Trabalho de Conclusao de Curso
Submetido em 2024

Aplicagao de Machine Learning para Identificagao e Distingao de

Movimentos da Mao Baseados em Dados Eletromiograficos do Antebraco

Autores
Barbara Nery de Souza
Vitor Ferreira Paschoal

Departamento de Engenharia Elétrica e de Computagao - EESC/USP

Orientador
Prof® Dr. Alberto Cliquet Junior
Departamento de Engenharia Elétrica e de Computagao - EESC/USP

Sao Carlos, SP
Novembro de 2024

AUTORIZO A REPRODUCAO E DIVULGAGCAO TOTAL OU PARCIAL DESTE
TRABALHO, POR QUALQUER MEIO CONVENCIONAL OU ELETRONICO,
PARA FINS DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE.

Ficha catalografica elaborada pela Biblioteca Prof. Dr. Sérgio Rodrigues
Fontes da EESC/USP

S729%a

Souza, Barbara Nery de

Aplicagdo de machine learning para identificacédo e
distincédo de movimentos da m&o baseados em dados
eletromiograficos do antebraco / Barbara Nery de Souza,
Vitor Ferreira Paschoal; orientador Alberto Cliquet
Junior. -- S&o Carlos, 2024.

Monografia (Graduacdo em Engenharia Elétrica com Enfase
em Eletrdénica) -- Escola de Engenharia de S&o Carlos da
Universidade de S&o Paulo, 2024.

1. Inteligéncia artificial. 2. Classes.
3. Classificacé&o. 4. Movimentos. 5. Acuracia. 6. Preciséo.
7.Matriz de confusdo. I. Paschoal, Vitor Ferreira.
II. Titulo.

Elaborado por Elena Luzia Palloni Gongalves — CRB 8/4464

FOLHA DE APROVAGAO

Nome: Barbara Nery de Souza

Titulo: “Aplicagdo de Machine Learning para Identificagao e
Distingio de Movimentos da Mao Baseados em Dados
Eletromiograficos do Antebrago”

Trabalho de Conclusao de Curso defendido e aprovado
em=/ | v [eo2f

com NOTA_“, § (novve , 4vw), pela Comissao Julgadora:

Prof. Titular Alberto Cliquet Junior - Orientador - SEL/EESC/USP
Dr. Orivaldo Lopes da Silva - EESC/USP

Prof. Titular Ivan Nunes da Silva - SEL/EESC/USP

Codrdenador da CoC-Engenharia Elétrica - EESC/USP:
Professor Associado José Carlos de Melo Vieira Junior

This document was created by an application that isn't licensed to use novaPDF.
Purchase a license to generate PDF files without this notice.

FOLHA DE APROVAGAO

Nome: Vitor Ferreira Paschoal

Titulo: “Aplicagcdo de Machine Learning para Identificagdo e
Distingdo de Movimentos da Mao Baseados em Dados

Eletromiograficos do Antebraco”

Trabalho de Conclusio de Curso defendido e aprovado
em 271 7 [e924

comNOTA 72 ((nrve, twnew), pela Comissao
Julgadora:

Prof. Titular Alberto Cliquet Junior - Orientador
SEL/EESC/USP

Dr. Orivaldo Lopes da Silva - EESC/USP

Prof. Titular Ivan Nunes da Silva - SEL/EESC/USP

Coordenador da CoC-Engenharia Elétrica - EESC/USP:
Professor Associado José Carlos de Melo Vieira Junior

Digitalizado com CamScanner

|

https://v3.camscanner.com/user/download

Agradecimentos

Eu, Vitor Paschoal, gostaria de agradecer, antes de tudo, & minha familia, Carlos,
Silvia e Mariana. Sou muito grato por todo apoio que me deram, todas as dificuldades
que passaram para me fazer chegar onde estou agora e por sempre estarem comigo em
cada passo da minha caminhada. Agradego & minha namorada Isadora por ter me ajudado
sempre que precisava e por me apoiar a cada dia. Sou muito feliz por ter vocés em minha
vida e tenho certeza que se nao fosse por ter todos ao meu lado seria mais dificil chegar
aqui. Agradeco & Deus por ter me dado saide e entendimento para poder desenvolver
esse trabalho. E, por fim, agradego ao professor Alberto Cliquet por fazer com que esse
trabalho se tornasse possivel.

Eu, Barbara Nery, agradego a minha familia (Edla, Debora, Airto e Rodney) e aos
meus amigos Harumy, Marielle, Beatriz, Vitor e Norberto por todo suporte e amor; agra-
dego por, em momentos diferentes, terem tido o zelo de me colocar em pé no caminho da
vida. Agradeco a mae USP pelo presente que foram esses intensos anos de engenharia e
vivéncia universitaria na histéria dessa sertaneja peregrina, curiosa demais para se limi-
tar geograficamente. E, por fim, agradeco ao professor Alberto Cliquet pelas cuidadosas

orientagoes e esfor¢o constante em despertar nos alunos o amor pela area.

Sumario

[1 Introducao Médical

[1.1 Células Neuronais e Contracao Muscular|

(1.1.1 Impulsos Elétricos pela Bainha de Mielina|

[1.2 Fisiologia do Musculo Esqueléticol

[1.3 Anatomia e Funcao dos Musculos do Antebraco|
[1.4 Formas de Captacao e Caracteristicas dos Sinais Eletromiograficos|
(1.5 Impacto médico-sociallo

2 Introducao a Base de Dados|

[3.2 TiposdelAl

[3.2.1 Inteligéncia Artificial Estreita (AND|

[3.2.2 Artificial General Intelligence (AGIL)[.

[3.2.3 Artificial Super Intelligence (ASD|

[3.3 Etapas de Funcionamento|

[3.4 Modelos de Ireinamento de Inteligéncia Artiiciall

[3.4.1 Aprendizado Supervisionado|

[3.4.2 Aprendizado Nao Supervisionadol

[3.5 Estruturas e Bibliotecas Empregadas|00 000

10
10
16
17
19

24

25

34
34
35
35
36
36
36
37
37
38
40
40
40
41
41
41
41
41
42
42

42

BT COdiE0] . - o o o oo e 44

[4.1.2 Estrutura do Codigo| 45
[4.1.5 Qutput|. 48

[4.2 Criacao do Codigo K-NN Classifiers| 49
[4.2.1 Codigo| 50
{4.2.2 Estrutura do Codigo (Primeira Parte) 52
1.2.3 Estrutura do Codigo (Segunda Parte) 56
[4.2.4 Output|. 58

(4.3 Criacao do Codigo Decision Tree| 58
[4.3.1 Codigol. 60
[4.3.2 Estrutura do Codigol 62
[4.3.3 Qutput|. 67

4.4 Criacao do Codigo Scatter Maps|. 67
[4.4.1 Estrutura do Codigol 69
[4.4.2 Output|. 73

4.5 Criacao do Codigo Scatter Maps 3D|. 75
[4.5.1 Qutput|. 7

[4.6 Criacao do codigo Matriz de Confusao Multi-Classe com K-NN|. 79
[4.6.1 OQutput Imicialf oo 81
[4.6.2 Aperteicoando a Visao dos Dados|o 81
[4.6.3 Qutput|. 83

[4.7 Criacao do codigo Matriz de Confusao Multi-Classe com D1} 85
[4.7.1 Output| o 86

[4.8 K-means para Analise das Classes| 88
[4.8.1 Qutput|. 90

4.9 Analises Secundariasl Lo oL 91
[4.9.1 Naive Bayes| 91
4.9.2 Gradient Boost Decision Irees 96
493 Random Forest] oo oo 97

[> Comparacao da Analise com os Movimentos| 98
[6 Decisoes Sobre Quais Movimentos e Eletrodos| 98
[6.1 Diminuicao dos sensores de entradal 99

6.2 Filtragem de classes|. 100

621 Retiradadaclasse6l 000 100
[6.2.2 Somente as 6 primeiras classes|o 102
[6.2.3 3 classes mais importantes| 104

7 MLP Final 106
digo]o 106

[7.1.1 Importacoes de Bibliotecas|. 111
[7.1.2 Funcoes Principais| 112
[7.1.3 Carregamento dos Dados| 112
[.1.4 Preparacao dos Dados| 112
[7.1.50 Criacao e Compilacao do Modelo| 113
(1.6 Treinamento do Modelo 113
[7.1.7 Avaliacao do Modelo| 113
[7.1.8 Visuahzacaol 113
[7.1.9 Importante Destacar|, 113

20 Qutput| o 114
[(.2.1 Arquitetural 114
[7.2.2 Ultima épocal 114
(2.3 Graficode Perdal 0oL 115
[7.2.4 Parametro da época 10| 116
(2.0 Testedomodeld. Lo 117

8 Conclusoes| 119

Lista de Figuras

Representacao dos neurénios motor (a) e sensorial (b) [If|.

Propagacao do impulso nonervo P[]

11

Diferentes perspectivas da placa motora: A - corte longitudinal através

da placa motora; B - visao da superticie da placa motora; C - aspecto na

micrografia eletronica do ponto de contato entre um terminal isolado de

um axonio e a membrana da fibra muscular. [3]]

Liberacao de acetilcolina das vesiculas sinapticas na membrana neural da

juncao neuromuscular. [.

Organizacao do musculo esquelético do nivel macroscopio ao molecular,

onde as letras F,G,H e I indicam cortes transversais. [3].]

Neuronio motor. Adaptadode [4].f.

Representacao esquematica da geracao do sinal eletromiografico de um mus-

culo a partir da somatoria dos trens de MUAPs das n unidades motoras

desse tecido [Bl.|

Eletromiogramas e potenciais de acao da unidade motora. A) mostra o

torque de flexao plantar durante uma contracao de rampa isométrica, de

0 a 40% MVC. EMGs de superficie e intramusculares registrados do mis-

culo gastrocnémio medial estao representados em B) e C), respectivamente.

Breves epoches desses sinais sao mostradosem D) e E). [6]].

23

[9

Diagrama de blocos simplificado mostrando cada uma das principais eta-

pas referentes a aquisicao de eletromiogramas de superficie: (1) a deteccao

dos potencials mioelétricos com eletrodos de superticie e um eletrodo de

referéncia, 1lustrados esquematicamente no epicondilo medial do timero;

(2) a amplificacao desses potenciais com amplificadores diferenciais; (3)

filtragem analdgica dos potenciais amplificados para evitar aliasing e, fi-

nalmente; (4) a amostragem do eletromiograma de superficie em valores

digitais de voltagem para serem armazenados em um computador (5) [6]] .

[0

Antebraco na posicao neutra (0)].

M

Antebrago com pulso estendido (1) L.

B

Antebraco com pulso flexionado (2)|

3

Antebraco com desvio ulnar (3)]

4

Antebrago com desvio radial (4)[. o000

(15 Antebrago com punho fechado (5)[. oo oL 30

[16 Antebrago com abducao dos dedos (6)[. 31
(L7 Antebrago com aducao dos dedos (7)[. o oL 32
[I8 Antebrago na posicao supinada (8)| oL 33
[19 Antebrago na posicao pronada (9) oo L 34
R0 TFluxo de trabalho de aprendizagem supervisionada [7]] 38
21 Fluxo de trabalho de aprendizagem nao supervisionada [7]] 39
22 Fluxo de trabalho de aprendizagem nao supervisionada [7]] 40
23 Output k-means (método do cotovelo).| L. 48
24 Output K-NNJ. o o000 58
25 OQutput Decision Tree| 0. 67
26 Output Scatter Maps.|.o oo 75
27 Output Scatter Maps 3D sensores 1,2e3.| 7
28 Output Scatter Maps 3D sensores 1, 2e4d.| 78
29 Qutput Scatter Maps 3D sensores 1, 3e 4| 78
[0 OQutput Scatter Maps 3D sensores 2, 3ed.| 79
[31 Qutput Inicial da Matriz de Confusao Multi-Classe com K-NN.J. 81
[32 Output Matriz de Confusao Multi-Classe com K-NN.| 84
[33 Output Matriz de Confusao Multi-Classe com D'T'|. 88
34 Distancia entre os centroides dos clustersl. 91
[35 Acuracia Naive Bayes Classiier.| 95
36 Acurdcia do K-NN sem ossensores 1 ed 99
(37 Distancia entre clusters sem os sensores ledl 100
B8 Acuraciado K-INN sem aclasse 6l 101
39 Distancia entre clusters sem a classe 6/o 101
[40 Acuracia do K-NN somente das 6 primeiras classes| 102
[41 Distancia entre clusters somente das 6 primeiras classes| 103
42 Matriz de contfusao somente das 6 primeiras classes| 104
43 Acuracia do K-NN referente aos 3 primeiros movimentos| 105
{44 Matriz de contusao referente aos 3 primeiros movimentos.| 105
(45 Arquitetura final da MLP) oo oo 000000 114
[46 Matriz de contusao da época 10.). 115
47 Grafico da perda de todas as épocas.| 116
U8 Dados da Matriz de Confusao Final do Testel 117

Nomenclatura

Cat Ions de calcio

K+ Ions de potéssio

Nat Tons de sodio

Ag Prata

AgCl Cloreto de prata

AGI Inteligéncia Artificial Geral
ANI Inteligéncia Artificial Estreita
ASI Superinteligéncia Artificial
DT Arvore de decisio

EMG Eletromiograma

IA Inteligéncia Artificial

K-NN K-Nearest Neighbor

MLP Multi- Layer Perceptron
MUAPT Motor Unit Action Potential Train
OS Operating System

PCA Principal Component Analysis

SVM Support Vector Machine

Resumo

Este documento relata os passos tomados durante o desenvolvimento de um
Multi-Layer Perceptron (MLP) para treinar uma inteligéncia artificial (IA) espe-
cializada na identificacao de gestos da mao utilizando sinais eletromiograficos dos
musculos do antebraco. Contudo, o projeto também explorou a qualidade da base de
dados utilizada, considerando caracteristicas anatdémicas, que guiaram o processo.
Para essa anélise, empregou-se algoritmos de aprendizado nao supervisionado, como
o K-means, na criacao de um gréifico do método do cotovelo e para a criagao de
clusters para avaliar as distancias entre eles. Ainda, utilizou-se algoritmos de apren-
dizado supervisionado, como K-NN, arvore de decisao e Random Forest. Além disso,
para melhorar a visibilidade dos dados e resultados dos treinamentos, foram desen-
volvidos codigos para a plotagem de mapas de dispers@ao e matrizes de confusao
multi-classe, respectivamente. Desse modo, como resultado, ao final da avaliagao
dos dados e de sua filtragem, foi possivel atingir um modelo de identificagdo com
acuracia de 83,36%, precisao de 83,75%, recall de 83,36% e F1 Score de 83,41%.

Palavras-chave: inteligéncia artificial, acuracia, precisao, classes, movimento,

EMG, MLP

1 Introducao Meédica

1.1 Células Neuronais e Contracao Muscular

Neurdnios (ou células nervosas) sdo os blocos de construgdo do cérebro. Embora
tenham os mesmos genes, a mesma organizagao geral e o mesmo aparato bioquimico que
outras células, eles também tém caracteristicas tinicas que fazem o cérebro funcionar de
uma maneira singular. As especializagoes importantes do neurdnio incluem um formato de
célula distinto, uma membrana externa semipermeéavel capaz de gerar impulsos nervosos
e uma estrutura tnica capaz de gerar sinapses para transferir informacoes de um neurénio
para o outro [2].

Os neurénios possuem trés partes principais, cada uma com fungoes especificas: o
corpo celular (ou soma), os dendritos e o axonio. O corpo celular abriga o citoplasma, o
nicleo e as organelas [§].

O processo de contragao muscular é desencadeado pelo potencial de agao gerado pelo
neurdnio motor, resultando em potenciais de agao nas fibras musculares. Esses potenciais,
quando somados, formam o sinal eletromiografico que leva & contragao muscular.

Se tratando dos neur6nios motores (responséveis por controlar diretamente a contragao
das fibras musculares) o corpo celular esta situado entre os dendritos e o axdnio, ja em

alguns neurdnios sensoriais, esta localizado discretamente na borda do axonio.

10

Terminagdes Nervosas
do Axdmio

) J\

Terminagdes Nervosas

_/,/ do Axdnio \ \(

Drendritios

Figura 1: Representacao dos neur6nios motor (a) e sensorial (b) [1J.

No geral, o corpo celular tem forma aproximadamente esférica ou piramidal. Os
dendritos sao extensoes delicadas em forma de tubo que tendem a se ramificar e formar
uma arvore espessa ao redor do corpo celular, o que permite uma grande area de contato
para a recepc¢ao dos sinais de entrada.

O axo6nio se estende para longe do corpo celular e fornece o caminho pelo qual os sinais

podem viajar do corpo celular por longas distancias para outras partes do cérebro e do

11

sistema nervoso. O axoénio difere dos dendritos tanto na estrutura quanto nas propriedades
de sua membrana externa.

A maioria dos axoOnios é mais longa e mais fina do que dendritos (até um metro
de comprimento) e exibe um padrao de ramificagao diferente: enquanto os ramos dos
dendritos tendem a se agrupar perto do corpo celular, os ramos dos axoénios tendem a
surgir na extremidade da fibra onde ele se comunica com outros neurénios ou glandulas,
contendo estruturas denominadas botdes sinapticos [2].

A membrana do neurénio, como a membrana externa de todas as células, tem cerca
de cinco nanometros de espessura e consiste em duas camadas de moléculas lipidicas
dispostas com suas extremidades hidrofilicas apontando para a agua tanto no interior
quanto no exterior da célula e com suas extremidades hidrofébicas apontando para longe
da agua, formando o interior da membrana [2].

Ao receberem um impulso nervoso, essas estruturas liberam substancias quimicas (cha-
madas neurotransmissores) responsaveis por transmitir sinais de um neurénio para outro
[3].

A fungao primordial do ax6nio é transmitir informagoes na forma de pulsos regene-
rativos (sem atenuagao) para diferentes partes do sistema nervoso e do organismo. Seu
papel no sistema nervoso periférico envolve os aferentes conduzindo informagoes sensoriais
para dentro do sistema neural e os eferentes destinando os comandos do sistema nervoso
central aos efetores do corpo.

O potencial de acao se define por rapidas variagoes nos potenciais interno e externo

da membrana celular nervosa, seu desenvolvimento ocorre da seguinte forma:

1. Circulo vicioso de feedback positivo abrindo os canais de sédio:

Levando em conta que a membrana da fibra nervosa permaneca sem perturba-
¢ao, nao héa potencial de acao atuando no nervo normal. No entanto, ocorrendo
um evento capaz de elevar de —90 milivolts para o nivel zero [3] o potencial da
membrana, o proprio aumento de tensao implica na abertura de multiplos canais
de sodio regulados por ela. Isso possibilita o influxo rapido de fons sodio (Nat),
resultando em um maior aumento do potencial de membrana e, consequentemente,
na abertura de mais canais regulados pelo nivel de tensao e permitindo um fluxo

mais intenso de Na™ para o interior da fibra.

Tal processo é denominado circulo vicioso de feedback positivo e, uma vez que ele

seja suficientemente intenso, permanece até a ativagao (abertura) de todos os canais

12

de sédio regulados pela tensao. Entao, em outra fracao de milissegundo, o aumento
do potencial de membrana causa o fechamento dos canais de sédio e a abertura dos

canais de potéssio (K1), e o potencial de agao se encerra.

2. Repolarizagao:

Apos total despolarizacao dessa area da célula, a membrana torna-se novamente
impermeavel ao Nat, embora se mantenha permeavel aos ions K. Em virtude da
alta concentracgao de fons positivos no interior da célula nervosa, grandes quantidades
de fons potassio voltam a se difundir para o meio externo, fazendo com que essa

regiao no interior da célula nervosa volte a ser negativa.

Nessa situagao o neurénio torna-se novamente apto a transmitir um novo impulso
nervoso. Na Figura [2] esta representada a variacao da tensao de uma membrana

nervosa durante o potencial de a¢ao no pulso nervoso.

MEMBRANE
POTENTIAL
(MILLIVOLTS)

+40—_
o +20 —
$22 %= —
-
%z;. -20 —
W= ¥
uEJb—j 40 —
22% _80 —
o
< BMILLISECONDS ——!
2 ++++++++ A+ -—--.+++++++++++++++++++++++++
2hrtk ke 2 ks A b A] : T —— A5dh i
S L ST T s e e M T) - e e T T (T Ve
T hk F o F A F o AF A FFAF A A L B B B B B B B L B B B B L A
+40)
- 1 f A\
yif 2 Y /\—
- 0 — / / \
“E:S- 20 j ¥" / \
gfz - / \ MINIMUM REFRACTORY PERICD / \
o= ¥ { c 5 /
¥ m— 4 N _/ '
—BOD “‘“—-—H______’,' ——
10 MILLISECONDS B
3 ++ ++F+ + o+ ++F ———.++++++++++++++++++++++ ..&++++++++
st 5 e o BRI 91181 STy | IJ] e s e
—————————— +++¢-----ﬁ------—~————————— - —— - =
—————————— +hd) e e e e e e e e e e e e === == - - ——-
T T T =T S T 1] D= seim g o
LR R I I B e IR A L R R IR I I L I I IR L R
CENTIMETERS 0 5 10 15 20 25 30

Figura 2: Propagagao do impulso no nervo [2].

13

A descricdo dada até entao para a transmissao de um impulso nervoso se aplica a
neurdnios desprovidos de bainha de mielina. Nos mielinizados o potencial de agao ocorre
apenas nos noédulos de Ranvier, pontos nos quais a membrana plasmatica faz contato
direto com o fluido intersticial. Nesse caso uma condugao mais rapida e com menos gasto
de energia, chama de saltatoria.

A juncao neuromuscular de grande fibra nervosa mielinizada com uma fibra muscular
esquelética é representada na Figura[3] A fibra nervosa forma complexo de terminais ra-
mificados que se invaginam na superficie extracelular da fibra muscular. Toda a estrutura

é chamada de placa motora e é recoberta por uma ou mais células de Schwann que a

isolam dos liquidos circunjacentes.

Bainha de Axonio
mielina

Ramos do terminal
nervoso

Célula teloglial

Miofibrilas Nucleos da

—/ célula muscular

& 8o

gto
5 o,

Terminal axonal na
goteira sindptica

Fendas subneurais

Figura 3: Diferentes perspectivas da placa motora: A - corte longitudinal através da placa
motora; B - visdao da superficie da placa motora; C - aspecto na micrografia eletronica
do ponto de contato entre um terminal isolado de um axénio e a membrana da fibra

muscular. [3].

14

As membranas de ambas as células distam de uma fenda sinaptica com entre 20 a
30 nm. Na membrana muscular, em face da goteira sindptica, existem dobras menores
chamadas de fendas subneurais responséveis por aumentar a area de superficie de atuagao
do transmissor sinaptico.

Mediante a chegada de um potencial de acao no terminal do axo6nio, a acetilcolina é
secretada na fenda sindptica. Essa liberacao torna a membrana muscular mais permeével
aos fons Na™t devido a acao dos receptores de acetilcolina situados nas fendas subneurais.

O influxo abrupto desses fons no musculo resulta em um potencial de agao muscular que
se propaga nas duas diregoes da fibra e se alastra da mesma maneira que nas membranas
neurais.

O potencial de agao despolariza a membrana da fibra muscular e também penetra
profundamente no interior dessa. Aproximadamente 0,2 ms apés ser liberada pelas ve-
siculas sinapticas, a acetilcolina é metabolizada em acido acético e colina pela enzima
acetilcolinesterase.

Essa reacao ocorre para que a membrana muscular, localizada na fenda sinaptica,
diminua a permeabilidade ao potéassio deixando a placa motora novamente apta para

receber um novo estimulo.

Locais de Membrana Vesiculas
liberagcdo neural

y Barra densa
' Canais
(de célcio

e ' Lamina basal
(/'_—‘\'_"\

t
acetilcolinesterase

)
) ;
|

)

Receptores
de acetilcolina

subneural)
Canais de Na*
controlados
por voltagem

Membrana
muscular

Figura 4: Liberacao de acetilcolina das vesiculas sinapticas na membrana neural da jun¢ao

neuromuscular. [3].

15

1.1.1 TImpulsos Elétricos pela Bainha de Mielina

A bainha de mielina desempenha um papel crucial na transmissao de impulsos elétri-
cos, ou potenciais de acao, ao longo das fibras nervosas. Este processo é caracterizado
principalmente pela conducgao saltatéria, que aumenta significativamente a velocidade e a
eficiéncia da propagacao do sinal em ax6nios mielinizados.

Estrutura da Bainha de Mielina

A mielina é uma camada isolante rica em lipidios que envolve os axénios dos neurénios
em segmentos, criando lacunas conhecidas como nés de Ranvier. Esses nés sao essenciais
para a condugao de impulsos elétricos, pois contém uma alta densidade de canais de s6dio
dependentes de voltagem.

Em contraste com as fibras ndo mielinizadas (nas quais os potenciais de agao se pro-
pagam continuamente ao longo de toda a membrana) as fibras mielinizadas permitem que
os impulsos "saltem"de um né para o outro, aumentando muito a velocidade de condugao.
19

Mecanismo de Condugao Saltatoéria

e Despolarizacao nos nés - Quando um potencial de agao atinge um né de Ranvier, ele
causa a abertura de canais de sédio dependentes de voltagem. Ions de sodio (Na™)

correm para o axonio, levando a despolarizacao naquele ponto especifico;

e Fluxo do circuito local - O influxo de fons de sédio gera um circuito local que
despolariza a membrana adjacente no préximo né. Como a mielina atua como um
isolante, essa corrente nao pode fluir através das segoes mielinizadas (internos),
mas, em vez disso, viaja através do axoplasma (o citoplasma dentro do axénio) para

atingir o proximo né [10];

e Transmissao rapida - A alta resisténcia e a baixa capacitancia da bainha de mielina
implicam que menos energia é necessaria para despolarizar a membrana entre os
nos. Como resultado, os potenciais de a¢do podem viajar muito mais rapido (até
100 metros por segundo) em comparagao com 1-4 metros por segundo em fibras nao

mielinizadas [10].

A natureza segmentar da mielinizacdo permite o uso eficiente de espago e energia.
Ao minimizar a area que deve ser despolarizada durante a transmissao do impulso, os
axonios mielinizados podem manter uma comunicagao rapida por longas distancias sem

precisar aumentar seu didmetro significativamente [10]. Essa adaptacao é particularmente

16

importante em vertebrados, permitindo fun¢oes complexas do sistema nervoso, apesar de

tamanhos corporais maiores.

1.2 Fisiologia do Miusculo Esquelético

A arquitetura do misculo esquelético é dada por um arranjo muito particular e bem
descrito de fibras musculares (também chamadas de miofibras ou células musculares) e te-
cido conjuntivo associado [I1]. As fibras musculares esqueléticas sdo de formato cilindrico
com didmetros variando entre 10 e 100 pum [12], multinucleadas e pos-mitoticas.

Cada fibra é constituida por uma membrana plasmética chamada de sarcolema con-
tendo centenas de miofibrilas, nticleos celulares e o reticulo sarcoplasmatico [I]. Na maior
parte, cada niicleo dentro de uma fibra muscular controla o tipo de proteina sintetizada
naquela regiao especifica da célula. Essas regioes sao conhecidas como dominios nucleares
e tém um tamanho altamente regulado, mas nao constante [13].

Conforme representado na Figura[f] as miofibrilas contém microfilamentos constituidos
por miosina e actina. A disposi¢ao espacial dessas proteinas no tecido faz com que o
musculo apresente aspecto estriado. No citoplasma, os fons de céalcio (Ca™t) formam um
complexo com tais proteinas levando-as a deslizar uma em dire¢ao a outra, caracterizando
a contracao muscular. Uma vez cessado o estimulo, restabelece-se o sistema de transporte

ativo do reticulo, interrompendo a contracao.

17

MUSCULO ESQUELETICO

Fasciculo muscular

Micfibrila

Fibra muscular

Moleculas de actina G

a%a
ugu J

Filamentos de actina F

L
i
. |
°oao L Molécula de miosina M
) a0 o0 i
ao000 o000 @ !
(- - - -] oo oo “‘I :
6o0 eoo S \
F H | A M
Meromicsina Meromicsina
leve pesada

Figura 5: Organizacao do misculo esquelético do nivel macroscépio ao molecular, onde

as letras F,G,H e I indicam cortes transversais. [3].

A unidade motora é o termo utilizado para descrever a menor unidade muscular con-

trolavel. Uma unidade motora é constituida por um neurénio motor, suas jun¢oes neuro-

18

musculares e as fibras musculares inervadas por esse neurénio (Figura @

SEGAQ DO CORTE DA
MEDULA ESPINHAL

NERVO ESPINHAL

FIBRA NERVOSA
MOTORA

@ www.kenhub.com

Figura 6: Neuronio motor. Adaptado de [4].

1.3 Anatomia e Funcao dos Miusculos do Antebraco

Por apresentarem boa coordenagao motora e propriocepcao, os membros superiores sao
capazes de realizar com maestria atividades recreativas ou laborais, precisas ou grossas.

As maos sao instrumentos delicados do individuo e representam o seu elo com o ambiente

4.

Para assegurar que isso ocorra da maneira correta, os musculos que ditam o movimento

das maos sao essenciais:

1. Musculos intrinsecos - musculos que apresentam origem e insercao nela propria;

19

2. Miusculos extrinsecos em relacao & mao - miusculos originados no antebraco e no

cotovelo.

Existem vinte musculos no antebrago, divididos entre os compartimentos anterior (fle-
xor) e posterior (extensor); cada compartimento recebe a subdivisao de superficial e pro-
fundo [15].

A parte superficial do compartimento anterior do antebrago apresenta um total de

cinco musculos [I5]:

Pronador redondo;

Flexor radial do carpo;

Palmar longo;

Flexor ulnar do carpo;

Flexor superficial dos dedos.
E a parte profunda desse compartimento contém trés [15]:

e Pronador quadrado;
e Flexor profundo dos dedos;

e Flexor longo do polegar.

A parte superficial do compartimento posterior do antebraco apresenta um total de

sete musculos [15]:

e Braquiorradial;

e Extensor radial curto do carpo;
e Extensor radial longo do carpo;
e Extensor ulnar do carpo;

e Extensor dos dedos;

e Extensor do dedo minimo;

e Anconeo.

20

E a parte profunda desse compartimento contém cinco [15]:

Misculo abdutor longo do polegar;

Misculo extensor longo do polegar;

Misculo extensor curto do polegar;

Misculo extensor do indicador;

Misculo supinador.

No movimento de preensao é necessaria uma combinacao entre o polegar e os outros
dedos, sendo o anelar e o minimo os mais importantes para a realizacao do movimento.
O polegar é o responsavel por envolver o objeto no plano contrario aos dedos, devido a
isso ele é chamado de polegar opositor [16].

A mao necessita que ocorra um perfeito sinergismo entre a musculatura extrinseca/in-
trinseca e flexora/extensora para que haja um adequado movimento, seja ele de precisao
ou de forca [16].

Os musculos flexores extrinsecos dos dedos proporcionam a principal for¢a para preen-
sdao. A sinergia, nesse caso, se da com o extensor comum dos dedos fornecendo estabilidade
aos flexores, os interdsseos rodando a primeira falange e flexionando a articulagao meta-
carpofalangeana e com os musculos tenares e adutor do polegar proporcionando forga de
compressao contra o objeto. Vale salientar que a posicao de maior preensao palmar é
a posicao funcional do punho caracterizada pela amplitude entre 10° de flexao e 35° de
extensao [17].

A preensao envolve um movimento que comeca com a abertura da mao, seguido pelo
envolvimento do objeto com os dedos e o polegar. O punho é estendido em um angulo
de 30°, enquanto ocorre a flexao das articulagoes metacarpofalangianas e interfalangianas
proximal e distal dos dedos, além d; a abducao do polegar. Para que essa tarefa ocorra
sao necessarios os misculos: extensor comum dos dedos, extensor proprio do indicador,
extensor proprio do dedo minimo, extensor radial longo e curto do carpo, lumbricais e
abdutor curto do polegar [17] [I§].

Tendo em vista o exposto, qualquer alteragao no sistema musculoesquelético do an-
tebrago ira alterar a funcao da mao em realizar atividades da vida diaria, laborais e

esportivas [16].

21

1.4 Formas de Captagao e Caracteristicas dos Sinais Eletromio-

graficos

A eletromiografia nos permite compreender comportamentos motores intencionais e
automaticos. Apos os MUAPTs (Motor Unit Action Potential Train) percorrerem as
fibras musculares e gerarem um campo eletromagnético nas redondezas das fibras, um
eletrodo (situado dentro desse campo) realiza a detecgdo e anélise do eletromiograma
(EMG), ou seja, do potencial elétrico produzido durante as contra¢oes musculares.

Os EMGs podem ser detectados diretamente, através da insercao de eletrodos no
tecido muscular, ou indiretamente, com eletrodos de superficie colocados em areas da pele
localizadas logo acima do tecido muscular. Os EMGs de superficie geralmente transmitem
informagoes sobre a ativagao muscular, como a intensidade da contragao muscular, a
manifestagdo mioelétrica da fadiga muscular e o recrutamento de unidades motoras [6].

Irnpulzos Mervosos
(Disparos dos Neurdénics Motores)

: . Trens de MUAFR
/—L) %M»\
I/'I_‘_l_ hﬂ(t) ﬂ*’_q"_/!"_‘\ \ de um?rEJscqu

’f y

L hi.(t) A) “rw#ﬁrﬂlﬁi}“ﬂnl -

\ g)/
, Unidade Motora /
\ . ,’f
h,(t) fA—MA—

Fungdes de
Transferéncia
dos MUAP's

e g

e

e
ko

Figura 7: Representacao esquematica da geragao do sinal eletromiografico de um miusculo

a partir da somatoria dos trens de MUAPs das n unidades motoras desse tecido [5].

22

o 40 Ankle torque
% 20M
£ 0

= Surface EMGs

1= | |

-— " i

- + o ‘MMMW o= il
cl I

C - Intramuscular EMGs
E | I
o | e R RU L ERER R
N | L L 1 1 J
0 2 4 6 8 10 12 14 16 18 20
Time (s)
D

Surface EMGs (expanded time scale)

§| w;.u,-_s;whﬁ-~.'.L~.w.l;,'.m.:.\f~;=.tiya'(Hl,g.'q,-.l,a'r-..m'r.w;gMu.».'a#-.f.-ﬂr.'%ﬁu-a-mwl.vr,ﬁm_,',mF;i'-wqr-l:ibs-:;JF.-'WKA

E Intramuscular EMGs (expanded time scale)
z | T T O
5] [T T T
2.5 3 3.-5 4 __-4..5
Time (s)

Figura 8: Eletromiogramas e potenciais de a¢ao da unidade motora. A) mostra o torque
de flexdo plantar durante uma contracao de rampa isométrica, de 0 a 40% MVC. EMGs
de superficie e intramusculares registrados do musculo gastrocnémio medial estao repre-

sentados em B) e C), respectivamente. Breves epoches desses sinais sdo mostrados em D)

e E). [6].

Levando em conta a diferenga entre os MUAPSs, as irregularidades na taxa de disparo
dos neur6nios motores e que em uma contragao pode haver mais de um musculo envolvido,
o sinal eletromiografico foi descrito como estocastico [19] [20].

A limpeza da pele é tutil para fornecer gravagoes de EMG com baixos niveis de ruido.
A preparacao adequada da pele garante a remocao de pelos corporais, 6leos e camadas de
pele escamosa e, consequentemente, reduz a impedancia na interface eletrodo-gel-pele.

A atividade mioelétrica aparece na camada epitelial como potenciais elétricos com
largura de banda limitada, de 15 a 400 Hz, e com amplitude muito pequena (de alguns
micro a alguns mili-Volts) pico a pico (dependendo da intensidade da contragao muscular)
[6]. Instrumentos muito sensiveis sdo entdo necessarios para a detecc¢ao, amplificacao,
condicionamento e digitalizacao de EMGs de superficie, de acordo com o diagrama de

blocos simplificado mostrado na Figura [9}

23

(P
[/ Detection of
surface EMG

I

I=

Muscle

Filter Converter

4

Di Anti-aliasing A/D
Di

U Differential @ @

Amplifier

Figura 9: Diagrama de blocos simplificado mostrando cada uma das principais etapas
referentes & aquisicdo de eletromiogramas de superficie: (1) a detec¢do dos potenciais
mioelétricos com eletrodos de superficie e um eletrodo de referéncia, ilustrados esque-
maticamente no epicéondilo medial do tmero; (2) a amplificagdo desses potenciais com
amplificadores diferenciais; (3) filtragem analégica dos potenciais amplificados para evi-
tar aliasing e, finalmente; (4) a amostragem do eletromiograma de superficie em valores

digitais de voltagem para serem armazenados em um computador (5) [6].

1.5 Impacto médico-social

A integracao de tecnologias avancadas, como interfaces cérebro-computador e apren-
dizado de maquina, esta revolucionando o campo das proteses. Por exemplo, empresas
como a Ottobock estao utilizando IA para aprimorar suas proteses bidnicas, permitindo
que os usuarios realizem movimentos complexos de forma mais natural. Essas inova-
¢oes facilitam o controle das proteses e oferecem feedback sensorial, proporcionando uma
experiéncia mais préoxima da realidade.

O grande diferencial do desenvolvimento da inteligéncia artificial proposta, quando
associado a reabilitacao de pacientes paralisados e amputados, é a possibilidade que esses
individuos controlem proteses ou oOrteses por meio de impulsos elétricos gerados pelo
proprio cérebro, promovendo uma interagao mais natural e intuitiva com as proteses.

Atualmente, a base de dados utilizada abrange apenas os dez movimentos mais simples,
fazendo com que a IA seja limitada. No entanto, ao refind-la e expandir seu treinamento
para incluir uma gama mais ampla de movimentos e sinais eletromiograficos, sera possivel

desenvolver proteses e orteses que mimetizam com precisao o funcionamento de membros

24

organicos. HEssa evolugao nao apenas melhorard a funcionalidade das proteses, mas tam-
bém contribuird para a qualidade de vida dos usuérios, permitindo-lhes realizar atividades

cotidianas com maior facilidade e autonomia.

2 Introducao a Base de Dados

Esta monografia se fundamenta em uma base de dados composta por sinais EMG, que
retratam 10 movimentos distintos da mao realizados por um grupo de participantes de
diferentes perfis, visando explorar as respostas musculares do antebrago para cada mo-
vimento especifico. Esses dados foram registrados utilizando o sistema BIOPAC MP36,
equipado com 4 eletrodos bipolares de superficie do tipo Ag/AgCl, um dispositivo ampla-
mente empregado em estudos de biomecénica e fisiologia.

Para a coleta foram chamados 40 participantes de caracteristicas distintas para garan-
tir que a IA desenvolvida seja capaz de identificar os movimentos de qualquer individuo.
Ainda, cada participante realizou cinco repeti¢oes de cada movimento, totalizando um vo-
lume consideravel de dados por participante, permitindo uma analise estatistica robusta
e a construcao de modelos classificatérios com maior acurdcia. Os sinais foram proces-
sados e filtrados em etapas posteriores para assegurar a remocao de ruidos e artefatos,
melhorando a qualidade dos dados antes de sua aplicagao nos algoritmos de aprendizado
de méquina.

A respeito dos movimentos, esses englobam desde uma posi¢ao neutra até movimen-
tos complexos de flexdao e rotacao, foram selecionados por sua relevancia pratica para
aplicacoes em sistemas de controle baseados em EMG, como proteses e dispositivos de
assisténcia. Os movimentos, identificados pelos ntimeros de 0 a 9, sao descritos a seguir.

O primeiro movimento, a posi¢ao neutra, corresponde ao estado inicial, no qual o pulso
e os dedos permanecem relaxados e sem movimentos significativos, como na Figura [I0]
Em seguida, tém-se a extensao do pulso, que se caracteriza pelo levantamento da mao,
ativando predominantemente os musculos extensores do antebrago, Figura A flexao
do pulso é o movimento oposto & extensao, no qual a mao é movida para baixo, acionando

os musculos flexores, Figura

25

Figura 10: Antebrago na posigao neutra (0)

26

Figura 11: Antebrago com pulso estendido (1)

Figura 12: Antebrago com pulso flexionado (2)

27

Além desses, o movimento de rotagao ulnar refere-se ao desvio do pulso em direcao
ao lado ulnar, ou seja, ao lado do dedo minimo, Figura J& a rotagao radial se d&
pelo desvio do pulso para o lado radial, proximo ao polegar, Figura [I4 O fechamento
da mao em um punho envolve uma contracao intensa de multiplos grupos musculares do

antebraco, Figura [15]

Figura 13: Antebrago com desvio ulnar (3)

28

Figura 14: Antebrago com desvio radial (4)

29

Figura 15: Antebrago com punho fechado (5)

Na sequéncia, a abdugao dos dedos implica na abertura dos mesmos para fora, ati-
vando musculos intrinsecos da mao e antebrago, Figura [16], enquanto a adugao dos dedos
representa o movimento inverso, em que os dedos se aproximam, Figura Finalmente,
os movimentos de supinagao e pronagao envolvem, respectivamente, a rotacao do ante-
brago para que a palma da mao fique voltada para cima e para baixo, representados
pelas Figuras [18] e Vale ressaltar que esses 4 tdltimos movimentos sao continuos, ou
seja, diferente dos anteriores, eles sao registrados com uma sequéncia de dados discretos
e essa representa o movimento como um todo, as imagens abaixo foram tiradas durante

o0 movimento.

30

Figura 16: Antebrago com abducdo dos dedos (6)

31

Figura 17: Antebrago com aducao dos dedos (7)

32

Figura 18: Antebrago na posi¢ao supinada (8)

33

Figura 19: Antebrago na posigao pronada (9)

Dessa forma, essa selegao de movimentos permite avaliar um conjunto amplo e diver-
sificado de respostas musculares, possibilitando uma analise robusta dos sinais EMG e a

sua aplicagao em algoritmos de machine learning para classificagao de movimentos.

3 TAs e suas Diferentes Estruturas

3.1 Funcionamento de uma IA

O principio basico de operagao de uma IA consiste na capacidade das maquinas simu-
larem processos da inteligéncia humana por meio do aprendizado e refinamento mediante
exposicao a uma grande quantidade de dados. Tal processo se da pela identificacao de
padroes e relagoes.

O aprendizado engloba a utilizagao de algoritmos, definidos pelo conjunto de instrugoes

e regras que norteiam as analises e tomadas de decisdo da IA. Exemplificando com um

34

subconjunto conhecido de IA, em machine learning os algoritmos sao treinados em dados
rotulados ou nao rotulados, visando fazer previsdes ou mesmo categorizar informagoes.
Outra aplicacao é o deep learning, que se assemelhando a estrutura e a funcao do
cérebro humano, faz uso de redes neurais artificiais com diversas camadas para processar
as informacoes.
Assim, aliando apreensao de informagoes e adaptacao constante, os sistemas de TA se
refinam para tarefas especificas como reconhecimento de imagens, categorizacao de dados

e outras.

3.2 Tipos de TA
3.2.1 Inteligéncia Artificial Estreita (ANI)

O termo “estreita” da nomenclatura refere-se a limitacao da IA de armazenar uma
grande quantidade de dados e realizar tarefas complexas, mas sempre visando o objetivo
especifico para o qual foram programadas.

A ANI nao possui uma compreensao intrinseca dos dados que processa e carece de
consciéncia propria. Em outras palavras, essa tecnologia precisa de vastas quantidades de
dados tanto para o treinamento inicial quanto para o aprendizado continuo ao longo do
tempo.

Além disso, a ANI desempenha um papel fundamental no avancgo tecnologico, especi-
almente em areas como automacgao de processos, anélise de dados e execucao de tarefas
especificas. No entanto, essa tecnologia permanece dependente da intervencao humana,
tanto em sua concepc¢ao quanto em sua manutencao. Isso faz com que a Inteligéncia
Artificial Estreita também seja popularmente chamada de “TA limitada” ou “IA fraca”.

Incluidas nessa classificacao, ha duas subcategorias:

e Maquinas reativas: sao projetadas com o intuito de responder a situacoes especifi-
cas com base nas informacoes que recebem no momento, sem guardar experiéncias
anteriores ou aprender com elas. Isso significa que nao armazenam muitos dados e
reagem a apenas alguns estimulos de acordo com a maneira como foram configura-

das, nao tendo assim capacidade de influenciar decisoes futuras;

e Memoria limitada: é um tipo de sistema que pode utilizar dados passados para
melhorar suas respostas e tomar decisoes mais precisas no futuro. Diferentemente

da TA de memoria limitada, as méaquinas reativas sao capazes de armazenar tem-

35

porariamente informacoes de eventos recentes e usé-las para ajustar suas agoes e

decisoes.

3.2.2 Artificial General Intelligence (AGI)

E esperado que a Inteligéncia Artificial Geral apresente o mesmo nivel de habilidades
cognitivas de um ser humano (explicando a sua classificacao como "IA Forte").

A teoria enuncia que a AGI sera capaz de repetir comportamentos como criatividade,
percepcao e aprendizado. Podendo resolver problemas, fazer previsoes e transferir conhe-

cimentos de uma area para outra.

3.2.3 Artificial Super Intelligence (ASI)

A Superinteligéncia Artificial é uma projecao futura do tipo mais avancado de TA,
também fazendo parte do grupo denominado "TA Forte".
Estima-se que uma méaquina portadora de ASI seja autoconsciente, com o poder de

superar a capacidade e a inteligéncia humana em praticamente qualquer area.

3.3 Etapas de Funcionamento

Com o surgimento de varios canais de fontes de dados a pesquisa no campo da [A levou
a definicao de uma arquitetura de IA candnica que garante um ecossistema de ponta a
ponta [2I]. No entanto, varios estudos provaram que a arquitetura de TA requer algumas
etapas para garantir que o processo seja mais eficiente e razodvel em tempo de resposta

[22]. Pode-se resumir essas etapas como:

1. Coleta e Preparacao de Dados - Etapa que garante a prospec¢ao de dados de miil-

tiplos canais em diferentes formatos (dados estruturados e nao estruturados);

2. Escolha do Modelo - E selecionado, mediante analise da tarefa almejada, o tipo de

modelo apropriado;

3. Condicionamento de Dados - Etapa na qual dados heterogéneos (estruturados e
nao estruturados) sao convertidos em dados de informacao bruta apos curadoria,

padronizacgao, gerenciamento e rotulagem de dados;

4. Treinamento do Modelo - O modelo ajusta seus parametros apds alimentacao com os

dados de treinamento tendo como base uma funcao de perda que mede a diferenca

36

entre as previsoes feitas pelo modelo e as saidas reais. O intuito dessa etapa é

transformar informacao em conhecimento;

5. Validacao e Ajuste - Etapa que visa avaliar o desempenho do modelo em dados que
nao foram utilizados durante o treinamento. Ela prima por evitar a ocorréncia de
problemas como o overfitting, onde o modelo se adapta excessivamente aos dados

de treinamento, perdendo a capacidade de generalizar para novos exemplos;

6. Avaliacao - Essa etapa verifica se o modelo aprendeu a partir dos dados e se é capaz
de fazer previsoes precisas em dados nao vistos. Essa avaliagao verifica problemas

CcOomao:

e Overfitting - Quando h&4 um bom ajuste aos dados de treinamento mas nao é

capaz de generalizar para novos dados;

e Underfitting - Quando o modelo é insuficiente na tarefa de capturar os padroes
subjacentes nos dados, resultando em um desempenho fraco tanto nos dados

de treinamento quanto nos dados de teste.

7. Trabalho em equipe homem-méquina - Etapa na qual ocorre a colaboracao de hu-
manos para converter o ‘“conhecimento” em "insight”, que orienta a execucao das

agoes ou decisoes subsequentes [22].

3.4 Modelos de Treinamento de Inteligéncia Artificial

Sabendo que o treinamento de modelos de inteligéncia artificial ¢ uma etapa fundamen-
tal para capacitar algoritmos a executarem tarefas especificas, nessa secao sao abordados
os principais tipos de aprendizado em IA e suas caracteristicas com base na literatura

cientifica.

3.4.1 Aprendizado Supervisionado

Aprendizado supervisionado é a tarefa de machine learning na qual o algoritmo aprende
uma funcao que mapeia uma entrada para uma saida com base em pares de entrada-saida
de exemplo [7].

No aprendizado supervisionado, os algoritmos necessitam de assisténcia externa. O

conjunto de dados de entrada ¢ dividido em conjunto de dados de treinamento e teste,

37

enquanto que o conjunto de dados de treinamento tem variavel de saida que precisa ser
prevista ou classificada.

Cada exemplo é descrito por um vetor de valores (atributos) e pelo rétulo da classe
associada. O objetivo do algoritmo ¢é construir um classificador que possa determinar cor-
retamente a classe de novos exemplos ainda nao rotulados [23]. Esse método de aprendi-
zado é o mais utilizado. Todos os algoritmos aprendem algum tipo de padrao do conjunto
de dados de treinamento e os aplicam ao conjunto de dados de teste para previsao ou

classificacao. O fluxo de trabalho desse tipo de treinamento é fornecido na Figura [20]

Tune

Training Train Model

/ Data

Data
Test Evaluate Model
Data

Source
Figura 20: Fluxo de trabalho de aprendizagem supervisionada [7].

Production

Algoritmos Comuns

1. Classificacao - Algoritmos como regressao logistica, maquinas de vetor suporte
(SVM), arvores de decisdo e redes neurais usados para classificar dados em cate-

gorias discretas;

2. Regressao - Métodos como regressao linear e regressao polinomial sao utilizados para

prever valores continuos com base em varidveis independentes.

3.4.2 Aprendizado Nao Supervisionado

O aprendizado nao supervisionado é aquele no qual o modelo é treinado sem a presenca
de rétulos ou respostas corretas previamente definidas. O principal objetivo é identificar
padroes ocultos pela exploracao dos dados, agrupando instancias semelhantes ou redu-
zindo a dimensionalidade dos dados para facilitar a anélise.

Tal abordagem ¢é especialmente 1til quando nao se tem conhecimento prévio sobre as
caracteristicas dos dados ou quando os dados rotulados sao escassos ou inexistentes. O

fluxo de trabalho desse tipo de treinamento é fornecido na Figura

38

Unsupervised Learning

INPUT RAW DATA LEARNING ALGORITHM LAY

«Unknown Qutput

oo *No Training Data Set | ‘E
'....-.°..‘ :

PROCESSING

Figura 21: Fluxo de trabalho de aprendizagem nao supervisionada [7].

Algoritmo Comum Empregado no Cédigo
e K-Means Clustering

K-means é um dos algoritmos de aprendizado nao supervisionado mais simples que
resolve o conhecido problema de clustering (agrupamento) [7].

Ele busca dividir um conjunto de dados em k clusters distintos. Cada cluster é repre-
sentado por um centro, que ¢ o ponto médio (ou centrdide) de todos os pontos de dados
que pertencem a esse cluster.

O objetivo principal desse algoritmo é minimizar a variancia dentro de cada clus-
ter agrupando os dados de forma que os pontos dentro do mesmo cluster sejam o mais
semelhantes possivel entre si.

Procedimento do K-means

1. Definicao de k - O usuério determina o ntimero de clusters que deseja formar;

2. Inicializagao dos Centros - Os centros devem ser inicialmente escolhidos de maneira
estratégica, uma vez que a determinagao das posig¢oes iniciais dos centros é crucial
para o sucesso do algoritmo. Uma boa pratica é colocar os centros o mais longe

possivel uns dos outros para garantir que eles cubram bem a diversidade dos dados;

3. Atribuigao de Clusters - Fazendo uso da distancia Euclidiana, cada ponto de dado

¢ atribuido ao cluster cujo centro esta mais proximo;

4. Atualizacao dos Centros - Apés todos os pontos terem sido atribuidos a um cluster,
os centros dos clusters sao recalculados como a média dos pontos atribuidos a cada

um;

39

5. As etapas de atribuicao e atualizacao sao repetidas até que nao haja mais mudancas
significativas nas atribui¢oes dos clusters ou até que um nttmero maximo de iteragoes

seja alcancado.

O K-means é representado pela Figura 22

i e
b

A A
<
¢ <
®s o
o
¢ o @
* o o
e® o, °¢¢ ® S o* ¥
o @ o ? 0")
®* o . * &

Figura 22: Fluxo de trabalho de aprendizagem nao supervisionada [7].

3.5 Estruturas e Bibliotecas Empregadas
3.5.1 TensorFlow

TensorFlow ¢ um framework (estrutura) de codigo aberto desenvolvido pelo Google
que permite a criagao de modelos de machine learning e deep learning através de uma
interface que facilita a construgao de graficos computacionais. Tais graficos retratam
operagoes matematicas com conexoes que representam tensores (estruturas de dados mul-
tidimensionais).

O TensorFlow é otimizado para ser executado em diferentes plataformas, incluindo

CPUs, GPUs e TPUs (Tensor Processing Units).

3.5.2 Keras

Keras é uma biblioteca de alto nivel para desenvolvimento de redes neurais em Python,
projetada para facilitar a prototipagem rapida e intuitiva de modelos de deep learning.
Ela é construida sobre frameworks (como TensorFlow), permitindo que desenvolvedores
criem, compilem e treinem redes neurais com facilidade.

Keras suporta diversas arquiteturas de redes neurais, como redes convolucionais e
recorrentes, sendo amplamente utilizada em aplicagoes de reconhecimento de imagem e

processamento de linguagem natural.

40

3.5.3 NumPy

NumPy (Numerical Python) é uma biblioteca que fornece estruturas de dados efi-
cientes, como arrays multidimensionais (ndarrays), além de fung¢bes matematicas que
permitem operagoes vetorizadas.

O NumPy é amplamente utilizado em ciéncia de dados e machine learning por ser
eficiente em manipular grandes conjuntos de dados e realizar calculos complexos de forma

rapida.

3.5.4 Pandas

Pandas é uma biblioteca poderosa para manipulacao e analise de dados em Python
que fornece estruturas como DataFrames e Series que facilitam o trabalho com dados
rotulados ou relacionais.

Essa biblioteca é amplamente utilizada em tarefas como limpeza de dados, anélise
exploratéria e manipulagao eficiente de grandes conjuntos de dados. Sua integragao com

outras bibliotecas populares torna-a uma ferramenta muito versétil.

3.5.5 Matplotlib

Matplotlib é uma biblioteca popular para visualizacao de dados em Python, permitindo
a criagao de graficos estéticos, animados e interativos (incluindo histogramas, graficos de
dispersao e graficos 3D) com facilidade. Ela é frequentemente utilizada em conjunto com

outras bibliotecas como NumPy e Pandas para representar visualmente dados analisados.

3.5.6 Scikit-learn

Scikit-learn é uma biblioteca robusta para aprendizado de maquina em Python a
qual oferece uma ampla gama de algoritmos para tarefas como classificagao, regressao e
agrupamento, além de ferramentas para pré-processamento e avaliagao de modelos.

Projetada para ser de facil utilizagao, integra-se bem com outras bibliotecas como

NumPy e Pandas.

3.5.7 Seaborn

Seaborn é uma biblioteca baseada no Matplotlib que fornece uma interface mais amiga-
vel para a criagao de gréficos estatisticos. Ela facilita a visualizagao dos dados ao oferecer

funcoes especificas que representam relacoes estatisticas entre variaveis.

41

Seaborn é especialmente ttil para explorar conjuntos de dados complexos e gerar

visualizagoes informativas com menos co6digo.

3.5.8 Graphviz

Graphviz é uma ferramenta para visualizagao grafica que permite criar diagramas a
partir da descricdo textual dos graficos. E frequentemente utilizada para representar es-
truturas hierarquicas ou fluxos complexos em algoritmos, incluindo os usados em machine
learning.

Com Graphviz, os usuarios podem gerar visualizagoes claras e compreensiveis dos

modelos ou processos que estao analisando.

3.5.9 OS

A biblioteca OS (Operating System) do Python fornece uma maneira conveniente de
interagir com o sistema operacional dando a possibilidade de realizar operagoes como
manipulacao de arquivos e diretorios, execucao de comandos do sistema operacional e
acesso a informacoes do ambiente do sistema.

A biblioteca OS é essencial para scripts que precisam interagir com o sistema subja-

cente ou gerenciar arquivos durante o processamento de dados.

4 Analise dos Dados

4.1 K-means e o Método do Cotovelo

O método do cotovelo é uma técnica amplamente utilizada para determinar o niimero
ideal de clusters em algoritmos de agrupamento, especialmente no K-means (abordado na
Segao [3.4.2)). Este método é fundamental no contexto de aprendizado nao supervisionado,
onde a identificacao do nimero adequado de clusters pode impactar significativamente a
qualidade da segmentacao dos dados.

O método do cotovelo busca identificar o ponto onde a adi¢ao de mais clusters resulta

em um ganho marginal na explicagao da variancia dos dados.

1. O método do cotovelo é expresso pela Soma do Erro Quadrado [24]:

k
SSE =YY |IXi— Cill3 (4.1)

k=1 z;€Sk

42

Levando em conta que k = ntmero de clusters formados, C; = i-ésimo cluster e x =

os dados presentes em cada cluster.

2. A determinagao inicial do centroide é feita aleatoriamente a partir dos objetos dis-
poniveis até o cluster k. Para o calculo do proximo centroide do i-cluster, a seguinte
formula é empregada:

n
. X .

v = 2in T ondei=1,2 3, .., n (4.2)
n

3. A distancia de cada objeto a cada centroide é calculada usando a Distancia Eucli-

diana:

n

d(z,y) = ||z —y|| = Z(:{;Z —yi)2ondei=1,2 3, ..., n (4.3)

i=1

Levando em conta que z; = x em funcao de ¢, y; = variavel de saida e n = niimero

de objetos.
4. Cada objeto ¢ alocado no centroide mais préximo.

5. Cada objeto é alocado em um cluster na iteragao com k-means considerando a

distancia ao ponto central do cluster.
6. Apos a iteragdo e processamento, o novo centroide é calculado pela Equagao [4.2]

7. A etapa 3 deve ser repetida caso a nova posicao do centréide com o antigo nao for

a mesima.

Esse método afirma que quanto menor a inércia, melhor a divisao dos clusters e o
ntmero ideal é determinado pelo ponto de cotovelo, caracterizado por onde a curva comega
a se inclinar mais suavemente.

Este é o ponto onde a inércia comec¢a a diminuir a uma taxa menor, indicando que
adicionar novos clusters nao resulta em uma melhora significativa na compactagao com
os anteriores. O numero de clusters ideal é aquele que estd no ponto de cotovelo, pois
representa um bom trade-off entre minimizar a inércia e nao adicionar clusters desneces-

SArios.

43

V]

w

ot

~

4.1.1 Cédigo

#cluster C digo com K-means

import os
import numpy as np

import pandas as pd

from sklearn.cluster import KMeans

import matplotlib.pyplot as plt

; from sklearn.preprocessing import StandardScaler

def load and normalize data(file path):

df = pd.read csv(file path)

data = df.iloc[:, :—1].values.astype(np.float32)
scaler = StandardScaler ()
data = scaler.fit transform (data)

return data

inertias = []

K = range (1, max k + 1)

for k in K:
kmeans = KMeans(n _clusters=k,

kmeans. fit (data)

7 def plot_ elbow method(data, max k=10):

random _state=42)

inertias.append (kmeans.inertia)

plt . figure (figsize=(8, 4))
plt.plot (K, inertias, ’bo-?)
plt.xlabel(’N mero de Clusters?’)

plt.ylabel(?In rcia?)

plt.title(’M todo do Cotovelo para Encontrar o N mero Ideal de

Clusters’)
plt .show ()

Especificar o caminho para o arquivo no Google Drive

data _path = "/content/drive/My Drive/random_output.csv"

Verificar se o caminho existe

7 if not os.path.exists(data_ path):

raise FileNotFoundError(f"Data path {data_path} does not exist.")

44

10 # Carregar e normalizar os dados

11 data = load and normalize data(data path)

13 # Aplicar o M todo do Cotovelo para encontrar o n mero ideal de clusters

112 plot _elbow method (data, max k=10)

Tabela 1: Codigo em cluster k-means.

4.1.2 Estrutura do Cédigo

Importacao de Bibliotecas

1 import os

> import numpy as np

3 import pandas as pd

1+ from sklearn.preprocessing import StandardScaler
5 from sklearn.cluster import KMeans

¢ import matplotlib.pyplot as plt

Tabela 2: Importagao de Bibliotecas (K-means e o Método do Cotovelo).

e OS: Introduzida para a interagao com o sistema operacional;
e NumPy: Anexada ao codigo para a manipulagao de arrays;

e Pandas: Usada para manipulacao e anélise de dados, especialmente para ler arquivos

CSV;

e StandardScaler: Uma classe do sklearn que normaliza os dados, removendo a média

e escalando para a variancia unitéria;
e K-means: Implementacao do algoritmo K-means para clustering;

e Matplotlib.pyplot: Destinada para criagao de graficos e visualizagoes.

Funcgao load _and _normalize _data

1 def load and normalize data(file path):
2 df = pd.read csv(file path)

data = df.iloc[:, :—1].values.astype(np.float32)

45

5

scaler = StandardScaler ()
data = scaler.fit transform (data)

return data

Tabela 3: Fungao load _and_normalize _data (K-means e o Método do Cotovelo).

As etapas de funcionamento da funcao em questao sao descritas abaixo:

. Carregamento dos Dados: Um arquivo CSV ¢é lido usando pd.read csv(), armaze-

nando os dados em um DataFrame df;

. Selecao de Colunas: df.iloc[:, : —1] seleciona todas as colunas, com excegao da

ultima. A ltima coluna geralmente contém rotulos ou categorias que nao sao usadas

no clustering;

. Conversao de Tipo: Converte os dados para o tipo float32 para economizar memoria

e melhorar a performance;

. Normalizagao: Cria uma instancia de StandardScaler, ajusta e transforma os dados.

A normalizagdo é importante para que todas as caracteristicas tenham a mesma
escala, evitando que caracteristicas com maiores magnitudes dominem o calculo das

distancias no K-means;

. A funcao retorna os dados normalizados.

Funcgao plot _elbow method

1 def plot elbow method(data, max k=10):

)

inertias = []

K = range(1l, max k + 1)

for k in K:
kmeans = KMeans(n _clusters=k, random state=42)
kmeans. fit (data)

inertias.append (kmeans.inertia)

plt . figure (figsize=(8, 4))
plt.plot (K, inertias, ’bo-?)
plt.xlabel (N mero de Clusters?)

plt.ylabel(?In rcia?)

46

14

plt.title(’M todo do Cotovelo para Encontrar o N mero Ideal de

Clusters’)

plt .show ()

Tabela 4: Fungao plot _elbow method (K-means e o Método do Cotovelo).

As etapas de funcionamento da funcao em questao sao descritas abaixo:

. Inicializacdo da Lista de Inércia: Cria uma lista vazia para armazenar a inércia (ou

soma das distancias quadradas das amostras aos seus centros de cluster) para cada

valor de k;

. Definigao do Intervalo de k: K = range(1, max_k+ 1) define o intervalo de valores

de k (namero de clusters) que sera testado;

. Calculo da Inércia para cada valor de k em K: Cria uma instancia do K-means com

o namero atual de clusters; Ajusta o modelo aos dados usando kmeans. fit(data);

Adiciona a inércia calculada (kmeans.inertia_) a lista "inertias";

. Plotagem do Grafico: Cria uma figura com tamanho especifico, plota os valores de k

no eixo x e as inércias no eixo y, adiciona rétulos e titulo ao grafico, exibe o grafico
com plt.show(). O grafico resultante ajuda a identificar o "cotovelo", onde a inércia

comeca a diminuir mais lentamente a medida que mais clusters sao adicionados.

Execugao do Cédigo

1 data path = "/content/drive/My Drive/random_output.csv"

2

if not os.path.exists(data_ path):

raise FileNotFoundError({"Data path {data_path} does not exist.")

data = load and_ normalize data(data_path)

plot _elbow method(data, max k=10)

Tabela 5: Execugao do Codigo (K-means e o Método do Cotovelo).

1. Defini¢cao do Caminho do Arquivo: Especifica o caminho onde o arquivo CSV esta

localizado;

47

2. Verifica¢ao da Existéncia do Arquivo: Usa os.path.exists() para verificar se o cami-

nho do arquivo é vélido. E caso nao seja, levanta um erro informativo;

3. Carregamento e Normalizagao dos Dados: Chama a fungao load _and _normalize data

passando o caminho do arquivo e armazena os dados normalizados na variavel data;

4. Aplicagao do Método do Cotovelo: Chama a funcao plot _elbow method passando
os dados normalizados e um valor maximo de k (10) para encontrar o ntimero ideal

de clusters.

4.1.3 Owutput

1e7 Meétodo do Cotovelo para Encontrar o Numero Ideal de Clusters

1.8 +

1.6 1

1.4 1

Inércia

1.2 +

1.0 1

2 4 6 8 10
Numero de Clusters

Figura 23: Output k-means (método do cotovelo).

Interpretacao do grafico
A Inércia diminui de maneira constante a medida que o nimero de clusters aumenta,

sem um ponto de cotovelo muito claro. Isso pode indicar algumas situagoes:

1. Nenhum Numero Otimo Claro: N&o ha um ponto de cotovelo claro, o que pode
significar que o ntumero ideal de clusters nao é facilmente determinado apenas pelo

método do cotovelo;

2. Dados Complexos: Os dados podem ser complexos ou nao estruturados de maneira

que nao formam clusters bem definidos.

48

4.2 Criacao do Cédigo K-NN Classifiers

O K-Nearest Neighbors (K-NN) ¢ um algoritmo de aprendizado supervisionado usado
tanto para problemas de classificacao quanto de regressao. Ele é particularmente popular
devido a sua simplicidade e eficicia em muitos casos praticos.

Como Funciona o K-NN

1. Treinamento: O K-NN é um algoritmo baseado em instancias, o que significa que
nao ha uma fase de treinamento real. Em vez disso, ele armazena todos os exemplos

de treinamento e realiza calculos na fase de predigao;
2. Predicao:

e (Classificacao: Para classificar um novo ponto de dados, o K-NN calcula a
distancia entre esse ponto e todos os pontos no conjunto de treinamento, sele-
cionando os K pontos mais proximos (vizinhos). A classe mais frequente entre

esses K vizinhos é atribuida ao novo ponto;

e Regressao: Para prever um valor continuo, o K-NN calcula a média (ou outro

critério) dos valores dos K vizinhos mais proximos.
Passos do Algoritmo K-NIN

1. Escolha do Valor de K: Seleciona-se o ntimero de vizinhos K. Um valor pequeno de
K pode tornar o modelo sensivel ao ruido, enquanto um valor grande pode diluir o

impacto de pontos de dados locais;

2. Calculo da Distancia: Calcula-se a distancia entre o novo ponto e todos os pontos

de treinamento. Distancias comuns incluem Euclidiana, Manhattan, e Minkowski;

3. Identificacao dos Vizinhos: Seleciona-se os K pontos de treinamento mais proximos

com base na distancia calculada;
4. Classificagao ou Regressao:

e (lassificagao: Atribui-se a classe mais comum entre os K vizinhos;

e Regressao: Calcula-se a média dos valores dos K vizinhos.
Vantagens K-NN

e Simplicidade: Facil de entender e implementar;

49

e Versatilidade: Pode ser usado para classificacao e regressao;

e Sem Treinamento: Nao ha necessidade de treinamento explicito, tornando-o eficiente

em termos de tempo de preparacao.
Desvantagens K-NN

e Custo Computacional: Para grandes conjuntos de dados, calcular distancias para

todos os pontos pode ser computacionalmente intensivo;

e Sensibilidade a Escala: A performance pode ser afetada por caracteristicas com

diferentes escalas. Normalizacao dos dados geralmente é necessaria;

e Sensibilidade ao Ruido: Valores atipicos ou ruido nos dados podem afetar significa-

tivamente os resultados, especialmente com valores baixos de K.
Aplicagoes Comuns

e Reconhecimento de Padroes: Como reconhecimento de caracteres e reconhecimento

de faces;

e Sistemas de Recomendagao: Recomendacao de produtos baseados em similaridades

de usuérios ou itens;

e Deteccao de Anomalias: Identificagao de padroes andémalos em dados financeiros ou

de seguranca.

Consideragoes Finais
A escolha do valor de K é crucial para a performance do K-NN. Normalmente, valores
de K impares sao escolhidos para evitar empates na classificagao.
Cross-validation pode ser usada para determinar o melhor valor de K. Além disso,
técnicas de redugao de dimensionalidade como PCA (Principal Component Analysis) po-
dem ser aplicadas para melhorar a eficiéncia do K-NN em conjuntos de dados de alta

dimensionalidade.

4.2.1 Cédigo

1 #AKCNN classifiers
> import numpy as np

3 import matplotlib.pyplot as plt

20

import pandas as pd

from sklearn.model selection import train test split

; from sklearn.neighbors import KNeighborsClassifier

from sklearn.metrics import accuracy score
from matplotlib.colors import ListedColormap
import matplotlib.patches as mpatches

from sklearn import neighbors

from sklearn.preprocessing import StandardScaler

def load and normalize data(file path):
df = pd.read csv(file path)

data = df.iloc[:, :—1].values.astype(np.float32)
labels = df[’class’]|.values.astype(np.int64)
scaler = StandardScaler ()

data = scaler.fit transform (data)

return data, labels

#datasets

test path = "/content/drive/My Drive/test_dataset.csv"
train path = "/content/drive/My Drive/train_dataset.csv"
5 #X and Y

; data2, labels2 = load and normalize data(train_path)

data4, labels4 = load and normalize data(test path)
#classifier object

knn = KNeighborsClassifier (n_neighbors = 5)

#train the classifier

knn. fit (data2, labels2)

#estimate the accuracy

knn.score (datad , labels4)

#predict the response

5 pred = knn.predict (datad)
s #evaluate accuracy

7 print ("Accuracy:", accuracy_score(labels4 , pred))

Tabela 6: Codigo K-NN classifiers (primeira parte).

Ao executar o algoritmo com diferentes valores de k, os seguintes resultados de acuracia

foram observados:

e k= 1: Acuracia de 20.07%

51

e k =5: Acuracia de 24.16%

k = 10: Acurécia de 25.82%

k = 20: Acurécia de 27.24% (tempo de execugao: 3 minutos)

e k= 50: Acurécia de 28.55% (tempo de execugao: 6 minutos)

k = 100: Acurécia de 29.15% (tempo de execugao: 10 minutos)

k = 200: Acurécia de 29.49% (tempo de execugao: 18 minutos)

Analisando os resultados, nota-se que, & medida que o valor de k aumenta, ha uma
ligeira melhora na acuracia do modelo. No entanto, essa melhora ¢ marginal, especial-
mente para valores mais altos de k. Por exemplo, ao passar de kK = 100 para k = 200,
a acuracia aumenta apenas 0.34%, enquanto o custo computacional praticamente dobra,
com o tempo de execucao aumentando de 10 para 18 minutos.

Esse comportamento destaca uma caracteristica importante do K-NN: embora o au-
mento de k possa suavizar as fronteiras de decisao e melhorar ligeiramente a acurécia, isso
vem a um custo computacional significativo. Para valores muito altos de k, o ganho de
acuracia é insuficiente para justificar o aumento no tempo de processamento. Portanto,
é crucial encontrar um equilibrio adequado entre acuracia e eficiéncia computacional ao

escolher o valor de k.

4.2.2 Estrutura do Codigo (Primeira Parte)

Importacao de Bibliotecas

i import numpy as np

> import matplotlib.pyplot as plt

3 import pandas as pd

i from sklearn.model selection import train test split
5 from sklearn.neighbors import KNeighborsClassifier
¢ from sklearn.metrics import accuracy score

7 from matplotlib.colors import ListedColormap

s import matplotlib.patches as mpatches

9 from sklearn import neighbors

o from sklearn.preprocessing import StandardScaler

Tabela 7: Importagao de Bibliotecas (K-NN Classifiers - primeira parte).

52

NumPy;
Matplotlib.pyplot;
Pandas;

Prain_test split: Funcao que divide os dados em conjuntos de treinamento e teste

(nao utilizada neste trecho especifico);
KNeighborsClassifier: Classe que implementa o algoritmo K-NN;
Accuracy _score: Funcao para calcular a acuréicia do modelo;

ListedColormap e mpatches: Ferramentas para personalizacao de visualizagoes (nao

utilizadas diretamente neste trecho);

Neighbors: Modulo que contém classes e fungoes relacionadas a algoritmos de vizi-

nhanca (ndo utilizado diretamente neste trecho);

StandardScaler.

Funcao load and normalize data

1 def

V]

load and normalize data(file path):

df = pd.read csv(file path)

data = df.iloc[:, :—1].values.astype(np.float32)
labels = df[’class’|.values.astype(np.int64)
scaler = StandardScaler ()

data = scaler.fit transform (data)

return data, labels

Tabela 8: Fungao load and_normalize data (K-NN Classifiers - primeira parte).

Descrig¢ao da fungao:

1. Leitura do Arquivo CSV: pd.read csv(file path) 1&é um arquivo CSV localizado

no caminho especificado e armazena os dados em um DataFrame df;

2. Separagao dos Dados e Rotulos:

e data = df.iloc[:, : —1].values.astype(np.float32): Seleciona todas as colunas,
exceto a tultima, que geralmente contém os rétulos das classes. Os dados sao

convertidos para o tipo float32 para economizar memoria;

93

o labels = df['class’|.values.astype(np.int64): Extrai a coluna class como rotu-

los, convertendo-os para o tipo int64.
3. Normalizacao dos Dados:

e scaler = StandardScaler(): Cria uma instancia do StandardScaler, que é
usado para normalizar os dados;
e data = scaler.fit _transform(data): Ajusta o escalador aos dados e trans-

forma os dados, resultando em uma média de 0 e desvio padrao de 1.

4. Retorno dos Dados Normalizados e Rotulos: A funcao retorna uma tupla contendo

os dados normalizados (data) e os rotulos (labels).

Carregamento dos Conjuntos de Dados

1 test path = "/content/drive/My Drive/test_dataset.csv"

2 train path = "/content/drive/My Drive/train_dataset.csv"
3

. data2, labels2 = load and normalize data(train_ path)

5 data4 , labels4 = load and normalize data(test path)

Tabela 9: Carregamento dos Conjuntos de Dados (K-NN Classifiers - primeira parte).

Descricao:

1. Definicao dos Caminhos dos Arquivos: Define variaveis que armazenam os cami-
nhos dos arquivos CSV para os conjuntos de treinamento (train_path) e teste

(test _path);
2. Carregamento e Normalizagao dos Dados:

e Chama a fungao load and_mnormalize data duas vezes: uma vez para carre-
gar o conjunto de treinamento (train_path) e outra para o conjunto de teste

(test _path).

e Os dados normalizados sao armazenados em data2 e data4, enquanto os rotulos

correspondentes sao armazenados em labels2 e labels).

Criacao do Classificador K-NN

o4

knn = KNeighborsClassifier (n_neighbors=5)

Tabela 10: Criagao do Classificador K-NN (primeira parte).

Descri¢ao: Cria uma instancia do classificador K-NN com 5 vizinhos mais proximos
(n_neighbors = 5). Este parametro k determina quantos vizinhos serao considerados ao
fazer previsoes.

Treinamento do Classificador

knn. fit (data2, labels2)

Tabela 11: Treinamento do Classificador K-NN (primeira parte).

Descri¢ao: Ajusta o modelo K-NN aos dados de treinamento (data2) e seus respectivos
rotulos (labels2). O método fit é responsével por armazenar as informagoes necessérias
sobre os dados para realizar previsoes posteriormente.

Avaliagao da Acuracia

knn.score (datad , labels4)

Tabela 12: Avaliagdo da Acuracia (K-NN Classifiers - primeira parte).

Descri¢ao: O método score avalia o modelo usando o conjunto de teste (data/) e seus
rotulos correspondentes (labels/). Ele retorna a acuracia do modelo, que é a proporgao
de previsoes corretas feitas pelo classificador.

Previsao e Impressao da Acuracia

pred = knn.predict (data4)

print ("Accuracy:", accuracy_score(labels4d , pred))

Tabela 13: Previsao e Impressao da Acuracia (K-NN Classifiers - primeira parte).

Descricao:

1. Previsao: pred = knn.predict(data4) usa o modelo treinado para prever os rotulos

do conjunto de teste. O resultado é armazenado na variavel pred;

2. Calculo da Acuracia:

95

e accuracy score(labelsd, pred): Compara as previsoes feitas pelo modelo (pred)
com os rotulos reais do conjunto de teste (labels4) usando a fungao accuracy _score;
O resultado é impresso na tela com a mensagem "Accuracy:", mostrando assim

quao bem o classificador se saiu.

4.2.3 Estrutura do Coédigo (Segunda Parte)

Definicao do Intervalo de k

1 k _range = range (1, 50)

> scores = |[]

Tabela 14: Defini¢ao do Intervalo de k (K-NN Classifiers - segunda parte).

Descrigao:

1. Definigao do Intervalo: k range = range(1, 50) cria um objeto range que representa
os valores de k que serao testados, variando de 1 a 49. Isso significa que o codigo

ird avaliar o desempenho do classificador K-NN para cada um desses valores de k;

2. Inicializagao da Lista de Acuracia: scores = [] cria uma lista vazia chamada scores,

que sera usada para armazenar a acuracia obtida para cada valor de k testado.

Loop para Avaliagao da Acuracia

i for k in k_ range:
2 knn = KNeighborsClassifier (n_neighbors=k)
3 knn. fit (data2, labels2)

scores .append (knn.score (datad , labels4))

Tabela 15: Loop para Avaliagao da Acurécia (K-NN Classifiers - segunda parte).

Descrigao:

1. Iteracao sobre os Valores de k: O loop for k in k_range itera sobre cada valor de

k definido anteriormente;

2. Criagao do Classificador K-NN: knn = K NeighborsClassifier(n_neighbors = k)
para cada valor de k, cria uma nova instancia do classificador K-NN, especificando

o namero de vizinhos mais proximos a serem considerados;

o6

3. Treinamento do Classificador: knn.fit(data2,labels2) ajusta o modelo K-NN aos
dados de treinamento (data2) e seus rotulos (labels2). Isso permite que o modelo

aprenda a partir dos dados disponiveis;

4. Avaliacao da Acuracia: scores.append(knn.score(datad,labelsd)) avalia a acuracia
do modelo usando o conjunto de teste (dataj) e seus rétulos correspondentes (la-
bels4). O resultado é adicionado & lista scores. Assim, ao final do loop, scores

conterd a acuracia para cada valor de k testado.

Visualizacao dos Resultados

plt.figure ()

plt.xlabel (’k?)

3 plt.ylabel(?accuracy?)
plt.scatter (k_range, scores)

s plt.xticks ([0, 10, 20, 30, 40, 50])

Tabela 16: Visualizagao dos Resultados (K-NN Classifiers - segunda parte).

Descricao:

1. Criagao da Figura: plt. figure();
2. Roétulos dos Eixos:

e plt.xlabel('k’): Define o rétulo do eixo x como ’k’; representando os diferentes

valores testados para o parametro k;

o plt.ylabel('accuracy’): Define o rotulo do eixo y como "accuracy’, representando

a acuracia correspondente a cada valor de k.

3. Plotagem dos Resultados: plt.scatter(k_range, scores) cria um grafico de dispersao
onde os valores de k sao plotados no eixo x e as respectivas acurécias no eixo y. Isso
permite visualizar como a acuracia varia com diferentes escolhas para o parametro

k.

Y

4. Definigao dos Ticks no Eixo x: plt.xzticks([0, 10, 20, 30, 40, 50]) define as marcas
(ticks) no eixo x em intervalos especificos (0, 10, 20, 30, 40 e 50), facilitando a leitura

do grafico.

o7

4.2.4 QOwutput

pev Y)
0000000
0.28 ceeete®®*®
o
..
..
L
0.26 o®
[]
L
3‘ o
® L]
S 0.24 ®
& o
o
®
0.22
0201 @
0 10 20 30 40 50

Figura 24: Output K-NN.

Interpretacao do grafico
Assim como visto anteriormente, ha um aumento do custo computacional e baixo
ganho na acuracia. Esse comportamento destaca uma caracteristica importante do K-NN:
embora o aumento de k possa suavizar as fronteiras de decisao e melhorar ligeiramente a

acuracia, isso vem a um custo computacional significativo.

4.3 Criacao do Cédigo Decision Tree

Uma arvore de decisao é um modelo de aprendizado de maquina usado para classifi-
cagao e regressao. Funciona como um gréafico de decisoes onde cada no interno representa
uma "pergunta'sobre uma caracteristica do conjunto de dados, cada ramo representa o

)

resultado dessa pergunta, e cada né folha representa uma classe ou valor de saida.

1. Construcao da Arvore:

e Escolha da Caracteristica: A construgao da arvore comeca pela escolha da
caracteristica (ou atributo) que melhor divide os dados. Isso é feito usando
métricas como ganho de informagdo (usado no algoritmo ID3), indice Gini

(usado no algoritmo CART) ou redugao de entropia;

o8

e Divisao do N6: O conjunto de dados é dividido com base nos valores da carac-

teristica escolhida. Isso cria ramos na arvore;

e Recursao: Este processo é repetido recursivamente para cada subconjunto re-
sultante, formando novos nés e ramos até que uma das condigoes de parada
seja atingida (por exemplo, todos os dados em um n6 tém a mesma classe, ou

o nimero maximo de niveis da arvore é atingido);
2. Predicao com a Arvore:

e Navegacao na Arvore: Para fazer uma previsao para uma nova amostra, a
amostra ¢ passada pela drvore comecando do no raiz. Em cada n6, uma decisao
é tomada com base na caracteristica relevante, seguindo o ramo apropriado até

chegar a um no folha;
e Classificacao ou Regressao: A classe ou valor associado ao n6 folha é entao
usado como a previsao para a amostra.

Importancia

1. Interpretacdo Simples: Arvores de decisdo sdo faceis de entender e interpretar. Elas
espelham processos de tomada de decisao humana, tornando os resultados compre-

ensiveis mesmo para nao-especialistas;

2. Manuseio de Dados Categoricos e Numéricos: Arvores de decisao podem lidar com

ambos os tipos de dados. Isso as torna versateis para diferentes tipos de problemas;

3. Pouca Necessidade de Pré-processamento de Dados: Nao requerem normalizagao ou
padronizacao de dados. Além disso, nao sao afetadas por valores ausentes da mesma

forma que outros modelos;

4. Robustez a Outliers: Arvores de decisio sdo relativamente robustas a outliers porque

a divisao é feita com base na maioria dos dados;

5. Capacidade de Capturar Interagoes Nao Lineares: Elas podem capturar relagoes

nao lineares entre as caracteristicas, o que pode ser dificil para modelos lineares.
Desvantagens

1. Sobreajuste (Overfitting): Arvores de decisdo tendem a se ajustar demais aos dados

de treinamento, especialmente se a arvore for muito profunda;

99

N

2. Instabilidade: Pequenas variagoes nos dados podem resultar em arvores completa-

mente diferentes, o que pode tornar as previsoes instaveis;

3. Tendéncia de Preferéncia por Atributos com Mais Niveis: Arvores de decisao podem

tendem a favorecer caracteristicas com mais niveis.

Para mitigar algumas dessas desvantagens, métodos como o bagging (por exemplo,
Random Forests) ou boosting (por exemplo, Gradient Boosting) sdo usados, que combi-

nam multiplas arvores para melhorar a precisao e a robustez das previsoes.

4.3.1 Cédigo

import numpy as np
import pandas as pd
import seaborn as sn

import matplotlib.pyplot as plt

5 import matplotlib.cm as cm

from matplotlib.colors import ListedColormap, BoundaryNorm
from sklearn import neighbors

import matplotlib.patches as mpatches

import graphviz

from sklearn.tree import export graphviz

import matplotlib.patches as mpatches

from sklearn.tree import DecisionTreeClassifier

from sklearn.preprocessing import StandardScaler

import os

def plot decision tree(clf, feature names, class names, save path="
adspy_temp.dot"):
export graphviz (clf , out file=save path, feature names=feature names,
class names=class names, filled=True, impurity=False)
with open(save path) as f:
dot _graph = f.read()
return graphviz.Source(dot graph)

def plot feature importances(clf , feature names):
¢ _features = len (feature names)
plt.barh(range(c_features), clf.feature importances)
plt.xlabel ("Feature importance")

plt . ylabel ("Feature name")

60

plt.yticks (np.arange(c_ features), feature names)

def load and normalize data(file path):

df = pd.read csv(file path)

data = df.iloc[:, :—1].values.astype(np.float32)
labels = df[’class’]. values.astype(np.int64)
scaler = StandardScaler ()

data = scaler.fit transform (data)

return data

)

labels

Define the save path for the DOT file

save path = "/content/drive/My Drive/decision_tree.dot"

File paths

test path = "/content/drive/My Drive/test_dataset.csv"

train _path = "/content/drive/My Drive/train_dataset.csv"

data2, labels?2

; datad, labels4

1+ # Load and normalize data

load and normalize data(train_ path)

load and normalize data(test path)

Train the classifier

clf = DecisionTreeClassifier (max depth=15, min_ samples leaf=8, random state

=0). fit (data2,

labels2)

Define feature and class names

feature names = [’sensor_1’, ’sensor_2’, ’sensor_3’, ’sensor_4’]

class names = [str(i) for i in range(10)]

Plot decision

tree _plot = plot decision tree(clf, feature names, class names)

tree

tree plot.render("decision_tree")

Plot feature

importances

plot feature importances(clf, feature names)

plt .show ()

Return Accuracy

print (’Accuracy of DT classifier on training set: {:.2f}’

.format (clf.score(data2, labels2)))

61

66 print (’Accuracy of DT classifier on test set: {:.2f}’

67 .format (clf.score(datad, labelsd)))

Tabela 17: Codigo Decision Tree.

4.3.2 Estrutura do Cédigo

Importacao de Bibliotecas

I import numpy as np

import pandas as pd

; import seaborn as sn

import matplotlib.pyplot as plt

5 import matplotlib.cm as cm

¢ from matplotlib.colors import ListedColormap, BoundaryNorm
7 from sklearn import neighbors
s import matplotlib.patches as mpatches

import graphviz

10 from sklearn.tree import export graphviz

from sklearn.tree import DecisionTreeClassifier

from sklearn.preprocessing import StandardScaler

1:

import os

Tabela 18: Importacao de Bibliotecas (Decision Tree).

e NumPy;
e Pandas;

e Seaborn: construida sobre o Matplotlib, tem a capacidade de criar graficos estatis-

ticos;
e Matplotlib.pyplot;

e Graphviz: Biblioteca para criar visualizacoes gréaficas, especialmente 1til para visu-

alizar arvores de decisao;

e cxport graphviz: Funcao do Scikit-learn que exporta uma arvore de decisao em

formato DOT, que pode ser visualizado com Graphviz;

e DecisionTreeClassifier: Classe do Scikit-learn que implementa o algoritmo de arvore

de decisao;

62

e StandardScaler.

Funcao plot _decision tree

1 def plot decision tree(clf, feature names, class names, save path="
adspy_temp.dot"):
2 export graphviz (clf , out file=save path, feature names=feature names,
class _names=class names, filled=True, impurity=False)
with open(save path) as f:
! dot _graph = f.read()

return graphviz.Source (dot graph)

Tabela 19: Fungao plot decision _tree (Decision Tree).

Descrigao dessa funcao:

1. Exportagao da Arvore - export graphviz(...): Exporta a arvore de decisao treinada
(clf) para um arquivo DOT. Os parametros incluem:
e out_file: caminho onde o arquivo DOT sera salvo;
e feature_ names: nomes das caracteristicas usadas na arvore;

e class _mames: nomes das classes alvo;

filled = True: preenche os nés com cores baseadas na classe predominante;

impurity = False: nao exibe a impureza dos noés.
2. Lé o arquivo DOT gerado e armazena seu contetido na variavel dot _graph;

3. Retorna uma instancia do objeto graphviz.Source, que pode ser usado para rende-

rizar a arvore visualmente.

Funcao plot _ feature _importances

1 def plot feature importances(clf, feature names):

2 ¢ features = len (feature names)

3 plt .barh(range(c_features), clf.feature importances)
plt.xlabel ("Feature importance")

5 plt.ylabel ("Feature name")

6 plt.yticks (np.arange(c_features), feature names)

Tabela 20: Funcao plot feature importances (Decision Tree).

63

Descrig¢ao dessa funcao:
1. ¢_features = len(feature_names): Conta o numero total de caracteristicas;

2. Criagao do Gréfico de Importancia das Caracteristicas

e plt.barh(...): Plota um grafico horizontal onde cada barra representa a impor-

tancia da caracteristica correspondente na arvore de decisao (clf.feature importances);

e Define rétulos para os eixos x e y e ajusta os ticks no eixo y para mostrar os

nomes das caracteristicas.

Funcao load _and normalize _data

1 def load and normalize data(file path):

)

3

~

1 FF

6

df = pd.read csv(file path)

data = df.iloc[:, :—1].values.astype(np.float32)
labels = df[’class’|.values.astype(np.int64)
scaler = StandardScaler ()

data = scaler.fit transform (data)

return data, labels

Tabela 21: Fungao load _and_normalize _data (Decision Tree).
Descricao dessa funcao:
1. Lé um arquivo CSV e armazena os dados em um DataFrame;
2. Extrai todas as colunas exceto a tltima como dados e a coluna ’class’ como rétulos;
3. Usa o StandardScaler para normalizar os dados;

4. Retorna uma tupla contendo os dados normalizados e os rotulos.

Carregamento dos Conjuntos de Dados

Define the save path for the DOT file

save path = "/content/drive/My Drive/decision_tree.dot"

File paths
test path = "/content/drive/My Drive/test_dataset.csv"

train path = "/content/drive/My Drive/train_dataset.csv"

64

Load and normalize data

[

o data2, labels2 = load and normalize data(train_path)

o datad, labels4 = load and normalize data(test path)

Tabela 22: Carregamento dos Conjuntos de Dados (Decision Tree).

Descricao:

1. Define varidveis que armazenam os caminhos dos arquivos CSV para conjuntos de

treinamento e teste;

2. Chama a funcao load _and_normalize data duas vezes para carregar e normalizar

ambos os conjuntos.

Treinamento do Classificador

i clf = DecisionTreeClassifier (max_ depth=15, min_samples leaf=8, random state

=0). fit (data2, labels2)

Tabela 23: Treinamento do Classificador (Decision Tree).

Descricao:

max__depth = 15: Limita a profundidade méxima da arvore a 15 niveis;

e min_samples leaf = 8: Define que um noé deve ter pelo menos 8 amostras para

ser considerado como folha;

random __state = 0: Garante reprodutibilidade nos resultados;

O método . fit(...) treina o classificador com os dados normalizados e seus rotulos.

Definicao dos Nomes das Caracteristicas e Classes

1 # Define feature and class names
> feature names = [’sensor_1’, ’sensor_2’, ’sensor_3’, ’sensor_4’]

3 class names = [str(i) for i in range(10)]

Tabela 24: Defini¢ao dos Nomes das Caracteristicas e Classes (Decision Tree).

Visualizacao da Arvore de Decisao

65

1 # Plot decision tree
> tree plot = plot decision tree(clf, feature names, class names)

3 tree_plot.render("decision_tree")

Tabela 25: Visualizacio da Arvore de Decisdo (Decision Tree).

Descrigao:

1. Chama a fungao plot decision tree, passando o classificador treinado (clf), os

nomes das caracteristicas (feature names) e os nomes das classes (class_names);

2. O método .render(”decision_tree”) gera o arquivo visual da arvore no formato

especificado (DOT).

Visualizacao das Importancias das Caracteristicas

1 # Plot feature importances
> plot feature importances(clf, feature names)

3 plt.show ()

Tabela 26: Visualizagao das Importéancias das Caracteristicas (Decision Tree).

Avaliacao da Acuracia

1 # Return Accuracy

> print (?Accuracy of DT classifier on training set: {:.2f}’.format(clf.score(
data2, labels2)))

3 print (?Accuracy of DT classifier on test set: {:.2f}’.format(clf.score(

datad , labelsd)))

Tabela 27: Avaliacdo da Acurécia (Decision Tree).
1. Usa o método .score(...) no conjunto de treinamento (data2, labels2) para calcular
a acuracia do modelo;
2. Faz o mesmo célculo para o conjunto de teste (datad, labels4);

3. Imprime a acuracia obtida em ambos os conjuntos formatada com duas casas deci-

mais.

66

4.3.3 Owutput

sensor_4

sensor_3

Feature name

sensor_2

sensor_1

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
Feature importance

Figura 25: Output Decision Tree.

A acurécia do classificador de Arvore de Decisdo (DT) no conjunto de treinamento foi
de 0.30, enquanto no conjunto de teste foi de 0.29. Esses resultados indicam que, mesmo
com um modelo mais simples, a capacidade de generalizagao da arvore ¢ limitada e a
diferenga minima entre as acuracias do treinamento e teste sugere que o modelo nao esta
sofrendo de overfitting, mas sim de um baixo poder de predicao.

Além disso, foi observado que ao aumentar a profundidade méxima da arvore de
decisao para valores acima de max _depth = 15, o custo computacional comega a crescer
rapidamente. Para profundidades muito altas, o tempo de processamento pode superar 5

horas, conforme o modelo se torna mais complexo e requer maior capacidade de calculo.

4.4 Criacao do Coédigo Scatter Maps

O scatter plot matriz (ou matriz de graficos de dispersdo) ¢ uma ferramenta visual
utilizada principalmente para explorar a relacao entre multiplas variaveis em um conjunto
de dados e também é utilizado para visualizar padrdes, tendéncias e outliners. Além dos

graficos de dispersao, a matriz pode incluir histogramas ou graficos de densidade ao longo

67

N

da diagonal principal para mostrar a distribuicao de cada variavel individualmente.

#C digo Scatter Maps

; import os

w

~

29

30

import pandas as pd
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap

from pandas.plotting import scatter matrix

def load and normalize data(data path):
data = pd.read csv(data path)
labels = data.pop(’class?’)
normalized data = (data — data.mean()) / data.std()

return normalized data, labels

5 data_path = "/content/drive/My Drive/random_output.csv"

if not os.path.exists(data_ path):

raise FileNotFoundError({"Data path {data_path} does not exist.")

Define a colormap with more distinguishable colors
colors = [’#FFOOOO’ , #O0O0O0OOFF’, °’#O00FF00°’, ’#FFOOFF’, ’#OOFFFF’,6 °’#FFFFO0O0’,
*#FFA500°, ’#800080°, ’#008000°, *#FFCOCB’ |

cmap = ListedColormap (colors)

datal, labelsl = load and normalize data(data path)

; #+ Create scatter matrix

scatter = scatter matrix(datal, c=labelsl, marker=’0’, s=40, hist_ kwds={’

bins’: 15}, figsize=(10, 10), cmap=cmap)

Add legend

handles = [plt.Line2D ([], [], color=cmap(i), marker=’0’, linestyle=’’,
markersize=10) for i in range(len(labelsl.unique()))]

labels = [f’Class {i}’ for i in labelsl.unique ()]

plt.legend (handles, labels, loc=’upper right’, bbox to anchor=(1.2, 1),

title=’Classes?)

plt .show ()

Tabela 28: Codigo Scatter Maps.

68

4.4.1 Estrutura do Cédigo

Importacao de Bibliotecas

1 #Scatter Maps 3D
3 import os

import pandas as pd

5 import matplotlib.pyplot as plt
¢ from matplotlib.colors import ListedColormap

7 from mpl toolkits.mplot3dd import Axes3D

def load and normalize data(data path):

10 data = pd.read csv(data path)

1 labels = data.pop(’class?’)

12 normalized data = (data — data.mean()) / data.std()

13 return normalized data, labels

15 data_path = "/content/drive/My Drive/random_output.csv"

17 if not os.path.exists(data path):

18 raise FileNotFoundError(f{"Data path {data_path} does not exist.")

19

20 # Define a colormap with more distinguishable colors

21 colors = [?#FF0000’, ’#0000FF’, ’#00FF00’, ’#FFOOFF’, ’*#00FFFF’ 6 ’#FFFF00’,
#FFA500° , ’#800080°, >#008000° , >#FFCOCB’ |

22 cmap = ListedColormap (colors)

22 data, labels = load and normalize data(data path)

26 # Selecionando tr s vari veis para o gr fico 3D

27 X_var — ’sensor_2’
28 y_var = ’sensor_3’
29 z_var — ’sensor_4’

51 fig = plt.figure ()
32 ax = fig.add subplot(111, projection=’3d’)

34 # Criando o scatter plot 3D

35 scatter = ax.scatter (data|[x var], datay_var], data[z_var], c=labels, cmap=

69

2

3

4

5

cmap, marker=’0’, s=40)

Adicionando r tulos
ax.set xlabel(x_var)
ax.set_ylabel (y_var)

ax.set zlabel(z var)

t Adicionando legenda
handles = [plt.Line2D ([], [], color=cmap(i), marker=’0’, linestyle=’’,
markersize=10) for i in range(len(labels.unique()))]

label classes = [f’Class {i}’ for i in labels.unique() |

5 ax.legend (handles, label classes, loc=’upper left’, bbox to_ anchor=(1.2, 1)

title="Classes’)

)

plt .show ()

Tabela 29: Importacao de Bibliotecas (Scatter Maps).

e OS;
e Pandas;
e Matplotlib.pyplot;

e ListedColormap: Classe do matplotlib que permite criar um mapa de cores perso-

nalizado;

e Scatter matrixz: Fungao do pandas que cria uma matriz de graficos de dispersao.

Funcao load and mnormalize data

def load and normalize data(data path):
data = pd.read csv(data_ path)
labels = data.pop(’class?’)
normalized data = (data — data.mean()) / data.std()

return normalized data, labels

Tabela 30: Funcao load and normalize data (Scatter Maps).

Descrig¢ao da fungao:

70

1. Leitura do arquivo CSV: data = pd.read csv(data _path) 1é um arquivo CSV loca-
lizado no caminho especificado (data path) e armazena os dados em um DataFrame

"data";

2. Separagao dos Rotulos: labels = data.pop('class’) remove a coluna ’class’ do Data-
Frame e armazena seus valores na variavel [abels. Essa coluna é assumida como a

variavel alvo ou classe;

3. Normaliza¢ao dos Dados: normalized data = (data — data.mean())/data.std()
normaliza os dados subtraindo a média e dividindo pelo desvio padrao, resultando

em dados com média 0 e desvio padrao 1;

4. Retorno dos Dados Normalizados e Rotulos: A funcao retorna uma tupla contendo

os dados normalizados (normalized data) e os labels.

Verificagao da Existéncia do Arquivo

1 data_path = "/content/drive/My Drive/random_output.csv"
3 if not os.path.exists(data path):

raise FileNotFoundError({"Data path {data_path} does not exist.")

Tabela 31: Verificagao da Existéncia do Arquivo (Scatter Maps).

Descricao:

1. Define a variavel data path que contém o caminho para o arquivo CSV;

2. Usa os.path.exists(data_path) para verificar se o arquivo existe. Se nao existir,

levanta um erro informativo FileNotFoundError.

Definicao do Mapa de Cores

1 colors = [’#FF0000°, ’#0000FF’, ’#00FF00’, ’*#FFOOFF’, ’*#00FFFF’, ’*#FFFF00’
>#FFA500°, ’#800080°, ’#0080007, ’#FFCOCB’]
> cmap = ListedColormap (colors)

Tabela 32: Defini¢ao do Mapa de Cores (Scatter Maps).

Descricao:

71

1. Cria uma lista chamada colors com codigos hexadecimais representando cores dis-

tintas que serao usadas para diferenciar as classes no grafico;

2. emap = ListedColormap(colors) cria um objeto ListedColormap usando as cores

definidas, que sera utilizado para colorir os pontos no grafico.

Carregamento e Normalizacao dos Dados

1 datal, labelsl = load and normalize data(data path)

Tabela 33: Carregamento e Normaliza¢ao dos Dados (Scatter Maps).

Descri¢ao: Chama a funcao load and_normalize data, passando o caminho do ar-
quivo CSV (data_path). Os dados normalizados sdo armazenados em datal, enquanto os
rotulos correspondentes sao armazenados em labels].

Criacao da Matriz de Graficos de Dispersao

1 scatter = scatter matrix (datal, c=labelsl, marker=’0’, s=40, hist kwds={’

bins’: 15}, figsize=(10, 10), cmap—cmap)

Tabela 34: Criagao da Matriz de Graficos de Dispersao (Scatter Maps).
Descricao:

1. A funcao scatter matriz gera uma matriz de graficos de dispersao para todas as

combinagoes possiveis das colunas em datal;
2. Os parametros utilizados incluem:

e ¢ = labelsl: Define as cores dos pontos com base nos rotulos das classes;
e marker = o': Especifica o formato dos marcadores como circulos;

s = 40: Define o tamanho dos marcadores;

hist _kwds = "bins’ : 15: Especifica que os histogramas nas diagonais devem

ter 15 bins;
e figsize = (10,10): Define o tamanho da figura como 10x10 polegadas;

e cmap = cmap: Aplica o mapa de cores definido anteriormente.

Adicao da Legenda

72

1 handles = [plt.Line2D ([], [], color=cmap(i), marker=’0’, linestyle=’",
markersize=10) for i in range(len(labelsl.unique()))]

> labels = [f’Class {i}’ for i in labelsl.unique()]

3 plt.legend (handles, labels, loc=’upper right’, bbox to anchor=(1.2, 1),

title="Classes’)

Tabela 35: Adigao da Legenda (Scatter Maps).

Descrigao:

1. A lista handles é criada usando uma compreensao de lista que gera objetos Line2D
para cada classe tnica nos rotulos (labels?). Cada objeto representa um ponto na

legenda com a cor correspondente;

2. A lista labels é criada contendo strings que representam cada classe (por exemplo,

"Class 0°, "Class 1°, etc.);

3. O método plt.legend(...) adiciona a legenda ao grafico na posi¢ao especificada (loc =’

upperright’) e ajusta sua posi¢ao com o parametro bbox to anchor.

Exibicao do Gréafico

1 plt.show ()

Tabela 36: Exibi¢ao do Gréfico (Scatter Maps).

Descrigao: O método plt.show() exibe todos os graficos criados até este ponto na tela.

4.4.2 OQutput

Distribuicoes Individuais
Os histogramas na diagonal principal mostram a distribuigao de cada sensor individu-
almente. Pode-se ver que sensor 1, sensor 2 e sensor 3 tém distribuicoes concentradas
ao redor de um valor central, enquanto sensor 4 tem uma distribui¢ao mais espalhada.
Classes
As cores diferentes representam diferentes classes, conforme mostrado na legenda &
direita. Ha uma clara diferenciagao de algumas classes em relacao a sensor 4. As classes
7 (verde claro) e 3 (azul escuro) sdo bem distintas das outras classes neste sensor.

Overlapping e Separagao de Classes

73

Em muitos dos graficos de dispersao, ha uma sobreposi¢ao significativa entre as classes,
indicando que pode ser dificil separar essas classes usando apenas essas duas variaveis. No
entanto, em graficos que envolvem sensor 4, especialmente contra sensor 1, sensor 2,
e sensor 3, algumas classes mostram menos sobreposicao, sugerindo que sensor 4 pode
ser um bom discriminador para algumas classes.

Inferéncias especificas
Sensor 4

Tal sensor parece ser particularmente tutil para distinguir classes. Por exemplo, as 7
(verde claro) e 3 (azul escuro) sd@o muito distintas em relagao a sensor 4. Porém, ainda
é possivel observar sobreposicoes de classe, como a classe amarela e magenta tendo distri-
buicoes proximas a classe azul escuro. sensor 4 contra sensor 1, sensor 2 e sensor 3
mostra menos sobreposicao para algumas classes, o que pode indicar uma capacidade
discriminativa mais alta.

Correlacoes e Distribuigoes

A maioria das relagoes entre os outros sensores (sensor 1, sensor 2 e sensor 3)
nao mostra padroes claros de correlagao positiva ou negativa. A dispersao parece ser mais
uniforme, sugerindo baixa correlacao entre essas variaveis.

Outliers

Existem alguns pontos que estao distantes do agrupamento central, indicando pos-

siveis outliers. Esses outliers podem ser importantes para investigagoes adicionais ou

pré-processamento de dados.

74

2

sensor_1
[=]

20

sensor_2
(=]

Classes

Class 2
Class 3
Class 7
Class S
Class 8
Class 9
Class 4
Class 0
Class &
Class 1

sensor_4

I

sensor_1 sensor_2 sensor_3 sensor_4

-20

0

20 4

40
-20 o
-20

0 4

20 4
-50

4]

[1

Figura 26: Output Scatter Maps.

4.5 Criacao do Cédigo Scatter Maps 3D

A motivagao desse codigo é observar melhor a relagao dos 3 sensores na classificagao

de cada movimento.

1 #Scatter Maps 3D

3 import os

1+ import pandas as pd

5 import matplotlib.pyplot as plt

¢ from matplotlib.colors import ListedColormap

7 from mpl toolkits.mplot3dd import Axes3D

o def load and normalize data(data path):

5

10 data = pd.read csv(data_ path)
11 labels = data.pop(’class?’)
12 normalized data = (data — data.mean()) / data.std()

13 return normalized data, labels

15 data path = "/content/drive/My Drive/random_output.csv"

17 if not os.path.exists(data_path):

18 raise FileNotFoundError({"Data path {data_path} does not exist.")

20 # Define a colormap with more distinguishable colors

21 colors = [’#FFOOOO’7 >#0000FF’, ’#O0O0FFO0O0’, ’#FFOOFF’>, ’#OOFFFF’, ’#FFFFO0O0’
*#FFA500°, ’#800080°, ’#008000°, *#FFCOCB’ |

22 cmap = ListedColormap (colors)

22 data, labels = load and normalize data(data_path)

26 # Selecionando tr s vari veis para o gr fico 3D

27 X_var = ’sensor_2’
28 y_var = ’sensor_3’
20 z_var — ’sensor_4’

30
a1 fig = plt.figure ()
32 ax = fig.add subplot (111, projection=’3d’)

34 # Criando o scatter plot 3D
35 scatter = ax.scatter (data[x var], data[y_var], data[z_ var], c=labels, cmap=

cmap, marker=’0’, s=40)

37 # Adicionando r tulos
3s ax.set xlabel(x_var)

ax.set ylabel(y_var)

3¢

0 ax.set zlabel(z_var)
41

2> # Adicionando legenda

'
N

handles = [plt.Line2D ([], [], color=cmap(i), marker=’0’, linestyle=’’,

markersize=10) for i in range(len(labels.unique()))]
11 label classes = [f’Class {i}’ for i in labels.unique()]

5 ax.legend (handles, label classes, loc=’upper left’, bbox to_ anchor=(1.2, 1)

, title=>Classes?)

76

16

a7 plt .show ()

Tabela 37: Codigo Scatter Maps 3D.

4.5.1 Owutput

Classes

Class 2
Class 3
Class 7
Class 5
Class 8
Class 9
Class 4
Class 0
Class 6
Class 1

sensor_3
o000

20 -30

Senso, > 0,

Figura 27: Output Scatter Maps 3D sensores 1, 2 e 3.

77

Classes

@ Class2
@ Class3
® Class7
- 40 ® Classs
20 < Class 8
0 § Class 9
-20 § Class 4
L _40 @ Classo0
—60 @® Classb6
Class 1
20
"
Fi
O
&
or 1 40
Figura 28: Output Scatter Maps 3D sensores 1, 2 e 4.
Classes
@® Class2
@ Class3
L ® Class7
40 ® Class>s
20 -, Class 8
0 o Class 9
L7
20 § Class 4
—40 @ Classo0
—60 @® Class6
Class 1
30
20
‘)J
d& e
-20 &
Se 20
’3‘50{-1 30 40 -30

Figura 29: Output Scatter Maps 3D sensores 1, 3 e 4.

78

sensor_4

20 -30

Figura 30: Output Scatter Maps 3D sensores 2, 3 e 4.

Classes

Class 2
Class 3
Class 7
Class 5
Class 8
Class 9
Class 4
Class 0
Class 6
Class 1

Reforca que o sensor 4 é o que mais influencia no gréafico, com o sensor 3 é possivel se
ver mais cores e o sensor 1 ¢ ligeiramente mais expressivo que o 2. Isto é, o sensor 2 é o

que menos influencia nos dados.

4.6 Criacao do cédigo Matriz de Confusao Multi-Classe com K-

NN

import numpy as np

import pandas as pd

from sklearn.preprocessing import StandardScaler

from sklearn.metrics import confusion matrix, accuracy score

import matplotlib.pyplot as plt

import seaborn as sns

from sklearn.neighbors import KNeighborsClassifier

from sklearn.model selection import train test split

def load and normalize data(file path):
df = pd.read csv(file path)

data = df.iloc[:, :—1].values.astype(np.float32)

labels

df[’class’|.values.astype(np.int64)

79

14 scaler = StandardScaler ()
15 data = scaler.fit transform (data)

16 return data, labels

15 def train_and evaluate knn (X train, y train, X test, y test):

19 # Treinamento com KNN

20 knn = KNeighborsClassifier (n_neighbors=200). fit (X train, y train)

21 knn predicted = knn. predict (X _test)

23 # Avalia 0

24 confusion _mc = confusion matrix(y test, knn predicted)

25 accuracy = accuracy_score(y test, knn predicted)

26

27 df cm = pd.DataFrame(confusion mc, index=range(10), columns=range (10))

29 # Aumentando a rea do gr fico para 10x8

30 plt.figure (figsize=(10, 8))

31 sns . heatmap (df cm, annot=True, fmt=>d’, cmap=>Blues’, cbar=False)
32 plt.title (f’KNN Classifier\nAccuracy: {accuracy:.3f}’)

33 plt.ylabel (’True label’)

34 plt.xlabel (’Predicted label’)

35 plt .show ()

36

37 # Caminhos dos datasets
3s test path = "/content/drive/My Drive/test_dataset.csv"
30 train _path = "/content/drive/My Drive/train_dataset.csv"
40

11 # Carregar e normalizar os dados

2> X train, y_train = load and normalize data(train path)

i3 X_test, y_test = load and normalize data(test path)

15 # Treinar e avaliar o modelo KNN

6 train _and _evaluate knn(X train, y train, X test, y_test)

Tabela 38: Codigo Matriz de Confusao Multi-Classe com K-NN.

80

4.6.1 Owutput Inicial

m - 14148 14738

= - 11928 12046

True label

- 20414 3184

o - 15019 18551

~ - 23946 9494

33407 3580

o 32510 3336

2639

5756

12242

16465

5643

6849

6774

8359

5181

10622

2959

22929

11306

5066

16559

14143

10047

11205

KNN Classifier

1420

5431

5851

7795

18185

8398

9788

7119

3804

4892

4

Accuracy: 0.295

6229

4026

8943

7060

12390

26820

7386

10140

13920

11963

5

Predicted label

2697

5990

1031

8041

6296

2073

9563

6618

3404

3204

2077

912

4428

3490

2434

4542

5149

4133

4257

7243

2284

3499

7246

3296

7553

5929

8238

11699

10251

3572

982

1947

3859

2721

3593

3020

4304

s232

5181

Figura 31: Output Inicial da Matriz de Confusao Multi-Classe com K-NN.

4.6.2 Aperfeicoando a Visao dos Dados

import numpy as np

import pandas as pd

from sklearn.preprocessing import StandardScaler

from sklearn.metrics import confusion matrix,

precision score, recall score,

import matplotlib.pyplot as plt

import seaborn as sns

fl1 score

accuracy score,

from sklearn.neighbors import KNeighborsClassifier

from sklearn.model selection import train test split

def load and normalize data(file path):

df = pd.read csv(file path)

data = df.iloc|[:,

:—1].values.astype(np. float32)

81

38

39

40

49

50

51

def

labels = df[’class’|.values.astype(np.int64)
scaler = StandardScaler ()
data = scaler.fit transform (data)

return data, labels

train_and evaluate knn (X train, y train, X test, y test):

Treinamento com KNN

knn = KNeighborsClassifier (n_neighbors=200). fit (X _train, y_train)
knn predicted = knn.predict (X _test)

Avalia)

confusion _mec = confusion matrix(y_ test, knn predicted)

accuracy = accuracy score(y test, knn predicted)

precision = precision score(y_ test, knn predicted, average=’macro’)
recall = recall score(y_test, knn_ predicted, average=’macro’)

f1 = f1 _score(y_ test, knn predicted, average=’macro’)

print (f"Acur cia total: {accuracy:.3f}")
print (f"Precis o total: {precision:.3f}")

print (f"Recall total: {recall:.3f}")

(
(
(
print (f"F1 Score total: {f1:.3f}")

Calcular as m tricas por classe

class precision = precision score(y_ test, knn predicted, average=None)
class _recall = recall score(y_ test, knn predicted, average=None)
class fl = f1 score(y_ test, knn predicted, average=None)

for i in range(len(class precision)):

print (f"\nClasse {i}:")

print (f" Acur cia: {confusion_mc[i, i] / confusion_mc.sum(axis=1)
[i]:.3£f}")
print (f" Precis o: {class_precision[i]:.3f}")

print (f" Recall: {class_recalll[il:.3f}")
print (f" F1 Score: {class_f1[i]:.3f}")

df cm = pd.DataFrame(confusion mc, index=range(10), columns=range(10))
Aumentando a rea do gr fico para 10x8

plt.figure(figsize=(10, 8))

sns.heatmap (df c¢m, annot=True, fmt=’d’, cmap=’Blues’, cbar=False)

82

52 plt.title (f’KNN Classifier\nAccuracy: {accuracy:.3f}’)

53 plt.ylabel (’True label’)
54 plt.xlabel (?Predicted label?’)
55 plt .show ()

57 # Caminhos dos datasets

ss test _path = "/content/drive/My Drive/test_dataset.csv"
50 train _path = "/content/drive/My Drive/train_dataset.csv"
60

61 # Carregar e normalizar os dados

62 X _train, y _ train = load and normalize data(train_ path)

X test, y_test = load and normalize data(test path)

68

64
65 # Treinar e avaliar o modelo KNN

66 train _and evaluate knn (X train, y train, X test, y_ test)

Tabela 39: Coédigo Matriz de Confusao Multi-Classe com K-NN.

4.6.3 Owutput

A alteracao no codigo possibilitou a analise dos parametros de cada movimento, como

listado abaixo.

1. Modelo: acurécia de 29,5%, precisao de 26%, recall de 29,5% e F1 score de 26,1%.

2. Posicao neutra: acuracia de 65,5%, precisao de 27,6%, recall de 65,5% e F1 score

de 38,9%.

3. Extensao de pulso: acurécia de 62,7%, precisao de 47,4%, recall de 62,7% e F1
score de 54%.

4. Flexao de pulso: acuracia de 63,1%, precisao de 48%, recall de 63,1% e F1 score
de 54,5%.

5. Desvio ulnar: acuracia de 23,9%, precisao de 20,8%, recall de 23,9% e F1 score

de 22,3%.

6. Desvio radial: acuracia de 18,9%, precisao de 25%, recall de 18,9% e F1 score de
21,6%.

7. Punho fechado: acuracia de 27,9%, precisao de 24,6%, recall de 27,9% e F1 score
de 26,2%.

83

8. Abducao dos dedos: acuracia de 10%, precisao de 19.2%, recall de 10% e F1

score de 13,1%.

9. Aducgao dos dedos: acuracia de 5,4%, precisao de 14,9%, recall de 5,4% e F'1 score

de 7,9%.

10. Supinacao: acuréicia de 12,2%, precisao de 16,9%, recall de 12,2% e F1 score de

14,2%.

11. Pronagao: acuracia de 5,4%, precisao de 15,1%, recall de 5,4% e F1 score de 7,9%.

m - 14148 14738

<+ - 11928 120486

True label

n - 20414 3184

o - 15019 18551

~ - 239486 9494

M 33407 3580

o 32510 3336

Figura 32:

KNN Classifier
Accuracy: 0.295

5181 1420 6229 2697 3204 7243 3572
10622 5431 4026 5990 2077 2284 a82
2959 5851 8943 1031 912 3499 1947
5756 22929 7795 7060 8041 4428 7246 3859
12342 11306 18185 12390 6296 3490 3296 2721
16465 5066 8398 26820 2073 2434 7553 3593
5643 16559 9788 7386 9563 4542 5929 3020
6849 14143 7119 10140 6618 5149 8238 4304
6774 10047 3804 13920 3404 4133 11699 5232
8359 11205 4892 11963 4046 4257 10251 5181
i i ' '] i i i
2 3 4 5 6 7 8 9

Predicted label

Output Matriz de Confusao Multi-Classe com K-NN.

Com a melhoria da visualizacao da saida foi possivel notar que as 4 tltimas classes

se destacam pela baixa acuracia, enquanto as 3 primeiras possuem alta acuracia, po-

rém, baixa precisao, indicando que outros movimentos sao confundidos com esses. Agora,

excluindo essas 3 da comparacao, as demais indicam baixo aprendizado de suas caracte-

risticas.

84

4.7 Criacao do cédigo Matriz de Confusao Multi-Classe com DT

I import numpy as np

V]

import pandas as pd

3 from sklearn.preprocessing import StandardScaler

¢ from sklearn.metrics import confusion matrix, accuracy score,
precision score, recall score, fl score

5 import matplotlib.pyplot as plt

¢ import seaborn as sns

7 from sklearn.tree import DecisionTreeClassifier

s from sklearn.model selection import train test split

10 def load and normalize data(file path):
11 df = pd.read csv(file path)

12 data = df.iloc[:, :—1].values.astype(np.float32)
13 labels = df[’class’]|.values.astype(np.int64)

14 scaler = StandardScaler ()

15 data = scaler.fit transform (data)

16 return data, labels

15 def train and evaluate decision tree(X train, y train, X test, y_ test):

19 # Training with Decision Tree

20 clf = DecisionTreeClassifier (max depth=15, min_ samples leaf=8,
random state=0). fit (X train, y train)

21 dt predicted = clf.predict (X _test)

23 # Evaluation

24 confusion _mc = confusion matrix(y test, dt_ predicted)

25 accuracy = accuracy_score(y test, dt predicted)

26 precision = precision score(y_ test, dt predicted, average=’macro’)
27 recall = recall score(y_test, dt_ predicted, average=’macro’)

28 f1 = f1 score(y_ test, dt_ predicted, average=’macro?’)

30 print (f"Acur cia total: {accuracy:.3f}")

(
31 print (f"Precis o total: {precision:.3f}")
32 print (f"Recall total: {recall:.3f}")

(

33 print (f"F1 Score total: {f1:.3f}")
35 #+ Calculate metrics per class

36 class precision = precision score(y_test, dt_ predicted, average=None)

37 class recall = recall score(y_ test, dt predicted, average=None)

85

57

66

class fl = f1 score(y_ test, dt_ predicted, average=None)

for

[i]:

i in range(len(class precision)):

print (f"\nClasse {i}:")

print (f" Acur cia: {confusion_mc[i, i] / confusion_mc.sum(axis=1)
J3£}M)
print (f" Precis o: {class_precision[i]:.3f}")

print (f" Recall: {class_recalll[il:.3f}")
print (f" F1 Score: {class_f1[i]:.3f}")

df cm = pd.DataFrame(confusion mc, index=range(10), columns=range(10))

Increase plot size to 10x8

plt

sns

plt.
plt.

plt
plt

Paths

.figure (figsize=(10, 8))

.heatmap (df c¢m, annot=True, fmt=’d’, cmap=’Blues’, cbar=False)

title (f’Decision Tree Classifier\nAccuracy: {accuracy:.3f}’)

ylabel (’True label?’)

.xlabel (’Predicted label’)
.show ()

to the datasets

test path = "/content/drive/My Drive/test_dataset.csv"

train _path = "/content/drive/My Drive/train_dataset.csv"

Load and normalize the data

2 X _train,

X test,

5 # Train

y_train = load and normalize data(train_path)

y_test = load and normalize data(test path)

and evaluate the Decision Tree model

train_and evaluate decision tree(X train, y train, X test, y_ test)

4.7.1

Tabela 40: Codigo Matriz de Confusao Multi-Classe com DT.

Output

A matriz de confusdo gerada pela arvore de decisao, Figura[33], segue o mesmo padrao

da gerada anteriormente pelo K-NN. Ainda, é possivel inferir que a taxa de aprendizado

da DT é menor em comparagao com o codigo anterior, uma vez que os parametros de

avaliagao, acuracia, precisao, recall e F'I score, em geral, diminuiram para cada classe,

como pode ser visto abaixo.

86

10.

11.

. Modelo: acuracia de 28,9%, precisao de 25,4%, recall de 28,9% e F1 score de

24,9%.

. Posigao neutra: acuracia de 66,8%, precisao de 27,1%, recall de 66,8% e F'1 score

de 38,6%.

. Extensao de pulso: acurécia de 59%, precisao de 48,4%, recall de 59% e F1 score

de 53,1%.

Flexao de pulso: acuracia de 61,3%, precisao de 46,7%, recall de 61,3% e F1 score
de 53%.

. Desvio ulnar: acurécia de 25,7%, precisao de 20,5%, recall de 25,7% e F1 score

de 22,8%.

. Desvio radial: acuracia de 18,1%, precisao de 24%, recall de 18,1% e F1 score de

20,6%.

Punho fechado: acuracia de 30,9%, precisao de 21,8%, recall de 30,9% e F1 score
de 25,6%.

. Abdugao dos dedos: acuracia de 10,7%, precisao de 20,5%, recall de 10,7% e F1

score de 14%.

. Aducgao dos dedos: acuracia de 3,1%, precisao de 14,8%, recall de 3,1% e F'1 score

de 5,1%.

Supinacgao: acuracia de 12,4%, precisao de 16,2%, recall de 12,4% e F1 score de
14,1%.

Pronacao: acuracia de 1,2%, precisao de 13,9%, recall de 1,2% e F1 score de 2,2%.

87

Decision Tree Classifier
Accuracy: 0.289

64162 3373 1356 9232 2541 2017 7404 691

12241 5919 4795 T255 1256 2485 269
3180 6420 11703 1101 440 3493 459
m - 15359 13064 6356 24710 7766 9067 8178 2311 8224 965
< < - 12597 10917 12885 12601 17362 14466 6420 2148 5709 895
:
w
lg v - 21101 3067 16812 5895 8059 29643 1723 1454 7327 919
o - 16202 16682 5927 17613 9720 9357 10266 2659 6687 887
~ - 25219 8724 7111 15147 7054 13269 6372 2957 2080 1067
@ 3299 6673 11412 3677 18494 2676 2277 11904 1076
-3 3032 8273 12121 4911 15804 3615 2442 11039 1167
| | | [() ' 1 ' |
0 1 2 3 4 5 6 7 8 9

Predicted label

Figura 33: Output Matriz de Confusao Multi-Classe com DT.

4.8 K-means para Analise das Classes

Nesta se¢ao, utilizou-se o algoritmo k-means para avaliar a similaridade entre as clas-
ses, analisando como os dados se agrupam e identificando possiveis padroes ou sobreposi-
¢oes entre elas. Essa abordagem permite entender melhor o comportamento dos dados e
a proximidade entre diferentes classes, contribuindo para uma avaliagao mais precisa da

separabilidade entre os grupos.

m

2 # Import necessary libraries

import os

import numpy as np

import pandas as pd

5 from sklearn.preprocessing import StandardScaler
from sklearn.cluster import KMeans

from sklearn.metrics import pairwise distances

88

9

10

39

40

41

import matplotlib.pyplot as plt

Load and normalize data

def load and normalize data(file path):

df = pd.read csv(file path)

data = df.iloc[:, :—1]

.values.astype(np. float32)

labels = df.iloc[:, —1].values.astype(np.int32) # Assuming last

has class labels (0—9)

scaler = StandardScaler ()

data = scaler.fit transform (data)

return data, labels

Perform K-Means clustering for a specified number of clusters

def perform kmeans(data, n

_clusters=10):

kmeans = KMeans(n _clusters=n_clusters, random state=42)

kmeans. fit (data)

return kmeans

Calculate distances betw

een cluster centroids

def calculate centroid distances (kmeans):

centroids = kmeans.cluster centers

distances = pairwise distances(centroids)

return distances

Find similar classes based on centroid distances

def find similar classes(d
n_ clusters = distances

similar pairs = []

for i in range(n_clust
for j in range(i +

if distances]|i

istances , threshold=1.0):
.shape [0]

ers):
1, n_clusters):

, j] < threshold:

similar pairs.append ((i, j, distances[i, j]|))

return similar pairs

1+ # Visualize the centroid d

plt.figure(figsize=(8,

plt .imshow(distances ,

istances as a heatmap

5 def plot centroid distances(distances):

6))

interpolation=’nearest’, cmap=’Blues’)

89

column

62

63

64

plt.colorbar ()

plt . title (’Distances Between Cluster Centroids’)
plt.xlabel(?Cluster Index’)

plt.ylabel(’Cluster Index’)

plt .show ()

Define the file path for your data

data path = "/content/drive/My Drive/random_output.csv"
Check if the file path exists
if not os.path.exists(data_ path):

raise FileNotFoundError(f"Data path {data_path} does not exist.")

+# Load and normalize the data

data, labels = load and normalize data(data_ path)

Perform K-Means clustering (number of clusters can be 10 for classes 0-9)

5 kmeans = perform kmeans(data, n_clusters=10)

7 # Calculate and plot centroid distances

centroid distances = calculate centroid distances (kmeans)

plot centroid distances(centroid distances)

Find and print similar classes

similar classes = find similar classes(centroid distances, threshold=2.5)
Adjust threshold as needed

print ("Similar class pairs (based on centroid distances):")

for pair in similar classes:
print (f"Class {pair[0]} and Class {pair[1]} are similar with a distance
of {pair[2]:.2f}")

Tabela 41: Codigo de K-means para Anélise das Classes.

4.8.1 Owutput

Na Figura [34] quanto mais claro for, mais proxima as classes sao. Como pode ser
averiguado, as classes 6 e 8 podem ser consideradas iguais do ponto de vista de divisao
dos dados, com uma distancia de 0,82, além disso, as mesmas sao proximas das demais

classes.

90

Distances Between Cluster Centroids

Cluster Index

0 2 4 6 8
Cluster Index

Figura 34: Distancia entre os centroides dos clusters.

4.9 Andlises Secundarias
4.9.1 Naive Bayes

O Naive Bayes é um algoritmo de classificacao baseado no Teorema de Bayes, que
¢ um principio fundamental na teoria das probabilidades. O termo "Naive"(ingénuo)
se refere ao fato de que o algoritmo faz uma suposicao simplificadora: ele assume que
as caracteristicas (ou atributos) do conjunto de dados sdo independentes entre si, dado
o valor da classe. Na préatica, isso significa que o algoritmo assume que a presenga ou
auséncia de uma caracteristica particular nao esta relacionada a presenca ou auséncia de
qualquer outra caracteristica, o que nem sempre é verdadeiro. Apesar dessa suposi¢ao
simplificadora, o Naive Bayes funciona surpreendentemente bem em muitos problemas do

mundo real.

91

Como Funciona o Naive Bayes

1 - Teorema de Naive Bayes - O teorema de Bayes ¢ a base do algoritmo e é usado
para calcular a probabilidade posterior de uma classe, dado um conjunto de caracteristicas.

Ele pode ser expresso como:

P(X|C) - P(C)
P(X)

P(C)|X) = (4.4)

Onde:

P(C|X): Probabilidade posterior da classe C dado o vetor de caracteristicas X;

P(X|C): Probabilidade de observar X dado que a classe é C;

P(C): Probabilidade a priori da classe C;

P(X): Probabilidade a priori do vetor de caracteristicas X.

2 - Independéncia Ingénua - O Naive Bayes assume que todas as caracteristicas
sao independentes entre si. Isso permite que o calculo da probabilidade P(X|C) seja

simplificado como o produto das probabilidades individuais de cada caracteristica:

P(X|C) = P(1|C) - P(a|C) - ... - P(|C) (4.5)

3 - Classificagao - Para classificar um novo exemplo, o algoritmo calcula a probabi-
lidade de cada classe, dado o conjunto de caracteristicas do exemplo, e escolhe a classe

com a maior probabilidade.

Tipos de Naive Bayes

Existem véarias versoes do Naive Bayes, dependendo do tipo de dados:

e Gaussian Naive Bayes: Usado quando as caracteristicas continuas seguem uma dis-
tribui¢ao normal (gaussiana). E o mais utilizado em dados que podem ser aproxi-

mados por uma distribui¢cao normal;

e Multinomial Naive Bayes: Adequado para dados discretos, como contagem de pala-

vras em um texto. Muito usado em problemas de classificacao de textos;

e Bernoulli Naive Bayes: Usado para dados binarios (0 ou 1), como a presenga ou

auséncia de uma palavra em um documento.

92

Vantagens

Simplicidade e Eficiéncia: O Naive Bayes é simples de implementar e computacio-

nalmente eficiente, mesmo para grandes conjuntos de dados;

Robustez com Poucos Dados: Funciona bem mesmo com um numero relativamente

pequeno de dados de treinamento;

Bom Desempenho: Apesar da suposicao de independéncia ingénua, o algoritmo
geralmente tem um desempenho muito bom, especialmente em problemas de clas-

sificagao de texto.

Desvantagens

Independéncia de Caracteristicas: A suposicao de independéncia raramente é ver-

dadeira na pratica, o que pode limitar a precisao do modelo em alguns casos;

Estimativa de Probabilidades: Se uma caracteristica em um novo dado de entrada
nao foi observada durante o treinamento, a probabilidade correspondente pode ser
zero, resultando em problemas de classificacao. Isso é frequentemente tratado com

técnicas como suavizacao de Laplace.

Comparacao com Coédigos Mais Complexos

from sklearn.naive bayes import GaussianNB
import numpy as np
; import pandas as pd

from sklearn.preprocessing import StandardScaler

def load and normalize data(file path):

df = pd.read csv(file path)

data = df.iloc[:, :—1].values.astype(np.float32)
labels = df[’class’]|.values.astype(np.int64)
scaler = StandardScaler ()

data = scaler.fit transform (data)

return data, labels

93

Datasets

5 test _path = "/content/drive/My Drive/test_dataset.csv"

; train_path = "/content/drive/My Drive/train_dataset.csv"

¢ # Load and normalize data

X train, y _train = load and normalize data(train_path)

X test, y_test = load and normalize data(test path)

Naive Bayes classifier

; nb _classifier = GaussianNB (). fit (X train, y train)

5 #+ Predictions

; y_nb_predictions = nb_classifier.predict (X _test)

Output predictions and accuracy
print (y_nb_predictions)
print (nb _classifier.score(X test, y test))

Tabela 42: Comparagao com Coddigos Mais Complexos (Naive Bayes).

Ao comparar os resultados abaixo com os anteriores, nota-se uma piora significativa
no desempenho do modelo. Além disso, quando a TA nao consegue identificar a classe
correta, ela tende a classificar esses casos como pertencentes & classe 0, o que indica uma
inclinagao para fazer suposigbes para essa categoria. Esse comportamento reflete uma

falta de aprendizado efetivo nas classes mais dificeis de diferenciar, resultando em uma

maior taxa de falsos positivos para a classe 0.

1. Modelo: acuracia de 24,9%, precisao de 27,2%, recall de 24,9% e F1 score de

22,4%.

2. Posig¢ao neutra: acuracia de 84,4%, precisao de 18,7%, recall de 84,4% e F1 score

de 30,6%.

3. Extensao de pulso: acuracia de 49,2%, precisao de 59,2%, recall de 84,4% e F'1

score de 30,6%.

4. Flexao de pulso: acuracia de 39%, precisao de 62,3%, recall de 39% e F1 score

de 47,9%.

5. Desvio ulnar: acuracia de 19,5%, precisao de 21,8%, recall de 39% e F1 score de

94

10.

11.

True label

47.9%.

. Desvio radial: acuracia de 10%, precisao de 30,6%, recall de 10% e F1 score de

15,1%.

Punho fechado: acuracia de 20,5%, precisao de 22,3%, recall de 20,5% e F1 score
de 21,4%.

. Abdugao dos dedos: acuracia de 7,5%, precisao de 21%, recall de 7,5% e F'1 score

de 11,1%.

. Aducao dos dedos: acuracia de 3,6%, precisao de 12,7%, recall de 3,6% e F1 score

de 5,6%.

Supinagao: acurécia de 11,8%, precisao de 13,4%, recall de 11,8% e F1 score de
12,6%.

Pronacao: acuracia de 3,8%, precisao de 10,5%, recall de 3,8% e F1 score de 5,6%.

Naive Bayes Classifier
Accuracy: 0.249

3144 291 2378 484 939 5720 1175
15212 2757 4434 7883 2680 5267 1438
998 3649 15683 923 1200 3188 4116
- 35018 7092 1750 18673 2546 5285 5079 3986 11531 5040
- 27621 6513 6741 7987 9594 13244 5867 4962 8614 4857
48574 1728 5014 2104 3754 19641 1036 1869 8610 3670
- 32343 10170 2559 15422 4016 6280 7201 4354 9492 4163
4370 2391 10510 2422 7199 3484 3447 10799 3899
1083 1210 5650 955 7078 1008 1570 11346 2559
1111 2241 6117 1417 6763 1348 2122 10126 3638
1 2 3 a 5 6 7 8 9

Predicted label

Figura 35: Acuracia Naive Bayes Classifier.

95

-

N

'

4.9.2 Gradient Boost Decision Trees

O modelo apresentou um alto custo computacional, levando aproximadamente 5 ho-
ras para ser executado, e resultou em uma acuracia de 0,29695, similar ao desempenho
anterior. Esse tempo de processamento elevado, aliado & melhora minima na acuracia,
indica que o aumento na complexidade do modelo nao trouxe beneficios significativos em

termos de precisao, tornando o custo computacional desproporcional aos ganhos obtidos.

from sklearn.ensemble import GradientBoostingClassifier
import numpy as np
import pandas as pd

from sklearn.preprocessing import StandardScaler

; def load and normalize data(file path):

df = pd.read csv(file path)

data = df.iloc[:, :—1].values.astype(np.float32)
labels = df[’class’|.values.astype(np.int64)
scaler = StandardScaler ()

data = scaler.fit transform (data)

return data, labels

Datasets

test path = "/content/drive/My Drive/test_dataset.csv"

; train _path = "/content/drive/My Drive/train_dataset.csv"

4 Load and normalize data
X train, y_ train = load and normalize data(train_ path)

X test, y_ test = load and normalize data(test path)

Gradient Boosted Decision Trees classifier
gb classifier = GradientBoostingClassifier (n_estimators=100, learning rate
=0.1, random state=42)

gb classifier. fit (X train, y_train)

; # Predictions

- y_gb_ predictions = gb_classifier.predict (X test)

Output predictions and accuracy
print (y _gb predictions)
print (gb classifier.score(X test, y test))

96

Tabela 43: Codigo Gradient Boost Decision Trees.

4.9.3 Random Forest

O modelo apresentou um elevado custo computacional devido & complexidade e ao
grande volume dos dados. Esse processamento exigiu tanto tempo que nao foi possivel

executa-lo no ambiente do Colab, pois o tempo estimado ultrapassou 6 horas.

from sklearn.ensemble import GradientBoostingClassifier
import numpy as np
import pandas as pd

from sklearn.preprocessing import StandardScaler

i def load and normalize data(file path):

df = pd.read csv(file path)

data = df.iloc[:, :—1].values.astype(np.float32)
labels = df[’class’]|.values.astype(np.int64)
scaler = StandardScaler ()

data = scaler.fit transform (data)

return data, labels

Datasets

5 test path = "/content/drive/My Drive/test_dataset.csv"

; train_path = "/content/drive/My Drive/train_dataset.csv"

Load and normalize data
X train, y_train = load and normalize data(train_path)

X test, y_test = load and normalize data(test path)

Gradient Boosted Decision Trees classifier
gb classifier = GradientBoostingClassifier (n_estimators=100, learning rate
=0.1, random state=42)

gb classifier. fit (X train, y train)

Predictions

y_gb predictions = gb classifier.predict (X test)

Output predictions and accuracy

print (y_gb_ predictions)

97

31 print (gb _classifier.score (X test, y test))

Tabela 44: Codigo Random Forest.

5 Comparacao da Analise com os Movimentos

Analisando os graficos de matriz de confusdo, como exemplificado na Figura [31] foi
possivel identificar alguns padroes. Primeiramente, as trés primeiras classes apresentam
uma alta taxa de acerto e uma grande diferenciacao entre si. Por outro lado, as demais
classes tendem a ser confundidas com a Classe 0, sendo que as duas ultimas classes exibem
a maior taxa de confusao. Além disso, a Classe 4 demonstra a maior distribuicao de
confusao, apresentando uma quantidade similar de tentativas erroneas em todas as classes.
Assim, com base nesse tipo de grafico, pode-se inferir que apenas as trés primeiras classes
tém um impacto positivo no aprendizado de maquina, enquanto as demais fornecem dados
confusos.

Ademais, a analise das distancias entre os clusters revelou que as Classes 6 e 8, cor-
respondentes a abducao dos dedos e a supinacao, podem ser consideradas equivalentes do
ponto de vista do aprendizado de méaquina.

Portanto, os movimentos de posicao neutra, flexao, e extensao do pulso sao classes
distinguiveis a partir dos dados fornecidos. Em contraste, os outros movimentos geram
sinais EMG semelhantes a posicao neutra. Além disso, alguns desses movimentos, por
serem continuos, estao representados por dados discretos, como discutido na Secao [2, o

que dificulta a separacao clara em clusters.

6 Decisoes Sobre Quais Movimentos e Eletrodos

Dado o estudo acerca dos resultados apresentados anteriormente, decidiu-se filtrar
os dados e verificar os resultados. Primeiramente, como mostrado na Figura foram
mantidos apenas os dois sensores mais relevantes na diferenciacao dos dados, 4 e 2. Apo6s
isso, os dados foram filtrados para anélise sem o movimento de abdugao de dedos, as seis
primeiras classes e as trés mais importantes para o machine learning. Para as analises
posteriores, utilizou-se a avaliagao dos graficos de K-NN e K-means para proximidade dos

clusters.

98

6.1 Diminuicao dos sensores de entrada

Os resultados obtidos pela retirada dos sensores 1 e 3 nao foram satisfatérios. Com o
grafico da Figura [36[foi possivel observar que a retirada desses influiu em uma piora na

capacidade de diferenciagao em comparado com [24]

| ™
0.24 "..........
0.23 1
oo**’
0.22 o
0.21 - o

0.20 A

accuracy

0.19 A

0.18 A

0.17 A

Figura 36: Acuracia do K-NN sem os sensores 1 e 3

A avaliacao pelo K-means, Figura mostrou que a distancia entre os clusters dimi-
nuiu, sendo a menor 0,7, o que indica uma maior confusao entre as classes. Assim, o uso
de apenas dois sensores levou a uma piora na classificacao dos dados, sendo necessaria a
manutenc¢ao de todos os sensores, mesmo que alguns contribuam pouco para o resultado

final.

99

Distances Between Cluster Centroids

17.5

15.0

10.0

Cluster Index

1.5

- 5.0

2.5

0 2 4 6 8
Cluster Index

Figura 37: Distancia entre clusters sem os sensores 1 e 3

6.2 Filtragem de classes

6.2.1 Retirada da classe 6

Nesta primeira avaliagao, a Classe 6 foi filtrada devido & sua confusao com a Classe
8. Observou-se uma melhoria na separagao dos movimentos, pois a acuracia exibida pelo
K-NN, Figura [38 aumentou, e houve uma melhoria na distancia entre as classes, Figura

B9, com a menor distancia sendo 1,94.

100

0.32
.-'"
0.30 1 o
g
o
o
1 o
7 028 .
= °
[}
3 °
026 o
°
0.24 -
T T T T T T
0 10 20 30 40 50

Cluster Index

Figura 38: Acuracia do K-NN sem a classe 6

Distances Between Cluster Centroids

Cluster Index

Figura 39: Distancia entre clusters sem a classe 6

101

6.2.2 Somente as 6 primeiras classes

Com base no resultado anterior, considerou-se vantajoso filtrar os movimentos com
menor precisao. Assim, foram removidas as quatro tultimas classes, que representam
movimentos continuos, mantendo apenas as estacionarias.

Como antes, analisou-se a acuracia do K-NN, Figura [40] alcangando 48% de acerto,
aproximadamente trés vezes maior que um chute aleatério. A avaliacao das disténcias no

K-means, Figura [£1], mostrou pouca melhoria, com a menor distancia sendo 2,05.

0.48 -
0.46 - o

..
0.44 - o

0.42 - o

accuracy

0.40 7

0.38

Figura 40: Acuracia do K-NN somente das 6 primeiras classes

102

Distances Between Cluster Centroids

Cluster Index

0 1 2 3 4 5
Cluster Index

Figura 41: Distancia entre clusters somente das 6 primeiras classes

Com esses dados, analisou-se a matriz de confusao do K-NN, Figura focando na

acuracia individual de cada classe, resultando nos seguintes valores::

1.

Posi¢cao neutra: acuracia de 70,6%, precisao de 47,5%, recall de 70,6% e F1 score

de 56,8%.

Extensao de pulso: acuracia de 64,6%, precisao de 60,8%, recall de 64,6% e F1
score de 62,7%.

Flexao de pulso: acuracia de 63,1%, precisao de 58,6%, recall de 63,1% e F1 score
de 60,8%.

Desvio ulnar: acurécia de 32%, precisao de 35,1%, recall de 32% e F1 score de

33,5%.

Desvio radial: acuracia de 22,4%, precisao de 33,1%, recall de 22,4% e F1 score

de 26,7%.

Punho fechado: acuracia de 29,3%, precisao de 37,2%, recall de 29,3% e F1 score
de 32,8%.

103

K-NN Classifier
Accuracy: 0.470

8575 3531 9301
14656 8374 4376
5196 7459 10834
]
L
=
w
3
=
M- 191B5 18164 6703 30700 12079 9169
- - 15376 14301 13269 17755 21435 13804
wn T 24067 4300 17928 9492 12081 28132
]] i i i Ll
o 1 2 3 4 5

Predicted label

Figura 42: Matriz de confusao somente das 6 primeiras classes

Portanto, percebeu-se que a Classe 4 (desvio radial) continua a confundir a rede neural
e que os trés primeiros movimentos possuem maior capacidade de diferenciacao. Assim,

optou-se por manter apenas os dados EMG referentes aos movimentos com maior influén-

cia positiva no treinamento da IA.

6.2.3 3 classes mais importantes

Utilizando o codigo referente ao K-NN, construiu-se os graficos de acuréacia e de matriz

de confusao, Figuras [43] e [44] respectivamente.

104

0831 .'..,...ooo-ooo.-oo-o-oooo.o-o-oooo--
0.82 .".
0.81 1

0801 o

0.79 7

aCCuracy

0.78 7

0.77 1

0.76

Figura 43: Acuracia do K-NN referente aos 3 primeiros movimentos

K-MN Classifier
Accuracy: 0.828

True label

4] 1 2
Predicted label

Figura 44: Matriz de confusao referente aos 3 primeiros movimentos.

Com eles foi possivel chegar em uma taxa alta de acertos, 82,8%, e, ao aprofundar em

cada movimento tem-se:

105

N

1. Posicao neutra: acuracia de 86,6%, precisao de 75%, recall de 86,6% e F1 score

de 80,4%.

2. Extensao de pulso: acuracia de 84,3%, precisao de 87,7%, recall de 84,3% e F'1
score de 86%.

3. Flexao de pulso: acuricia de 77,6%, precisao de 87,7%, recall de 77,6% e F1 score
de 82,3%.

Desse modo, indicando que a Classe 1 apresenta o melhor desempenho geral, devido
a sua alta precisao, recall e F'1 Score. Ja a Classe 0, embora tenha uma acuracia elevada,
apresenta uma precisao menor, sugerindo que é mais comumente referenciada, possivel-
mente com maior nimero de falsos positivos. Por outro lado, a Classe 2 apresenta o menor
desempenho em termos de acuracia e recall, o que sugere que o modelo esta deixando de
identificar corretamente muitos exemplos reais dessa classe, indicando uma menor apren-

dizagem sobre ela.

7 MLP Final

7.1 Codigo

import os
import numpy as np
import tensorflow as tf

from tensorflow.keras import layers, models

5 import pandas as pd

from sklearn.preprocessing import StandardScaler

from collections import Counter

from sklearn.metrics import confusion matrix, accuracy score,
precision score, recall score, fl score

import seaborn as sns

import matplotlib.pyplot as plt

def load and normalize data(file path):
df = pd.read csv(file path)
data = df.iloc[:, :—1].values.astype(np.float64)
labels = df[’class’]|.values.astype(np.int64)
scaler = StandardScaler ()

data = scaler.fit transform (data)

106

18 return data, labels

19

20 def create_mlp model (input size, output size, activation=’relu’,
dropout _rate=0.3):

21 model = models. Sequential ()

22 model.add(layers.InputLayer (input shape=(input size,)))

23 model.add(layers.Dense(1000, activation=activation))

24 model.add(layers.Dropout(dropout rate))

(
(
25 model.add(layers.Dense (1200, activation=activation))
26 model.add(layers.Dropout (dropout rate))

27 model.add(layers.Dense(1000, activation=activation))

28 model.add(layers.Dropout(dropout rate))

29 model.add(layers.Dense(output size, activation=’softmax’))

30 return model

32 # Custom callback to compute and display confusion matrix after each epoch
33 class ConfusionMatrixCallback (tf.keras. callbacks.Callback):
34 def _init (self, validation data):

35 super() ._init_()

36 self.validation data = validation data
37

38 def on_epoch end(self, epoch, logs=None):
39 val data, val labels = [], []

40 for batch in self.validation data:

1 data, labels = batch

12 val data.append(data)

43 val labels.append(labels)

44 val data = np.concatenate(val data, axis=0)

5 val labels = np.concatenate(val labels, axis=0)

16 predictions = np.argmax(self.model.predict(val data), axis=1)

a7 conf matrix = confusion matrix(val labels, predictions)

18 accuracy = accuracy score(val labels, predictions)

19 precision = precision score(val labels, predictions, average=’macro

50 recall = recall score(val labels, predictions, average=’macro’)
51 f1 = f1_score(val labels, predictions, average=’macro?)

52

53 print (f"\nEpoch {epoch + 1}:")

54 print (f"Confusion Matrix:\n{conf_matrix}")

107

64 Ff

66

67

68

69

83

84

86

90

91

print (f"Acur cia: {accuracy:.4f}, Precis o: {precision:.4f},

Recall: {recall:.4f}, F1 Score: {fl:.4f}")

plt . figure (figsize=(8, 6))

sns . heatmap (conf matrix, annot=True, fmt=’d’, cmap=’>Blues’, cbar=
False)

plt.title (f’Confusion Matrix - Epoch {epoch + 1}?)

plt.ylabel (’True label’)

plt.xlabel (’Predicted label?)

plt .show ()

Custom callback to plot loss and val loss at each epoch
class LossHistoryPlotCallback (tf.keras.callbacks.Callback):
def _init_(self):

super (). _init_ ()

self.losses = []

self.val losses = |[]

def on_epoch end(self, epoch, logs=None):
self.losses.append(logs.get(’loss’))
self.val losses.append(logs.get(’val_loss’))
epochs range = range (1, epoch + 2)
plt . figure(figsize=(8, 6))
plt.plot (epochs range, self.losses, label="Training Loss’)
plt.plot (epochs range, self.val losses, label=’Validation Loss?)
plt.title (f’Loss per Epoch - Epoch {epoch + 1}?)
plt.xlabel (?Epochs?)
plt.ylabel(’Loss?)
plt.legend ()
plt.grid (True)
plt .show ()

Learning Rate Scheduler
def scheduler (epoch, Ir):
if epoch < 10:
return Ir
else:
return Ir * 0.9 # Reduz 10% da taxa de aprendizado a cada poca

ap s a 10

108

92 Ir _scheduler = tf.keras.callbacks.LearningRateScheduler (scheduler)

93

94 # Paths for data

95 data _path = "/content/drive/MyDrive/filtered_dataset/classes/
filtered_file_wthout_class3456789.csv"

o6 train path = "/content/drive/MyDrive/filtered_dataset/classes/
train_dataset_without_class3456789.csv"

o7 val path = "/content/drive/MyDrive/filtered_dataset/classes/
val_dataset_without_class3456789.csv"

9s test _path = "/content/drive/MyDrive/filtered_dataset/classes/
test_dataset_without_class3456789.csv"

99

100 input _size = 4 # Assuming 4—channel EMG data

101 output size = 10 # 10 hand gestures

102 learning rate = 0.00002

103 num_epochs = 10

104 batch size = 20

105 dropout rate = 0.3

106

w7 for path in [data_ path, train_path, val path, test path]:

108 if not os.path.exists(path):

109 raise FileNotFoundError(f"Data path {path} does not exist.")

110

111 datal, labelsl = load and normalize data(data path)

112 data2, labels2 = load and normalize data(train_ path)

val path)

113 datad , labels3 = load and normalize data

(
(
(
114 datad , labels4 (

load and normalize data(test path)
115
116 # Counting classes

117 def count labels(labels):

118 return Counter(labels)

119

120 print ("Contagem de classes:", count labels(labelsl))
121 print ("Contagem de classes:", count labels(labels2))
122 print ("Contagem de classes:", count labels(labels3))
123 print ("Contagem de classes:", count_ labels(labels4))

125 train _dataset = tf.data.Dataset.from tensor slices((data2, labels2)).

shuffle (len(data2), seed=42).batch(batch size)

109

126 val dataset = tf.data.Dataset.from tensor slices((data3, labels3)).shuffle(
len (data3), seed=42).batch(batch_ size)

127 test dataset = tf.data.Dataset.from tensor slices((datad, labels4)).shuffle
(len(datad), seed=42).batch(batch size)

120 model = create_mlp model(input size, output size, dropout rate=dropout rate
)

150 model.compile (optimizer=tf.keras.optimizers.Adam(learning rate=
learning rate),

131 loss=’sparse_categorical_crossentropy’,

132 metrics=|[’accuracy’])

132 model . summary ()

136 # Callbacks

157 early stopping = tf.keras.callbacks.EarlyStopping(monitor=’"val_loss’,
patience=10, restore best weights=True)

135 model checkpoint = tf.keras.callbacks.ModelCheckpoint(’best_model.keras’,
save best only=True)

130 confusion matrix callback = ConfusionMatrixCallback (validation data=
val dataset)

110 ¢csv_logger = tf.keras.callbacks.CSVLogger(’training_log.csv?’)

111 tensorboard callback = tf.keras.callbacks.TensorBoard(log dir=’./logs’)

112 terminate _on nan = tf.keras.callbacks.TerminateOnNaN ()

113 reduce Ir = tf.keras.callbacks.ReduceLROnPlateau(monitor=’val_loss’, factor
=0.5, patience=2, min_ Ir=le—6, verbose=1)

111 loss _plot_callback = LossHistoryPlotCallback ()

145

146 # Train with all the callbacks

147 history = model. fit (train dataset , validation data=val dataset, epochs=
num_epochs, verbose=1,

148 callbacks=[early stopping, model checkpoint,
backup restore, Ir scheduler, confusion matrix callback,

149 csv_logger, tensorboard callback,
terminate on nan, loss plot callback, reduce Ir])

150

151 # Test evaluation

152 model.load weights(’best_model.keras’)

153 test loss, test accuracy = model.evaluate(test dataset)

151 print (f"Test Accuracy: {test_accuracy:.4f}")

110

156 ## Manually compute confusion matrix for the test data

157 test _data, test labels = [], []

155 for batch in test dataset:

159 data, labels = batch

160 test data.append(data)

161 test labels.append(labels)

162

163 test _data = np.concatenate(test data, axis=0)

164 test labels = np.concatenate(test labels, axis=0)

165

166 # Generate predictions

167 predictions = np.argmax(model. predict (test data), axis=1)

168

160 # Calculate the confusion matrix and other metrics

170 conf matrix = confusion matrix(test labels, predictions)

171 accuracy = accuracy score(test labels, predictions)

172 precision = precision score(test labels, predictions, average=’macro?)
173 recall = recall score(test labels, predictions, average=’macro’)

174 f1 = f1 _score(test labels, predictions, average=’macro’)

176 print ({"\nConfusion Matrix:\n{conf_matrix}")
177 print (f"Acur cia: {accuracy:.4f}, Precis o: {precision:.4f}, Recall: {

recall:.4f}, F1 Score: {f1:.4f}")

179 # Plot the confusion matrix

is0 plt.figure(figsize=(8, 6))

151 sns . heatmap (conf matrix, annot=True, fmt=’d’, cmap=’Blues’, cbar=False)
152 plt.title (’Confusion Matrix - Test Set?)

153 plt . ylabel (’True label?)

151 plt.xlabel (’Predicted label?)

155 plt.show ()

Tabela 45: MLP Final.

7.1.1 Importagoes de Bibliotecas

O codigo comega importando varias bibliotecas ja citadas necessarias para manipula-

¢ao de dados.

111

7.1.2 Funcoes Principais

load _and_normalize data(file path)
Carrega um arquivo CSV contendo dados e normaliza as caracteristicas usando StandardScaler.
Retorna os dados normalizados e os rétulos.

"relu, dropout _rate =

create_mlp model(input _size,output _size, activation =

0.3)
Cria um modelo de rede neural multicamada (MLP) com vérias camadas densas e
camadas de dropout para prevenir overfitting. O modelo usa a fungao de ativagao ReLU

e termina com uma camada softmax para classificacao.

ConfusionMatrixCallback
Uma classe personalizada que estende tf.keras.callbacks.Callback. Ela calcula e
exibe a matriz de confusao apods cada época do treinamento, além de calcular métricas

como acuracia, precisao, recall e F1 score.

LossHistoryPlotCallback
Outra classe personalizada que armazena e plota a perda (loss) do treinamento e

validagao ao final de cada época.

scheduler(epoch, Ir)
Uma fungao para ajustar a taxa de aprendizado durante o treinamento, reduzindo-a
em 10% apods a décima época.

7.1.3 Carregamento dos Dados

O script define caminhos para os conjuntos de dados (treinamento, validagao e teste)
e carrega os dados usando a funcao load_and_normalize_data. Ele também conta as
classes presentes em cada conjunto usando a func¢ao count_labels.

7.1.4 Preparagao dos Dados

Os dados sao convertidos em datasets do TensorFlow (tf.data.Dataset) para facilitar

o treinamento em lotes (batches).

112

7.1.5 Criacao e Compilagao do Modelo

Um modelo MLP é criado com as dimensoes especificadas. O modelo é compilado
com o otimizador Adam, uma funcdo de perda para classificacao categorica esparsa

(sparse_categorical_crossentropy) e métrica de acuracia.

7.1.6 Treinamento do Modelo

O modelo é treinado usando o método fit, com varias callbacks para monitorar o

progresso, salvar o melhor modelo, plotar perdas, entre outros.

7.1.7 Avaliagao do Modelo

Apos o treinamento, o modelo carrega os melhores pesos salvos e é avaliado no conjunto

de testes. A matriz de confusao é calculada novamente, junto com as métricas relevantes.

7.1.8 Visualizacao

Finalmente, a matriz de confusao é plotada usando Seaborn para facilitar a interpre-

tacao dos resultados.

7.1.9 Importante Destacar

e Clustom callback to plot loss and val loss at each epoch - Interessante para se ob-
servar o comportamento do grafico da loss, evitando ooverfitting ou underfitting.

Quando os graficos estabilizam, o aprendizado para;

Clustom callback to compute and display confusion matrix after each epoch - Possi-

bilita acompanhar como se comporta cada classe;

O batch size foi menor para exigir menor custo computacional;

O learning rate fol menor para procurar um vale de resposta de forma mais suave;

O numero de épocas foi menor pois com os outros testes indicaram que a estabili-

zagao ocorre na época 10.

113

7.2 Output
7.2.1 Arquitetura

A Figura 45| apresenta as camadas e o nimero de parametros do modelo. Esses pa-
rametros representam a quantidade de interacoes que a IA realiza para chegar a uma

resposta, refletindo a complexidade e a capacidade do modelo de capturar padroes nos

dados.

Total params:
Trainable params:
Non-trainable params:

Figura 45: Arquitetura final da MLP.

7.2.2 Ultima época

Na décima época, o modelo de aprendizado de maquina apresentou os seguintes resul-

tados:

Acuracy: 0.8355
Precisao: 0.8395
Recall: 0.8355
F1 Score: 0.8361

Ainda, a Figura [46] mostra que a quantidade de falsos positivos é significativamente
baixa em comparagao com o numero de acertos, indicando uma boa performance do

modelo em termos de classificacao correta.

114

Confusion Matrix - Epoch 10

True label

4] 1 2
Predicted label

Figura 46: Matriz de confusao da época 10.

7.2.3 Grafico de Perda

Ao construir um grafico que mostra a evolugao das loss de treinamento e validagao,
Figura observa-se a estabilizacao da val loss, o que indica que o modelo atingiu seu
limite preditivo e deixou de melhorar seu desempenho, sugerindo que o aprendizado foi

maximizado e nao h& mais progresso no processo de treinamento.

115

Loss per Epoch - Epoch 10

—— Training Loss
0.475 A —— Validation Loss

0.470 1

0.465

0.460 A

Loss

0.455 A1

0.450

0.445 A

0.440 -

Epochs

Figura 47: Grafico da perda de todas as épocas.

7.2.4 Parametro da época 10

Nessa se¢ao, sao enunciados alguns dados relevantes da tultima época, acurédcia de

treino, loss do treino, acuracia da validagao, loss da validacao e learning rate:

50400/50400 2267s 45ms/step

Acurécia: 0.8329
Loss: 0.4449
val _accuracy: 0.8355
val loss: 0.4406
learning rate: 1.0000e — 05

Com esses dados percebe-se que no decorrer do treinamento foi necessario a utilizagao
do callback de reducao da learning rate e que cada época demorou em torno de 40 minutos

para terminar.

116

7.2.5 Teste do modelo

Com o treinamento concluido de maneira satisfatoria, avancou-se para a etapa final

do modelo. Os resultados obtidos a partir do test set sao apresentados a seguir:

Acuracia: 0.8336
Precisao: 0.8375
Recall: 0.8336
F1 Score: 0.8341

Confusion Matrix - Test Set

82090

True label

0 1
Predicted label

Figura 48: Dados da Matriz de Confusao Final do Teste.

Portanto, ao final, o modelo apresentou comportamento adequado no conjunto de
teste. Com esses dados, pode-se afirmar que o modelo mostrou um desempenho equili-
brado em relagao as métricas de avaliagao. A acurécia de 0.8336 indica que aproxima-
damente 83% das previsoes do modelo foram corretas. A precisao de 0.8375 sugere que,
das previsoes feitas como positivas, 83.75% estavam corretas. O recall de 0.8336 indica
que o modelo foi capaz de identificar corretamente 83.36% dos casos positivos reais. Por

fim, o F'1 Score de 0.8341 reflete o equilibrio entre precisao e recall, sendo um valor que

117

indica que o modelo esta performando de maneira eficaz, sem um grande viés para falsos
positivos ou falsos negativos.

Esses resultados demonstram que a ITA final possui uma boa capacidade de genera-
lizacao e estd bem ajustado para a classificagao dos movimentos selecionados, com um

desempenho consistente em todas as métricas importantes.

118

8 Conclusoes

Durante a progressao deste trabalho encontrou-se imprevistos que demandaram maior
atencao. Primeiramente, devido ao grande volume e complexidade dos dados, sua limpeza
e organizagao demandaram um esfor¢o consideravel. Em um segundo momento, os testes
de configuracgoes variadas para otimizar o desempenho da IA implicaram em miltiplas
iteragoes e ajustes, o que prolongou o tempo total dedicado a analise.

Com isso, supoe-se que os trés primeiros movimentos analisados tiveram a maior taxa
de acertos devido sua maior intensidade atrelada a contragao muscular e ao posiciona-
mento dos eletrodos. Além disso, outros movimentos tendem a utilizar grupamentos
musculares semelhantes aos da posi¢ao neutra, o que pode gerar confusao na classificacao.
Portanto, o aprimoramento continuo dos dados e do treinamento da TA é essencial para
alcancar resultados ainda melhores no futuro.

Desse modo, como foi avaliado, a qualidade dos dados e do posicionamento dos eletro-
dos foram fatores criticos que impactaram o treinamento da inteligéncia artificial. Apos
um processo de filtragem e testes em diferentes configuracoes, foi alcangada uma acurécia
elevada de 83,36%, permitindo a diferenciacao entre a posicao neutra, flexdo e extensao
do pulso. No entanto, ainda existem oportunidades para melhorias, especialmente na
classe 2, que poderia ter seu recall aumentado, além de aprimorar a precisao da classe 0
para reduzir confusdes com as outras classes. Este trabalho serve como base para futuros

estudos sobre outras bases de dados, implementacoes de érteses e robds anatomicos.

119

Referéncias

1]

2l
3]

4]

[5]

(6]

7]

8]

9]

[10]

[11]

[12]

[13]

Leila Maria Beltramini. Elementos de histologia e anatomo-fisiologia humana. IFSC,

1999.
Charles F. Stevens. The neuron. Scientific American, 241(3):54-65, 1979.

Arthur C Guyton and John E Hall. Textbook of medical physiology: With student
consult online access (guyton physiology) by, 2005.

Jana Vaskovi¢. Kenhub in... Insula, 1:10.

Nei Augusto Andrade. Desenvolvimento de um sistema de aquisi¢ao e processamento
de sinais eletromiograficos de superficie para a utilizacao no controle de proteses

motoras ativas. 2007.

MA Cavalcanti Garcia and TMM Vieira. Surface electromyography: Why, when and
how to use it. Revista andaluza de medicina del deporte, 4(1):17-28, 2011.

Batta Mahesh. Machine learning algorithms-a review. International Journal of Sci-

ence and Research (IJSR).[Internet/, 9(1):381-386, 2020.

Irwin B Levitan and Leonard K Kaczmarek. The neuron: cell and molecular biology.

Oxford University Press, USA, 2015.

Keiichiro Susuki. Myelin: a specialized membrane for cell communication. Nature

education, 3(9):59, 2010.

Alexander Kister and Ilya Kister. Overview of myelin, major myelin lipids, and

myelin-associated proteins. Frontiers in Chemistry, 10:1041961, 2023.

Richard L Lieber and Jan Fridén. Functional and clinical significance of skeletal
muscle architecture. Muscle € Nerve: Official Journal of the American Association

of Electrodiagnostic Medicine, 23(11):1647-1666, 2000.

RMC BRANCALHAO, LFC RIBEIRO, B LIMA, RI KUNZ, and MC CAVEQUIA.
Tecido muscular, 2016, 2018.

Walter R Frontera and Julien Ochala. Skeletal muscle: a brief review of structure

and function. Calcified tissue international, 96:183-195, 2015.

120

[14]

[15]

[16]

[17]

[18]

[19]

20]

[21]

[22]

23]

[24]

Goran Lundborg and Birgitta Rosén. Hand function after nerve repair. Acta physi-

ologica, 189(2):207-217, 2007.

Brittney Mitchell and Lacey Whited. Anatomy, shoulder and upper limb, forearm
muscles. In StatPearls [Internet]. StatPearls Publishing, 2023.

James W Strickland. The scientific basis for advances in flexor tendon surgery. Jour-

nal of Hand Therapy, 18(2):94-110, 2005.

DA Neumann. Elbow and forearm complex. Kinesiology of the Musculoskeletal

System: Foundations for Physical Rehabilitation, pages 133171, 2002.

Terri M Skirven, A Lee Osterman, Jane Fedorczyk, and Peter C Amadio. Rehabili-
tation of the hand and upper extremity, 2-volume set E-book: expert consult. Elsevier

Health Sciences, 2011.

John G Kreifeldt and Sumner Yao. A signal-to-noise investigation of nonlinear elec-
tromyographic processors. [EEE Transactions on Biomedical Engineering, (4):298—

308, 1974.

CJ DeLuca. Motor units alive-understanding them one pulse at a time. In Bas-
magian Lecture: Keynote address at the Proceedings of the XIIth Congress of the
International Society of Electrophysiolgy and Kinesiology, Montreal, page 2, 1998.

A Aishath Murshida, BK Chaithra, B Nishmitha, PB Pallavi, S Raghavendra, and
K Mahesh Prasanna. Survey on artificial intelligence. Int J Comput Sci Eng, 7:1778—
1790, 2019.

Mohammed Amine El Mrabet, Khalid El Makkaoui, and Ahmed Faize. Supervi-
sed machine learning: a survey. In 2021 jth International conference on advanced

communication technologies and networking (CommNet), pages 1-10. IEEE, 2021.

Teresa Bernarda Ludermir. Inteligéncia artificial e aprendizado de maquina: estado

atual e tendéncias. Estudos Avancados, 35:85-94, 2021.

Muhammad Ali Syakur, B Khusnul Khotimah, EMS Rochman, and Budi Dwi Sa-
toto. Integration k-means clustering method and elbow method for identification of

the best customer profile cluster. In IOP conference series: materials science and

engineering, volume 336, page 012017. IOP Publishing, 2018.

121

[25]

[26]

27]

28]

[29]

[30]

[31]

Rubens Correa Araujo. Utilizacao da eletromiografia em andlise biomecdnica do

movimento humano. PhD thesis, Universidade de Sao Paulo, 1998.

Basakuau Nkomi Nkosi Junior. A eletromiografia associada a inteligéncia artificial

no diagnoéstico de doencgas e no rendimento fisico. 2021.

Paulo L Viana, Victoria S Fujii, Larissa M Lima, Gabriel L Ouriques, Gustavo Ca-
sagrande de Oliveira, Renato Varoto, and Alberto Cliquet Jr. An artificial neural

network for hand movement classification using surface electromyography. In BIO-

SIGNALS, pages 185-192, 2019.

Paulo Henrique Gomes Machado. Classificacao de gestos das maos usando plata-
formas vestiveis baseadas em eletromiografia de superficie no antebrago e unidades

inerciais. 2018.

Zsolt Laszlo Kovéacs, O Cérebro, and Sua Mente. uma introdugao a neurociéncia

computacional. Edicao Académica, Sao Paulo, 1997.

Carroll E Cross. Bloom and fawcett: A textbook of histology. JAMA, 274(4):352-352,
1995.

Rafael Lourenco do Carmo. Kenhub em... Flexores superficiais e intermedidrios do

antebrago, 1:5.

122

	Introdução Médica
	Células Neuronais e Contração Muscular
	Impulsos Elétricos pela Bainha de Mielina

	Fisiologia do Músculo Esquelético
	Anatomia e Função dos Músculos do Antebraço
	Formas de Captação e Características dos Sinais Eletromiográficos
	Impacto médico-social

	Introdução à Base de Dados
	IAs e suas Diferentes Estruturas
	Funcionamento de uma IA
	Tipos de IA
	Inteligência Artificial Estreita (ANI)
	Artificial General Intelligence (AGI)
	Artificial Super Intelligence (ASI)

	Etapas de Funcionamento
	Modelos de Treinamento de Inteligência Artificial
	Aprendizado Supervisionado
	Aprendizado Não Supervisionado

	Estruturas e Bibliotecas Empregadas
	TensorFlow
	Keras
	NumPy
	Pandas
	Matplotlib
	Scikit-learn
	Seaborn
	Graphviz
	OS

	Análise dos Dados
	K-means e o Método do Cotovelo
	Código
	Estrutura do Código
	Output

	Criação do Código K-NN Classifiers
	Código
	Estrutura do Código (Primeira Parte)
	Estrutura do Código (Segunda Parte)
	Output

	Criação do Código Decision Tree
	Código
	Estrutura do Código
	Output

	Criação do Código Scatter Maps
	Estrutura do Código
	Output

	Criação do Código Scatter Maps 3D
	Output

	Criação do código Matriz de Confusão Multi-Classe com K-NN
	Output Inicial
	Aperfeiçoando a Visão dos Dados
	Output

	Criação do código Matriz de Confusão Multi-Classe com DT
	Output

	K-means para Análise das Classes
	Output

	Análises Secundárias
	Naive Bayes
	Gradient Boost Decision Trees
	Random Forest

	Comparação da Análise com os Movimentos
	Decisões Sobre Quais Movimentos e Eletrodos
	Diminuição dos sensores de entrada
	Filtragem de classes
	Retirada da classe 6
	Somente as 6 primeiras classes
	3 classes mais importantes

	MLP Final
	Código
	Importações de Bibliotecas
	Funções Principais
	Carregamento dos Dados
	Preparação dos Dados
	Criação e Compilação do Modelo
	Treinamento do Modelo
	Avaliação do Modelo
	Visualização
	Importante Destacar

	Output
	Arquitetura
	Última época
	Gráfico de Perda
	Parâmetro da época 10
	Teste do modelo

	Conclusões

