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ABSTRACT

Krauch, G. A. Development of a program for the multidisciplinary
optimization of a single stage rocket. 2021. 113p. Monografia (Trabalho de
Conclusão de Curso) - Escola de Engenharia de São Carlos, Universidade de São Paulo,
São Carlos, 2021.

The space economy is a rapidly growing and developing market, with players entering it
at a fast pace. Smaller and medium players rely on nano-satellites as an entering platform,
but there’s a growing concern for higher reliability and future regulation. Sounding rockets
prove a useful platform to safely test and develop these technologies, as well as to conduct
other research. In this work, we study the creation of an optimization algorithm for a
single-stage sounding rocket that carries a payload to a given altitude, simulated using
a one degree of freedom system. Modules of propulsion and aerodynamic drag are the
main focus, using simplified analyses to minimize execution time. A solution obtained for
a test case of launching a 3U CubeSat sized payload to a 150km altitude is presented and
discussed. Other applications of the software are briefly discussed.

Keywords: multidisciplinary optimization, rocket propulsion, supersonic drag





RESUMO

Krauch, G. A. Development of a program for the multidisciplinary
optimization of a single stage rocket. 2021. 113p. Monografia (Trabalho de
Conclusão de Curso) - Escola de Engenharia de São Carlos, Universidade de São Paulo,
São Carlos, 2021.

A economia do espaço é um mercado em rápida expansão e desenvolvimento, com atores
entrando em um ritmo acelerado. Pequenos e medianos atores apostam em nano-satélites
como a plataforma de entrada, mas existe uma preocupação crescente sobre confiabilidade
e futuras regulações de espaçonaves. Os foguetes de sondagem se mostram uma plataforma
útil para testar e desenvolver estas tecnologias, assim também como conduzir várias
outras pesquisas. Neste trabalho, estudamos a criação de um algoritmo de otimização
multidisciplinar para um foguete de estágio único que leva uma carga até uma determinada
altitude, simulado usando um sistema de um grau de liberdade. Os módulos de propulsão e
arrasto aerodinâmico são o foco principal, utilizando análises simplificadas para minimizar
o tempo de execução. Uma solução obtida para o caso modelo de lançar um satélite de 3U
a uma altitude de 150km e apresentada e discutida. Outras aplicações para o programa
desenvolvido também são apresentadas.

Palavras-chave: otimização multidisciplinar, propulsão de foguetes, arrasto supersônico
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1 INTRODUCTION

According to NASA the term "sounding rocket" derived from the analogy to
maritime soundings made of the ocean depths. It describes rockets that carry instruments
into the upper atmosphere to investigate its nature and characteristics, gathering data
from meteorological measurements at altitudes as low as 32 km to data for ionospheric
and cosmic physics at altitudes up to 6400 km. Sounding rockets also flight-test assemblies
that will be sent to space (WELLS; WHITELEY; KAREGEANNES, 1975).

The focus of this project will be to analyze the different factors taken into account
on the initial phases of the conceptual project of a sounding rocket, in order to create an
algorithm capable to simulate different configurations and optimize the rocket for a desired
goal. Throughout this project, special care will be taken so that the resulting algorithms
are easy to adapt for future uses and expansions.

1.1 Motivation

With the growth of the space economy, many private players (large, medium and
small) have started to flow into this market. The space economy is rapidly growing and
could achieve a yearly revenue of over 1 trillion USD, compared to its current 350 billion
USD. (MORGAN-STANLEY, 2020)

With these new smaller players, a new wave of component suppliers focused in this
segment can be expected to rise. A common concept in current small players in the space
economy is the use of a scalable NanoSat network, growing steadily as the service gains
momentum [ref]. These new components and assemblies will need test to be deemed safe
and deployable. While there are no currently widespread regulations for the launch of
small satellites, market best practices encourage extensive testing campaigns and many
players are already calling for a stricter test regulation in order to avoid the Chain Crash
Orbital effect. (ROETGEN; DESCH, 2020)

In this context the mission of this project can be shortly defined as "to create
an optimization program that helps give the first steps on the conceptual project of a
suborbital launch vehicle, with a target group on the test of nano satellites and nano
satellite’s components".

1.2 Mission Definition

A usual approach for sounding rocket optimization research is defining a reference
altitude that must be achieved by the rocket and then optimizing the desired variables
to minimize one specific magnitude (ADAMI; MORTAZAVI; NOSRATOLLAHI, 2016)
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(OKNINSKI, 2017) (BARBOSA; GUIMARãES, 2012). Thus, the mission will be defined
as to reach a target altitude href optimizing the total launch mass of the vehicle.

Considering the wide range of altitudes for sounding rocket operations described
on (WELLS; WHITELEY; KAREGEANNES, 1975), considering a realistic value for href
will make a significant difference in project complexity. ESA defines LEO as an orbit
that is relatively close to Earth’s surface. It is normally at an altitude of less than 1000
km but could be as low as 160 km above Earth (ESA, 2020). Most new players in the
sounding rocket market focus their attention to the altitude range between 100km and
300km(OKNINSKI, 2017). Thus, a reference altitude of 150km will be defined as the target
in order to test LEO components’ launch and environmental resistance. As a secondary
objective, an estimation of the time of the trajectory spent in micro-gravity will be given
in order to study possible scientific payloads. While micro-gravity can be defined, using
a strict definition, as an acceleration lower than one millionth of the gravity on Earth’s
surface. 1% of the gravity on Earth’s surface, which is considered enough to do many
experiments, will be the loose definition considered (ROGERS; VOGT; WARGO, 1997).

1.3 Payload Definition

In order to define the payload that will be used as reference a study on the
frequency of use of different payload standards was conducted. According to the NanoSat
and CubeSat Database (KULU, 2021), the number of registered NanoSatellites in the past
18 years, over 90% of those are some variation of the CubeSat basic model. As shown in
Figure 1 the predominant design is the 3U Cubesat totaling almost 54% of the produced
units. The open-source approach, small volumes and the growing modularity make the
CubeSat the design standard for small enterprises looking to enter the space economy.
The use of the CubeSat concept as a platform for small players on the space industry is
on the rise (NAGEL; NOVO; KAMPEL, 2020).
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0.25U6.0%  (101)

1U

14.6%  (244)
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5.5%  (92)

3U 53.7%  (897)

6U

8.4%  (140) Other

6.8%  (113)
Other CubeSat5.0%  (84)

Figure 1 – Configurations of Nano-Satellites launched between 2003 and 2021, synthesized
from data available in (KULU, 2021)

The CubeSat standard was created by California Polytechnic State University,
San Luis Obispo and Stanford University’s Space Systems Development Lab in 1999 to
facilitate access to space for university students. Since then the standard has been adopted
by hundreds of organizations worldwide. The CubeSat standard facilitates frequent and
affordable access to space with launch opportunities available on most launch vehicles.(THE
CUBESAT PROGRAM,, 2021?)

The usual CubeSat configurations are specified as 1U, 1.5U, 2U, 3U, 6U e 12U, as
can be seen in Figure 2. The masses and tolerances for CG for each configuration can be
found in table 1.



28

Figure 2 – Different U Configuration of the CubeSat Concept, extracted from (THE
CUBESAT PROGRAM,, 2020)

U Configuration Mass [kg] Ranges of acceptable center of gravity
X Axis Y Axis Z Axis

1U 2 + 2 cm / -2 cm + 2 cm / -2 cm + 2 cm / -2 cm
1.5U 3 + 2 cm / -2 cm + 2 cm / -2 cm + 3 cm / -3 cm
2U 4 + 2 cm / -2 cm + 2 cm / -2 cm + 4.5 cm / -4.5 cm
3U 6 + 2 cm / -2 cm + 2 cm / -2 cm + 7 cm / -7 cm
6U 12 + 4.5 cm / -4.5 cm + 4.5 cm / -4.5 cm + 7 cm / -7 cm
12U 24 + 4.5 cm / -4.5 cm + 4.5 cm / -4.5 cm + 7 cm / -7 cm

Table 1 – Typical Mass for each U configuration with Ranges of acceptable center of
gravity locations as measured from the geometric center on each major axis,
extracted from (THE CUBESAT PROGRAM,, 2020)
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Figure 3 – Technical schematics and sizing from the 3U CubeSat, extracted from (THE
CUBESAT PROGRAM,, 2020)

Thus, it can be concluded that the 3U Cubesat design is the most fit candidate
for a model payload as it is the most commonly used by the market. With its dimensions
presented Figure 3.

1.4 Objectives

The objective of this project is to develop an optimization algorithm for the
optimization of the geometric parameters for a suborbital research rocket. The optimization
parameter will be the launch weight of the rocket, considering a fixed payload and altitude
to attain. The focus areas of the project will be: aerodynamics (focused in booth subsonic
and supersonic drag estimation), performance (with focus on thrust and motor mass
estimation) and stability (with focus on the subsonic static stability of the rocket for fin
sizing), other areas (as materials and numerical methods) will be explored to facilitate
a more realistic simulation. The expected result is a highly customizable algorithm that
facilitates decision-making in early project stages.

A secondary objective will be defined as to use the algorithm developed to optimize
a sounding rocket for a payload of a 3U CubeSat to reach an altitude of 150km with the
least inital mass possible.
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2 BACKGROUND

With the objective of having a better understanding of the topics within the scope
of the project, the theoretical background of rocket launch was studied. The focus of this
was to understand the main phenomena that affect rocket trajectory a to obtain models
simple enough to be implemented and avoid excessive computational costs yet accurate
enough to reflect reality. Therefore, the main pillars of this study were Modern Sounding
Rocket architecture, rocket aerodynamic drag, rocket propulsion, rocket stability, rocket
materials and structures and optimization and numerical solution methods.

2.1 Modern Sounding Rocket Architecture

As a first a approach to the topic, different sounding rocket designs were studied to
understand key common components that to be studied in detail later. Modern sounding
rockets vary significantly depending on mission and the payload carried (NASA SOUNDING
ROCKETS PROGRAM OFFICE, 2015). Sounding rockets for small payloads have a
"slender and long shape", having a length to diameter ratio of 5-20 (PALLONE et al.,
2018), (OKNINSKI, 2017) claims this number to goes up to 30. Most of the examples
cited in this Section fall within this category.

In both professional and amateur rockets, the following components can be identified,
a hull and internal structural components, a nose cone, the payload, internal telemetry
systems, fins, a propulsion system and a recovery system (ESA, 2013?),(BUSSE; LEFFLER,
1997), (CYCLONE ROCKETRY CLUB, IOWA STATE UNIVERSITY, 2018), (KALRA
et al., 2018). Nose fineness, defined as it’s length divided by it’s maximum diameter can be
up to 6 (OKNINSKI, 2017). Different nose formats are parabolic ogives, cones, paraboloids,
ellipsoids, between others (CROWELL, 1996).

2.2 Aerodynamic Drag

The following definitions can be found in (HOUGHTON; CARPENTER, 2003).To-
tal Drag is formally defined as the force corresponding to the rate of decrease in momentum
in the direction of the undisturbed external flow around the body, this decrease being
calculated between stations at infinite distances upstream and downstream of the body.
Thus it is the total force or drag in the direction of the undisturbed flow. It is also the total
force resisting the motion of the body through the surrounding fluid. The drag coefficient
can be defined as Equation 2.1.

CD = D
1
2ρAMB · V 2 · SREF

(2.1)
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The value of SREF is defined by the context of the situation as a geometric area
easy to correlate to the studied body. In airplanes this value usually refers to the wing-area,
while in rockets the value is usually used as its maximum section area. Usually this value
is defined as in Equation 2.2.

SREF = π · d2
MAX

4 (2.2)

There are a number of separate contributions to total drag. As a first step it may be
divided into pressure drag and skin-friction drag.

1. Skin-Friction Drag:
is the drag that is generated by the resolved components of the traction due to the
shear stresses acting on the surface of the body. This traction is due directly to
viscosity and acts tangentially at all points on the surface of the body. At each point
it has a component aligned with but opposing the undisturbed flow (i.e. opposite to
the direction of flight). The total effect of these components, taken (i.e. integrated)
over the whole exposed surface of the body, is the skin-friction drag. It could not
exist in an invisicid flow.

2. Pressure Drag:
is the drag that is generated by the resolved components of the forces due to pressure
acting normal to the surface at all points. It may itself be considered as consisting
of several distinct contributions:

a) Induced Drag (also known as vortex drag))

b) Wave Drag

c) Form Drag (also known as boundary layer drag)

While induced drag depends on purely on lift generation and wave drag is the drag
associated with the formation of shock waves in high-speed flight, the definition of
the form drag is more complex. We can define profile drag the drag due to the losses
in total pressure and total temperature in the boundary layers. Using this definition,
form drag is defined as the difference of profile drag and skin-friction drag.

Induced drag, is outside this project’s scope as it will be shown further on in this
work, the implemented model will have 1 DOF and thus no lift generation will be assumed.
Thus, Equation 2.1 can be expressed as Equation 2.3 for a zero-lift body.

D = 1
2 · ρAMB · V 2 · SREF ·

(
CSUB
D + CSUP

D

)
(2.3)
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While different methods for aerodynamic simulations and drag estimation exist
e.g. vortex lattice, finite volume methods (usually known as CFD), etc. Most of the
later are based on numerical methods and require either considerable computational
power, significant calculation time or the use of external software or even all of the
previous.(HOUGHTON; CARPENTER, 2003). Priority will be given to the study of
simplified methods that can accurately estimate drag in different conditions and can be
easily implemented into the program.

2.2.1 Profile Drag

A good estimation of the zero-lift profile drag of an aircraft can be obtained by
the components method presented in (RAYMER, 2004), which will be the base reference
for the next section. This method uses the drag coefficient of a flat plate obtained by
semi-empirical formulas and assumes it applied on the wet area of the different components
of the aircraft.

CSUB
D =

∑(Cfc · FFc ·Qc · Swetc)
SREF

+ CDmisc + CDL&P (2.4)

By this method, the total drag of an object is the sum of the drag of each component, given
by the product of the friction coefficient, the component’s form factor, the interference
factor and its wetted area. As no miscellaneous external items nor leakages or protuberances
are present in the rocket architectures discussed in Section 2.1, the terms outside the
fraction in 2.4 will not be studied in detail.

2.2.1.1 Friction Coefficient

The friction coefficient of a surface can be modeled after a flat plate. For laminar
flow, cf can be calculated with Equation 2.5 and for turbulent Equation 2.6. The resulting
cf should be a value proportional to how much of the wetted surface is covered in either
laminar or turbulent flow.

cfc = 1.328√
Re

(2.5)

cfc = 0.455
(log10Re)2.58 + (1 + 0.144 ·M2

ach)0.65 (2.6)

Re = ρAMB · V · `c
µAMB

(2.7)

It’s important to note that the Re used are the ones relevant to each component, so
the value of `c for the fuselage should be its length, while for the fin it should be its
MAC. Most current current aircraft have turbulent flow over virtually the entire wetted
surface, so this will be assumed true for the rockets simulated. For elevated speeds, the
value of Re must be the minimum between the result of Equation 2.7 and the result
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of using either Equation 2.8 or Equation 2.9, depending on whether flow is subsonic or
supersonic/transonic respectively.

Recutoff = 38.21 · (`c/kc)1.053 (2.8)

Recutoff = 44.62 · (`c/kc)1.053 ·M1.16
ach (2.9)

2.2.1.2 Form Factor

The form factor equation for wing, tails, and consequently fins is given in Equation
2.10

FFc =
[
1 + 0.6

xrelthmax

(
t

c

)
+ 100

(
t

c

)4] 1.34M0.18
ach (cos Λm)0.28

 (2.10)

The form factor equation for the fuselage is given in Equation 2.11, where f is given
by Equation 2.12

FF =
(

1 + 60
f 3
c

+ fc
400

)
(2.11)

fc = `

dMAX

(2.12)

For supersonic speeds, the equations presented for the form factor are no longer
valid and a value of 1 should be used.

2.2.1.3 Interference factor

For components as fuselage or wings, the Qc = 1.0 and for tail components
1.03 < Qc < 1.08. Thus, the effects of the interference factor will be unconsidered.

2.2.2 Wave Drag

Supersonic flow has been studied for a long time. The first solution for the supersonic
flow over a cone was obtained by A. Busemann in 1929. While some methods for the study of
supersonic flow around are given, e.g. supersonic linearized theory for the shock-expansion
method and compressible CFD methods, they either aren’t fit for the simulation of a
rocket body or are computationally costly to implement (HOUGHTON; CARPENTER,
2003).

(JONES, 1953) provides a comprehensive technique to estimate wave drag for a
wing-body systems. At subsonic speeds the pressure drag arising from the thickness of the
body or wings is negligible so long as the shapes are sufficiently well streamlined to avoid
flow separation. At supersonic speeds this tolerance, which was permitted the designer,
disappears and the drag becomes sensitive to the shape and arrangement of the bodies.
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2.2.2.1 Estimation of Wing-Body Wave Drag for Supersonic Speeds

The theory presented in (JONES, 1953) is an application of the linear supersonic flow
theory presented in (HAYES, 1947). Here, it was shown that when Mach = 1 is approached
from above, the resulting drag depends only on the longitudinal area distribution over the
longitudinal coordinate.

S ′(x) =
∞∑
n=1

An · sin(n · φ) (2.13)

D = π · ρAMB · V 2

8

∞∑
n=1

n · A2
n (2.14)

Therefore, for a given length, drag minimization can be achieved when the S ′(x) is
has the least possible harmonics. As A1 and A2 have a relation to the Base area and the
volume of the body, thus, for a same length and volume, the minimum drag is achieved
when the resulting series only contains these terms.

In order to extend this conclusions beyond sonic speed, we need to study the cross
section of the system with oblique planes inclined at the Mach angle, as the disturbance
of the system affects the whole region. Thus, parallel inclined planes "cut" the system in
different cross section areas which allow the construction of an equivalent S(x) curve where
formulations 2.13 and 2.14 can be applied, as shown in Figure 4. In order to superimpose
the effect of the infinite oblique planes that can be inclined at the Mach angle in relation
to the system’s longitudinal axis, the final drag value can be obtained as the average of
the drag values obtained through a complete rotation of the Mach planes.
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Figure 4 – Example of intersection of an aircraft by Mach planes and the resulting area
distribution, extracted from (JONES, 1953)

Being S(x) the intercepted area of the system by a plane perpendicular to the
flow and S ′(x) = dS′(x)

dx
. When the curve of S ′(x) is expanded as a sines Fourier Series

(Equation 2.13) the resulting wave drag can be expressed as Equation 2.14.

D′(θ) = π · ρ · V 2

8

∞∑
n=1

n · A2
n (2.15)

D = 1
2π

∫ 2π

0
D′(θ) dθ (2.16)

An example of the implementation of this theory can be found in OpenVSP, which
is a comprehensive parametric design program developed by NASA for aircraft and rocket
design. (OPEN VSP, 2021) This program has an implementation of the theory analyzed
as an internal tool and also provides for visualization and interactions with the process.
(WADDINGTON, 2015).
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Figure 5 – The example of a random rocket implemented in (OPEN VSP, 2021)

(a) Left view
(b) Oblique view

Figure 6 – Intersection of a Mach = 1.5 plane and the rocket implemented in (OPEN VSP,
2021)

2.2.2.2 Estimation of wave drag in the Transonic region

Based on the values of the supersonic wave drag curve (RAYMER, 2004) provides
with a method to estimate the wave drag in the transonic region. The transonic region is
typically defined for 0.8 5Mach 5 1.2, the theoretical lower limit of the region is in M cr

ach

where shock-waves start to form on the body or in Mdd
ach where there’s a rise in 0.002 in

the objects CD due to wave drag. (RAYMER, 2004)
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Figure 7 – Example of the method for the estimation of transonic CSUP
D , extracted from

(RAYMER, 2004).

The method consists in defining the drag on the points M cr
ach and Mdd

ach as 0 and
0.002 by definition. Then, the drag at Mach = 1.05 is set as equal to the drag at Mach = 1.2
as point B and in Mach = 1 as half of that value. The value of Mach = 1.2 is determined
by any of the available methods. A representation of this methodology is presented in
Figure 7.

2.3 Atmospheric Conditions

As seen in sections 2.4.2 and 2.2, external conditions affect both drag and propulsion
by parameters such as ρ, PAMB, µAMB and csound. These parameters vary greatly with
the altitude and region were the rocket is operating, and considering the wide mission
altitude range proposed on Section 1.2 it is necessary to also study atmospheric models to
be applied.

The International Standard Atmosphere (also referred as ISA) model is one of the
most commonly used atmospheric models. Developed by the International Civil Aviation
Organization (ICAO), the model approximates the value of atmospheric properties for
different altitudes (up to 80km) by assuming linear temperature gradients and calculates
the values of ρAMB and PAMB using the hydro-static equilibrium equation (Equation 2.17)
in combination with the molar form of the ideal gas equation (Equation 2.18). The value
of csound is also calculated under ideal gas assumptions, while other magnitudes such as
muAMB and thermal conductivity are calculated through empirical models explained on
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the reference (ICAO, 1993).

dPAMB

dh
= −ρ · g (2.17)

PAMB = ρAMB ·Rspec · TAMB (2.18)

The US Standard Atmosphere (USSA) was developed in a joint effort of several
governmental agencies. While the methodology used is similar to the one of the ISA model,
it perfectly match the ISA model only up to 32km because of differences in the temperature
profile assumed. The USSA model reaches much farther than the ICAO model, reaching
up to 1000km.(NOAA; NASA; USAF, 1976)

2.4 Rocket Propulsion

Rocket propulsion is a class of jet propulsion of jet propulsion that produces thrust
by ejecting stored matter, called the propellant. In contrast to duct propulsion, that is
a class of jet propulsion which includes turbojets and ramjets; these engines are also
commonly called air-breathing engines (SUTTON; BIBLARZ, 2000).

The rarefied air in high altitudes and the effects of supersonic and hyper-sonic
and supersonic flow, make duct jet propulsion engines a poor choice for space-related
propulsion. The uniqueness of the rocket, for example, high thrust to weight, high thrust
to frontal area, and thrust independence of altitude, enables extremely long flight ranges
to be obtained in rarefied air and in space (SUTTON; BIBLARZ, 2000).

Even though developments have been made in the use of high-altitude rarefied
air-breathing propulsion, its uses are limited to LEO satellites and other low-thrust
applications (FERRATO et al., 2017). Thus, duct propulsion will not be studied in this
work. The energy source most commonly used for rocket propulsion is chemical combustion.
Energy can also be supplied by solar radiation and, in the past, also by nuclear reaction.
(SUTTON; BIBLARZ, 2000)

2.4.1 Main Metrics for Rocket propulsion performance

In order to be able to understand a rocket propulsion performance, there’s a need
to define and understand the mayor metrics that govern it. The following definitions can
be found in (SUTTON; BIBLARZ, 2000).

2.4.1.1 Thrust

It can be defined as the reaction experienced by a rocket’s structure due to the
ejection of matter at high velocity. It’s equation derived, from newtons second law, is



40

presented in Equation 2.19. Usually measured in N .

F = ṁ · ve + (Pe − PAMB) · Ae (2.19)

2.4.1.2 Total Impulse

Is the total variation in momentum that will be experimented by the rocket due to
Thrust. It’s formulated through Equation 2.20. Usually measured in Ns.

It =
∫
t0

tburnout
Fdt (2.20)

2.4.1.3 Specific Impulse

It can be defined as the impulse that each small amount of weight generates as it is
ejected. It is directly correlated to efficiency, as it measures how much impulse is generated
by each unit of propellant carried. It’s formula is shown in Equation 2.21. Usually measured
in s.

Isp = It
mp · g0

= F

ṁ · g0
(2.21)

2.4.1.4 Mass ratio

It is defined as the ratio of the final mass (the mass of the rocket after burnout) by
the initial mass of the rocket (before operation). It is presented in Equation 2.22.

MR = mf

m0
= mf

mf +mp

(2.22)

2.4.1.5 ToW Ratio

It is defined as the ratio between the rocket’s thrust and the rocket’s weight for
a given moment. For a rocket to take off, it is necessary that ToW > 1 in the initial
condition. It’s formulation is present in Equation 2.23.

ToW = F

m · g
(2.23)

2.4.2 Rocket Propulsion Mechanisms

While thrust in rocket propulsion can be generated through various different
methods(O’CONNELL, 2016). The currently viable propulsion methods can be mainly
divided in two main categories, chemical and electrical (SUTTON; BIBLARZ, 2000).

2.4.2.1 Chemical Propulsion

The principle of chemical reaction or combustion of one or more fuels with one or
more oxidizing reactants is the basis of chemical rocket propulsion. The heat liberated in
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this reaction transforms the propellants (reactants) into hot gaseous reaction products,
which in turn are thermodynamically expanded in a nozzle to produce thrust. (SUTTON;
BIBLARZ, 2000). The nozzle will be explained separately in Subsection 2.4.3.

Chemical propulsion is commonly divided in Liquid and Solid propellants. Hybrid
rocket propulsion exists by mixing solid rocket fuel with a liquid oxidizer. Usual values
for Isp for solid propellants is 220-300, while for liquid propellants it can reach 330.
Nevertheless, solid propellant motors are usually lighter, require less movable parts, are
more reliable and simpler to build and assemble (SUTTON; BIBLARZ, 2000) (FACULTY
OF AEROSPACE ENGINEERING, TU DELFT, 2013). While hybrid rocket propulsion
for sounding rockets is of great interest and may en-able conducting more flexible missions,
solid rocket motors remain the most common choice for propelling suborbital payloads
(OKNINSKI, 2017).

Figure 8 – Simplified design of a solid rocket motor, extracted from (SUTTON; BIBLARZ,
2000)

2.4.2.2 Electric Propulsion

Electric propulsion can be defined as any type of propulsion system that uses
electricity as a main energy source to generate thrust. One examples of electrical propulsion
are Hall-effect engines, shown in Figure 9. Other examples of electrical propulsion are
resitojet or thermoelectrical propulsion that uses an electrical resistance to heat propellant
which is ejected through a nozzle, plasma ion propulsion which ionizes particles and
accelerates then through an electrical field are the most common types. Even though
electrical propulsion is widely used for satellites and has Isp in the ranges of over 1000s,
it’s not of viable use for launch vehicles for its low thrust (usually under 1N) and ToW
(SUTTON; BIBLARZ, 2000) (EXOTRAIL SA, 2021?).



42

Figure 9 – Simplified design of an electric rocket thruster, extracted from (SUTTON;
BIBLARZ, 2000)

2.4.3 Rocket Nozzles

In most thermal rocket propulsion systems, a nozzle is responsible for accelerating
combustion gases in order actually generate thrust. Nozzles usually have a convergent,
sub-sonic region, and then a supersonic divergent region. In order to elaborate a simplified
nozzle theory, assume a quasi-one-dimensional isentropic flow of an ideal gas throughout the
nozzle (SUTTON; BIBLARZ, 2000)(NAKKA, 1997). This assumptions are in accordance
with the theory for isentropic flow of compressible fluids presented in (HOUGHTON;
CARPENTER, 2003).

2.4.3.1 Isentropic Flow

The main relations for a one-dimensional isentropic flow in a tube are presented in
Equations 2.24, 2.25 and 2.27

T0 = Ti ·
[
1 + 1

2 · (γ − 1) ·M i
ach

2
]

(2.24)

P0 = Pi ·
[
1 + 1

2 · (γ − 1) ·M i
ach

2
] γ
γ−1

(2.25)

vy =

√√√√√ 2 · γ
γ − 1 ·

Ru · Tx
Mgas

·

1−
(
Py
Px

) γ−1
γ

+ v2
x =

√√√√√ 2 · γ
γ − 1 ·

Ru · T0

Mgas

·

1−
(
Py
P0

) γ−1
γ


(2.26)

ṁ

Ai
= P0

√√√√√ 2γ
γ − 1 ·

Mgas

Ru · T0
·
(
Pi
P0

) 2
γ

·

1−
(
Pi
P0

) γ−1
γ

 (2.27)
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Equation 2.27 describes flow density, it’s maximum value for a given P0, T0 is
obtained from the derivation. As ṁ is constant throughout the nozzle, this maximum
value denotes the minimum cross-sectional area, which is given when My

ach = 1. This point
is denominated the nozzle’s throat and area value At. The relation between mass flow ṁ

and At can be then calculated using Equation 2.28. Furthermore, for Ac
At
> 4, the flow on

the combustion chamber can be considered stagnated, thus P0 ≈ Pc and T0 ≈ Tc.

ṁ = At · vt · ρt = At · PC · γ

√√√√√( 2
γ + 1

) γ+1
γ−1

· Mgas

Ru · TC
(2.28)

2.4.3.2 Nozzle’s Effect on Thrust Equation

Considering the Equations 2.26 and 2.28 in Equation 2.19, Equation 2.29 is obtained.

F = At · Pc ·

√√√√√ 2γ2

γ − 1

(
2

γ + 1

) γ+1
γ−1

·

1−
(
Pe
PC

) γ−1
γ

+ (Pe − PAMB) · Ae (2.29)

Considering that the first part of Equation 2.29 depends only on internal factor of the
rocket, it can be rewritten as Equation 2.30

F = F ∗ + (Pe − PAMB) · Ae (2.30)

2.4.3.3 Nozzle Geometric definition

Once determined de values of Ac, At and Ae, the geometry of the nozzle can be
calculated using the approach presented by (SUTTON; BIBLARZ, 2000). While converging-
diverging nozzles usually are designed as two intersected paraboloids with a rounded filleted
junction, they are initially approximated as cones which are calculated using the process
presented on Figure 10. The spacing between the combustion chamber and the throat and
the throat and the exit plane is calculated using Equation 2.31. This spacing is usually
reduced for de diverngent part by a factor and a parabola with a desired starting and
finishing angles is designed over the cones.

lcone = r2 − rt
tan(θnozzle)

(2.31)

The values for θnozzle are suggested as 15◦ for the divergent half and as 60◦ for the convergent
half. A thrust correction factor has to be applied in Equation 2.30 using Equation 2.32

λthrust = 1
2 · (1 + cos(θnozzlediv)) (2.32)

2.4.4 Solid Propellant Combustion

Given the predominance of solid rocket motors explained in subsection 2.4.2, rocket
motors and their technology will be further studied. A main aspect of rocket motors is
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Figure 10 – Nozzle sizing process, extracted from (SUTTON; BIBLARZ, 2000)

that their combustion chambers and propellant tanks are merged into a single structure.
Combustion is usually not actively controlled, being ṁ an outcome of the combustion and
not controlled through pumps as in most liquid rocket propulsion examples. Equation 2.33
is presented in (SUTTON; BIBLARZ, 2000) explaining the combustion of solid propellants.

ṁ = AB · ρprop · rB (2.33)

The burning rate (rB) is a function of different factors present of the combustion
chamber and the values of AB depend on the initial propellant (grain) configuration.

2.4.4.1 Propellant burning rate

While many factors can alter the value of r, special attention must be given to the
effects of PC . (SUTTON; BIBLARZ, 2000) states that for a given propellant, the burning
rate can be modeled using Equation 2.34, which in comparison to Figure 11 seem to bear
validity.

rB = ap · PCnp (2.34)
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Figure 11 – Burning rate for different materials and temperatures, extracted from (SUT-
TON; BIBLARZ, 2000)

The value of n, presented on Equation 2.34 is of great interest, typically ranging
between 0.2 and 0.6. In practice, as n approaches 1, burning rate and chamber pressure
become very sensitive to one another and disastrous rises in chamber pressure can occur in
a few milliseconds. When the n value is low and comes closer to zero, burning can become
unstable and may even extinguish itself. Some propellants display a negative n which
is important for "restartable" motors or gas generators. A propellant having a pressure
exponent of zero displays essentially zero change in burning rate over a wide pressure
range. Plateau propellants are those that exhibit a nearly constant burning rate over a
limited pressure range (SUTTON; BIBLARZ, 2000).

Rocket rotation, differences in propellant initial temperature, propellant aging, and
other factors which also affect the performance in significant ways will not be studied in
this work. Nevertheless an example of the magnitude of this effects can be seen in Figures
11 and 12. Even though these effects will not be studied in the conceptual design phase,
they must be accounted for in subsequent design phases.(SUTTON; BIBLARZ, 2000)
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Figure 12 – Effects of rocket axial spin in the thrust-time curve extracted from (SUTTON;
BIBLARZ, 2000)

A useful equation, derived from Equations 2.34, 2.33 and 2.28, is presented in
(NAKKA, 1997) where the regime value of PC is calculated, a formulation for transient
pressure is also given but this is outside of the scope of the project.

PC =

ABAt ar · ρp√
γ

R·TC
·
(

2
γ+1

) γ+1
γ−1


1

1−nr

(2.35)

2.4.4.2 Propellant Configuration

The configuration of the grain used for the combustion can greatly alter the
generation of thrust for the otherwise same rocket configuration. The configuration can
have a constant section along the length of the rocket or can change to acquire desired
values of AB for a given point in the trajectory. Figure 13 shows different configurations
commonly used. (SUTTON; BIBLARZ, 2000)

The configurations can be classified by the evolution of AB over time, this has
significant effects on the thrust-time curve:
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• Cylindrical: A grain in which the internal cross section is constant along the axis
regardless of perforation shape.

• Progressive: Provides a steadily increasing AB with time, which usually increases ṁ
• Regressive: Provides a steadily decreasing AB with time, which usually increases ṁ
• Neutral: Provides an approximately constant AB with time, with a constant ṁ
• Progressive-Regressive: Firstly, provides a steadily increasing AB with time, which

usually increases ṁ. After a designated point, this relationship is inverted.

Figure 13 – Examples of Grain Configuration extracted from (SUTTON; BIBLARZ, 2000)
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2.5 Stability and Control

2.5.1 Stability systems

Passive stability systems are those which do not rely on situational feedback to
keep the rocket in a desired trajectory. In classical rockets, the main source of passive
control are the fixed fins attached to the rocket.

While aircraft stability is well discussed in the methods presented in (ETKIN;
REID, 1996) and (RAYMER, 2004), rocket stability analysis is significantly different.
The static margin is defined as the distance between the rocket’s center of pressure
(not the aerodynamic center) and its center of gravity, divided by the rockets maximum
diameter(UTAH STATE UNIVERSITY, 2010). The method presented in (BARROWMAN,
1967) allows for a simplified calculation of the center of pressure for a slender finned body.
The method is based on the calculation of normal coefficients for different components
such as nose-cone, conical transitions and fins, with the position of each component and
its normal coefficient, the center of pressure is calculated.

The minimal static margin recommended is 1 and a static margin of 2 is considered
excessive(UTAH STATE UNIVERSITY, 2010). While the extension of the method for
different angles of attacks presented in (LABUDDE, 1999) allows for a more detailed study
of rocket stability, it is outside of the scope of this project. No efforts were made to study
a rocket’s dynamic stability.

2.5.2 Active control systems

While modern larger rockets use different technologies for active control, such as
flapped fins, thrust vectoring, nozzle gimbals and even some missiles use rocket thrusters
as stability measures (SUTTON; BIBLARZ, 2000). These technologies are considered
outside of the scope of the project.

2.6 Materials and Structures

While these topics are not a main focus of the project, materials and structures in
launch vehicles were studied to be able to realistically estimate the necessary structural
weight of the hull, the combustion chamber and other components.

2.6.1 Skin and Fins

Common materials for sounding rocket’s skin and fins are composites as carbon,
glass or Kevlar fiber and metallic as aluminum. Isolation layers in the skin of high
density foam or metallic or composite honeycomb are common for high flying rockets with
significant reentry heating, but will not be studied on this work. In (VANDAS et al., 2018),
aluminum and fiberglass were used for the rocket’s body and carbon fiber for the fins.
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2.6.2 Motor

For the estimation of the wall thickness of a rocket motor, the expression of the
radial pressure for a pressurized cylinder is commonly used with a factor of safety fs

is added. A common value for the factor of safety is 2 (OKNINSKI, 2017) (SUTTON;
BIBLARZ, 2000). This is presented in Equation 2.36.

twall = fs ·
PC · dC
2 · σy

(2.36)

As far as materials go, the motor case is usually made either from high-resistance steels
or high-strength aluminum alloys (MORGADO, 2019). As the motor case reaches high
temperatures (above 700K), usually steel or another metal with a high melting point is
used (SUTTON; BIBLARZ, 2000).

2.7 Optimization and Numerical Solution Methods

Beyond technical rocket-related knowledge, there is a need to further study methods
to accurately estimate derivatives, numerically integrate functions and to optimize complex
functions to achieve global maximums and minimums with a given set of constrains.

2.7.1 Optimization Methods

A more detailed analysis on MDO applied to space LVs can be found in (MORGADO,
2019), a quick overview will be given here based on what is presented there.

Multidisciplinary Design Optimization (MDO) is a field of engineering that deals
with finding the global optimal design solution, increasing the complexity of the problem
while decreasing computational cost. Typically, the design problem is decomposed into
different disciplines, each one subjected to specific constraints. The disciplines may be, for
instance, aerodynamics, propulsion, structure, weight and sizing, costs and trajectory.

The most popular MDO method for general design optimization is MDF. It solves
the interdisciplinary coupling equations at each iteration using one optimizer at system-level
and a Multidisciplinary Design Analysis (MDA). Using this approach, the optimization
variables are the disciplines design variables. Due to the coupling between disciplines, they
must be analyzed sequentially.

The optimizer analyses the design performance to verify if the design complies with
the given constraints at the end of each iteration. It is a simple solution, and at the end
of every iteration a feasible solution is given. The drawbacks are the computational cost,
which is high, and the lack of parallelization between disciplines. In addition, the method
does not necessarily converge.
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In order to apply MDO methods, it is necessary to use optimization algorithms.
These algorithms search for the best solutions under given constraints, depending on the
optimization objective.

The classical optimization algorithms are divided into gradient-based and gradient-
free. Gradient-based algorithms, although can present a quick convergence when near a
minimum, have several drawbacks. They can only optimize continuous parameters, requires
the functions to be differentiable, and can only find the local optima. Among diverse
methods to compute the gradient, the simplest is finite differences. It is necessary to make
an initial-guess in order to initialize a gradient-based algorithm, and at every iteration the
next parameters set is calculated. The most commonly used gradient based methods are
the Sequential Quadratic Programming and Interior-Point.

The gradient-free algorithms, however, require only the function values. They are
able to solve highly discontinuous and noisy functions, and allow global search. The
biggest drawback is the slow convergence when near a local optimum. There are two types
of them: deterministic and stochastic. A classical example of local-search deterministic
algorithm that is capable of solving non-linear, unconstrained optimization problems is
the Nelder-Mead simplex algorithm.

Stochastic algorithms have as a characteristic some inherited randomness. Therefore,
the solution may differ every time the algorithm is executed, considering the same initial
conditions. The heuristic approaches are inspired by natural phenomena.

2.7.2 Genetic Algorithm

Some of the most popular stochastic algorithms are Genetic Algorithms (GA),
based on the concept of Darwin’s theory of evolution. They feature selection, crossover
and mutation techniques.

An initial generation is created and filled with individuals with a set of properties.
The best approach to create the initial population is choosing randomly to improve
diversity, since a heuristic initialization technique could cause little diversity and lead
to failure when finding the optimum. GA algorithms then update the set of individuals
throughout the generations. Each individual is evaluated and ranked based on their fitness
values, considering the objective function.

Then, some individuals are chosen, randomly or based on fitness, to breed the new
generation. In a process known as crossover, the parents have their characteristics mixed,
as it is expected that the children share the properties of the best individuals. Also, the
individuals can be mutated, randomly changing their properties, in order to maintain
diversity in the population. If not, the individuals may become too similar to each other,
stopping evolution.
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The process continues once the mutation operation is concluded, and the algorithm
repeats until convergence.A GA was developed to optimize the rocket design, allowing an
easy implementation and parallel optimization.

2.7.3 Numerical Solution Methods

Given the importance of the calculation of the area derivative for the theory
presented in Section 2.2.2, we need a formula to estimate these values with good accuracy.
Furthermore, the application of a Fourier Series in a discrete function will require a
numerical approach to solve numerical integrals.

2.7.3.1 Finite Differences

A method for approximating a function’s nth-order derivative in one point as a
linear combination of the the value of the function for equally spaced points in the vicinity
of the first one is presented in (FRANCO, 2006). Through such methods, the Equations
2.37, 2.38 and 2.39 were obtained in order to estimate first order derivative of a function u
respective to x with a third order error, which means that the error of the approximation
decreases with h3. The first is a centered finite differences formula and the others are
lateral differences formulas.

ux(x, t) = u(x+ h, t)− u(x− h, t)
2h (2.37)

ux(x, t) = −3 · u(x, t) + 4 · u(x+ h, t)− u(x+ 2h, t)
2h (2.38)

ux(x, t) = 3 · u(x, t)− 4 · u(x− h, t) + u(x− 2h, t)
2h (2.39)

2.7.3.2 Trapezoid Integration

In order to accurately calculate integrals of functions, different methods are proposed
in (CHENEY; KINCAID, 2008), the trapezoid method was chosen because of it’s simplicity,
independence on the number of points used and easy implementation, which allow a high
flexibility. It’s formula is described in Equation 2.40 and it has a second order error, this
means, it is is proportional to h2.

∫ b

a
f(x) dx ≈ 1

2

n−1∑
i=0

(xi+1 − xi) · [f(xi) + f(xi+1)] (2.40)

2.7.3.3 Runge-Kutta Methods

The Runge-Kutta Methods are a family of methods for the resolution of DEs.
Named after Carl Runge and Wilhelm Kutta, they are designed achieve a high order
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precision without requiring analytic differentiation of the original differential equation. The
methods consist in evaluating the function f n times in which each variable is incremented
by partial steps, previous calculated values are used as slopes in these steps. The error of
a Runge-Kutta method of order n is proportional to hn+1. The 4-th order Runge-Kutta
method is of common use for scientific calculations(CHENEY; KINCAID, 2008) and is
shown in Equations 2.42 and 2.43 for a system described in the form of Equation 2.41, it’s
important to note that x can be a vector and consequently K1, K2, K3 and K4. The 4th
order Runge-Kutta method is also implemented in the software OpenRocket, widely used
for amateur rocketry (NISKANEN, 2013).

ẋ = f(t, x) (2.41)

x(t+ h) = x(t) + 1
6(K1 + 2K2 + 2K3 +K4) (2.42)



K1 = h · f(t, x)
K2 = h · f(t+ 1

2h, x+ 1
2K1)

K3 = h · f(t+ 1
2h, x+ 1

2K2)
K4 = h · f(t+ h, x+K3)

(2.43)
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3 METHODS

In order to implement all the theory studied in Chapter 2, several considerations
and simplifications had to be made both to simplify the implementation and also to
optimize the use of computational resources, as explained in Section 3.1. Also, in order
to be able to create a truly open and customizable tool, the choice of the programming
language had to be studied. Finally, the algorithms for the simulation were created and
tested.

3.1 Conceptual Considerations

Based on the studies developed on Chapter 2, some first considerations had to
be made in order to simplify the model and reduce the number of variables, which also
augments model convergence as explained in Section 2.7. Considerations will be divided
on Aerodynamic, Propulsion, Stability and Mass considerations.

The rocket’s internal telemetry and other components were considered as having
the same mass and volume than a 6U CubeSat. Differing in the form, which is assumed as
an hexagon limited by the inner diameter of the rocket section an dimensions are variable
according to dMAX .

Furthermore, for simplicity, only single stage rockets were considered and imple-
mented in the analysis.

3.1.1 Aerodynamic Considerations

Drag estimations will be considered as following: Subsonic drag estimations were
made using the methods described in (RAYMER, 2004) for the profile drag of an air-
plane. As it considers body and aerodynamic surfaces on an empirical model, its easy
implementation allows for a quick yet accurate estimation of subsonic drag.

As supersonic drag is a mayor component of the overall drag at supersonic speeds
(HOUGHTON; CARPENTER, 2003), a more detailed model is necessary. The model
proposed by (JONES, 1953) allows for an analytical approach and accurate results.

Effects on drag due to the transonic region were estimated using the methodology
described in Section 2.2.2.2, the values of M cr

ach and Mdd
ach were considered as the ones

suggested on (RAYMER, 2004).

3.1.2 Numerical Simulation Considerations

The model implemented to determine the rockets maximum altitude was a 1 DOF
dynamic model (in which the only DOF considered was altitude) due to the complexity of
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higher DOF simulations. The forces considered are explained on image 14. The governing
equation of the rocket’s uni-dimensional flight path is given in Equation 3.1.

Figure 14 – Rocket’s free body diagram, elaborated by the author, rocket image generated
using OpenRocket(OPEN ROCKET, 2021?)

m(t) · ḧ = F (t)−D(h, ḣ)−m(t) · g(h) (3.1)

Equation can be manipulated to obtain Equation 3.2 considering v = ḣ.

V̇ = F (t)−D(h,v)
m(t) − g(h)
ḣ = V

(3.2)

In this form, Equation 3.2 can be used as a vectored form from the f function in Equation
2.41. In order to integrate this equation over time, a RK4 method was implemented, as
explained in Section 2.7.3.3

3.1.3 Propulsion Considerations

3.1.3.1 Solid Rocket Propulsion Selection

As stated in section 2.4.4 solid rocket propulsion is the most common in sounding
rocket in the market entry segment for these main reasons:

1. Comparative High Thrust-to-Weight ratio

2. Simple composition with few complex components

3. High reliability

Thus, only solid rocket motors were considered for the mission and are the only
ones implemented in the program.

The propellant was considered as Ammonia Perchlorate, as it is readily available
and of widespread use (SUTTON; BIBLARZ, 2000). While it has been shown that the
compound can be toxic, it’s main hazards are listed as explosive and incendiary and only
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prolonged exposure is deemed dangerous, being perfectly suitable for this task (NATIONAL
CENTER FOR BIOTECHNOLOGY INFORMATION, 2021). Values of the propellant
utilized for the simulations are available in Table 2.

Variable Magnitude Unit
TC 2816 K
ρp 1.69 g/cm3

Mgas 25 g/mol
γ 1.21 -

Table 2 – Typical values for the combustion of Ammonia Perchlorate used for the simula-
tions, extracted from (SUTTON; BIBLARZ, 2000).

The values of ap = 0.123 and np = 0.287 for Equation 2.34 were obtained from
(NAVARRETE-MARTIN; KRUSB, 2017) for a composition of in AP 80%, Al 2%, HTPB
18%; typical proportion in high-power rocketry. This composition is within the ranges
specified by (SUTTON; BIBLARZ, 2000) for the values provided in Table 2. Note that
the output of the equation using these values will be given in mm

3.1.3.2 Motor Geometric Constrains

The motor case will be assumed as a cylinder, for an irregular body fuselage, the
outer radius of the motor casing will be considered as equal to the minimal internal radius
of sections of the fuselage where the motor is lodged. In the specific case of a fuselage with
a mostly constant diameter, this definition does not change significantly.

3.1.3.3 Grain Composition and Disposition Selection

As the focus of this work is geometric optimization of the rocket. Generic grain
composition will be assumed, leaving the specifics of improved configurations for the
preliminary stage of the rocket’s design, which is outside the scope of this project. According
to Sutton (SUTTON; BIBLARZ, 2000), the grain "star" configuration, described in Figure
15, yields an approximately constant burning area, which in regime conditions translates to
a constant thrust. Another neutral grain disposition is the end-burner disposition presented
in Figure 13. For the first AB can be estimated as the internal area of the combustion
chamber, thus Equation 3.3, for the second (SUTTON; BIBLARZ, 2000) states that for
dC < 0.5m the burning surface can be approximated as the cross-section of the cylindrical
tank, thus Equation 3.4.

AB = π · dC2 · lC (3.3)
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Figure 15 – Propellant star disposition that allows and approximately constant AB, ex-
tracted from (SUTTON; BIBLARZ, 2000)

AB = π ·
(
dC
2

)2

(3.4)

Both dispositions will be assumed as a cylindrical, as it provides almost constant
thrust and has a simple formulation. Furthermore, they will be implemented separately,
as the optimization parameters can differ from one to the other. The presence of lC in
Equation 3.3 leads to large values of AB in elongated rockets, this will yield high ṁ and F ∗,
but will also diminish tburnout which means all the propellant can be burned in the lower
atmosphere where higher D is expected. For the end-burner configuration, a comparatively
small value of AB means per Equation 2.35 that much lower values of At will be needed to
achieve a similar PC . This can also be advantageous, as it means high tburnout comparative
to the "star" configuration, consequently, a higher amount of propellant might burn higher
in the atmosphere, where the aerodynamic effects are less prevalent.

3.1.4 Stability Considerations

For stability, only the theory presented in (BARROWMAN, 1967) was considered.
No efforts were made in estimating the effects of supersonic aerodynamics into stability.

3.1.5 Material Considerations

The rocket’s hull was assumed as composed by a 1/16" sheet of aluminum, while not
a perfect assumption, as usually the nose is machined and not based on a sheet of metal,
its judged as a good starting point. The rocket’s fins were considered as made from carbon
fiber as cited in (VANDAS et al., 2018) for easier casting. The motor casing was considered
as grade S355 Steel, as recommended by (SUTTON; BIBLARZ, 2000). Relevant material
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properties were extracted from (DEPARTMENT OF DEFENSE, UNITED STATES OF
AMERICA, 1998)

3.1.6 Body Geometric Considerations

While initial intention of the project was to include non-linear rocket bodies and
study their effect on total drag, the need to reduce variables and the examples commented
on Section 2.1 lead to the consideration of mostly straight rocket bodies with a constant
diameter outside the nose and boat-tail.

3.1.6.1 Rocket Diameter and Length

As the payload is defined as a 3U CubeSat, which according to Figure 3 has a
diagonal of 100 ·

√
2 = 141mm. Thus, rockets with section diameters lower than 150mm

were not be considered. Limitations on the total length were considered as a product of
the diameter by a ratio that varies according to what presented in Section 2.1.

As the focus of the project is weight minimization, the upper diameter constrains
was not studied in much detail. Defining the maximum diameter at 0.5m. Results showed
no tendency of rockets towards this value as it’s shown in Chapter 4 later in this work, so
the upper constrain in diameter can be assumed to have no significant effect in the output
of the optimization.

3.1.6.2 Fin geometry

In an effort to avoid an elevated number of optimization variables, the fin’s number
and geometry were predefined to an specific format, based on the one presented on
(PALLONE et al., 2018), leaving only scaling and position as optimization variables. Four
fins where assumed, though the program is fully capable of handling other numbers. The
dimensional relations are shown in Figure 16. As visible in the Figure, an effort was made
to define the fin without making assumptions about the rocket’s body, this helps in possible
future non-constant diameter studies.
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Rocket Body

Figure 16 – Format of the fins chosen for the optimization, based on the one presented in
(PALLONE et al., 2018)

Ideally, the fin’s airfoil, would be chosen as a double wedge with 2% thickness as
presented in (PALLONE et al., 2018). But the implementation of variable thickness was
deemed too complex for the initial purpose of the program. Thus a constant thickness equal
to 2% ·MACfin was assumed in a similar approach as the one presented in (OKNINSKI,
2017).

3.2 Definition of optimization variables and their studied range

For the implementation of the a genetic algorithm, a set of variables (genes) must
be defined to generate each individual rocket. The choice of this set of variables is of great
importance as an elevated number of variables hinders the method’s convergence, but a
low number brings little insight to the studied domain and can be even misleading if they
aren’t enough to correctly detail the problem to be optimized.

3.2.1 Diameter

Rocket diameter was chosen as one of the main variables to describe the problem,
due to the geometric direct geometric constrain that the rocket body must be able to fit
the payload inside.
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3.2.2 Length to Diameter Ratio

Rocket length is a mayor variable affecting almost all other component in one way
or the other. A length to diameter ratio was defined, as seen in Section 2.1, this value
usually varies from 10-20 as described in 2.1.

3.2.3 Fin Size Ratio

As explained in Section 3.1, fin geometry was limited to avoid having a considerable
amount of variables. The main variable considered, fin semi-span hfin was defined as the
proportionality to rocket diameter, defining the fin size ratio as hfin

Dmax
.

3.2.4 Fin Position

The fin position was defined as the distance between the fin’s chord trailing edge
and the rocket’s tail. The values studied were within 0-20% of the length of the rocket.

3.2.5 Nose Length Ratio

The length of the nose was defined as a proportion to the total length of the rocket.
Thus, nose length ratios of 0.05 to 0.3 were studied.

3.2.6 Nose Type

The nose format has relevant influence on the drag generated by the rocket. A set
of different nose formats were studied following examples seen in the bibliography, these
are a parabolic configuration with the vertex on the rockets nose, an elliptic configuration
with the vertex on the nose cone and co-vertex on the junction of the nose and fuselage, a
conic configuration, a parabolic ogive configuration with the vertex on junction of the nose
and fuselage and a LD-Haack (Von Kármán) series ogive based on formulations presented
on (CROWELL, 1996). Such examples are presented on Figure 17.

3.2.7 Throat area ratio

In order to allow some variation in F , PC and ṁ, throat area ratio, defined as AC
At

was introduced. Based on (SUTTON; BIBLARZ, 2000), this ratio cannot be smaller than
4 because this can invalidate the hypothesis that flow in the chamber is stagnated. The
upper limit was set at 10 arbitrarily to avoid excessive pressure on the chamber. As shown
in Equation 2.35, its relation to AB is of high importance to determine the value of PC .
For the star configuration, the range was defined as from 4 to 10 and for the end-burner,
from 50 to 1500.
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Figure 17 – Different nose configurations studied for each rocket based on the definitions
of (CROWELL, 1996)

3.3 Algorithms and Implementation

The algorithmic implementation was modular, taking advantage of smaller code
blocks and object oriented programming, but adding further computational costs on their
interactions. The developed modules follow the interactions described in Figure 18. An
arrow coming from one block and pointing to another means that the pointed block is
called and used on the first one.

Figure 18 – Interactions between different modules that compose the program
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3.3.1 Programming Language Choice

The chosen programming language for the project was Python in its 3.9 version.
This choice came considering three main factors:

• familiarity with the programming language
• language flexibility and availability of libraries
• widespread use

Based on the author’s previous experiences, the languages studied were shortlisted
to the following: Python, Matlab, Excel-VBA and C/C++. While most languages from
the past list are highly flexible, with OOC implementations and readily available libraries,
Excel-VBA, while higly powerful, is constrained to spreadsheets and libraries developed
by the software provider.

According to the PyPL (Popularity of Programing Languages) ranking the most
used programming languages as in August 2021 is Python, this ranking is based on Google
searches after the languages tutorials, help forums, etc. (CARBONNELLE, 2021), as can
be seen in Table 3. A second ranking (Tiobe), based on the number of existing pages
in official help and online forums, was consulted and determined C as the most popular
programming language, closely followed by Python as can be seen in Table 4. Widespread
use allows for a wider intelligibility of the written code for future reference, which is highly
desired, but also allows for more sources of help and reference in the implementation.
Languages linked to specific paid-for software as Matlab and Excel-VBA were less favored
based on this factor.

Rank Language Share
1 Python 29.93%
2 Java 17.78%
3 JavaScript 8.79%
4 C# 6.73%
5 C/C++ 6.45%

Table 3 – Data extracted from PyPL (CARBONNELLE, 2021)

Position (Aug 2021) Language Ratings
1 C 12.57%
2 Python 11.86%
3 Java 10.43%
4 C++ 7.36%
5 C# 5.14%

Table 4 – Data extracted from TIOBE (TIOBE, 2021)

On a poll presented in (SILVA, 2021), in a group where over 95% had some
formation in the field of engineering and over 70% in aeronautics/mechanical engineering,
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Python was shown to be the preferred computational tool of almost 53% of the interviewees.
This reinforces the argument that a tool developed in Python is most likely to be highly
intelligible for other people in the field.

Based on the information above, the choice of a programming language can be
resumed in Table 5.

Language Author’s skill Flexibility and Libraries Widespread Use
Python High High High
C/C++ Medium High High
Matlab High High Limited
Excel VBA High Limited -

Table 5 – Comparison of programming languages

3.3.2 Main Module

The main module recieves it name because it is the one that when run activates
the other modules an it is the main workflow of the programm. This module actually only
calls two other modules, the Atmosphere Class to initiate the atmospheric model and the
Genetic Evaluation module, which manages the simulation, classification and hybridization
of the generations. The main workflow can be seen on Figure 19.

Figure 19 – Flowchart of the main module

3.3.3 Atmosphere Class - Module

Even though a python implementation of an atmospheric model can be found in
(WAAL, 2019), an object class ’Atmosphere’ was created to facilitate its integration to the
code. Counter-intuitively, the code in the reference actually uses the model described in
(NOAA; NASA; USAF, 1976). A problem raised from the direct implementation of the



63

code into de Physics module (Section 3.3.5), was that the need for it to be run on each
iteration, which eventually led to a higher computational cost by running the program over
1 million times. The implemented class allows for the program to be run in the beginning
of the execution, creating arrays of values at each 5m with corresponding interpolation
functions.

A limitation of the isacalc (WAAL, 2019) module implemented into the class, is
that it only calculates the values up to a 110km altitude. Nevertheless, The required
values of ρp and PAMB can be assumed as negligible at this altitude and higher for the
considerations of suborbital space vehicle, therefore after the 110km threshold these were
interpolate as 0. Values of µAMB and csound remain constant with the values of h =110km
just to have finite quotients on the calculations of Re and Mach, but their overall effect
will be unconsidered as drag will be a numerical 0.

3.3.4 Rocket Class - Module

In order to link the different variables and functions that describe a rocket and its
behavior, a Rocket class was created. The objective of this class was to include all variables
and methods which could be determined using only data of the rocket. The class requires
as an input a dictionary of the values of the optimization variables and the Payload object
that chosen for the rocket. The initialization of the rocket class generates the external
points of the rocket’s body, determines fin geometry, calculates the rocket’s propulsion
system’s size, weight and capabilities, the weight and size of the recovery system and
determines the rocket’s center of gravity while empty and on launch configuration. A
stability validation is made to see if the rocket meets static stability criteria defined in
Section 3.1.

3.3.4.1 Propulsion Calculations

As the value of F ∗ is solely determined by variables of the rocket, the calculation
of this value was included on the Rocket Class module. Based on the assumptions made
on 3.1 regarding the motors geometry and grain disposition, the values of PC is calculated
iteratively. The total mass and disposition of propellant and the structure supporting the
propulsion system are also calculated. For the calculations the value of Pe was assumed
constant for all rockets as 0.8PAMB(h = 0). The logic implemented is shown in Figure 20.
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Figure 20 – Flowchart of the estimations regarding the propulsion system

In the case of the star configuration, to calculate the rocket’s propulsion system,
first an iterative process takes place to . First, a value of PC is given, which allows calculate
Ae for a given At. With these values it is possible to calculate the size of the nozzle and
then AB. With this, PC can be obtained from Equation 2.35. Trough iterations, a value of
PC that satisfies the conditions is found.

Two options are possible if through the iterations a value of Ae is found that is
greater than the the area of the tail section of the rocket. The first is to consider this
value as the new rocket section, increasing the rocket’s end section area and drag, a second
option is to enforce the geometric restriction of the rocket upon Ae and a new value of Pe
is calculated, this means, the nozzle is cut and flow will be under-expanded.

Once the error value of PC within iterations is under 0.1%, the final sizes of the
nozzle and combustion chamber are recorded. Mass and CG of the combustion chamber,
the propellant and the nozzle are calculated. The value of tburnout is calculated. As the
value of Ae can be different than the section of the rocket, a boat-tail curved transition is
added to reduce drag (TRAN et al., 2013?) at the end of the rocket.

3.3.4.2 Recovery system Calculations

For calculations of the recovery system, first, a desired terminal velocity of Vter =
9m/s was defined based on (PEPERMANS et al., 2018) and (VANDAS et al., 2018).
The parachute weight and volume estimation was implemented acording to the simplified
approach presented on Chapter 8 of (USAF, 1978), a CPAR

D = 0.6 value has selected
according to values presented in the book. An iterative process begins assuming no weight



65

on the recovery system, with the empty weight of the rocket, a first estimation of the
parachutes size and mass can be made. This new weight is now considered within the
vehicles empty mass and the process is repeated.

Once the mass difference between two iterations is less than 0.1% of the previous
mass, a calculation of the volume required is made based on the average packaging density
presented in (USAF, 1978). After this, the volume is fitted in the nose con and if needed it
can exceed this limits. In case of a high volume parachute that requires moving the other
components further back on the rocket’s main axis, the propulsion system is recalculated.
With the diminution in size of the propulsion system, mass will necessarily not grow and
the calculated parachute will remain viable.

3.3.4.3 Static Stability

The rocket’s center of pressure is calculated with the methods presented in (UTAH
STATE UNIVERSITY, 2010)(CULP, 2008). The criterion of minimal static margin is
applied for CGempty and CGfull. In the case of the rocket failing to meet the criterion in
any of the points, a boolean variable used in the scoring is set as False.

3.3.4.4 Scoring

As the objective is to minimize rocket launch weight, the score is based in this
metric. For a rocket with no penalties, the score is set as exactly equal to the launch weight.
Two penalties were introduced as shown in Equation 3.5, for rockets that fail to meet the
stability standard, the score is multiplied by a factor described in Equation 3.7; for rockets
that fail to meet the altitude href the score is multiplied by a factor of defined in Equation
3.6. For rockets that did meet the desired values the penalties were set as 1. Unfeasible
rockets are defined as those in which the payload, nose and HUB occupy over 85% of the
body’s length, leaving no space for a combustion chamber and nozzle. These rockets are
assigned as score an arbitrarily big number (score = 1010). The exponent on the altitude
factor is to minimize the chance of small light rockets achieving a good position by just
being light and missing the objective by big margins. The penalty factors are purposely
discontinued at the limit of the tolerances to maximize the reward of complying with the
conditions.

score = m0 · fstability · faltitude (3.5)

faltitude = 1.1 ·
(
hmax
href

)2

(3.6)

score = min (1.1 + ·(1−MSmin) · 4; 5) (3.7)
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3.3.5 Payload Class - Module

This class was introduced to simplify the use of different CubeSat configurations
in case needed. A payload object allows for a ’configuration’ input, which can be any
of the U configurations listed in Section 1.3. Furthermore, in case the keyword ’custom’
is given, custom values for mass, length, width1 and width2 will be used, theoretically
accommodating any payload in the form of a rectangular prism. A further variable can
be included to specify the payload’s CG in it’s most lengthy dimension, which will be
assumed in the middle of it if not specified.

3.3.6 Physics Module

The main objective of the physics module is to determine the maximum attainable
height for each rocket. It’s main function was developed following the flowchart specified
in Figure 21.

Figure 21 – Flowchart of the simulation of the trajectory of a rocket

As presented in Section 3.1 the system can be considered a vectorized system
with variables V and h. Derivatives are calculated using Equation 2.41 and implemented
inside a Runge-Kutta 4 method loosely based on the algorithm presented in (FRIEDMAN,
2018). Steps are subsequently calculated until the value of V ≈ 0 when the function exits
writing output ’.csv’ files if requested and returns the values of the maximum launch
height achieved. An optional "verbose" argument was added to print regular status of the
simulation on the Python Console.

3.3.6.1 Auxiliary Functions

Some auxiliary functions were created to keep the main code as simple as possible.
One examples of this is the the profile drag estimation function. This was calculated using
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the same approach as described on Section 2.2.1, for each point in time evaluated, as the
formulation.

Other auxiliary function implemented was the one that calls the supersonic drag
module, this was implemented in this way to allow the possibility of other drag implemen-
tations in an simple way. Perhaps the simplest function implemented is the calculation
of the local g value, using Newton’s Universal Gravitation Law and the fact that on the
surface of the earth g0 = 9.81m/s. Another auxiliary function was the one that calculates
the full value of F taking the value F ∗ and Pe determined by the rocket object and the
value of PAMB using Equation 2.30.

3.3.7 Genetic Evaluation Module

The objective of this module is to manage the genetical diversity of the populations,
it’s main processes are the generation of random attributes, the "mating" of a pair of
rockets, the execution of the simulations and the posterior ranking of the rockets according
to their scores and finally, the creation of a new generation based on the results of the last
iteration.

3.3.7.1 Random Rocket Generation

The random rocket generation module creates a data structure with the attributes
chosen as genes with random values. Limits are set according to the topics discussed on
Sections 3.1 and 3.2. Within the established limits for all continuous variables, random
uniform distributions are used to generate values in each interval, due to the relatively
big interval in throat area ratio for the end-burner configuration, the distribution was
considered uniform within the logarithm values. Discrete variables (nosecone type) are
determined using a random choice algorithm between the different possibilities. In this
way, a data structure is created that has random values for each desired variable and has
the potential to analyze any value within the defined optimization space.

3.3.7.2 Mating method

Mating is achieved by mixing the genes of two different rockets. This function
uses a random choice function to choose between the rockets chromosomes of each of the
specified rockets to be mated for each of the genes in the optimization. While theoretically
this process can be applied to mate any natural number of rockets, an implementation for
the mating of only to rockets was opted for.

A random mutation possibility was added. This method generates an array filled
with boolean values according to a possibility pmut of a given element of the array being
set as True. The possibility of none of the ngenes genes in a g being True, is given by
(1− pmut)ngenes ≈ 1− pmut · ngenes. This approximation, true for small values of p, gives us
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valuable insight about the probability necessary for mutations to occur while generating a
new rocket by the mating process.

3.3.7.3 Selection method

The selection method can be defined as one of the main pillars of the optimization,
this method receives as input, between others, a list containing data structures containing
genes as specified in the Random Rocket Generation method, this list can be defined as a
generation. The module initializes the rocket object for each element in the generation and
then gives it as input to the physics simulator to obtain the maximum altitude reached
and overall score. Once all elements were simulated, the method creates a list using the
Rocket Class’ export method that contains the score and other relevant information about
each rocket, the list is then sorted sorts the elements according to the score obtained by
the rockets and sent as an output to the main module. The method saves the sorted list
as a ’.csv’ file for future reference.

3.3.7.4 Creation of New Generations

The creation of new generations is also an important part of the GA, as it has to
balance the spreading genes of well-performing elements, but at the same time has to allow
enough variability to achieve local minimums. To much variability will hinder or even
impossibilitate convergence, but a low variability will have a higher chance to converge to
a local minimum.

The logic adopted in the generation creation algorithm was the following:

• each generation will have a number of fresh randomly generated individuals
• mating between the best performing individuals will be prioritized
• while mating between the best performing individuals will be prioritized, mating

with low performing individuals will be possible
• the best performing randomized individual of a generation will forcibly mate with

the overall best performing individuals
• the best performing individuals of one generation will be "cloned" to the next

generation
• random mutations will be possible

Thus, each new generation, except for the first one (which is totally randomized),
is composed of:

• 10% of individuals that are copies of the best performing 10% of previous generation
• 10% of individuals that are the result of mating random individuals of the best

performing 30% of previous generation within themselves with pmut = 0
• 20% of individuals that are the result of mating random individuals of the best

performing 50% of previous generation within themselves with pmut = 0.1
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• 20% of individuals that are the result of mating random individuals of the best
performing 50% of previous generation with random individuals overall with pmut =
0.05

• 10% of individuals that are the result of mating the best randomized individual
with of the best performing 10% of previous generation with pmut = 0

• 10% of individuals that are clones of the best performing 10% of previous generation
with pmut = 0.2

• the remaining 20% of individuals are randomized in each generation

3.3.8 Wave Drag Module

The complexity of the calculations and the amount of auxiliary functions necessary
for the calculations of the supersonic drag coefficient justified a separate module. The
program generates the curve CSUP

D xMach for a given rocket to be used on the module
described in Section 3.3.6. This output is given in the form of an interpolating function of
Mach.

The approach given to simplify the theory presented in Section 2.2.2 was instead
of trying to find the areas of intersection of an oblique plane passing on a given point X,
the program determines the x coordinate of the plane passing through each of a given
set of points on the body’s outer layer or fin. This value can be easily calculated through
the Equation 3.8. The ± refers to the fact that the plane can have a positive or negative
inclination in respect to a point.

xplane = xp ± rp · cotan(µM) = xp ± rp ·

√
M2

ach − 1
Mach

(3.8)

The following process is repeated for a distribution of Mach between 1.2 and 5,
based on a linear distribution of the sine of each mach angle. This last was done in order
to better approximate for low values of Mach, where the curve has greater variation.

3.3.8.1 Revolution Body area distribution

In order to simplify calculations, as the main rocket body is a body of revolution
by itself. The area intersected by the plane is the same for any value of θ. Thus, the areas
of intersection were calculated outside of the θ loop and added to the areas calculated for
the fins on each value of θ.
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Figure 22 – Intersections of Mach = 1.5 planes and the rocket’s main body, separated in
upper (orange) and lower halves (blue)

For each of the segments drawn in Figure 22, equally spaced points were taken over
them with x,y coordinates. Having the radius interpolation function in r(x), the maximum
z coordinates to each side are found through Equation 3.9. Thus, the perpendicular
projection to the flow of this cross-section is given by Equation 3.10.

zhull = ±
√
r(x)− (x− xp)2 − y2 (3.9)

S(xplane) =
∫ y

0
2 · abs(zhull) dy ≈

n∑
i=0

zi+1 + zi
2 · (yi+1 − yi) (3.10)

3.3.8.2 Fins area distribution

Considering an arbitrary fin aligned with the plane with θ = 0 position as 0 and
considering N fins evenly and radially distributed on the rocket body. In each fin, a plane
determined by the fin will be considered as a local system of reference with the x position
as one coordinate and the radial position as the other. For the i < N -th fin, it can be
demonstrated that the effective inclination of the reference plane and the one determined
by the fin is given by the Equation 3.11

µMef (i) = acos(cos(µM) · cos(θ + 2 · π · i− 1
N

)) (3.11)
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Figure 23 – Intersection of the Mach = 1.5 planes and the fins for θ = 0◦

For angles in with a positive derivative, extra points were added on the trailing
edge to better approximate the curve. An example of the intersections in the fins can be
found in Figures 23 and 24

For each line segment presented in Figures 23 and 24, the projected area is given
by Equation 3.12. Being A and B the extremes of the segments.

S(xp) =| rA − rB | ·thfin (3.12)

3.3.8.3 Drag Coefficient calculation

Having the area distribution of both parts of the rocket’s body and having the area
distribution of the fins, the maximum and minimum points in the x axis are determined,
the curves are linearly interpolated, each interpolation function is evaluated for an equally
spaced point distribution and summed. Through this process, a new curve that approxi-
mates the area of all intercepted objects is obtained. An example of this process is given
in Figure 25.
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Figure 24 – Intersection of the Mach = 1.5 planes and the fins for θ = 15◦
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Figure 25 – Distribution of the total intercepted area for each Mach = 1.5 and θ = 0◦
plane in blue, area distribution of each the separate components (upper/lower
body and fins) plotted in gray.
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Figure 26 – Example of a CSUP
D x Mach obtained using the Wave Drag Module

After this step, the curve is differentiated in x to determine it’s derivative using
Equation 2.37 when possible and Equations 2.38 and 2.39 for the limits of the distribution.
This derivative curve is then approximated with a Fourier series with Equation 3.13.
Finally, the drag contribution relevant to the plane is given by Equation 2.15.

An =
∫ x0

−x0
S ′(x)·sin(nx− x̄

x0
·π) dx ≈

j∑
i=0

yi+1 · sin(nxi+1
x0
· π) + yi · sin(n xi

x0
· π)

2 ·(xi+1−xi)

(3.13)

As the distribution of fins is equally space, CSUP
D (θ) = CSUP

D (θ+ 2 · π · 1/N). Thus,
the range of values of θ studied can be reduced from [0, 2 · π] to [0, 2 · π · 1/N ]. The values
are numerically integrated using the theory presented in 2.7.3.2.

After calculating CSUP
D for each desired value of Mach. The theory presented in

Section 2.2.2.2 is applied to obtain the values for the transonic region. Even thought the
theory presented in (RAYMER, 2004) recommends the use of smooth curves, the values
are linearly interpolated for simplicity and to avoid possible negative values between M cr

ach

and Mdd
ach, which can happen with cubic or quadratic splines. Thus, a curve similar to

Figure 26 is obtained.
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Figure 27 – Comparison between two area distributions, one obtained by OpenVSP and
another calculated, for Mach = 1.5 for the same rocket configuration

3.4 Program validation and testing

In order to guarantee the reliability of the modules developed on the previous
sections, a test campaign was conducted before full program implementation.

3.4.1 Testing the Supersonic Drag module

The results given by the process described on Section 3.3.8 were compared to those
obtained by the readily available software OpenVSP. For some rocket configurations the
area distributions for a given Mach obtained for each method were compared, one of these
examples is shown in Figure 27. Rockets were approximated within reasonable similarity
considering the differences between the software.

Furthermore, the resulting CSUP
D x Mach curved obtained were compared, as shown

in Figure 28. While some differences are visible, they were deemed negligible and the
program was considered successful in estimating the wave drag of the rocket.

3.4.2 Testing the Physics Integrator Module

The first test was a Simple Harmonic Oscilator in order to study the modules
reaction to constantly changing acceleration values. Results of the test can be seen in
Figure 29 for different time differentials used for over 1000 seconds worth of simulation.
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Figure 28 – Comparison between two area distributions, one obtained by OpenVSP and
another calculated, for different Mach for the same rocket configuration

Convergence towards the analytical solution can be seen for all time intervals studied.
There was no visible difference between the calculations for dt = 0.01 and the analytical
solution. Figure 30 shows the numeric energy dissipation of the system, it can be seem
that the effect is almost negligible for dt = 0.05s and dt = 0.01s.
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Figure 29 – Comparison between analytic and numeric solution for a Simple Harmonic
Oscilator

A second test was conducted simulating an ideal rocket in a zero-drag environment.
The rocket was simulated using the same approach as for the optimization and compared
with the solution provided by Tsiolkovsky’s rocket equation (WIKIPEDIA, 2021). Constant
values of g and ṁ were assumed. The results of the simulation are exposed in Figure 31.
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Figure 30 – Comparison of the numeric energy dissipation of the system for different values
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No visible differences are perceived.
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Figure 31 – Comparison of Rocket ∆V over mass and time variation between analytic and
numeric solution for an ideal rocket in a drag-less environment

Also, numerical convergence was studied, the value of hmax was compared for
different time intervals used on the simulation, no significant differences in maximum
altitude reached (∆hmax > 0.1%) were found for dt < 0.25 as can be seen in Figure 32. A
default value of dt = 0.05s was applied for the simulations

3.4.3 Tests of Propulsion Calculations

The value convergence of the iterative determination of PC was tested for different
starting values ranging from 0.001 · PC to 100 · PC . Convergence to a value within the
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Figure 32 – Relative Variation of the maximum altitude reached for different time intervals

defined 0.1% tolerance was confirmed in all cases. For values of PC , TC and γ, output
values as ṁ and Ae were validated with tools available at (NASA-GRC, 2021).

Furthermore, the values of AB were calculated for different cases and compared
to the programs output. A separate point of study was to compare the ToW of rockets
for different throat ratios, and example of this can be found in Figure 33. While a low
ToW in the end-burner configuration can cause an inadequate rocket, a too high ToW
can cause mayor inconvenience too, as over-acceleration can damage the payload and other
components. Nevertheless, it is expected that over-acceleration will be avoided by a high
D that comes with a high velocity. So the optimal solution is expected to balance high
acceleration and D.

3.4.4 Test of the Stability Calculations

The calculations of CP were compared to those exposed on (CULP, 2008) and
(UTAH STATE UNIVERSITY, 2010). The results obtained by the program were the same
as those exposed.
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Figure 33 – Variations on ToW for different throat area ratios and both grain configura-
tions studied for a given rocket
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4 RESULTS AND DISCUSSION

As stated in Section 2.7, convergence is not guaranteed for GA and multiple runs
can be needed to find optimal solutions. Thus multiple evolutionary simulations had to be
made in order to achieve a solution. Furthermore, comparing the best rockets for different
generations provides an insight of the effectiveness of convergence of the algorithms.

4.1 Optimization Executions for the End-Burner Configuration

Five parallel independent simulations where made spanning 50 Generations and
the others (Sim 1-5). The results for the best performer of each generation are shown in
Figure 34. We can see that while overall launch mass is usually reduced, Sim 1 and Sim
4 did not present convergence towards a viable solution, this could leave some space of
improvement for the optimization routine. It’s also important to note that the majority of
the rockets presented on Figure 34 are not viable solutions to the problem. A mayor factor
to this is the fact that the definition of AB for this case is proportional to the square of
the radius so rockets with higher TOW will have a lower length ratio. This lower length
ratio causes mayor difficulties for the stability of the rocket.

A distribution of maximum altitude reached by total launch mass including all
viable rockets simulations is displayed in Figure 35. For this, only rockets that took no
penalties other than altitude-related were considered. Due to a high number of non-viable
rockets on the simulation no direct frontiers are easily seen on the Figure.

4.1.1 Best performing rocket obtained through optimization

The best characteristics of the best performing rockets of Sim 2,3 and 5 are shown
on Table 6

Variable Sim 3 Sim 2 Sim 5 Unit
d 0.315182 0.307826 0.336031 m
Rocket length ratio 9.906129 8.740689 7.719809 -
Nose type conic conic ojive -
Nose length ratio 0.251942 0.161944 0.058765 -
Fin height 1.089 1.018 0.866 -
Fin position 0.0086 0.0101 0.0158 -
Throat area ratio 921.1197 818.8286 746.0239 -
Total Initial Mass 271.9 245.7 317.3 kg

Table 6 – Rockets obtained through optimization of the end-burner configuration

Convergence towards a dmax ≈ 0.3m can be seen. No definitive nose configuration
can be concluded, but elongated conic noses seem to be the most convenient. The fin’s
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Figure 34 – Values of different variables for the best performing rocket of each generation
for each of the simulations Sim 1-5 for the end-burner configuration

height should be approximately equal to dmax and positioned further back in the rocket.
All rockets present Isp ≈ 260 and MR ≈ 20% as shown in Table 7, all these values are
within the references presented on (SUTTON; BIBLARZ, 2000). While PC values are in
the upper end of the recommended values, the value of twall is calculated to provide safety
on each case. Convergence towards an optimum value of MSmin can be seen.
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Figure 35 – Distribution of maximum altitude reached by total launch mass for the end-
burner configuration

Variable Sim 3 Sim 2 Sim 5 Unit
MSmin 1.01 1.02 1.01 -
PC 15.73 13.26 11.55 Mpa
M ex

ach 3.87 3.79 3.73 -
T e 1095 1122 1144 K
ṁ 1.02 0.95 1.12 Kg/s
hmax 160.16 150.34 157.45 Km
MR 22% 21% 18% -
Isp 261.9 259.8 258.1 s
Total Initial Mass 271.9 245.7 317.3 Kg

Table 7 – Main simulation results for the end-burner configuration
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4.1.2 Simulation of the best performing rocket
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Figure 36 – Rocket obtained through optimization of the end-burner configuration

The rocket from Sim 2, presented in Figure 36, was the best performer of the whole
set of simulations, it’s trajectory is shown in Figure 37. It’s possible to see the effects of
the wave drag in the speed and acceleration graphs. It’s also possible to see the increase
in thrust due to the drop of PAMB.

4.2 Optimization Executions for the Star Configuration

Five parallel independent simulations where made spanning 40 Generations each
(Sim 1-5). The results for the best performer of each generation are shown in Figure 38.
While launch weight clearly decreases by iteration, the same does not apply for maximum
altitude attained which for Sim 2 and 1 seems to constantly be above the required.
Nevertheless, while Sim 2 presents convergence towards a higher launch mass value while
achieving higher altitudes than required, the same does not apply to Sim 1. This means, a
similar rocket to the one that Sim 1 convergence shows can be achieved with less mass
(removing propellant might be enough in this case) that still reaches hREF .
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Figure 37 – Data obtained by the simulation of the best scoring rocket obtained in Sim
1-5

Some expected tendencies in all Simulations were the tendency a high nose ratio,
all tending towards the maximum value of 0.3, and a high length ratio, all tending towards
the maximum value of 20. An unexpected tendency is the programs tendency towards
conic nose types, which was consistently repeated in all Simulations. A mayor factor to
this is the fact that the definition of AB for this case is proportional to the product of the
radius and the rocket’s length so rockets with higher TOW will have a higher length ratio.

Another interesting graph obtained by the simulations is displayed in Figure 39. This
represents the distribution of maximum altitude reached by total launch mass including
all simulations. For this, only rockets that took no penalties other than altitude-related
were considered. There seems to be a visible Pareto frontier on the
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Figure 38 – Values of different variables for the best performing rocket of each generation
for each of the simulations Sim 1-5 in the star configuration

4.2.1 Best performing rocket obtained through optimization

The rocket with the best performance was the one obtained in generation 50 in
Sim 1. It’s characteristics are presented on Table 8.
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Variable Magnitude Unit
d 0.259493 m

Rocket length ratio 18.66505 -
Nose type conic -

Nose length ratio 0.297733 -
Fin height 0.808597 -
Fin position 0.007239 -

Throat area ratio 9.955541 -
Total Initial Mass 267.9 kg

Table 8 – Rockets obtained through optimization of the star configuration
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Figure 40 – Rocket obtained through optimization of the star configuration

As can be seen in Table 9 is over-performing in the requisites of hmax and MSmin,
from which it can be concluded that there’s space for further optimization. Other values
as PC , M ex

ach, MR and Isp are within the common values cited in the references (SUTTON;
BIBLARZ, 2000).

Variable Magnitude Unit
MSmin 1.27 -
PC 6.70 Mpa
M ex

ach 3.32 -
T e 1307 K
ṁ 23.06 Kg/s
hmax 167.98 Km
MR 21% -
Isp 245.1 s
Total Initial Mass 267.9 Kg

Table 9 – Main simulation results for the star configuration

4.2.2 Possible drawbacks in the Simulation

An unsuspected problem was found in the simulation, while it was expected that
rockets would naturally tend towards lower accelerations to minimize drag in the lower
layers of the atmosphere, the opposite was detected. The graphics presented on Figure 41,
are obtained by plotting the output for the best rocket in generation 50 in Sim 1.

We can see accelerations peaks of over 50g, which is well above the values presented
in (ESA, 2013?). Furthermore, Figure 40 shows a much longer combustion chamber
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Figure 41 – Data obtained by the simulation of the best scoring rocket obtained in Sim
1-5 in the star configuration

relative to rocket length than what can be seen in examples in (ESA, 2013?), (CYCLONE
ROCKETRY CLUB, IOWA STATE UNIVERSITY, 2018), (KALRA et al., 2018), and
others. This unusually long combustion chamber, due to the assumptions made on Section
3.1, signifies an unusually high AB, which generates the ToW values. Other attempts to
find viable solutions were made, as adding a penalty for over-acceleration and studying an
end-burner propellant configuration as proposed in Figure 13. Still, no viable solutions
was found for this configuration.

Nevertheless, further studies with more complex grain configurations could fix
this problems, regressive and non-cylindrical configurations could be of great use for this,
but they would require an implementation of variable thrust into the program. Another
approach would be to reduce the lC factor in Equation 3.3 by separating the rocket in
different stages. Both of the presented solutions are outside the scope of this work.
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4.3 Overall Views on the Performance of the Algorithm

While the optimization can be mostly considered a success, the rocket hybridization
function could need some reviewing as the evolutionary convergence stopped prematurely
in different simulations. This means that the genetic pool was no longer rich enough. Also,
as suggested in 2.7 a gradient method could be added to the program at the end of the
iterations to find local-minimums.

Also, considering the high number of penalized rockets with higher scores than
viable solutions in some simulations, a review on score penalties is recommended. An
increased severity on the penalties applied can be useful.It is important to note, that
while penalties must have a degree of severity, they must also be "smooth" enough so that
progress is rewarded.

In the dimension of elapsed time of the simulations, while highly dependent on the
computer used, each simulation lasted 4-5h in a 3 year old computer i7, which was deemed
as acceptable. The possibility of running multiple optimizations simultaneously allows for
quick decision making

4.4 Possible Future Steps

This program was conceived as a steeping stone and first iteration for rocket
optimization, nevertheless, some simplifications assumed to limit complexity also hinder
possible optimal solutions. This section aims to show some points that could be expanded
for future implementations of the program. Some ideas on which assumptions can be
loosened and which changes these would required are detailed below.

4.4.1 Changing the rocket’s body format

While apart from the nose, the rocket’s body format is a cylinder of constant
diameter, most of the program was initially designed to deal with rockets with non-
constant diameter. The theory developed by (JONES, 1953) shows that this format does
not minimize drag for a given volume. Furthermore, Whitcomb’s area rule determines that
the area generated by the fins should be reduced on the body to minimize drag.

While changes in the point generation function and the boat-tail generation function
would need to be made. All programs are prepared to work with a rocket with a variable
section diameter. Nevertheless, the fitting and form of the motor in this case should be
studied.

4.4.2 Allowing for non-constant thrust-time curves

As the mass of the rocket decreases its mass over time, a constant thrust means
a higher acceleration as time increases, which carries its own implications that where
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not studied on this work (payload, structures, increased drag, etc.). It would make sense
therefore to study grain configurations with non-constant thrust-time ratios.

This can be achieved if a given thrust-time curve format is achieved, for example
a linearly regressive configuration with a given slope. The propulsion module calculates
the thrust for the last time interval when AB is equal to the chamber’s internal area, this
value can be used to create a time-dependent thrust function. A special consideration
must be made in relation to the pressure which will be achieved in the chamber over time,
as it will also not be constant.

4.4.3 Allowing variations on the fin’s format

The most obvious way to variate the fin’s format is to give each of the dimensions
specified in 16 as a variable each. Other fin formats, in specific a quadrilateral form with
an inclined trailing edge, can be obtained by adapting the fin definition function in the
Class Rocket file. One study with a more detailed approach for a similar optimization is
(BARBOSA; GUIMARãES, 2012).

The fin is defined as the area between two curves, one representing the tip chord
and leading edge and the second and the other representing the root chord and trailing
edge. An adjustment will be needed on the supersonic drag estimation as well, as in the
cases of a positive slope intersection, points are generated on the trailing edge assuming it
is perpendicular to the x axis.
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5 CONCLUSION

This project was able to generate software that can simulate different aspects of a
rocket and apply a genetic optimization algorithm to the variables that govern its main
characteristics. Special care was taking to allow the easy customization of each module to
achieve a wide arrange of goals. The software allows for reliable and speedy simulations of
dynamic systems, estimations of supersonic wave drag and the rocket’s propulsion system.

Different aspects that affect the project of a suborbital rocket were studied in
order to obtain a simple and reliable implementation. Different examples were tested to
guarantee the simulation’s faithfulness to reality. The program allowed to determine an
initial optimal configuration was obtained for a suborbital rocket to lift a payload of a
3U CubeSat to a 150km altitude by running 10 simulations of 50 generations with 50
individuals each. The simulations were divided into two main configurations based on the
propellant disposition. One of the studied configurations was found to be not viable due
to constrains not initially studied (maximum acceleration) but that will affect the rocket’s
project. Further ideas on how to take advantage of the developed program were studied.
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APPENDIX A – SUPERSONIC DRAG ESTIMATION PROGRAM CODE

The code of the supersonic drag module is presented below. For the code of the
full project, please access here.

1 ’’’

2 The following program is an implementation of the theory preseneted by Jones

in the NACA Report 1284

3 applied to a rocket. Drag is studied on the win-body system composed of the

rockets main body and the

4 fins.

5 ’’’

6 import numpy as np

7 from scipy.interpolate import interp1d

8 from Class_Payload import Payload

9 from Class_Rocket import Rocket

10 from matplotlib import pyplot as plt

11

12

13 def intersect_hull(x_hull, d_plane, f_interp, mach_number, direct=True):

14 ’’’

15 The following function finds second the point of intersection for a mach

plane given

16 the first point of intersection and the curve that determines the radius

of the revolution body.

17 Parameters

18 ----------

19 x_hull : x coordinate of the intersection of the plane and the hull

20 d_plane : distance messured over the plane of intersection from the point

to the intersection of

21 the plane and the x axis

22 f_interp : funtion that interpolates the section’s radius of the rocket

based on the x coordinate

23 mach_number : mach number studied

24 direct : Direction of the intersection, if the point of intersection has

x<x_hull then use False,

25 else, use True

26

27 Returns

28 -------

29 (x,y) : coordinates of the intersection point, in of an error it returns
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the planes intersection with

30 the x axis

31

32 ’’’

33 mach_cotg = np.sqrt(mach_number ** 2 - 1)

34 mach_sin = 1 / mach_number

35 mach_cos = mach_cotg * mach_sin

36 direction = 1 if direct else -1

37 y_hull = f_interp(x_hull)

38 xs = x_hull + direction * np.linspace(0, 1, 200)[1:] * d_plane * mach_cos

39 ys_line = y_hull - np.linspace(0, 1, 200)[1:] * d_plane * mach_sin

40 ys_hull = [f_interp(x) if f_interp.x.min() < x < f_interp.x.max() else 100

** 3 for x in xs]

41 n = np.argwhere(np.diff(np.sign(ys_line - ys_hull))).flatten()

42 try:

43 return xs[n[0] - 1], ys_line[n[0] - 1]

44 except IndexError:

45 return 0, y_hull - x_hull / mach_cotg

46

47

48 def trapezoid_integration(ys, xs):

49 ’’’

50 The following function gives the trapezoid integration of y values of a

function

51 for x values given. Values are assumed to be ordered and corresponding

between

52 arrays.

53 Parameters

54 ----------

55 ys : Array of values to be integrated.

56 xs : Can be either array or float. In the case of float, a constant

spacing is assumed in

57 between the y points to be integrated (x is recognized as "delta x").

58 In case of an array it is matched with y values. Errors will rise if

dimensions are

59 not the same.

60

61

62 Returns

63 -------

64 ans : Integrated value of the function

65 ’’’



101

66 if type(xs) == np.float64:

67 ans = sum((ys[1:] + ys[:-1]) / 2 * xs)

68 else:

69 ans = sum((ys[1:] + ys[:-1]) / 2 * (xs[1:] - xs[:-1]))

70 return ans

71

72

73 def fin_segments(fin_xs, f_top, f_base, cos_eff, show_graph=False, interval=3):

74 ’’’

75 The following function calculates the intersections of the oblique mach

plane with the

76 fins of a rocket

77 Parameters

78 ----------

79 fin_xs : x position in the fin

80 f_top : function that interpolates the radially outer part of the fins for

x

81 f_base : function that interpolates the radially inner part of the fins

for x

82 cos_eff : effective cosine of the inclination of the mach plane towards

the fin

83 show_graph : boolean, determines the presentation of graphs of the

intersection at the end

84 of the excecution

85 interval: picks only one of each n points to evaluate, used for faster runs

86

87 Returns

88 -------

89 x_exports : coordinate of the intersection of each parallel mach plane and

the x axis

90 lengths : length of the desired segments

91

92 ’’’

93 sin_eff = np.sqrt(1 - cos_eff ** 2)

94 r_top = f_top(fin_xs)

95 lengths = []

96 x_exports = []

97

98 if show_graph:

99 plt.figure()

100 plt.plot(fin_xs, r_top, color=’blue’)

101 plt.plot(fin_xs, f_base(fin_xs), color=’blue’)
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102

103 if cos_eff > 0.001:

104 trailing_edge_points = np.linspace(r_top[-1], f_base(fin_xs[-1]),

round(10 * (1 + cos_eff)))[1:-1]

105 r_top = np.append(r_top, trailing_edge_points)

106 fin_xs = np.append(fin_xs, np.ones(trailing_edge_points.shape) *

fin_xs[-1])

107

108 x_plane = fin_xs - r_top * cos_eff / sin_eff

109 x_start_fins = np.argmin(x_plane)

110 d_plane = np.sqrt(r_top ** 2 + (fin_xs - x_plane) ** 2)

111 for (n_temp, x_top) in enumerate(fin_xs[x_start_fins + 1::interval]):

112 error_intersect = False

113 n = n_temp * interval + 1 + x_start_fins

114 xs = x_top - np.linspace(0, 1, 100)[1:-1] * d_plane[n] * cos_eff

115 ys_line = r_top[n] - np.linspace(0, 1, 100)[1:-1] * d_plane[n] *

sin_eff

116

117 if x_plane[n] < x_plane[0]:

118 func = f_top

119 ys_inter = [func(x) if func.x.min() <= x <= func.x.max() else 0 for

x in xs]

120 n_inters = np.argwhere(np.diff(np.sign(ys_line -

ys_inter))).flatten()

121 try:

122 x_base = xs[n_inters[0]]

123 y_base = func(x_base)

124 except IndexError:

125 error_intersect = True

126 elif x_plane[n] <= fin_xs[-1] - f_base(fin_xs[-1]) * cos_eff / sin_eff:

127 func = f_base

128 ys_inter = [func(x) if func.x.min() <= x <= func.x.max() else 0 for

x in xs]

129 n_inters = np.argwhere(np.diff(np.sign(ys_line -

ys_inter))).flatten()

130

131 try:

132 x_base = xs[n_inters[0]]

133 y_base = func(x_base)

134 except IndexError:

135 error_intersect = True

136 else:
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137 x_base = fin_xs[-1]

138 y_base = r_top[n] - (x_top - x_base) * sin_eff / cos_eff

139

140 if not error_intersect:

141 lengths.append(np.sqrt((r_top[n] - y_base) ** 2))

142 x_exports.append(x_plane[n])

143 if show_graph:

144 plt.plot([x_base, x_top], [y_base, r_top[n]], color=’lightgray’)

145

146 return x_exports, lengths

147

148

149 def merge_areas(areas_merge, plot_graphs=False, point_number=200):

150 ’’’

151 This funtion is made to sum the values of different curves that do not

have the same

152 x points. It does so by finding the minimum and maximum values, and then

interpolating

153 each curve on the interval and summing. Extrapolations are considered as 0

154 Parameters

155 ----------

156 areas_merge : Array. It has n elements, each of which is an array of two

elements, each

157 of them an array. The first an array of the "x" points and the

second is the

158 curve values for those points

159 plot_graphs : Boolean. Optional. Determines wether or not a plot of the

sum of the

160 curves is generated at the end of the execution

161 point_number : Optional. Numbers of points to be evaluated for the output.

Default 200

162

163 Returns

164 -------

165 x_areas_merge : x positions of the sums of the curves. A total of

[point_number] elements

166 total_area : the sum of the inputted curves for each point in

[x_areas_merge]

167

168 ’’’

169 xs_lims = []

170 for comb in areas_merge:
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171 xs_lims.extend([max(comb[0]), min(comb[0])])

172 x_planes_max = max(xs_lims)

173 x_planes_min = min(xs_lims)

174

175 x_areas_merge = np.linspace(x_planes_min, x_planes_max, point_number)

176 total_area = np.zeros(x_areas_merge.shape)

177

178 for array in areas_merge:

179 f_interp = interp1d(array[0], array[1], kind=’linear’,

bounds_error=False, fill_value=0)

180 total_area += f_interp(x_areas_merge)

181

182 if plot_graphs:

183 plt.figure()

184 for array in areas_merge:

185 plt.plot(array[0], array[1], ’.’, color=’gray’)

186 plt.plot(x_areas_merge, total_area, ’.-’)

187

188 return x_areas_merge, total_area

189

190

191 def fourier_series_sine_terms(xs, ys, n_max=31, x_min=None, x_max=None,

192 full=False, plot_comparison=False):

193 ’’’

194 This function calculates the terms of the Fourier Series that aproximate a

given set

195 of points.

196 Parameters

197 ----------

198 xs : Array. x poisitions of the points to be approximated. Assumed to be

in crescent

199 order

200 ys : Array. Values of the function at the [xs] position

201 n_max : Int. Optional. Determines the maximum degree used for the Fourier

Series Used

202 x_min : Float. Optional. Determines the lower limit of the studied

interval. Default is None

203 x_max : Float. Optional. Determines the upper limit of the studied

interval. Default

204 is None

205 full : Boolean. Optional. Controls wether if the full series is calculated

or only the
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206 sine terms. Default False

207 plot_comparison : Boolean. Optional. Determines if a comparisson of the

original points

208 and the Fourier Series is ploted.

209

210 Returns

211 -------

212 fourier_terms : Dict. Contains either only the b coefficients of the

Fourier Series or

213 the full a0, a coeffients and b coeff. Keys: ’a_0’, ’a_array’,

’b_array’

214

215 ’’’

216 x_min = min(xs) if x_min is None else x_min

217 x_max = max(xs) if x_max is None else x_max

218 a_array = []

219 b_array = []

220 L = (x_max - x_min) / 2

221 x_med = (x_min + x_max) / 2

222 for n in range(1, n_max + 1):

223 product = ys * np.sin(n * np.pi * (xs - x_med) / L)

224 b_n = 1 / L * trapezoid_integration(product, xs)

225 b_array.append(b_n)

226

227 if full:

228 for n in range(1, n_max + 1):

229 product_cos = ys * np.cos(n * np.pi * (xs - x_med) / L)

230 a_n = 1 / L * trapezoid_integration(product_cos, xs)

231 a_array.append(a_n)

232

233 a_0 = trapezoid_integration(ys, (xs - x_med)) / (2 * L)

234 if plot_comparison:

235 plt.figure()

236 plt.plot((xs - x_med) / L, ys, ’.’)

237 x_test = np.linspace(-np.pi, np.pi, 100)

238 y = np.ones(x_test.shape) * a_0

239 for (n, b_n) in enumerate(b_array):

240 a_n = a_array[n] if full == True else 0

241 y += b_n * np.sin((n + 1) * x_test) + a_n * np.cos((n + 1) * x_test)

242 plt.plot(x_test / np.pi, y, color=’orange’)

243

244 fourier_terms = {’a_0’: a_0, ’a_array’: a_array, ’b_array’: b_array}
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245 return fourier_terms

246

247

248 def calculate_supersonic_drag(random_rocket: Rocket, mach_number,

plot_rocket=False, plot_fins=False,

249 plot_areas_merge=False,

plot_fourier_comparison=False,

export_areas=False):

250 ’’’

251 This funtion calculates the Wave Drag coefficient based on the method

described above.

252 Parameters

253 ----------

254 random_rocket : Object of the rocket class. See documentation.

255 mach_number : Mach number to be determined

256 plot_rocket : Boolean. Optional. Determines wether a plot of the rocket

intesected by

257 the mach planes is drawn. Default is False.

258 plot_fins : Boolean. Optional. Determines wether plots of the fins

intesected by

259 the mach planes are drawn. Default is False.

260 plot_areas_merge : TBoolean. Optional. Determines wether a plot of the sum

of the areas

261 are drawn. Default is False.

262 plot_fourier_comparison : Boolean. Optional. Determines wether a plot of

the Fourier

263 Series is drawn. Default is False.

264 export_areas : Boolean. Optional. Determines wether intersected area

values are exported

265 as output. Default is False.

266

267 Returns

268 -------

269 (cd, opt:areas_export): The first is the value of c_d determined. The

second is an array

270 which contains arrays with the x coordinates and the areas

intersected for each

271 plane coordinate

272

273 ’’’

274 print(f’Supersonic Drag Estimation for M={format(mach_number, "0.2f")}’)

275 # Calculating Drag for a given M >= 1
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276 # Rocket Body Geometric Data

277 f_interp = random_rocket.body_interp

278 xs_max = f_interp.x[-1]

279 xs_array = f_interp.x

280 rs_array = f_interp.y

281

282 # Fin geometric data

283 fin_xs = random_rocket.fin_points[0]

284 fin_top = random_rocket.fin_points[3]

285 fin_base = random_rocket.fin_points[2]

286 fin_th = random_rocket.fin_th

287

288 # Using interpolating functions for the area calculation function

289 f_int_top = interp1d(fin_xs, fin_top, kind=’linear’, bounds_error=False,

fill_value=0)

290 f_int_base = interp1d(fin_xs, fin_base, kind=’linear’, bounds_error=False,

fill_value=0)

291

292 mach_cotg = np.sqrt(mach_number ** 2 - 1) # Mach Cone Inclination

Component [-]

293 mach_sin = 1 / mach_number

294 mach_cos = mach_cotg * mach_sin

295

296 # Projecting Hull points into the r=0 axis by lines parallel to mach cone

(pos and negative)

297 xs_start_array = xs_array - rs_array * mach_cotg

298 xs_end_array = xs_array + rs_array * mach_cotg

299

300 n_start_l = np.argmin(xs_start_array)

301 n_end_l = np.argmax(xs_end_array)

302

303 interp_points = 15

304 points_vector = np.linspace(0, 1, interp_points)

305 interval =4

306

307 if plot_rocket:

308 # plt.figure()

309 random_rocket.draw_rocket()

310 # Calculating the area intersection of the superior half of the rocket

311 area_sup = []

312 x_planes = []

313 for (i, x_plane) in enumerate(xs_start_array[n_start_l:-1:interval]):
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314 r_hull = rs_array[n_start_l + i * interval]

315 x_hull = xs_array[n_start_l + i * interval]

316 d_plane = np.sqrt(r_hull ** 2 + (x_hull - x_plane) ** 2)

317 if x_plane < 0:

318 if i == 0:

319 area_sect = 0

320 x_points = x_hull

321 y_points = r_hull

322 else:

323 x_inter, y_inter = intersect_hull(x_hull, d_plane, f_interp,

mach_number, False)

324 d_plane = np.sqrt((r_hull - y_inter) ** 2 + (x_hull - x_inter)

** 2)

325 x_points = x_inter + points_vector * d_plane * mach_cos

326 y_points = y_inter + points_vector * d_plane * mach_sin

327 inter_rad = np.sqrt(abs(f_interp(x_points) ** 2 - y_points **

2))

328 area_sect = trapezoid_integration(2 * inter_rad, y_points)

329 else:

330 x_points = x_plane + points_vector * d_plane * mach_cos

331 y_points = points_vector * d_plane * mach_sin

332 inter_rad = np.sqrt(abs(f_interp(x_points) ** 2 - y_points ** 2))

333 area_sect = trapezoid_integration(2 * inter_rad, y_points)

334

335 area_sup.append(area_sect)

336 x_planes.append(x_plane)

337 if plot_rocket:

338 plt.plot(x_points, y_points, color=’lightgray’)

339

340 # Getting the area of the last bit that ends on the rocket final length

341 if mach_number > 1:

342 for r_hull in np.linspace(f_interp(xs_max), 0, round(6 /

mach_sin))[:-1]:

343 x_plane = xs_max - r_hull * mach_cotg

344 x_hull = xs_max

345 d_plane = np.sqrt(r_hull ** 2 + (x_hull - x_plane) ** 2)

346 x_points = x_plane + points_vector * d_plane * mach_cos

347 y_points = points_vector * d_plane * mach_sin

348 inter_rad = np.sqrt(abs(f_interp(x_points) ** 2 - y_points ** 2))

349 area_sect = trapezoid_integration(2 * inter_rad, y_points)

350 area_sup.append(area_sect)

351 x_planes.append(x_plane)
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352 if plot_rocket:

353 plt.plot(x_points, y_points, color=’lightgray’)

354 else:

355 area_sup.extend([0, 0, 0])

356 x_planes.extend([x_planes[-1] + 0.01, x_planes[-1] + 0.02,

x_planes[-1] + 0.03])

357

358 # Calculating the area intersection of the inferior half of the rocket

359 area_inf = []

360 x_planes_inf = []

361 areas_export = {}

362 for (i, x_plane) in enumerate(xs_end_array[:n_end_l:interval]):

363 r_hull = rs_array[i * interval]

364 x_hull = xs_array[i * interval]

365 d_plane = np.sqrt(r_hull ** 2 + (x_hull - x_plane) ** 2)

366

367 if xs_end_array[-1] < x_plane < xs_end_array[n_end_l]:

368 # for points which intersect the hull and have an x_plane greater

than the exhaust

369 x_inter, y_inter = intersect_hull(x_hull, d_plane, f_interp,

mach_number, True)

370 d_plane = np.sqrt((r_hull - y_inter) ** 2 + (x_hull - x_inter) ** 2)

371 x_points = x_hull + points_vector * d_plane * mach_cos

372 y_points = r_hull - points_vector * d_plane * mach_sin

373 inter_rad = np.sqrt(abs(f_interp(x_points) ** 2 - y_points ** 2))

374 area_sect = trapezoid_integration(2 * inter_rad[::-1],

y_points[::-1])

375 elif x_plane > xs_max:

376 # for points where the line would cross the last section, ellipse

is only partial

377 r_max = (x_plane - xs_max) / mach_cotg

378 d_plane = np.sqrt((r_hull - r_max) ** 2 + (x_hull - xs_max) ** 2)

379 x_points = xs_max - points_vector * d_plane * mach_cos

380 y_points = r_max + points_vector * d_plane * mach_sin

381 inter_rad = np.sqrt(abs(f_interp(x_points) ** 2 - y_points ** 2))

382 area_sect = trapezoid_integration(2 * inter_rad, y_points)

383 else:

384 x_points = x_plane - points_vector * d_plane * mach_cos

385 y_points = points_vector * d_plane * mach_sin

386 inter_rad = np.sqrt(abs(f_interp(x_points) ** 2 - y_points ** 2))

387 area_sect = trapezoid_integration(2 * inter_rad, y_points)

388
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389 area_inf.append(area_sect)

390 x_planes_inf.append(x_plane)

391 if plot_rocket:

392 plt.plot(x_points, -y_points, color=’lightblue’)

393

394 # Defining the rotation of the plane for non-revolution components

395 # Only the angle between fins has to be studied as it’s cyclical

396 thetas = np.linspace(0, 2 * np.pi / random_rocket.fin_numb, 7)

397 cds = np.ndarray([0])

398 # print(thetas)

399 fourier_points = 150

400 for theta in thetas:

401

402 # Calculating the inclination for each fin

403 ang_phis = theta + np.linspace(0, 2 * np.pi, random_rocket.fin_numb +

1)[:-1]

404 areas_fin = []

405 for angle in ang_phis:

406 cos_eff = mach_cos * np.cos(angle)

407 x_planes_fin, lengths = fin_segments(fin_xs, f_int_top, f_int_base,

cos_eff, plot_fins)

408 fin_eff_thickness = fin_th

409 areas_fin.append([x_planes_fin, [length * fin_eff_thickness for

length in lengths]])

410

411 # Summing different areas calculated in different ranges

412 areas_merge = [[x_planes, area_sup], [x_planes_inf, area_inf]]

413 areas_merge.extend(areas_fin)

414 x_merge, total_area = merge_areas(areas_merge,

plot_graphs=plot_areas_merge, point_number=fourier_points,)

415

416 if export_areas:

417 #print(theta)

418 areas_export[theta] = ([x_merge, total_area])

419

420 # Total Area first derivative

421 diff_total_area = []

422 delta_x = x_merge[1] - x_merge[0]

423 for (n, area) in enumerate(total_area):

424 if n == 0:

425 derivative = (-3 * total_area[n] + 4 * total_area[n+1] - 1 *

total_area[n+2])/(2 * delta_x)
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426 elif area == total_area[-1] or n == fourier_points - 1:

427 derivative = (3 * total_area[n] - 4 * total_area[n - 1] + 1 *

total_area[n-2])/(2 * delta_x)

428 else:

429 derivative = (- total_area[n-1] + total_area[n+1]) / delta_x

430 diff_total_area.append(derivative)

431

432 diff_total_area = np.array(diff_total_area)

433

434 # Applying a fourier series to approximate the function

435 fourier_series = fourier_series_sine_terms(x_merge, diff_total_area,

n_max=20, full=True,

436 plot_comparison=plot_fourier_comparison)

437

438 # Calculating Cd as a series based on the Fourier Sine Coefficients

439 c_d_sup = 0

440 for (n, a_n) in enumerate(fourier_series[’b_array’]):

441 c_d_sup += (n + 1) * a_n ** 2

442

443 c_d_sup = np.pi / 4 * c_d_sup / random_rocket.s_ref

444 cds = np.append(cds, c_d_sup)

445

446 cd_sup = trapezoid_integration(cds, thetas) / (thetas[-1] - thetas[0])

447 if export_areas:

448 return cd_sup, areas_export

449 else:

450 return cd_sup

451

452

453 def supersonic_drag_curve(random_rocket: Rocket, mach_max, points_numb=8,

mach_start=1.2, plot_curve=False):

454 ’’’

455 This programs generates the interpolation curve of wave drag coefficient

by Mach number

456 The transonic region is estimated based on the theory presented in

Aircraft Project: A

457 Conceptual Approach, by Raymer.

458 Parameters

459 ----------

460 random_rocket : Object of the rocket class. See documentation.

461 mach_max : maximum Mach number for the calculations

462 points_numb : Int. Optional. Number of mach values to calculate drag
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coefficient. The

463 default is 8.

464 mach_start : Optional. Minimum mach number for the calculation of the drag

coefficient.

465 Default is 1.2

466 plot_curve : Boolean. Optional. Determines wether a plot of the MachxC_d

curve is drawn.

467 Default is False.

468

469 Returns

470 -------

471 cd_mach_curve : Function. Interpolates mach values for each mach number,

below the limit it

472 is set as 0, above it is set as de value of the point in mach_max

473

474 ’’’

475 mach_number_list = 1 / np.cos(np.linspace(np.arccos(1 / mach_start),

np.arccos(1 / mach_max), points_numb))

476 cd_curve = []

477

478 for mach_number in mach_number_list:

479 c_d = calculate_supersonic_drag(random_rocket, mach_number,

plot_rocket=False)

480 cd_curve.append(c_d)

481

482 # Raymer calculations

483 m_cr = 0.8

484 m_dd = m_cr + 0.08

485 m_c = 1

486 m_b = 1.05

487 machs_raymer = [m_cr, m_dd, m_c, m_b]

488 cds_raymer = [0, 0.002, cd_curve[0] / 2, cd_curve[0]]

489

490 mach_number_list = np.append(machs_raymer, mach_number_list)

491 cd_curve = np.append(cds_raymer, cd_curve)

492 cd_mach_curve = interp1d(mach_number_list, cd_curve, kind=’linear’,

bounds_error=False,

493 fill_value=(0, cd_curve[-1]))

494

495 if plot_curve:

496 plt.figure()

497 xs = np.linspace(m_cr, mach_max, 1000)
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498 cds = cd_mach_curve(xs)

499 plt.plot(xs, cds, color=’orange’)

500 plt.plot(mach_number_list, np.array(cd_curve), ’.’, color=’blue’)

501 plt.show()

502

503 return cd_mach_curve


