primeiras classes 102

41 Distância entre clusters somente das 6 primeiras classes 103

42 Matriz de confusão somente das 6 primeiras classes 104

43 Acurácia do K-NN referente aos 3 primeiros movimentos 105

44 Matriz de confusão referente aos 3 primeiros movimentos. 105

45 Arquitetura final da MLP. 114

46 Matriz de confusão da época 10. 115

47 Gráfico da perda de todas as épocas. 116

48 Dados da Matriz de Confusão Final do Teste. 117

7

Nomenclatura

Ca+ Íons de cálcio

K+ Íons de potássio

Na+ Íons de sódio

Ag Prata

AgCl Cloreto de prata

AGI Inteligência Artificial Geral

ANI Inteligência Artificial Estreita

ASI Superinteligência Artificial

DT Árvore de decisão

EMG Eletromiograma

IA Inteligência Artificial

K-NN K-Nearest Neighbor

MLP Multi-Layer Perceptron

MUAPT Motor Unit Action Potential Train

OS Operating System

PCA Principal Component Analysis

SVM Support Vector Machine

8

Resumo

Este documento relata os passos tomados durante o desenvolvimento de um

Multi-Layer Perceptron (MLP) para treinar uma inteligência artificial (IA) espe-

cializada na identificação de gestos da mão utilizando sinais eletromiográficos dos

músculos do antebraço. Contudo, o projeto também explorou a qualidade da base de

dados utilizada, considerando características anatômicas, que guiaram o processo.

Para essa análise, empregou-se algoritmos de aprendizado não supervisionado, como

o K-means, na criação de um gráfico do método do cotovelo e para a criação de

clusters para avaliar as distâncias entre eles. Ainda, utilizou-se algoritmos de apren-

dizado supervisionado, como K-NN, árvore de decisão e Random Forest. Além disso,

para melhorar a visibilidade dos dados e resultados dos treinamentos, foram desen-

volvidos códigos para a plotagem de mapas de dispersão e matrizes de confusão

multi-classe, respectivamente. Desse modo, como resultado, ao final da avaliação

dos dados e de sua filtragem, foi possível atingir um modelo de identificação com

acurácia de 83,36%, precisão de 83,75%, recall de 83,36% e F1 Score de 83,41%.

Palavras-chave: inteligência artificial, acurácia, precisão, classes, movimento,

EMG, MLP

9

1 Introdução Médica

1.1 Células Neuronais e Contração Muscular

Neurônios (ou células nervosas) são os blocos de construção do cérebro. Embora

tenham os mesmos genes, a mesma organização geral e o mesmo aparato bioquímico que

outras células, eles também têm características únicas que fazem o cérebro funcionar de

uma maneira singular. As especializações importantes do neurônio incluem um formato de

célula distinto, uma membrana externa semipermeável capaz de gerar impulsos nervosos

e uma estrutura única capaz de gerar sinapses para transferir informações de um neurônio

para o outro [2].

Os neurônios possuem três partes principais, cada uma com funções específicas: o

corpo celular (ou soma), os dendritos e o axônio. O corpo celular abriga o citoplasma, o

núcleo e as organelas [8].

O processo de contração muscular é desencadeado pelo potencial de ação gerado pelo

neurônio motor, resultando em potenciais de ação nas fibras musculares. Esses potenciais,

quando somados, formam o sinal eletromiográfico que leva à contração muscular.

Se tratando dos neurônios motores (responsáveis por controlar diretamente a contração

das fibras musculares) o corpo celular está situado entre os dendritos e o axônio, já em

alguns neurônios sensoriais, está localizado discretamente na borda do axônio.

10

Figura 1: Representação dos neurônios motor (a) e sensorial (b) [1].

No geral, o corpo celular tem forma aproximadamente esférica ou piramidal. Os

dendritos são extensões delicadas em forma de tubo que tendem a se ramificar e formar

uma árvore espessa ao redor do corpo celular, o que permite uma grande área de contato

para a recepção dos sinais de entrada.

O axônio se estende para longe do corpo celular e fornece o caminho pelo qual os sinais

podem viajar do corpo celular por longas distâncias para outras partes do cérebro e do

11

sistema nervoso. O axônio difere dos dendritos tanto na estrutura quanto nas propriedades

de sua membrana externa.

A maioria dos axônios é mais longa e mais fina do que dendritos (até um metro

de comprimento) e exibe um padrão de ramificação diferente: enquanto os ramos dos

dendritos tendem a se agrupar perto do corpo celular, os ramos dos axônios tendem a

surgir na extremidade da fibra onde ele se comunica com outros neurônios ou glândulas,

contendo estruturas denominadas botões sinápticos [2].

A membrana do neurônio, como a membrana externa de todas as células, tem cerca

de cinco nanômetros de espessura e consiste em duas camadas de moléculas lipídicas

dispostas com suas extremidades hidrofílicas apontando para a água tanto no interior

quanto no exterior da célula e com suas extremidades hidrofóbicas apontando para longe

da água, formando o interior da membrana [2].

Ao receberem um impulso nervoso, essas estruturas liberam substâncias químicas (cha-

madas neurotransmissores) responsáveis por transmitir sinais de um neurônio para outro

[3].

A função primordial do axônio é transmitir informações na forma de pulsos regene-

rativos (sem atenuação) para diferentes partes do sistema nervoso e do organismo. Seu

papel no sistema nervoso periférico envolve os aferentes conduzindo informações sensoriais

para dentro do sistema neural e os eferentes destinando os comandos do sistema nervoso

central aos efetores do corpo.

O potencial de ação se define por rápidas variações nos potenciais interno e externo

da membrana celular nervosa, seu desenvolvimento ocorre da seguinte forma:

1. Círculo vicioso de feedback positivo abrindo os canais de sódio:

Levando em conta que a membrana da fibra nervosa permaneça sem perturba-

ção, não há potencial de ação atuando no nervo normal. No entanto, ocorrendo

um evento capaz de elevar de −90 milivolts para o nível zero [3] o potencial da

membrana, o próprio aumento de tensão implica na abertura de múltiplos canais

de sódio regulados por ela. Isso possibilita o influxo rápido de íons sódio (Na+),

resultando em um maior aumento do potencial de membrana e, consequentemente,

na abertura de mais canais regulados pelo nível de tensão e permitindo um fluxo

mais intenso de Na+ para o interior da fibra.

Tal processo é denominado círculo vicioso de feedback positivo e, uma vez que ele

seja suficientemente intenso, permanece até a ativação (abertura) de todos os canais

12

de sódio regulados pela tensão. Então, em outra fração de milissegundo, o aumento

do potencial de membrana causa o fechamento dos canais de sódio e a abertura dos

canais de potássio (K+), e o potencial de ação se encerra.

2. Repolarização:

Após total despolarização dessa área da célula, a membrana torna-se novamente

impermeável ao Na+, embora se mantenha permeável aos íons K+. Em virtude da

alta concentração de íons positivos no interior da célula nervosa, grandes quantidades

de íons potássio voltam a se difundir para o meio externo, fazendo com que essa

região no interior da célula nervosa volte a ser negativa.

Nessa situação o neurônio torna-se novamente apto a transmitir um novo impulso

nervoso. Na Figura 2 está representada a variação da tensão de uma membrana

nervosa durante o potencial de ação no pulso nervoso.

Figura 2: Propagação do impulso no nervo [2].

13

A descrição dada até então para a transmissão de um impulso nervoso se aplica a

neurônios desprovidos de bainha de mielina. Nos mielinizados o potencial de ação ocorre

apenas nos nódulos de Ranvier, pontos nos quais a membrana plasmática faz contato

direto com o fluído intersticial. Nesse caso uma condução mais rápida e com menos gasto

de energia, chama de saltatória.

A junção neuromuscular de grande fibra nervosa mielinizada com uma fibra muscular

esquelética é representada na Figura 3. A fibra nervosa forma complexo de terminais ra-

mificados que se invaginam na superfície extracelular da fibra muscular. Toda a estrutura

é chamada de placa motora e é recoberta por uma ou mais células de Schwann que a

isolam dos líquidos circunjacentes.

Figura 3: Diferentes perspectivas da placa motora: A - corte longitudinal através da placa

motora; B - visão da superfície da placa motora; C - aspecto na micrografia eletrônica

do ponto de contato entre um terminal isolado de um axônio e a membrana da fibra

muscular. [3].

14

As membranas de ambas as células distam de uma fenda sináptica com entre 20 a

30 nm. Na membrana muscular, em face da goteira sináptica, existem dobras menores

chamadas de fendas subneurais responsáveis por aumentar a área de superfície de atuação

do transmissor sináptico.

Mediante a chegada de um potencial de ação no terminal do axônio, a acetilcolina é

secretada na fenda sináptica. Essa liberação torna a membrana muscular mais permeável

aos íons Na+ devido à ação dos receptores de acetilcolina situados nas fendas subneurais.

O influxo abrupto desses íons no músculo resulta em um potencial de ação muscular que

se propaga nas duas direções da fibra e se alastra da mesma maneira que nas membranas

neurais.

O potencial de ação despolariza a membrana da fibra muscular e também penetra

profundamente no interior dessa. Aproximadamente 0, 2 ms após ser liberada pelas ve-

sículas sinápticas, a acetilcolina é metabolizada em ácido acético e colina pela enzima

acetilcolinesterase.

Essa reação ocorre para que a membrana muscular, localizada na fenda sináptica,

diminua a permeabilidade ao potássio deixando a placa motora novamente apta para

receber um novo estímulo.

Figura 4: Liberação de acetilcolina das vesículas sinápticas na membrana neural da junção

neuromuscular. [3].

15

1.1.1 Impulsos Elétricos pela Bainha de Mielina

A bainha de mielina desempenha um papel crucial na transmissão de impulsos elétri-

cos, ou potenciais de ação, ao longo das fibras nervosas. Este processo é caracterizado

principalmente pela condução saltatória, que aumenta significativamente a velocidade e a

eficiência da propagação do sinal em axônios mielinizados.

Estrutura da Bainha de Mielina

A mielina é uma camada isolante rica em lipídios que envolve os axônios dos neurônios

em segmentos, criando lacunas conhecidas como nós de Ranvier. Esses nós são essenciais

para a condução de impulsos elétricos, pois contêm uma alta densidade de canais de sódio

dependentes de voltagem.

Em contraste com as fibras não mielinizadas (nas quais os potenciais de ação se pro-

pagam continuamente ao longo de toda a membrana) as fibras mielinizadas permitem que

os impulsos "saltem"de um nó para o outro, aumentando muito a velocidade de condução.

[9]

Mecanismo de Condução Saltatória

• Despolarização nos nós - Quando um potencial de ação atinge um nó de Ranvier, ele

causa a abertura de canais de sódio dependentes de voltagem. Íons de sódio (Na+)

correm para o axônio, levando à despolarização naquele ponto específico;

• Fluxo do circuito local - O influxo de íons de sódio gera um circuito local que

despolariza a membrana adjacente no próximo nó. Como a mielina atua como um

isolante, essa corrente não pode fluir através das seções mielinizadas (internós),

mas, em vez disso, viaja através do axoplasma (o citoplasma dentro do axônio) para

atingir o próximo nó [10];

• Transmissão rápida - A alta resistência e a baixa capacitância da bainha de mielina

implicam que menos energia é necessária para despolarizar a membrana entre os

nós. Como resultado, os potenciais de ação podem viajar muito mais rápido (até

100 metros por segundo) em comparação com 1-4 metros por segundo em fibras não

mielinizadas [10].

A natureza segmentar da mielinização permite o uso eficiente de espaço e energia.

Ao minimizar a área que deve ser despolarizada durante a transmissão do impulso, os

axônios mielinizados podem manter uma comunicação rápida por longas distâncias sem

precisar aumentar seu diâmetro significativamente [10]. Essa adaptação é particularmente

16

importante em vertebrados, permitindo funções complexas do sistema nervoso, apesar de

tamanhos corporais maiores.

1.2 Fisiologia do Músculo Esquelético

A arquitetura do músculo esquelético é dada por um arranjo muito particular e bem

descrito de fibras musculares (também chamadas de miofibras ou células musculares) e te-

cido conjuntivo associado [11]. As fibras musculares esqueléticas são de formato cilíndrico

com diâmetros variando entre 10 e 100 µm [12], multinucleadas e pós-mitóticas.

Cada fibra é constituída por uma membrana plasmática chamada de sarcolema con-

tendo centenas de miofibrilas, núcleos celulares e o retículo sarcoplasmático [1]. Na maior

parte, cada núcleo dentro de uma fibra muscular controla o tipo de proteína sintetizada

naquela região específica da célula. Essas regiões são conhecidas como domínios nucleares

e têm um tamanho altamente regulado, mas não constante [13].

Conforme representado na Figura 5 as miofibrilas contém microfilamentos constituídos

por miosina e actina. A disposição espacial dessas proteínas no tecido faz com que o

músculo apresente aspecto estriado. No citoplasma, os íons de cálcio (Ca+) formam um

complexo com tais proteínas levando-as a deslizar uma em direção à outra, caracterizando

a contração muscular. Uma vez cessado o estímulo, restabelece-se o sistema de transporte

ativo do retículo, interrompendo a contração.

17

Figura 5: Organização do músculo esquelético do nível macroscópio ao molecular, onde

as letras F,G,H e I indicam cortes transversais. [3].

A unidade motora é o termo utilizado para descrever a menor unidade muscular con-

trolável. Uma unidade motora é constituída por um neurônio motor, suas junções neuro-

18

musculares e as fibras musculares inervadas por esse neurônio (Figura 6).

Figura 6: Neurônio motor. Adaptado de [4].

1.3 Anatomia e Função dos Músculos do Antebraço

Por apresentarem boa coordenação motora e propriocepção, os membros superiores são

capazes de realizar com maestria atividades recreativas ou laborais, precisas ou grossas.

As mãos são instrumentos delicados do indivíduo e representam o seu elo com o ambiente

[14].

Para assegurar que isso ocorra da maneira correta, os músculos que ditam o movimento

das mãos são essenciais:

1. Músculos intrínsecos - músculos que apresentam origem e inserção nela própria;

19

2. Músculos extrínsecos em relação à mão - músculos originados no antebraço e no

cotovelo.

Existem vinte músculos no antebraço, divididos entre os compartimentos anterior (fle-

xor) e posterior (extensor); cada compartimento recebe a subdivisão de superficial e pro-

fundo [15].

A parte superficial do compartimento anterior do antebraço apresenta um total de

cinco músculos [15]:

• Pronador redondo;

• Flexor radial do carpo;

• Palmar longo;

• Flexor ulnar do carpo;

• Flexor superficial dos dedos.

E a parte profunda desse compartimento contém três [15]:

• Pronador quadrado;

• Flexor profundo dos dedos;

• Flexor longo do polegar.

A parte superficial do compartimento posterior do antebraço apresenta um total de

sete músculos [15]:

• Braquiorradial;

• Extensor radial curto do carpo;

• Extensor radial longo do carpo;

• Extensor ulnar do carpo;

• Extensor dos dedos;

• Extensor do dedo mínimo;

• Ancôneo.

20

E a parte profunda desse compartimento contém cinco [15]:

• Músculo abdutor longo do polegar;

• Músculo extensor longo do polegar;

• Músculo extensor curto do polegar;

• Músculo extensor do indicador;

• Músculo supinador.

No movimento de preensão é necessária uma combinação entre o polegar e os outros

dedos, sendo o anelar e o mínimo os mais importantes para a realização do movimento.

O polegar é o responsável por envolver o objeto no plano contrário aos dedos, devido a

isso ele é chamado de polegar opositor [16].

A mão necessita que ocorra um perfeito sinergismo entre a musculatura extrínseca/in-

trínseca e flexora/extensora para que haja um adequado movimento, seja ele de precisão

ou de força [16].

Os músculos flexores extrínsecos dos dedos proporcionam a principal força para preen-

são. A sinergia, nesse caso, se dá com o extensor comum dos dedos fornecendo estabilidade

aos flexores, os interósseos rodando a primeira falange e flexionando a articulação meta-

carpofalangeana e com os músculos tenares e adutor do polegar proporcionando força de

compressão contra o objeto. Vale salientar que a posição de maior preensão palmar é

a posição funcional do punho caracterizada pela amplitude entre 10◦ de flexão e 35◦ de

extensão [17].

A preensão envolve um movimento que começa com a abertura da mão, seguido pelo

envolvimento do objeto com os dedos e o polegar. O punho é estendido em um ângulo

de 30◦, enquanto ocorre a flexão das articulações metacarpofalangianas e interfalangianas

proximal e distal dos dedos, além d; a abdução do polegar. Para que essa tarefa ocorra

são necessários os músculos: extensor comum dos dedos, extensor próprio do indicador,

extensor próprio do dedo mínimo, extensor radial longo e curto do carpo, lumbricais e

abdutor curto do polegar [17] [18].

Tendo em vista o exposto, qualquer alteração no sistema musculoesquelético do an-

tebraço irá alterar a função da mão em realizar atividades da vida diária, laborais e

esportivas [16].

21

1.4 Formas de Captação e Características dos Sinais Eletromio-

gráficos

A eletromiografia nos permite compreender comportamentos motores intencionais e

automáticos. Após os MUAPTs (Motor Unit Action Potential Train) percorrerem as

fibras musculares e gerarem um campo eletromagnético nas redondezas das fibras, um

eletrodo (situado dentro desse campo) realiza a detecção e análise do eletromiograma

(EMG), ou seja, do potencial elétrico produzido durante as contrações musculares.

Os EMGs podem ser detectados diretamente, através da inserção de eletrodos no

tecido muscular, ou indiretamente, com eletrodos de superfície colocados em áreas da pele

localizadas logo acima do tecido muscular. Os EMGs de superfície geralmente transmitem

informações sobre a ativação muscular, como a intensidade da contração muscular, a

manifestação mioelétrica da fadiga muscular e o recrutamento de unidades motoras [6].

Figura 7: Representação esquemática da geração do sinal eletromiográfico de um músculo

a partir da somatória dos trens de MUAPs das n unidades motoras desse tecido [5].

22

Figura 8: Eletromiogramas e potenciais de ação da unidade motora. A) mostra o torque

de flexão plantar durante uma contração de rampa isométrica, de 0 a 40% MVC. EMGs

de superfície e intramusculares registrados do músculo gastrocnêmio medial estão repre-

sentados em B) e C), respectivamente. Breves epoches desses sinais são mostrados em D)

e E). [6].

Levando em conta a diferença entre os MUAPs, as irregularidades na taxa de disparo

dos neurônios motores e que em uma contração pode haver mais de um músculo envolvido,

o sinal eletromiográfico foi descrito como estocástico [19] [20].

A limpeza da pele é útil para fornecer gravações de EMG com baixos níveis de ruído.

A preparação adequada da pele garante a remoção de pelos corporais, óleos e camadas de

pele escamosa e, consequentemente, reduz a impedância na interface eletrodo-gel-pele.

A atividade mioelétrica aparece na camada epitelial como potenciais elétricos com

largura de banda limitada, de 15 a 400 Hz, e com amplitude muito pequena (de alguns

micro a alguns mili-Volts) pico a pico (dependendo da intensidade da contração muscular)

[6]. Instrumentos muito sensíveis são então necessários para a detecção, amplificação,

condicionamento e digitalização de EMGs de superfície, de acordo com o diagrama de

blocos simplificado mostrado na Figura 9.

23

Figura 9: Diagrama de blocos simplificado mostrando cada uma das principais etapas

referentes à aquisição de eletromiogramas de superfície: (1) a detecção dos potenciais

mioelétricos com eletrodos de superfície e um eletrodo de referência, ilustrados esque-

maticamente no epicôndilo medial do úmero; (2) a amplificação desses potenciais com

amplificadores diferenciais; (3) filtragem analógica dos potenciais amplificados para evi-

tar aliasing e, finalmente; (4) a amostragem do eletromiograma de superfície em valores

digitais de voltagem para serem armazenados em um computador (5) [6].

1.5 Impacto médico-social

A integração de tecnologias avançadas, como interfaces cérebro-computador e apren-

dizado de máquina, está revolucionando o campo das próteses. Por exemplo, empresas

como a Ottobock estão utilizando IA para aprimorar suas próteses biônicas, permitindo

que os usuários realizem movimentos complexos de forma mais natural. Essas inova-

ções facilitam o controle das próteses e oferecem feedback sensorial, proporcionando uma

experiência mais próxima da realidade.

O grande diferencial do desenvolvimento da inteligência artificial proposta, quando

associado à reabilitação de pacientes paralisados e amputados, é a possibilidade que esses

indivíduos controlem próteses ou órteses por meio de impulsos elétricos gerados pelo

próprio cérebro, promovendo uma interação mais natural e intuitiva com as próteses.

Atualmente, a base de dados utilizada abrange apenas os dez movimentos mais simples,

fazendo com que a IA seja limitada. No entanto, ao refiná-la e expandir seu treinamento

para incluir uma gama mais ampla de movimentos e sinais eletromiográficos, será possível

desenvolver próteses e órteses que mimetizam com precisão o funcionamento de membros

24

orgânicos. Essa evolução não apenas melhorará a funcionalidade das próteses, mas tam-

bém contribuirá para a qualidade de vida dos usuários, permitindo-lhes realizar atividades

cotidianas com maior facilidade e autonomia.

2 Introdução à Base de Dados

Esta monografia se fundamenta em uma base de dados composta por sinais EMG, que

retratam 10 movimentos distintos da mão realizados por um grupo de participantes de

diferentes perfis, visando explorar as respostas musculares do antebraço para cada mo-

vimento específico. Esses dados foram registrados utilizando o sistema BIOPAC MP36,

equipado com 4 eletrodos bipolares de superfície do tipo Ag/AgCl, um dispositivo ampla-

mente empregado em estudos de biomecânica e fisiologia.

Para a coleta foram chamados 40 participantes de características distintas para garan-

tir que a IA desenvolvida seja capaz de identificar os movimentos de qualquer individuo.

Ainda, cada participante realizou cinco repetições de cada movimento, totalizando um vo-

lume considerável de dados por participante, permitindo uma análise estatística robusta

e a construção de modelos classificatórios com maior acurácia. Os sinais foram proces-

sados e filtrados em etapas posteriores para assegurar a remoção de ruídos e artefatos,

melhorando a qualidade dos dados antes de sua aplicação nos algoritmos de aprendizado

de máquina.

A respeito dos movimentos, esses englobam desde uma posição neutra até movimen-

tos complexos de flexão e rotação, foram selecionados por sua relevância prática para

aplicações em sistemas de controle baseados em EMG, como próteses e dispositivos de

assistência. Os movimentos, identificados pelos números de 0 a 9, são descritos a seguir.

O primeiro movimento, a posição neutra, corresponde ao estado inicial, no qual o pulso

e os dedos permanecem relaxados e sem movimentos significativos, como na Figura 10.

Em seguida, têm-se a extensão do pulso, que se caracteriza pelo levantamento da mão,

ativando predominantemente os músculos extensores do antebraço, Figura 11. A flexão

do pulso é o movimento oposto à extensão, no qual a mão é movida para baixo, acionando

os músculos flexores, Figura 12.

25

Figura 10: Antebraço na posição neutra (0)

26

Figura 11: Antebraço com pulso estendido (1)

Figura 12: Antebraço com pulso flexionado (2)

27

Além desses, o movimento de rotação ulnar refere-se ao desvio do pulso em direção

ao lado ulnar, ou seja, ao lado do dedo mínimo, Figura 13. Já a rotação radial se dá

pelo desvio do pulso para o lado radial, próximo ao polegar, Figura 14. O fechamento

da mão em um punho envolve uma contração intensa de múltiplos grupos musculares do

antebraço, Figura 15.

Figura 13: Antebraço com desvio ulnar (3)

28

Figura 14: Antebraço com desvio radial (4)

29

Figura 15: Antebraço com punho fechado (5)

Na sequência, a abdução dos dedos implica na abertura dos mesmos para fora, ati-

vando músculos intrínsecos da mão e antebraço, Figura 16, enquanto a adução dos dedos

representa o movimento inverso, em que os dedos se aproximam, Figura 17. Finalmente,

os movimentos de supinação e pronação envolvem, respectivamente, a rotação do ante-

braço para que a palma da mão fique voltada para cima e para baixo, representados

pelas Figuras 18 e 19. Vale ressaltar que esses 4 últimos movimentos são contínuos, ou

seja, diferente dos anteriores, eles são registrados com uma sequência de dados discretos

e essa representa o movimento como um todo, as imagens abaixo foram tiradas durante

o movimento.

30

Figura 16: Antebraço com abdução dos dedos (6)

31

Figura 17: Antebraço com adução dos dedos (7)

32

Figura 18: Antebraço na posição supinada (8)

33

Figura 19: Antebraço na posição pronada (9)

Dessa forma, essa seleção de movimentos permite avaliar um conjunto amplo e diver-

sificado de respostas musculares, possibilitando uma análise robusta dos sinais EMG e a

sua aplicação em algoritmos de machine learning para classificação de movimentos.

3 IAs e suas Diferentes Estruturas

3.1 Funcionamento de uma IA

O princípio básico de operação de uma IA consiste na capacidade das máquinas simu-

larem processos da inteligência humana por meio do aprendizado e refinamento mediante

exposição a uma grande quantidade de dados. Tal processo se dá pela identificação de

padrões e relações.

O aprendizado engloba a utilização de algoritmos, definidos pelo conjunto de instruções

e regras que norteiam as análises e tomadas de decisão da IA. Exemplificando com um

34

subconjunto conhecido de IA, em machine learning os algoritmos são treinados em dados

rotulados ou não rotulados, visando fazer previsões ou mesmo categorizar informações.

Outra aplicação é o deep learning, que se assemelhando à estrutura e à função do

cérebro humano, faz uso de redes neurais artificiais com diversas camadas para processar

as informações.

Assim, aliando apreensão de informações e adaptação constante, os sistemas de IA se

refinam para tarefas específicas como reconhecimento de imagens, categorização de dados

e outras.

3.2 Tipos de IA

3.2.1 Inteligência Artificial Estreita (ANI)

O termo “estreita” da nomenclatura refere-se à limitação da IA de armazenar uma

grande quantidade de dados e realizar tarefas complexas, mas sempre visando o objetivo

específico para o qual foram programadas.

A ANI não possui uma compreensão intrínseca dos dados que processa e carece de

consciência própria. Em outras palavras, essa tecnologia precisa de vastas quantidades de

dados tanto para o treinamento inicial quanto para o aprendizado contínuo ao longo do

tempo.

Além disso, a ANI desempenha um papel fundamental no avanço tecnológico, especi-

almente em áreas como automação de processos, análise de dados e execução de tarefas

específicas. No entanto, essa tecnologia permanece dependente da intervenção humana,

tanto em sua concepção quanto em sua manutenção. Isso faz com que a Inteligência

Artificial Estreita também seja popularmente chamada de “IA limitada” ou “IA fraca”.

Incluídas nessa classificação, há duas subcategorias:

• Máquinas reativas: são projetadas com o intuito de responder a situações específi-

cas com base nas informações que recebem no momento, sem guardar experiências

anteriores ou aprender com elas. Isso significa que não armazenam muitos dados e

reagem a apenas alguns estímulos de acordo com a maneira como foram configura-

das, não tendo assim capacidade de influenciar decisões futuras;

• Memória limitada: é um tipo de sistema que pode utilizar dados passados para

melhorar suas respostas e tomar decisões mais precisas no futuro. Diferentemente

da IA de memória limitada, as máquinas reativas são capazes de armazenar tem-

35

porariamente informações de eventos recentes e usá-las para ajustar suas ações e

decisões.

3.2.2 Artificial General Intelligence (AGI)

É esperado que a Inteligência Artificial Geral apresente o mesmo nível de habilidades

cognitivas de um ser humano (explicando a sua classificação como "IA Forte").

A teoria enuncia que a AGI será capaz de repetir comportamentos como criatividade,

percepção e aprendizado. Podendo resolver problemas, fazer previsões e transferir conhe-

cimentos de uma área para outra.

3.2.3 Artificial Super Intelligence (ASI)

A Superinteligência Artificial é uma projeção futura do tipo mais avançado de IA,

também fazendo parte do grupo denominado "IA Forte".

Estima-se que uma máquina portadora de ASI seja autoconsciente, com o poder de

superar a capacidade e a inteligência humana em praticamente qualquer área.

3.3 Etapas de Funcionamento

Com o surgimento de vários canais de fontes de dados a pesquisa no campo da IA levou

à definição de uma arquitetura de IA canônica que garante um ecossistema de ponta a

ponta [21]. No entanto, vários estudos provaram que a arquitetura de IA requer algumas

etapas para garantir que o processo seja mais eficiente e razoável em tempo de resposta

[22]. Pode-se resumir essas etapas como:

1. Coleta e Preparação de Dados - Etapa que garante a prospecção de dados de múl-

tiplos canais em diferentes formatos (dados estruturados e não estruturados);

2. Escolha do Modelo - É selecionado, mediante análise da tarefa almejada, o tipo de

modelo apropriado;

3. Condicionamento de Dados - Etapa na qual dados heterogêneos (estruturados e

não estruturados) são convertidos em dados de informação bruta após curadoria,

padronização, gerenciamento e rotulagem de dados;

4. Treinamento do Modelo - O modelo ajusta seus parâmetros após alimentação com os

dados de treinamento tendo como base uma função de perda que mede a diferença

36

entre as previsões feitas pelo modelo e as saídas reais. O intuito dessa etapa é

transformar informação em conhecimento;

5. Validação e Ajuste - Etapa que visa avaliar o desempenho do modelo em dados que

não foram utilizados durante o treinamento. Ela prima por evitar a ocorrência de

problemas como o overfitting, onde o modelo se adapta excessivamente aos dados

de treinamento, perdendo a capacidade de generalizar para novos exemplos;

6. Avaliação - Essa etapa verifica se o modelo aprendeu a partir dos dados e se é capaz

de fazer previsões precisas em dados não vistos. Essa avaliação verifica problemas

como:

• Overfitting - Quando há um bom ajuste aos dados de treinamento mas não é

capaz de generalizar para novos dados;

• Underfitting - Quando o modelo é insuficiente na tarefa de capturar os padrões

subjacentes nos dados, resultando em um desempenho fraco tanto nos dados

de treinamento quanto nos dados de teste.

7. Trabalho em equipe homem-máquina - Etapa na qual ocorre a colaboração de hu-

manos para converter o “conhecimento” em ”insight”, que orienta a execução das

ações ou decisões subsequentes [22].

3.4 Modelos de Treinamento de Inteligência Artificial

Sabendo que o treinamento de modelos de inteligência artificial é uma etapa fundamen-

tal para capacitar algoritmos a executarem tarefas específicas, nessa seção são abordados

os principais tipos de aprendizado em IA e suas características com base na literatura

científica.

3.4.1 Aprendizado Supervisionado

Aprendizado supervisionado é a tarefa de machine learning na qual o algoritmo aprende

uma função que mapeia uma entrada para uma saída com base em pares de entrada-saída

de exemplo [7].

No aprendizado supervisionado, os algoritmos necessitam de assistência externa. O

conjunto de dados de entrada é dividido em conjunto de dados de treinamento e teste,

37

enquanto que o conjunto de dados de treinamento tem variável de saída que precisa ser

prevista ou classificada.

Cada exemplo é descrito por um vetor de valores (atributos) e pelo rótulo da classe

associada. O objetivo do algoritmo é construir um classificador que possa determinar cor-

retamente a classe de novos exemplos ainda não rotulados [23]. Esse método de aprendi-

zado é o mais utilizado. Todos os algoritmos aprendem algum tipo de padrão do conjunto

de dados de treinamento e os aplicam ao conjunto de dados de teste para previsão ou

classificação. O fluxo de trabalho desse tipo de treinamento é fornecido na Figura 20.

Figura 20: Fluxo de trabalho de aprendizagem supervisionada [7].

Algoritmos Comuns

1. Classificação - Algoritmos como regressão logística, máquinas de vetor suporte

(SVM), árvores de decisão e redes neurais usados para classificar dados em cate-

gorias discretas;

2. Regressão - Métodos como regressão linear e regressão polinomial são utilizados para

prever valores contínuos com base em variáveis independentes.

3.4.2 Aprendizado Não Supervisionado

O aprendizado não supervisionado é aquele no qual o modelo é treinado sem a presença

de rótulos ou respostas corretas previamente definidas. O principal objetivo é identificar

padrões ocultos pela exploração dos dados, agrupando instâncias semelhantes ou redu-

zindo a dimensionalidade dos dados para facilitar a análise.

Tal abordagem é especialmente útil quando não se tem conhecimento prévio sobre as

características dos dados ou quando os dados rotulados são escassos ou inexistentes. O

fluxo de trabalho desse tipo de treinamento é fornecido na Figura 21.

38

Figura 21: Fluxo de trabalho de aprendizagem não supervisionada [7].

Algoritmo Comum Empregado no Código

• K-Means Clustering

K-means é um dos algoritmos de aprendizado não supervisionado mais simples que

resolve o conhecido problema de clustering (agrupamento) [7].

Ele busca dividir um conjunto de dados em k clusters distintos. Cada cluster é repre-

sentado por um centro, que é o ponto médio (ou centróide) de todos os pontos de dados

que pertencem a esse cluster.

O objetivo principal desse algoritmo é minimizar a variância dentro de cada clus-

ter agrupando os dados de forma que os pontos dentro do mesmo cluster sejam o mais

semelhantes possível entre si.

Procedimento do K-means

1. Definição de k - O usuário determina o número de clusters que deseja formar;

2. Inicialização dos Centros - Os centros devem ser inicialmente escolhidos de maneira

estratégica, uma vez que a determinação das posições iniciais dos centros é crucial

para o sucesso do algoritmo. Uma boa prática é colocar os centros o mais longe

possível uns dos outros para garantir que eles cubram bem a diversidade dos dados;

3. Atribuição de Clusters - Fazendo uso da distância Euclidiana, cada ponto de dado

é atribuído ao cluster cujo centro está mais próximo;

4. Atualização dos Centros - Após todos os pontos terem sido atribuídos a um cluster,

os centros dos clusters são recalculados como a média dos pontos atribuídos a cada

um;

39

5. As etapas de atribuição e atualização são repetidas até que não haja mais mudanças

significativas nas atribuições dos clusters ou até que um número máximo de iterações

seja alcançado.

O K-means é representado pela Figura 22.

Figura 22: Fluxo de trabalho de aprendizagem não supervisionada [7].

3.5 Estruturas e Bibliotecas Empregadas

3.5.1 TensorFlow

TensorFlow é um framework (estrutura) de código aberto desenvolvido pelo Google

que permite a criação de modelos de machine learning e deep learning através de uma

interface que facilita a construção de gráficos computacionais. Tais gráficos retratam

operações matemáticas com conexões que representam tensores (estruturas de dados mul-

tidimensionais).

O TensorFlow é otimizado para ser executado em diferentes plataformas, incluindo

CPUs, GPUs e TPUs (Tensor Processing Units).

3.5.2 Keras

Keras é uma biblioteca de alto nível para desenvolvimento de redes neurais em Python,

projetada para facilitar a prototipagem rápida e intuitiva de modelos de deep learning.

Ela é construída sobre frameworks (como TensorFlow), permitindo que desenvolvedores

criem, compilem e treinem redes neurais com facilidade.

Keras suporta diversas arquiteturas de redes neurais, como redes convolucionais e

recorrentes, sendo amplamente utilizada em aplicações de reconhecimento de imagem e

processamento de linguagem natural.

40

3.5.3 NumPy

NumPy (Numerical Python) é uma biblioteca que fornece estruturas de dados efi-

cientes, como arrays multidimensionais (ndarrays), além de funções matemáticas que

permitem operações vetorizadas.

O NumPy é amplamente utilizado em ciência de dados e machine learning por ser

eficiente em manipular grandes conjuntos de dados e realizar cálculos complexos de forma

rápida.

3.5.4 Pandas

Pandas é uma biblioteca poderosa para manipulação e análise de dados em Python

que fornece estruturas como DataFrames e Series que facilitam o trabalho com dados

rotulados ou relacionais.

Essa biblioteca é amplamente utilizada em tarefas como limpeza de dados, análise

exploratória e manipulação eficiente de grandes conjuntos de dados. Sua integração com

outras bibliotecas populares torna-a uma ferramenta muito versátil.

3.5.5 Matplotlib

Matplotlib é uma biblioteca popular para visualização de dados em Python, permitindo

a criação de gráficos estáticos, animados e interativos (incluindo histogramas, gráficos de

dispersão e gráficos 3D) com facilidade. Ela é frequentemente utilizada em conjunto com

outras bibliotecas como NumPy e Pandas para representar visualmente dados analisados.

3.5.6 Scikit-learn

Scikit-learn é uma biblioteca robusta para aprendizado de máquina em Python a

qual oferece uma ampla gama de algoritmos para tarefas como classificação, regressão e

agrupamento, além de ferramentas para pré-processamento e avaliação de modelos.

Projetada para ser de fácil utilização, integra-se bem com outras bibliotecas como

NumPy e Pandas.

3.5.7 Seaborn

Seaborn é uma biblioteca baseada no Matplotlib que fornece uma interface mais amigá-

vel para a criação de gráficos estatísticos. Ela facilita a visualização dos dados ao oferecer

funções específicas que representam relações estatísticas entre variáveis.

41

Seaborn é especialmente útil para explorar conjuntos de dados complexos e gerar

visualizações informativas com menos código.

3.5.8 Graphviz

Graphviz é uma ferramenta para visualização gráfica que permite criar diagramas a

partir da descrição textual dos gráficos. É frequentemente utilizada para representar es-

truturas hierárquicas ou fluxos complexos em algoritmos, incluindo os usados em machine

learning.

Com Graphviz, os usuários podem gerar visualizações claras e compreensíveis dos

modelos ou processos que estão analisando.

3.5.9 OS

A biblioteca OS (Operating System) do Python fornece uma maneira conveniente de

interagir com o sistema operacional dando a possibilidade de realizar operações como

manipulação de arquivos e diretórios, execução de comandos do sistema operacional e

acesso a informações do ambiente do sistema.

A biblioteca OS é essencial para scripts que precisam interagir com o sistema subja-

cente ou gerenciar arquivos durante o processamento de dados.

4 Análise dos Dados

4.1 K-means e o Método do Cotovelo

O método do cotovelo é uma técnica amplamente utilizada para determinar o número

ideal de clusters em algoritmos de agrupamento, especialmente no K-means (abordado na

Seção 3.4.2). Este método é fundamental no contexto de aprendizado não supervisionado,

onde a identificação do número adequado de clusters pode impactar significativamente a

qualidade da segmentação dos dados.

O método do cotovelo busca identificar o ponto onde a adição de mais clusters resulta

em um ganho marginal na explicação da variância dos dados.

1. O método do cotovelo é expresso pela Soma do Erro Quadrado [24]:

SSE =
k∑

k=1

∑
xi∈Sk

||Xi − Ck||22 (4.1)

42

Levando em conta que k = número de clusters formados, Ci = i-ésimo cluster e x =

os dados presentes em cada cluster.

2. A determinação inicial do centroide é feita aleatoriamente a partir dos objetos dis-

poníveis até o cluster k. Para o calculo do próximo centroide do i-cluster, a seguinte

fórmula é empregada:

v =

∑n
i=1 xi

n
onde i = 1, 2, 3, ... , n (4.2)

3. A distância de cada objeto a cada centroide é calculada usando a Distância Eucli-

diana:

d(x, y) = ||x− y|| =

√√√√ n∑
i=1

(xi − yi)2 onde i = 1, 2, 3, ... , n (4.3)

Levando em conta que xi = x em função de i, yi = variável de saída e n = número

de objetos.

4. Cada objeto é alocado no centroide mais próximo.

5. Cada objeto é alocado em um cluster na iteração com k-means considerando a

distância ao ponto central do cluster.

6. Após a iteração e processamento, o novo centróide é calculado pela Equação 4.2.

7. A etapa 3 deve ser repetida caso a nova posição do centróide com o antigo não for

a mesma.

Esse método afirma que quanto menor a inércia, melhor a divisão dos clusters e o

número ideal é determinado pelo ponto de cotovelo, caracterizado por onde a curva começa

a se inclinar mais suavemente.

Este é o ponto onde a inércia começa a diminuir a uma taxa menor, indicando que

adicionar novos clusters não resulta em uma melhora significativa na compactação com

os anteriores. O número de clusters ideal é aquele que está no ponto de cotovelo, pois

representa um bom trade-off entre minimizar a inércia e não adicionar clusters desneces-

sários.

43

4.1.1 Código

1 #c l u s t e r C d i g o com K−means

2

3 import os

4 import numpy as np

5 import pandas as pd

6 from sk l e a rn . p r ep ro c e s s i ng import StandardSca ler

7 from sk l e a rn . c l u s t e r import KMeans

8 import matp lo t l i b . pyplot as p l t

9

10 de f load_and_normalize_data (f i l e_path) :

11 df = pd . read_csv (f i l e_path)

12 data = df . i l o c [: , : −1] . va lue s . astype (np . f l o a t 3 2)

13 s c a l e r = StandardSca ler ()

14 data = s c a l e r . f i t_trans fo rm (data)

15 re turn data

16

17 de f plot_elbow_method (data , max_k=10) :

18 i n e r t i a s = []

19 K = range (1 , max_k + 1)

20

21 f o r k in K:

22 kmeans = KMeans(n_c lus te r s=k , random_state=42)

23 kmeans . f i t (data)

24 i n e r t i a s . append (kmeans . ine r t i a_)

25

26 p l t . f i g u r e (f i g s i z e =(8 , 4))

27 p l t . p l o t (K, i n e r t i a s , ’bo-’)

28 p l t . x l ab e l (’ N m e r o de Clusters’)

29 p l t . y l ab e l (’ I n r c i a ’)

30 p l t . t i t l e (’ M t o d o do Cotovelo para Encontrar o N m e r o Ideal de

Clusters’)

31 p l t . show ()

32

33 # Esp e c i f i c a r o caminho para o arquivo no Google Drive

34 data_path = "/content/drive/My Drive/random_output.csv"

35

36 # Ve r i f i c a r se o caminho e x i s t e

37 i f not os . path . e x i s t s (data_path) :

38 r a i s e FileNotFoundError (f "Data path {data_path} does not exist.")

44

39

40 # Carregar e normal i zar os dados

41 data = load_and_normalize_data (data_path)

42

43 # Apl i car o M todo do Cotovelo para encontrar o n me r o i d e a l de c l u s t e r s

44 plot_elbow_method (data , max_k=10)

Tabela 1: Código em cluster k-means.

4.1.2 Estrutura do Código

Importação de Bibliotecas

1 import os

2 import numpy as np

3 import pandas as pd

4 from sk l e a rn . p r ep ro c e s s i ng import StandardSca ler

5 from sk l e a rn . c l u s t e r import KMeans

6 import matp lo t l i b . pyplot as p l t

Tabela 2: Importação de Bibliotecas (K-means e o Método do Cotovelo).

• OS: Introduzida para a interação com o sistema operacional;

• NumPy: Anexada ao código para a manipulação de arrays ;

• Pandas: Usada para manipulação e análise de dados, especialmente para ler arquivos

CSV;

• StandardScaler: Uma classe do sklearn que normaliza os dados, removendo a média

e escalando para a variância unitária;

• K-means: Implementação do algoritmo K-means para clustering ;

• Matplotlib.pyplot: Destinada para criação de gráficos e visualizações.

Função load_and_normalize_data

1 de f load_and_normalize_data (f i l e_path) :

2 df = pd . read_csv (f i l e_path)

3 data = df . i l o c [: , : −1] . va lue s . astype (np . f l o a t 3 2)

45

4 s c a l e r = StandardSca ler ()

5 data = s c a l e r . f i t_trans fo rm (data)

6 re turn data

Tabela 3: Função load_and_normalize_data (K-means e o Método do Cotovelo).

As etapas de funcionamento da função em questão são descritas abaixo:

1. Carregamento dos Dados: Um arquivo CSV é lido usando pd.read_csv(), armaze-

nando os dados em um DataFrame df ;

2. Seleção de Colunas: df.iloc[:, : −1] seleciona todas as colunas, com exceção da

última. A última coluna geralmente contém rótulos ou categorias que não são usadas

no clustering ;

3. Conversão de Tipo: Converte os dados para o tipo float32 para economizar memória

e melhorar a performance;

4. Normalização: Cria uma instância de StandardScaler, ajusta e transforma os dados.

A normalização é importante para que todas as características tenham a mesma

escala, evitando que características com maiores magnitudes dominem o cálculo das

distâncias no K-means;

5. A função retorna os dados normalizados.

Função plot_elbow_method

1 de f plot_elbow_method (data , max_k=10) :

2 i n e r t i a s = []

3 K = range (1 , max_k + 1)

4

5 f o r k in K:

6 kmeans = KMeans(n_c lus te r s=k , random_state=42)

7 kmeans . f i t (data)

8 i n e r t i a s . append (kmeans . ine r t i a_)

9

10 p l t . f i g u r e (f i g s i z e =(8 , 4))

11 p l t . p l o t (K, i n e r t i a s , ’bo-’)

12 p l t . x l ab e l (’ N m e r o de Clusters’)

13 p l t . y l ab e l (’ I n r c i a ’)

46

14 p l t . t i t l e (’ M t o d o do Cotovelo para Encontrar o N m e r o Ideal de

Clusters’)

15 p l t . show ()

Tabela 4: Função plot_elbow_method (K-means e o Método do Cotovelo).

As etapas de funcionamento da função em questão são descritas abaixo:

1. Inicialização da Lista de Inércia: Cria uma lista vazia para armazenar a inércia (ou

soma das distâncias quadradas das amostras aos seus centros de cluster) para cada

valor de k;

2. Definição do Intervalo de k: K = range(1, max_k+1) define o intervalo de valores

de k (número de clusters) que será testado;

3. Cálculo da Inércia para cada valor de k em K: Cria uma instância do K-means com

o número atual de clusters ; Ajusta o modelo aos dados usando kmeans.fit(data);

Adiciona a inércia calculada (kmeans.inertia_) à lista "inertias";

4. Plotagem do Gráfico: Cria uma figura com tamanho específico, plota os valores de k

no eixo x e as inércias no eixo y, adiciona rótulos e título ao gráfico, exibe o gráfico

com plt.show(). O gráfico resultante ajuda a identificar o "cotovelo", onde a inércia

começa a diminuir mais lentamente à medida que mais clusters são adicionados.

Execução do Código

1 data_path = "/content/drive/My Drive/random_output.csv"

2

3 i f not os . path . e x i s t s (data_path) :

4 r a i s e FileNotFoundError (f "Data path {data_path} does not exist.")

5

6 data = load_and_normalize_data (data_path)

7

8 plot_elbow_method (data , max_k=10)

Tabela 5: Execução do Código (K-means e o Método do Cotovelo).

1. Definição do Caminho do Arquivo: Especifica o caminho onde o arquivo CSV está

localizado;

47

2. Verificação da Existência do Arquivo: Usa os.path.exists() para verificar se o cami-

nho do arquivo é válido. E caso não seja, levanta um erro informativo;

3. Carregamento e Normalização dos Dados: Chama a função load_and_normalize_data

passando o caminho do arquivo e armazena os dados normalizados na variável data;

4. Aplicação do Método do Cotovelo: Chama a função plot_elbow_method passando

os dados normalizados e um valor máximo de k (10) para encontrar o número ideal

de clusters.

4.1.3 Output

Figura 23: Output k-means (método do cotovelo).

Interpretação do gráfico

A Inércia diminui de maneira constante à medida que o número de clusters aumenta,

sem um ponto de cotovelo muito claro. Isso pode indicar algumas situações:

1. Nenhum Número Ótimo Claro: Não há um ponto de cotovelo claro, o que pode

significar que o número ideal de clusters não é facilmente determinado apenas pelo

método do cotovelo;

2. Dados Complexos: Os dados podem ser complexos ou não estruturados de maneira

que não formam clusters bem definidos.

48

4.2 Criação do Código K-NN Classifiers

O K-Nearest Neighbors (K-NN) é um algoritmo de aprendizado supervisionado usado

tanto para problemas de classificação quanto de regressão. Ele é particularmente popular

devido à sua simplicidade e eficácia em muitos casos práticos.

Como Funciona o K-NN

1. Treinamento: O K-NN é um algoritmo baseado em instâncias, o que significa que

não há uma fase de treinamento real. Em vez disso, ele armazena todos os exemplos

de treinamento e realiza cálculos na fase de predição;

2. Predição:

• Classificação: Para classificar um novo ponto de dados, o K-NN calcula a

distância entre esse ponto e todos os pontos no conjunto de treinamento, sele-

cionando os K pontos mais próximos (vizinhos). A classe mais frequente entre

esses K vizinhos é atribuída ao novo ponto;

• Regressão: Para prever um valor contínuo, o K-NN calcula a média (ou outro

critério) dos valores dos K vizinhos mais próximos.

Passos do Algoritmo K-NN

1. Escolha do Valor de K: Seleciona-se o número de vizinhos K. Um valor pequeno de

K pode tornar o modelo sensível ao ruído, enquanto um valor grande pode diluir o

impacto de pontos de dados locais;

2. Cálculo da Distância: Calcula-se a distância entre o novo ponto e todos os pontos

de treinamento. Distâncias comuns incluem Euclidiana, Manhattan, e Minkowski;

3. Identificação dos Vizinhos: Seleciona-se os K pontos de treinamento mais próximos

com base na distância calculada;

4. Classificação ou Regressão:

• Classificação: Atribui-se a classe mais comum entre os K vizinhos;

• Regressão: Calcula-se a média dos valores dos K vizinhos.

Vantagens K-NN

• Simplicidade: Fácil de entender e implementar;

49

• Versatilidade: Pode ser usado para classificação e regressão;

• Sem Treinamento: Não há necessidade de treinamento explícito, tornando-o eficiente

em termos de tempo de preparação.

Desvantagens K-NN

• Custo Computacional: Para grandes conjuntos de dados, calcular distâncias para

todos os pontos pode ser computacionalmente intensivo;

• Sensibilidade à Escala: A performance pode ser afetada por características com

diferentes escalas. Normalização dos dados geralmente é necessária;

• Sensibilidade ao Ruído: Valores atípicos ou ruído nos dados podem afetar significa-

tivamente os resultados, especialmente com valores baixos de K.

Aplicações Comuns

• Reconhecimento de Padrões: Como reconhecimento de caracteres e reconhecimento

de faces;

• Sistemas de Recomendação: Recomendação de produtos baseados em similaridades

de usuários ou itens;

• Detecção de Anomalias: Identificação de padrões anômalos em dados financeiros ou

de segurança.

Considerações Finais

A escolha do valor de K é crucial para a performance do K-NN. Normalmente, valores

de K ímpares são escolhidos para evitar empates na classificação.

Cross-validation pode ser usada para determinar o melhor valor de K. Além disso,

técnicas de redução de dimensionalidade como PCA (Principal Component Analysis) po-

dem ser aplicadas para melhorar a eficiência do K-NN em conjuntos de dados de alta

dimensionalidade.

4.2.1 Código

1 #K−NN c l a s s i f i e r s

2 import numpy as np

3 import matp lo t l i b . pyplot as p l t

50

4 import pandas as pd

5 from sk l e a rn . mode l_se lect ion import t r a i n_te s t_sp l i t

6 from sk l e a rn . ne ighbors import KNe ighbor sC la s s i f i e r

7 from sk l e a rn . met r i c s import accuracy_score

8 from matp lo t l i b . c o l o r s import ListedColormap

9 import matp lo t l i b . patches as mpatches

10 from sk l e a rn import ne ighbors

11 from sk l e a rn . p r ep ro c e s s i ng import StandardSca ler

12

13 de f load_and_normalize_data (f i l e_path) :

14 df = pd . read_csv (f i l e_path)

15 data = df . i l o c [: , : −1] . va lue s . astype (np . f l o a t 3 2)

16 l a b e l s = df [’class’] . va lue s . astype (np . in t64)

17 s c a l e r = StandardSca ler ()

18 data = s c a l e r . f i t_trans fo rm (data)

19 re turn data , l a b e l s

20

21 #data s e t s

22 test_path = "/content/drive/My Drive/test_dataset.csv"

23 train_path = "/content/drive/My Drive/train_dataset.csv"

24

25 #X and Y

26 data2 , l a b e l s 2 = load_and_normalize_data (train_path)

27 data4 , l a b e l s 4 = load_and_normalize_data (test_path)

28 #c l a s s i f i e r ob j e c t

29 knn = KNe ighbor sC la s s i f i e r (n_neighbors = 5)

30 #tra i n the c l a s s i f i e r

31 knn . f i t (data2 , l a b e l s 2)

32 #est imate the accuracy

33 knn . s co r e (data4 , l a b e l s 4)

34 #pred i c t the re sponse

35 pred = knn . p r ed i c t (data4)

36 #eva luate accuracy

37 pr in t ("Accuracy:" , accuracy_score (l abe l s 4 , pred))

Tabela 6: Código K-NN classifiers (primeira parte).

Ao executar o algoritmo com diferentes valores de k, os seguintes resultados de acurácia

foram observados:

• k = 1: Acurácia de 20.07%

51

• k = 5: Acurácia de 24.16%

• k = 10: Acurácia de 25.82%

• k = 20: Acurácia de 27.24% (tempo de execução: 3 minutos)

• k = 50: Acurácia de 28.55% (tempo de execução: 6 minutos)

• k = 100: Acurácia de 29.15% (tempo de execução: 10 minutos)

• k = 200: Acurácia de 29.49% (tempo de execução: 18 minutos)

Analisando os resultados, nota-se que, à medida que o valor de k aumenta, há uma

ligeira melhora na acurácia do modelo. No entanto, essa melhora é marginal, especial-

mente para valores mais altos de k. Por exemplo, ao passar de k = 100 para k = 200,

a acurácia aumenta apenas 0.34%, enquanto o custo computacional praticamente dobra,

com o tempo de execução aumentando de 10 para 18 minutos.

Esse comportamento destaca uma característica importante do K-NN: embora o au-

mento de k possa suavizar as fronteiras de decisão e melhorar ligeiramente a acurácia, isso

vem a um custo computacional significativo. Para valores muito altos de k, o ganho de

acurácia é insuficiente para justificar o aumento no tempo de processamento. Portanto,

é crucial encontrar um equilíbrio adequado entre acurácia e eficiência computacional ao

escolher o valor de k.

4.2.2 Estrutura do Código (Primeira Parte)

Importação de Bibliotecas

1 import numpy as np

2 import matp lo t l i b . pyplot as p l t

3 import pandas as pd

4 from sk l e a rn . mode l_se lect ion import t r a i n_te s t_sp l i t

5 from sk l e a rn . ne ighbors import KNe ighbor sC la s s i f i e r

6 from sk l e a rn . met r i c s import accuracy_score

7 from matp lo t l i b . c o l o r s import ListedColormap

8 import matp lo t l i b . patches as mpatches

9 from sk l e a rn import ne ighbors

10 from sk l e a rn . p r ep ro c e s s i ng import StandardSca ler

Tabela 7: Importação de Bibliotecas (K-NN Classifiers - primeira parte).

52

• NumPy;

• Matplotlib.pyplot;

• Pandas;

• Prain_test_split: Função que divide os dados em conjuntos de treinamento e teste

(não utilizada neste trecho específico);

• KNeighborsClassifier: Classe que implementa o algoritmo K-NN;

• Accuracy_score: Função para calcular a acurácia do modelo;

• ListedColormap e mpatches: Ferramentas para personalização de visualizações (não

utilizadas diretamente neste trecho);

• Neighbors: Módulo que contém classes e funções relacionadas a algoritmos de vizi-

nhança (não utilizado diretamente neste trecho);

• StandardScaler.

Função load_and_normalize_data

1 de f load_and_normalize_data (f i l e_path) :

2 df = pd . read_csv (f i l e_path)

3 data = df . i l o c [: , : −1] . va lue s . astype (np . f l o a t 3 2)

4 l a b e l s = df [’class’] . va lue s . astype (np . in t64)

5 s c a l e r = StandardSca ler ()

6 data = s c a l e r . f i t_trans fo rm (data)

7 re turn data , l a b e l s

Tabela 8: Função load_and_normalize_data (K-NN Classifiers - primeira parte).

Descrição da função:

1. Leitura do Arquivo CSV: pd.read_csv(file_path) lê um arquivo CSV localizado

no caminho especificado e armazena os dados em um DataFrame df;

2. Separação dos Dados e Rótulos:

• data = df.iloc[:, : −1].values.astype(np.float32): Seleciona todas as colunas,

exceto a última, que geralmente contém os rótulos das classes. Os dados são

convertidos para o tipo float32 para economizar memória;

53

• labels = df [′class′].values.astype(np.int64): Extrai a coluna class como rótu-

los, convertendo-os para o tipo int64.

3. Normalização dos Dados:

• scaler = StandardScaler(): Cria uma instância do StandardScaler, que é

usado para normalizar os dados;

• data = scaler.fit_transform(data): Ajusta o escalador aos dados e trans-

forma os dados, resultando em uma média de 0 e desvio padrão de 1.

4. Retorno dos Dados Normalizados e Rótulos: A função retorna uma tupla contendo

os dados normalizados (data) e os rótulos (labels).

Carregamento dos Conjuntos de Dados

1 test_path = "/content/drive/My Drive/test_dataset.csv"

2 train_path = "/content/drive/My Drive/train_dataset.csv"

3

4 data2 , l a b e l s 2 = load_and_normalize_data (train_path)

5 data4 , l a b e l s 4 = load_and_normalize_data (test_path)

Tabela 9: Carregamento dos Conjuntos de Dados (K-NN Classifiers - primeira parte).

Descrição:

1. Definição dos Caminhos dos Arquivos: Define variáveis que armazenam os cami-

nhos dos arquivos CSV para os conjuntos de treinamento (train_path) e teste

(test_path);

2. Carregamento e Normalização dos Dados:

• Chama a função load_and_normalize_data duas vezes: uma vez para carre-

gar o conjunto de treinamento (train_path) e outra para o conjunto de teste

(test_path).

• Os dados normalizados são armazenados em data2 e data4, enquanto os rótulos

correspondentes são armazenados em labels2 e labels4.

Criação do Classificador K-NN

54

1 knn = KNe ighbor sC la s s i f i e r (n_neighbors=5)

Tabela 10: Criação do Classificador K-NN (primeira parte).

Descrição: Cria uma instância do classificador K-NN com 5 vizinhos mais próximos

(n_neighbors = 5). Este parâmetro k determina quantos vizinhos serão considerados ao

fazer previsões.

Treinamento do Classificador

1 knn . f i t (data2 , l a b e l s 2)

Tabela 11: Treinamento do Classificador K-NN (primeira parte).

Descrição: Ajusta o modelo K-NN aos dados de treinamento (data2) e seus respectivos

rótulos (labels2). O método fit é responsável por armazenar as informações necessárias

sobre os dados para realizar previsões posteriormente.

Avaliação da Acurácia

1 knn . s co r e (data4 , l a b e l s 4)

Tabela 12: Avaliação da Acurácia (K-NN Classifiers - primeira parte).

Descrição: O método score avalia o modelo usando o conjunto de teste (data4) e seus

rótulos correspondentes (labels4). Ele retorna a acurácia do modelo, que é a proporção

de previsões corretas feitas pelo classificador.

Previsão e Impressão da Acurácia

1 pred = knn . p r ed i c t (data4)

2 pr in t ("Accuracy:" , accuracy_score (l abe l s 4 , pred))

Tabela 13: Previsão e Impressão da Acurácia (K-NN Classifiers - primeira parte).

Descrição:

1. Previsão: pred = knn.predict(data4) usa o modelo treinado para prever os rótulos

do conjunto de teste. O resultado é armazenado na variável pred;

2. Cálculo da Acurácia:

55

• accuracy_score(labels4, pred): Compara as previsões feitas pelo modelo (pred)

com os rótulos reais do conjunto de teste (labels4) usando a função accuracy_score;

O resultado é impresso na tela com a mensagem "Accuracy:", mostrando assim

quão bem o classificador se saiu.

4.2.3 Estrutura do Código (Segunda Parte)

Definição do Intervalo de k

1 k_range = range (1 , 50)

2 s c o r e s = []

Tabela 14: Definição do Intervalo de k (K-NN Classifiers - segunda parte).

Descrição:

1. Definição do Intervalo: k_range = range(1, 50) cria um objeto range que representa

os valores de k que serão testados, variando de 1 a 49. Isso significa que o código

irá avaliar o desempenho do classificador K-NN para cada um desses valores de k;

2. Inicialização da Lista de Acurácia: scores = [] cria uma lista vazia chamada scores,

que será usada para armazenar a acurácia obtida para cada valor de k testado.

Loop para Avaliação da Acurácia

1 f o r k in k_range :

2 knn = KNe ighbor sC la s s i f i e r (n_neighbors=k)

3 knn . f i t (data2 , l a b e l s 2)

4 s c o r e s . append (knn . s co r e (data4 , l a b e l s 4))

Tabela 15: Loop para Avaliação da Acurácia (K-NN Classifiers - segunda parte).

Descrição:

1. Iteração sobre os Valores de k: O loop for k in k_range itera sobre cada valor de

k definido anteriormente;

2. Criação do Classificador K-NN: knn = KNeighborsClassifier(n_neighbors = k)

para cada valor de k, cria uma nova instância do classificador K-NN, especificando

o número de vizinhos mais próximos a serem considerados;

56

3. Treinamento do Classificador: knn.fit(data2, labels2) ajusta o modelo K-NN aos

dados de treinamento (data2) e seus rótulos (labels2). Isso permite que o modelo

aprenda a partir dos dados disponíveis;

4. Avaliação da Acurácia: scores.append(knn.score(data4, labels4)) avalia a acurácia

do modelo usando o conjunto de teste (data4) e seus rótulos correspondentes (la-

bels4). O resultado é adicionado à lista scores. Assim, ao final do loop, scores

conterá a acurácia para cada valor de k testado.

Visualização dos Resultados

1 p l t . f i g u r e ()

2 p l t . x l ab e l (’k’)

3 p l t . y l ab e l (’accuracy’)

4 p l t . s c a t t e r (k_range , s c o r e s)

5 p l t . x t i c k s ([0 , 10 , 20 , 30 , 40 , 5 0])

Tabela 16: Visualização dos Resultados (K-NN Classifiers - segunda parte).

Descrição:

1. Criação da Figura: plt.figure();

2. Rótulos dos Eixos:

• plt.xlabel(′k′): Define o rótulo do eixo x como ’k’, representando os diferentes

valores testados para o parâmetro k;

• plt.ylabel(′accuracy′): Define o rótulo do eixo y como ’accuracy ’, representando

a acurácia correspondente a cada valor de k.

3. Plotagem dos Resultados: plt.scatter(k_range, scores) cria um gráfico de dispersão

onde os valores de k são plotados no eixo x e as respectivas acurácias no eixo y. Isso

permite visualizar como a acurácia varia com diferentes escolhas para o parâmetro

k;

4. Definição dos Ticks no Eixo x: plt.xticks([0, 10, 20, 30, 40, 50]) define as marcas

(ticks) no eixo x em intervalos específicos (0, 10, 20, 30, 40 e 50), facilitando a leitura

do gráfico.

57

4.2.4 Output

Figura 24: Output K-NN.

Interpretação do gráfico

Assim como visto anteriormente, há um aumento do custo computacional e baixo

ganho na acurácia. Esse comportamento destaca uma característica importante do K-NN:

embora o aumento de k possa suavizar as fronteiras de decisão e melhorar ligeiramente a

acurácia, isso vem a um custo computacional significativo.

4.3 Criação do Código Decision Tree

Uma árvore de decisão é um modelo de aprendizado de máquina usado para classifi-

cação e regressão. Funciona como um gráfico de decisões onde cada nó interno representa

uma "pergunta"sobre uma característica do conjunto de dados, cada ramo representa o

resultado dessa pergunta, e cada nó folha representa uma classe ou valor de saída.

1. Construção da Árvore:

• Escolha da Característica: A construção da árvore começa pela escolha da

característica (ou atributo) que melhor divide os dados. Isso é feito usando

métricas como ganho de informação (usado no algoritmo ID3), índice Gini

(usado no algoritmo CART) ou redução de entropia;

58

• Divisão do Nó: O conjunto de dados é dividido com base nos valores da carac-

terística escolhida. Isso cria ramos na árvore;

• Recursão: Este processo é repetido recursivamente para cada subconjunto re-

sultante, formando novos nós e ramos até que uma das condições de parada

seja atingida (por exemplo, todos os dados em um nó têm a mesma classe, ou

o número máximo de níveis da árvore é atingido);

2. Predição com a Árvore:

• Navegação na Árvore: Para fazer uma previsão para uma nova amostra, a

amostra é passada pela árvore começando do nó raiz. Em cada nó, uma decisão

é tomada com base na característica relevante, seguindo o ramo apropriado até

chegar a um nó folha;

• Classificação ou Regressão: A classe ou valor associado ao nó folha é então

usado como a previsão para a amostra.

Importância

1. Interpretação Simples: Árvores de decisão são fáceis de entender e interpretar. Elas

espelham processos de tomada de decisão humana, tornando os resultados compre-

ensíveis mesmo para não-especialistas;

2. Manuseio de Dados Categóricos e Numéricos: Árvores de decisão podem lidar com

ambos os tipos de dados. Isso as torna versáteis para diferentes tipos de problemas;

3. Pouca Necessidade de Pré-processamento de Dados: Não requerem normalização ou

padronização de dados. Além disso, não são afetadas por valores ausentes da mesma

forma que outros modelos;

4. Robustez a Outliers: Árvores de decisão são relativamente robustas a outliers porque

a divisão é feita com base na maioria dos dados;

5. Capacidade de Capturar Interações Não Lineares: Elas podem capturar relações

não lineares entre as características, o que pode ser difícil para modelos lineares.

Desvantagens

1. Sobreajuste (Overfitting): Árvores de decisão tendem a se ajustar demais aos dados

de treinamento, especialmente se a árvore for muito profunda;

59

2. Instabilidade: Pequenas variações nos dados podem resultar em árvores completa-

mente diferentes, o que pode tornar as previsões instáveis;

3. Tendência de Preferência por Atributos com Mais Níveis: Árvores de decisão podem

tendem a favorecer características com mais níveis.

Para mitigar algumas dessas desvantagens, métodos como o bagging (por exemplo,

Random Forests) ou boosting (por exemplo, Gradient Boosting) são usados, que combi-

nam múltiplas árvores para melhorar a precisão e a robustez das previsões.

4.3.1 Código

1 import numpy as np

2 import pandas as pd

3 import seaborn as sn

4 import matp lo t l i b . pyplot as p l t

5 import matp lo t l i b . cm as cm

6 from matp lo t l i b . c o l o r s import ListedColormap , BoundaryNorm

7 from sk l e a rn import ne ighbors

8 import matp lo t l i b . patches as mpatches

9 import graphviz

10 from sk l e a rn . t r e e import export_graphviz

11 import matp lo t l i b . patches as mpatches

12 from sk l e a rn . t r e e import De c i s i o nT r e eC l a s s i f i e r

13 from sk l e a rn . p r ep ro c e s s i ng import StandardSca ler

14 import os

15

16 de f p lo t_dec i s i on_tree (c l f , feature_names , class_names , save_path="

adspy_temp.dot") :

17 export_graphviz (c l f , ou t_ f i l e=save_path , feature_names=feature_names ,

class_names=class_names , f i l l e d=True , impurity=False)

18 with open (save_path) as f :

19 dot_graph = f . read ()

20 re turn graphviz . Source (dot_graph)

21

22 de f plot_feature_importances (c l f , feature_names) :

23 c_features = len (feature_names)

24 p l t . barh (range (c_features) , c l f . feature_importances_)

25 p l t . x l ab e l ("Feature importance")

26 p l t . y l ab e l ("Feature name")

60

27 p l t . y t i c k s (np . arange (c_features) , feature_names)

28

29 de f load_and_normalize_data (f i l e_path) :

30 df = pd . read_csv (f i l e_path)

31 data = df . i l o c [: , : −1] . va lue s . astype (np . f l o a t 3 2)

32 l a b e l s = df [’class’] . va lue s . astype (np . in t64)

33 s c a l e r = StandardSca ler ()

34 data = s c a l e r . f i t_trans fo rm (data)

35 re turn data , l a b e l s

36

37 # Def ine the save path f o r the DOT f i l e

38 save_path = "/content/drive/My Drive/decision_tree.dot"

39

40 # Fi l e paths

41 test_path = "/content/drive/My Drive/test_dataset.csv"

42 train_path = "/content/drive/My Drive/train_dataset.csv"

43

44 # Load and normal ize data

45 data2 , l a b e l s 2 = load_and_normalize_data (train_path)

46 data4 , l a b e l s 4 = load_and_normalize_data (test_path)

47

48 # Train the c l a s s i f i e r

49 c l f = De c i s i o nT r e eC l a s s i f i e r (max_depth=15, min_samples_leaf=8, random_state

=0) . f i t (data2 , l a b e l s 2)

50

51 # Def ine f e a tu r e and c l a s s names

52 feature_names = [’sensor_1’ , ’sensor_2’ , ’sensor_3’ , ’sensor_4’]

53 class_names = [s t r (i) f o r i in range (10)]

54

55 # Plot d e c i s i o n t r e e

56 t ree_plot = plot_dec i s i on_tree (c l f , feature_names , class_names)

57 t ree_plot . render ("decision_tree")

58

59 # Plot f e a t u r e importances

60 plot_feature_importances (c l f , feature_names)

61 p l t . show ()

62

63 # Return Accuracy

64 pr in t (’Accuracy of DT classifier on training set: {:.2f}’

65 . format (c l f . s c o r e (data2 , l a b e l s 2)))

61

66 pr in t (’Accuracy of DT classifier on test set: {:.2f}’

67 . format (c l f . s c o r e (data4 , l a b e l s 4)))

Tabela 17: Código Decision Tree.

4.3.2 Estrutura do Código

Importação de Bibliotecas

1 import numpy as np

2 import pandas as pd

3 import seaborn as sn

4 import matp lo t l i b . pyplot as p l t

5 import matp lo t l i b . cm as cm

6 from matp lo t l i b . c o l o r s import ListedColormap , BoundaryNorm

7 from sk l e a rn import ne ighbors

8 import matp lo t l i b . patches as mpatches

9 import graphviz

10 from sk l e a rn . t r e e import export_graphviz

11 from sk l e a rn . t r e e import De c i s i o nT r e eC l a s s i f i e r

12 from sk l e a rn . p r ep ro c e s s i ng import StandardSca ler

13 import os

Tabela 18: Importação de Bibliotecas (Decision Tree).

• NumPy;

• Pandas;

• Seaborn: construída sobre o Matplotlib, tem a capacidade de criar gráficos estatís-

ticos;

• Matplotlib.pyplot;

• Graphviz: Biblioteca para criar visualizações gráficas, especialmente útil para visu-

alizar árvores de decisão;

• export_graphviz: Função do Scikit-learn que exporta uma árvore de decisão em

formato DOT, que pode ser visualizado com Graphviz;

• DecisionTreeClassifier: Classe do Scikit-learn que implementa o algoritmo de árvore

de decisão;

62

• StandardScaler.

Função plot_decision_tree

1 de f p lo t_dec i s i on_tree (c l f , feature_names , class_names , save_path="

adspy_temp.dot") :

2 export_graphviz (c l f , ou t_ f i l e=save_path , feature_names=feature_names ,

class_names=class_names , f i l l e d=True , impurity=False)

3 with open (save_path) as f :

4 dot_graph = f . read ()

5 re turn graphviz . Source (dot_graph)

Tabela 19: Função plot_decision_tree (Decision Tree).

Descrição dessa função:

1. Exportação da Árvore - export_graphviz(...): Exporta a árvore de decisão treinada

(clf) para um arquivo DOT. Os parâmetros incluem:

• out_file: caminho onde o arquivo DOT será salvo;

• feature_names: nomes das características usadas na árvore;

• class_names: nomes das classes alvo;

• filled = True: preenche os nós com cores baseadas na classe predominante;

• impurity = False: não exibe a impureza dos nós.

2. Lê o arquivo DOT gerado e armazena seu conteúdo na variável dot_graph;

3. Retorna uma instância do objeto graphviz.Source, que pode ser usado para rende-

rizar a árvore visualmente.

Função plot_feature_importances

1 de f plot_feature_importances (c l f , feature_names) :

2 c_features = len (feature_names)

3 p l t . barh (range (c_features) , c l f . feature_importances_)

4 p l t . x l ab e l ("Feature importance")

5 p l t . y l ab e l ("Feature name")

6 p l t . y t i c k s (np . arange (c_features) , feature_names)

Tabela 20: Função plot_feature_importances (Decision Tree).

63

Descrição dessa função:

1. c_features = len(feature_names): Conta o número total de características;

2. Criação do Gráfico de Importância das Características

• plt.barh(...): Plota um gráfico horizontal onde cada barra representa a impor-

tância da característica correspondente na árvore de decisão (clf.feature_importances_);

• Define rótulos para os eixos x e y e ajusta os ticks no eixo y para mostrar os

nomes das características.

Função load_and_normalize_data

1 de f load_and_normalize_data (f i l e_path) :

2 df = pd . read_csv (f i l e_path)

3 data = df . i l o c [: , : −1] . va lue s . astype (np . f l o a t 3 2)

4 l a b e l s = df [’class’] . va lue s . astype (np . in t64)

5 s c a l e r = StandardSca ler ()

6 data = s c a l e r . f i t_trans fo rm (data)

7 re turn data , l a b e l s

Tabela 21: Função load_and_normalize_data (Decision Tree).

Descrição dessa função:

1. Lê um arquivo CSV e armazena os dados em um DataFrame;

2. Extrai todas as colunas exceto a última como dados e a coluna ’class’ como rótulos;

3. Usa o StandardScaler para normalizar os dados;

4. Retorna uma tupla contendo os dados normalizados e os rótulos.

Carregamento dos Conjuntos de Dados

1 # Def ine the save path f o r the DOT f i l e

2 save_path = "/content/drive/My Drive/decision_tree.dot"

3

4 # Fi l e paths

5 test_path = "/content/drive/My Drive/test_dataset.csv"

6 train_path = "/content/drive/My Drive/train_dataset.csv"

64

7

8 # Load and normal ize data

9 data2 , l a b e l s 2 = load_and_normalize_data (train_path)

10 data4 , l a b e l s 4 = load_and_normalize_data (test_path)

Tabela 22: Carregamento dos Conjuntos de Dados (Decision Tree).

Descrição:

1. Define variáveis que armazenam os caminhos dos arquivos CSV para conjuntos de

treinamento e teste;

2. Chama a função load_and_normalize_data duas vezes para carregar e normalizar

ambos os conjuntos.

Treinamento do Classificador

1 c l f = De c i s i o nT r e eC l a s s i f i e r (max_depth=15, min_samples_leaf=8, random_state

=0) . f i t (data2 , l a b e l s 2)

Tabela 23: Treinamento do Classificador (Decision Tree).

Descrição:

• max_depth = 15: Limita a profundidade máxima da árvore a 15 níveis;

• min_samples_leaf = 8: Define que um nó deve ter pelo menos 8 amostras para

ser considerado como folha;

• random_state = 0: Garante reprodutibilidade nos resultados;

• O método .f it(...) treina o classificador com os dados normalizados e seus rótulos.

Definição dos Nomes das Características e Classes

1 # Def ine f e a tu r e and c l a s s names

2 feature_names = [’sensor_1’ , ’sensor_2’ , ’sensor_3’ , ’sensor_4’]

3 class_names = [s t r (i) f o r i in range (10)]

Tabela 24: Definição dos Nomes das Características e Classes (Decision Tree).

Visualização da Árvore de Decisão

65

1 # Plot d e c i s i o n t r e e

2 t ree_plot = plot_dec i s i on_tree (c l f , feature_names , class_names)

3 t ree_plot . render ("decision_tree")

Tabela 25: Visualização da Árvore de Decisão (Decision Tree).

Descrição:

1. Chama a função plot_decision_tree, passando o classificador treinado (clf), os

nomes das características (feature_names) e os nomes das classes (class_names);

2. O método .render(”decision_tree”) gera o arquivo visual da árvore no formato

especificado (DOT).

Visualização das Importâncias das Características

1 # Plot f e a t u r e importances

2 plot_feature_importances (c l f , feature_names)

3 p l t . show ()

Tabela 26: Visualização das Importâncias das Características (Decision Tree).

Avaliação da Acurácia

1 # Return Accuracy

2 pr in t (’Accuracy of DT classifier on training set: {:.2f}’ . format (c l f . s c o r e (

data2 , l a b e l s 2)))

3 pr in t (’Accuracy of DT classifier on test set: {:.2f}’ . format (c l f . s c o r e (

data4 , l a b e l s 4)))

Tabela 27: Avaliação da Acurácia (Decision Tree).

1. Usa o método .score(...) no conjunto de treinamento (data2, labels2) para calcular

a acurácia do modelo;

2. Faz o mesmo cálculo para o conjunto de teste (data4, labels4);

3. Imprime a acurácia obtida em ambos os conjuntos formatada com duas casas deci-

mais.

66

4.3.3 Output

Figura 25: Output Decision Tree.

A acurácia do classificador de Árvore de Decisão (DT) no conjunto de treinamento foi

de 0.30, enquanto no conjunto de teste foi de 0.29. Esses resultados indicam que, mesmo

com um modelo mais simples, a capacidade de generalização da árvore é limitada e a

diferença mínima entre as acurácias do treinamento e teste sugere que o modelo não está

sofrendo de overfitting, mas sim de um baixo poder de predição.

Além disso, foi observado que ao aumentar a profundidade máxima da árvore de

decisão para valores acima de max_depth = 15, o custo computacional começa a crescer

rapidamente. Para profundidades muito altas, o tempo de processamento pode superar 5

horas, conforme o modelo se torna mais complexo e requer maior capacidade de cálculo.

4.4 Criação do Código Scatter Maps

O scatter plot matrix (ou matriz de gráficos de dispersão) é uma ferramenta visual

utilizada principalmente para explorar a relação entre múltiplas variáveis em um conjunto

de dados e também é utilizado para visualizar padrões, tendências e outliners. Além dos

gráficos de dispersão, a matriz pode incluir histogramas ou gráficos de densidade ao longo

67

da diagonal principal para mostrar a distribuição de cada variável individualmente.

1 #C d i g o Sca t t e r Maps

2

3 import os

4 import pandas as pd

5 import matp lo t l i b . pyplot as p l t

6 from matp lo t l i b . c o l o r s import ListedColormap

7 from pandas . p l o t t i n g import scatter_matr ix

8

9 de f load_and_normalize_data (data_path) :

10 data = pd . read_csv (data_path)

11 l a b e l s = data . pop (’class’)

12 normalized_data = (data − data . mean ()) / data . std ()

13 re turn normalized_data , l a b e l s

14

15 data_path = "/content/drive/My Drive/random_output.csv"

16

17 i f not os . path . e x i s t s (data_path) :

18 r a i s e FileNotFoundError (f "Data path {data_path} does not exist.")

19

20 # Def ine a colormap with more d i s t i n g u i s h ab l e c o l o r s

21 c o l o r s = [’#FF0000’ , ’#0000FF’ , ’#00FF00’ , ’#FF00FF’ , ’#00FFFF’ , ’#FFFF00’ ,

’#FFA500’ , ’#800080’ , ’#008000’ , ’#FFC0CB’]

22 cmap = ListedColormap (c o l o r s)

23

24 data1 , l a b e l s 1 = load_and_normalize_data (data_path)

25

26 # Create s c a t t e r matrix

27 s c a t t e r = scatter_matr ix (data1 , c=labe l s 1 , marker=’o’ , s=40, hist_kwds={’

bins’ : 15} , f i g s i z e =(10 , 10) , cmap=cmap)

28

29 # Add legend

30 handles = [p l t . Line2D ([] , [] , c o l o r=cmap(i) , marker=’o’ , l i n e s t y l e=’’ ,

markers i ze =10) f o r i in range (l en (l a b e l s 1 . unique ()))]

31 l a b e l s = [f ’Class {i}’ f o r i in l a b e l s 1 . unique ()]

32 p l t . l egend (handles , l ab e l s , l o c=’upper right’ , bbox_to_anchor =(1.2 , 1) ,

t i t l e=’Classes’)

33

34 p l t . show ()

Tabela 28: Código Scatter Maps.

68

4.4.1 Estrutura do Código

Importação de Bibliotecas

1 #Scat t e r Maps 3D

2

3 import os

4 import pandas as pd

5 import matp lo t l i b . pyplot as p l t

6 from matp lo t l i b . c o l o r s import ListedColormap

7 from mpl_toolk i t s . mplot3d import Axes3D

8

9 de f load_and_normalize_data (data_path) :

10 data = pd . read_csv (data_path)

11 l a b e l s = data . pop (’class’)

12 normalized_data = (data − data . mean ()) / data . std ()

13 re turn normalized_data , l a b e l s

14

15 data_path = "/content/drive/My Drive/random_output.csv"

16

17 i f not os . path . e x i s t s (data_path) :

18 r a i s e FileNotFoundError (f "Data path {data_path} does not exist.")

19

20 # Def ine a colormap with more d i s t i n g u i s h ab l e c o l o r s

21 c o l o r s = [’#FF0000’ , ’#0000FF’ , ’#00FF00’ , ’#FF00FF’ , ’#00FFFF’ , ’#FFFF00’ ,

’#FFA500’ , ’#800080’ , ’#008000’ , ’#FFC0CB’]

22 cmap = ListedColormap (c o l o r s)

23

24 data , l a b e l s = load_and_normalize_data (data_path)

25

26 # Selec ionando t r s v a r i v e i s para o g r f i c o 3D

27 x_var = ’sensor_2’

28 y_var = ’sensor_3’

29 z_var = ’sensor_4’

30

31 f i g = p l t . f i g u r e ()

32 ax = f i g . add_subplot (111 , p r o j e c t i o n=’3d’)

33

34 # Criando o s c a t t e r p l o t 3D

35 s c a t t e r = ax . s c a t t e r (data [x_var] , data [y_var] , data [z_var] , c=l abe l s , cmap=

69

cmap , marker=’o’ , s=40)

36

37 # Adicionando r t u l o s

38 ax . s e t_x labe l (x_var)

39 ax . s e t_y labe l (y_var)

40 ax . s e t_z l abe l (z_var)

41

42 # Adicionando legenda

43 handles = [p l t . Line2D ([] , [] , c o l o r=cmap(i) , marker=’o’ , l i n e s t y l e=’’ ,

markers i ze =10) f o r i in range (l en (l a b e l s . unique ()))]

44 l a b e l_c l a s s e s = [f ’Class {i}’ f o r i in l a b e l s . unique ()]

45 ax . l egend (handles , l ab e l_c l a s s e s , l o c=’upper left’ , bbox_to_anchor =(1.2 , 1)

, t i t l e=’Classes’)

46

47 p l t . show ()

Tabela 29: Importação de Bibliotecas (Scatter Maps).

• OS;

• Pandas;

• Matplotlib.pyplot;

• ListedColormap: Classe do matplotlib que permite criar um mapa de cores perso-

nalizado;

• Scatter_matrix: Função do pandas que cria uma matriz de gráficos de dispersão.

Função load_and_normalize_data

1 de f load_and_normalize_data (data_path) :

2 data = pd . read_csv (data_path)

3 l a b e l s = data . pop (’class’)

4 normalized_data = (data − data . mean ()) / data . std ()

5 re turn normalized_data , l a b e l s

Tabela 30: Função load_and_normalize_data (Scatter Maps).

Descrição da função:

70

1. Leitura do arquivo CSV: data = pd.read_csv(data_path) lê um arquivo CSV loca-

lizado no caminho especificado (data_path) e armazena os dados em um DataFrame

"data";

2. Separação dos Rótulos: labels = data.pop(′class′) remove a coluna ’class’ do Data-

Frame e armazena seus valores na variável labels. Essa coluna é assumida como a

variável alvo ou classe;

3. Normalização dos Dados: normalized_data = (data − data.mean())/data.std()

normaliza os dados subtraindo a média e dividindo pelo desvio padrão, resultando

em dados com média 0 e desvio padrão 1;

4. Retorno dos Dados Normalizados e Rótulos: A função retorna uma tupla contendo

os dados normalizados (normalized_data) e os labels.

Verificação da Existência do Arquivo

1 data_path = "/content/drive/My Drive/random_output.csv"

2

3 i f not os . path . e x i s t s (data_path) :

4 r a i s e FileNotFoundError (f "Data path {data_path} does not exist.")

Tabela 31: Verificação da Existência do Arquivo (Scatter Maps).

Descrição:

1. Define a variável data_path que contém o caminho para o arquivo CSV;

2. Usa os.path.exists(data_path) para verificar se o arquivo existe. Se não existir,

levanta um erro informativo FileNotFoundError.

Definição do Mapa de Cores

1 c o l o r s = [’#FF0000’ , ’#0000FF’ , ’#00FF00’ , ’#FF00FF’ , ’#00FFFF’ , ’#FFFF00’ ,

’#FFA500’ , ’#800080’ , ’#008000’ , ’#FFC0CB’]

2 cmap = ListedColormap (c o l o r s)

Tabela 32: Definição do Mapa de Cores (Scatter Maps).

Descrição:

71

1. Cria uma lista chamada colors com códigos hexadecimais representando cores dis-

tintas que serão usadas para diferenciar as classes no gráfico;

2. cmap = ListedColormap(colors) cria um objeto ListedColormap usando as cores

definidas, que será utilizado para colorir os pontos no gráfico.

Carregamento e Normalização dos Dados

1 data1 , l a b e l s 1 = load_and_normalize_data (data_path)

Tabela 33: Carregamento e Normalização dos Dados (Scatter Maps).

Descrição: Chama a função load_and_normalize_data, passando o caminho do ar-

quivo CSV (data_path). Os dados normalizados são armazenados em data1, enquanto os

rótulos correspondentes são armazenados em labels1.

Criação da Matriz de Gráficos de Dispersão

1 s c a t t e r = scatter_matr ix (data1 , c=labe l s 1 , marker=’o’ , s=40, hist_kwds={’

bins’ : 15} , f i g s i z e =(10 , 10) , cmap=cmap)

Tabela 34: Criação da Matriz de Gráficos de Dispersão (Scatter Maps).

Descrição:

1. A função scatter_matrix gera uma matriz de gráficos de dispersão para todas as

combinações possíveis das colunas em data1 ;

2. Os parâmetros utilizados incluem:

• c = labels1: Define as cores dos pontos com base nos rótulos das classes;

• marker =′ o′: Especifica o formato dos marcadores como círculos;

• s = 40: Define o tamanho dos marcadores;

• hist_kwds = ′bins′ : 15: Especifica que os histogramas nas diagonais devem

ter 15 bins ;

• figsize = (10, 10): Define o tamanho da figura como 10x10 polegadas;

• cmap = cmap: Aplica o mapa de cores definido anteriormente.

Adição da Legenda

72

1 handles = [p l t . Line2D ([] , [] , c o l o r=cmap(i) , marker=’o’ , l i n e s t y l e=’’ ,

markers i ze =10) f o r i in range (l en (l a b e l s 1 . unique ()))]

2 l a b e l s = [f ’Class {i}’ f o r i in l a b e l s 1 . unique ()]

3 p l t . l egend (handles , l ab e l s , l o c=’upper right’ , bbox_to_anchor =(1.2 , 1) ,

t i t l e=’Classes’)

Tabela 35: Adição da Legenda (Scatter Maps).

Descrição:

1. A lista handles é criada usando uma compreensão de lista que gera objetos Line2D

para cada classe única nos rótulos (labels1). Cada objeto representa um ponto na

legenda com a cor correspondente;

2. A lista labels é criada contendo strings que representam cada classe (por exemplo,

’Class 0 ’, ’Class 1 ’, etc.);

3. O método plt.legend(...) adiciona a legenda ao gráfico na posição especificada (loc =′

upperright′) e ajusta sua posição com o parâmetro bbox_to_anchor.

Exibição do Gráfico

1 p l t . show ()

Tabela 36: Exibição do Gráfico (Scatter Maps).

Descrição: O método plt.show() exibe todos os gráficos criados até este ponto na tela.

4.4.2 Output

Distribuições Individuais

Os histogramas na diagonal principal mostram a distribuição de cada sensor individu-

almente. Pode-se ver que sensor_1, sensor_2 e sensor_3 têm distribuições concentradas

ao redor de um valor central, enquanto sensor_4 tem uma distribuição mais espalhada.

Classes

As cores diferentes representam diferentes classes, conforme mostrado na legenda à

direita. Há uma clara diferenciação de algumas classes em relação a sensor_4. As classes

7 (verde claro) e 3 (azul escuro) são bem distintas das outras classes neste sensor.

Overlapping e Separação de Classes

73

Em muitos dos gráficos de dispersão, há uma sobreposição significativa entre as classes,

indicando que pode ser difícil separar essas classes usando apenas essas duas variáveis. No

entanto, em gráficos que envolvem sensor_4, especialmente contra sensor_1, sensor_2,

e sensor_3, algumas classes mostram menos sobreposição, sugerindo que sensor_4 pode

ser um bom discriminador para algumas classes.

Inferências específicas

Sensor 4

Tal sensor parece ser particularmente útil para distinguir classes. Por exemplo, as 7

(verde claro) e 3 (azul escuro) são muito distintas em relação a sensor_4. Porém, ainda

é possível observar sobreposições de classe, como a classe amarela e magenta tendo distri-

buições próximas à classe azul escuro. sensor_4 contra sensor_1, sensor_2 e sensor_3

mostra menos sobreposição para algumas classes, o que pode indicar uma capacidade

discriminativa mais alta.

Correlações e Distribuições

A maioria das relações entre os outros sensores (sensor_1, sensor_2 e sensor_3)

não mostra padrões claros de correlação positiva ou negativa. A dispersão parece ser mais

uniforme, sugerindo baixa correlação entre essas variáveis.

Outliers

Existem alguns pontos que estão distantes do agrupamento central, indicando pos-

síveis outliers. Esses outliers podem ser importantes para investigações adicionais ou

pré-processamento de dados.

74

Figura 26: Output Scatter Maps.

4.5 Criação do Código Scatter Maps 3D

A motivação desse código é observar melhor a relação dos 3 sensores na classificação

de cada movimento.

1 #Scat t e r Maps 3D

2

3 import os

4 import pandas as pd

5 import matp lo t l i b . pyplot as p l t

6 from matp lo t l i b . c o l o r s import ListedColormap

7 from mpl_toolk i t s . mplot3d import Axes3D

8

9 de f load_and_normalize_data (data_path) :

75

10 data = pd . read_csv (data_path)

11 l a b e l s = data . pop (’class’)

12 normalized_data = (data − data . mean ()) / data . std ()

13 re turn normalized_data , l a b e l s

14

15 data_path = "/content/drive/My Drive/random_output.csv"

16

17 i f not os . path . e x i s t s (data_path) :

18 r a i s e FileNotFoundError (f "Data path {data_path} does not exist.")

19

20 # Def ine a colormap with more d i s t i n g u i s h ab l e c o l o r s

21 c o l o r s = [’#FF0000’ , ’#0000FF’ , ’#00FF00’ , ’#FF00FF’ , ’#00FFFF’ , ’#FFFF00’ ,

’#FFA500’ , ’#800080’ , ’#008000’ , ’#FFC0CB’]

22 cmap = ListedColormap (c o l o r s)

23

24 data , l a b e l s = load_and_normalize_data (data_path)

25

26 # Selec ionando t r s v a r i v e i s para o g r f i c o 3D

27 x_var = ’sensor_2’

28 y_var = ’sensor_3’

29 z_var = ’sensor_4’

30

31 f i g = p l t . f i g u r e ()

32 ax = f i g . add_subplot (111 , p r o j e c t i o n=’3d’)

33

34 # Criando o s c a t t e r p l o t 3D

35 s c a t t e r = ax . s c a t t e r (data [x_var] , data [y_var] , data [z_var] , c=l abe l s , cmap=

cmap , marker=’o’ , s=40)

36

37 # Adicionando r t u l o s

38 ax . s e t_x labe l (x_var)

39 ax . s e t_y labe l (y_var)

40 ax . s e t_z l abe l (z_var)

41

42 # Adicionando legenda

43 handles = [p l t . Line2D ([] , [] , c o l o r=cmap(i) , marker=’o’ , l i n e s t y l e=’’ ,

markers i ze =10) f o r i in range (l en (l a b e l s . unique ()))]

44 l a b e l_c l a s s e s = [f ’Class {i}’ f o r i in l a b e l s . unique ()]

45 ax . l egend (handles , l ab e l_c l a s s e s , l o c=’upper left’ , bbox_to_anchor =(1.2 , 1)

, t i t l e=’Classes’)

76

46

47 p l t . show ()

Tabela 37: Código Scatter Maps 3D.

4.5.1 Output

Figura 27: Output Scatter Maps 3D sensores 1, 2 e 3.

77

Figura 28: Output Scatter Maps 3D sensores 1, 2 e 4.

Figura 29: Output Scatter Maps 3D sensores 1, 3 e 4.

78

Figura 30: Output Scatter Maps 3D sensores 2, 3 e 4.

Reforça que o sensor 4 é o que mais influencia no gráfico, com o sensor 3 é possível se

ver mais cores e o sensor 1 é ligeiramente mais expressivo que o 2. Isto é, o sensor 2 é o

que menos influencia nos dados.

4.6 Criação do código Matriz de Confusão Multi-Classe com K-

NN

1 import numpy as np

2 import pandas as pd

3 from sk l e a rn . p r ep ro c e s s i ng import StandardSca ler

4 from sk l e a rn . met r i c s import confusion_matrix , accuracy_score

5 import matp lo t l i b . pyplot as p l t

6 import seaborn as sns

7 from sk l e a rn . ne ighbors import KNe ighbor sC la s s i f i e r

8 from sk l e a rn . mode l_se lect ion import t r a i n_te s t_sp l i t

9

10 de f load_and_normalize_data (f i l e_path) :

11 df = pd . read_csv (f i l e_path)

12 data = df . i l o c [: , : −1] . va lue s . astype (np . f l o a t 3 2)

13 l a b e l s = df [’class’] . va lue s . astype (np . in t64)

79

14 s c a l e r = StandardSca ler ()

15 data = s c a l e r . f i t_trans fo rm (data)

16 re turn data , l a b e l s

17

18 de f train_and_evaluate_knn (X_train , y_train , X_test , y_test) :

19 # Treinamento com KNN

20 knn = KNe ighbor sC la s s i f i e r (n_neighbors=200) . f i t (X_train , y_train)

21 knn_predicted = knn . p r ed i c t (X_test)

22

23 # A v a l i a o

24 confusion_mc = confusion_matrix (y_test , knn_predicted)

25 accuracy = accuracy_score (y_test , knn_predicted)

26

27 df_cm = pd . DataFrame (confusion_mc , index=range (10) , columns=range (10))

28

29 # Aumentando a rea do g r f i c o para 10x8

30 p l t . f i g u r e (f i g s i z e =(10 , 8))

31 sns . heatmap (df_cm , annot=True , fmt=’d’ , cmap=’Blues’ , cbar=False)

32 p l t . t i t l e (f ’KNN Classifier\nAccuracy: {accuracy:.3f}’)

33 p l t . y l ab e l (’True label’)

34 p l t . x l ab e l (’Predicted label’)

35 p l t . show ()

36

37 # Caminhos dos da ta s e t s

38 test_path = "/content/drive/My Drive/test_dataset.csv"

39 train_path = "/content/drive/My Drive/train_dataset.csv"

40

41 # Carregar e normal i zar os dados

42 X_train , y_train = load_and_normalize_data (train_path)

43 X_test , y_test = load_and_normalize_data (test_path)

44

45 # Treinar e a v a l i a r o modelo KNN

46 train_and_evaluate_knn (X_train , y_train , X_test , y_test)

Tabela 38: Código Matriz de Confusão Multi-Classe com K-NN.

80

4.6.1 Output Inicial

Figura 31: Output Inicial da Matriz de Confusão Multi-Classe com K-NN.

4.6.2 Aperfeiçoando a Visão dos Dados

1 import numpy as np

2 import pandas as pd

3 from sk l e a rn . p r ep ro c e s s i ng import StandardSca ler

4 from sk l e a rn . met r i c s import confusion_matrix , accuracy_score ,

p rec i s i on_score , r e ca l l_sco r e , f1_score

5 import matp lo t l i b . pyplot as p l t

6 import seaborn as sns

7 from sk l e a rn . ne ighbors import KNe ighbor sC la s s i f i e r

8 from sk l e a rn . mode l_se lect ion import t r a i n_te s t_sp l i t

9

10 de f load_and_normalize_data (f i l e_path) :

11 df = pd . read_csv (f i l e_path)

12 data = df . i l o c [: , : −1] . va lue s . astype (np . f l o a t 3 2)

81

13 l a b e l s = df [’class’] . va lue s . astype (np . in t64)

14 s c a l e r = StandardSca ler ()

15 data = s c a l e r . f i t_trans fo rm (data)

16 re turn data , l a b e l s

17

18 de f train_and_evaluate_knn (X_train , y_train , X_test , y_test) :

19 # Treinamento com KNN

20 knn = KNe ighbor sC la s s i f i e r (n_neighbors=200) . f i t (X_train , y_train)

21 knn_predicted = knn . p r ed i c t (X_test)

22

23 # A v a l i a o

24 confusion_mc = confusion_matrix (y_test , knn_predicted)

25 accuracy = accuracy_score (y_test , knn_predicted)

26 p r e c i s i o n = pre c i s i on_sco r e (y_test , knn_predicted , average=’macro’)

27 r e c a l l = r e c a l l_ s c o r e (y_test , knn_predicted , average=’macro’)

28 f 1 = f1_score (y_test , knn_predicted , average=’macro’)

29

30 pr in t (f " Acur cia total: {accuracy:.3f}")

31 pr in t (f " Precis o total: {precision:.3f}")

32 pr in t (f "Recall total: {recall:.3f}")

33 pr in t (f "F1 Score total: {f1:.3f}")

34

35 # Calcu lar as m t r i c a s por c l a s s e

36 c l a s s_p r e c i s i o n = pre c i s i on_sco r e (y_test , knn_predicted , average=None)

37 c l a s s_ r e c a l l = r e c a l l_ s c o r e (y_test , knn_predicted , average=None)

38 c l a s s_f1 = f1_score (y_test , knn_predicted , average=None)

39

40 f o r i in range (l en (c l a s s_p r e c i s i o n)) :

41 pr in t (f "\nClasse {i}:")

42 pr in t (f " Acur cia : {confusion_mc[i, i] / confusion_mc.sum(axis=1)

[i]:.3f}")

43 pr in t (f " Precis o : {class_precision[i]:.3f}")

44 pr in t (f " Recall: {class_recall[i]:.3f}")

45 pr in t (f " F1 Score: {class_f1[i]:.3f}")

46

47 df_cm = pd . DataFrame (confusion_mc , index=range (10) , columns=range (10))

48

49 # Aumentando a rea do g r f i c o para 10x8

50 p l t . f i g u r e (f i g s i z e =(10 , 8))

51 sns . heatmap (df_cm , annot=True , fmt=’d’ , cmap=’Blues’ , cbar=False)

82

52 p l t . t i t l e (f ’KNN Classifier\nAccuracy: {accuracy:.3f}’)

53 p l t . y l ab e l (’True label’)

54 p l t . x l ab e l (’Predicted label’)

55 p l t . show ()

56

57 # Caminhos dos da ta s e t s

58 test_path = "/content/drive/My Drive/test_dataset.csv"

59 train_path = "/content/drive/My Drive/train_dataset.csv"

60

61 # Carregar e normal i zar os dados

62 X_train , y_train = load_and_normalize_data (train_path)

63 X_test , y_test = load_and_normalize_data (test_path)

64

65 # Treinar e a v a l i a r o modelo KNN

66 train_and_evaluate_knn (X_train , y_train , X_test , y_test)

Tabela 39: Código Matriz de Confusão Multi-Classe com K-NN.

4.6.3 Output

A alteração no código possibilitou a análise dos parâmetros de cada movimento, como

listado abaixo.

1. Modelo: acurácia de 29,5%, precisão de 26%, recall de 29,5% e F1 score de 26,1%.

2. Posição neutra: acurácia de 65,5%, precisão de 27,6%, recall de 65,5% e F1 score

de 38,9%.

3. Extensão de pulso: acurácia de 62,7%, precisão de 47,4%, recall de 62,7% e F1

score de 54%.

4. Flexão de pulso: acurácia de 63,1%, precisão de 48%, recall de 63,1% e F1 score

de 54,5%.

5. Desvio ulnar: acurácia de 23,9%, precisão de 20,8%, recall de 23,9% e F1 score

de 22,3%.

6. Desvio radial: acurácia de 18,9%, precisão de 25%, recall de 18,9% e F1 score de

21,6%.

7. Punho fechado: acurácia de 27,9%, precisão de 24,6%, recall de 27,9% e F1 score

de 26,2%.

83

8. Abdução dos dedos: acurácia de 10%, precisão de 19,2%, recall de 10% e F1

score de 13,1%.

9. Adução dos dedos: acurácia de 5,4%, precisão de 14,9%, recall de 5,4% e F1 score

de 7,9%.

10. Supinação: acurácia de 12,2%, precisão de 16,9%, recall de 12,2% e F1 score de

14,2%.

11. Pronação: acurácia de 5,4%, precisão de 15,1%, recall de 5,4% e F1 score de 7,9%.

Figura 32: Output Matriz de Confusão Multi-Classe com K-NN.

Com a melhoria da visualização da saída foi possível notar que as 4 últimas classes

se destacam pela baixa acurácia, enquanto as 3 primeiras possuem alta acurácia, po-

rém, baixa precisão, indicando que outros movimentos são confundidos com esses. Agora,

excluindo essas 3 da comparação, as demais indicam baixo aprendizado de suas caracte-

rísticas.

84

4.7 Criação do código Matriz de Confusão Multi-Classe com DT

1 import numpy as np

2 import pandas as pd

3 from sk l e a rn . p r ep ro c e s s i ng import StandardSca ler

4 from sk l e a rn . met r i c s import confusion_matrix , accuracy_score ,

p rec i s i on_score , r e ca l l_sco r e , f1_score

5 import matp lo t l i b . pyplot as p l t

6 import seaborn as sns

7 from sk l e a rn . t r e e import De c i s i o nT r e eC l a s s i f i e r

8 from sk l e a rn . mode l_se lect ion import t r a i n_te s t_sp l i t

9

10 de f load_and_normalize_data (f i l e_path) :

11 df = pd . read_csv (f i l e_path)

12 data = df . i l o c [: , : −1] . va lue s . astype (np . f l o a t 3 2)

13 l a b e l s = df [’class’] . va lue s . astype (np . in t64)

14 s c a l e r = StandardSca ler ()

15 data = s c a l e r . f i t_trans fo rm (data)

16 re turn data , l a b e l s

17

18 de f tra in_and_evaluate_decis ion_tree (X_train , y_train , X_test , y_test) :

19 # Training with Dec i s i on Tree

20 c l f = De c i s i o nT r e eC l a s s i f i e r (max_depth=15, min_samples_leaf=8,

random_state=0) . f i t (X_train , y_train)

21 dt_predicted = c l f . p r ed i c t (X_test)

22

23 # Evaluat ion

24 confusion_mc = confusion_matrix (y_test , dt_predicted)

25 accuracy = accuracy_score (y_test , dt_predicted)

26 p r e c i s i o n = pre c i s i on_sco r e (y_test , dt_predicted , average=’macro’)

27 r e c a l l = r e c a l l_ s c o r e (y_test , dt_predicted , average=’macro’)

28 f 1 = f1_score (y_test , dt_predicted , average=’macro’)

29

30 pr in t (f " Acur cia total: {accuracy:.3f}")

31 pr in t (f " Precis o total: {precision:.3f}")

32 pr in t (f "Recall total: {recall:.3f}")

33 pr in t (f "F1 Score total: {f1:.3f}")

34

35 # Calcu la te metr i c s per c l a s s

36 c l a s s_p r e c i s i o n = pre c i s i on_sco r e (y_test , dt_predicted , average=None)

37 c l a s s_ r e c a l l = r e c a l l_ s c o r e (y_test , dt_predicted , average=None)

85

38 c l a s s_f1 = f1_score (y_test , dt_predicted , average=None)

39

40 f o r i in range (l en (c l a s s_p r e c i s i o n)) :

41 pr in t (f "\nClasse {i}:")

42 pr in t (f " Acur cia : {confusion_mc[i, i] / confusion_mc.sum(axis=1)

[i]:.3f}")

43 pr in t (f " Precis o : {class_precision[i]:.3f}")

44 pr in t (f " Recall: {class_recall[i]:.3f}")

45 pr in t (f " F1 Score: {class_f1[i]:.3f}")

46

47 df_cm = pd . DataFrame (confusion_mc , index=range (10) , columns=range (10))

48

49 # Inc r ea s e p l o t s i z e to 10x8

50 p l t . f i g u r e (f i g s i z e =(10 , 8))

51 sns . heatmap (df_cm , annot=True , fmt=’d’ , cmap=’Blues’ , cbar=False)

52 p l t . t i t l e (f ’Decision Tree Classifier\nAccuracy: {accuracy:.3f}’)

53 p l t . y l ab e l (’True label’)

54 p l t . x l ab e l (’Predicted label’)

55 p l t . show ()

56

57 # Paths to the da ta s e t s

58 test_path = "/content/drive/My Drive/test_dataset.csv"

59 train_path = "/content/drive/My Drive/train_dataset.csv"

60

61 # Load and normal ize the data

62 X_train , y_train = load_and_normalize_data (train_path)

63 X_test , y_test = load_and_normalize_data (test_path)

64

65 # Train and eva luate the Dec i s i on Tree model

66 tra in_and_evaluate_decis ion_tree (X_train , y_train , X_test , y_test)

Tabela 40: Código Matriz de Confusão Multi-Classe com DT.

4.7.1 Output

A matriz de confusão gerada pela árvore de decisão, Figura 33, segue o mesmo padrão

da gerada anteriormente pelo K-NN. Ainda, é possível inferir que a taxa de aprendizado

da DT é menor em comparação com o código anterior, uma vez que os parâmetros de

avaliação, acurácia, precisão, recall e F1 score, em geral, diminuíram para cada classe,

como pode ser visto abaixo.

86

1. Modelo: acurácia de 28,9%, precisão de 25,4%, recall de 28,9% e F1 score de

24,9%.

2. Posição neutra: acurácia de 66,8%, precisão de 27,1%, recall de 66,8% e F1 score

de 38,6%.

3. Extensão de pulso: acurácia de 59%, precisão de 48,4%, recall de 59% e F1 score

de 53,1%.

4. Flexão de pulso: acurácia de 61,3%, precisão de 46,7%, recall de 61,3% e F1 score

de 53%.

5. Desvio ulnar: acurácia de 25,7%, precisão de 20,5%, recall de 25,7% e F1 score

de 22,8%.

6. Desvio radial: acurácia de 18,1%, precisão de 24%, recall de 18,1% e F1 score de

20,6%.

7. Punho fechado: acurácia de 30,9%, precisão de 21,8%, recall de 30,9% e F1 score

de 25,6%.

8. Abdução dos dedos: acurácia de 10,7%, precisão de 20,5%, recall de 10,7% e F1

score de 14%.

9. Adução dos dedos: acurácia de 3,1%, precisão de 14,8%, recall de 3,1% e F1 score

de 5,1%.

10. Supinação: acurácia de 12,4%, precisão de 16,2%, recall de 12,4% e F1 score de

14,1%.

11. Pronação: acurácia de 1,2%, precisão de 13,9%, recall de 1,2% e F1 score de 2,2%.

87

Figura 33: Output Matriz de Confusão Multi-Classe com DT.

4.8 K-means para Análise das Classes

Nesta seção, utilizou-se o algoritmo k-means para avaliar a similaridade entre as clas-

ses, analisando como os dados se agrupam e identificando possíveis padrões ou sobreposi-

ções entre elas. Essa abordagem permite entender melhor o comportamento dos dados e

a proximidade entre diferentes classes, contribuindo para uma avaliação mais precisa da

separabilidade entre os grupos.

1

2 # Import nece s sa ry l i b r a r i e s

3 import os

4 import numpy as np

5 import pandas as pd

6 from sk l e a rn . p r ep ro c e s s i ng import StandardSca ler

7 from sk l e a rn . c l u s t e r import KMeans

8 from sk l e a rn . met r i c s import pa i rw i s e_d i s tance s

88

9 import matp lo t l i b . pyplot as p l t

10

11 # Load and normal ize data

12 de f load_and_normalize_data (f i l e_path) :

13 df = pd . read_csv (f i l e_path)

14 data = df . i l o c [: , : −1] . va lue s . astype (np . f l o a t 3 2)

15 l a b e l s = df . i l o c [: , −1]. va lue s . astype (np . in t32) # Assuming l a s t column

has c l a s s l a b e l s (0−9)

16 s c a l e r = StandardSca ler ()

17 data = s c a l e r . f i t_trans fo rm (data)

18 re turn data , l a b e l s

19

20 # Perform K−Means c l u s t e r i n g f o r a s p e c i f i e d number o f c l u s t e r s

21 de f perform_kmeans (data , n_c lus te r s =10) :

22 kmeans = KMeans(n_c lus te r s=n_clusters , random_state=42)

23 kmeans . f i t (data)

24 re turn kmeans

25

26 # Calcu la te d i s t an c e s between c l u s t e r c en t r o i d s

27 de f ca l cu l a t e_cent ro id_d i s tance s (kmeans) :

28 c en t r o i d s = kmeans . c lus te r_centers_

29 d i s t an c e s = pa i rw i s e_d i s tance s (c en t r o i d s)

30 re turn d i s t an c e s

31

32 # Find s im i l a r c l a s s e s based on cen t ro id d i s t an c e s

33 de f f i nd_s im i l a r_c l a s s e s (d i s tance s , th r e sho ld =1.0) :

34 n_c lus te r s = d i s t an c e s . shape [0]

35 s im i l a r_pa i r s = []

36

37 f o r i in range (n_c lus te r s) :

38 f o r j in range (i + 1 , n_c lus te r s) :

39 i f d i s t an c e s [i , j] < thre sho ld :

40 s im i l a r_pa i r s . append ((i , j , d i s t an c e s [i , j]))

41

42 re turn s im i l a r_pa i r s

43

44 # Vi sua l i z e the c en t r o id d i s t an c e s as a heatmap

45 de f p lo t_centro id_di s tances (d i s t an c e s) :

46 p l t . f i g u r e (f i g s i z e =(8 , 6))

47 p l t . imshow (d i s tance s , i n t e r p o l a t i o n=’nearest’ , cmap=’Blues’)

89

48 p l t . c o l o rba r ()

49 p l t . t i t l e (’Distances Between Cluster Centroids’)

50 p l t . x l ab e l (’Cluster Index’)

51 p l t . y l ab e l (’Cluster Index’)

52 p l t . show ()

53

54 # Def ine the f i l e path f o r your data

55 data_path = "/content/drive/My Drive/random_output.csv"

56

57 # Check i f the f i l e path e x i s t s

58 i f not os . path . e x i s t s (data_path) :

59 r a i s e FileNotFoundError (f "Data path {data_path} does not exist.")

60

61 # Load and normal ize the data

62 data , l a b e l s = load_and_normalize_data (data_path)

63

64 # Perform K−Means c l u s t e r i n g (number o f c l u s t e r s can be 10 f o r c l a s s e s 0−9)

65 kmeans = perform_kmeans (data , n_c lus te r s =10)

66

67 # Calcu la te and p lo t c en t r o id d i s t an c e s

68 cent ro id_d i s tance s = ca l cu l a t e_cent ro id_d i s tance s (kmeans)

69 p lot_centro id_di s tances (c ent ro id_d i s tance s)

70

71 # Find and pr in t s im i l a r c l a s s e s

72 s im i l a r_c l a s s e s = f i nd_s im i l a r_c l a s s e s (cent ro id_di s tances , th r e sho ld =2.5)

Adjust th r e sho ld as needed

73 pr in t ("Similar class pairs (based on centroid distances):")

74 f o r pa i r in s im i l a r_c l a s s e s :

75 pr in t (f "Class {pair[0]} and Class {pair[1]} are similar with a distance

of {pair[2]:.2f}")

Tabela 41: Código de K-means para Análise das Classes.

4.8.1 Output

Na Figura 34, quanto mais claro for, mais próxima as classes são. Como pode ser

averiguado, as classes 6 e 8 podem ser consideradas iguais do ponto de vista de divisão

dos dados, com uma distância de 0,82, além disso, as mesmas são próximas das demais

classes.

90

Figura 34: Distância entre os centroides dos clusters.

4.9 Análises Secundárias

4.9.1 Naive Bayes

O Naive Bayes é um algoritmo de classificação baseado no Teorema de Bayes, que

é um princípio fundamental na teoria das probabilidades. O termo "Naive"(ingênuo)

se refere ao fato de que o algoritmo faz uma suposição simplificadora: ele assume que

as características (ou atributos) do conjunto de dados são independentes entre si, dado

o valor da classe. Na prática, isso significa que o algoritmo assume que a presença ou

ausência de uma característica particular não está relacionada à presença ou ausência de

qualquer outra característica, o que nem sempre é verdadeiro. Apesar dessa suposição

simplificadora, o Naive Bayes funciona surpreendentemente bem em muitos problemas do

mundo real.

91

Como Funciona o Naive Bayes

1 - Teorema de Naive Bayes - O teorema de Bayes é a base do algoritmo e é usado

para calcular a probabilidade posterior de uma classe, dado um conjunto de características.

Ele pode ser expresso como:

P (C|X) =
P (X|C) · P (C)

P (X)
(4.4)

Onde:

• P (C|X): Probabilidade posterior da classe C dado o vetor de características X;

• P (X|C): Probabilidade de observar X dado que a classe é C;

• P (C): Probabilidade a priori da classe C;

• P (X): Probabilidade a priori do vetor de características X.

2 - Independência Ingênua - O Naive Bayes assume que todas as características

são independentes entre si. Isso permite que o cálculo da probabilidade P (X|C) seja

simplificado como o produto das probabilidades individuais de cada característica:

P (X|C) = P (x1|C) · P (x2|C) · ... · P (xn|C) (4.5)

3 - Classificação - Para classificar um novo exemplo, o algoritmo calcula a probabi-

lidade de cada classe, dado o conjunto de características do exemplo, e escolhe a classe

com a maior probabilidade.

Tipos de Naive Bayes

Existem várias versões do Naive Bayes, dependendo do tipo de dados:

• Gaussian Naive Bayes: Usado quando as características contínuas seguem uma dis-

tribuição normal (gaussiana). É o mais utilizado em dados que podem ser aproxi-

mados por uma distribuição normal;

• Multinomial Naive Bayes: Adequado para dados discretos, como contagem de pala-

vras em um texto. Muito usado em problemas de classificação de textos;

• Bernoulli Naive Bayes: Usado para dados binários (0 ou 1), como a presença ou

ausência de uma palavra em um documento.

92

Vantagens

• Simplicidade e Eficiência: O Naive Bayes é simples de implementar e computacio-

nalmente eficiente, mesmo para grandes conjuntos de dados;

• Robustez com Poucos Dados: Funciona bem mesmo com um número relativamente

pequeno de dados de treinamento;

• Bom Desempenho: Apesar da suposição de independência ingênua, o algoritmo

geralmente tem um desempenho muito bom, especialmente em problemas de clas-

sificação de texto.

Desvantagens

• Independência de Características: A suposição de independência raramente é ver-

dadeira na prática, o que pode limitar a precisão do modelo em alguns casos;

• Estimativa de Probabilidades: Se uma característica em um novo dado de entrada

não foi observada durante o treinamento, a probabilidade correspondente pode ser

zero, resultando em problemas de classificação. Isso é frequentemente tratado com

técnicas como suavização de Laplace.

Comparação com Códigos Mais Complexos

1 from sk l e a rn . naive_bayes import GaussianNB

2 import numpy as np

3 import pandas as pd

4 from sk l e a rn . p r ep ro c e s s i ng import StandardSca ler

5

6 de f load_and_normalize_data (f i l e_path) :

7 df = pd . read_csv (f i l e_path)

8 data = df . i l o c [: , : −1] . va lue s . astype (np . f l o a t 3 2)

9 l a b e l s = df [’class’] . va lue s . astype (np . in t64)

10 s c a l e r = StandardSca ler ()

11 data = s c a l e r . f i t_trans fo rm (data)

12 re turn data , l a b e l s

93

13

14 # Datasets

15 test_path = "/content/drive/My Drive/test_dataset.csv"

16 train_path = "/content/drive/My Drive/train_dataset.csv"

17

18 # Load and normal ize data

19 X_train , y_train = load_and_normalize_data (train_path)

20 X_test , y_test = load_and_normalize_data (test_path)

21

22 # Naive Bayes c l a s s i f i e r

23 nb_c l a s s i f i e r = GaussianNB () . f i t (X_train , y_train)

24

25 # Pred i c t i on s

26 y_nb_predictions = nb_c l a s s i f i e r . p r ed i c t (X_test)

27

28 # Output p r e d i c t i o n s and accuracy

29 pr in t (y_nb_predictions)

30 pr in t (n b_c l a s s i f i e r . s c o r e (X_test , y_test))

Tabela 42: Comparação com Códigos Mais Complexos (Naive Bayes).

Ao comparar os resultados abaixo com os anteriores, nota-se uma piora significativa

no desempenho do modelo. Além disso, quando a IA não consegue identificar a classe

correta, ela tende a classificar esses casos como pertencentes à classe 0, o que indica uma

inclinação para fazer suposições para essa categoria. Esse comportamento reflete uma

falta de aprendizado efetivo nas classes mais difíceis de diferenciar, resultando em uma

maior taxa de falsos positivos para a classe 0.

1. Modelo: acurácia de 24,9%, precisão de 27,2%, recall de 24,9% e F1 score de

22,4%.

2. Posição neutra: acurácia de 84,4%, precisão de 18,7%, recall de 84,4% e F1 score

de 30,6%.

3. Extensão de pulso: acurácia de 49,2%, precisão de 59,2%, recall de 84,4% e F1

score de 30,6%.

4. Flexão de pulso: acurácia de 39%, precisão de 62,3%, recall de 39% e F1 score

de 47,9%.

5. Desvio ulnar: acurácia de 19,5%, precisão de 21,8%, recall de 39% e F1 score de

94

47,9%.

6. Desvio radial: acurácia de 10%, precisão de 30,6%, recall de 10% e F1 score de

15,1%.

7. Punho fechado: acurácia de 20,5%, precisão de 22,3%, recall de 20,5% e F1 score

de 21,4%.

8. Abdução dos dedos: acurácia de 7,5%, precisão de 21%, recall de 7,5% e F1 score

de 11,1%.

9. Adução dos dedos: acurácia de 3,6%, precisão de 12,7%, recall de 3,6% e F1 score

de 5,6%.

10. Supinação: acurácia de 11,8%, precisão de 13,4%, recall de 11,8% e F1 score de

12,6%.

11. Pronação: acurácia de 3,8%, precisão de 10,5%, recall de 3,8% e F1 score de 5,6%.

Figura 35: Acurácia Naive Bayes Classifier.

95

4.9.2 Gradient Boost Decision Trees

O modelo apresentou um alto custo computacional, levando aproximadamente 5 ho-

ras para ser executado, e resultou em uma acurácia de 0,29695, similar ao desempenho

anterior. Esse tempo de processamento elevado, aliado à melhora mínima na acurácia,

indica que o aumento na complexidade do modelo não trouxe benefícios significativos em

termos de precisão, tornando o custo computacional desproporcional aos ganhos obtidos.

1 from sk l e a rn . ensemble import Grad i en tBoo s t i n gC l a s s i f i e r

2 import numpy as np

3 import pandas as pd

4 from sk l e a rn . p r ep ro c e s s i ng import StandardSca ler

5

6 de f load_and_normalize_data (f i l e_path) :

7 df = pd . read_csv (f i l e_path)

8 data = df . i l o c [: , : −1] . va lue s . astype (np . f l o a t 3 2)

9 l a b e l s = df [’class’] . va lue s . astype (np . in t64)

10 s c a l e r = StandardSca ler ()

11 data = s c a l e r . f i t_trans fo rm (data)

12 re turn data , l a b e l s

13

14 # Datasets

15 test_path = "/content/drive/My Drive/test_dataset.csv"

16 train_path = "/content/drive/My Drive/train_dataset.csv"

17

18 # Load and normal ize data

19 X_train , y_train = load_and_normalize_data (train_path)

20 X_test , y_test = load_and_normalize_data (test_path)

21

22 # Gradient Boosted Dec i s i on Trees c l a s s i f i e r

23 g b_c l a s s i f i e r = Grad i en tBoo s t i n gC l a s s i f i e r (n_estimators =100 , l ea rn ing_rate

=0.1 , random_state=42)

24 g b_c l a s s i f i e r . f i t (X_train , y_train)

25

26 # Pred i c t i on s

27 y_gb_predictions = gb_c l a s s i f i e r . p r ed i c t (X_test)

28

29 # Output p r e d i c t i o n s and accuracy

30 pr in t (y_gb_predictions)

31 pr in t (g b_c l a s s i f i e r . s c o r e (X_test , y_test))

96

Tabela 43: Código Gradient Boost Decision Trees.

4.9.3 Random Forest

O modelo apresentou um elevado custo computacional devido à complexidade e ao

grande volume dos dados. Esse processamento exigiu tanto tempo que não foi possível

executá-lo no ambiente do Colab, pois o tempo estimado ultrapassou 6 horas.

1 from sk l e a rn . ensemble import Grad i en tBoo s t i n gC l a s s i f i e r

2 import numpy as np

3 import pandas as pd

4 from sk l e a rn . p r ep ro c e s s i ng import StandardSca ler

5

6 de f load_and_normalize_data (f i l e_path) :

7 df = pd . read_csv (f i l e_path)

8 data = df . i l o c [: , : −1] . va lue s . astype (np . f l o a t 3 2)

9 l a b e l s = df [’class’] . va lue s . astype (np . in t64)

10 s c a l e r = StandardSca ler ()

11 data = s c a l e r . f i t_trans fo rm (data)

12 re turn data , l a b e l s

13

14 # Datasets

15 test_path = "/content/drive/My Drive/test_dataset.csv"

16 train_path = "/content/drive/My Drive/train_dataset.csv"

17

18 # Load and normal ize data

19 X_train , y_train = load_and_normalize_data (train_path)

20 X_test , y_test = load_and_normalize_data (test_path)

21

22 # Gradient Boosted Dec i s i on Trees c l a s s i f i e r

23 g b_c l a s s i f i e r = Grad i en tBoo s t i n gC l a s s i f i e r (n_estimators =100 , l ea rn ing_rate

=0.1 , random_state=42)

24 g b_c l a s s i f i e r . f i t (X_train , y_train)

25

26 # Pred i c t i on s

27 y_gb_predictions = gb_c l a s s i f i e r . p r ed i c t (X_test)

28

29 # Output p r e d i c t i o n s and accuracy

30 pr in t (y_gb_predictions)

97

31 pr in t (g b_c l a s s i f i e r . s c o r e (X_test , y_test))

Tabela 44: Código Random Forest.

5 Comparação da Análise com os Movimentos

Analisando os gráficos de matriz de confusão, como exemplificado na Figura 31, foi

possível identificar alguns padrões. Primeiramente, as três primeiras classes apresentam

uma alta taxa de acerto e uma grande diferenciação entre si. Por outro lado, as demais

classes tendem a ser confundidas com a Classe 0, sendo que as duas últimas classes exibem

a maior taxa de confusão. Além disso, a Classe 4 demonstra a maior distribuição de

confusão, apresentando uma quantidade similar de tentativas errôneas em todas as classes.

Assim, com base nesse tipo de gráfico, pode-se inferir que apenas as três primeiras classes

têm um impacto positivo no aprendizado de máquina, enquanto as demais fornecem dados

confusos.

Ademais, a análise das distâncias entre os clusters revelou que as Classes 6 e 8, cor-

respondentes à abdução dos dedos e à supinação, podem ser consideradas equivalentes do

ponto de vista do aprendizado de máquina.

Portanto, os movimentos de posição neutra, flexão, e extensão do pulso são classes

distinguíveis a partir dos dados fornecidos. Em contraste, os outros movimentos geram

sinais EMG semelhantes à posição neutra. Além disso, alguns desses movimentos, por

serem contínuos, estão representados por dados discretos, como discutido na Seção 2, o

que dificulta a separação clara em clusters.

6 Decisões Sobre Quais Movimentos e Eletrodos

Dado o estudo acerca dos resultados apresentados anteriormente, decidiu-se filtrar

os dados e verificar os resultados. Primeiramente, como mostrado na Figura 25, foram

mantidos apenas os dois sensores mais relevantes na diferenciação dos dados, 4 e 2. Após

isso, os dados foram filtrados para análise sem o movimento de abdução de dedos, as seis

primeiras classes e as três mais importantes para o machine learning. Para as análises

posteriores, utilizou-se a avaliação dos gráficos de K-NN e K-means para proximidade dos

clusters.

98

6.1 Diminuição dos sensores de entrada

Os resultados obtidos pela retirada dos sensores 1 e 3 não foram satisfatórios. Com o

gráfico da Figura 36 foi possível observar que a retirada desses influiu em uma piora na

capacidade de diferenciação em comparado com 24.

Figura 36: Acurácia do K-NN sem os sensores 1 e 3

A avaliação pelo K-means, Figura 37, mostrou que a distância entre os clusters dimi-

nuiu, sendo a menor 0,7, o que indica uma maior confusão entre as classes. Assim, o uso

de apenas dois sensores levou a uma piora na classificação dos dados, sendo necessária a

manutenção de todos os sensores, mesmo que alguns contribuam pouco para o resultado

final.

99

Figura 37: Distância entre clusters sem os sensores 1 e 3

6.2 Filtragem de classes

6.2.1 Retirada da classe 6

Nesta primeira avaliação, a Classe 6 foi filtrada devido à sua confusão com a Classe

8. Observou-se uma melhoria na separação dos movimentos, pois a acurácia exibida pelo

K-NN, Figura 38, aumentou, e houve uma melhoria na distância entre as classes, Figura

39, com a menor distância sendo 1,94.

100

Figura 38: Acurácia do K-NN sem a classe 6

Figura 39: Distância entre clusters sem a classe 6

101

6.2.2 Somente as 6 primeiras classes

Com base no resultado anterior, considerou-se vantajoso filtrar os movimentos com

menor precisão. Assim, foram removidas as quatro últimas classes, que representam

movimentos contínuos, mantendo apenas as estacionárias.

Como antes, analisou-se a acurácia do K-NN, Figura 40, alcançando 48% de acerto,

aproximadamente três vezes maior que um chute aleatório. A avaliação das distâncias no

K-means, Figura 41, mostrou pouca melhoria, com a menor distância sendo 2,05.

Figura 40: Acurácia do K-NN somente das 6 primeiras classes

102

Figura 41: Distância entre clusters somente das 6 primeiras classes

Com esses dados, analisou-se a matriz de confusão do K-NN, Figura 42, focando na

acurácia individual de cada classe, resultando nos seguintes valores::

1. Posição neutra: acurácia de 70,6%, precisão de 47,5%, recall de 70,6% e F1 score

de 56,8%.

2. Extensão de pulso: acurácia de 64,6%, precisão de 60,8%, recall de 64,6% e F1

score de 62,7%.

3. Flexão de pulso: acurácia de 63,1%, precisão de 58,6%, recall de 63,1% e F1 score

de 60,8%.

4. Desvio ulnar: acurácia de 32%, precisão de 35,1%, recall de 32% e F1 score de

33,5%.

5. Desvio radial: acurácia de 22,4%, precisão de 33,1%, recall de 22,4% e F1 score

de 26,7%.

6. Punho fechado: acurácia de 29,3%, precisão de 37,2%, recall de 29,3% e F1 score

de 32,8%.

103

Figura 42: Matriz de confusão somente das 6 primeiras classes

Portanto, percebeu-se que a Classe 4 (desvio radial) continua a confundir a rede neural

e que os três primeiros movimentos possuem maior capacidade de diferenciação. Assim,

optou-se por manter apenas os dados EMG referentes aos movimentos com maior influên-

cia positiva no treinamento da IA.

6.2.3 3 classes mais importantes

Utilizando o código referente ao K-NN, construiu-se os gráficos de acurácia e de matriz

de confusão, Figuras 43 e 44, respectivamente.

104

Figura 43: Acurácia do K-NN referente aos 3 primeiros movimentos

Figura 44: Matriz de confusão referente aos 3 primeiros movimentos.

Com eles foi possível chegar em uma taxa alta de acertos, 82,8%, e, ao aprofundar em

cada movimento tem-se:

105

1. Posição neutra: acurácia de 86,6%, precisão de 75%, recall de 86,6% e F1 score

de 80,4%.

2. Extensão de pulso: acurácia de 84,3%, precisão de 87,7%, recall de 84,3% e F1

score de 86%.

3. Flexão de pulso: acurácia de 77,6%, precisão de 87,7%, recall de 77,6% e F1 score

de 82,3%.

Desse modo, indicando que a Classe 1 apresenta o melhor desempenho geral, devido

à sua alta precisão, recall e F1 Score. Já a Classe 0, embora tenha uma acurácia elevada,

apresenta uma precisão menor, sugerindo que é mais comumente referenciada, possivel-

mente com maior número de falsos positivos. Por outro lado, a Classe 2 apresenta o menor

desempenho em termos de acurácia e recall, o que sugere que o modelo está deixando de

identificar corretamente muitos exemplos reais dessa classe, indicando uma menor apren-

dizagem sobre ela.

7 MLP Final

7.1 Código

1 import os

2 import numpy as np

3 import t en so r f l ow as t f

4 from ten so r f l ow . keras import l aye r s , models

5 import pandas as pd

6 from sk l e a rn . p r ep ro c e s s i ng import StandardSca ler

7 from c o l l e c t i o n s import Counter

8 from sk l e a rn . met r i c s import confusion_matrix , accuracy_score ,

p rec i s i on_score , r e ca l l_sco r e , f1_score

9 import seaborn as sns

10 import matp lo t l i b . pyplot as p l t

11

12 de f load_and_normalize_data (f i l e_path) :

13 df = pd . read_csv (f i l e_path)

14 data = df . i l o c [: , : −1] . va lue s . astype (np . f l o a t 6 4)

15 l a b e l s = df [’class’] . va lue s . astype (np . in t64)

16 s c a l e r = StandardSca ler ()

17 data = s c a l e r . f i t_trans fo rm (data)

106

18 re turn data , l a b e l s

19

20 de f create_mlp_model (input_size , output_size , a c t i v a t i o n=’relu’ ,

dropout_rate =0.3) :

21 model = models . Sequent i a l ()

22 model . add (l a y e r s . InputLayer (input_shape=(input_size ,)))

23 model . add (l a y e r s . Dense (1000 , a c t i v a t i o n=ac t i v a t i o n))

24 model . add (l a y e r s . Dropout (dropout_rate))

25 model . add (l a y e r s . Dense (1200 , a c t i v a t i o n=ac t i v a t i o n))

26 model . add (l a y e r s . Dropout (dropout_rate))

27 model . add (l a y e r s . Dense (1000 , a c t i v a t i o n=ac t i v a t i o n))

28 model . add (l a y e r s . Dropout (dropout_rate))

29 model . add (l a y e r s . Dense (output_size , a c t i v a t i o n=’softmax’))

30 re turn model

31

32 # Custom ca l l ba ck to compute and d i sp l ay con fus i on matrix a f t e r each epoch

33 c l a s s Confus ionMatr ixCal lback (t f . ke ras . c a l l b a c k s . Cal lback) :

34 de f _init_ (s e l f , va l idat ion_data) :

35 super () . _init_ ()

36 s e l f . va l idat ion_data = val idat ion_data

37

38 de f on_epoch_end (s e l f , epoch , l o g s=None) :

39 val_data , va l_ labe l s = [] , []

40 f o r batch in s e l f . va l idat ion_data :

41 data , l a b e l s = batch

42 val_data . append (data)

43 va l_ labe l s . append (l a b e l s)

44 val_data = np . concatenate (val_data , ax i s =0)

45 va l_ labe l s = np . concatenate (va l_labe l s , ax i s =0)

46 p r ed i c t i o n s = np . argmax (s e l f . model . p r ed i c t (val_data) , ax i s =1)

47 conf_matrix = confusion_matrix (va l_labe l s , p r e d i c t i o n s)

48 accuracy = accuracy_score (va l_labe l s , p r e d i c t i o n s)

49 p r e c i s i o n = pre c i s i on_sco r e (va l_labe l s , p r ed i c t i on s , average=’macro

’)

50 r e c a l l = r e c a l l_ s c o r e (va l_labe l s , p r ed i c t i on s , average=’macro’)

51 f 1 = f1_score (va l_labe l s , p r ed i c t i on s , average=’macro’)

52

53 pr in t (f "\nEpoch {epoch + 1}:")

54 pr in t (f "Confusion Matrix:\n{conf_matrix}")

107

55 pr in t (f " Acur cia : {accuracy:.4f}, Precis o : {precision:.4f},

Recall: {recall:.4f}, F1 Score: {f1:.4f}")

56

57 p l t . f i g u r e (f i g s i z e =(8 , 6))

58 sns . heatmap (conf_matrix , annot=True , fmt=’d’ , cmap=’Blues’ , cbar=

False)

59 p l t . t i t l e (f ’Confusion Matrix - Epoch {epoch + 1}’)

60 p l t . y l ab e l (’True label’)

61 p l t . x l ab e l (’Predicted label’)

62 p l t . show ()

63

64 # Custom ca l l ba ck to p l o t l o s s and va l_los s at each epoch

65 c l a s s LossHi s toryPlotCa l lback (t f . ke ras . c a l l b a ck s . Cal lback) :

66 de f _init_ (s e l f) :

67 super () . _init_ ()

68 s e l f . l o s s e s = []

69 s e l f . va l_ lo s s e s = []

70

71 de f on_epoch_end (s e l f , epoch , l o g s=None) :

72 s e l f . l o s s e s . append (l o g s . get (’loss’))

73 s e l f . va l_ lo s s e s . append (l o g s . get (’val_loss’))

74 epochs_range = range (1 , epoch + 2)

75 p l t . f i g u r e (f i g s i z e =(8 , 6))

76 p l t . p l o t (epochs_range , s e l f . l o s s e s , l a b e l=’Training Loss’)

77 p l t . p l o t (epochs_range , s e l f . va l_los se s , l a b e l=’Validation Loss’)

78 p l t . t i t l e (f ’Loss per Epoch - Epoch {epoch + 1}’)

79 p l t . x l ab e l (’Epochs’)

80 p l t . y l ab e l (’Loss’)

81 p l t . l egend ()

82 p l t . g r i d (True)

83 p l t . show ()

84

85 # Learning Rate Scheduler

86 de f s chedu l e r (epoch , l r) :

87 i f epoch < 10 :

88 re turn l r

89 e l s e :

90 re turn l r ∗ 0 .9 # Reduz 10% da taxa de aprendizado a cada poca

a p s a 10

91

108

92 l r_schedu l e r = t f . keras . c a l l b a c k s . LearningRateScheduler (s chedu l e r)

93

94 # Paths f o r data

95 data_path = "/content/drive/MyDrive/filtered_dataset/classes/

filtered_file_wthout_class3456789.csv"

96 train_path = "/content/drive/MyDrive/filtered_dataset/classes/

train_dataset_without_class3456789.csv"

97 val_path = "/content/drive/MyDrive/filtered_dataset/classes/

val_dataset_without_class3456789.csv"

98 test_path = "/content/drive/MyDrive/filtered_dataset/classes/

test_dataset_without_class3456789.csv"

99

100 input_s ize = 4 # Assuming 4−channel EMG data

101 output_size = 10 # 10 hand ge s tu r e s

102 l ea rn ing_rate = 0.00002

103 num_epochs = 10

104 batch_size = 20

105 dropout_rate = 0 .3

106

107 f o r path in [data_path , train_path , val_path , test_path] :

108 i f not os . path . e x i s t s (path) :

109 r a i s e FileNotFoundError (f "Data path {path} does not exist.")

110

111 data1 , l a b e l s 1 = load_and_normalize_data (data_path)

112 data2 , l a b e l s 2 = load_and_normalize_data (train_path)

113 data3 , l a b e l s 3 = load_and_normalize_data (val_path)

114 data4 , l a b e l s 4 = load_and_normalize_data (test_path)

115

116 # Counting c l a s s e s

117 de f count_labe l s (l a b e l s) :

118 re turn Counter (l a b e l s)

119

120 pr in t ("Contagem de classes:" , count_labe l s (l a b e l s 1))

121 pr in t ("Contagem de classes:" , count_labe l s (l a b e l s 2))

122 pr in t ("Contagem de classes:" , count_labe l s (l a b e l s 3))

123 pr in t ("Contagem de classes:" , count_labe l s (l a b e l s 4))

124

125 t ra in_dataset = t f . data . Dataset . f rom_tensor_s l i ces ((data2 , l a b e l s 2)) .

s h u f f l e (l en (data2) , seed=42) . batch (batch_size)

109

126 val_dataset = t f . data . Dataset . f rom_tensor_s l i ce s ((data3 , l a b e l s 3)) . s h u f f l e (

l en (data3) , seed=42) . batch (batch_size)

127 t e s t_datase t = t f . data . Dataset . f rom_tensor_s l i ces ((data4 , l a b e l s 4)) . s h u f f l e

(l en (data4) , seed=42) . batch (batch_size)

128

129 model = create_mlp_model (input_size , output_size , dropout_rate=dropout_rate

)

130 model . compi le (opt imize r=t f . keras . op t im i z e r s .Adam(l earn ing_rate=

learn ing_rate) ,

131 l o s s=’sparse_categorical_crossentropy’ ,

132 metr i c s =[’accuracy’])

133

134 model . summary ()

135

136 # Cal lbacks

137 ear ly_stopping = t f . keras . c a l l b a c k s . Ear lyStopping (monitor=’val_loss’ ,

pa t i ence =10, restore_best_weights=True)

138 model_checkpoint = t f . keras . c a l l b a c k s . ModelCheckpoint (’best_model.keras’ ,

save_best_only=True)

139 confus ion_matr ix_cal lback = Confus ionMatr ixCal lback (va l idat ion_data=

val_dataset)

140 csv_logger = t f . keras . c a l l b a c k s . CSVLogger (’training_log.csv’)

141 tensorboard_cal lback = t f . keras . c a l l b a c k s . TensorBoard (log_dir=’./logs’)

142 terminate_on_nan = t f . keras . c a l l b a c k s . TerminateOnNaN ()

143 reduce_lr = t f . keras . c a l l b a c k s . ReduceLROnPlateau (monitor=’val_loss’ , f a c t o r

=0.5 , pa t i ence =2, min_lr=1e−6, verbose=1)

144 l o s s_p lo t_ca l lback = LossHi s toryPlotCa l lback ()

145

146 # Train with a l l the c a l l b a ck s

147 h i s t o r y = model . f i t (tra in_dataset , va l idat ion_data=val_dataset , epochs=

num_epochs , verbose =1,

148 c a l l b a c k s =[ear ly_stopping , model_checkpoint ,

backup_restore , l r_scheduler , confus ion_matrix_cal lback ,

149 csv_logger , tensorboard_cal lback ,

terminate_on_nan , los s_plot_ca l lback , reduce_lr])

150

151 # Test eva lua t i on

152 model . load_weights (’best_model.keras’)

153 t e s t_ lo s s , test_accuracy = model . eva luate (te s t_datase t)

154 pr in t (f "Test Accuracy: {test_accuracy:.4f}")

110

155

156 # Manually compute con fus i on matrix f o r the t e s t data

157 test_data , t e s t_ l ab e l s = [] , []

158 f o r batch in te s t_datase t :

159 data , l a b e l s = batch

160 test_data . append (data)

161 t e s t_ l ab e l s . append (l a b e l s)

162

163 test_data = np . concatenate (test_data , ax i s =0)

164 t e s t_ l ab e l s = np . concatenate (t e s t_ labe l s , ax i s =0)

165

166 # Generate p r e d i c t i o n s

167 p r ed i c t i o n s = np . argmax (model . p r ed i c t (test_data) , ax i s =1)

168

169 # Calcu la te the con fus i on matrix and other metr i c s

170 conf_matrix = confusion_matrix (t e s t_ labe l s , p r e d i c t i o n s)

171 accuracy = accuracy_score (t e s t_ labe l s , p r e d i c t i o n s)

172 p r e c i s i o n = pre c i s i on_sco r e (t e s t_ labe l s , p r ed i c t i on s , average=’macro’)

173 r e c a l l = r e c a l l_ s c o r e (t e s t_ labe l s , p r ed i c t i on s , average=’macro’)

174 f 1 = f1_score (t e s t_ labe l s , p r ed i c t i on s , average=’macro’)

175

176 pr in t (f "\nConfusion Matrix:\n{conf_matrix}")

177 pr in t (f " Acur cia : {accuracy:.4f}, Precis o : {precision:.4f}, Recall: {

recall:.4f}, F1 Score: {f1:.4f}")

178

179 # Plot the con fus i on matrix

180 p l t . f i g u r e (f i g s i z e =(8 , 6))

181 sns . heatmap (conf_matrix , annot=True , fmt=’d’ , cmap=’Blues’ , cbar=False)

182 p l t . t i t l e (’Confusion Matrix - Test Set’)

183 p l t . y l ab e l (’True label’)

184 p l t . x l ab e l (’Predicted label’)

185 p l t . show ()

Tabela 45: MLP Final.

7.1.1 Importações de Bibliotecas

O código começa importando várias bibliotecas já citadas necessárias para manipula-

ção de dados.

111

7.1.2 Funções Principais

load_and_normalize_data(file_path)

Carrega um arquivo CSV contendo dados e normaliza as características usando StandardScaler.

Retorna os dados normalizados e os rótulos.

create_mlp_model(input_size, output_size, activation =′ relu′, dropout_rate =

0.3)

Cria um modelo de rede neural multicamada (MLP) com várias camadas densas e

camadas de dropout para prevenir overfitting. O modelo usa a função de ativação ReLU

e termina com uma camada softmax para classificação.

ConfusionMatrixCallback

Uma classe personalizada que estende tf.keras.callbacks.Callback. Ela calcula e

exibe a matriz de confusão após cada época do treinamento, além de calcular métricas

como acurácia, precisão, recall e F1 score.

LossHistoryPlotCallback

Outra classe personalizada que armazena e plota a perda (loss) do treinamento e

validação ao final de cada época.

scheduler(epoch, lr)

Uma função para ajustar a taxa de aprendizado durante o treinamento, reduzindo-a

em 10% após a décima época.

7.1.3 Carregamento dos Dados

O script define caminhos para os conjuntos de dados (treinamento, validação e teste)

e carrega os dados usando a função load_and_normalize_data. Ele também conta as

classes presentes em cada conjunto usando a função count_labels.

7.1.4 Preparação dos Dados

Os dados são convertidos em datasets do TensorFlow (tf.data.Dataset) para facilitar

o treinamento em lotes (batches).

112

7.1.5 Criação e Compilação do Modelo

Um modelo MLP é criado com as dimensões especificadas. O modelo é compilado

com o otimizador Adam, uma função de perda para classificação categórica esparsa

(sparse_categorical_crossentropy) e métrica de acurácia.

7.1.6 Treinamento do Modelo

O modelo é treinado usando o método fit, com várias callbacks para monitorar o

progresso, salvar o melhor modelo, plotar perdas, entre outros.

7.1.7 Avaliação do Modelo

Após o treinamento, o modelo carrega os melhores pesos salvos e é avaliado no conjunto

de testes. A matriz de confusão é calculada novamente, junto com as métricas relevantes.

7.1.8 Visualização

Finalmente, a matriz de confusão é plotada usando Seaborn para facilitar a interpre-

tação dos resultados.

7.1.9 Importante Destacar

• Custom callback to plot loss and val_loss at each epoch - Interessante para se ob-

servar o comportamento do gráfico da loss, evitando ooverfitting ou underfitting.

Quando os gráficos estabilizam, o aprendizado para;

• Custom callback to compute and display confusion matrix after each epoch - Possi-

bilita acompanhar como se comporta cada classe;

• O batch size foi menor para exigir menor custo computacional;

• O learning rate foi menor para procurar um vale de resposta de forma mais suave;

• O número de épocas foi menor pois com os outros testes indicaram que a estabili-

zação ocorre na época 10.

113

7.2 Output

7.2.1 Arquitetura

A Figura 45 apresenta as camadas e o número de parâmetros do modelo. Esses pa-

râmetros representam a quantidade de interações que a IA realiza para chegar a uma

resposta, refletindo a complexidade e a capacidade do modelo de capturar padrões nos

dados.

Figura 45: Arquitetura final da MLP.

7.2.2 Última época

Na décima época, o modelo de aprendizado de máquina apresentou os seguintes resul-

tados:

Acuracy: 0.8355

Precisão: 0.8395

Recall: 0.8355

F1 Score: 0.8361

Ainda, a Figura 46 mostra que a quantidade de falsos positivos é significativamente

baixa em comparação com o número de acertos, indicando uma boa performance do

modelo em termos de classificação correta.

114

Figura 46: Matriz de confusão da época 10.

7.2.3 Gráfico de Perda

Ao construir um gráfico que mostra a evolução das loss de treinamento e validação,

Figura 47, observa-se a estabilização da val_loss, o que indica que o modelo atingiu seu

limite preditivo e deixou de melhorar seu desempenho, sugerindo que o aprendizado foi

maximizado e não há mais progresso no processo de treinamento.

115

Figura 47: Gráfico da perda de todas as épocas.

7.2.4 Parâmetro da época 10

Nessa seção, são enunciados alguns dados relevantes da última época, acurácia de

treino, loss do treino, acurácia da validação, loss da validação e learning rate:

50400/50400 ______ 2267s 45ms/step

Acurácia: 0.8329

Loss : 0.4449

val_accuracy: 0.8355

val_loss: 0.4406

learning_rate: 1.0000e− 05

Com esses dados percebe-se que no decorrer do treinamento foi necessário a utilização

do callback de redução da learning rate e que cada época demorou em torno de 40 minutos

para terminar.

116

7.2.5 Teste do modelo

Com o treinamento concluído de maneira satisfatória, avançou-se para a etapa final

do modelo. Os resultados obtidos a partir do test set são apresentados a seguir:

Acurácia: 0.8336

Precisão: 0.8375

Recall : 0.8336

F1 Score: 0.8341

Figura 48: Dados da Matriz de Confusão Final do Teste.

Portanto, ao final, o modelo apresentou comportamento adequado no conjunto de

teste. Com esses dados, pode-se afirmar que o modelo mostrou um desempenho equili-

brado em relação às métricas de avaliação. A acurácia de 0.8336 indica que aproxima-

damente 83% das previsões do modelo foram corretas. A precisão de 0.8375 sugere que,

das previsões feitas como positivas, 83.75% estavam corretas. O recall de 0.8336 indica

que o modelo foi capaz de identificar corretamente 83.36% dos casos positivos reais. Por

fim, o F1 Score de 0.8341 reflete o equilíbrio entre precisão e recall, sendo um valor que

117

indica que o modelo está performando de maneira eficaz, sem um grande viés para falsos

positivos ou falsos negativos.

Esses resultados demonstram que a IA final possui uma boa capacidade de genera-

lização e está bem ajustado para a classificação dos movimentos selecionados, com um

desempenho consistente em todas as métricas importantes.

118

8 Conclusões

Durante a progressão deste trabalho encontrou-se imprevistos que demandaram maior

atenção. Primeiramente, devido ao grande volume e complexidade dos dados, sua limpeza

e organização demandaram um esforço considerável. Em um segundo momento, os testes

de configurações variadas para otimizar o desempenho da IA implicaram em múltiplas

iterações e ajustes, o que prolongou o tempo total dedicado à análise.

Com isso, supõe-se que os três primeiros movimentos analisados tiveram a maior taxa

de acertos devido sua maior intensidade atrelada à contração muscular e ao posiciona-

mento dos eletrodos. Além disso, outros movimentos tendem a utilizar grupamentos

musculares semelhantes aos da posição neutra, o que pode gerar confusão na classificação.

Portanto, o aprimoramento contínuo dos dados e do treinamento da IA é essencial para

alcançar resultados ainda melhores no futuro.

Desse modo, como foi avaliado, a qualidade dos dados e do posicionamento dos eletro-

dos foram fatores críticos que impactaram o treinamento da inteligência artificial. Após

um processo de filtragem e testes em diferentes configurações, foi alcançada uma acurácia

elevada de 83,36%, permitindo a diferenciação entre a posição neutra, flexão e extensão

do pulso. No entanto, ainda existem oportunidades para melhorias, especialmente na

classe 2, que poderia ter seu recall aumentado, além de aprimorar a precisão da classe 0

para reduzir confusões com as outras classes. Este trabalho serve como base para futuros

estudos sobre outras bases de dados, implementações de órteses e robôs anatômicos.

119

Referências

[1] Leila Maria Beltramini. Elementos de histologia e anatomo-fisiologia humana. IFSC,

1999.

[2] Charles F. Stevens. The neuron. Scientific American, 241(3):54–65, 1979.

[3] Arthur C Guyton and John E Hall. Textbook of medical physiology: With student

consult online access (guyton physiology) by, 2005.

[4] Jana Vasković. Kenhub in... Insula, 1:10.

[5] Nei Augusto Andrade. Desenvolvimento de um sistema de aquisição e processamento

de sinais eletromiográficos de superfície para a utilização no controle de próteses

motoras ativas. 2007.

[6] MA Cavalcanti Garcia and TMM Vieira. Surface electromyography: Why, when and

how to use it. Revista andaluza de medicina del deporte, 4(1):17–28, 2011.

[7] Batta Mahesh. Machine learning algorithms-a review. International Journal of Sci-

ence and Research (IJSR).[Internet], 9(1):381–386, 2020.

[8] Irwin B Levitan and Leonard K Kaczmarek. The neuron: cell and molecular biology.

Oxford University Press, USA, 2015.

[9] Keiichiro Susuki. Myelin: a specialized membrane for cell communication. Nature

education, 3(9):59, 2010.

[10] Alexander Kister and Ilya Kister. Overview of myelin, major myelin lipids, and

myelin-associated proteins. Frontiers in Chemistry, 10:1041961, 2023.

[11] Richard L Lieber and Jan Fridén. Functional and clinical significance of skeletal

muscle architecture. Muscle & Nerve: Official Journal of the American Association

of Electrodiagnostic Medicine, 23(11):1647–1666, 2000.

[12] RMC BRANCALHÃO, LFC RIBEIRO, B LIMA, RI KUNZ, and MC CAVÉQUIA.

Tecido muscular, 2016, 2018.

[13] Walter R Frontera and Julien Ochala. Skeletal muscle: a brief review of structure

and function. Calcified tissue international, 96:183–195, 2015.

120

[14] Göran Lundborg and Birgitta Rosén. Hand function after nerve repair. Acta physi-

ologica, 189(2):207–217, 2007.

[15] Brittney Mitchell and Lacey Whited. Anatomy, shoulder and upper limb, forearm

muscles. In StatPearls [Internet]. StatPearls Publishing, 2023.

[16] James W Strickland. The scientific basis for advances in flexor tendon surgery. Jour-

nal of Hand Therapy, 18(2):94–110, 2005.

[17] DA Neumann. Elbow and forearm complex. Kinesiology of the Musculoskeletal

System: Foundations for Physical Rehabilitation, pages 133–171, 2002.

[18] Terri M Skirven, A Lee Osterman, Jane Fedorczyk, and Peter C Amadio. Rehabili-

tation of the hand and upper extremity, 2-volume set E-book: expert consult. Elsevier

Health Sciences, 2011.

[19] John G Kreifeldt and Sumner Yao. A signal-to-noise investigation of nonlinear elec-

tromyographic processors. IEEE Transactions on Biomedical Engineering, (4):298–

308, 1974.

[20] CJ DeLuca. Motor units alive-understanding them one pulse at a time. In Bas-

majian Lecture: Keynote address at the Proceedings of the XIIth Congress of the

International Society of Electrophysiolgy and Kinesiology, Montreal, page 2, 1998.

[21] A Aishath Murshida, BK Chaithra, B Nishmitha, PB Pallavi, S Raghavendra, and

K Mahesh Prasanna. Survey on artificial intelligence. Int J Comput Sci Eng, 7:1778–

1790, 2019.

[22] Mohammed Amine El Mrabet, Khalid El Makkaoui, and Ahmed Faize. Supervi-

sed machine learning: a survey. In 2021 4th International conference on advanced

communication technologies and networking (CommNet), pages 1–10. IEEE, 2021.

[23] Teresa Bernarda Ludermir. Inteligência artificial e aprendizado de máquina: estado

atual e tendências. Estudos Avançados, 35:85–94, 2021.

[24] Muhammad Ali Syakur, B Khusnul Khotimah, EMS Rochman, and Budi Dwi Sa-

toto. Integration k-means clustering method and elbow method for identification of

the best customer profile cluster. In IOP conference series: materials science and

engineering, volume 336, page 012017. IOP Publishing, 2018.

121

[25] Rubens Correa Araujo. Utilização da eletromiografia em análise biomecânica do

movimento humano. PhD thesis, Universidade de São Paulo, 1998.

[26] Basakuau Nkomi Nkosi Junior. A eletromiografia associada à inteligência artificial

no diagnóstico de doenças e no rendimento físico. 2021.

[27] Paulo L Viana, Victoria S Fujii, Larissa M Lima, Gabriel L Ouriques, Gustavo Ca-

sagrande de Oliveira, Renato Varoto, and Alberto Cliquet Jr. An artificial neural

network for hand movement classification using surface electromyography. In BIO-

SIGNALS, pages 185–192, 2019.

[28] Paulo Henrique Gomes Machado. Classificação de gestos das mãos usando plata-

formas vestíveis baseadas em eletromiografia de superfície no antebraço e unidades

inerciais. 2018.

[29] Zsolt Lászlo Kovács, O Cérebro, and Sua Mente. uma introdução à neurociência

computacional. Edição Acadêmica, São Paulo, 1997.

[30] Carroll E Cross. Bloom and fawcett: A textbook of histology. JAMA, 274(4):352–352,

1995.

[31] Rafael Lourenço do Carmo. Kenhub em... Flexores superficiais e intermediários do

antebraço, 1:5.

122

	Introdução Médica
	Células Neuronais e Contração Muscular
	Impulsos Elétricos pela Bainha de Mielina

	Fisiologia do Músculo Esquelético
	Anatomia e Função dos Músculos do Antebraço
	Formas de Captação e Características dos Sinais Eletromiográficos
	Impacto médico-social

	Introdução à Base de Dados
	IAs e suas Diferentes Estruturas
	Funcionamento de uma IA
	Tipos de IA
	Inteligência Artificial Estreita (ANI)
	Artificial General Intelligence (AGI)
	Artificial Super Intelligence (ASI)

	Etapas de Funcionamento
	Modelos de Treinamento de Inteligência Artificial
	Aprendizado Supervisionado
	Aprendizado Não Supervisionado

	Estruturas e Bibliotecas Empregadas
	TensorFlow
	Keras
	NumPy
	Pandas
	Matplotlib
	Scikit-learn
	Seaborn
	Graphviz
	OS

	Análise dos Dados
	K-means e o Método do Cotovelo
	Código
	Estrutura do Código
	Output

	Criação do Código K-NN Classifiers
	Código
	Estrutura do Código (Primeira Parte)
	Estrutura do Código (Segunda Parte)
	Output

	Criação do Código Decision Tree
	Código
	Estrutura do Código
	Output

	Criação do Código Scatter Maps
	Estrutura do Código
	Output

	Criação do Código Scatter Maps 3D
	Output

	Criação do código Matriz de Confusão Multi-Classe com K-NN
	Output Inicial
	Aperfeiçoando a Visão dos Dados
	Output

	Criação do código Matriz de Confusão Multi-Classe com DT
	Output

	K-means para Análise das Classes
	Output

	Análises Secundárias
	Naive Bayes
	Gradient Boost Decision Trees
	Random Forest

	Comparação da Análise com os Movimentos
	Decisões Sobre Quais Movimentos e Eletrodos
	Diminuição dos sensores de entrada
	Filtragem de classes
	Retirada da classe 6
	Somente as 6 primeiras classes
	3 classes mais importantes

	MLP Final
	Código
	Importações de Bibliotecas
	Funções Principais
	Carregamento dos Dados
	Preparação dos Dados
	Criação e Compilação do Modelo
	Treinamento do Modelo
	Avaliação do Modelo
	Visualização
	Importante Destacar

	Output
	Arquitetura
	Última época
	Gráfico de Perda
	Parâmetro da época 10
	Teste do modelo

	Conclusões

