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Resumo

Estudou-se neste trabatho toda fundamentagfio iedrica necessaria para que um
programa que calculasse exatamente as frequiéncias naturais e os modos de vibrar de
uma estrutura plana formada vigas fosse desenvolvido. O programa proposto trabalha
com as hipbteses necessarias para garantir um modelo continuo ¢ linear e sua
programagio em MATLAB RI2 permitiu manter o foco do trabalho nos diversos
problemas de vibragfio possiveis ao invés de se prender aos detalhes de algoritmos de
calculo numérico. A opgdio por este software desempenhou um papel importante ao
garantir a utilizagdo do programa em diversas plataformas compufacionais sem que
fossem necessarias recompilagdes e adaptagdes do codigo lonte, nem a criacio de um
pacote de instalagio complexo. A relevancia deste trabalho reside na ndo existéncia
de valores tabelados para o célculo destas propriedades em esiruturas com tal
complexidade e os valores calculados pelo programa sio a solugio exata do modelo
matematico que nos propusemos a resolver. O programa resultante pode ser utilizado
em pequenos projetos de engenharia ou como referéncia para programas que utilizam
métodos aproximados como € o caso de elementos finilos. Diversos casos tipicos
foram avaliados e tiveram seus resultados comparados aos obtidos com um software
de elementos finitos amplamente utilizado no mercado, comprovando a

funcionalidade do programa.

Palavras-chave: vibracdo: vigas: freqiéncia natural: modo de vibrar.



Abstract

In this work all theorv needed for the development of a program that
calculates the natural frequencies and the mode shapes of a plain structure formed by
beams was studied. This program was made based on the achieved theory and the
necessary hypothesis 1o guaraniee that the model could be considered linear and
continuous. Programming in MATLABRI2 allowed us keeping the focus in the
possible vibration problems instead of algorithms development. The option for this
software plaved an important role by guaranteeing its use over different platforms
without recompilations and adaptations of its source code. nor the creation of a
complex installation package. This work is relevant because we can’t find these
properties (mode shapes and natural frequencies) tabled in books. Therefore this
program solves the exact mathematical model. The resultant program can be used in
small engineering projects or as a benchmark for commercial programs as [inite
clements ones. The results obtained by the program for typical structures were
presented in comparison with widely used commercial finite element software.

proving the program’s functionality.

Keywords: vibration: beam: mode shape: natural frequencies.
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1. Introducao

O estudo de vibragdes contempla o movimento oscilatério de sistemas e 0s
esforgos a eles associados. No projeto dos mais diversos tipos de estruturas €
mecanismos em engenharia ndo se pode negligenciar o estudo do comporiamento
oscilatorio. Um exemplo classico. ilustrado na figura abaixo. € o caso da ponte

“Narrows Bridge™ que colapsou devido a vibragdes induzidas pelo vento.

Tlustragiio 1, Narrows acoma, WA , USA— oscilagbes induzidas pelo vento.

Os lendmenos relacionados a vibragio dos corpos influenciam na seguranga.
precisdio. funcionamenio e conforio de maquinas. construgdes. elc.. e atualmente
temos a disposicdo diversos tipos de ferramentas para auxiliar na previséo destes

efeitos e projetar considerando este aspecto.

Os sistemas podem ser caracterizados como lineares ou ndo lineares ¢ exisltem
métodos numéricos e analiticos para soluciio destes modelos. Uma ferramenta muiio
utilizada atualmente é o método dos elementos finitos que é. no entanto. aproximado
na solucio deste modelo matematico. A proposta deste trabalho & desenvolver uma
fundamentacdo tedrica que possa ser utilizada para resolver analiticamente
problemas de vibragdes em estruturas planas formadas por vigas. Assim & possivel

obter a solugio exata do modelo matematico que descreve este fendmeno.

Baseando-se na fundamentacfio tedrica levantada {oi proposio um software

que recebe os dados de uma estrutura plana de vigas e calcula suas freqiéncias
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naturais e seus respectivos modos de vibrar. Ele resolve problemas com vigas
alinhadas e vigas em dngulo, também solucionando alguns casos de porticos planos.
Para esles casos mais complexos o software dispde de estruturas pré-programadas

que foram testadas ¢ para as quais devemos providenciar alguns parémetros.

Gerar uma interface que permila ao usudrio entrar com uma estruiura
complexa genérica requer uma dedicagiio 4 programacdio de interfaces graficas muito
além do escopo do presente trabalho. Isto fica como uma sugestio para futuros

trabalhos.

10



2. Revisao Bibliografica

Apresentar-se-a a seguir a teoria envolvidana vibragiio de uma viga no plano

e de estruturas [ormadas por vigas deigadas:

2.1. Flexéo

A vibragio de uma viga delgada & (lexdio ocorre segundo as seguinies
hipoteses: viga longa e delgada: material isotrépico e homogéneo: deslocamentos
dentro do regime elastico do material (THOMSON). Assim garantimos a linearidade

do modelo.

Na vibragio de uma viga. cada trecho infinitesimal realiza um movimento
harménico sincrono ao longo da viga. em torno de sua posigido de equilibrio. Neste
caso consideraremos a flecha v (x. 7} é lungdo da posigdo x ao longo do comprimento
da viga e do tempo t. A amplitude do movimento ao longo da viga é dada por uma
fungio ). a qual se denomina modo de vibrar. A flecha no movimento harmdnico

sincrono ¢é descrila. portanto. por:
v(x.t) = ¢{x)-sen{wr) )
Onde "™ corresponde 4 freqiéncia natural do sistera. Agora. a partir da

{eoria da resisténcia dos materiais. baseando-se na viga descrita por Timoshenko.

obiém-se 0s esfor¢os solicitanies na estrutura a partir da flecha:

Bx.1)- _(;v(x.r) =V (x.t) = ¢ (x)-sem(wr).
@ (2)
Mx.y=EI Vvi(x.t)=EI-¢"(x) sen(a.): (3)

Ox.ty = FEI-v™x.)y=ET - ¢"(x)-sen(awi):



Onde "6 é a rotagio de cada elemento infinitesimal da viga. "M" € o
momento (letor e “Q é a forga cortante, aluantes na estrutura. Ainda podemos obter
uma forma para o modo de vibrar ¢x) que satisfaga estas equagdes diferenciais ao

fazermos o equilibrio do sisiema:

$(x) = C sen(&-A)+C,.cos(E-A)+ C,.senh(&- Ay + . cosh(< - A ()
Com
A
F=1 (6)
2 o1 [EL \
w =F '{m f (7
&= -"; (8)
L

Sendo L™ o comprimento da viga. “E” o médulo de elasticidade e “T" o

s

momento de inércia da secdo transversal. Ainda temos “&". "B e T variaveis

auxiliares.
f (AR O(L.t N
W0.1) 4059 O(L.Y) -
Q(0,¢) ! /
=/ W
SR A (LX) T(L,t
i K |
M(L,t
U(0.1) | [ (L0 l U1 ‘
|
llustracio 2, Hlustragio de uma viga e os esforgos nas extremidades
2.2. Axial
Na vibraciio axial. analogamente. o deslocamento axial € dado por:
u(x, 1) = ¢,(x).sen(wi) (©)



Sendo a tragao obtida por

T(x.t) = EAg (x).senf{wl)

E o modo de vibrar axial:

¢, (x) = Asern( 3, x)+B.cos(3, .x)

Com;

(10)

(11)

(12)

Sendo “A” a area da secdio transversal ¢ “m” a massa distribuida ao longo do

comprimento. Assim, dadas as condigdes de contorno das extremidades, podemos

determinar para cada viga o equilibrio do sisiema e resolver o sistema de equagdes

diferenciais resuliantes. obtendo assim as freqiiéncias naturais e os modos de vibrar.

As condigbes de contomo aplicadas tornam alguns dos deslocamentos e

esforcos conhecidos nas extremidades da viga:

Extremidade Apoio Simples
livre

Hustragio 3, de contorno tipicas

Artieutagdio

Jingaste
Perfeito

Iingaste

Deslizante

Para estas condigdes de apoio temos os seguintes esforgos e deslocamentos

conhecidos:

Tabela 1, Condicdes de contorno

Apoio Flecha | Rotagio

Desloc.
Axial

Momento
Fletor

Forga
Cortante

Tragio
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Extremd.

Livre = - - 7ero Zero | Zero

Apoio

. 7ero - - 7e10 - ZE10
Simples

Articul. 7610 - 280 Z8ro - -

Engasie

3 - ZEIo Z8ro - Z8ro -
Deslizante

Engasie 7810 78ro 7Ero E g -

Substituindo estas condigdes nas equagdes diferenciais que descrevem os
deslocamentos e esforcos (1). (3). {(4). (5). (9) e (10). obtemos um sistema possivel e
indeterminado nas variaveis “Cn™. "A” e “B". da forma [A]. {x}={0}. sendo a matriz,

quadrada | A] fungfo somente de "@~ e 0 vetor {x} os coeficientes de d(x) e dt(x).

Desta maneira. o sistema s6 apresenta solugio ndio trivial {0} quando ©
determinante de |A] for nulo. Neste caso. a varidvel "o~ enconira-se no argumenio
de fungdes trigonométricas e hiperbolicas. caracterizando um problema
transcendental. ou seja. a variavel niio pode ser isolada Porém. computacionalmente
podemos considerar det(|A]) como uma fungdo e portanio. aplicar métodos
numéricos para obter suas raizes. Cada raiz corresponde a uma frequéncia natural do
sistema e para ela podemos vollar ao sistema |A] {x}={0} e obter os coelicientes

correspondentes aquele modo de vibrar.

Ainda devemos considerar que ao respeilarmos as hipoteses levantadas no
principio da revisio garantimos a linearidade do modelo ¢ assim os efeitos de flexdo

e tragdo sdo independentes. Isto posto, podemos para o caso de uma viga ou de um



sistema formado por vigas alinhadas ignorar o efeito da vibragdo axial. com

magnitude infinitamente menor aos efeitos impostos pela flexdo.

2.3. Massas e Molas concentradas nas extremidades

Podemos. a partir das derivadas temporais de segunda ordem de (1). (2) e (V).

obter facilmente as aceleracdes na diregio da flecha. rotacionais € axiais. ao longo da

viga:
V(1) = glx).sen(wt) < ¥(x.1) = 0*lg(x).sen(e)] (13)
B(x.1) = §'(x) sen(wr) & 0(x.1) = & [¢(x).sen(w)] (14)
w(x.1) = (x)sen(on) < iix.r) = o[ (x).sen(w)] (15)

Entdo. para esiabelecer o equilibrio de um vértice da viga. devem-se igualar
os esforgos solicitantes da estrutura ao produio da rigides. pelo deslocamento mais o
produto da inércia pela aceleragfo (seja de rotagdio ou translagio). Ou seja. para uma
massa “Mt". com inércia de rolacio ~“Mr~ concentradas num vérlice da estrutura
juntamente as molas de rotagdo e translagio “Kr™ e “Kt". obtemos as seguintes

expressoes:

O(x.0) =M, ¥(x)+ K, v(x.1)

(16)
M) =M, B(x.0)+ K,.8(x.1) (17)
T(x.0) =M, ii(x.0)+ K, (x.0) (18)

Sendo as equagdes (16). (17) e (18) referentes aos graus de liberdade de

translagio na diregdo da flecha. rotagdo e deslocamento axial estando livres. “Ki A7



refere-se a rigidez atuante na direcdo axial da viga e "Ki™ a rigidez na direciio da

{lecha.

2.4, Estrutura de vigas

No caso de estruturas de vigas. sabe-se que ¢ a freqiiéncia natural comum a
todo sistema. Ainda. ao surgirem vigas em angulo. os esforgos e deslocamentos
axiais de uma viga influenciam flexionalmente as vigas adjacentes. ndo podendo ser

omitidos. neste caso. os efeitos da vibragdo axial.

Devemos ulilizar agora novas condi¢des de contorno que dizem respeito a
compatibilidade dos esforgos e deslocamentos nas extremidades das vigas que
formam a estrutura. Ou seja. num vériice de conexdio entre duas vigas devemos

garantir a compatibilidade dos esforgos de uma viga em relacfio s ouiras.

Uma estrutura de "N vigas é formada por "N+17 vértices que correspondem
as unides de duas vigas adjacentes da estrutura. Cada viga possui seu proprio modo
de vibrar ¢i(x) e ¢t.i(x). que compde o modo de vibrar da estrutura. Consideraremos
os apoios. massas e molas conceniradas sendo aplicados somenie aos verlices.
Assinl. para estabelecer o equilibrio da estrutura basta estabelecer o equilibrio de

cada vérlice.
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2.4.1.Compatibilidade de esforgos e deslocamentos num

vértice da estrutura

Ilustragiio 4, Vértice da estrutura

Agora serdio apresentadas as equagdes de compatibilidade de deslocamentos e

esforcos. aplicaveis aos graus de liberdade presos de uma viga em relagéio a sua

vizinha. obedecendo a seguinte notagdo simplificadora:

u{x. )=,

Temos:

1, cos(e, ), v,.sin(e, )=, 1, . cos(ar, )=V, sinfex, )

L, sin{a, }+, v,.cos(e, )=u, .sin(a,,  )+,v,,,.co8(,, )

I_MJ‘IIMiH . ] 9

it Vsl

(19

(20

(21)

(22)

(23)



-, T.cos(a,)-, O, sin{a,}+T,.,.cos(e, ., )+,0,.,.sin(e,., ) —

_Mf,n] I)ﬁ: -1'cos(anl)_lavnl'Sin(ai 1)] (24)

—L’[].sin(a,)+LQ,.cos(a,)+[,7;*,.sin(a,fl)—”Q,H.cos(a,,])~
'Mnl “?:i’ l.Sin(a,‘l)—”‘i/"“].COS(a’,,l)] (25)

2.4.2 Obtendo o sistema de equagodes

Como podemos observar. para cada viga. temos seis condigdes de contorno
necessarias para resolver as equagdes diferenciais de equilibrio. Estas condi¢des
provém das condigBes de apoio j4 descrilas e da compatibilidade dos esforgos e

deslocamentos nos vériices da estrutura também ilustrados.

Agora. sabendo as condigdes de contorno. basta substituir as fungdes ¢i(x) e
$pL.i(x) e suas derivadas nas equacdes de equilibrio para obter o sistema | A]. {x}={0]
e aplicar os métodos descritos no item seguinte para encontrar as freqiiéncias naturais

que garanlam que o sistema ndo tenha solugio trivial e resolvé-lo. oblendo os

coeficientes do modo de vibrar.

18



3. Exemplo de Implementacgao

Agora utilizaremos o equacionamento dos graus de liberdade desenvolvido
acima para delerminar as equagdes derivadas da aplicagdo de cada condigdo de

conlomo:

Extremidade livre:

-Rotac¢do livre:

C (L -senh(A£,) -~ fr, -cosh(LE )+ (- cosh(A &) - £, -senh(AS, ))=0
-Translagéo livre:

Co 2 G0S(AE )~ f, -sen(AE )4 CLA - sen(AE) - £, - cos(AE, )+
O -cosh(A.E) ~ £y, -senh(A£))+ €, (41 senh(A.g,)— 1, - cosh(A<, )= 0

Engaste:

-Rotacio presa.

C.cos(AS)—Ca.sen(Ac)) +(,.cosh(A&,)— C,.senh(AS ) =0

-Translagiio presa:

O, .sen(A&,) + . cos(A£,) + 5 .senh(AE)) + C,.cosh(A£) =0

Articulagdo:

-Rotagdo livre:

C (A -senh(A&) = fy, -cosh(2.£)+ ({4 cosh(A.& ) — £, -senh(A, )) =0
- Translagdo presa:

C,.cos(AE )~ sen(A€,) + Cy.cosh(A£ ) - C.senh(A) = 0

19



Engaste Deslizante:

-Rotagio presa:

C,.cos(A&) - C,.sen(A&) + Cy.cosh(A& ) - Cy.senh(A£ ) = 0
-Translagéo livre:

C ( Acos(AE ) 1y, -sen(i.ﬁj))+ G .(ﬂf sen(AE) — [, -cos(&.;,ﬂ))Jf

{3 cosh(LE) — £, -senh(A&)+ C (4 -senh(2.&) ~ 7, -cosh(L&,))= 0

3.1 Montando o sistema de equacées

Para uma viga delgada temos duas extremidades e. com as condigdes de apoio
de cada uma, determinamos as quatro equagdes que nos ddo as condigbes de

contorno necessarias. Dados estas condigdes delerminamos o seguinle sistema

[A[*{Ci={0}:

[‘71 A T (¢ 0
oy Uan yy oy Cyl 0
ty) i, iz Oy l(j; | OI
Ay Qyn Gz dyy ¢4l 0.

Para excluir a solugéo trivial devemos fazer det{A} = 0. obtendo valores de A
associados aos respectivos modos de vibrar, Os valores de A obtidos desta maneira
(autovalores de A) fornecerfio as freqliéncias naturais de vibragdo do nosso sisiema.
ou seja. para quais freqiiéncias de excitaciio nosso sistema vibra segundo v(x.1). E
para um dado valor de A podemos resolver o sistema (*) e obter os valores das
constantes Ci de ¢(x) e determinar a forma do modo de vibrar da viga numa

determinada freqiiéncia.

Foi [eita a organizagdo das equagdes da seguinte maneira:



{ rotagdo [a
X=1x
" Ltranslagdo! as |

rotagio | dy;
X=X .
transtacdo| d,

a, Gz Gy {(jﬂ r()]

Uyy oy Uy i, 0
. Gzy 3y &, 0
(e iy iy C, {()

Ou seja. as duas primeiras linhas relacionam as condigbes de contorno da

extremidade esquerda da viga e as duas ultimas relacionam as da extremidade da

direita. Ainda posicionamos as equagdes de cada extremidade sendo a primeira

equagdio relativa a rotagio daquela extremidade e a segunda relativa a sua translagfo.

Fazendo este arranjo notamos que as equagdes de um mesmo grau de

liberdade (translagio ou rotagdo) tem forma muito semelhante e podem ser

relacionados por uma variavel Wt.i assumindo o valor 0 ou 1. para o grau de

liberdade t livre ou preso na extremidade 1.

Obtemos. fazendo x| = 0. e x2 = L. os elementos da matriz [A]:

Primeira linha. correspondente a primeira equacdo (rotagiio na estremidade

esquerda):

a, = fr
o= AWy,
= jh’,l

ay, =-1-Wy,

Segunda linha, correspondente a4 segunda equagdo (translacfio na extremidade

esquerda):
a., =A ¥

L 7l
qd,, = f:fl
.5 = 'lj 'LPT,]
am. =

21



Terceira linha, correspondente a terceira equagdo (rotago na extremidade direita):

a,, = fr.-cosA+i-send ¥y,

Ay =—fyosend+A-cosd- ¥y,
dyy = fro-cOshA—A-senh 1-¥,
a,, = fp~-senh A —A--coshA¥, .

Quarta linha, correspondente & quarta equagio: (translagdo na extremidade direita):

G, = froosend+ A -cosd Wy,
A, = fru.cosA—A send- W,
a,, = fn--senhA — A -coshA- W, .
a,, = fn.-coshi—2"-senh AW,

Os termos ‘P11 sdo dados por:

W, =0 N .
. se arota¢do no no 1 for presa.

LPR: _l 1 51 1
- . se a rotacdio no nd i for livre.

v l=0 i iy
4 . se a translacfio no nd i for presa.

LPT: = l -1 LA "
s . se a translagdo no nd 1 for livre.

3.2 Algoritmo de resolugéao

Para resolver o problema de determinar as freqiiéncias naturais e os modos de

vibrar de uma determinada viga devemos:

» Obter os dados relativos a viga. pardmetros fisicos e suas condi¢des de

apoio:

o Dados os parimetros calcular os adimensionais uR.i . uT.i . aR1 e

ol INIR
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e Resolver a equagiio det[A] (A} = 0. variando X & partir de zero com

passo £ até ser encontradas N raizes:

e Para cada raiz An (n = 1.2, ... . N) obtida desta maneira calcular a
frequéncia natural relacionada a ela e resolver o sistema |A] g

{C1={03. obtendo os valores das constantes Ci.n .

3.3 Programacao

Variaveis de entrada:
REAIS (dupla precisdo):

L — Comprimento da viga (vio livre):

E - Médulo de elasticidade do material:

I — Momento de inércia & flexdo:

A — Area da Secgdo Transversal:

Ro - Massa especifica da viga:

Mr.i — Massa concentrada de rotagfio: ( Extremidade 1=1.2)
Mt.i — Massa concentrada de tranlagfio: ( Extremidade 1= 1.2 )
Kr.i - Mola concentrada de rotagdo: ( Extremidade i = 1.2)
K{.i — Mola concentrada de translagdo: ( Extremidadet = 1.2}
LOGICAS:

BT.i - Translacdo da extremidade 1 na diregfo y:

BR.1 - Rotagdo da extremidade i na diregfio 7:
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Variaveis de saida:
REAIS (dupla preciso):

Cl. C2, €3, C4 - Coeficientes da equagdo diferencial;

Raizes(N) — Arrav que armazena os autovalores de |A} (relacionado com as

Frequéncias naturais):

3.4 Desenvolvimento da IGU (Interface grafica com o usuario)

Pretendemos agora obter uma interface que permita ao usudrio enirar com os
dados do problema a ser resolvido facilmente (clareza no layout da interface grafica).
¢ organizar estes dados a {im de que o programa ienha acesso a eles com o menor

esfor¢o possivel.

Para a “coleta” dos dados dispomos de janelas com ferramentas como Caixas
de Texto (onde o usuario pode digitar textos e o programa pode utilizar diretamente
estes dados. sejam eles numéricos ou ndo). Check-Boxes. onde o usudrio seleciona

algumas opgdes e botdes que podem acionar fungdes e procedimentos.

Com o objetivo de facilitar o acesso aos dados do problema eles serdo

armazenados num array real de dupla precisdo DADOS!7|. na seguinte ordem:

[1] Comprimento da Viga:

|2] Massa Especilica do material:

[3] Areada seccfio transversal da viga:

|4] Momento de inércia da sec¢do:

[5] Médulo de Elasticidade do Material:

[6] Massa Concentrada na extremidade esquerda (rotagio) - MR.1
[7] Massa Concentrada na extremidade esquerda (translagdo) - MT.1
[8] Massa Concenirada na extremidade direita (rotagdo) - MR.2

[9] Massa Concentrada na extremidade direita (translagdo) — MT,2
[ 10] Mola Concentrada na extremidade esquerda (rotacéio) - KR, 1
[11] Mola Concentrada na exiremidade esquerda (translagio) — KT.1
[12] Mola Concentrada na extremidade direita (rotagéo) — KR.2

| 13] Mola Concentrada na extrermdade direita (translagdo) — KT.2



A condicdo de contorno sera armazenada airavés de duas variaveis BR.i . e
BT.i que estfio relacionadas respectivamente & liberdade de rotagio na extremidade 1
e 4 liberdade de translagfio do n6 1. Eslas variaveis assumem o valor 1 para um grau

de liberdade preso e valor 0 para um grau de liberdade livre. conforme a tabela:

Tabela 2, Codifica¢io das Condigbes de Apoio
Apoio BR, BT.i
i

Articulagfio

Engaste l |
Extremldade 0 0
livre

Engaste 0
deslizante

Sio diversas as maneiras de se organizar uma janela. Foi desenvolvida a

interface grafica ilustrada na figura abaixo:

Candigen de Conterno g y Caloylar Modo
BSGUEPDA  DIREITA O Made Atusl
™ Prese I” presa  trans i ]

[ Presa { Presa vot Anterior I atcal | Pedxime 1

Chenk = gresa |
Masea Cansentrads 2 ==

ESGUEADS  DIRELTA Mo
["?] ;G trans (N.s%m) | ii Masza dizkribulda [M.sm2]

0 ja t TR
| f ) AT Médulo de Elesticidade [N/m2]

Mols Concentrada
ESGUERDA  DIREITA

|D ﬂ'U wans {N/m)

[E“Md_"_ [‘D*“““‘“‘“““ o b e ]1 Vo Livee [m]

_11 Ingrma & flexde [(m?)*]

[lustr"a'g;ﬁrdrs,Vlrlllrtelrface Grafica com o Us-ue’i"ribu
Ha uma figura meramente ilustrativa de uma barra que tem por objetivo
tomar clara como esta sendo fixada cada condicdo de contorno. A condigio de

contorno sera determinada pelas varidveis BT.i e BR.1 a partir de check-boxes e os

[
wn



demais dados em caixas de texto. Isto Permite determinar as condi¢des de conlormno
do problema e os seus pardmetros fisicos ¢ ¢ programa pode. a cada modificagdo.

destes dados realizar uma nova “coleta” e uma nova bateria de calculos.

Na tabela abaixo estio descritos quais as solugles utilizadas para cada
variavel. uma vez que cada uma delas tem atributos que devem ser tratados de

formas diferentes.

Tabela 3, Descricio das Variaveis
Recurso
Utilizado

Dado / Variavel Justificativa

S#do 10 possiveis combinagdes das
condi¢des de contorno diferentes umas
das outras. Cada opgdo ¢ associada a

Condi¢do de Contorno /
BR. e BT.i valores de B. Podemos dessa forma
também determinar as equagées
utilizadas em tempo de execucio.

Check Box

Comprimento / Estes valores podem assumir
| DADOS| 1] magnitudes muito diferentes e nfo ¢
Massa Espec. possivel determinar valores ou
DADOS| 2| intervalos para utilizarmos Combo
'Seccio / DADOS|3] Boxes ou Barras de Rolagem. Ainda
M. Seccio / DADOS|4] utilizando este recurso podemaos, com
Méodulo Elast. / Caixa de Texto | @ condicional. }nmtar os valores
DADOS|5] que forem necessarios.

Caixas de texto também sfio
vanlajosas, pois podemos utilizar
diretamente os valores numericos
nelas digitados sem ter de ser feito .
alguma alteracdio de sua nalureza
(como mudar de varidvel real para
inieira).

Massas e molas de
concentradas nas
extremidades /
DADOS|6 até 13]

Assim. a janela que sera utilizada no programa tem ¢ layout apreseniado na
figura 4 deste relatorio e como podemos observar é de facil compreensdo e utilizagdo
tanto pelo usuario como pelo computador. Os dados sdo digitados e selecionados

diretamente e podem ser acessados pelo programa sempre que for necessario.



Finalmente. obtidos os valores das constanies (i podemos plotar o grafico de
#(x) utilizando as rotinas graficas disponiveis no Visual Studio. Para isto foi utilizada

uma pequena janela grafica cujas fungdes utilizadas foram as de LINETO,

MOVETO. RECTANGLE ¢ FLOODFILL.

Foi necessaria a criacdo de uma escala que relacionasse as coordenadas do
grafico com as coordenadas da janela gréfica (output window). pois o eixo ¥ da
output window tem diregdo contraria ao do grafico e a densidade de pixels na vertical

¢ diferente da densidade de pixels na horizontal:

>
(0.

Coordenadas d
Oniput window

A 4

(Xg-Yo)

Coordenadas da
Output window

Nustragdo 6, lNustragio da Output Window

Utilizou-se. portanto uma escala que relaciona as unidades do grafico com os
pixels da seguinte maneira: no eixo horizonial do grafico o comprimento da viga L
serd representado por uma linha de comprimento 400 pixels e no eixo vertical do
grafico o comprimento maximo (que € unitario) sera representado por 50 pixels. A
origem do grafico esti na posigio (50.125) da window outoput. A dimenséo dessa
escala foi estimada observando-se valores que resultassem numa boa visualizac@o do

erafico.

27



Mdapds o b

GRS

LI < o0t He 28

T braia et 1o,

RS d i i
AN ey AR H it
o wr

Wi Rz

HNustragio 7, Screenshot do Programa em Exccugiio

Primeiramente apreseniaremos um screenshot do programa em execugao para

que seja possivel uma apreciagdo de seu visual.



4. Resultados

A seguir compararemos os resultados obtidos no programa com 0s resultados
encontrados na literatura. Para compara-los foi utilizada uma tabela (Thomson
William T.. pag. 277) que apresenta as frequéncias naturais para algumas condicoes

de apoio tipicas.

Comparam-se os valores Ai. que dependem somente das condigdes de
contorno. para os ités primeiros modos de vibrar, obtiveram-se os seguintes

resultados:

Tabela 4, Compara¢io de Resultados

(A1)2 (32)2 (A3)2
L Modo | Jl\_/[gdo 2 ~ {Modo3
 Apoiada Simplesmente B - |
Valor Tabelado 9.87 39.5 88.9
 Programa 198696 39.4784 | 88.8204
| Em Balango i o
Valor Tabelado  [3352 24 617
_Programa 3.5160 220344 1616972
' Duplamente Livre o
Valor Tabelado [22.4 [61.7 1210
Programa 22,3732 61.6728 [ 1209033
' Duplamente Engastada -
Valor Tabelado 1224 61.7 1210
Programa (223732 61.6728 11209033
Engastada-Ariiculada
| Valor Tabelado Tis4 500 Tio40
Programa B 15.4182 499648 1104.2476
Articulada-Livre '
Valor Tabelado |15.4 50 104.0
Programa [15.4182 400648 104.2476

A tabela seguinte leva em consideracdo apenas a massa concentrada nas
extremidades. que quando tende a um valor muito elevado. comporta-s¢ como uma
restricio de deslocamento ou rota¢do (consideraremos a inércia a rotagdo

separadamente a inércia ao deslocamento). Assim. uma massa de deslocamento
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infinita simula uma articulacio (pois o deslocamento deste ponto fica praticamente
zero) e uma “massa” de rotacfo infinita gera um engaste deslizante (pois a rotagao do
ponto fica praticamente zero). Portanto unindo-se uma massa infinita a uma inércia a
rotagio infinita obtém-se uma condi¢dio de contorno equivalente a um engaste. 0O
caso da rigidez de molas de translagdio e rotagdo ¢ analogo. Utilizaremos este
método. pois ndo existem valores labelados para freqiiéncias naturais em muitos

casos que envolvem massas conceniradas.

Tabela 3, dos resultados considerando-se as massas concentradas

(A1)2 T2z (A3)2
Modo 1 ‘Modo2 ~ [Modo3
 Apoiada Simplesmente o
 Valor Tabelado 9.87 1395 88.9
Programa 98895 39,4983 88.8404
'Em Balango S B - - B
 Valor Tabelado [3.52 [22.4 lo17
Programa 13.5323 122.0560 61.6972

iDyplamepte Livre o B B -
Valor Tabelado 1224 {}_1.7 B 1210

Programa |-

Duplamente Engastada

 Valor Tabelado 22.4 161.7 121.0
Programa 223415 l - - |
| Engastada-Articulada

Valor Tabelado 15.4 50.0 104.0
Programa - - -
Articulada-Livre o

Valor Tabelado 154 50 104.0
Programa - 15,7185 5 - -

Este segundo método de comparaciio ndo permitiu a oblengdo de todos os
resultados. pois a inclusdo de valores muito grandes de massas e molas causou
problemas numéricos. impedindo o célculo das freqiéncias naturais.

-~

Foram realizados mais 3 testes. utilizando férmulas obtidas no manual
“Formulas for Natural Frequency and Mode Shape™ (pag.168-170). Neste manual

foram obtidas férmulas para o primeiro modo de vibrar dos seguintes casos: viga
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Articulada-Livre com uma mola de rotagdo presa na articulagfio; viga Articulada-
Livre. com uma mola de rota¢do presa na articulagfio e uma mola de translagio presa
a extremidade livre: e finalmente Articulada-Livre com uma mola de rotagdo presa

na articulagfio e uma massa presa a extremidade lhivre.

Caso 1

m. EI

Figura 1 - Ilustracio do Caso 1

Para este caso. a freqiiéncia para o primeiro modo de vibrar, com m=6.33
(massa distribuida. igual ao produto da area da se¢fio transversal pela densidade do
material). L=7.5. EI=1500 ¢ K=200 ¢ calculada em 0.425564 rad/s. O programa nos
da o resultado de 042551 rad/s. Verificamos um desvio na quinta casa decimal. que

é o esperado devido 4 precisdo do programa.

Caso 2

Ky
m. El

™

K

-

Figura 2 - Tlustracio do Caso 2
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Para este caso. a freqiiéncia para o primeiro modo de vibrar. com m=6.35
(massa distribuida. igual ao produto da area da secio transversal pela densidade do
material). L=7.5, EI=1500. K1=200 e K2=355.5 é calculada em 2.64003716 rad/s. O
programa nos da o resultado de 2.640031 rad/s. Verificamos novamente um desvio

na quinta casa decimal, que é o esperado devido a preciséo do programa.

m. EIl

Figura 3 - Ilustra¢do do Caso 3

Caso 3
K

Para esle caso. a freqiéncia para o primeiro modo de vibrar. com m=6.35
(massa distribuida. igual ao produto da area da se¢fio transversal pela densidade do
material). L=7.5. EI=1500, K=200 ¢ M=0.4763 ¢ calculada em 0.41883 rad/s. O
programa nos da o resultado de 0.41887 rad/s. Verificamos novamente um desvio na

quinta casa decimal. que ¢ o esperado devido 4 precisdo do programa,

Também devido a erros numéricos de truncamento os valores obtidos pelo
programa sio apenas uma aproximagdo do valor real. com uma precisdo de 10-5. e
ainda. nfo foi possivel calcular [requéncias naturais além do 4o modo. pois os

valores das freqtiéncias aumentam a ponto de causar problemas de overflow.

Assim restringimos na interface grafica o calculo de freqiidncias naturais ate o
40 modo. e a alocacdo de massas e molas concentradas também. Criando estas

limitagdes nfio permitimos que o usudrio obtenha resultados sem significado.



CONCLUSOES

O objetivo do trabalho foi alcangado com sucesso. Toda base teodrica
necessaria para o desenvolvimento do programa foi estudada e foi gerada uma

primeira versdo funcional e validada. cumprindo a proposta inicial.

No desenvolvimento deste programa nolou-se que a grande maioria dos
problemas que foram enfrentados estd relacionada a graves problemas de
condicionamento numérico. Isto ocorre por dois principais motivos: Matrizes de
ordem elevada ¢ a discrepancia entre os valores dos elementos da matriz ~A ()"
OperagBes com matrizes de ordem elevada geram problemas numéricos devido ao
fato de o computador utilizar um numero f{inito de casas decimais resultando em
problemas de truncamento que se tornam mais graves com o aumento da dimenséo

do problema.

Porém o mau condicionamento numérico € um problema muito mais grave.
que acaba inviabilizando a aplica¢do de diversos algoritmos de calculo numeérnico e
até. em alguns casos. a propria solugfio do problema. Isso ocorre devido & presenca

de elementos derivados de fungdes trigonométricas e fungdes hiperbolicas.

Pode-se destacar. como uma sugestiio para [uturos estudos, a necessidade de
um trabalho extensivo na melhora da interface grafica para permitir o calcula de
estruturas genéricas e a utilizagdio de uma linguagem e algoritmos mais robustos para
permitir o calculo de estruturas mais complexas. Podemos ainda ponderar acerca da
exlensio ao caso tridimensional onde surgem também os efeitos da vibragho

torcional.
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ANEXO 1 - CODIGO FONTE DO PROGRAMA
PROPOSTO

FREQMOD3. £90 it

VERSAO 3 €OM CALCULO DCS CASOS DE MASSAS E MOLAS
CONCENTRADAS NAS EXTREMIDADES

1

1

1

1

|

1

| 1
| Entradas: L comprimento da Viga !
i I Momente de Inércia da secdc Transversal !
! E Meodulo de elasticidade i
! A Area da ST !
! rd massa especifica I
u Kr Coef. de mola de Rotacdo Concentrada !
4 Kt Coef. de mola de Translacdo Concentrada !
! Mt Massa Concentrada: Translagdo !
! Mr MAssa Concentrada: Retacdo !
1 |
J Modo a ser visualizado !
| '
1 '
1 '
! '
!

!

1

!

1

|

1

|

1

1

Condicdes de apoic (Liberdade da
rotacdo e, ou, translacao das
extremidades) .

Saidas: K
Fregquéncias Naturais ( Junto ao grafico )

Modo de Vibrar {Grafice plotade na janela
do programa)

'Y MENU
L0 I U T T T T T T T T T T T T T O 0 A A O O O O

LOGICAL (4) FUNCTION InitialSettings()
i

USE DFLIB

rr

external dodialog

[

LOGICAL({4) 14
1

'14 = appendmenugg({l, SMENUENABLED, 'Dialogo’'C, DoDialog)
Pl

14 = appendmenugyi2, SMENUENABLED, 'Exit’C, WINEXTT)

[

'14 = appendmenuqq({3, S$MENUENABLED, 'Full Screen'c,
WINFULLSCREEN !!

InitialSettings 14
o
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return
't

end

t

program Freqmod3

use dflogm

use DFLIB

USE DFNLS

implicit none

external Dodialceg
include 'resource.fd’
type (dialog) dlgDummy

call DoDialog( dlgDummy, 0, C )
do while (.true.)
end do

end program

't DoDialog
H
'1 Inicializa e abre a janela do aplicativo

recursive subroutine DoDialog( dlgParent,

use dflogm
implicit none
type (dialog)
integer id
integer callbacktype

include 'rescurce.fd’

integer retint

logical retlog

type (dialog) dlg

external ProcedurePrincipal

integer local id, local callbacktype
type (dialeg) leocal dlg

local id = id

local callbacktype = callbacktype

local dlg = dlgParent

if ( .not. DlgInit{ idd_painel, dlg ) )

dlgParent

write (*,*) "error: resource not Ffound”
else
! Inicia as Caixas de Texto

retloyg = DlgSet( dlg, EDIT BTI1, .false.
retlog = DlgSet{ dlg, EDIT BT2, .false.
retleg = DlgSet{ dlg, EDIT BT3, .false.
retlog = DlgsSet( dlg, EDIT BT4, .false.
retlog = DlgSet( dlg, EDIT_MTI, "or o)
retlog = Dlgset( dig, EDIT MTZ, "or o}
retleg = Dlgset( dlg, ERIT MRI, "or )
retlog = DlgSet{ dlg, EDIT MRZ, "or o)
retlog = DlgSet({ dlg, EDIT KTI, "or o
retlog = Dlgset( dlg, EDIT KT2, "anr o

id,

then

callbacktype

)
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retlog = DlgSet{ dlg, EDIT_ KRI, "on

)
retlog = DlgSet{ dlyg, EDIT KRZ, "oT o)
retlog DlgSet ( dlg, EDIT M, R
retlog = DlgSet{ dlg, idc Nmedo, "1" |
retlog = DlgSet( dlg, EDIT_E, LN L
retleg = DlgSet( dlg, EDIT T, LI |
retlog = DlgSet( dlg, EDIT L, LR

: Associa a ProcedurePrincipal ao evento Change nas caizras de

texto

leall ProcedurePrincipal{ dlg, EDIT Nmodo, dlg change)

'retleg = DlgSetSub{ dlg, EDIT_NMODC,

retlog = DlgSetSub( dlg
ProcedurePrincipal )

retlog = DlgSetSub({ dlg
ProcedurePrincipal )

retleg = DlgSets8ub( dlg
ProcedurePrincipal )

retint = DigModal{ dlg
call DlgUninit{ dlg }

end 1f
end subroutine DoDialog

subroutine ProcedurePrincipal{ dlg, id, callbacktype

use dflogm

use dflib
implicit neone
type (dialog) dig

, IDC BUTTON_calcularl,
) IDC#BUTTON_calcularZ,

, IDC_BUTTON_calcularB,

)

L **%* DECLARACAO DAS VARIAVEIS

' Build as QuickWin or Standard Graphics

INTEGER(2) result !variaveis usadas na composigdo do grafico

INTEGER{2) style,dummy,
TYPE {xycoord) =Xy
INTEGER(4) 1i,J,grstat
TYPE (xycoord) xXys
TYPE (gwinfo} winfo
REAL K, =z

IVARIAVETS DO DIALOG
integer id ! controle
integer callbacktype
include 'resocurce.fd’
integer retint

status

gue chamou a funcdo, ex:

ProcedurePrincipal )

)

Botac 1
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character*30 text

LT T T T T T T O I T T T O A

'Varidveis usadas na solucédo!
IR EEEE RN RN R RN E R

integer NMODO

|Pardmetros concentrados
REAL*8 MT (20) ,MR{20) !massas
REAL*8 KR(20),KT (20) 'molas

! DADOS da viga: (l)L; (2)MASSA DISTRIBUIDA; (3)E; (4)T !
REAL*8 DADOS (40}
LOGICAL BT (2C),BR(20) ! APOIC NAS EXTREMIDADES

Imatrizes e vetores usados para calcular raizes
REAL*8 x0,x1,v0,v1l,h0,hl, hZ, raizes (150}
REAL*8 det ! funcao det(A) que calcula o determinante da matriz

1Fatores calculados & partir dos pardmetros concentrados
REAL*8 Fr,Ft
REAL*8 AlfaT(20),AlfaR{20),MiT(20),MiR(20) 'fatores diretamente

utilizados para montar © sistema Ac=B

a

'Variaveis para solucdo do sistema Ac=B
REAL*8 A(4,4),B(4),C(4)

REAL*8 tol,AUX,Cmax, X

REAL*8 AMAX

REAL*8 fatorT(20),FatorR(20)

INTEGER m,n

INTEGER ordem(40)

INTEGER err,modosaida

logical retlog
integer local callbacktype

local callbacktype = callbacktype

#*%% ARMAZENAMENTC DOS DADOS DIGITADOS NO DIALOG **** |
retlog = DlgGet( dlg, IDC NMODO, text )
read (text, *, lostat=retint} NMODO

Select Case (ID) ! verifica qual botdo fol utilizadoe para chamar

rotina: Avancar, atual ou voltar

case (IDC_BUTTON calcularl)
nmodo=nmcdo-1

write (text, *) nmodo

retlog = dlgSet (dlg, IDC nmodo, text)
if ‘nmodeo.lt.l) then B
nmodo=1

CALL BEEPQQ (500,200)

CALL BEEPQQ(900,200)

CALL BEEPQQ(700,200)

CALL BEEPQQ (300,200}

CALL BEEPQQ(400,400)
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retlog = dlgSet (dlg, idc_nmode, "17)
end if

CRSE (IDC BUTTON calcular3)
nmnodo=nmodo+1

write(text,*} nmedo

retlog = dlgSet (dlg, IDC_nmodo, text)
if (nmodo.gt.4) then

nmodo=1

CALL BEEPQRQ(1000,200)

retlog = dlgSet ({dlg, idc_nmodo, "1")
end if

end select

retlog = DlgGet( dlg, EDIT _BT1, BT{1l)
retlog = DlgGet( dlg, EDIT BTZ, BT{2)
retlog = DlgGet( dlg, EDIT _BT3, BR(l)}
retlog = DlgGet{ dlg, ECIT BT4, BR(Z]
retlog DlgGet ( dlg, EDIT MT1l, text )
read (text, *, iostat=retint) MT (1)
retlog = DlgGet( dlg, EDIT MT2, text )
read (text, *, ilostat=retint) MT{2}
retlog = DlgGet( dlg, EDIT_MRL, text )
read (text, *, ilostat=retint) MR(L)
retlog = DlgGet( dlg, EDIT MRZ, text )
read (text, *, iostat=retint) MR(2)
retlog = DlgGet{ dig, EDIT KTl, text )
read (text, *, iostat=retint; KT (1)
retlog = DlgGet{ dlg, EDIT KTZ, text )}
read (text, *, lostat=retint) KT{Z)
retlog = DigGet{ dlg, EDIT KR1l, text )
read (text, *, 1ostat=retigt) KR({1)
retlog = DlgGet( dlg, EDIT KRZ, text )
read (text, *, iostat=retint) KR(2)
retlog = DlgGet( dlg, EDIT T, text )
read (text, *, iostat=retint} DADOS (1)
retlog = DlgGet{ dlg, EDIT M, text )
read (text, *, iostat=retint) DADOS(Z)
retlog = DlgGet({ dlg, EDIT I, text )
read (text, *, ilostat=retint) DADOS (3)
retlog = DlgGet{ dlg, EDIT E, text )
read (text, *, ilostat=retint) DADOS (4)

e et e

il

1
1
|
1

4% PARAMETROS BASICOS - Primeiros Parametros que séc
constantes ao longo do programa **** !

do 1=1,2
AlfaT{i)=( (dades{l)**3) * KT (i) ) / { dades(3)*dados{4) )
AlfaR(i)=( dados (1) * KR(i} ) / ( dados(3)*dados(4) )

MiT (1)=MT (i) /{ dados(l) * dados(2} )

MiR(1)=MR(i)/({ (dados(l)**3) * dados(Z) )
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end do

*%%% CATCULC DAS RAIZES ***++ |

t OPEN{l,FILE='malha.csv',FORMi’FORMATTED’,
MODE='"READWRITE', STATUS="'UNKNOWN') !ARQUIV(D DE SAIDA
' REWIND 1

n=5

x0=2e-¢€

x1=3e-6

i=1

321 DO WHILE (i .Le. n)

'FAZ A PRIMEIRA APROXIMACﬁO DO ITERVALO QUE CONTEM A RAIZ
y0=Det (%0, alfaT,alfaR, miT,miR,Bt, br}/ (x-le-6)
twrite(l, *)

x0,"', ", y0,", ", (x0/DADOS {1)) **2*DSQRT (DADCS (4) *DADOS (
yl=Det (X1,alfaT,alfaR, miT,miR,Bt,br)/ (x-1le-6
1f (y0*yl .LT. 0 .and. yO*yl.ne.'nan'} then
HO=X0
H1=X1
H2=(X0+X1) /2

3)/DADOS (2))
)

DO WHILE (ABS(H1-H2) .GE. lE-5)

1APROXIMA A RAIZ ATE UMA PRECISAO RELATIVA DE 1E-30
FPELO METODO DAS SECANTES

H2=H1-Det (HLl,alfaT,alfaR, miT,miR, Bt,br)*( (H1-HO) /
(Det (Hl,alfaT,alfaR, miT, miR, Bt,br) -
Det (HO,alfaT,alfaR,miT, miR, Bt,br)) |

HO=H1

H1=H2

END DO

Raizes {(i)=H2

i=i+l
end if
®x0=x1
x1=x1+0.001
END DO

*%%k CATLCULA E TMPRIME MODO DE VIBRAR {X,Y) NGO ARQUIVO DE SAIDA

kA T

modosaida=NMODO
¥=raizes (modocsaida)

'montande a matriz A{4,4)
do i=1,2
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IF(BT{I))then
FATORT (I1}=0
ELSE
FATORT (I}=1
end 1if
1f(bR{i)}then
fatorR{i}=0
else
fatorR{i)=1
end if

end do

A(l,1)= Fr(bR(1l),1,%X,AlfaR({1),MiR(1)})
A(1,2)= X*fatorR(l)
A{l,3)= Fr(bR(1l),1,%,AlfaR (1), MiR(1))
A(l,4)= —X*fatorR{l)

A(2,1)= X**3*fatorT (1)

A{2,2)= -Ft(bt(1),L1l,%,AlfaT (1), MiT (1))
A(2,3)= -X**3*fatorT(1l)

A{Z,4)= -Ft(bt(l),1l,%X,AlfaT (i), MiT(1})

A(3,1)= -Fri(bR(2),2,%, AlfaR(2},MiR(2) ) *DCOS {X)
+¥*DSIN (X} *fatorR(2)

A(3,2Y= Fr(bR(2),2,%,AlfaR{2),MiR(2)}*D5SIN (X}
+¥*DCOS (X)) *fatorR(2)

A(3,3)= -Fr(bR{2),2,%,A1lFaR{2),MIiR(2) )*DCOSH(X) -
X*DSINH(X)*fatorR(2)

A(3,4)= -Fr(bR{2),2,%,AlfaR(2),MiIR(2)) *DSINH({X) -

Y*DCOSH (X)) *fatorR(2)

A{4,1)= Ft(bt(2}),2,%,a1faT(2) ,MiT(2)) *DSIN (X}
+X**3*FDCOS (X)) *fatorT{2)

A(4,2)= Ft(bt{(2),2,%,AlfaT(2),MiT(2))*DCOS(X) -
K*¥*3+*D3IN (X) *fatorT(2)

A(4,3)= Ft(bt(2),2,%,AlfaT(2),MIiT(2))*DSINH{X) -
K**3*DCOSH(X) *fatorT(2)

A4, 8)= Ft (bt (2),2,%,ALfaT (2),MiT{2) ) *DCOSH (X) -

X**3*DIINH(X) *fatorT (2)

do I=1l,n
bi{i}y=0
end do
n=4

'determinacdao da tolerdncia!

AMAY=0

DO I=1,N

Do J=1,N

IF(AMAX .LT.ABS (A(I,J) )} AMAX=ABS (A(T,J))

END DO

END DO

TOL=AMAX/1E6

! inicializacac da ordem das incdgnitas

do i=1l,n
ORDEM (i} =1
end do
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triangularizacac
do k=1,n-1
do i=k+1l,n

if (abs{a(k,Xk)).LE.tol) then
————————————————— permutacao para remover pivo nulo
de colunas:

err=1
m=0
do while (abs{a(k,k)).LE.tocl.AND. (k+m).LT.n)}
m=m+1
if (a{k,k+m).NE.tol ) then
do j=1,n
aux=a (j, k+m)
alj, ktm)=a(i, k)
a(j,k)=aux
end dco
AUX=ORDEM (K+m)
ORDEM {k+m) =0RDEM ( k)
ORDEM (k) =AUX
err=0
end if
end do

de linhas, se necessario:
if (err.NE.O} then

m=0
Do while (abs{a(k,k)).LE.tol)
m=m+1;
if (m+k.GT.n} then
stop 'nac tem solucao'
end if
if (abs{a(k+m,k}).GE.tcl) then
do J=1,n
x=a (k+m, )
a(k+m, jr=alk, 3
alk,]j)=x
end do
AUX=b (k+m}
b{k+m)=b (k)
b {k)=AUX
err=0
end if
end do
end if

end if

if (abs{aik,k)).GE.tol) then
AUX=-a(i,k)/a(k,k};

do j=1,n
al{i,3)=a(i,3)+AUxX*alk,])
end do
b{1)=b(i)+AUX*b (k)
end 1if
end do
end do

42



'retrosubstituicao

C{ORDEM(n;})=1
DO i=n-1,1,-1

AUX=0

DO m=i+1,n
AUX=AUX+A (i,m) *C (ORDEM (m) )

END DO

C{ORDEM(1})=(b(i)-aux) /B (i, i}

END DO

'Normalizacac
amax-=0
do i=1,1
if (abs{amax).le.abs(c(i))) amax=c(i)
end do
do i=1,4
cl{i)=c (i) /abs famax)
end do

I
'
'
1

| #k &+ *++% TMPRIME O MODO DE VIBRAR *****xkx!
11 *%4% UTTILIZACAC DA PARTE GRAFICA ***+ I

AT R O O O T T O O O |

{FREQU&NCIA NATURAL!!
NSNS NN RN

close (3)
OPEN(3, file='user’', title='Frequéncia Natural')
winfo TYPE = QWINSMAX

result = SETWSIZEQQ (QWINSFRAMEWINDOW, winfc)
tadjust child window parameters

winfo.H =2

winfoc.W = 22

winfo.y =0

winfo.x 76

winfo.TYPE = QWINSSET

status = SETWSIZEQQ(3, winfo)

| Escreve a fregiiéncia natural
result = setcolorrgb(#c0c0cO)
result = FLOODFILL (1, 1, 1)

result = setcolorrgb (#££0000)
dummy = RECTANGLE ( S$GFILLINTERIOR , intz{(0), intZ (0}, intz2 (150),
int2(20) )

result = setcolorrgb (#fff£f£F)
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dummy = RECTANGLE ( $GFILLINTERIOR , int2({(3}, int2(3), int2(147},
int2(17} )

result = INITIALIZEFONTS ()
result = SETFONT ('t''Arial'® 'hl2wbpvik')
grstat=SETCOLCRrgb (#00000G)

write (text, *) (
raizes (medosaida) **2*SQRT (DADOS {3) *DADOS (4) /DADOS (2)) / DADOS(1)**2
), 'rad/s"’

CALL MOVETO (INTZ2(3),INTZ2{4},xys)
CALL OUTGTEXT {text)

L0 S T T T T O O A O O |

close (4)

OPEN (4, file='user', title='GRAFICO")
Maximize Window

winfo- TYPE = QWINSMAX

result = SETWSIZEQQ (OWINSFRAMEWINDOW, winfo)
'Adjust child window parameters

winfc.H = le

winfec.W = 73

winfo.y =0

winfo.x =0

winfo.TYPE = QWINSSET

status = SETWSIZEQQR (4, winfo)

'desenha o funde cinza e o retangulo branco
result = setcolorrgb (#C0c0c0)

result = FLOODFILL (1, 1, 1)

result = setcolorrgh (#ff£fff}

dummy = RECTANGLE ( SGFILLINTERICOR , intz2({10), int2 (10),
int2 {500}, int2{250) )

lgrafico animado
do §=0,1000, +10

result = setcolorrgb(#000000)

CALL MOVETO (INT2(5C), INT2{30-5), xy) 'EIXC Y
status = LINETO(INT2(50), INTZ2(230-5))

CALL MOVETO (INTZ(50), INT2(125), xy) !EIX0O X
status = LINETO(INT2(450), INT2({125))

RESULT= SETCOLORrgb (#4d0000)

CALL MOVETC{INTZ2(50),
INT2 (125+50*(C (1) *DSIN{0/ (400/dadog {1} *RAIZES (MODOSAIDA) /dados (1)) +
C(2)*DCOS(0/(400/dados (1)) *RATZES (MODOSATDA) /dados (1) ) +C (3} *DSINH (0/
(400/dados (1)) *RAIZES (MODOSAIDA} /dados (1) ) +C(4) *DCOSH {0/ (400/dados (1L
) ) *RATIZES (MODOSAIDA) /fdados (1)) )}, xy!

DO x=0, 400

z=3.14*3/100

K=125+3in(z) *50* (C{1)*DSIN{X/ (400/dadecs {1)) *RAIZES (MCDOSAIDA) /dados {

44



1)) +C(2) *DCOS (X/ (400/dados (1) ) *RATZES {MODOSAIDA) /dados (1) } +C{3) *DSIN
H(¥/(400/dados (1)) *RAIZES (MOCDOSAIDA) /dados (1) ) +C (4) *DCOSH (X/ (400/dad
os (1)) *RAIZES (MOCDOSAIDA) /dados (1) ))

STATUS = LINETO(INT2 (50+x), INTZ (K))

END DO

result = setcolorrgb (#0)

CALL MOVETO (INTZ2(50), INT2(30-5}, =xy) !EIXO Y
status = LINETO(INT2(30), INT2(230-3})

CALL MOVETO (INT2Z(50), INTZ2(125), xy) 'EIX0O X
status = LINETO(INT2(450), INT2(125))

result = setcolorrgb(#f£ffff)
dummy = RECTANGLE ( $SGFILLINTERIOR , 1ntz {00}, int2(00),
int2 (500), int2{500) )}

end do

'BORDA DO GRAFICO + grade tracejada

result = setcelorrgh{#c0cc0)

call setlinestyle (#AA3C }

do i=1,20

call moveto(int2 (50+20%1),1int2(25),xys)
status = lineto (int2(50+20%i),int2(225))

end do

do i=1,10

call moveto (int2 (50),1int2{25+20%1), xys)
status = lineto (int2(450),int2(25+20%1))
end do

CALL SETLINESTYLE ($ffff)

result = setcolorrgb(#0)
dummy = RECTANGLE ( SGBORDER , 1int2(50), int2(25), int2({450),
int2 (225}))

'desenha os eixos
grstat=setcolorrghb (#0)
do i=3,23 !'TRACEJADDO NO EIXO Y
CALL MOVETO (INTZ2(50), INTZ2{i*10-5}, =xv)
status = LINETO(INT2(45), INTZ(i*1l0-5)}
end do

do 1=0,40 !'TRACEJADO DO EIX0O X

CALL MOVETO (INTZ (50+10*1), INT2{130), =xy)
status = LINETO(INT2(50+10*i), INT2({123)}
end do

result = INITIALIZEFONTS () ! ESCREVE 03 VALORES NA ABSCISSA
result = SETFONT('t''Arial''hl2wdpvib')
grstat=SETCOLORrghb (#0)

de 1=0,40

CALL MOVETO (INT2 (55+10*%1), INTZ(133), xy)
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write(text,*) 1+1/4

TF(MOD(I,4).EQ.0 .AND. I.LT.34) THEN
CALL OUTGTEXT (text)

END IEF

end do

CALL MOVETOQ(INT2(50), INTZ2{30-5), xy) !'EIXO Y
status = LINETO(INTZ (50), INTZ(230-5))

CALL MOVETO (INTZ2 (30}, INT2{125), xy) !EIX0 X
status = LINETO(INTZ2 (450}, INT2(123))]

! desenha a funcaco

RESULT= SETCOLORrgb (#0000£0)

CALL MOVETO{INT2 {50),
INT2 (125+50% (C{1)*DSIN(0/ (400/dados (1)} *RATZES (MODOSAIDA) /dados (1) )+
C{E)*DCOS(0/(400/dados(l)}*RAIZES(MODOSAIDA)/dadOS(l))+C(3)*DSINH(0/
(400/dados(l)}*RAIZES(MODOSAIDA)/dados(l))+C(4)*DCOSH(O/(400/dados(l
J ) *RAIZES (MODOSAIDA) /dados({l)))), x=y)

DO x=0,400

K=125+50* (C(1)*DSIN(X/ (400/dados {1} ) *RAIZES (MODOSAIDA) /dados (1) )+C (2
) *DCOS (X/ (400/dados (1) ) *RAIZES (MODOSAIDA) /dados (1)) +C (3) *DSINH(X/ (40
0/dados (1)) *RAIZES (MODOSAIDA) /dados (1) ) +C (4) *DCOSH(X/ (400/dades (L)) *
RAIZES (MODOSAIDA) /dades (1)) )

STATUS = LINETO(INTZ2 (504x), INT2 (K))

END DO

! escreve 03 textos
result = INITIALIZEFONTS ()
result = SETFONT ('t''Times New Roman''hl2w7pvib’)
CALL MOVETO(INT2(200),INT2(1l2),xys)
grstat=SETCOLORrgb (#0)
CALL OUTGTEXT({'Modc de Vibrar')

result INITTATLIZEFONTS ()

result = SETFONT ('t''verdana''hlOwbpvibk')
CALL MOVETO(INTZ2(20),INT2(60},xy53)
grstat=8SETCOLORrgb (#0)

CALL OUTGTEXT{('wvi(x}')

result = INITIALIZEFONTS ()

result = SETFONT('t''verdana''hlO0wSpvib')
CALL MOVETO(INT2(4¢0),INT2{(130),xys)
grstat=8ETCOLORrgb (#0)

CALL OUTGTEXT{'x"'}

666 end subroutine ProcedurePrincipal

Prwdkrsxt FIM DO PROGRAMA PRINCIPAL *##**#**+1

!**************************************'A’***|

[ L S O A N O T T T T T T O T A O O
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! Funcdes do Pregrama - FregMod3 !
! !
TriTrrrprr et Er e r e pp et rrr
'Funcac gue calcula o valor da fungédo Ft (1)
Real (8) Function Ft(Bt,i,lkd,alfaT,miT)
Implicit None
Real*8 lbd,alfaT,miT
logical Bt
Integer i

if (bt) then

Ft=1

else

Ft={alfaT- (1lbd**4}*miT)

end if
Return

end function

'Funcdo gue calcula o valor da funcdo Fr{i)
Real (8} Function Fr(Br, 1,1bd,alfaR,miR)
Implicit None
Real*8 lbd,alfaR,miR
LOGICAL Br
integer 1
if (Br)then
Fr=1
else
Fr=(alfaR-(1bd**4)*miR)
end if
Return

end function

'Fungdo que calcula o determinante da matriz
Real(8) Punction Det (X,alfaT,alfaR,miT,miR,Bt,br)
Implicit None

FATERNAL Fr, Ft

Integer z,fatorT(2), fatorR(2)

Logical bt{20),Br{20)

Real*8

¥,a,b,c,d,e,f,g,h,i,3,1,m,n,0,p,q,r,s,t,u,alfaR{2),alfaT(2),mir{2), m

it(2),Fr,Ft

de i=1,2
IF (BT (I))then
FATORT (1) =0
ELSE
FATORT (I)=1
end 1f

if(bR(1))then
fatorR{i)=0
else
fatorR{i)=1
end 1f

end do

a Fr(bR(L}),1,%,alfaR(1l) ,MiR (1))
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b= X*fatorR(1)
c= Fr{bR(l),1,%,AlfaR(1),MiR(1})
d= -X*fatcrR(1)

e= ¥**3+fatorT (1)

= =PFt(bt(l),1,%,AlfaT{(l),MiT{1i}))
= —X**3%fatorT(1)

h= ~-Ft({bkt(l),Ll, X, A1 faT(Ll),MiT (1))

i= -Fr(bR(2),2,%,AlfaR(2),MiR(2

) )} *DCOS (X) +X*DSIN (¥) *fatorR(2}
j= Fr(bR{2),2,%,AlfaR(2),MiR(2)

) )

) )

*DSIN(¥) +X*DCOS (X) *fatorR({2)
*DCOSH (X) -X*DSINH (X) *fatorR({2)
*DSINH (X)-X*DCOSH (X) *fatorR(2)

1= -Fr(bR({2),2,¥X,alfaR(2),MiR(2
m= -Fr(bR{2)},2,¥,alfaR(2),MiR (2

n= Ft{(bt{2),2,%,AlfaT(2),MiT(2)) *DSIN (X)
+X*+3*DCOS (X) *fatorT (2)

o= Ft(bt(2),2,%, AlfaT(2),MiT(2)} *DCOS (X) -
K**3I¥DATIN (X) *fatorT (2)

p= Ft(bt(2),2,%,AlfaT(2),MiT(2)) *DSTNH (¥} -
K**3*DCOSH(X) *fatorT (2)

g= Ft(bt(2),2,%,AlfaT(2),MiT(2})*DCOSH(K) ~
¥**3*DSINH(X) *fatorT (2)

lcalcula o determinante / modificar para ¢ métode da
triangularizacao!

r=a* (f*(1*q-p*m) - g*{(J*g-o*m) + h*{(1*p-o*l))
s=p*{e* (1l*g-p*m) - g*{i*g-n*m) + h* (i*p-n*1l)}
t=c*{e* (J*g-o*m) - f£*(i*g-n*m) + h* (i*o-n*1))
u=d*{e* {(j*p-o*l) - £*{i*p-n*l) + g*(i*o-n*]J)}
det=r-s+t-u

Return

end function
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