

**UNIVERSIDADE DE SÃO PAULO  
ESCOLA DE ENGENHARIA DE SÃO CARLOS**

**Guillermo Alexander Krauch Caballero**

**Development of a program for the multidisciplinary  
optimization of a single stage rocket**

**São Carlos**

**2021**



**Guillermo Alexander Krauch Caballero**

**Development of a program for the multidisciplinary  
optimization of a single stage rocket**

Monografia apresentada ao Curso de Engenharia Aeronáutica, da Escola de Engenharia de São Carlos da Universidade de São Paulo, como parte dos requisitos para obtenção do título de Engenheiro Aeronáutico.

Supervisor: Prof. Dr. Alvaro Martins Abdalla

**São Carlos  
2021**

AUTORIZO A REPRODUÇÃO TOTAL OU PARCIAL DESTE TRABALHO,  
POR QUALQUER MEIO CONVENCIONAL OU ELETRÔNICO, PARA FINS  
DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE.

Ficha catalográfica elaborada pela Biblioteca Prof. Dr. Sérgio Rodrigues Fontes da  
EESC/USP com os dados inseridos pelo(a) autor(a).

K91d Krauch, Guillermo Alexander  
Desenvolvimento de um programa para otimização  
multidisciplinar de um foguete de um estágio /  
Guillermo Alexander Krauch; orientador Alvaro Martins  
Abdalla. São Carlos, 2021.

Monografia (Graduação em Engenharia Aeronáutica)  
-- Escola de Engenharia de São Carlos da Universidade  
de São Paulo, 2021.

1. otimização multidisciplinar. 2. arrasto  
supersônico. 3. propulsão de foguetes. I. Título.

## FOLHA DE APROVAÇÃO

|                                                                                                                   |
|-------------------------------------------------------------------------------------------------------------------|
| <b>Candidato:</b> Guillermo Alexander Krauch Caballero                                                            |
| <b>Título do TCC:</b> Desenvolvimento de um programa para otimização multidisciplinar de um foguete de um estágio |
| <b>Data de defesa:</b> 10/09/2021                                                                                 |

| Comissão Julgadora                           | Resultado       |
|----------------------------------------------|-----------------|
| Professor Doutor Hernan Dario Ceron Muñoz    | <i>APROVADO</i> |
| Instituição: EESC - SAA                      |                 |
| Professor Associado Paulo Celso Greco Júnior | Aprovado        |
| Instituição: EESC - SAA                      |                 |

Presidente da Banca: Professor Doutor Hernan Dario Ceron Muñoz



(assinatura)



## ACKNOWLEDGEMENTS

Firstly I would like to thank my parents, my brothers and all of my family for their unconditional love and support, their faith in my capacity to reach higher challenges and their great examples to follow. I surely would not be able to be half of who I am today if it was not for you.

I would also like to thank professor Abdalla, for presenting me to the idea of the project when it was only at embryonary stage, for his support, guidance and patience during its development and for his input on the different complex topics throughout the project. This dissertation would certainly be a lot shorter and less structured if it wasn't for him.

I'd also like to thank my girlfriend, Mariana, whose support throughout the project and loving patience gave me the focus and drive to get to this point.

To all classmates and friends at the Aeronautical Engineering course and to all my teammates at EESC-USP Aerodesign. Thank you for showing me what it is to truly work as a team, to help each other sharing glories and falls, to persevere and thrive against the adversity and to do something with love giving one's best. I surely learned some of the most valuable lessons with you while working and learning until morning, sharing moments and experiences that will forever mark me.

To everyone that loves air and space, to everyone who dares go beyond what was previously thought possible, to everyone who is brave enough to challenge our beliefs and to help humanity reach higher limits. Thank you for inspiring me, thank you for giving your grain (or sometimes truckload) of salt to grow humanity's future. Ad Astra!

In the loving memory of Juan Rafael Caballero Morínigo, Pastora Riera de Krauch and Axel Perán Schupmann.



## ABSTRACT

Krauch, G. A. **Development of a program for the multidisciplinary optimization of a single stage rocket.** 2021. 113p. Monografia (Trabalho de Conclusão de Curso) - Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2021.

The space economy is a rapidly growing and developing market, with players entering it at a fast pace. Smaller and medium players rely on nano-satellites as an entering platform, but there's a growing concern for higher reliability and future regulation. Sounding rockets prove a useful platform to safely test and develop these technologies, as well as to conduct other research. In this work, we study the creation of an optimization algorithm for a single-stage sounding rocket that carries a payload to a given altitude, simulated using a one degree of freedom system. Modules of propulsion and aerodynamic drag are the main focus, using simplified analyses to minimize execution time. A solution obtained for a test case of launching a 3U CubeSat sized payload to a 150km altitude is presented and discussed. Other applications of the software are briefly discussed.

**Keywords:** multidisciplinary optimization, rocket propulsion, supersonic drag



## RESUMO

Krauch, G. A. **Development of a program for the multidisciplinary optimization of a single stage rocket.** 2021. 113p. Monografia (Trabalho de Conclusão de Curso) - Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2021.

A economia do espaço é um mercado em rápida expansão e desenvolvimento, com atores entrando em um ritmo acelerado. Pequenos e medianos atores apostam em nano-satélites como a plataforma de entrada, mas existe uma preocupação crescente sobre confiabilidade e futuras regulações de espaçonaves. Os foguetes de sondagem se mostram uma plataforma útil para testar e desenvolver estas tecnologias, assim também como conduzir várias outras pesquisas. Neste trabalho, estudamos a criação de um algoritmo de otimização multidisciplinar para um foguete de estágio único que leva uma carga até uma determinada altitude, simulado usando um sistema de um grau de liberdade. Os módulos de propulsão e arrasto aerodinâmico são o foco principal, utilizando análises simplificadas para minimizar o tempo de execução. Uma solução obtida para o caso modelo de lançar um satélite de 3U a uma altitude de 150km e apresentada e discutida. Outras aplicações para o programa desenvolvido também são apresentadas.

**Palavras-chave:** otimização multidisciplinar, propulsão de foguetes, arrasto supersônico



## LIST OF FIGURES

|                                                                                                                                                   |    |
|---------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Figure 1 – Configurations of Nano-Satellites launched between 2003 and 2021, synthesized from data available in (KULU, 2021) . . . . .            | 27 |
| Figure 2 – Different U Configuration of the CubeSat Concept, extracted from (THE CUBESAT PROGRAM,, 2020) . . . . .                                | 28 |
| Figure 3 – Technical schematics and sizing from the 3U CubeSat, extracted from (THE CUBESAT PROGRAM,, 2020) . . . . .                             | 29 |
| Figure 4 – Example of intersection of an aircraft by $M_{ach}$ planes and the resulting area distribution, extracted from (JONES, 1953) . . . . . | 36 |
| Figure 5 – The example of a random rocket implemented in (OPEN VSP, 2021) .                                                                       | 37 |
| Figure 6 – Intersection of a $M_{ach} = 1.5$ plane and the rocket implemented in (OPEN VSP, 2021) . . . . .                                       | 37 |
| Figure 7 – Example of the method for the estimation of transonic $C_D^{SUP}$ , extracted from (RAYMER, 2004). . . . .                             | 38 |
| Figure 8 – Simplified design of a solid rocket motor, extracted from (SUTTON; BIBLARZ, 2000) . . . . .                                            | 41 |
| Figure 9 – Simplified design of an electric rocket thruster, extracted from (SUTTON; BIBLARZ, 2000) . . . . .                                     | 42 |
| Figure 10 – Nozzle sizing process, extracted from (SUTTON; BIBLARZ, 2000) .                                                                       | 44 |
| Figure 11 – Burning rate for different materials and temperatures, extracted from (SUTTON; BIBLARZ, 2000) . . . . .                               | 45 |
| Figure 12 – Effects of rocket axial spin in the thrust-time curve extracted from (SUTTON; BIBLARZ, 2000) . . . . .                                | 46 |
| Figure 13 – Examples of Grain Configuration extracted from (SUTTON; BIBLARZ, 2000) . . . . .                                                      | 47 |
| Figure 14 – Rocket's free body diagram, elaborated by the author, rocket image generated using OpenRocket(OPEN ROCKET, 2021?) . . . . .           | 54 |
| Figure 15 – Propellant star disposition that allows and approximately constant $A_B$ , extracted from (SUTTON; BIBLARZ, 2000) . . . . .           | 56 |
| Figure 16 – Format of the fins chosen for the optimization, based on the one presented in (PALLONE et al., 2018) . . . . .                        | 58 |
| Figure 17 – Different nose configurations studied for each rocket based on the definitions of (CROWELL, 1996) . . . . .                           | 60 |
| Figure 18 – Interactions between different modules that compose the program . . .                                                                 | 60 |
| Figure 19 – Flowchart of the main module . . . . .                                                                                                | 62 |
| Figure 20 – Flowchart of the estimations regarding the propulsion system . . . . .                                                                | 64 |
| Figure 21 – Flowchart of the simulation of the trajectory of a rocket . . . . .                                                                   | 66 |

|                                                                                                                                                                                                                              |    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Figure 22 – Intersections of $M_{ach} = 1.5$ planes and the rocket's main body, separated in upper (orange) and lower halves (blue) . . . . .                                                                                | 70 |
| Figure 23 – Intersection of the $M_{ach} = 1.5$ planes and the fins for $\theta = 0^\circ$ . . . . .                                                                                                                         | 71 |
| Figure 24 – Intersection of the $M_{ach} = 1.5$ planes and the fins for $\theta = 15^\circ$ . . . . .                                                                                                                        | 72 |
| Figure 25 – Distribution of the total intercepted area for each $M_{ach} = 1.5$ and $\theta = 0^\circ$ plane in blue, area distribution of each the separate components (upper/lower body and fins) plotted in gray. . . . . | 72 |
| Figure 26 – Example of a $C_D^{SUP} \times M_{ach}$ obtained using the Wave Drag Module . . . . .                                                                                                                            | 73 |
| Figure 27 – Comparison between two area distributions, one obtained by OpenVSP and another calculated, for $M_{ach} = 1.5$ for the same rocket configuration . . . . .                                                       | 74 |
| Figure 28 – Comparison between two area distributions, one obtained by OpenVSP and another calculated, for different $M_{ach}$ for the same rocket configuration . . . . .                                                   | 75 |
| Figure 29 – Comparison between analytic and numeric solution for a Simple Harmonic Oscilator . . . . .                                                                                                                       | 75 |
| Figure 30 – Comparison of the numeric energy dissipation of the system for different values of $dt$ . . . . .                                                                                                                | 76 |
| Figure 31 – Comparison of Rocket $\Delta V$ over mass and time variation between analytic and numeric solution for an ideal rocket in a drag-less environment . . . . .                                                      | 76 |
| Figure 32 – Relative Variation of the maximum altitude reached for different time intervals . . . . .                                                                                                                        | 77 |
| Figure 33 – Variations on $ToW$ for different throat area ratios and both grain configurations studied for a given rocket . . . . .                                                                                          | 78 |
| Figure 34 – Values of different variables for the best performing rocket of each generation for each of the simulations Sim 1-5 for the end-burner configuration . . . . .                                                   | 80 |
| Figure 35 – Distribution of maximum altitude reached by total launch mass for the end-burner configuration . . . . .                                                                                                         | 81 |
| Figure 36 – Rocket obtained through optimization of the end-burner configuration . . . . .                                                                                                                                   | 82 |
| Figure 37 – Data obtained by the simulation of the best scoring rocket obtained in Sim 1-5 . . . . .                                                                                                                         | 83 |
| Figure 38 – Values of different variables for the best performing rocket of each generation for each of the simulations Sim 1-5 in the star configuration . . . . .                                                          | 84 |
| Figure 39 – Distribution of maximum altitude reached by total launch mass . . . . .                                                                                                                                          | 85 |
| Figure 40 – Rocket obtained through optimization of the star configuration . . . . .                                                                                                                                         | 86 |
| Figure 41 – Data obtained by the simulation of the best scoring rocket obtained in Sim 1-5 in the star configuration . . . . .                                                                                               | 87 |

## LIST OF TABLES

|                                                                                                                                                                                                                       |    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Table 1 – Typical Mass for each U configuration with Ranges of acceptable center of gravity locations as measured from the geometric center on each major axis, extracted from (THE CUBESAT PROGRAM,, 2020) . . . . . | 28 |
| Table 2 – Typical values for the combustion of Ammonia Perchlorate used for the simulations, extracted from (SUTTON; BIBLARZ, 2000). . . . .                                                                          | 55 |
| Table 3 – Data extracted from PyPL (CARBONNELLE, 2021) . . . . .                                                                                                                                                      | 61 |
| Table 4 – Data extracted from TIOBE (TIOBE, 2021) . . . . .                                                                                                                                                           | 61 |
| Table 5 – Comparison of programming languages . . . . .                                                                                                                                                               | 62 |
| Table 6 – Rockets obtained through optimization of the end-burner configuration . . . . .                                                                                                                             | 79 |
| Table 7 – Main simulation results for the end-burner configuration . . . . .                                                                                                                                          | 81 |
| Table 8 – Rockets obtained through optimization of the star configuration . . . . .                                                                                                                                   | 85 |
| Table 9 – Main simulation results for the star configuration . . . . .                                                                                                                                                | 86 |



## **LIST OF ABBREVIATIONS AND ACRONYMS**

|     |                                    |
|-----|------------------------------------|
| CG  | Center of Gravity / Center of Mass |
| CFD | Computational fluid dynamics       |
| DOF | Degrees of Freedom                 |
| LEO | Low Earth Orbit                    |
| MAC | Medium Aerodynamic Chord           |
| USD | United States Dollars              |



## LIST OF SYMBOLS

|               |                                                                        |
|---------------|------------------------------------------------------------------------|
| $A_B$         | Burning area                                                           |
| $A_c$         | Combustion chamber's cross-sectional area                              |
| $A_e$         | Nozzle's exit cross-sectional area                                     |
| $A_t$         | Nozzle's throat cross-sectional area                                   |
| $A_i$         | Nozzle's cross-sectional area at a point i                             |
| $A_n$         | Fourier series $n^{th}$ grade sine coefficient                         |
| $a_r$         | Burning rate a coefficient                                             |
| $C_D$         | Total drag coefficient                                                 |
| $C_D^{SUB}$   | Profile drag coefficient                                               |
| $C_D^{SUB}$   | Wave drag coefficient                                                  |
| $C_{DL\&P}$   | drag coefficient due to leakages and protuberances                     |
| $C_{D\,misc}$ | Drag coefficient due to miscellaneous components                       |
| $C_D^{PAR}$   | Parachute's drag coefficient                                           |
| $C_{fc}$      | Components friction coefficient                                        |
| $c_{sound}$   | Speed of sound                                                         |
| $D$           | Total aerodynamic drag                                                 |
| $d_{MAX}$     | Objects maximum diameter                                               |
| $d_C$         | Combustion chamber's diameter                                          |
| $dt$          | Time finite differential                                               |
| $F$           | Rocket Thrust                                                          |
| $FF_c$        | Component's form factor                                                |
| $F^*$         | Part of the rocket thrust that only considers effects of mass ejection |
| $f_c$         | factor in calculations of form factor                                  |
| $f_s$         | safety factor for motor calculation                                    |

|                |                                                                            |
|----------------|----------------------------------------------------------------------------|
| $g$            | Local gravity                                                              |
| $g_0$          | Gravity at sea level                                                       |
| $h$            | Altitude variable                                                          |
| $\dot{h}$      | Altitude's first derivative over time / Speed in the altitude axis         |
| $\ddot{h}$     | Altitude's second derivative over time / Acceleration in the altitude axis |
| $h_{ref}$      | Reference altitude, goal of the optimization                               |
| $h_{max}$      | Maximum altitude reached by rocket                                         |
| $I_t$          | Total impulse                                                              |
| $I_{sp}$       | Specific impulse                                                           |
| $K_i$          | Runge-Kutta's method i coefficient                                         |
| $k_c$          | component's finishing roughness                                            |
| $l_C$          | Length of the cylinder composing the combustion chamber                    |
| $M_R$          | Mass ratio                                                                 |
| $M_{gas}$      | Gas' molar weight                                                          |
| $M_{ach}$      | Mach number                                                                |
| $M_{ach}^{cr}$ | Critical Mach number                                                       |
| $M_{ach}^{dd}$ | Divergence Mach number                                                     |
| $MAC_{fin}$    | Fin's Medium aerodynamic chord                                             |
| $MS_{min}$     | Minmum static margin                                                       |
| $m$            | Mass (at any given time)                                                   |
| $\dot{m}$      | Mass flow                                                                  |
| $m_f$          | Final mass / Empty mass                                                    |
| $m_p$          | Propellant mass                                                            |
| $n_r$          | Burn rate n coefficient                                                    |
| $P_{AMB}$      | Medium's ambient pressure                                                  |
| $P_e$          | Nozzles exhaust pressure                                                   |

|               |                                                                                                                           |
|---------------|---------------------------------------------------------------------------------------------------------------------------|
| $P_{i,x,y}$   | Nozzles pressure on a given point i, x or y                                                                               |
| $P_0$         | Nozzles stagnation pressure                                                                                               |
| $P_C$         | Combustion chamber's pressure                                                                                             |
| $p_{mut}$     |                                                                                                                           |
| $Q_c$         | Component's interference factor                                                                                           |
| $R_u$         | Ideal gas universal constant                                                                                              |
| $R_{spec}$    | Ideal gas specific constant                                                                                               |
| $R_e$         | Reynolds number                                                                                                           |
| $R_{ecutoff}$ | Cutoff Reynolds number                                                                                                    |
| $r_B$         | Burning rate                                                                                                              |
| $r_{earth}$   | Earth's radius                                                                                                            |
| $r_p$         | point's radial coordinate                                                                                                 |
| $S_{wetc}$    | Component's wetted surface                                                                                                |
| $S_{REF}$     | Reference area                                                                                                            |
| $S(x)$        | area intersected by a $M_{ach}$ plane crossing the object's main axis on the x coordinate projected in the flow direction |
| $T_{i,x,y}$   | Nozzle's temperature on a given point i, x or y                                                                           |
| $T_0$         | Nozzle's stagnation temperature                                                                                           |
| $T_C$         | Combustion chamber's temperature                                                                                          |
| $ToW$         | Thrust-over-Weight ratio                                                                                                  |
| $t_0$         | time of ignition                                                                                                          |
| $t_{burnout}$ | time when the combustion stops                                                                                            |
| $t_{wall}$    | motor's casing wall thickness                                                                                             |
| $\frac{t}{c}$ | Airfoil's maximum thickness relative to chord                                                                             |
| $t$           | time variable                                                                                                             |
| $th_{fin}$    | Dimensional fin thickness                                                                                                 |

|                     |                                                                                              |
|---------------------|----------------------------------------------------------------------------------------------|
| $T_{AMB}$           | Medium temperature                                                                           |
| $v_e$               | Nozzle exhaust velocity                                                                      |
| $v_{i,x,y}$         | Nozzle flow speed in a given point i, x or y                                                 |
| $V$                 | Object's velocity                                                                            |
| $V_{ter}$           | Object's terminal velocity                                                                   |
| $x^r el_{th_{max}}$ | fraction of chord where the maximum thickness of the airfoil occurs                          |
| $\bar{x}$           | .                                                                                            |
| $x_0$               | .                                                                                            |
| $x_{plane}$         | x coordinate of the intersection of a $M_{ach}$ plane with the rocket's main coordinate axis |
| $x_p$               | point's coordinate on the rocket's main axis                                                 |
| $y$                 | check                                                                                        |
| $\gamma$            | Specific heat ratio                                                                          |
| $\theta$            | angle of rotation of the $M_{ach}$ plane                                                     |
| $\rho$              | check                                                                                        |
| $\rho_{AMB}$        | Medium's density                                                                             |
| $\rho_p$            | Propellant density                                                                           |
| $\mu_{AMB}$         | Medium's viscosity                                                                           |
| $\Lambda_m$         | Sweep angle of the maximum thickness line on an aerodynamic surface                          |
| $\lambda_{thrust}$  | thrust correction factor                                                                     |
| $\sigma_y$          | material's yield stress                                                                      |
| $\ell_c$            | components characteristic length                                                             |

## CONTENTS

|            |                                                         |           |
|------------|---------------------------------------------------------|-----------|
| <b>1</b>   | <b>INTRODUCTION</b>                                     | <b>25</b> |
| <b>1.1</b> | <b>Motivation</b>                                       | <b>25</b> |
| <b>1.2</b> | <b>Mission Definition</b>                               | <b>25</b> |
| <b>1.3</b> | <b>Payload Definition</b>                               | <b>26</b> |
| <b>1.4</b> | <b>Objectives</b>                                       | <b>29</b> |
| <b>2</b>   | <b>BACKGROUND</b>                                       | <b>31</b> |
| <b>2.1</b> | <b>Modern Sounding Rocket Architecture</b>              | <b>31</b> |
| <b>2.2</b> | <b>Aerodynamic Drag</b>                                 | <b>31</b> |
| 2.2.1      | Profile Drag                                            | 33        |
| 2.2.1.1    | Friction Coefficient                                    | 33        |
| 2.2.1.2    | Form Factor                                             | 34        |
| 2.2.1.3    | Interference factor                                     | 34        |
| 2.2.2      | Wave Drag                                               | 34        |
| 2.2.2.1    | Estimation of Wing-Body Wave Drag for Supersonic Speeds | 35        |
| 2.2.2.2    | Estimation of wave drag in the Transonic region         | 37        |
| <b>2.3</b> | <b>Atmospheric Conditions</b>                           | <b>38</b> |
| <b>2.4</b> | <b>Rocket Propulsion</b>                                | <b>39</b> |
| 2.4.1      | Main Metrics for Rocket propulsion performance          | 39        |
| 2.4.1.1    | Thrust                                                  | 39        |
| 2.4.1.2    | Total Impulse                                           | 40        |
| 2.4.1.3    | Specific Impulse                                        | 40        |
| 2.4.1.4    | Mass ratio                                              | 40        |
| 2.4.1.5    | ToW Ratio                                               | 40        |
| 2.4.2      | Rocket Propulsion Mechanisms                            | 40        |
| 2.4.2.1    | Chemical Propulsion                                     | 40        |
| 2.4.2.2    | Electric Propulsion                                     | 41        |
| 2.4.3      | Rocket Nozzles                                          | 42        |
| 2.4.3.1    | Isentropic Flow                                         | 42        |
| 2.4.3.2    | Nozzle's Effect on Thrust Equation                      | 43        |
| 2.4.3.3    | Nozzle Geometric definition                             | 43        |
| 2.4.4      | Solid Propellant Combustion                             | 43        |
| 2.4.4.1    | Propellant burning rate                                 | 44        |
| 2.4.4.2    | Propellant Configuration                                | 46        |
| <b>2.5</b> | <b>Stability and Control</b>                            | <b>48</b> |
| 2.5.1      | Stability systems                                       | 48        |

|            |                                                                               |           |
|------------|-------------------------------------------------------------------------------|-----------|
| 2.5.2      | Active control systems . . . . .                                              | 48        |
| <b>2.6</b> | <b>Materials and Structures . . . . .</b>                                     | <b>48</b> |
| 2.6.1      | Skin and Fins . . . . .                                                       | 48        |
| 2.6.2      | Motor . . . . .                                                               | 49        |
| <b>2.7</b> | <b>Optimization and Numerical Solution Methods . . . . .</b>                  | <b>49</b> |
| 2.7.1      | Optimization Methods . . . . .                                                | 49        |
| 2.7.2      | Genetic Algorithm . . . . .                                                   | 50        |
| 2.7.3      | Numerical Solution Methods . . . . .                                          | 51        |
| 2.7.3.1    | Finite Differences . . . . .                                                  | 51        |
| 2.7.3.2    | Trapezoid Integration . . . . .                                               | 51        |
| 2.7.3.3    | Runge-Kutta Methods . . . . .                                                 | 51        |
| <b>3</b>   | <b>METHODS . . . . .</b>                                                      | <b>53</b> |
| <b>3.1</b> | <b>Conceptual Considerations . . . . .</b>                                    | <b>53</b> |
| 3.1.1      | Aerodynamic Considerations . . . . .                                          | 53        |
| 3.1.2      | Numerical Simulation Considerations . . . . .                                 | 53        |
| 3.1.3      | Propulsion Considerations . . . . .                                           | 54        |
| 3.1.3.1    | Solid Rocket Propulsion Selection . . . . .                                   | 54        |
| 3.1.3.2    | Motor Geometric Constraints . . . . .                                         | 55        |
| 3.1.3.3    | Grain Composition and Disposition Selection . . . . .                         | 55        |
| 3.1.4      | Stability Considerations . . . . .                                            | 56        |
| 3.1.5      | Material Considerations . . . . .                                             | 56        |
| 3.1.6      | Body Geometric Considerations . . . . .                                       | 57        |
| 3.1.6.1    | Rocket Diameter and Length . . . . .                                          | 57        |
| 3.1.6.2    | Fin geometry . . . . .                                                        | 57        |
| <b>3.2</b> | <b>Definition of optimization variables and their studied range . . . . .</b> | <b>58</b> |
| 3.2.1      | Diameter . . . . .                                                            | 58        |
| 3.2.2      | Length to Diameter Ratio . . . . .                                            | 59        |
| 3.2.3      | Fin Size Ratio . . . . .                                                      | 59        |
| 3.2.4      | Fin Position . . . . .                                                        | 59        |
| 3.2.5      | Nose Length Ratio . . . . .                                                   | 59        |
| 3.2.6      | Nose Type . . . . .                                                           | 59        |
| 3.2.7      | Throat area ratio . . . . .                                                   | 59        |
| <b>3.3</b> | <b>Algorithms and Implementation . . . . .</b>                                | <b>60</b> |
| 3.3.1      | Programming Language Choice . . . . .                                         | 61        |
| 3.3.2      | Main Module . . . . .                                                         | 62        |
| 3.3.3      | Atmosphere Class - Module . . . . .                                           | 62        |
| 3.3.4      | Rocket Class - Module . . . . .                                               | 63        |
| 3.3.4.1    | Propulsion Calculations . . . . .                                             | 63        |
| 3.3.4.2    | Recovery system Calculations . . . . .                                        | 64        |

|            |                                                                           |           |
|------------|---------------------------------------------------------------------------|-----------|
| 3.3.4.3    | Static Stability . . . . .                                                | 65        |
| 3.3.4.4    | Scoring . . . . .                                                         | 65        |
| 3.3.5      | Payload Class - Module . . . . .                                          | 66        |
| 3.3.6      | Physics Module . . . . .                                                  | 66        |
| 3.3.6.1    | Auxiliary Functions . . . . .                                             | 66        |
| 3.3.7      | Genetic Evaluation Module . . . . .                                       | 67        |
| 3.3.7.1    | Random Rocket Generation . . . . .                                        | 67        |
| 3.3.7.2    | Mating method . . . . .                                                   | 67        |
| 3.3.7.3    | Selection method . . . . .                                                | 68        |
| 3.3.7.4    | Creation of New Generations . . . . .                                     | 68        |
| 3.3.8      | Wave Drag Module . . . . .                                                | 69        |
| 3.3.8.1    | Revolution Body area distribution . . . . .                               | 69        |
| 3.3.8.2    | Fins area distribution . . . . .                                          | 70        |
| 3.3.8.3    | Drag Coefficient calculation . . . . .                                    | 71        |
| <b>3.4</b> | <b>Program validation and testing</b> . . . . .                           | <b>74</b> |
| 3.4.1      | Testing the Supersonic Drag module . . . . .                              | 74        |
| 3.4.2      | Testing the Physics Integrator Module . . . . .                           | 74        |
| 3.4.3      | Tests of Propulsion Calculations . . . . .                                | 76        |
| 3.4.4      | Test of the Stability Calculations . . . . .                              | 77        |
| <b>4</b>   | <b>RESULTS AND DISCUSSION</b> . . . . .                                   | <b>79</b> |
| <b>4.1</b> | <b>Optimization Executions for the End-Burner Configuration</b> . . . . . | <b>79</b> |
| 4.1.1      | Best performing rocket obtained through optimization . . . . .            | 79        |
| 4.1.2      | Simulation of the best performing rocket . . . . .                        | 82        |
| <b>4.2</b> | <b>Optimization Executions for the Star Configuration</b> . . . . .       | <b>82</b> |
| 4.2.1      | Best performing rocket obtained through optimization . . . . .            | 84        |
| 4.2.2      | Possible drawbacks in the Simulation . . . . .                            | 86        |
| <b>4.3</b> | <b>Overall Views on the Performance of the Algorithm</b> . . . . .        | <b>88</b> |
| <b>4.4</b> | <b>Possible Future Steps</b> . . . . .                                    | <b>88</b> |
| 4.4.1      | Changing the rocket's body format . . . . .                               | 88        |
| 4.4.2      | Allowing for non-constant thrust-time curves . . . . .                    | 88        |
| 4.4.3      | Allowing variations on the fin's format . . . . .                         | 89        |
| <b>5</b>   | <b>CONCLUSION</b> . . . . .                                               | <b>91</b> |
|            | <b>BIBLIOGRAPHY</b> . . . . .                                             | <b>93</b> |

**Appendices** **97**

**APPENDIX A – SUPERSONIC DRAG ESTIMATION PROGRAM**  
**CODE** ..... **99**

## 1 INTRODUCTION

According to NASA the term "sounding rocket" derived from the analogy to maritime soundings made of the ocean depths. It describes rockets that carry instruments into the upper atmosphere to investigate its nature and characteristics, gathering data from meteorological measurements at altitudes as low as  $32\text{ km}$  to data for ionospheric and cosmic physics at altitudes up to  $6400\text{ km}$ . Sounding rockets also flight-test assemblies that will be sent to space ([WELLS; WHITELEY; KAREGEANNES, 1975](#)).

The focus of this project will be to analyze the different factors taken into account on the initial phases of the conceptual project of a sounding rocket, in order to create an algorithm capable to simulate different configurations and optimize the rocket for a desired goal. Throughout this project, special care will be taken so that the resulting algorithms are easy to adapt for future uses and expansions.

### 1.1 Motivation

With the growth of the space economy, many private players (large, medium and small) have started to flow into this market. The space economy is rapidly growing and could achieve a yearly revenue of over 1 trillion USD, compared to its current 350 billion USD. ([MORGAN-STANLEY, 2020](#))

With these new smaller players, a new wave of component suppliers focused in this segment can be expected to rise. A common concept in current small players in the space economy is the use of a scalable NanoSat network, growing steadily as the service gains momentum [ref]. These new components and assemblies will need test to be deemed safe and deployable. While there are no currently widespread regulations for the launch of small satellites, market best practices encourage extensive testing campaigns and many players are already calling for a stricter test regulation in order to avoid the Chain Crash Orbital effect. ([ROETGEN; DESCH, 2020](#))

In this context the mission of this project can be shortly defined as "to create an optimization program that helps give the first steps on the conceptual project of a suborbital launch vehicle, with a target group on the test of nano satellites and nano satellite's components".

### 1.2 Mission Definition

A usual approach for sounding rocket optimization research is defining a reference altitude that must be achieved by the rocket and then optimizing the desired variables to minimize one specific magnitude ([ADAMI; MORTAZAVI; NOSRATOLLAHI, 2016](#))

(OKNINSKI, 2017) (BARBOSA; GUIMARÃES, 2012). Thus, the mission will be defined as to reach a target altitude  $h_{ref}$  optimizing the total launch mass of the vehicle.

Considering the wide range of altitudes for sounding rocket operations described on (WELLS; WHITELEY; KAREGEANNES, 1975), considering a realistic value for  $h_{ref}$  will make a significant difference in project complexity. ESA defines LEO as an orbit that is relatively close to Earth's surface. It is normally at an altitude of less than 1000 km but could be as low as 160 km above Earth (ESA, 2020). Most new players in the sounding rocket market focus their attention to the altitude range between 100km and 300km(OKNINSKI, 2017). Thus, a reference altitude of 150km will be defined as the target in order to test LEO components' launch and environmental resistance. As a secondary objective, an estimation of the time of the trajectory spent in micro-gravity will be given in order to study possible scientific payloads. While micro-gravity can be defined, using a strict definition, as an acceleration lower than one millionth of the gravity on Earth's surface. 1% of the gravity on Earth's surface, which is considered enough to do many experiments, will be the loose definition considered (ROGERS; VOGT; WARGO, 1997).

### 1.3 Payload Definition

In order to define the payload that will be used as reference a study on the frequency of use of different payload standards was conducted. According to the NanoSat and CubeSat Database (KULU, 2021), the number of registered NanoSatellites in the past 18 years, over 90% of those are some variation of the CubeSat basic model. As shown in Figure 1 the predominant design is the 3U Cubesat totaling almost 54% of the produced units. The open-source approach, small volumes and the growing modularity make the CubeSat the design standard for small enterprises looking to enter the space economy. The use of the CubeSat concept as a platform for small players on the space industry is on the rise (NAGEL; NOVO; KAMPEL, 2020).

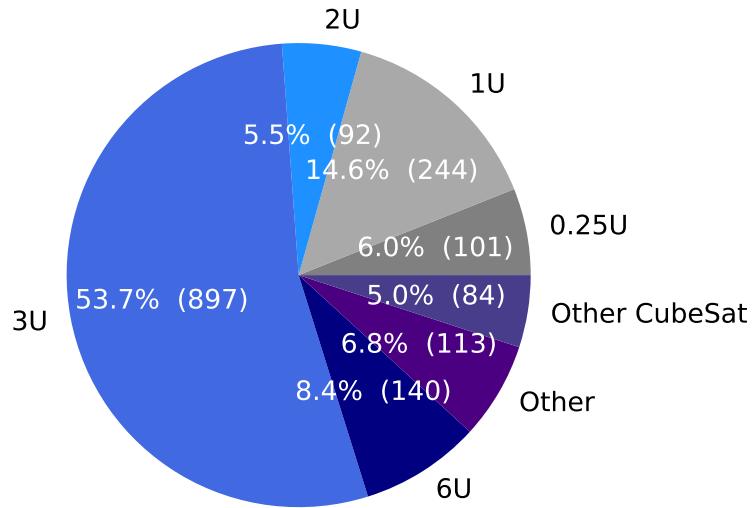


Figure 1 – Configurations of Nano-Satellites launched between 2003 and 2021, synthesized from data available in ([KULU, 2021](#))

The CubeSat standard was created by California Polytechnic State University, San Luis Obispo and Stanford University's Space Systems Development Lab in 1999 to facilitate access to space for university students. Since then the standard has been adopted by hundreds of organizations worldwide. The CubeSat standard facilitates frequent and affordable access to space with launch opportunities available on most launch vehicles. ([THE CUBESAT PROGRAM, 2021?](#))

The usual CubeSat configurations are specified as 1U, 1.5U, 2U, 3U, 6U e 12U, as can be seen in Figure 2. The masses and tolerances for *CG* for each configuration can be found in table 1.

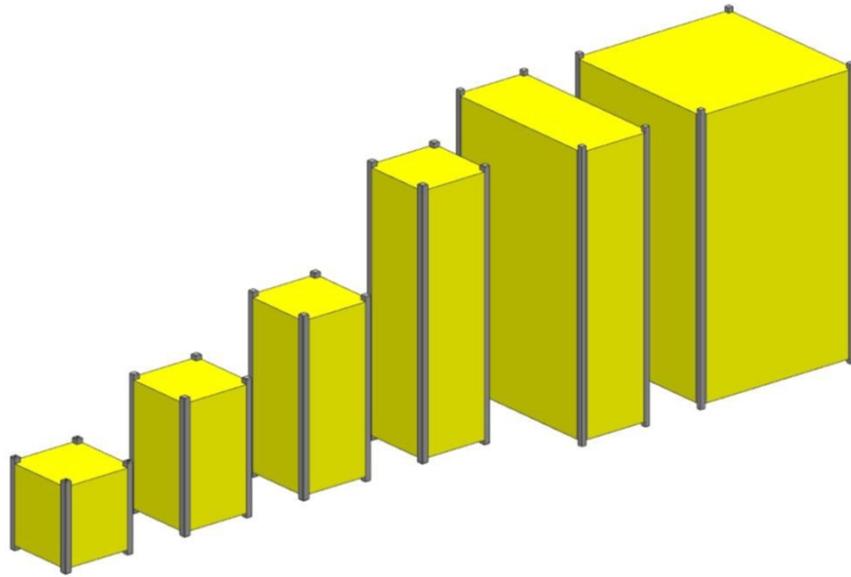


Figure 2 – Different U Configuration of the CubeSat Concept, extracted from ([THE CUBESAT PROGRAM, 2020](#))

| U Configuration | Mass [kg] | Ranges of acceptable center of gravity |                    |                    |
|-----------------|-----------|----------------------------------------|--------------------|--------------------|
|                 |           | X Axis                                 | Y Axis             | Z Axis             |
| 1U              | 2         | + 2 cm / -2 cm                         | + 2 cm / -2 cm     | + 2 cm / -2 cm     |
| 1.5U            | 3         | + 2 cm / -2 cm                         | + 2 cm / -2 cm     | + 3 cm / -3 cm     |
| 2U              | 4         | + 2 cm / -2 cm                         | + 2 cm / -2 cm     | + 4.5 cm / -4.5 cm |
| 3U              | 6         | + 2 cm / -2 cm                         | + 2 cm / -2 cm     | + 7 cm / -7 cm     |
| 6U              | 12        | + 4.5 cm / -4.5 cm                     | + 4.5 cm / -4.5 cm | + 7 cm / -7 cm     |
| 12U             | 24        | + 4.5 cm / -4.5 cm                     | + 4.5 cm / -4.5 cm | + 7 cm / -7 cm     |

Table 1 – Typical Mass for each U configuration with Ranges of acceptable center of gravity locations as measured from the geometric center on each major axis, extracted from ([THE CUBESAT PROGRAM, 2020](#))

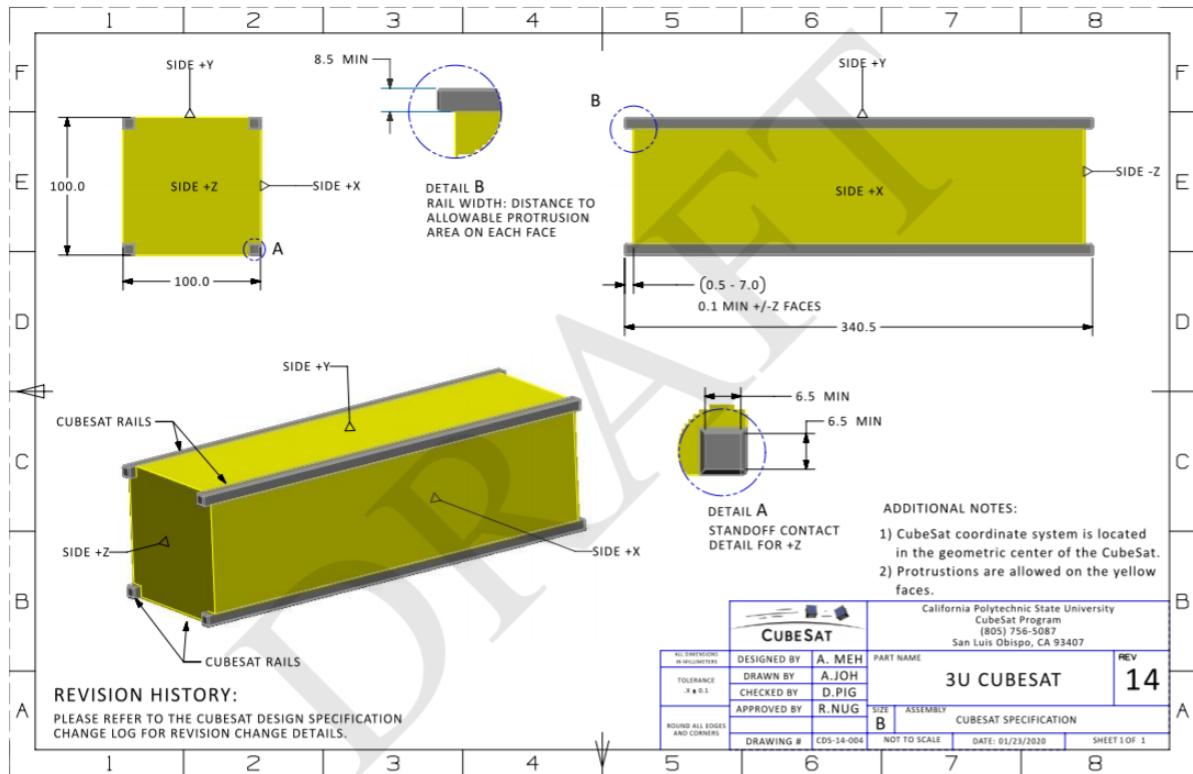


Figure 3 – Technical schematics and sizing from the 3U CubeSat, extracted from ([THE CUBESAT PROGRAM](#), 2020)

Thus, it can be concluded that the 3U Cubesat design is the most fit candidate for a model payload as it is the most commonly used by the market. With its dimensions presented Figure 3.

## 1.4 Objectives

The objective of this project is to develop an optimization algorithm for the optimization of the geometric parameters for a suborbital research rocket. The optimization parameter will be the launch weight of the rocket, considering a fixed payload and altitude to attain. The focus areas of the project will be: aerodynamics (focused in booth subsonic and supersonic drag estimation), performance (with focus on thrust and motor mass estimation) and stability (with focus on the subsonic static stability of the rocket for fin sizing), other areas (as materials and numerical methods) will be explored to facilitate a more realistic simulation. The expected result is a highly customizable algorithm that facilitates decision-making in early project stages.

A secondary objective will be defined as to use the algorithm developed to optimize a sounding rocket for a payload of a 3U CubeSat to reach an altitude of 150km with the least initial mass possible.



## 2 BACKGROUND

With the objective of having a better understanding of the topics within the scope of the project, the theoretical background of rocket launch was studied. The focus of this was to understand the main phenomena that affect rocket trajectory a to obtain models simple enough to be implemented and avoid excessive computational costs yet accurate enough to reflect reality. Therefore, the main pillars of this study were Modern Sounding Rocket architecture, rocket aerodynamic drag, rocket propulsion, rocket stability, rocket materials and structures and optimization and numerical solution methods.

### 2.1 Modern Sounding Rocket Architecture

As a first approach to the topic, different sounding rocket designs were studied to understand key common components that to be studied in detail later. Modern sounding rockets vary significantly depending on mission and the payload carried ([NASA SOUNDING ROCKETS PROGRAM OFFICE, 2015](#)). Sounding rockets for small payloads have a "slender and long shape", having a length to diameter ratio of 5-20 ([PALLONE et al., 2018](#)), ([OKNINSKI, 2017](#)) claims this number to goes up to 30. Most of the examples cited in this Section fall within this category.

In both professional and amateur rockets, the following components can be identified, a hull and internal structural components, a nose cone, the payload, internal telemetry systems, fins, a propulsion system and a recovery system ([ESA, 2013?](#)), ([BUSSE; LEFFLER, 1997](#)), ([CYCLONE ROCKETRY CLUB, IOWA STATE UNIVERSITY, 2018](#)), ([KALRA et al., 2018](#)). Nose fineness, defined as it's length divided by it's maximum diameter can be up to 6 ([OKNINSKI, 2017](#)). Different nose formats are parabolic ogives, cones, paraboloids, ellipsoids, between others ([CROWELL, 1996](#)).

### 2.2 Aerodynamic Drag

The following definitions can be found in ([HOUGHTON; CARPENTER, 2003](#)). Total Drag is formally defined as the force corresponding to the rate of decrease in momentum in the direction of the undisturbed external flow around the body, this decrease being calculated between stations at infinite distances upstream and downstream of the body. Thus it is the total force or drag in the direction of the undisturbed flow. It is also the total force resisting the motion of the body through the surrounding fluid. The drag coefficient can be defined as Equation [2.1](#).

$$C_D = \frac{D}{\frac{1}{2}\rho_{AMB} \cdot V^2 \cdot S_{REF}} \quad (2.1)$$

The value of  $S_{REF}$  is defined by the context of the situation as a geometric area easy to correlate to the studied body. In airplanes this value usually refers to the wing-area, while in rockets the value is usually used as its maximum section area. Usually this value is defined as in Equation 2.2.

$$S_{REF} = \frac{\pi \cdot d_{MAX}^2}{4} \quad (2.2)$$

There are a number of separate contributions to total drag. As a first step it may be divided into pressure drag and skin-friction drag.

### 1. Skin-Friction Drag:

is the drag that is generated by the resolved components of the traction due to the shear stresses acting on the surface of the body. This traction is due directly to viscosity and acts tangentially at all points on the surface of the body. At each point it has a component aligned with but opposing the undisturbed flow (i.e. opposite to the direction of flight). The total effect of these components, taken (i.e. integrated) over the whole exposed surface of the body, is the skin-friction drag. It could not exist in an inviscid flow.

### 2. Pressure Drag:

is the drag that is generated by the resolved components of the forces due to pressure acting normal to the surface at all points. It may itself be considered as consisting of several distinct contributions:

- a) Induced Drag (also known as vortex drag))
- b) Wave Drag
- c) Form Drag (also known as boundary layer drag)

While induced drag depends on purely on lift generation and wave drag is the drag associated with the formation of shock waves in high-speed flight, the definition of the form drag is more complex. We can define profile drag the drag due to the losses in total pressure and total temperature in the boundary layers. Using this definition, form drag is defined as the difference of profile drag and skin-friction drag.

Induced drag, is outside this project's scope as it will be shown further on in this work, the implemented model will have 1 DOF and thus no lift generation will be assumed. Thus, Equation 2.1 can be expressed as Equation 2.3 for a zero-lift body.

$$D = \frac{1}{2} \cdot \rho_{AMB} \cdot V^2 \cdot S_{REF} \cdot (C_D^{SUB} + C_D^{SUP}) \quad (2.3)$$

While different methods for aerodynamic simulations and drag estimation exist e.g. vortex lattice, finite volume methods (usually known as CFD), etc. Most of the later are based on numerical methods and require either considerable computational power, significant calculation time or the use of external software or even all of the previous. (HOUGHTON; CARPENTER, 2003). Priority will be given to the study of simplified methods that can accurately estimate drag in different conditions and can be easily implemented into the program.

### 2.2.1 Profile Drag

A good estimation of the zero-lift profile drag of an aircraft can be obtained by the components method presented in (RAYMER, 2004), which will be the base reference for the next section. This method uses the drag coefficient of a flat plate obtained by semi-empirical formulas and assumes it applied on the wet area of the different components of the aircraft.

$$C_D^{SUB} = \frac{\sum(C_{fc} \cdot FF_c \cdot Q_c \cdot S_{wetc})}{S_{REF}} + C_{D_{misc}} + C_{DL\&P} \quad (2.4)$$

By this method, the total drag of an object is the sum of the drag of each component, given by the product of the friction coefficient, the component's form factor, the interference factor and its wetted area. As no miscellaneous external items nor leakages or protuberances are present in the rocket architectures discussed in Section 2.1, the terms outside the fraction in 2.4 will not be studied in detail.

#### 2.2.1.1 Friction Coefficient

The friction coefficient of a surface can be modeled after a flat plate. For laminar flow,  $c_f$  can be calculated with Equation 2.5 and for turbulent Equation 2.6. The resulting  $c_f$  should be a value proportional to how much of the wetted surface is covered in either laminar or turbulent flow.

$$c_{fc} = \frac{1.328}{\sqrt{R_e}} \quad (2.5)$$

$$c_{fc} = \frac{0.455}{(\log_{10} R_e)^{2.58} + (1 + 0.144 \cdot M_{ach}^2)^{0.65}} \quad (2.6)$$

$$R_e = \frac{\rho_{AMB} \cdot V \cdot \ell_c}{\mu_{AMB}} \quad (2.7)$$

It's important to note that the  $R_e$  used are the ones relevant to each component, so the value of  $\ell_c$  for the fuselage should be its length, while for the fin it should be its MAC. Most current current aircraft have turbulent flow over virtually the entire wetted surface, so this will be assumed true for the rockets simulated. For elevated speeds, the value of  $R_e$  must be the minimum between the result of Equation 2.7 and the result

of using either Equation 2.8 or Equation 2.9, depending on whether flow is subsonic or supersonic/transonic respectively.

$$R_{ecutoff} = 38.21 \cdot (\ell_c/k_c)^{1.053} \quad (2.8)$$

$$R_{ecutoff} = 44.62 \cdot (\ell_c/k_c)^{1.053} \cdot M_{ach}^{1.16} \quad (2.9)$$

### 2.2.1.2 Form Factor

The form factor equation for wing, tails, and consequently fins is given in Equation 2.10

$$FF_c = \left[ 1 + \frac{0.6}{x^r el_{th_{max}}} \left( \frac{t}{c} \right) + 100 \left( \frac{t}{c} \right)^4 \right] \left[ 1.34 M_{ach}^{0.18} (\cos \Lambda_m)^{0.28} \right] \quad (2.10)$$

The form factor equation for the fuselage is given in Equation 2.11, where  $f$  is given by Equation 2.12

$$FF = \left( 1 + \frac{60}{f_c^3} + \frac{f_c}{400} \right) \quad (2.11)$$

$$f_c = \frac{\ell}{d_{MAX}} \quad (2.12)$$

For supersonic speeds, the equations presented for the form factor are no longer valid and a value of 1 should be used.

### 2.2.1.3 Interference factor

For components as fuselage or wings, the  $Q_c = 1.0$  and for tail components  $1.03 < Q_c < 1.08$ . Thus, the effects of the interference factor will be unconsidered.

## 2.2.2 Wave Drag

Supersonic flow has been studied for a long time. The first solution for the supersonic flow over a cone was obtained by A. Busemann in 1929. While some methods for the study of supersonic flow around are given, e.g. supersonic linearized theory for the shock-expansion method and compressible CFD methods, they either aren't fit for the simulation of a rocket body or are computationally costly to implement (HOUGHTON; CARPENTER, 2003).

(JONES, 1953) provides a comprehensive technique to estimate wave drag for a wing-body systems. At subsonic speeds the pressure drag arising from the thickness of the body or wings is negligible so long as the shapes are sufficiently well streamlined to avoid flow separation. At supersonic speeds this tolerance, which was permitted the designer, disappears and the drag becomes sensitive to the shape and arrangement of the bodies.

### 2.2.2.1 Estimation of Wing-Body Wave Drag for Supersonic Speeds

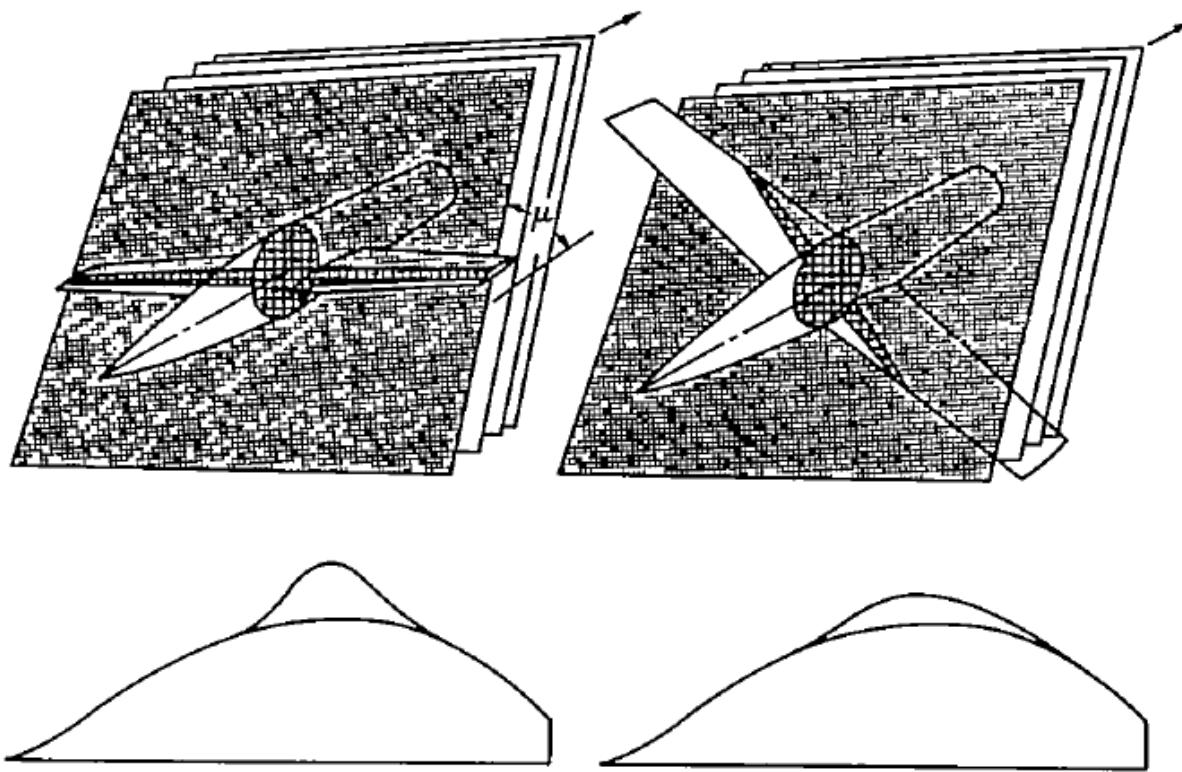
The theory presented in (JONES, 1953) is an application of the linear supersonic flow theory presented in (HAYES, 1947). Here, it was shown that when  $M_{ach} = 1$  is approached from above, the resulting drag depends only on the longitudinal area distribution over the longitudinal coordinate.

$$S'(x) = \sum_{n=1}^{\infty} A_n \cdot \sin(n \cdot \phi) \quad (2.13)$$

$$D = \frac{\pi \cdot \rho_{AMB} \cdot V^2}{8} \sum_{n=1}^{\infty} n \cdot A_n^2 \quad (2.14)$$

Therefore, for a given length, drag minimization can be achieved when the  $S'(x)$  has the least possible harmonics. As  $A_1$  and  $A_2$  have a relation to the Base area and the volume of the body, thus, for a same length and volume, the minimum drag is achieved when the resulting series only contains these terms.

In order to extend this conclusions beyond sonic speed, we need to study the cross section of the system with oblique planes inclined at the Mach angle, as the disturbance of the system affects the whole region. Thus, parallel inclined planes "cut" the system in different cross section areas which allow the construction of an equivalent  $S(x)$  curve where formulations 2.13 and 2.14 can be applied, as shown in Figure 4. In order to superimpose the effect of the infinite oblique planes that can be inclined at the Mach angle in relation to the system's longitudinal axis, the final drag value can be obtained as the average of the drag values obtained through a complete rotation of the Mach planes.



**FIGURE 2.—Area distribution given by intersections of Mach planes.**

Figure 4 – Example of intersection of an aircraft by  $M_{ach}$  planes and the resulting area distribution, extracted from ([JONES, 1953](#))

Being  $S(x)$  the intercepted area of the system by a plane perpendicular to the flow and  $S'(x) = \frac{dS'(x)}{dx}$ . When the curve of  $S'(x)$  is expanded as a sines Fourier Series (Equation 2.13) the resulting wave drag can be expressed as Equation 2.14.

$$D'(\theta) = \frac{\pi \cdot \rho \cdot V^2}{8} \sum_{n=1}^{\infty} n \cdot A_n^2 \quad (2.15)$$

$$D = \frac{1}{2\pi} \int_0^{2\pi} D'(\theta) d\theta \quad (2.16)$$

An example of the implementation of this theory can be found in OpenVSP, which is a comprehensive parametric design program developed by NASA for aircraft and rocket design. ([OPEN VSP, 2021](#)) This program has an implementation of the theory analyzed as an internal tool and also provides for visualization and interactions with the process. ([WADDINGTON, 2015](#)).

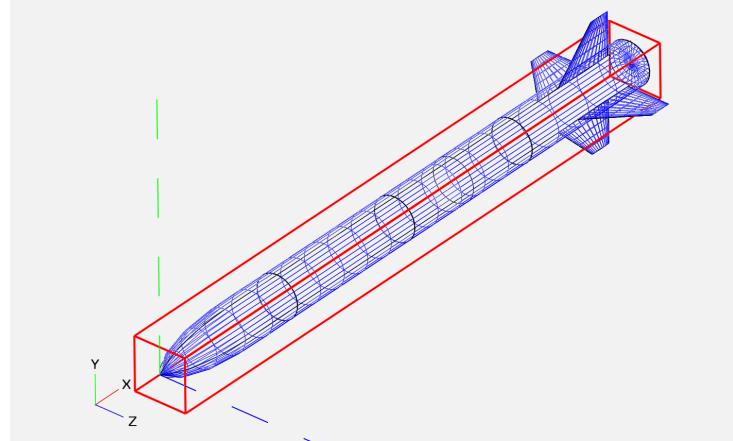


Figure 5 – The example of a random rocket implemented in ([OPEN VSP, 2021](#))

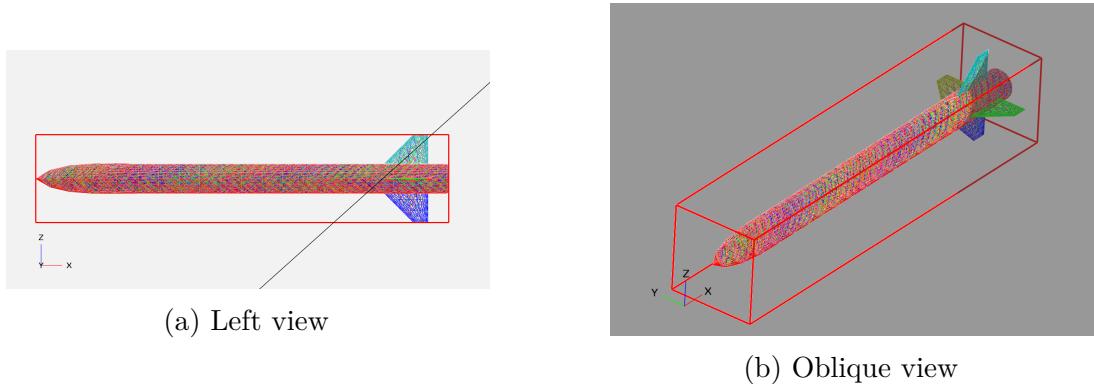


Figure 6 – Intersection of a  $M_{ach} = 1.5$  plane and the rocket implemented in ([OPEN VSP, 2021](#))

#### 2.2.2.2 Estimation of wave drag in the Transonic region

Based on the values of the supersonic wave drag curve ([RAYMER, 2004](#)) provides with a method to estimate the wave drag in the transonic region. The transonic region is typically defined for  $0.8 \leq M_{ach} \leq 1.2$ , the theoretical lower limit of the region is in  $M_{ach}^{cr}$  where shock-waves start to form on the body or in  $M_{ach}^{dd}$  where there's a rise in 0.002 in the objects  $C_D$  due to wave drag. ([RAYMER, 2004](#))

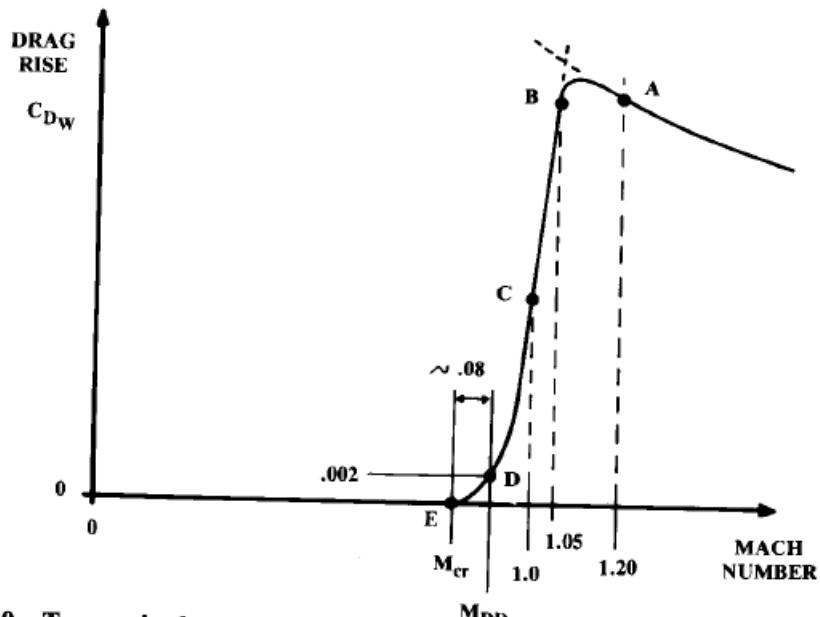


Fig. 12.29 Transonic drag rise estimation.

Figure 7 – Example of the method for the estimation of transonic  $C_D^{SUP}$ , extracted from (RAYMER, 2004).

The method consists in defining the drag on the points  $M_{ach}^{cr}$  and  $M_{ach}^{dd}$  as 0 and 0.002 by definition. Then, the drag at  $M_{ach} = 1.05$  is set as equal to the drag at  $M_{ach} = 1.2$  as point B and in  $M_{ach} = 1$  as half of that value. The value of  $M_{ach} = 1.2$  is determined by any of the available methods. A representation of this methodology is presented in Figure 7.

### 2.3 Atmospheric Conditions

As seen in sections 2.4.2 and 2.2, external conditions affect both drag and propulsion by parameters such as  $\rho$ ,  $P_{AMB}$ ,  $\mu_{AMB}$  and  $c_{sound}$ . These parameters vary greatly with the altitude and region where the rocket is operating, and considering the wide mission altitude range proposed on Section 1.2 it is necessary to also study atmospheric models to be applied.

The International Standard Atmosphere (also referred as ISA) model is one of the most commonly used atmospheric models. Developed by the International Civil Aviation Organization (ICAO), the model approximates the value of atmospheric properties for different altitudes (up to 80km) by assuming linear temperature gradients and calculates the values of  $\rho_{AMB}$  and  $P_{AMB}$  using the hydro-static equilibrium equation (Equation 2.17) in combination with the molar form of the ideal gas equation (Equation 2.18). The value of  $c_{sound}$  is also calculated under ideal gas assumptions, while other magnitudes such as  $\mu_{AMB}$  and thermal conductivity are calculated through empirical models explained on

the reference ([ICAO, 1993](#)).

$$\frac{dP_{AMB}}{dh} = -\rho \cdot g \quad (2.17)$$

$$P_{AMB} = \rho_{AMB} \cdot R_{spec} \cdot T_{AMB} \quad (2.18)$$

The US Standard Atmosphere (USSA) was developed in a joint effort of several governmental agencies. While the methodology used is similar to the one of the ISA model, it perfectly match the ISA model only up to 32km because of differences in the temperature profile assumed. The USSA model reaches much farther than the ICAO model, reaching up to 1000km. ([NOAA; NASA; USAF, 1976](#))

## 2.4 Rocket Propulsion

Rocket propulsion is a class of jet propulsion of jet propulsion that produces thrust by ejecting stored matter, called the propellant. In contrast to duct propulsion, that is a class of jet propulsion which includes turbojets and ramjets; these engines are also commonly called air-breathing engines ([SUTTON; BIBLARZ, 2000](#)).

The rarefied air in high altitudes and the effects of supersonic and hyper-sonic and supersonic flow, make duct jet propulsion engines a poor choice for space-related propulsion. The uniqueness of the rocket, for example, high thrust to weight, high thrust to frontal area, and thrust independence of altitude, enables extremely long flight ranges to be obtained in rarefied air and in space ([SUTTON; BIBLARZ, 2000](#)).

Even though developments have been made in the use of high-altitude rarefied air-breathing propulsion, its uses are limited to LEO satellites and other low-thrust applications ([FERRATO et al., 2017](#)). Thus, duct propulsion will not be studied in this work. The energy source most commonly used for rocket propulsion is chemical combustion. Energy can also be supplied by solar radiation and, in the past, also by nuclear reaction. ([SUTTON; BIBLARZ, 2000](#))

### 2.4.1 Main Metrics for Rocket propulsion performance

In order to be able to understand a rocket propulsion performance, there's a need to define and understand the mayor metrics that govern it. The following definitions can be found in ([SUTTON; BIBLARZ, 2000](#)).

#### 2.4.1.1 Thrust

It can be defined as the reaction experienced by a rocket's structure due to the ejection of matter at high velocity. It's equation derived, from newtons second law, is

presented in Equation 2.19. Usually measured in  $N$ .

$$F = \dot{m} \cdot v_e + (P_e - P_{AMB}) \cdot A_e \quad (2.19)$$

#### 2.4.1.2 Total Impulse

Is the total variation in momentum that will be experimented by the rocket due to Thrust. It's formulated through Equation 2.20. Usually measured in  $Ns$ .

$$I_t = \int_{t_0}^{t_{burnout}} F dt \quad (2.20)$$

#### 2.4.1.3 Specific Impulse

It can be defined as the impulse that each small amount of weight generates as it is ejected. It is directly correlated to efficiency, as it measures how much impulse is generated by each unit of propellant carried. It's formula is shown in Equation 2.21. Usually measured in  $s$ .

$$I_{sp} = \frac{I_t}{m_p \cdot g_0} = \frac{F}{\dot{m} \cdot g_0} \quad (2.21)$$

#### 2.4.1.4 Mass ratio

It is defined as the ratio of the final mass (the mass of the rocket after burnout) by the initial mass of the rocket (before operation). It is presented in Equation 2.22.

$$M_R = \frac{m_f}{m_0} = \frac{m_f}{m_f + m_p} \quad (2.22)$$

#### 2.4.1.5 ToW Ratio

It is defined as the ratio between the rocket's thrust and the rocket's weight for a given moment. For a rocket to take off, it is necessary that  $ToW > 1$  in the initial condition. It's formulation is present in Equation 2.23.

$$ToW = \frac{F}{m \cdot g} \quad (2.23)$$

### 2.4.2 Rocket Propulsion Mechanisms

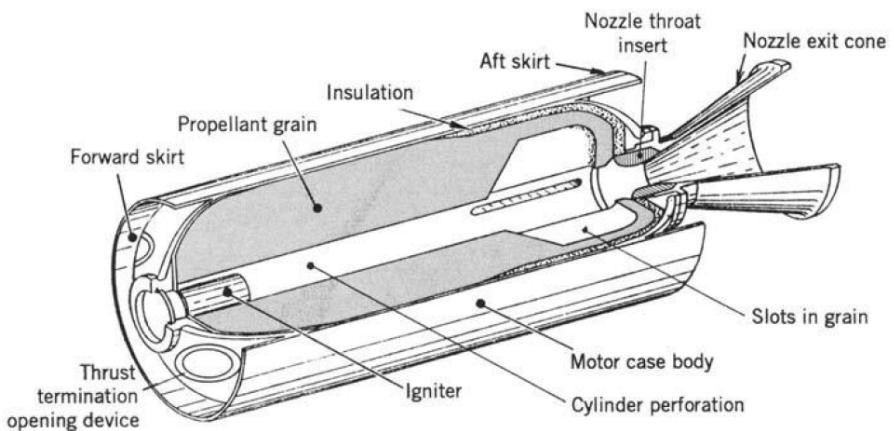
While thrust in rocket propulsion can be generated through various different methods(O'CONNELL, 2016). The currently viable propulsion methods can be mainly divided in two main categories, chemical and electrical (SUTTON; BIBLARZ, 2000).

#### 2.4.2.1 Chemical Propulsion

The principle of chemical reaction or combustion of one or more fuels with one or more oxidizing reactants is the basis of chemical rocket propulsion. The heat liberated in

this reaction transforms the propellants (reactants) into hot gaseous reaction products, which in turn are thermodynamically expanded in a nozzle to produce thrust. (SUTTON; BIBLARZ, 2000). The nozzle will be explained separately in Subsection 2.4.3.

Chemical propulsion is commonly divided in Liquid and Solid propellants. Hybrid rocket propulsion exists by mixing solid rocket fuel with a liquid oxidizer. Usual values for  $I_{sp}$  for solid propellants is 220-300, while for liquid propellants it can reach 330. Nevertheless, solid propellant motors are usually lighter, require less movable parts, are more reliable and simpler to build and assemble (SUTTON; BIBLARZ, 2000) (FACULTY OF AEROSPACE ENGINEERING, TU DELFT, 2013). While hybrid rocket propulsion for sounding rockets is of great interest and may enable conducting more flexible missions, solid rocket motors remain the most common choice for propelling suborbital payloads (OKNINSKI, 2017).

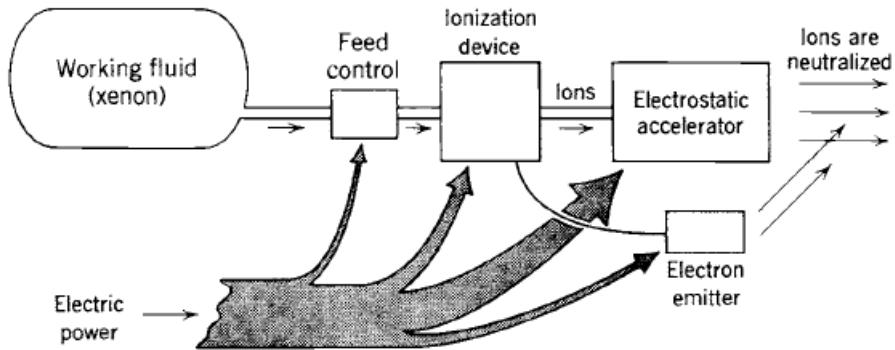


**FIGURE 1-5.** Simplified perspective three-quarter section of a typical solid propellant rocket motor with the propellant grain bonded to the case and the insulation layer and with a conical exhaust nozzle. The cylindrical case with its forward and aft hemispherical domes form a pressure vessel to contain the combustion chamber pressure. Adapted with permission from Reference 11-1.

Figure 8 – Simplified design of a solid rocket motor, extracted from (SUTTON; BIBLARZ, 2000)

#### 2.4.2.2 Electric Propulsion

Electric propulsion can be defined as any type of propulsion system that uses electricity as a main energy source to generate thrust. One examples of electrical propulsion are Hall-effect engines, shown in Figure 9. Other examples of electrical propulsion are resistojet or thermoelectrical propulsion that uses an electrical resistance to heat propellant which is ejected through a nozzle, plasma ion propulsion which ionizes particles and accelerates them through an electrical field are the most common types. Even though electrical propulsion is widely used for satellites and has  $I_{sp}$  in the ranges of over 1000s, it's not of viable use for launch vehicles for its low thrust (usually under 1N) and  $ToW$  (SUTTON; BIBLARZ, 2000) (EXOTRAIL SA, 2021?).



**FIGURE 1–9.** Simplified schematic diagram of a typical ion rocket, showing the approximate distribution of the electric power.

Figure 9 – Simplified design of an electric rocket thruster, extracted from ([SUTTON; BIBLARZ, 2000](#))

#### 2.4.3 Rocket Nozzles

In most thermal rocket propulsion systems, a nozzle is responsible for accelerating combustion gases in order to generate thrust. Nozzles usually have a convergent, sub-sonic region, and then a supersonic divergent region. In order to elaborate a simplified nozzle theory, assume a quasi-one-dimensional isentropic flow of an ideal gas throughout the nozzle ([SUTTON; BIBLARZ, 2000](#)) ([NAKKA, 1997](#)). These assumptions are in accordance with the theory for isentropic flow of compressible fluids presented in ([HOUGHTON; CARPENTER, 2003](#)).

##### 2.4.3.1 Isentropic Flow

The main relations for a one-dimensional isentropic flow in a tube are presented in Equations [2.24](#), [2.25](#) and [2.27](#)

$$T_0 = T_i \cdot \left[ 1 + \frac{1}{2} \cdot (\gamma - 1) \cdot M_{ach}^i \right]^2 \quad (2.24)$$

$$P_0 = P_i \cdot \left[ 1 + \frac{1}{2} \cdot (\gamma - 1) \cdot M_{ach}^i \right]^{\frac{\gamma}{\gamma-1}} \quad (2.25)$$

$$v_y = \sqrt{\frac{2 \cdot \gamma}{\gamma - 1} \cdot \frac{R_u \cdot T_x}{M_{gas}} \cdot \left[ 1 - \left( \frac{P_y}{P_x} \right)^{\frac{\gamma-1}{\gamma}} \right] + v_x^2} = \sqrt{\frac{2 \cdot \gamma}{\gamma - 1} \cdot \frac{R_u \cdot T_0}{M_{gas}} \cdot \left[ 1 - \left( \frac{P_y}{P_0} \right)^{\frac{\gamma-1}{\gamma}} \right]} \quad (2.26)$$

$$\frac{\dot{m}}{A_i} = P_0 \sqrt{\frac{2\gamma}{\gamma - 1} \cdot \frac{M_{gas}}{R_u \cdot T_0} \cdot \left( \frac{P_i}{P_0} \right)^{\frac{2}{\gamma}} \cdot \left[ 1 - \left( \frac{P_i}{P_0} \right)^{\frac{\gamma-1}{\gamma}} \right]} \quad (2.27)$$

Equation 2.27 describes flow density, it's maximum value for a given  $P_0$ ,  $T_0$  is obtained from the derivation. As  $\dot{m}$  is constant throughout the nozzle, this maximum value denotes the minimum cross-sectional area, which is given when  $M_{ach}^y = 1$ . This point is denominated the nozzle's throat and area value  $A_t$ . The relation between mass flow  $\dot{m}$  and  $A_t$  can be then calculated using Equation 2.28. Furthermore, for  $\frac{A_c}{A_t} > 4$ , the flow on the combustion chamber can be considered stagnated, thus  $P_0 \approx P_c$  and  $T_0 \approx T_c$ .

$$\dot{m} = A_t \cdot v_t \cdot \rho_t = A_t \cdot P_C \cdot \gamma \sqrt{\left(\frac{2}{\gamma + 1}\right)^{\frac{\gamma+1}{\gamma-1}} \cdot \frac{M_{gas}}{R_u \cdot T_C}} \quad (2.28)$$

#### 2.4.3.2 Nozzle's Effect on Thrust Equation

Considering the Equations 2.26 and 2.28 in Equation 2.19, Equation 2.29 is obtained.

$$F = A_t \cdot P_c \cdot \sqrt{\frac{2\gamma^2}{\gamma - 1} \left(\frac{2}{\gamma + 1}\right)^{\frac{\gamma+1}{\gamma-1}} \cdot \left[1 - \left(\frac{P_e}{P_C}\right)^{\frac{\gamma-1}{\gamma}}\right]} + (P_e - P_{AMB}) \cdot A_e \quad (2.29)$$

Considering that the first part of Equation 2.29 depends only on internal factor of the rocket, it can be rewritten as Equation 2.30

$$F = F^* + (P_e - P_{AMB}) \cdot A_e \quad (2.30)$$

#### 2.4.3.3 Nozzle Geometric definition

Once determined de values of  $A_c$ ,  $A_t$  and  $A_e$ , the geometry of the nozzle can be calculated using the approach presented by (SUTTON; BIBLARZ, 2000). While converging-diverging nozzles usually are designed as two intersected paraboloids with a rounded filleted junction, they are initially approximated as cones which are calculated using the process presented on Figure 10. The spacing between the combustion chamber and the throat and the throat and the exit plane is calculated using Equation 2.31. This spacing is usually reduced for de divergent part by a factor and a parabola with a desired starting and finishing angles is designed over the cones.

$$l_{cone} = \frac{r_2 - r_t}{\tan(\theta_{nozzle})} \quad (2.31)$$

The values for  $\theta_{nozzle}$  are suggested as  $15^\circ$  for the divergent half and as  $60^\circ$  for the convergent half. A thrust correction factor has to be applied in Equation 2.30 using Equation 2.32

$$\lambda_{thrust} = \frac{1}{2} \cdot (1 + \cos(\theta_{nozzle_{div}})) \quad (2.32)$$

#### 2.4.4 Solid Propellant Combustion

Given the predominance of solid rocket motors explained in subsection 2.4.2, rocket motors and their technology will be further studied. A main aspect of rocket motors is

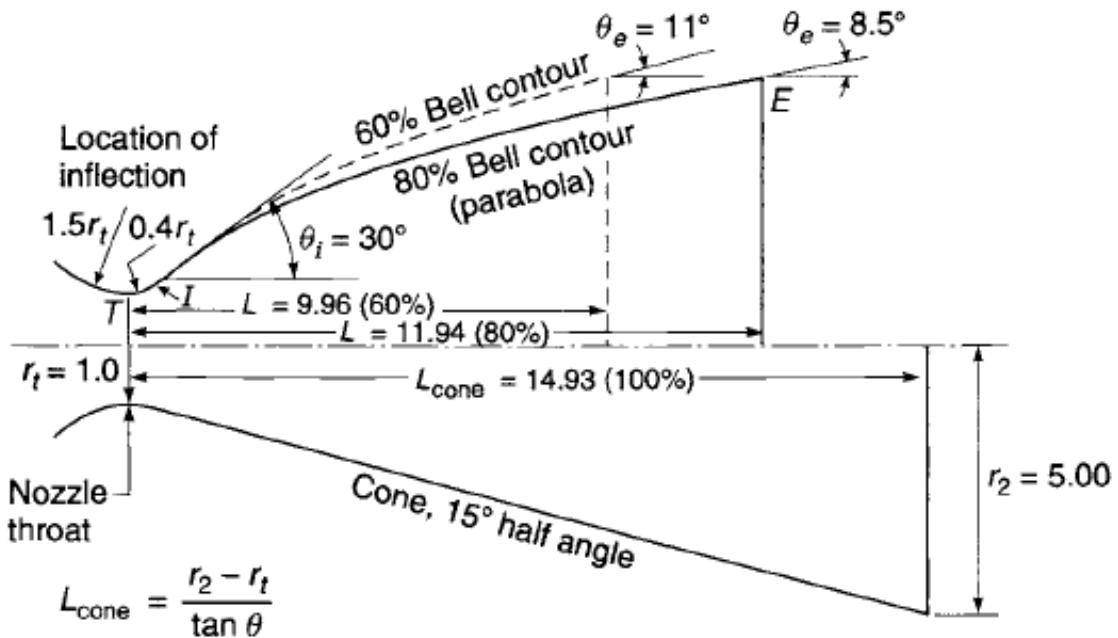


Figure 10 – Nozzle sizing process, extracted from ([SUTTON; BIBLARZ, 2000](#))

that their combustion chambers and propellant tanks are merged into a single structure. Combustion is usually not actively controlled, being  $\dot{m}$  an outcome of the combustion and not controlled through pumps as in most liquid rocket propulsion examples. Equation 2.33 is presented in ([SUTTON; BIBLARZ, 2000](#)) explaining the combustion of solid propellants.

$$\dot{m} = A_B \cdot \rho_{prop} \cdot r_B \quad (2.33)$$

The burning rate ( $r_B$ ) is a function of different factors present of the combustion chamber and the values of  $A_B$  depend on the initial propellant (grain) configuration.

#### 2.4.4.1 Propellant burning rate

While many factors can alter the value of  $r$ , special attention must be given to the effects of  $P_C$ . ([SUTTON; BIBLARZ, 2000](#)) states that for a given propellant, the burning rate can be modeled using Equation 2.34, which in comparison to Figure 11 seem to bear validity.

$$r_B = a_p \cdot P_C^n \quad (2.34)$$

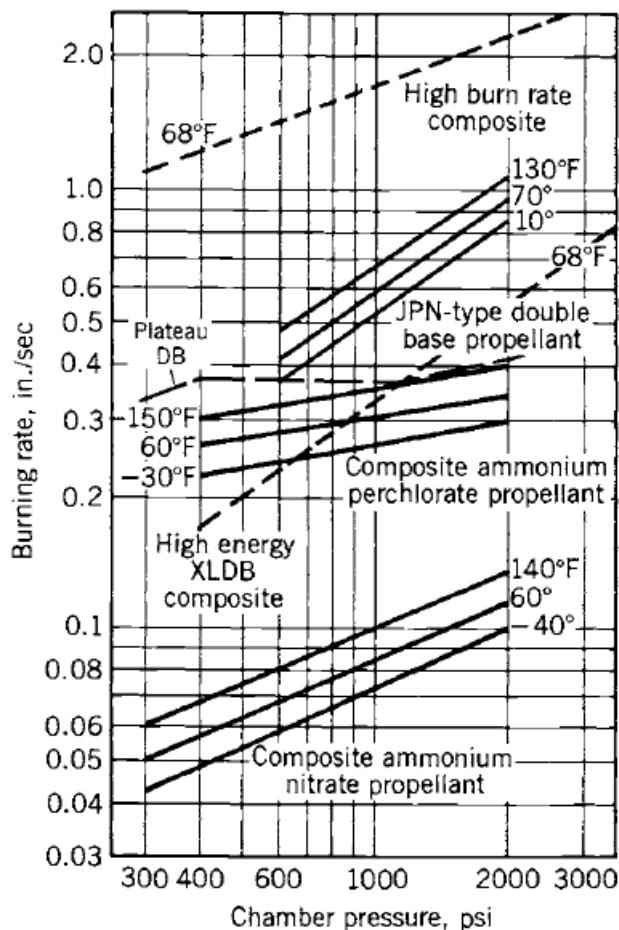
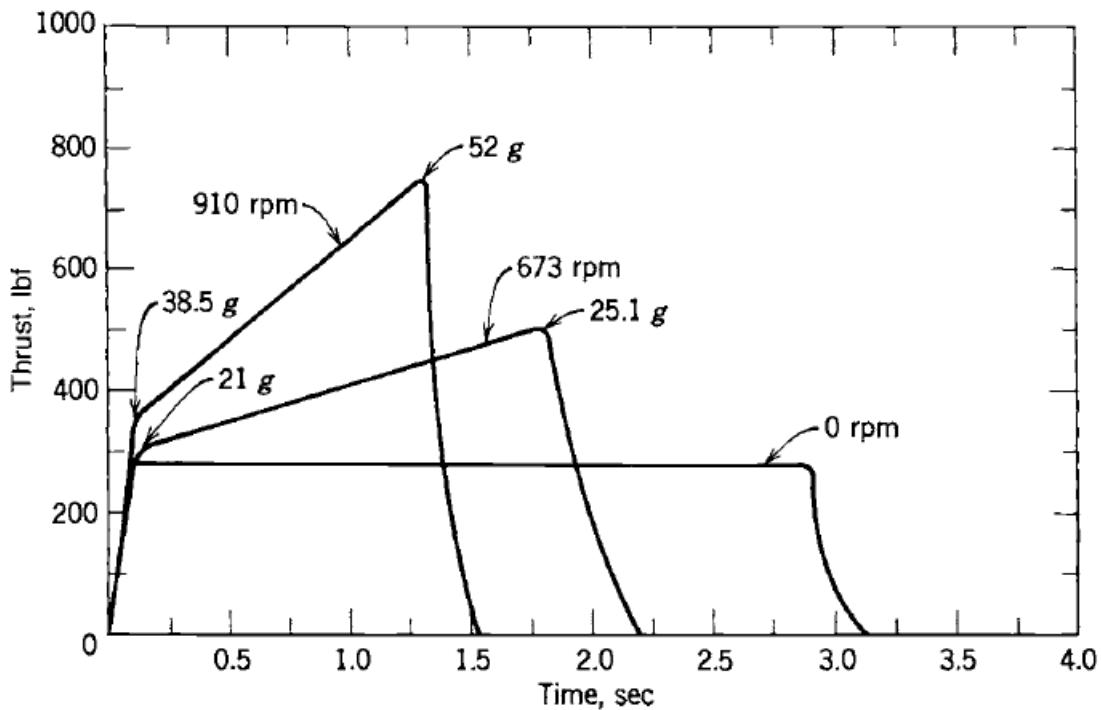


Figure 11 – Burning rate for different materials and temperatures, extracted from ([SUTTON; BIBLARZ, 2000](#))

The value of  $n$ , presented on Equation 2.34 is of great interest, typically ranging between 0.2 and 0.6. In practice, as  $n$  approaches 1, burning rate and chamber pressure become very sensitive to one another and disastrous rises in chamber pressure can occur in a few milliseconds. When the  $n$  value is low and comes closer to zero, burning can become unstable and may even extinguish itself. Some propellants display a negative  $n$  which is important for "restartable" motors or gas generators. A propellant having a pressure exponent of zero displays essentially zero change in burning rate over a wide pressure range. Plateau propellants are those that exhibit a nearly constant burning rate over a limited pressure range ([SUTTON; BIBLARZ, 2000](#)).

Rocket rotation, differences in propellant initial temperature, propellant aging, and other factors which also affect the performance in significant ways will not be studied in this work. Nevertheless an example of the magnitude of this effects can be seen in Figures 11 and 12. Even though these effects will not be studied in the conceptual design phase, they must be accounted for in subsequent design phases. ([SUTTON; BIBLARZ, 2000](#))



**FIGURE 11-12.** Effect of axial spin on the thrust-time behavior of a rocket motor with composite propellant using aluminum and PBAN (polybutadiene acrylonitrile) as fuels. (Adapted with permission from Ref. 11-7.)

Figure 12 – Effects of rocket axial spin in the thrust-time curve extracted from (SUTTON; BIBLARZ, 2000)

A useful equation, derived from Equations 2.34, 2.33 and 2.28, is presented in (NAKKA, 1997) where the regime value of  $P_C$  is calculated, a formulation for transient pressure is also given but this is outside of the scope of the project.

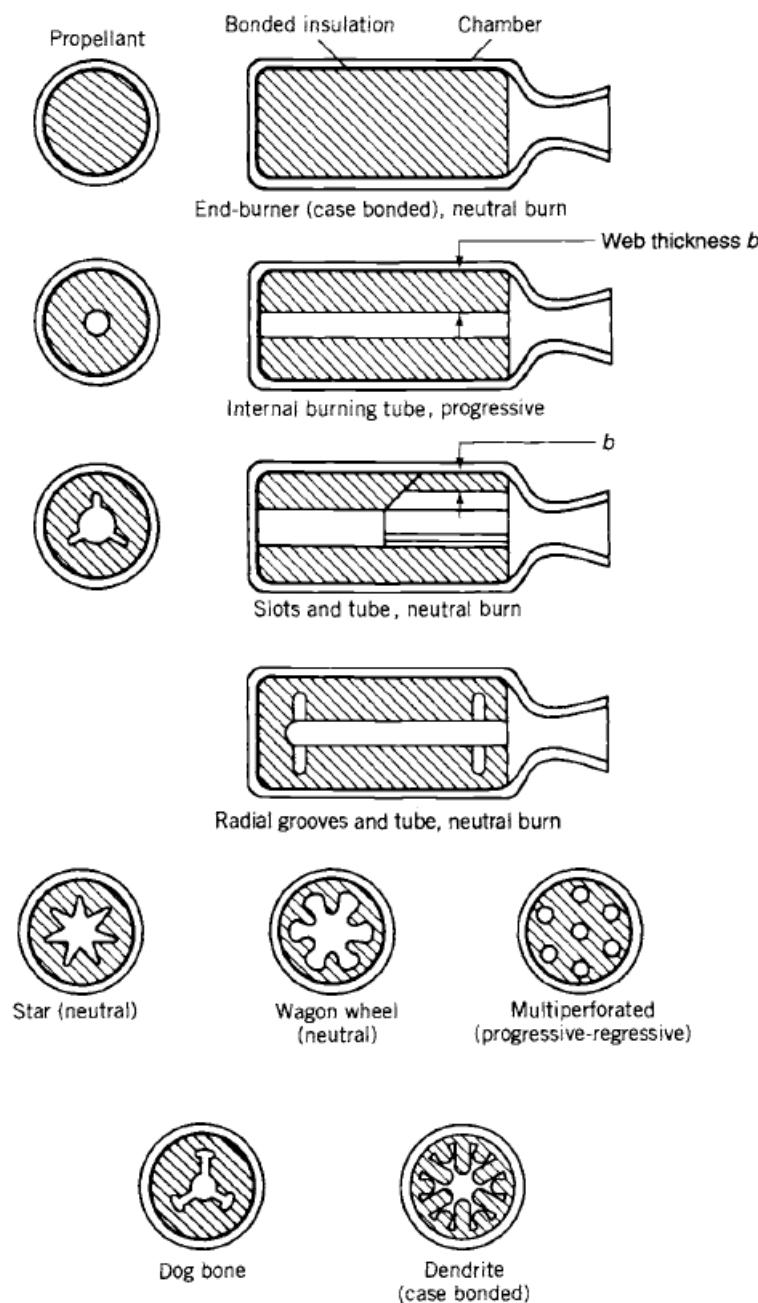
$$P_C = \left[ \frac{A_B}{A_t} \frac{a_r \cdot \rho_p}{\sqrt{\frac{\gamma}{R \cdot T_C} \cdot \left( \frac{2}{\gamma+1} \right)^{\frac{\gamma+1}{\gamma-1}}}} \right]^{\frac{1}{1-n_r}} \quad (2.35)$$

#### 2.4.4.2 Propellant Configuration

The configuration of the grain used for the combustion can greatly alter the generation of thrust for the otherwise same rocket configuration. The configuration can have a constant section along the length of the rocket or can change to acquire desired values of  $A_B$  for a given point in the trajectory. Figure 13 shows different configurations commonly used. (SUTTON; BIBLARZ, 2000)

The configurations can be classified by the evolution of  $A_B$  over time, this has significant effects on the thrust-time curve:

- Cylindrical: A grain in which the internal cross section is constant along the axis regardless of perforation shape.
- Progressive: Provides a steadily increasing  $A_B$  with time, which usually increases  $\dot{m}$
- Regressive: Provides a steadily decreasing  $A_B$  with time, which usually increases  $\dot{m}$
- Neutral: Provides an approximately constant  $A_B$  with time, with a constant  $\dot{m}$
- Progressive-Regressive: Firstly, provides a steadily increasing  $A_B$  with time, which usually increases  $\dot{m}$ . After a designated point, this relationship is inverted.



**FIGURE 11–16.** Simplified diagrams of several grain configurations.

Figure 13 – Examples of Grain Configuration extracted from ([SUTTON; BIBLARZ, 2000](#))

## 2.5 Stability and Control

### 2.5.1 Stability systems

Passive stability systems are those which do not rely on situational feedback to keep the rocket in a desired trajectory. In classical rockets, the main source of passive control are the fixed fins attached to the rocket.

While aircraft stability is well discussed in the methods presented in ([ETKIN; REID, 1996](#)) and ([RAYMER, 2004](#)), rocket stability analysis is significantly different. The static margin is defined as the distance between the rocket's center of pressure (not the aerodynamic center) and its center of gravity, divided by the rocket's maximum diameter([UTAH STATE UNIVERSITY, 2010](#)). The method presented in ([BARROWMAN, 1967](#)) allows for a simplified calculation of the center of pressure for a slender finned body. The method is based on the calculation of normal coefficients for different components such as nose-cone, conical transitions and fins, with the position of each component and its normal coefficient, the center of pressure is calculated.

The minimal static margin recommended is 1 and a static margin of 2 is considered excessive([UTAH STATE UNIVERSITY, 2010](#)). While the extension of the method for different angles of attacks presented in ([LABUDDE, 1999](#)) allows for a more detailed study of rocket stability, it is outside of the scope of this project. No efforts were made to study a rocket's dynamic stability.

### 2.5.2 Active control systems

While modern larger rockets use different technologies for active control, such as flapped fins, thrust vectoring, nozzle gimbals and even some missiles use rocket thrusters as stability measures ([SUTTON; BIBLARZ, 2000](#)). These technologies are considered outside of the scope of the project.

## 2.6 Materials and Structures

While these topics are not a main focus of the project, materials and structures in launch vehicles were studied to be able to realistically estimate the necessary structural weight of the hull, the combustion chamber and other components.

### 2.6.1 Skin and Fins

Common materials for sounding rocket's skin and fins are composites as carbon, glass or Kevlar fiber and metallic as aluminum. Isolation layers in the skin of high density foam or metallic or composite honeycomb are common for high flying rockets with significant reentry heating, but will not be studied on this work. In ([VANDAS et al., 2018](#)), aluminum and fiberglass were used for the rocket's body and carbon fiber for the fins.

### 2.6.2 Motor

For the estimation of the wall thickness of a rocket motor, the expression of the radial pressure for a pressurized cylinder is commonly used with a factor of safety  $f_s$  is added. A common value for the factor of safety is 2 (OKNINSKI, 2017) (SUTTON; BIBLARZ, 2000). This is presented in Equation 2.36.

$$t_{wall} = f_s \cdot \frac{P_C \cdot d_C}{2 \cdot \sigma_y} \quad (2.36)$$

As far as materials go, the motor case is usually made either from high-resistance steels or high-strength aluminum alloys (MORGADO, 2019). As the motor case reaches high temperatures (above 700K), usually steel or another metal with a high melting point is used (SUTTON; BIBLARZ, 2000).

## 2.7 Optimization and Numerical Solution Methods

Beyond technical rocket-related knowledge, there is a need to further study methods to accurately estimate derivatives, numerically integrate functions and to optimize complex functions to achieve global maximums and minimums with a given set of constraints.

### 2.7.1 Optimization Methods

A more detailed analysis on MDO applied to space LVs can be found in (MORGADO, 2019), a quick overview will be given here based on what is presented there.

Multidisciplinary Design Optimization (MDO) is a field of engineering that deals with finding the global optimal design solution, increasing the complexity of the problem while decreasing computational cost. Typically, the design problem is decomposed into different disciplines, each one subjected to specific constraints. The disciplines may be, for instance, aerodynamics, propulsion, structure, weight and sizing, costs and trajectory.

The most popular MDO method for general design optimization is MDF. It solves the interdisciplinary coupling equations at each iteration using one optimizer at system-level and a Multidisciplinary Design Analysis (MDA). Using this approach, the optimization variables are the disciplines design variables. Due to the coupling between disciplines, they must be analyzed sequentially.

The optimizer analyses the design performance to verify if the design complies with the given constraints at the end of each iteration. It is a simple solution, and at the end of every iteration a feasible solution is given. The drawbacks are the computational cost, which is high, and the lack of parallelization between disciplines. In addition, the method does not necessarily converge.

In order to apply MDO methods, it is necessary to use optimization algorithms. These algorithms search for the best solutions under given constraints, depending on the optimization objective.

The classical optimization algorithms are divided into gradient-based and gradient-free. Gradient-based algorithms, although can present a quick convergence when near a minimum, have several drawbacks. They can only optimize continuous parameters, requires the functions to be differentiable, and can only find the local optima. Among diverse methods to compute the gradient, the simplest is finite differences. It is necessary to make an initial-guess in order to initialize a gradient-based algorithm, and at every iteration the next parameters set is calculated. The most commonly used gradient based methods are the Sequential Quadratic Programming and Interior-Point.

The gradient-free algorithms, however, require only the function values. They are able to solve highly discontinuous and noisy functions, and allow global search. The biggest drawback is the slow convergence when near a local optimum. There are two types of them: deterministic and stochastic. A classical example of local-search deterministic algorithm that is capable of solving non-linear, unconstrained optimization problems is the Nelder-Mead simplex algorithm.

Stochastic algorithms have as a characteristic some inherited randomness. Therefore, the solution may differ every time the algorithm is executed, considering the same initial conditions. The heuristic approaches are inspired by natural phenomena.

### 2.7.2 Genetic Algorithm

Some of the most popular stochastic algorithms are Genetic Algorithms (GA), based on the concept of Darwin's theory of evolution. They feature selection, crossover and mutation techniques.

An initial generation is created and filled with individuals with a set of properties. The best approach to create the initial population is choosing randomly to improve diversity, since a heuristic initialization technique could cause little diversity and lead to failure when finding the optimum. GA algorithms then update the set of individuals throughout the generations. Each individual is evaluated and ranked based on their fitness values, considering the objective function.

Then, some individuals are chosen, randomly or based on fitness, to breed the new generation. In a process known as crossover, the parents have their characteristics mixed, as it is expected that the children share the properties of the best individuals. Also, the individuals can be mutated, randomly changing their properties, in order to maintain diversity in the population. If not, the individuals may become too similar to each other, stopping evolution.

The process continues once the mutation operation is concluded, and the algorithm repeats until convergence. A GA was developed to optimize the rocket design, allowing an easy implementation and parallel optimization.

### 2.7.3 Numerical Solution Methods

Given the importance of the calculation of the area derivative for the theory presented in Section 2.2.2, we need a formula to estimate these values with good accuracy. Furthermore, the application of a Fourier Series in a discrete function will require a numerical approach to solve numerical integrals.

#### 2.7.3.1 Finite Differences

A method for approximating a function's  $n$ th-order derivative in one point as a linear combination of the the value of the function for equally spaced points in the vicinity of the first one is presented in (FRANCO, 2006). Through such methods, the Equations 2.37, 2.38 and 2.39 were obtained in order to estimate first order derivative of a function  $u$  respective to  $x$  with a third order error, which means that the error of the approximation decreases with  $h^3$ . The first is a centered finite differences formula and the others are lateral differences formulas.

$$u_x(x, t) = \frac{u(x + h, t) - u(x - h, t)}{2h} \quad (2.37)$$

$$u_x(x, t) = \frac{-3 \cdot u(x, t) + 4 \cdot u(x + h, t) - u(x + 2h, t)}{2h} \quad (2.38)$$

$$u_x(x, t) = \frac{3 \cdot u(x, t) - 4 \cdot u(x - h, t) + u(x - 2h, t)}{2h} \quad (2.39)$$

#### 2.7.3.2 Trapezoid Integration

In order to accurately calculate integrals of functions, different methods are proposed in (CHENEY; KINCAID, 2008), the trapezoid method was chosen because of it's simplicity, independence on the number of points used and easy implementation, which allow a high flexibility. It's formula is described in Equation 2.40 and it has a second order error, this means, it is is proportional to  $h^2$ .

$$\int_a^b f(x) dx \approx \frac{1}{2} \sum_{i=0}^{n-1} (x_{i+1} - x_i) \cdot [f(x_i) + f(x_{i+1})] \quad (2.40)$$

#### 2.7.3.3 Runge-Kutta Methods

The Runge-Kutta Methods are a family of methods for the resolution of DEs. Named after Carl Runge and Wilhelm Kutta, they are designed achieve a high order

precision without requiring analytic differentiation of the original differential equation. The methods consist in evaluating the function  $f$   $n$  times in which each variable is incremented by partial steps, previous calculated values are used as slopes in these steps. The error of a Runge-Kutta method of order  $n$  is proportional to  $h^{n+1}$ . The 4-th order Runge-Kutta method is of common use for scientific calculations (CHENEY; KINCAID, 2008) and is shown in Equations 2.42 and 2.43 for a system described in the form of Equation 2.41, it's important to note that  $x$  can be a vector and consequently  $K_1$ ,  $K_2$ ,  $K_3$  and  $K_4$ . The 4th order Runge-Kutta method is also implemented in the software OpenRocket, widely used for amateur rocketry (NISKANEN, 2013).

$$\dot{x} = f(t, x) \quad (2.41)$$

$$x(t+h) = x(t) + \frac{1}{6}(K_1 + 2K_2 + 2K_3 + K_4) \quad (2.42)$$

$$\begin{cases} K_1 = h \cdot f(t, x) \\ K_2 = h \cdot f(t + \frac{1}{2}h, x + \frac{1}{2}K_1) \\ K_3 = h \cdot f(t + \frac{1}{2}h, x + \frac{1}{2}K_2) \\ K_4 = h \cdot f(t + h, x + K_3) \end{cases} \quad (2.43)$$

## 3 METHODS

In order to implement all the theory studied in Chapter 2, several considerations and simplifications had to be made both to simplify the implementation and also to optimize the use of computational resources, as explained in Section 3.1. Also, in order to be able to create a truly open and customizable tool, the choice of the programming language had to be studied. Finally, the algorithms for the simulation were created and tested.

### 3.1 Conceptual Considerations

Based on the studies developed on Chapter 2, some first considerations had to be made in order to simplify the model and reduce the number of variables, which also augments model convergence as explained in Section 2.7. Considerations will be divided on Aerodynamic, Propulsion, Stability and Mass considerations.

The rocket's internal telemetry and other components were considered as having the same mass and volume than a 6U CubeSat. Differing in the form, which is assumed as an hexagon limited by the inner diameter of the rocket section and dimensions are variable according to  $d_{MAX}$ .

Furthermore, for simplicity, only single stage rockets were considered and implemented in the analysis.

#### 3.1.1 Aerodynamic Considerations

Drag estimations will be considered as following: Subsonic drag estimations were made using the methods described in (RAYMER, 2004) for the profile drag of an airplane. As it considers body and aerodynamic surfaces on an empirical model, its easy implementation allows for a quick yet accurate estimation of subsonic drag.

As supersonic drag is a major component of the overall drag at supersonic speeds (HOUGHTON; CARPENTER, 2003), a more detailed model is necessary. The model proposed by (JONES, 1953) allows for an analytical approach and accurate results.

Effects on drag due to the transonic region were estimated using the methodology described in Section 2.2.2.2, the values of  $M_{ach}^{cr}$  and  $M_{ach}^{dd}$  were considered as the ones suggested on (RAYMER, 2004).

#### 3.1.2 Numerical Simulation Considerations

The model implemented to determine the rockets maximum altitude was a 1 DOF dynamic model (in which the only DOF considered was altitude) due to the complexity of

higher DOF simulations. The forces considered are explained on image 14. The governing equation of the rocket's uni-dimensional flight path is given in Equation 3.1.

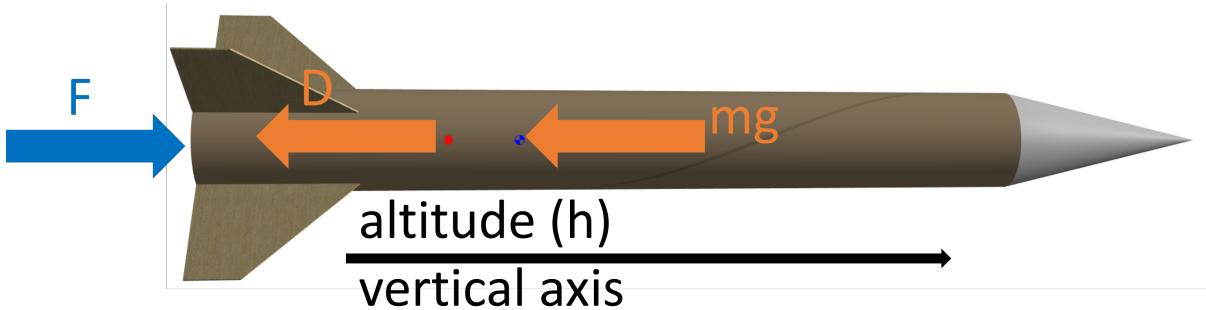


Figure 14 – Rocket's free body diagram, elaborated by the author, rocket image generated using OpenRocket([OPEN ROCKET, 2021?](#))

$$m(t) \cdot \ddot{h} = F(t) - D(h, \dot{h}) - m(t) \cdot g(h) \quad (3.1)$$

Equation can be manipulated to obtain Equation 3.2 considering  $v = \dot{h}$ .

$$\frac{\dot{V}}{h} = \frac{F(t) - D(h, v)}{m(t)} - g(h) \quad (3.2)$$

In this form, Equation 3.2 can be used as a vectored form from the  $f$  function in Equation 2.41. In order to integrate this equation over time, a RK4 method was implemented, as explained in Section 2.7.3.3

### 3.1.3 Propulsion Considerations

#### 3.1.3.1 Solid Rocket Propulsion Selection

As stated in section 2.4.4 solid rocket propulsion is the most common in sounding rocket in the market entry segment for these main reasons:

1. Comparative High Thrust-to-Weight ratio
2. Simple composition with few complex components
3. High reliability

Thus, only solid rocket motors were considered for the mission and are the only ones implemented in the program.

The propellant was considered as Ammonia Perchlorate, as it is readily available and of widespread use ([SUTTON; BIBLARZ, 2000](#)). While it has been shown that the compound can be toxic, its main hazards are listed as explosive and incendiary and only

prolonged exposure is deemed dangerous, being perfectly suitable for this task ([NATIONAL CENTER FOR BIOTECHNOLOGY INFORMATION, 2021](#)). Values of the propellant utilized for the simulations are available in Table 2.

| Variable  | Magnitude | Unit     |
|-----------|-----------|----------|
| $T_C$     | 2816      | K        |
| $\rho_p$  | 1.69      | $g/cm^3$ |
| $M_{gas}$ | 25        | $g/mol$  |
| $\gamma$  | 1.21      | -        |

Table 2 – Typical values for the combustion of Ammonia Perchlorate used for the simulations, extracted from ([SUTTON; BIBLARZ, 2000](#)).

The values of  $a_p = 0.123$  and  $n_p = 0.287$  for Equation 2.34 were obtained from ([NAVARRETE-MARTIN; KRUSB, 2017](#)) for a composition of in AP 80%, Al 2%, HTPB 18%; typical proportion in high-power rocketry. This composition is within the ranges specified by ([SUTTON; BIBLARZ, 2000](#)) for the values provided in Table 2. Note that the output of the equation using these values will be given in  $mm$

### 3.1.3.2 Motor Geometric Constrains

The motor case will be assumed as a cylinder, for an irregular body fuselage, the outer radius of the motor casing will be considered as equal to the minimal internal radius of sections of the fuselage where the motor is lodged. In the specific case of a fuselage with a mostly constant diameter, this definition does not change significantly.

### 3.1.3.3 Grain Composition and Disposition Selection

As the focus of this work is geometric optimization of the rocket. Generic grain composition will be assumed, leaving the specifics of improved configurations for the preliminary stage of the rocket's design, which is outside the scope of this project. According to Sutton ([SUTTON; BIBLARZ, 2000](#)), the grain "star" configuration, described in Figure 15, yields an approximately constant burning area, which in regime conditions translates to a constant thrust. Another neutral grain disposition is the end-burner disposition presented in Figure 13. For the first  $A_B$  can be estimated as the internal area of the combustion chamber, thus Equation 3.3, for the second ([SUTTON; BIBLARZ, 2000](#)) states that for  $d_C < 0.5m$  the burning surface can be approximated as the cross-section of the cylindrical tank, thus Equation 3.4.

$$A_B = \pi \cdot \frac{d_C}{2} \cdot l_C \quad (3.3)$$

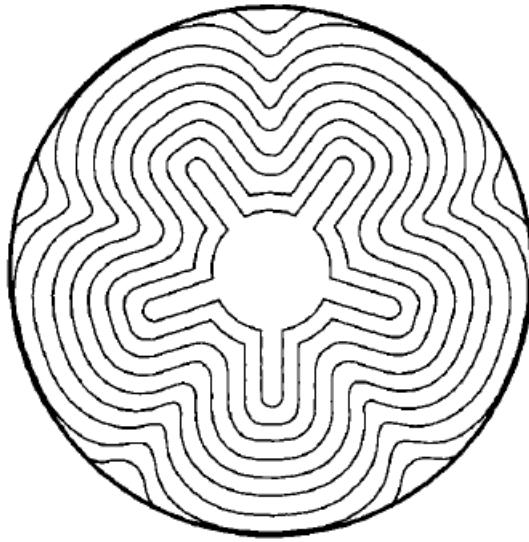


Figure 15 – Propellant star disposition that allows an approximately constant  $A_B$ , extracted from ([SUTTON; BIBLARZ, 2000](#))

$$A_B = \pi \cdot \left( \frac{d_C}{2} \right)^2 \quad (3.4)$$

Both dispositions will be assumed as a cylindrical, as it provides almost constant thrust and has a simple formulation. Furthermore, they will be implemented separately, as the optimization parameters can differ from one to the other. The presence of  $l_C$  in Equation 3.3 leads to large values of  $A_B$  in elongated rockets, this will yield high  $\dot{m}$  and  $F^*$ , but will also diminish  $t_{burnout}$  which means all the propellant can be burned in the lower atmosphere where higher  $D$  is expected. For the end-burner configuration, a comparatively small value of  $A_B$  means per Equation 2.35 that much lower values of  $A_t$  will be needed to achieve a similar  $P_C$ . This can also be advantageous, as it means high  $t_{burnout}$  comparative to the "star" configuration, consequently, a higher amount of propellant might burn higher in the atmosphere, where the aerodynamic effects are less prevalent.

### 3.1.4 Stability Considerations

For stability, only the theory presented in ([BARROWMAN, 1967](#)) was considered. No efforts were made in estimating the effects of supersonic aerodynamics into stability.

### 3.1.5 Material Considerations

The rocket's hull was assumed as composed by a 1/16" sheet of aluminum, while not a perfect assumption, as usually the nose is machined and not based on a sheet of metal, its judged as a good starting point. The rocket's fins were considered as made from carbon fiber as cited in ([VANDAS et al., 2018](#)) for easier casting. The motor casing was considered as grade S355 Steel, as recommended by ([SUTTON; BIBLARZ, 2000](#)). Relevant material

---

properties were extracted from (DEPARTMENT OF DEFENSE, UNITED STATES OF AMERICA, 1998)

### 3.1.6 Body Geometric Considerations

While initial intention of the project was to include non-linear rocket bodies and study their effect on total drag, the need to reduce variables and the examples commented on Section 2.1 lead to the consideration of mostly straight rocket bodies with a constant diameter outside the nose and boat-tail.

#### 3.1.6.1 Rocket Diameter and Length

As the payload is defined as a 3U CubeSat, which according to Figure 3 has a diagonal of  $100 \cdot \sqrt{2} = 141\text{mm}$ . Thus, rockets with section diameters lower than 150mm were not be considered. Limitations on the total length were considered as a product of the diameter by a ratio that varies according to what presented in Section 2.1.

As the focus of the project is weight minimization, the upper diameter constrains was not studied in much detail. Defining the maximum diameter at 0.5m. Results showed no tendency of rockets towards this value as it's shown in Chapter 4 later in this work, so the upper constrain in diameter can be assumed to have no significant effect in the output of the optimization.

#### 3.1.6.2 Fin geometry

In an effort to avoid an elevated number of optimization variables, the fin's number and geometry were predefined to an specific format, based on the one presented on (PALLONE et al., 2018), leaving only scaling and position as optimization variables. Four fins where assumed, though the program is fully capable of handling other numbers. The dimensional relations are shown in Figure 16. As visible in the Figure, an effort was made to define the fin without making assumptions about the rocket's body, this helps in possible future non-constant diameter studies.

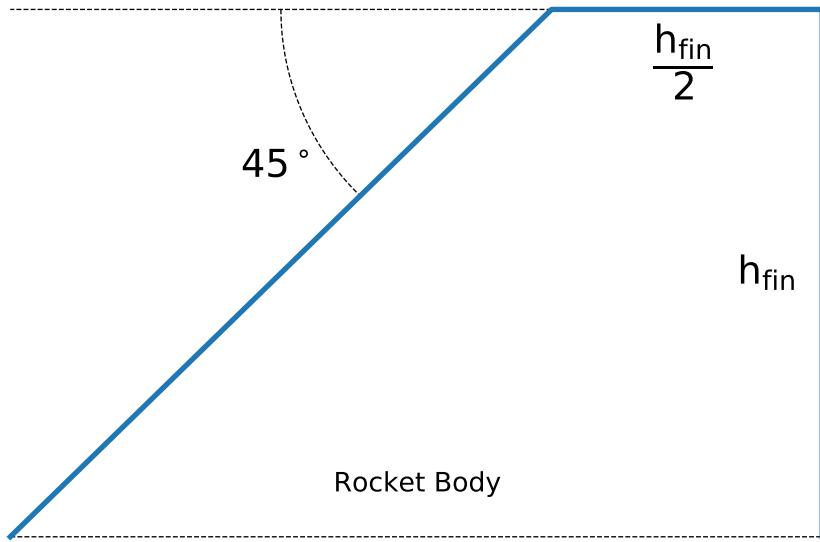


Figure 16 – Format of the fins chosen for the optimization, based on the one presented in (PALLONE et al., 2018)

Ideally, the fin's airfoil, would be chosen as a double wedge with 2% thickness as presented in (PALLONE et al., 2018). But the implementation of variable thickness was deemed too complex for the initial purpose of the program. Thus a constant thickness equal to  $2\% \cdot MAC_{fin}$  was assumed in a similar approach as the one presented in (OKNINSKI, 2017).

### 3.2 Definition of optimization variables and their studied range

For the implementation of the a genetic algorithm, a set of variables (genes) must be defined to generate each individual rocket. The choice of this set of variables is of great importance as an elevated number of variables hinders the method's convergence, but a low number brings little insight to the studied domain and can be even misleading if they aren't enough to correctly detail the problem to be optimized.

#### 3.2.1 Diameter

Rocket diameter was chosen as one of the main variables to describe the problem, due to the geometric direct geometric constrain that the rocket body must be able to fit the payload inside.

### 3.2.2 Length to Diameter Ratio

Rocket length is a major variable affecting almost all other component in one way or the other. A length to diameter ratio was defined, as seen in Section 2.1, this value usually varies from 10-20 as described in 2.1.

### 3.2.3 Fin Size Ratio

As explained in Section 3.1, fin geometry was limited to avoid having a considerable amount of variables. The main variable considered, fin semi-span  $h_{fin}$  was defined as the proportionality to rocket diameter, defining the fin size ratio as  $\frac{h_{fin}}{D_{max}}$ .

### 3.2.4 Fin Position

The fin position was defined as the distance between the fin's chord trailing edge and the rocket's tail. The values studied were within 0-20% of the length of the rocket.

### 3.2.5 Nose Length Ratio

The length of the nose was defined as a proportion to the total length of the rocket. Thus, nose length ratios of 0.05 to 0.3 were studied.

### 3.2.6 Nose Type

The nose format has relevant influence on the drag generated by the rocket. A set of different nose formats were studied following examples seen in the bibliography, these are a parabolic configuration with the vertex on the rocket's nose, an elliptic configuration with the vertex on the nose cone and co-vertex on the junction of the nose and fuselage, a conic configuration, a parabolic ogive configuration with the vertex on junction of the nose and fuselage and a LD-Haack (Von Kármán) series ogive based on formulations presented on (CROWELL, 1996). Such examples are presented on Figure 17.

### 3.2.7 Throat area ratio

In order to allow some variation in  $F$ ,  $P_C$  and  $\dot{m}$ , throat area ratio, defined as  $\frac{A_C}{A_t}$  was introduced. Based on (SUTTON; BIBLARZ, 2000), this ratio cannot be smaller than 4 because this can invalidate the hypothesis that flow in the chamber is stagnated. The upper limit was set at 10 arbitrarily to avoid excessive pressure on the chamber. As shown in Equation 2.35, its relation to  $A_B$  is of high importance to determine the value of  $P_C$ . For the star configuration, the range was defined as from 4 to 10 and for the end-burner, from 50 to 1500.

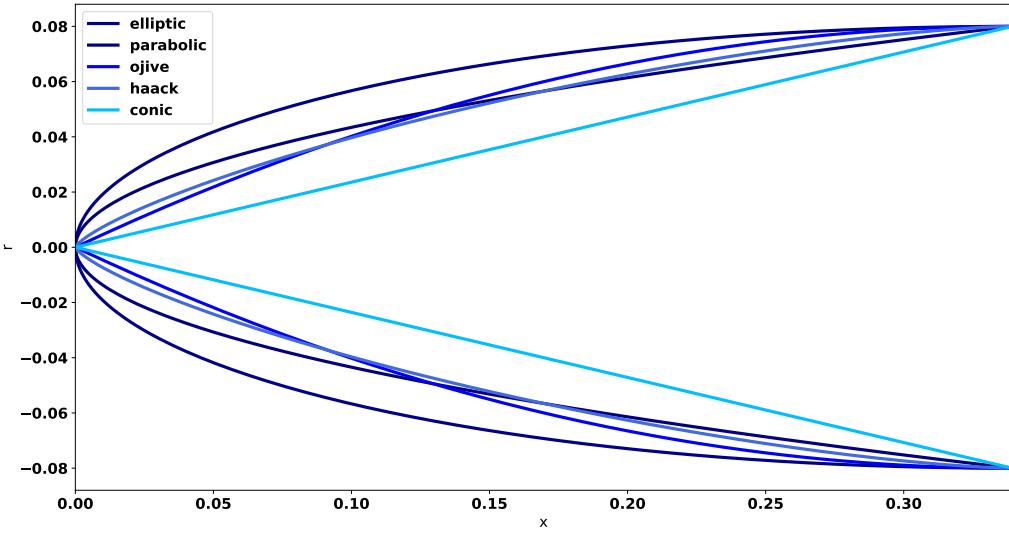


Figure 17 – Different nose configurations studied for each rocket based on the definitions of (CROWELL, 1996)

### 3.3 Algorithms and Implementation

The algorithmic implementation was modular, taking advantage of smaller code blocks and object oriented programming, but adding further computational costs on their interactions. The developed modules follow the interactions described in Figure 18. An arrow coming from one block and pointing to another means that the pointed block is called and used on the first one.

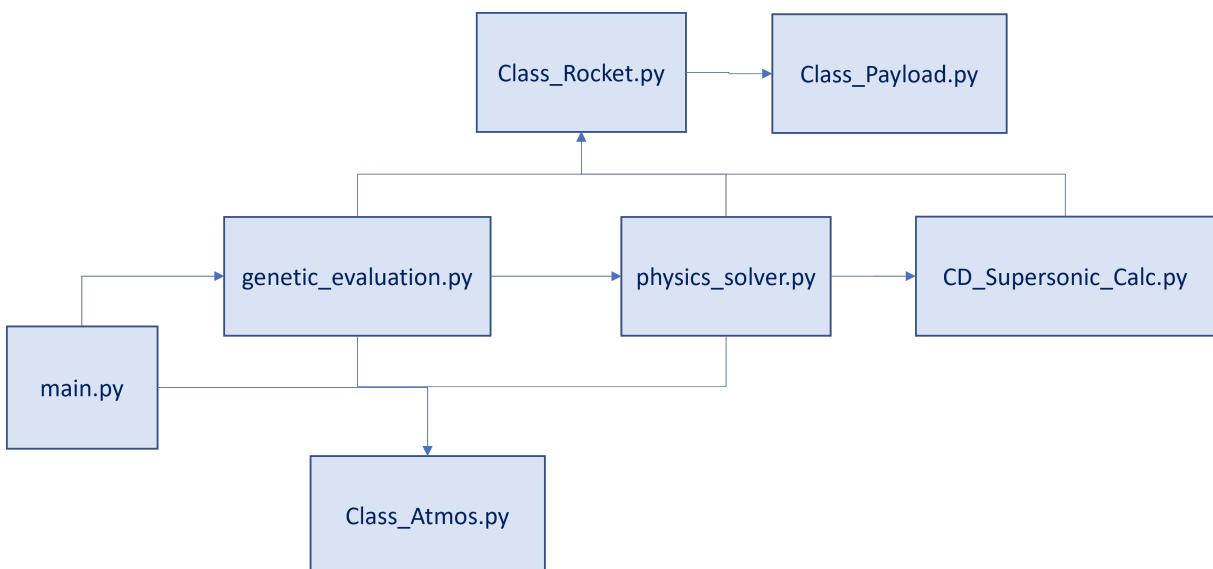


Figure 18 – Interactions between different modules that compose the program

### 3.3.1 Programming Language Choice

The chosen programming language for the project was *Python* in its 3.9 version. This choice came considering three main factors:

- familiarity with the programming language
- language flexibility and availability of libraries
- widespread use

Based on the author's previous experiences, the languages studied were shortlisted to the following: Python, Matlab, Excel-VBA and C/C++. While most languages from the past list are highly flexible, with OOC implementations and readily available libraries, Excel-VBA, while highly powerful, is constrained to spreadsheets and libraries developed by the software provider.

According to the PyPL (Popularity of Programming Languages) ranking the most used programming languages as in August 2021 is Python, this ranking is based on Google searches after the languages tutorials, help forums, etc. ([CARBONNELLE, 2021](#)), as can be seen in Table 3. A second ranking (Tiobe), based on the number of existing pages in official help and online forums, was consulted and determined C as the most popular programming language, closely followed by Python as can be seen in Table 4. Widespread use allows for a wider intelligibility of the written code for future reference, which is highly desired, but also allows for more sources of help and reference in the implementation. Languages linked to specific paid-for software as Matlab and Excel-VBA were less favored based on this factor.

| Rank | Language   | Share  |
|------|------------|--------|
| 1    | Python     | 29.93% |
| 2    | Java       | 17.78% |
| 3    | JavaScript | 8.79%  |
| 4    | C#         | 6.73%  |
| 5    | C/C++      | 6.45%  |

Table 3 – Data extracted from PyPL ([CARBONNELLE, 2021](#))

| Position (Aug 2021) | Language | Ratings |
|---------------------|----------|---------|
| 1                   | C        | 12.57%  |
| 2                   | Python   | 11.86%  |
| 3                   | Java     | 10.43%  |
| 4                   | C++      | 7.36%   |
| 5                   | C#       | 5.14%   |

Table 4 – Data extracted from TIOBE ([TIOBE, 2021](#))

On a poll presented in ([SILVA, 2021](#)), in a group where over 95% had some formation in the field of engineering and over 70% in aeronautics/mechanical engineering,

Python was shown to be the preferred computational tool of almost 53% of the interviewees. This reinforces the argument that a tool developed in Python is most likely to be highly intelligible for other people in the field.

Based on the information above, the choice of a programming language can be resumed in Table 5.

| Language  | Author's skill | Flexibility and Libraries | Widespread Use |
|-----------|----------------|---------------------------|----------------|
| Python    | High           | High                      | High           |
| C/C++     | Medium         | High                      | High           |
| Matlab    | High           | High                      | Limited        |
| Excel VBA | High           | Limited                   | -              |

Table 5 – Comparison of programming languages

### 3.3.2 Main Module

The main module receives its name because it is the one that when run activates the other modules and it is the main workflow of the program. This module actually only calls two other modules, the Atmosphere Class to initiate the atmospheric model and the Genetic Evaluation module, which manages the simulation, classification and hybridization of the generations. The main workflow can be seen on Figure 19.

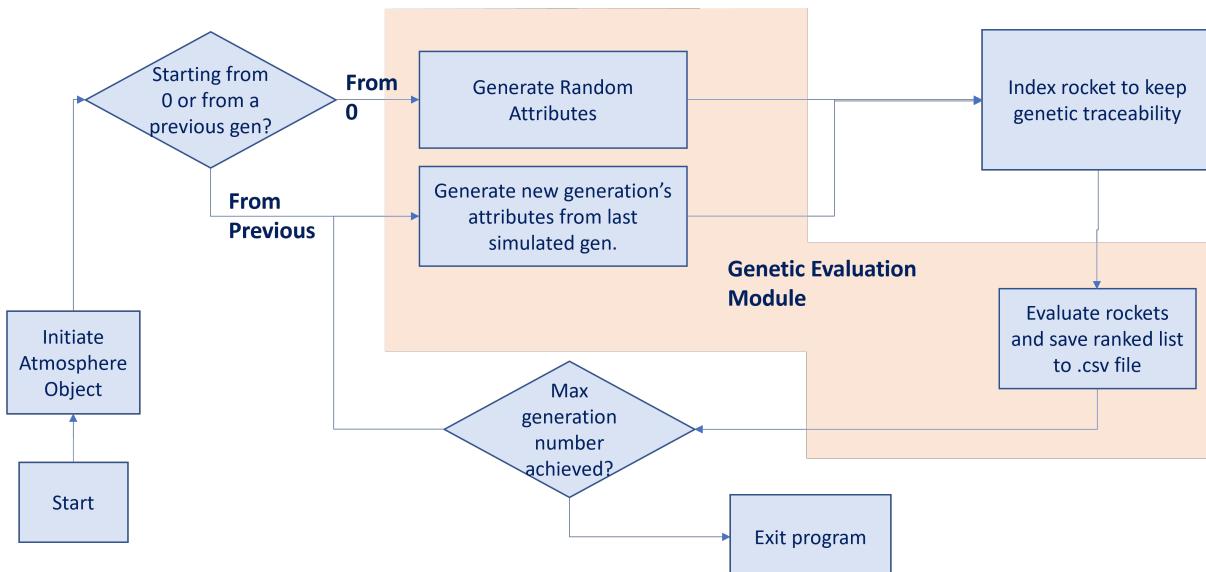


Figure 19 – Flowchart of the main module

### 3.3.3 Atmosphere Class - Module

Even though a python implementation of an atmospheric model can be found in (WAAL, 2019), an object class 'Atmosphere' was created to facilitate its integration to the code. Counter-intuitively, the code in the reference actually uses the model described in (NOAA; NASA; USAF, 1976). A problem raised from the direct implementation of the

code into de Physics module (Section 3.3.5), was that the need for it to be run on each iteration, which eventually led to a higher computational cost by running the program over 1 million times. The implemented class allows for the program to be run in the beginning of the execution, creating arrays of values at each 5m with corresponding interpolation functions.

A limitation of the isacalc (WAAL, 2019) module implemented into the class, is that it only calculates the values up to a 110km altitude. Nevertheless, The required values of  $\rho_p$  and  $P_{AMB}$  can be assumed as negligible at this altitude and higher for the considerations of suborbital space vehicle, therefore after the 110km threshold these were interpolate as 0. Values of  $\mu_{AMB}$  and  $c_{sound}$  remain constant with the values of  $h = 110\text{km}$  just to have finite quotients on the calculations of  $Re$  and  $M_{ach}$ , but their overall effect will be unconsidered as drag will be a numerical 0.

### 3.3.4 Rocket Class - Module

In order to link the different variables and functions that describe a rocket and its behavior, a Rocket class was created. The objective of this class was to include all variables and methods which could be determined using only data of the rocket. The class requires as an input a dictionary of the values of the optimization variables and the Payload object that chosen for the rocket. The initialization of the rocket class generates the external points of the rocket's body, determines fin geometry, calculates the rocket's propulsion system's size, weight and capabilities, the weight and size of the recovery system and determines the rocket's center of gravity while empty and on launch configuration. A stability validation is made to see if the rocket meets static stability criteria defined in Section 3.1.

#### 3.3.4.1 Propulsion Calculations

As the value of  $F^*$  is solely determined by variables of the rocket, the calculation of this value was included on the Rocket Class module. Based on the assumptions made on 3.1 regarding the motors geometry and grain disposition, the values of  $P_C$  is calculated iteratively. The total mass and disposition of propellant and the structure supporting the propulsion system are also calculated. For the calculations the value of  $P_e$  was assumed constant for all rockets as  $0.8P_{AMB}(h = 0)$ . The logic implemented is shown in Figure 20.



Figure 20 – Flowchart of the estimations regarding the propulsion system

In the case of the star configuration, to calculate the rocket's propulsion system, first an iterative process takes place to  $P_C$ . First, a value of  $P_C$  is given, which allows calculate  $A_e$  for a given  $A_t$ . With these values it is possible to calculate the size of the nozzle and then  $A_B$ . With this,  $P_C$  can be obtained from Equation 2.35. Through iterations, a value of  $P_C$  that satisfies the conditions is found.

Two options are possible if through the iterations a value of  $A_e$  is found that is greater than the area of the tail section of the rocket. The first is to consider this value as the new rocket section, increasing the rocket's end section area and drag, a second option is to enforce the geometric restriction of the rocket upon  $A_e$  and a new value of  $P_e$  is calculated, this means, the nozzle is cut and flow will be under-expanded.

Once the error value of  $P_C$  within iterations is under 0.1%, the final sizes of the nozzle and combustion chamber are recorded. Mass and *CG* of the combustion chamber, the propellant and the nozzle are calculated. The value of  $t_{burnout}$  is calculated. As the value of  $A_e$  can be different than the section of the rocket, a boat-tail curved transition is added to reduce drag (TRAN et al., 2013?) at the end of the rocket.

### 3.3.4.2 Recovery system Calculations

For calculations of the recovery system, first, a desired terminal velocity of  $V_{ter} = 9\text{m/s}$  was defined based on (PEPERMANS et al., 2018) and (VANDAS et al., 2018). The parachute weight and volume estimation was implemented according to the simplified approach presented on Chapter 8 of (USAF, 1978), a  $C_D^{PAR} = 0.6$  value has been selected according to values presented in the book. An iterative process begins assuming no weight

on the recovery system, with the empty weight of the rocket, a first estimation of the parachutes size and mass can be made. This new weight is now considered within the vehicles empty mass and the process is repeated.

Once the mass difference between two iterations is less than 0.1% of the previous mass, a calculation of the volume required is made based on the average packaging density presented in (USAF, 1978). After this, the volume is fitted in the nose con and if needed it can exceed this limits. In case of a high volume parachute that requires moving the other components further back on the rocket's main axis, the propulsion system is recalculated. With the diminution in size of the propulsion system, mass will necessarily not grow and the calculated parachute will remain viable.

### 3.3.4.3 Static Stability

The rocket's center of pressure is calculated with the methods presented in (UTAH STATE UNIVERSITY, 2010)(CULP, 2008). The criterion of minimal static margin is applied for  $CG_{empty}$  and  $CG_{full}$ . In the case of the rocket failing to meet the criterion in any of the points, a boolean variable used in the scoring is set as False.

### 3.3.4.4 Scoring

As the objective is to minimize rocket launch weight, the score is based in this metric. For a rocket with no penalties, the score is set as exactly equal to the launch weight. Two penalties were introduced as shown in Equation 3.5, for rockets that fail to meet the stability standard, the score is multiplied by a factor described in Equation 3.7; for rockets that fail to meet the altitude  $h_{ref}$  the score is multiplied by a factor of defined in Equation 3.6. For rockets that did meet the desired values the penalties were set as 1. Unfeasible rockets are defined as those in which the payload, nose and HUB occupy over 85% of the body's length, leaving no space for a combustion chamber and nozzle. These rockets are assigned as score an arbitrarily big number ( $score = 10^{10}$ ). The exponent on the altitude factor is to minimize the chance of small light rockets achieving a good position by just being light and missing the objective by big margins. The penalty factors are purposely discontinued at the limit of the tolerances to maximize the reward of complying with the conditions.

$$score = m_0 \cdot f_{stability} \cdot f_{altitude} \quad (3.5)$$

$$f_{altitude} = 1.1 \cdot \left( \frac{h_{max}}{h_{ref}} \right)^2 \quad (3.6)$$

$$score = \min (1.1 + \cdot (1 - MS_{min}) \cdot 4; 5) \quad (3.7)$$

### 3.3.5 Payload Class - Module

This class was introduced to simplify the use of different CubeSat configurations in case needed. A payload object allows for a 'configuration' input, which can be any of the U configurations listed in Section 1.3. Furthermore, in case the keyword 'custom' is given, custom values for mass, length, width1 and width2 will be used, theoretically accommodating any payload in the form of a rectangular prism. A further variable can be included to specify the payload's  $CG$  in it's most lengthy dimension, which will be assumed in the middle of it if not specified.

### 3.3.6 Physics Module

The main objective of the physics module is to determine the maximum attainable height for each rocket. It's main function was developed following the flowchart specified in Figure 21.

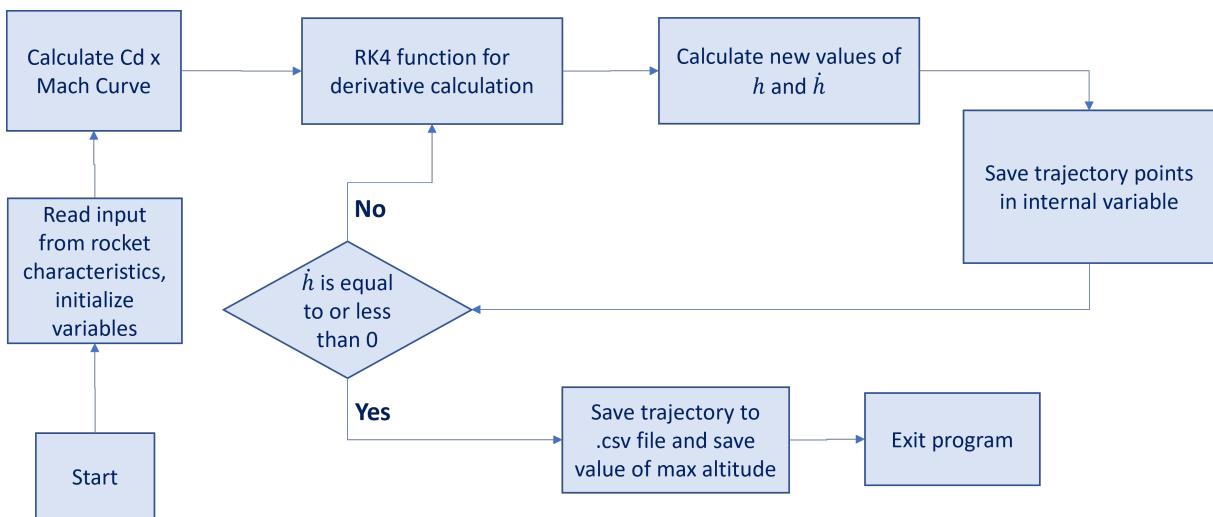


Figure 21 – Flowchart of the simulation of the trajectory of a rocket

As presented in Section 3.1 the system can be considered a vectorized system with variables  $V$  and  $h$ . Derivatives are calculated using Equation 2.41 and implemented inside a Runge-Kutta 4 method loosely based on the algorithm presented in (FRIEDMAN, 2018). Steps are subsequently calculated until the value of  $V \approx 0$  when the function exits writing output '.csv' files if requested and returns the values of the maximum launch height achieved. An optional "verbose" argument was added to print regular status of the simulation on the Python Console.

#### 3.3.6.1 Auxiliary Functions

Some auxiliary functions were created to keep the main code as simple as possible. One examples of this is the the profile drag estimation function. This was calculated using

---

the same approach as described on Section 2.2.1, for each point in time evaluated, as the formulation.

Other auxiliary function implemented was the one that calls the supersonic drag module, this was implemented in this way to allow the possibility of other drag implementations in an simple way. Perhaps the simplest function implemented is the calculation of the local g value, using Newton's Universal Gravitation Law and the fact that on the surface of the earth  $g_0 = 9.81 \text{m/s}^2$ . Another auxiliary function was the one that calculates the full value of  $F$  taking the value  $F^*$  and  $P_e$  determined by the rocket object and the value of  $P_{AMB}$  using Equation 2.30.

### 3.3.7 Genetic Evaluation Module

The objective of this module is to manage the genetical diversity of the populations, it's main processes are the generation of random attributes, the "mating" of a pair of rockets, the execution of the simulations and the posterior ranking of the rockets according to their scores and finally, the creation of a new generation based on the results of the last iteration.

#### 3.3.7.1 Random Rocket Generation

The random rocket generation module creates a data structure with the attributes chosen as genes with random values. Limits are set according to the topics discussed on Sections 3.1 and 3.2. Within the established limits for all continuous variables, random uniform distributions are used to generate values in each interval, due to the relatively big interval in throat area ratio for the end-burner configuration, the distribution was considered uniform within the logarithm values. Discrete variables (nosecone type) are determined using a random choice algorithm between the different possibilities. In this way, a data structure is created that has random values for each desired variable and has the potential to analyze any value within the defined optimization space.

#### 3.3.7.2 Mating method

Mating is achieved by mixing the genes of two different rockets. This function uses a random choice function to choose between the rockets chromosomes of each of the specified rockets to be mated for each of the genes in the optimization. While theoretically this process can be applied to mate any natural number of rockets, an implementation for the mating of only to rockets was opted for.

A random mutation possibility was added. This method generates an array filled with boolean values according to a possibility  $p_{mut}$  of a given element of the array being set as True. The possibility of none of the  $n_{genes}$  genes in a g being True, is given by  $(1 - p_{mut})^{n_{genes}} \approx 1 - p_{mut} \cdot n_{genes}$ . This approximation, true for small values of p, gives us

valuable insight about the probability necessary for mutations to occur while generating a new rocket by the mating process.

### 3.3.7.3 Selection method

The selection method can be defined as one of the main pillars of the optimization, this method receives as input, between others, a list containing data structures containing genes as specified in the Random Rocket Generation method, this list can be defined as a generation. The module initializes the rocket object for each element in the generation and then gives it as input to the physics simulator to obtain the maximum altitude reached and overall score. Once all elements were simulated, the method creates a list using the Rocket Class' export method that contains the score and other relevant information about each rocket, the list is then sorted sorts the elements according to the score obtained by the rockets and sent as an output to the main module. The method saves the sorted list as a '.csv' file for future reference.

### 3.3.7.4 Creation of New Generations

The creation of new generations is also an important part of the GA, as it has to balance the spreading genes of well-performing elements, but at the same time has to allow enough variability to achieve local minimums. To much variability will hinder or even impossibilitate convergence, but a low variability will have a higher chance to converge to a local minimum.

The logic adopted in the generation creation algorithm was the following:

- each generation will have a number of fresh randomly generated individuals
- mating between the best performing individuals will be prioritized
- while mating between the best performing individuals will be prioritized, mating with low performing individuals will be possible
- the best performing randomized individual of a generation will forcibly mate with the overall best performing individuals
- the best performing individuals of one generation will be "cloned" to the next generation
- random mutations will be possible

Thus, each new generation, except for the first one (which is totally randomized), is composed of:

- **10%** of individuals that are copies of the best performing 10% of previous generation
- **10%** of individuals that are the result of mating random individuals of the best performing 30% of previous generation within themselves with  $p_{mut} = 0$
- **20%** of individuals that are the result of mating random individuals of the best performing 50% of previous generation within themselves with  $p_{mut} = 0.1$

- **20%** of individuals that are the result of mating random individuals of the best performing 50% of previous generation with random individuals overall with  $p_{mut} = 0.05$
- **10%** of individuals that are the result of mating the best randomized individual with of the best performing 10% of previous generation with  $p_{mut} = 0$
- **10%** of individuals that are clones of the best performing 10% of previous generation with  $p_{mut} = 0.2$
- the remaining **20%** of individuals are randomized in each generation

### 3.3.8 Wave Drag Module

The complexity of the calculations and the amount of auxiliary functions necessary for the calculations of the supersonic drag coefficient justified a separate module. The program generates the curve  $C_D^{SUP} x M_{ach}$  for a given rocket to be used on the module described in Section 3.3.6. This output is given in the form of an interpolating function of  $M_{ach}$ .

The approach given to simplify the theory presented in Section 2.2.2 was instead of trying to find the areas of intersection of an oblique plane passing on a given point  $X$ , the program determines the x coordinate of the plane passing through each of a given set of points on the body's outer layer or fin. This value can be easily calculated through the Equation 3.8. The  $\pm$  refers to the fact that the plane can have a positive or negative inclination in respect to a point.

$$x_{plane} = x_p \pm r_p \cdot \cot(\mu^M) = x_p \pm r_p \cdot \frac{\sqrt{M_{ach}^2 - 1}}{M_{ach}} \quad (3.8)$$

The following process is repeated for a distribution of  $M_{ach}$  between 1.2 and 5, based on a linear distribution of the sine of each mach angle. This last was done in order to better approximate for low values of  $M_{ach}$ , where the curve has greater variation.

#### 3.3.8.1 Revolution Body area distribution

In order to simplify calculations, as the main rocket body is a body of revolution by itself. The area intersected by the plane is the same for any value of  $\theta$ . Thus, the areas of intersection were calculated outside of the  $\theta$  loop and added to the areas calculated for the fins on each value of  $\theta$ .

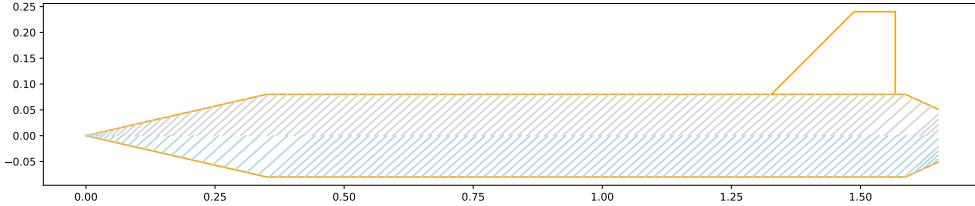


Figure 22 – Intersections of  $M_{ach} = 1.5$  planes and the rocket's main body, separated in upper (orange) and lower halves (blue)

For each of the segments drawn in Figure 22, equally spaced points were taken over them with x,y coordinates. Having the radius interpolation function in  $r(x)$ , the maximum z coordinates to each side are found through Equation 3.9. Thus, the perpendicular projection to the flow of this cross-section is given by Equation 3.10.

$$z_{hull} = \pm \sqrt{r(x) - (x - x_p)^2 - y^2} \quad (3.9)$$

$$S(x_{plane}) = \int_0^y 2 \cdot abs(z_{hull}) dy \approx \sum_{i=0}^n \frac{z_{i+1} + z_i}{2} \cdot (y_{i+1} - y_i) \quad (3.10)$$

### 3.3.8.2 Fins area distribution

Considering an arbitrary fin aligned with the plane with  $\theta = 0$  position as 0 and considering N fins evenly and radially distributed on the rocket body. In each fin, a plane determined by the fin will be considered as a local system of reference with the x position as one coordinate and the radial position as the other. For the  $i < N$ -th fin, it can be demonstrated that the effective inclination of the reference plane and the one determined by the fin is given by the Equation 3.11

$$\mu_{ef}^M(i) = \text{acos}(\cos(\mu^M) \cdot \cos(\theta + 2 \cdot \pi \cdot \frac{i-1}{N})) \quad (3.11)$$

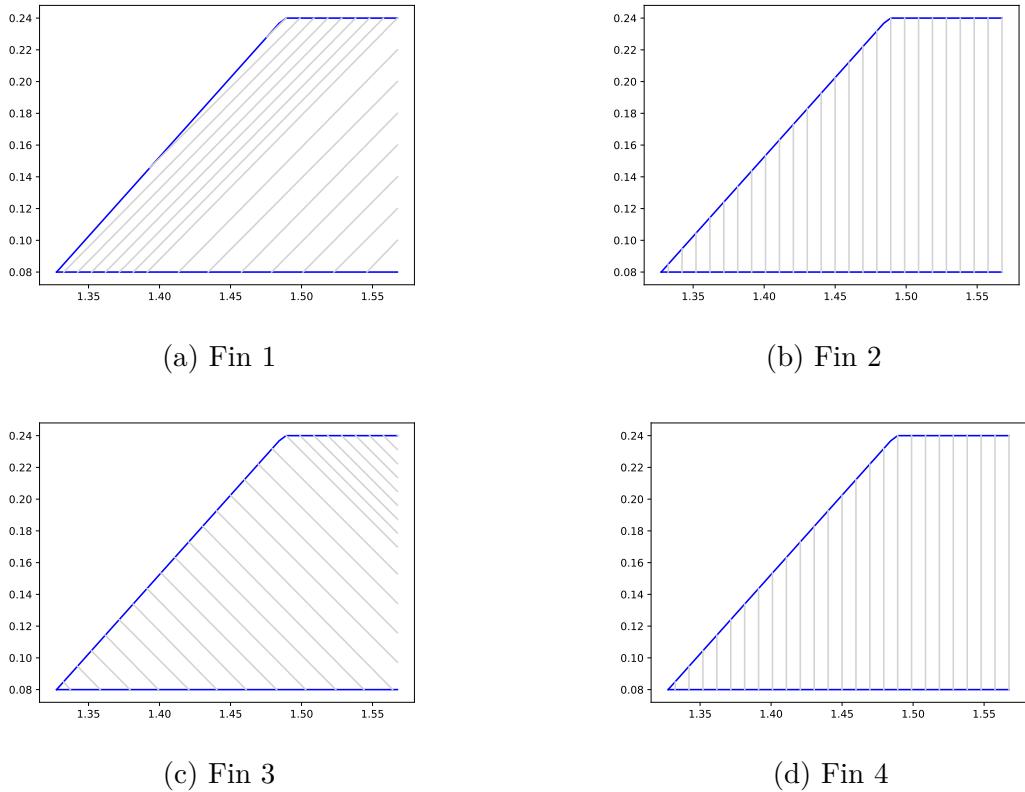


Figure 23 – Intersection of the  $M_{ach} = 1.5$  planes and the fins for  $\theta = 0^\circ$

For angles in with a positive derivative, extra points were added on the trailing edge to better approximate the curve. An example of the intersections in the fins can be found in Figures 23 and 24

For each line segment presented in Figures 23 and 24, the projected area is given by Equation 3.12. Being A and B the extremes of the segments.

$$S(x_p) = |r_A - r_B| \cdot th_{fin} \quad (3.12)$$

### 3.3.8.3 Drag Coefficient calculation

Having the area distribution of both parts of the rocket's body and having the area distribution of the fins, the maximum and minimum points in the x axis are determined, the curves are linearly interpolated, each interpolation function is evaluated for an equally spaced point distribution and summed. Through this process, a new curve that approximates the area of all intercepted objects is obtained. An example of this process is given in Figure 25.

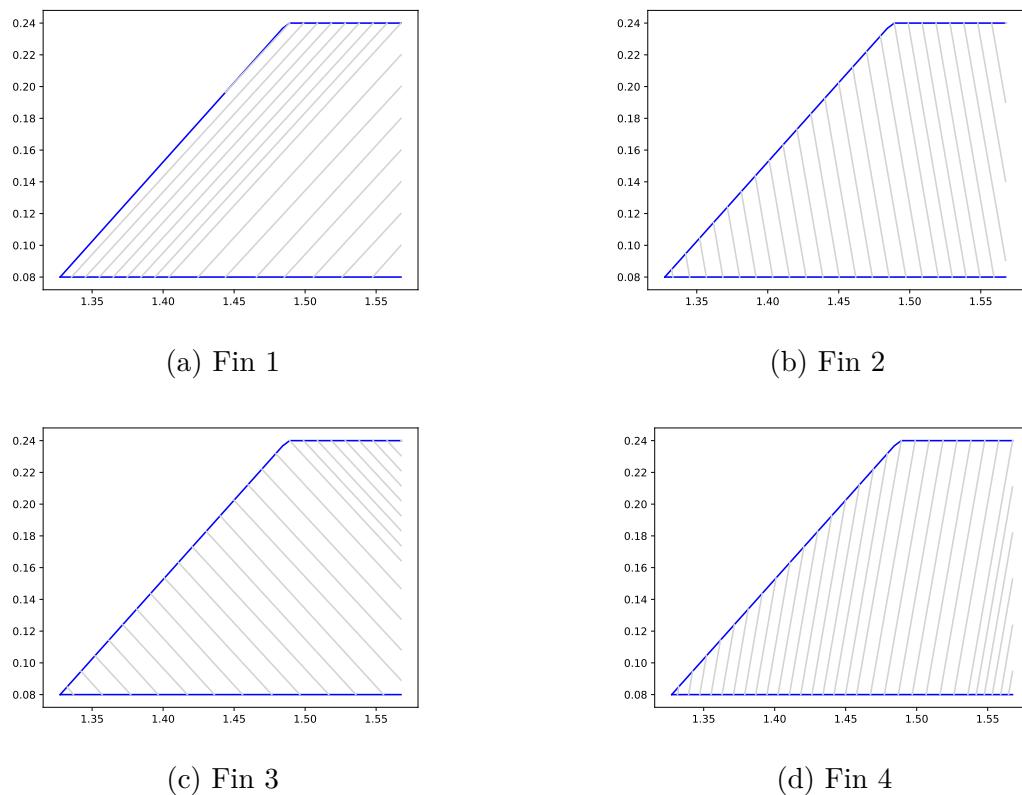


Figure 24 – Intersection of the  $M_{ach} = 1.5$  planes and the fins for  $\theta = 15^\circ$

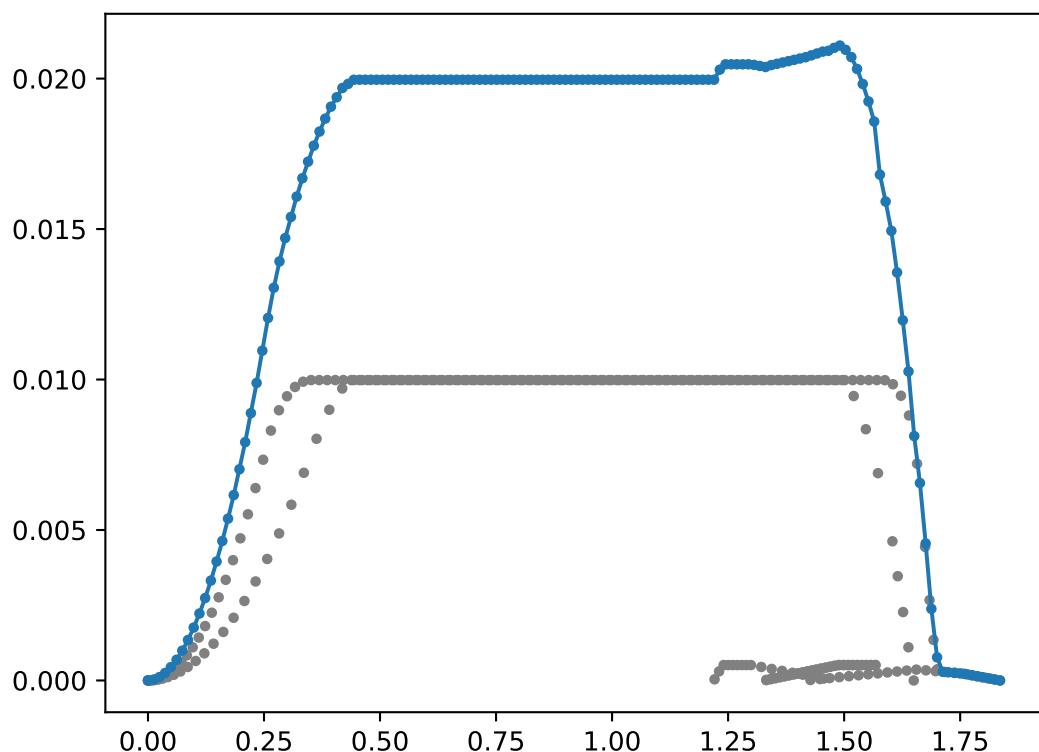


Figure 25 – Distribution of the total intercepted area for each  $M_{ach} = 1.5$  and  $\theta = 0^\circ$  plane in blue, area distribution of each the separate components (upper/lower body and fins) plotted in gray.

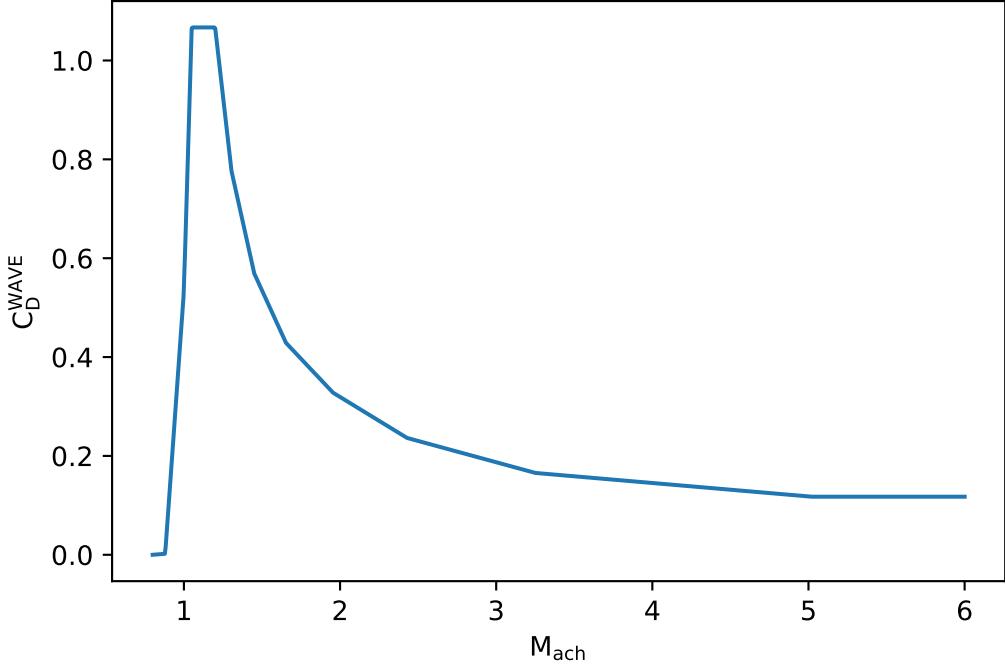


Figure 26 – Example of a  $C_D^{SUP}$  x  $M_{ach}$  obtained using the Wave Drag Module

After this step, the curve is differentiated in x to determine it's derivative using Equation 2.37 when possible and Equations 2.38 and 2.39 for the limits of the distribution. This derivative curve is then approximated with a Fourier series with Equation 3.13. Finally, the drag contribution relevant to the plane is given by Equation 2.15.

$$A_n = \int_{-x_0}^{x_0} S'(x) \cdot \sin\left(n \frac{x - \bar{x}}{x_0} \cdot \pi\right) dx \approx \sum_{i=0}^j \frac{y_{i+1} \cdot \sin\left(n \frac{x_{i+1}}{x_0} \cdot \pi\right) + y_i \cdot \sin\left(n \frac{x_i}{x_0} \cdot \pi\right)}{2} \cdot (x_{i+1} - x_i) \quad (3.13)$$

As the distribution of fins is equally space,  $C_D^{SUP}(\theta) = C_D^{SUP}(\theta + 2 \cdot \pi \cdot 1/N)$ . Thus, the range of values of  $\theta$  studied can be reduced from  $[0, 2 \cdot \pi]$  to  $[0, 2 \cdot \pi \cdot 1/N]$ . The values are numerically integrated using the theory presented in 2.7.3.2.

After calculating  $C_D^{SUP}$  for each desired value of  $M_{ach}$ . The theory presented in Section 2.2.2.2 is applied to obtain the values for the transonic region. Even thought the theory presented in (RAYMER, 2004) recommends the use of smooth curves, the values are linearly interpolated for simplicity and to avoid possible negative values between  $M_{ach}^{cr}$  and  $M_{ach}^{dd}$ , which can happen with cubic or quadratic splines. Thus, a curve similar to Figure 26 is obtained.

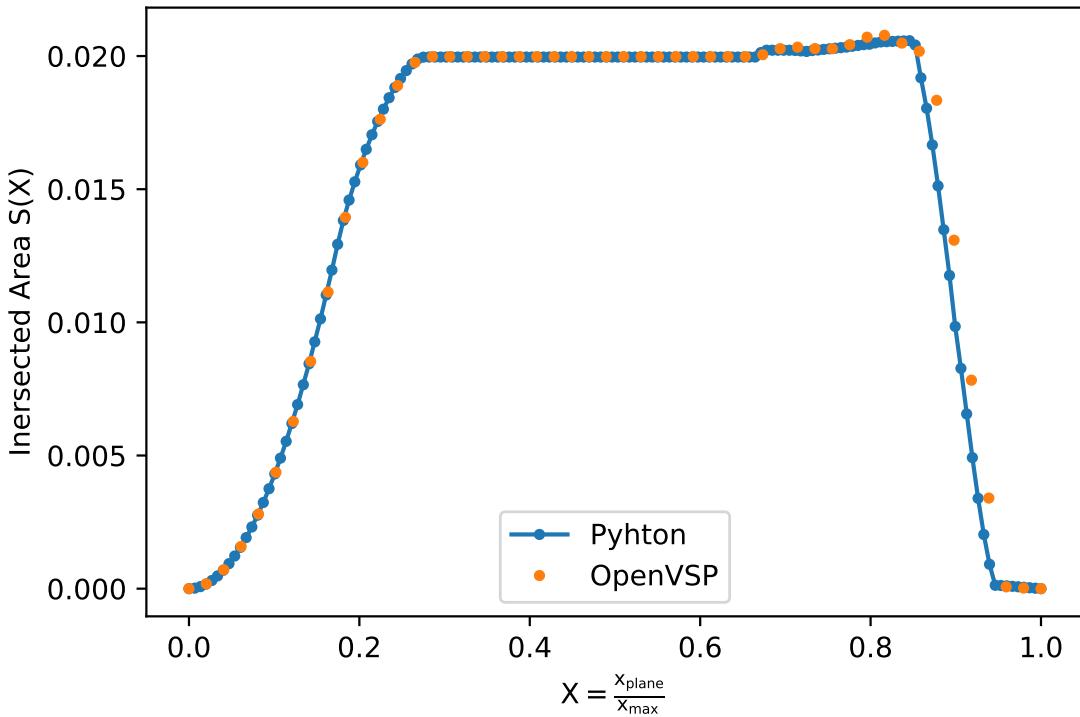


Figure 27 – Comparison between two area distributions, one obtained by OpenVSP and another calculated, for  $M_{ach} = 1.5$  for the same rocket configuration

### 3.4 Program validation and testing

In order to guarantee the reliability of the modules developed on the previous sections, a test campaign was conducted before full program implementation.

#### 3.4.1 Testing the Supersonic Drag module

The results given by the process described on Section 3.3.8 were compared to those obtained by the readily available software OpenVSP. For some rocket configurations the area distributions for a given  $M_{ach}$  obtained for each method were compared, one of these examples is shown in Figure 27. Rockets were approximated within reasonable similarity considering the differences between the software.

Furthermore, the resulting  $C_D^{SUP} \times M_{ach}$  curves obtained were compared, as shown in Figure 28. While some differences are visible, they were deemed negligible and the program was considered successful in estimating the wave drag of the rocket.

#### 3.4.2 Testing the Physics Integrator Module

The first test was a Simple Harmonic Oscillator in order to study the modules reaction to constantly changing acceleration values. Results of the test can be seen in Figure 29 for different time differentials used for over 1000 seconds worth of simulation.

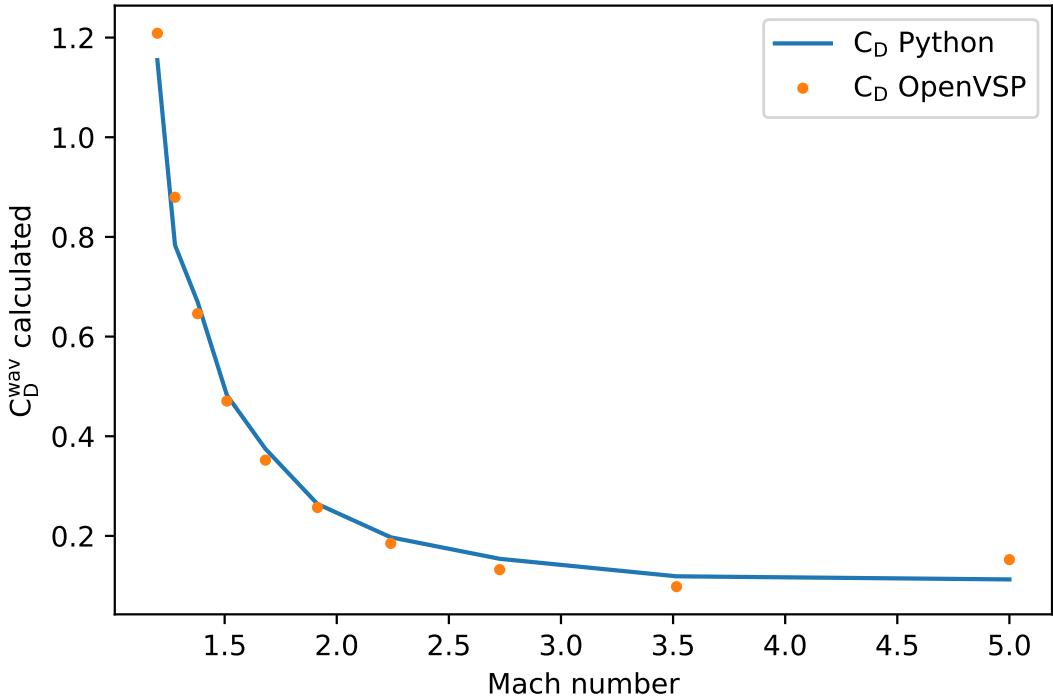


Figure 28 – Comparison between two area distributions, one obtained by OpenVSP and another calculated, for different  $M_{ach}$  for the same rocket configuration

Convergence towards the analytical solution can be seen for all time intervals studied. There was no visible difference between the calculations for  $dt = 0.01$  and the analytical solution. Figure 30 shows the numeric energy dissipation of the system, it can be seen that the effect is almost negligible for  $dt = 0.05s$  and  $dt = 0.01s$ .

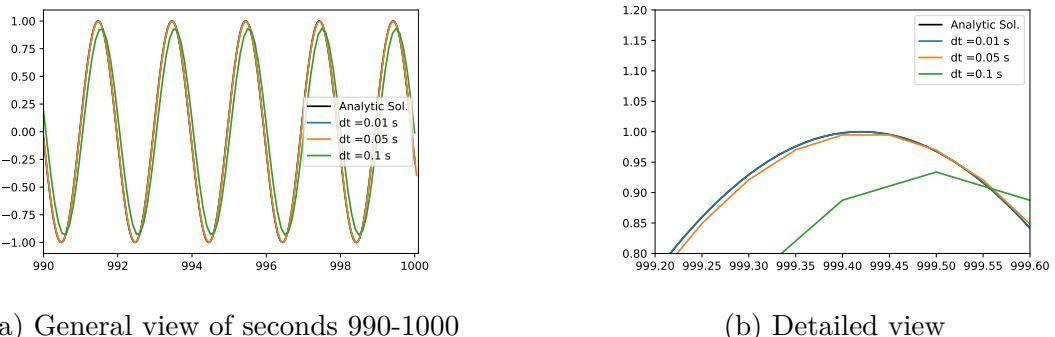


Figure 29 – Comparison between analytic and numeric solution for a Simple Harmonic Oscillator

A second test was conducted simulating an ideal rocket in a zero-drag environment. The rocket was simulated using the same approach as for the optimization and compared with the solution provided by Tsiolkovsky's rocket equation ([WIKIPEDIA, 2021](#)). Constant values of  $g$  and  $\dot{m}$  were assumed. The results of the simulation are exposed in Figure 31.

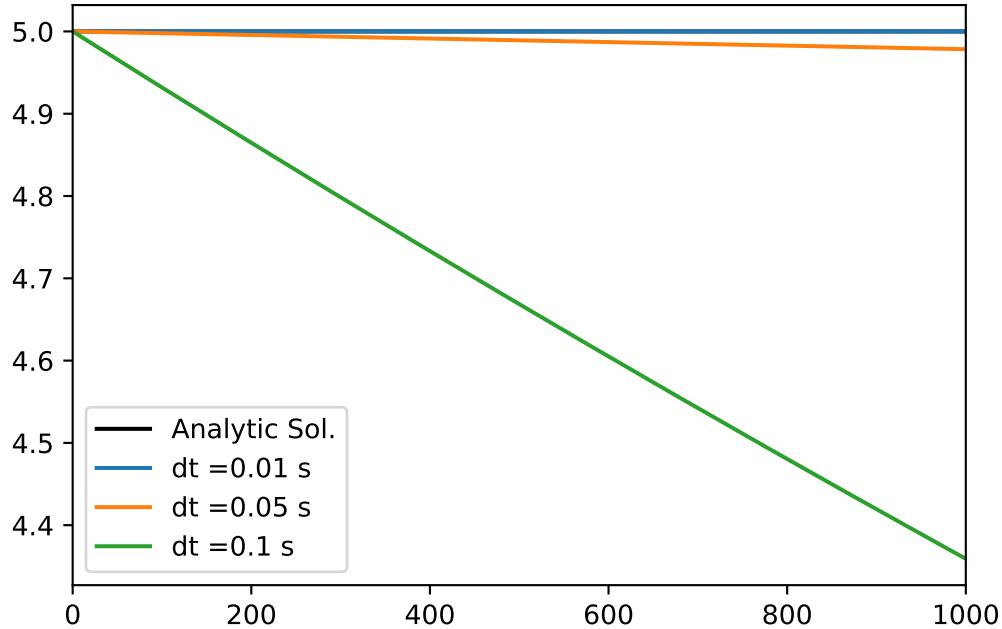


Figure 30 – Comparison of the numeric energy dissipation of the system for different values of  $dt$

No visible differences are perceived.

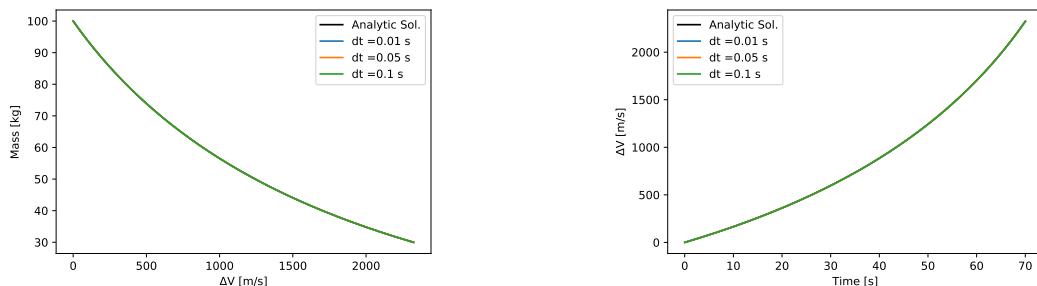
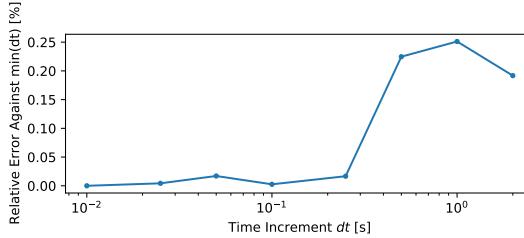


Figure 31 – Comparison of Rocket  $\Delta V$  over mass and time variation between analytic and numeric solution for an ideal rocket in a drag-less environment

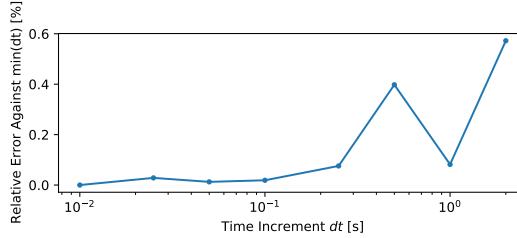
Also, numerical convergence was studied, the value of  $h_{max}$  was compared for different time intervals used on the simulation, no significant differences in maximum altitude reached ( $\Delta h_{max} > 0.1\%$ ) were found for  $dt < 0.25$  as can be seen in Figure 32. A default value of  $dt = 0.05s$  was applied for the simulations

### 3.4.3 Tests of Propulsion Calculations

The value convergence of the iterative determination of  $P_C$  was tested for different starting values ranging from  $0.001 \cdot P_C$  to  $100 \cdot P_C$ . Convergence to a value within the



(a) Simulation error in rocket 1



(b) Simulation error in rocket 2

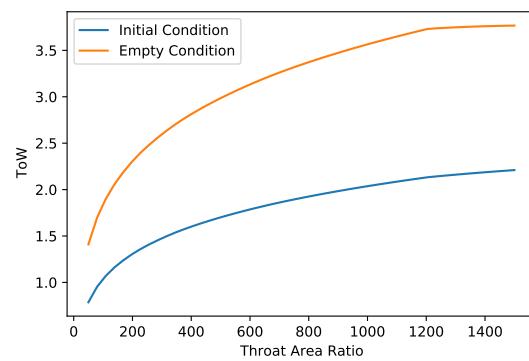
Figure 32 – Relative Variation of the maximum altitude reached for different time intervals

defined 0.1% tolerance was confirmed in all cases. For values of  $P_C$ ,  $T_C$  and  $\gamma$ , output values as  $\dot{m}$  and  $A_e$  were validated with tools available at ([NASA-GRC, 2021](#)).

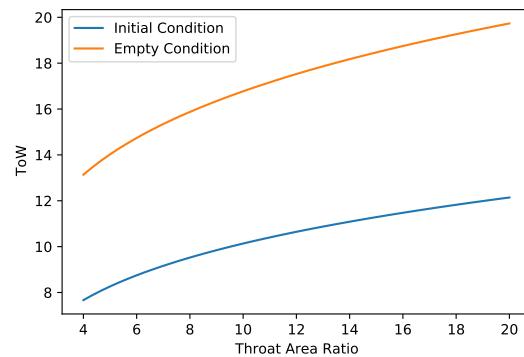
Furthermore, the values of  $A_B$  were calculated for different cases and compared to the programs output. A separate point of study was to compare the *ToW* of rockets for different throat ratios, and example of this can be found in Figure 33. While a low *ToW* in the end-burner configuration can cause an inadequate rocket, a too high *ToW* can cause mayor inconvenience too, as over-acceleration can damage the payload and other components. Nevertheless, it is expected that over-acceleration will be avoided by a high  $D$  that comes with a high velocity. So the optimal solution is expected to balance high acceleration and  $D$ .

### 3.4.4 Test of the Stability Calculations

The calculations of  $CP$  were compared to those exposed on ([CULP, 2008](#)) and ([UTAH STATE UNIVERSITY, 2010](#)). The results obtained by the program were the same as those exposed.



(a) End-burner rocket configuration



(b) Star rocket configuration

Figure 33 – Variations on  $ToW$  for different throat area ratios and both grain configurations studied for a given rocket

## 4 RESULTS AND DISCUSSION

As stated in Section 2.7, convergence is not guaranteed for GA and multiple runs can be needed to find optimal solutions. Thus multiple evolutionary simulations had to be made in order to achieve a solution. Furthermore, comparing the best rockets for different generations provides an insight of the effectiveness of convergence of the algorithms.

### 4.1 Optimization Executions for the End-Burner Configuration

Five parallel independent simulations were made spanning 50 Generations and the others (Sim 1-5). The results for the best performer of each generation are shown in Figure 34. We can see that while overall launch mass is usually reduced, Sim 1 and Sim 4 did not present convergence towards a viable solution, this could leave some space of improvement for the optimization routine. It's also important to note that the majority of the rockets presented on Figure 34 are not viable solutions to the problem. A major factor to this is the fact that the definition of  $A_B$  for this case is proportional to the square of the radius so rockets with higher  $TOW$  will have a lower length ratio. This lower length ratio causes major difficulties for the stability of the rocket.

A distribution of maximum altitude reached by total launch mass including all viable rockets simulations is displayed in Figure 35. For this, only rockets that took no penalties other than altitude-related were considered. Due to a high number of non-viable rockets on the simulation no direct frontiers are easily seen on the Figure.

#### 4.1.1 Best performing rocket obtained through optimization

The best characteristics of the best performing rockets of Sim 2,3 and 5 are shown on Table 6

| Variable            | Sim 3    | Sim 2    | Sim 5    | Unit |
|---------------------|----------|----------|----------|------|
| d                   | 0.315182 | 0.307826 | 0.336031 | m    |
| Rocket length ratio | 9.906129 | 8.740689 | 7.719809 | -    |
| Nose type           | conic    | conic    | ojive    | -    |
| Nose length ratio   | 0.251942 | 0.161944 | 0.058765 | -    |
| Fin height          | 1.089    | 1.018    | 0.866    | -    |
| Fin position        | 0.0086   | 0.0101   | 0.0158   | -    |
| Throat area ratio   | 921.1197 | 818.8286 | 746.0239 | -    |
| Total Initial Mass  | 271.9    | 245.7    | 317.3    | kg   |

Table 6 – Rockets obtained through optimization of the end-burner configuration

Convergence towards a  $d_{max} \approx 0.3m$  can be seen. No definitive nose configuration can be concluded, but elongated conic noses seem to be the most convenient. The fin's

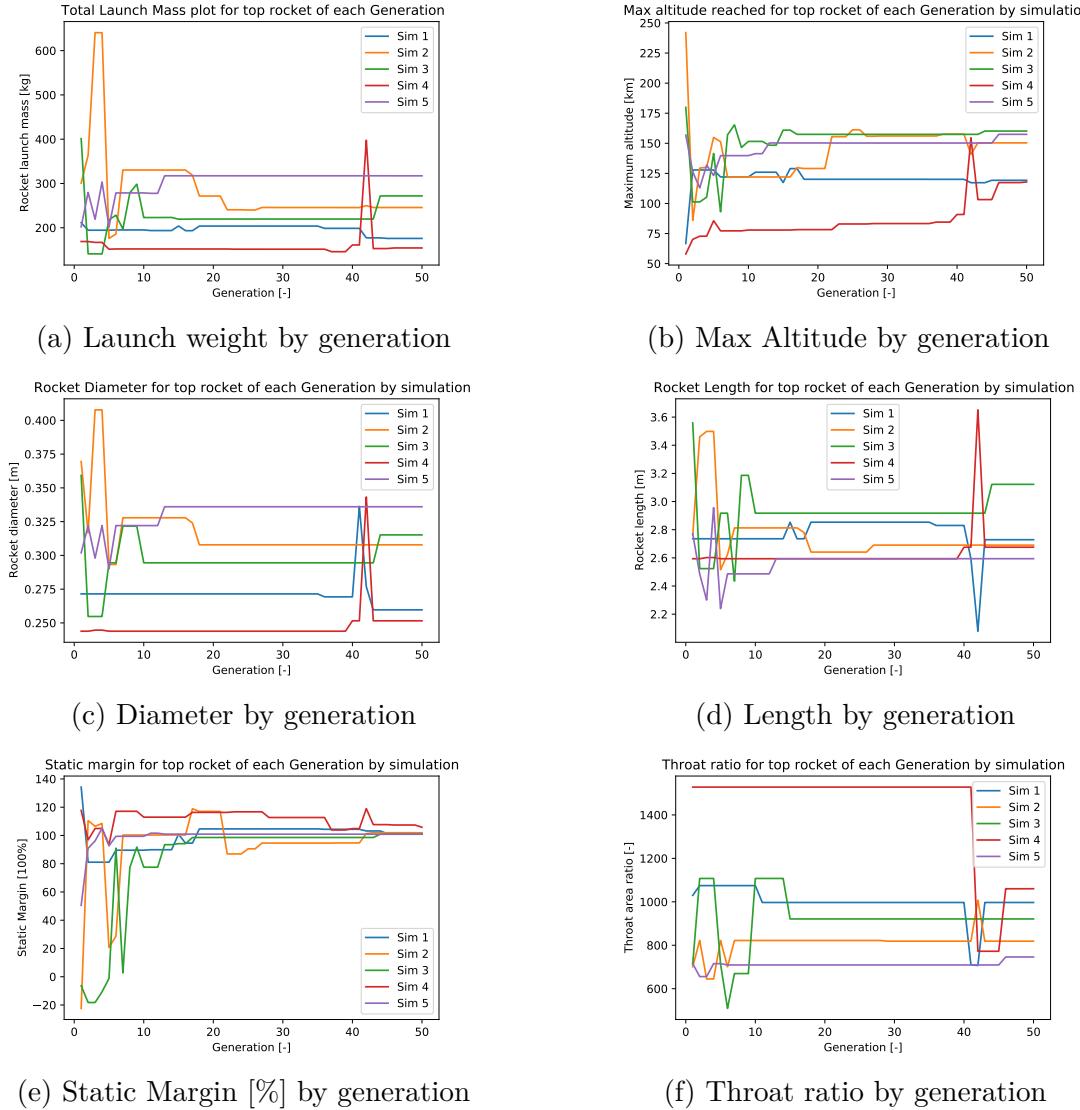


Figure 34 – Values of different variables for the best performing rocket of each generation for each of the simulations Sim 1-5 for the end-burner configuration

height should be approximately equal to  $d_{max}$  and positioned further back in the rocket. All rockets present  $I_{sp} \approx 260$  and  $M_R \approx 20\%$  as shown in Table 7, all these values are within the references presented on (SUTTON; BIBLARZ, 2000). While  $P_C$  values are in the upper end of the recommended values, the value of  $t_{wall}$  is calculated to provide safety on each case. Convergence towards an optimum value of  $MS_{min}$  can be seen.

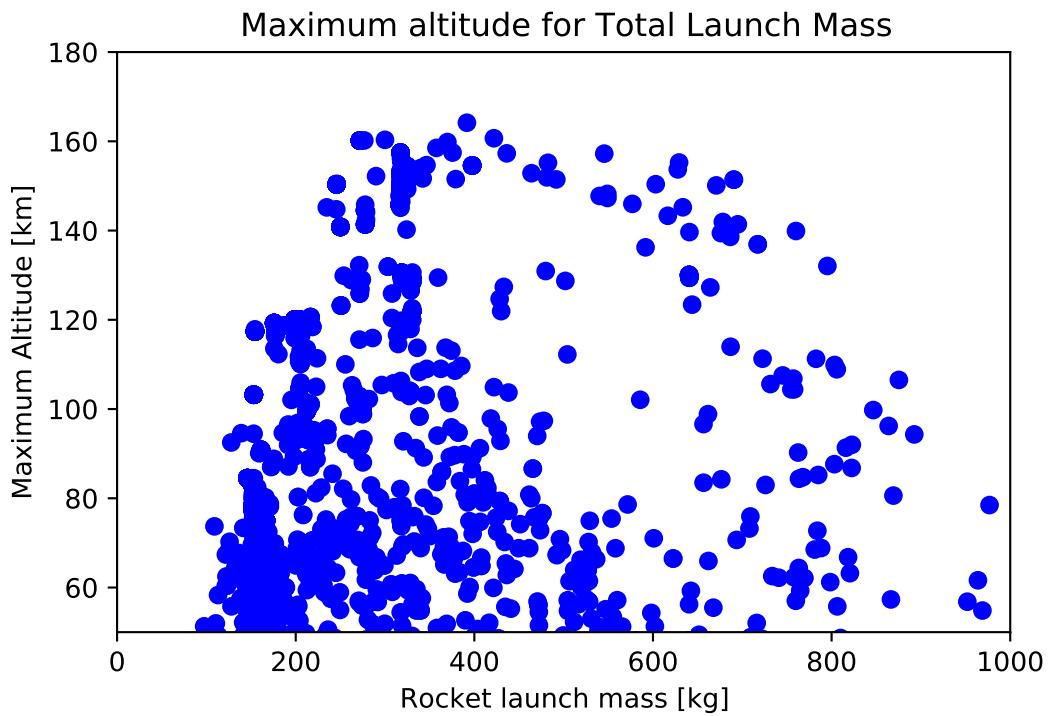


Figure 35 – Distribution of maximum altitude reached by total launch mass for the end-burner configuration

| Variable           | Sim 3  | Sim 2  | Sim 5  | Unit |
|--------------------|--------|--------|--------|------|
| $MS_{min}$         | 1.01   | 1.02   | 1.01   | -    |
| $P_C$              | 15.73  | 13.26  | 11.55  | Mpa  |
| $M_{ach}^{ex}$     | 3.87   | 3.79   | 3.73   | -    |
| $T^e$              | 1095   | 1122   | 1144   | K    |
| $\dot{m}$          | 1.02   | 0.95   | 1.12   | Kg/s |
| $h_{max}$          | 160.16 | 150.34 | 157.45 | Km   |
| $M_R$              | 22%    | 21%    | 18%    | -    |
| $I_{sp}$           | 261.9  | 259.8  | 258.1  | s    |
| Total Initial Mass | 271.9  | 245.7  | 317.3  | Kg   |

Table 7 – Main simulation results for the end-burner configuration

#### 4.1.2 Simulation of the best performing rocket

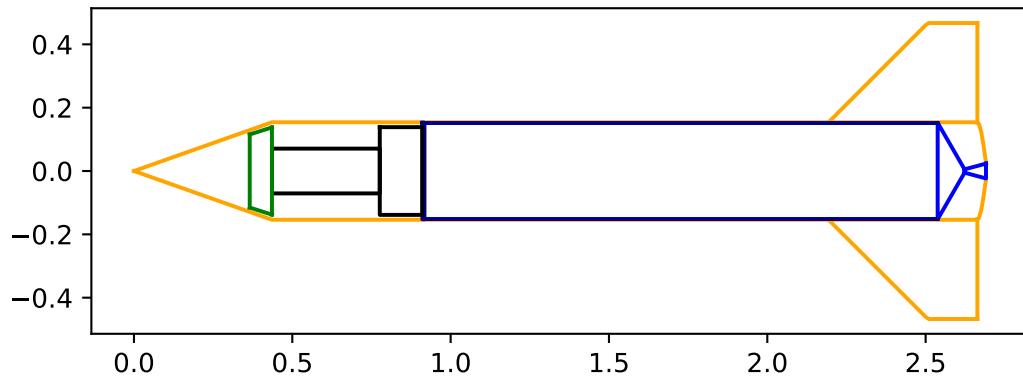


Figure 36 – Rocket obtained through optimization of the end-burner configuration

The rocket from Sim 2, presented in Figure 36, was the best performer of the whole set of simulations, its trajectory is shown in Figure 37. It's possible to see the effects of the wave drag in the speed and acceleration graphs. It's also possible to see the increase in thrust due to the drop of  $P_{AMB}$ .

## 4.2 Optimization Executions for the Star Configuration

Five parallel independent simulations were made spanning 40 Generations each (Sim 1-5). The results for the best performer of each generation are shown in Figure 38. While launch weight clearly decreases by iteration, the same does not apply for maximum altitude attained which for Sim 2 and 1 seems to constantly be above the required. Nevertheless, while Sim 2 presents convergence towards a higher launch mass value while achieving higher altitudes than required, the same does not apply to Sim 1. This means, a similar rocket to the one that Sim 1 convergence shows can be achieved with less mass (removing propellant might be enough in this case) that still reaches  $h_{REF}$ .

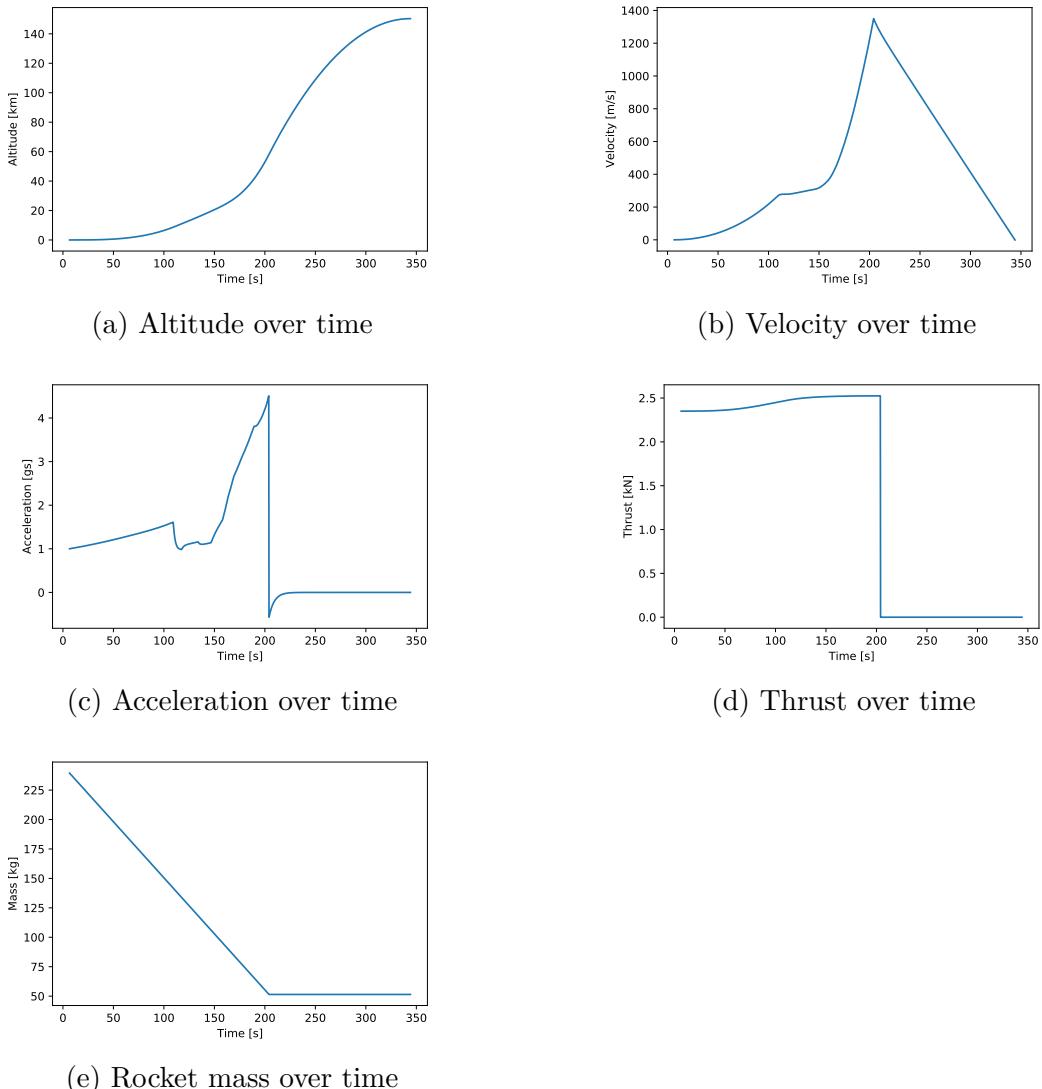


Figure 37 – Data obtained by the simulation of the best scoring rocket obtained in Sim 1-5

Some expected tendencies in all Simulations were the tendency a high nose ratio, all tending towards the maximum value of 0.3, and a high length ratio, all tending towards the maximum value of 20. An unexpected tendency is the programs tendency towards conic nose types, which was consistently repeated in all Simulations. A major factor to this is the fact that the definition of  $A_B$  for this case is proportional to the product of the radius and the rocket's length so rockets with higher  $TOW$  will have a higher length ratio.

Another interesting graph obtained by the simulations is displayed in Figure 39. This represents the distribution of maximum altitude reached by total launch mass including all simulations. For this, only rockets that took no penalties other than altitude-related were considered. There seems to be a visible Pareto frontier on the

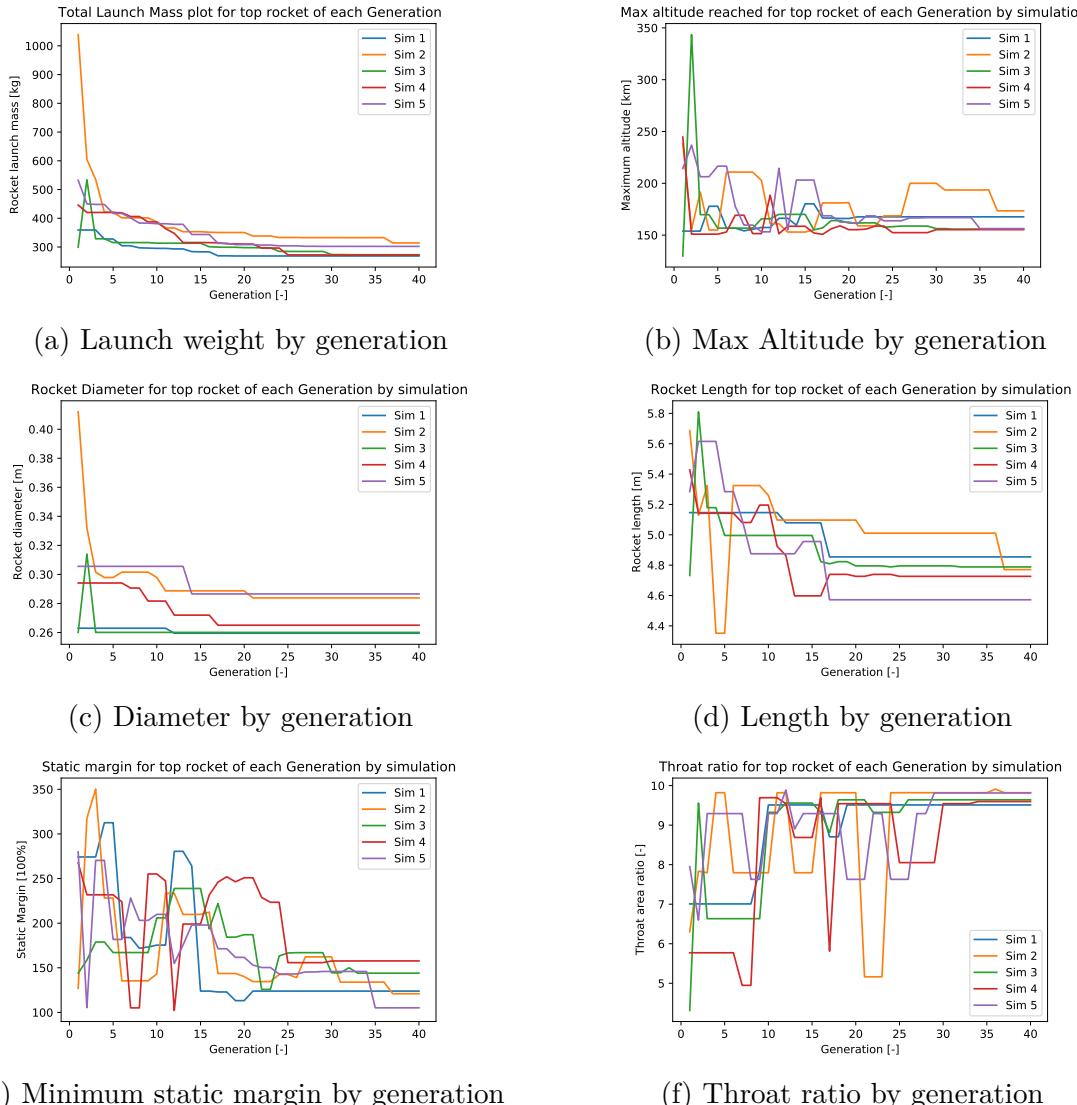


Figure 38 – Values of different variables for the best performing rocket of each generation for each of the simulations Sim 1-5 in the star configuration

#### 4.2.1 Best performing rocket obtained through optimization

The rocket with the best performance was the one obtained in generation 50 in Sim 1. Its characteristics are presented on Table 8.

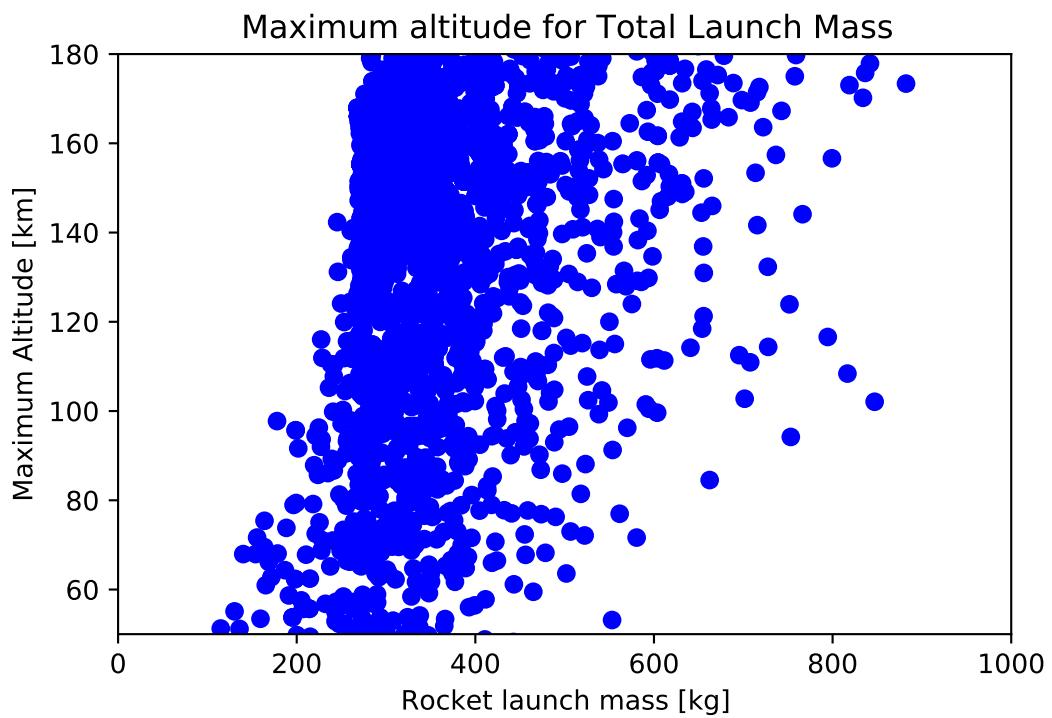


Figure 39 – Distribution of maximum altitude reached by total launch mass

| Variable            | Magnitude | Unit |
|---------------------|-----------|------|
| d                   | 0.259493  | m    |
| Rocket length ratio | 18.66505  | -    |
| Nose type           | conic     | -    |
| Nose length ratio   | 0.297733  | -    |
| Fin height          | 0.808597  | -    |
| Fin position        | 0.007239  | -    |
| Throat area ratio   | 9.955541  | -    |
| Total Initial Mass  | 267.9     | kg   |

Table 8 – Rockets obtained through optimization of the star configuration

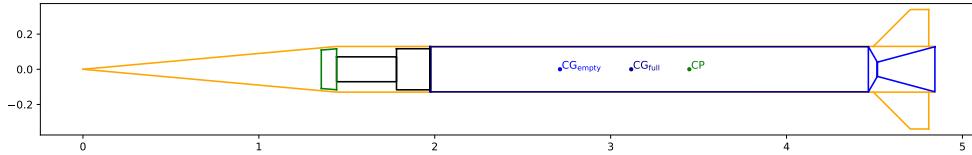


Figure 40 – Rocket obtained through optimization of the star configuration

As can be seen in Table 9 is over-performing in the requisites of  $h_{max}$  and  $MS_{min}$ , from which it can be concluded that there's space for further optimization. Other values as  $P_C$ ,  $M_{ach}^{ex}$ ,  $M_R$  and  $I_{sp}$  are within the common values cited in the references (SUTTON; BIBLARZ, 2000).

| Variable           | Magnitude | Unit |
|--------------------|-----------|------|
| $MS_{min}$         | 1.27      | -    |
| $P_C$              | 6.70      | Mpa  |
| $M_{ach}^{ex}$     | 3.32      | -    |
| $T^e$              | 1307      | K    |
| $\dot{m}$          | 23.06     | Kg/s |
| $h_{max}$          | 167.98    | Km   |
| $M_R$              | 21%       | -    |
| $I_{sp}$           | 245.1     | s    |
| Total Initial Mass | 267.9     | Kg   |

Table 9 – Main simulation results for the star configuration

#### 4.2.2 Possible drawbacks in the Simulation

An unsuspected problem was found in the simulation, while it was expected that rockets would naturally tend towards lower accelerations to minimize drag in the lower layers of the atmosphere, the opposite was detected. The graphics presented on Figure 41, are obtained by plotting the output for the best rocket in generation 50 in Sim 1.

We can see accelerations peaks of over 50g, which is well above the values presented in (ESA, 2013?). Furthermore, Figure 40 shows a much longer combustion chamber

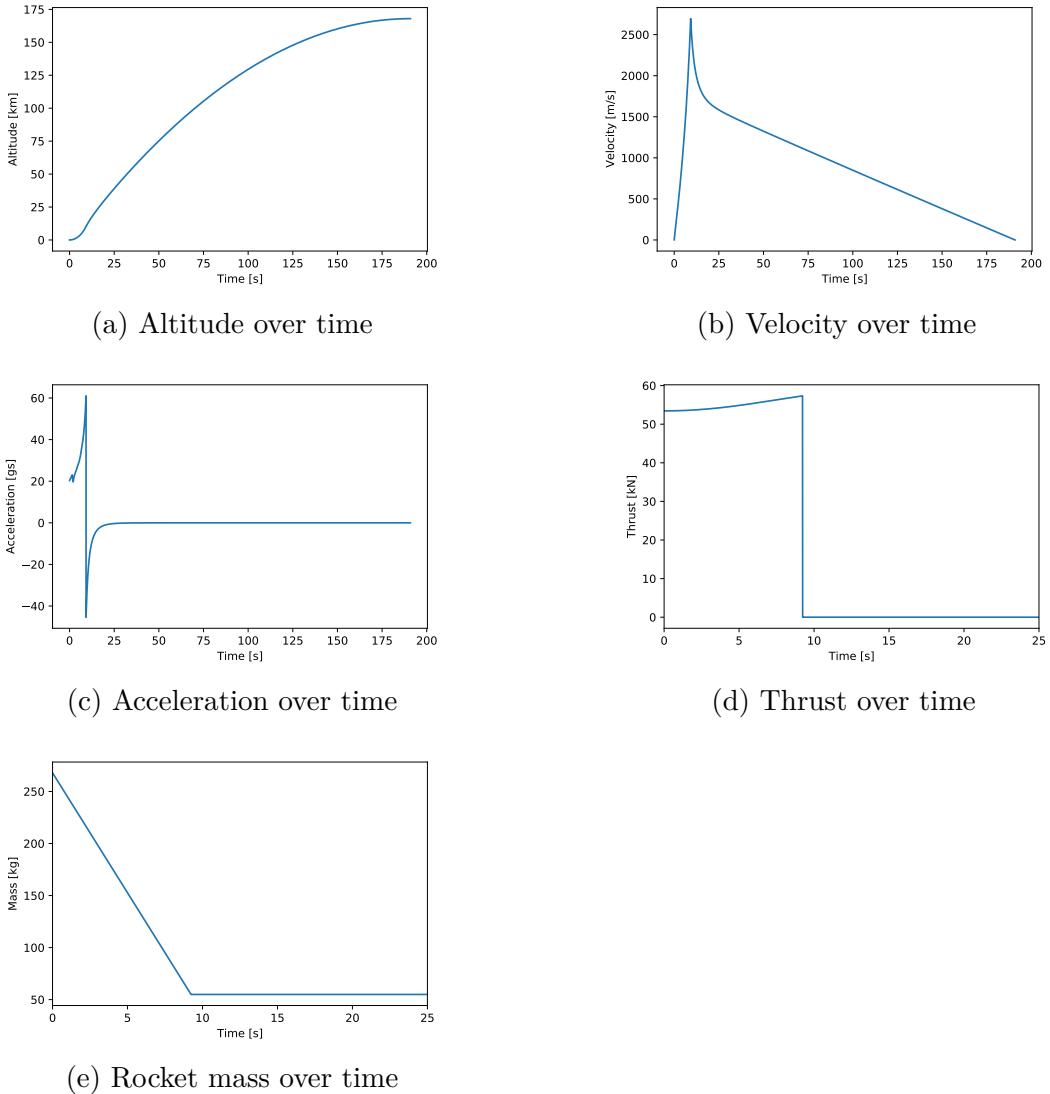


Figure 41 – Data obtained by the simulation of the best scoring rocket obtained in Sim 1-5 in the star configuration

relative to rocket length than what can be seen in examples in (ESA, 2013?), (CYCLONE ROCKETRY CLUB, IOWA STATE UNIVERSITY, 2018), (KALRA et al., 2018), and others. This unusually long combustion chamber, due to the assumptions made on Section 3.1, signifies an unusually high  $A_B$ , which generates the  $ToW$  values. Other attempts to find viable solutions were made, as adding a penalty for over-acceleration and studying an end-burner propellant configuration as proposed in Figure 13. Still, no viable solutions was found for this configuration.

Nevertheless, further studies with more complex grain configurations could fix this problems, regressive and non-cylindrical configurations could be of great use for this, but they would require an implementation of variable thrust into the program. Another approach would be to reduce the  $l_C$  factor in Equation 3.3 by separating the rocket in different stages. Both of the presented solutions are outside the scope of this work.

### 4.3 Overall Views on the Performance of the Algorithm

While the optimization can be mostly considered a success, the rocket hybridization function could need some reviewing as the evolutionary convergence stopped prematurely in different simulations. This means that the genetic pool was no longer rich enough. Also, as suggested in 2.7 a gradient method could be added to the program at the end of the iterations to find local-minimums.

Also, considering the high number of penalized rockets with higher scores than viable solutions in some simulations, a review on score penalties is recommended. An increased severity on the penalties applied can be useful. It is important to note, that while penalties must have a degree of severity, they must also be "smooth" enough so that progress is rewarded.

In the dimension of elapsed time of the simulations, while highly dependent on the computer used, each simulation lasted 4-5h in a 3 year old computer i7, which was deemed as acceptable. The possibility of running multiple optimizations simultaneously allows for quick decision making

### 4.4 Possible Future Steps

This program was conceived as a stepping stone and first iteration for rocket optimization, nevertheless, some simplifications assumed to limit complexity also hinder possible optimal solutions. This section aims to show some points that could be expanded for future implementations of the program. Some ideas on which assumptions can be loosened and which changes these would require are detailed below.

#### 4.4.1 Changing the rocket's body format

While apart from the nose, the rocket's body format is a cylinder of constant diameter, most of the program was initially designed to deal with rockets with non-constant diameter. The theory developed by (JONES, 1953) shows that this format does not minimize drag for a given volume. Furthermore, Whitcomb's area rule determines that the area generated by the fins should be reduced on the body to minimize drag.

While changes in the point generation function and the boat-tail generation function would need to be made. All programs are prepared to work with a rocket with a variable section diameter. Nevertheless, the fitting and form of the motor in this case should be studied.

#### 4.4.2 Allowing for non-constant thrust-time curves

As the mass of the rocket decreases its mass over time, a constant thrust means a higher acceleration as time increases, which carries its own implications that where

---

not studied on this work (payload, structures, increased drag, etc.). It would make sense therefore to study grain configurations with non-constant thrust-time ratios.

This can be achieved if a given thrust-time curve format is achieved, for example a linearly regressive configuration with a given slope. The propulsion module calculates the thrust for the last time interval when  $A_B$  is equal to the chamber's internal area, this value can be used to create a time-dependent thrust function. A special consideration must be made in relation to the pressure which will be achieved in the chamber over time, as it will also not be constant.

#### 4.4.3 Allowing variations on the fin's format

The most obvious way to variate the fin's format is to give each of the dimensions specified in 16 as a variable each. Other fin formats, in specific a quadrilateral form with an inclined trailing edge, can be obtained by adapting the fin definition function in the Class Rocket file. One study with a more detailed approach for a similar optimization is ([BARBOSA; GUIMARÃES, 2012](#)).

The fin is defined as the area between two curves, one representing the tip chord and leading edge and the second and the other representing the root chord and trailing edge. An adjustment will be needed on the supersonic drag estimation as well, as in the cases of a positive slope intersection, points are generated on the trailing edge assuming it is perpendicular to the x axis.



## 5 CONCLUSION

This project was able to generate software that can simulate different aspects of a rocket and apply a genetic optimization algorithm to the variables that govern its main characteristics. Special care was taking to allow the easy customization of each module to achieve a wide arrange of goals. The software allows for reliable and speedy simulations of dynamic systems, estimations of supersonic wave drag and the rocket's propulsion system.

Different aspects that affect the project of a suborbital rocket were studied in order to obtain a simple and reliable implementation. Different examples were tested to guarantee the simulation's faithfulness to reality. The program allowed to determine an initial optimal configuration was obtained for a suborbital rocket to lift a payload of a 3U CubeSat to a 150km altitude by running 10 simulations of 50 generations with 50 individuals each. The simulations were divided into two main configurations based on the propellant disposition. One of the studied configurations was found to be not viable due to constrains not initially studied (maximum acceleration) but that will affect the rocket's project. Further ideas on how to take advantage of the developed program were studied.



## BIBLIOGRAPHY

ADAMI, A.; MORTAZAVI, M.; NOSRATOLLAHI, M. A new approach to multidisciplinary design optimization of solid propulsion system including heat transfer and ablative cooling. 2016.

BARBOSA, A. N.; GUIMARÃES, L. N. F. Multidisciplinary design optimization of sounding rocket fins shape using a tool called mdo-sonda. 2012.

BARROWMAN, J. S. **The Practical Calculation Of The Aerodynamic Characteristics Of Slender Finned Vehicles**. 1967.

BUSSE, J. R.; LEFFLER, M. T. **The Aerobee 100, 150, and 300 Series Sounding Rockets**. High Power Rockfry, 1997. Disponível em: <[http://www.rasaero.com/dl\\_sounding\\_rockets.htm](http://www.rasaero.com/dl_sounding_rockets.htm)>.

CARBONNELLE, P. **PYPL PopularitY of Programming Language**. 2021. Disponível em: <<https://pypl.github.io/PYPL.html>>.

CHENEY, W.; KINCAID, D. **Numerical Mathematics and Computing, Sixth edition**. [S.l.]: Thomson Brooks/Cole, 2008.

CROWELL, G. A. The descriptive geometry of nose cones. 1996. Disponível em: <[https://www.nakka-rocketry.net/articles/Descriptive\\_Geometry\\_Nosecones\\_Crowell\\_1996.pdf](https://www.nakka-rocketry.net/articles/Descriptive_Geometry_Nosecones_Crowell_1996.pdf)>.

CULP, R. **Barrowman Equations**. 2008. Disponível em: <<http://www.rocketmime.com/rockets/Barrowman.html>>.

CYCLONE ROCKETRY CLUB, IOWA STATE UNIVERSITY. **Team 20 Technical Project Report for the 2018 IREC**. 2018. Disponível em: <[https://www.soundingrocket.org/uploads/9/0/6/4/9064598/20\\_project\\_report.pdf](https://www.soundingrocket.org/uploads/9/0/6/4/9064598/20_project_report.pdf)>.

DEPARTMENT OF DEFENSE, UNITED STATES OF AMERICA. **MILITARY HANDBOOK: METALLIC MATERIALS AND ELEMENTS FOR AEROSPACE VEHICLE STRUCTURES**. [S.l.], 1998.

ESA. **Sounding Rockets**. 2013? Disponível em: <<http://wsn.spaceflight.esa.int/docs/EUG2LGPr3/EUG2LGPr3-6-SoundingRockets.pdf>>.

\_\_\_\_\_. Low earth orbit. 2020. Disponível em: <[https://www.esa.int/ESA\\_Multimedia/Images/2020/03/Low\\_Earth\\_orbit](https://www.esa.int/ESA_Multimedia/Images/2020/03/Low_Earth_orbit)>.

ETKIN, B.; REID, L. D. **Dynamics of Flight - Stability and Control**. [S.l.]: John Wiley & Sons, Inc., 1996.

EXOTRAIL SA. **Exotrail Products**. 2021? Disponível em: <<https://exotrail.com/product/>>.

FACULTY OF AEROSPACE ENGINEERING, TU DELFT. **SOME TYPICAL SOLID PROPELLANT ROCKET MOTORS**. 2013.

FERRATO, E. et al. Development roadmap of sitael's ram-ep system. 2017.

FRANCO, N. M. B. **Cálculo Numérico**. [S.l.]: Pearson Universidades, 2006.

FRIEDMAN, A. **SDOF-Simulator**. 2018. Retrieved Jul. 25, 2021. Disponível em: <<https://github.com/apf99/SDOF-Simulator>>.

HAYES, W. D. **Linearized Supersonic Flow**. 1947.

HOUGHTON, E.; CARPENTER, P. **Aerodynamics for Engineering Students**. [S.l.]: Butterworth-Heinemann, 2003.

ICAO. **Manual of the ICAO Standard Atmosphere**. [S.l.], 1993.

JONES, R. T. Naca report 1284: Theory of wing-body drag at supersonic speeds. 1953.

KALRA, A. et al. **Design and Construction of a Solid Experimental Sounding Rocket, Amy**. 2018. Disponível em: <[https://www.soundingrocket.org/uploads/9/0/6/4/9064598/40\\_project\\_report.pdf](https://www.soundingrocket.org/uploads/9/0/6/4/9064598/40_project_report.pdf)>.

KULU, E. **Nanosatellite & Cubesat Database**. 2021. Retrieved August 22, 2021. Disponível em: <<https://www.nanosats.eu/database>>.

LABUDDE, E. V. **Extending the Barrowman Method for Large Angles of attack**. 1999. Disponível em: <[http://ftp.demec.ufpr.br/foguete/bibliografia/Labudde\\_1999\\_CP.pdf](http://ftp.demec.ufpr.br/foguete/bibliografia/Labudde_1999_CP.pdf)>.

MORGADO, F. M. P. **Coupled Preliminary Design and Trajectory Optimization of Rockets using a Multidisciplinary Approach**. 2019.

MORGAN-STANLEY. **Space: Investing in the Final Frontier**. 2020. Retrieved August 15, 2021. Disponível em: <<https://www.morganstanley.com/ideas/investing-in-space>>.

NAGEL, G. W.; NOVO, E. M. L. de M.; KAMPEL, M. Nanosatellites applied to optical earth observation: a review. 2020.

NAKKA, R. **Richard Nakka's Experimental Rocketry Web Site**. 1997. Disponível em: <<http://www.nakka-rocketry.net>>.

NASA-GRC. **Interactive Nozzle**. 2021. Disponível em: <<https://www.grc.nasa.gov/www/k-12/airplane/ienzl.html>>.

NASA SOUNDING ROCKETS PROGRAM OFFICE. **NASA Sounding Rockets User Handbook**. Wallops Island, Virginia, United States of America, 2015.

NATIONAL CENTER FOR BIOTECHNOLOGY INFORMATION. **PubChem Compound Summary for CID 24639, Ammonium perchlorate**. 2021. Retrieved Aug. 13, 2021. Disponível em: <<https://pubchem.ncbi.nlm.nih.gov/compound/Ammonium-perchlorate>>.

NAVARRETE-MARTIN, L.; KRUSB, P. Sounding rockets: analysis, simulation and optimization of a solid propellant motor using hopsan. 2017.

NISKANEN, S. **OpenRocket technical documentation**. 2013.

NOAA; NASA; USAF. **U.S. Standard Atmosphere 1976**. Washington, DC, United States of America, 1976. Disponível em: <[https://www.ngdc.noaa.gov/stp/space-weather/online-publications/miscellaneous/us-standard-atmosphere-1976/us-standard-atmosphere\\_st76-1562\\_noaa.pdf](https://www.ngdc.noaa.gov/stp/space-weather/online-publications/miscellaneous/us-standard-atmosphere-1976/us-standard-atmosphere_st76-1562_noaa.pdf)>.

OKNINSKI, A. Multidisciplinary optimisation of single-stage sounding rockets using solid propulsion. 2017.

OPEN ROCKET. **Open Rocket Simulator**. 2021? Disponível em: <<https://openrocket.info>>.

OPEN VSP. **Open VSP**. 2021. Retrieved Aug. 12, 2021. Disponível em: <<http://openvsp.org/>>.

O'CONNELL, C. **NASA plans for deep space propulsion**. 2016. Retrieved Aug. 11, 2021. Disponível em: <<https://cosmosmagazine.com/technology/antimatter-ion-drives-nasas-plans-deep-space-propulsion/>>.

PALLONE, M. et al. Design methodology and performance evaluation of new generation sounding rockets. International Journal of Aerospace Engineering, 2018.

PEPERMANS, L. et al. Systematic design of a parachute recovery system for the stratos iii student built sounding rocket. 2018.

RAYMER, D. P. **Aircraft Design: A Conceptual Approach**. Sylmar, California, United States of America: American Institute of Aeronautics and Astronautics, 2004.

ROETGEN, R.; DESCH, M. #04 Matt Desch, Iridium - Satellite Communications. 2020. Spotify. (Space Business Podcast). Disponível em: <<https://open.spotify.com/episode/1N8CAKmf9RJGhyXFzlR25h>>.

ROGERS, M. J. B.; VOGT, G. L.; WARGO, M. J. **Microgravity: A Teacher's Guide With Activities in Science, Mathematics, and Technology**. 1997. Disponível em: <[https://www.nasa.gov/pdf/62474main\\_Microgravity\\_Teachers\\_Guide.pdf](https://www.nasa.gov/pdf/62474main_Microgravity_Teachers_Guide.pdf)>.

SILVA, G. Claudio e. **Estudo de ferramentas computacionais para simulação e visualização de aplicações de drones**. 2021.

SUTTON, G. P.; BIBLARZ, O. **Rocket Propulsion Elements**. [S.l.]: John Wiley & Sons, Inc., 2000.

THE CUBESAT PROGRAM,. **CubeSat Design Specification (1U – 12U) REV 14**. San Luis Obispo, California, United States of America, 2020. Retrieved Jun. 02, 2021. Disponível em: <<https://www.cubesat.org/cds-announcement>>.

\_\_\_\_\_. **The Cubesat Standard**. 2021? Retrieved Jun. 02, 2021. Disponível em: <<https://www.cubesat.org/about>>.

TIOBE. **TIOBE Index for August 2021**. 2021. Disponível em: <<https://www.tiobe.com/tiobe-index/>>.

TRAN, P. H. N. et al. Development and test of an experimental hybrid sounding rocket. 2013?

USAF. **Recovery Systems Design Guide**. [S.l.], 1978.

UTAH STATE UNIVERSITY. **Longitudinal Vehicle (Pitch) Dynamics, Static and Dynamic Stability**. 2010. Disponível em: <[http://mae-nas.eng.usu.edu/MAE\\_5900\\_Web/5900/USLI\\_2010/Flight\\_Mechanics/Section5.2.pdf](http://mae-nas.eng.usu.edu/MAE_5900_Web/5900/USLI_2010/Flight_Mechanics/Section5.2.pdf)>.

VANDAS, M. et al. Team 117 project technical report for the 2018 irec. 2018.

WAAL, L. R. de. **ISA Calculator**. 2019. Retrieved May. 25, 2021. Disponível em: <[https://github.com/LukeDeWaal/ISA\\_Calculator](https://github.com/LukeDeWaal/ISA_Calculator)>.

WADDINGTON, M. J. **Development of an interactive wave drag capability for the OpenVSP parametric geometry tool**. 2015.

WELLS, H. T.; WHITELEY, S. H.; KAREGEANNES, C. E. **SP-4402 Origins of NASA Names: SECTION V SOUNDING ROCKETS**. 1975. Retrieved July 17, 2021. Disponível em: <<https://history.nasa.gov/SP-4402/ch5.htm>>.

WIKIPEDIA. **Tsiolkovsky rocket equation**. 2021. Accessed: Aug. 29, 2021. Disponível em: <[https://en.wikipedia.org/wiki/Tsiolkovsky\\_rocket\\_equation](https://en.wikipedia.org/wiki/Tsiolkovsky_rocket_equation)>.

## **Appendices**



## APPENDIX A – SUPERSONIC DRAG ESTIMATION PROGRAM CODE

The code of the supersonic drag module is presented below. For the code of the full project, please access [here](#).

---

```

1  """
2  The following program is an implementation of the theory presented by Jones
3  in the NACA Report 1284
4  applied to a rocket. Drag is studied on the win-body system composed of the
5  rockets main body and the
6  fins.
7  """
8
9  import numpy as np
10 from scipy.interpolate import interp1d
11 from Class_Payload import Payload
12 from Class_Rocket import Rocket
13 from matplotlib import pyplot as plt
14
15
16 def intersect_hull(x_hull, d_plane, f_interp, mach_number, direct=True):
17     """
18     The following function finds second the point of intersection for a mach
19     plane given
20     the first point of intersection and the curve that determines the radius
21     of the revolution body.
22
23     Parameters
24     -----
25     x_hull : x coordinate of the intersection of the plane and the hull
26     d_plane : distance measured over the plane of intersection from the point
27     to the intersection of
28         the plane and the x axis
29     f_interp : function that interpolates the section's radius of the rocket
30         based on the x coordinate
31     mach_number : mach number studied
32     direct : Direction of the intersection, if the point of intersection has
33         x<x_hull then use False,
34         else, use True
35
36
37     Returns
38     -----
39     (x,y) : coordinates of the intersection point, in of an error it returns

```

```
the planes intersection with
the x axis
,
mach_cotg = np.sqrt(mach_number ** 2 - 1)
mach_sin = 1 / mach_number
mach_cos = mach_cotg * mach_sin
direction = 1 if direct else -1
y_hull = f_interp(x_hull)
xs = x_hull + direction * np.linspace(0, 1, 200)[1:] * d_plane * mach_cos
ys_line = y_hull - np.linspace(0, 1, 200)[1:] * d_plane * mach_sin
ys_hull = [f_interp(x) if f_interp.x.min() < x < f_interp.x.max() else 100
           ** 3 for x in xs]
n = np.argwhere(np.diff(np.sign(ys_line - ys_hull))).flatten()
try:
    return xs[n[0] - 1], ys_line[n[0] - 1]
except IndexError:
    return 0, y_hull - x_hull / mach_cotg
,
def trapezoid_integration(ys, xs):
,
    The following function gives the trapezoid integration of y values of a
    function
    for x values given. Values are assumed to be ordered and corresponding
    between
    arrays.
Parameters
-----
ys : Array of values to be integrated.
xs : Can be either array or float. In the case of float, a constant
    spacing is assumed in
    between the y points to be integrated (x is recognized as "delta x").
    In case of an array it is matched with y values. Errors will rise if
    dimensions are
    not the same.
,
Returns
-----
ans : Integrated value of the function
,
```

---

```

66     if type(xs) == np.float64:
67         ans = sum((ys[1:] + ys[:-1]) / 2 * xs)
68     else:
69         ans = sum((ys[1:] + ys[:-1]) / 2 * (xs[1:] - xs[:-1]))
70     return ans
71
72
73 def fin_segments(fin_xs, f_top, f_base, cos_eff, show_graph=False, interval=3):
74     """
75     The following function calculates the intersections of the oblique mach
76     plane with the
77     fins of a rocket
78     -----
79     fin_xs : x position in the fin
80     f_top : function that interpolates the radially outer part of the fins for
81             x
82     f_base : function that interpolates the radially inner part of the fins
83             for x
84     cos_eff : effective cosine of the inclination of the mach plane towards
85             the fin
86     show_graph : boolean, determines the presentation of graphs of the
87                 intersection at the end
88                 of the execuction
89     interval: picks only one of each n points to evaluate, used for faster runs
90
91     Returns
92     -----
93     x_exports : coordinate of the intersection of each parallel mach plane and
94                 the x axis
95     lengths : length of the desired segments
96
97     """
98     sin_eff = np.sqrt(1 - cos_eff ** 2)
99     r_top = f_top(fin_xs)
100    lengths = []
101    x_exports = []

102    if show_graph:
103        plt.figure()
104        plt.plot(fin_xs, r_top, color='blue')
105        plt.plot(fin_xs, f_base(fin_xs), color='blue')

```

```

102
103     if cos_eff > 0.001:
104         trailing_edge_points = np.linspace(r_top[-1], f_base(fin_xs[-1]),
105                                         round(10 * (1 + cos_eff)))[1:-1]
106         r_top = np.append(r_top, trailing_edge_points)
107         fin_xs = np.append(fin_xs, np.ones(trailing_edge_points.shape) *
108                             fin_xs[-1])
109
110         x_plane = fin_xs - r_top * cos_eff / sin_eff
111         x_start_fins = np.argmin(x_plane)
112         d_plane = np.sqrt(r_top ** 2 + (fin_xs - x_plane) ** 2)
113         for (n_temp, x_top) in enumerate(fin_xs[x_start_fins + 1::interval]):
114             error_intersect = False
115             n = n_temp * interval + 1 + x_start_fins
116             xs = x_top - np.linspace(0, 1, 100)[1:-1] * d_plane[n] * cos_eff
117             ys_line = r_top[n] - np.linspace(0, 1, 100)[1:-1] * d_plane[n] *
118                             sin_eff
119
120             if x_plane[n] < x_plane[0]:
121                 func = f_top
122                 ys_inter = [func(x) if func.x.min() <= x <= func.x.max() else 0 for
123                             x in xs]
124                 n_inters = np.argwhere(np.diff(np.sign(ys_line -
125                                               ys_inter))).flatten()
126                 try:
127                     x_base = xs[n_inters[0]]
128                     y_base = func(x_base)
129                 except IndexError:
130                     error_intersect = True
131             elif x_plane[n] <= fin_xs[-1] - f_base(fin_xs[-1]) * cos_eff / sin_eff:
132                 func = f_base
133                 ys_inter = [func(x) if func.x.min() <= x <= func.x.max() else 0 for
134                             x in xs]
135                 n_inters = np.argwhere(np.diff(np.sign(ys_line -
136                                               ys_inter))).flatten()
137
138                 try:
139                     x_base = xs[n_inters[0]]
140                     y_base = func(x_base)
141                 except IndexError:
142                     error_intersect = True
143             else:

```

```

137     x_base = fin_xs[-1]
138     y_base = r_top[n] - (x_top - x_base) * sin_eff / cos_eff
139
140     if not error_intersect:
141         lengths.append(np.sqrt((r_top[n] - y_base) ** 2))
142         x_exports.append(x_plane[n])
143
144         if show_graph:
145             plt.plot([x_base, x_top], [y_base, r_top[n]], color='lightgray')
146
147
148
149 def merge_areas(areas_merge, plot_graphs=False, point_number=200):
150     """
151
152     This function is made to sum the values of different curves that do not
153     have the same
154     x points. It does so by finding the minimum and maximum values, and then
155     interpolating
156     each curve on the interval and summing. Extrapolations are considered as 0
157
158     Parameters
159     -----
160
161     areas_merge : Array. It has n elements, each of which is an array of two
162     elements, each
163         of them an array. The first an array of the "x" points and the
164         second is the
165             curve values for those points
166
167     plot_graphs : Boolean. Optional. Determines whether or not a plot of the
168         sum of the
169             curves is generated at the end of the execution
170
171     point_number : Optional. Numbers of points to be evaluated for the output.
172         Default 200
173
174
175     Returns
176     -----
177
178     x_areas_merge : x positions of the sums of the curves. A total of
179         [point_number] elements
180
181     total_area : the sum of the inputted curves for each point in
182         [x_areas_merge]
183
184
185     """
186
187     xs_lims = []
188
189     for comb in areas_merge:

```

```
171     xs_lims.extend([max(comb[0]), min(comb[0])])
172     x_planes_max = max(xs_lims)
173     x_planes_min = min(xs_lims)
174
175     x_areas_merge = np.linspace(x_planes_min, x_planes_max, point_number)
176     total_area = np.zeros(x_areas_merge.shape)
177
178     for array in areas_merge:
179         f_interp = interp1d(array[0], array[1], kind='linear',
180                             bounds_error=False, fill_value=0)
181         total_area += f_interp(x_areas_merge)
182
183     if plot_graphs:
184         plt.figure()
185         for array in areas_merge:
186             plt.plot(array[0], array[1], '.', color='gray')
187             plt.plot(x_areas_merge, total_area, '.-')
188
189     return x_areas_merge, total_area
190
191
192     def fourier_series_sine_terms(xs, ys, n_max=31, x_min=None, x_max=None,
193                                     full=False, plot_comparison=False):
194         """
195             This function calculates the terms of the Fourier Series that approximate a
196             given set
197             of points.
198             Parameters
199             -----
200             xs : Array. x positions of the points to be approximated. Assumed to be
201                 in crescent
202                 order
203             ys : Array. Values of the function at the [xs] position
204             n_max : Int. Optional. Determines the maximum degree used for the Fourier
205                 Series Used
206             x_min : Float. Optional. Determines the lower limit of the studied
207                 interval. Default is None
208             x_max : Float. Optional. Determines the upper limit of the studied
209                 interval. Default
210                 is None
211             full : Boolean. Optional. Controls whether if the full series is calculated
212                 or only the
```

```

206         sine terms. Default False
207     plot_comparison : Boolean. Optional. Determines if a comparisson of the
208         original points
209         and the Fourier Series is plotted.
210
211     Returns
212     -----
213     fourier_terms : Dict. Contains either only the b coefficients of the
214         Fourier Series or
215         the full a0, a coeffients and b coeff. Keys: 'a_0', 'a_array',
216         'b_array'
217
218     x_min = min(xs) if x_min is None else x_min
219     x_max = max(xs) if x_max is None else x_max
220     a_array = []
221     b_array = []
222     L = (x_max - x_min) / 2
223     x_med = (x_min + x_max) / 2
224     for n in range(1, n_max + 1):
225         product = ys * np.sin(n * np.pi * (xs - x_med) / L)
226         b_n = 1 / L * trapezoid_integration(product, xs)
227         b_array.append(b_n)
228
229     if full:
230         for n in range(1, n_max + 1):
231             product_cos = ys * np.cos(n * np.pi * (xs - x_med) / L)
232             a_n = 1 / L * trapezoid_integration(product_cos, xs)
233             a_array.append(a_n)
234
235     a_0 = trapezoid_integration(ys, (xs - x_med)) / (2 * L)
236     if plot_comparison:
237         plt.figure()
238         plt.plot((xs - x_med) / L, ys, '.')
239         x_test = np.linspace(-np.pi, np.pi, 100)
240         y = np.ones(x_test.shape) * a_0
241         for (n, b_n) in enumerate(b_array):
242             a_n = a_array[n] if full == True else 0
243             y += b_n * np.sin((n + 1) * x_test) + a_n * np.cos((n + 1) * x_test)
244         plt.plot(x_test / np.pi, y, color='orange')
245
246     fourier_terms = {'a_0': a_0, 'a_array': a_array, 'b_array': b_array}

```

```
245     return fourier_terms
246
247
248 def calculate_supersonic_drag(random_rocket: Rocket, mach_number,
249     plot_rocket=False, plot_fins=False,
250         plot_areas_merge=False,
251             plot_fourier_comparison=False,
252                 export_areas=False):
253     """
254     This function calculates the Wave Drag coefficient based on the method
255     described above.
256
257     Parameters
258     -----
259     random_rocket : Object of the rocket class. See documentation.
260     mach_number : Mach number to be determined
261     plot_rocket : Boolean. Optional. Determines whether a plot of the rocket
262         intersected by
263             the mach planes is drawn. Default is False.
264     plot_fins : Boolean. Optional. Determines whether plots of the fins
265         intersected by
266             the mach planes are drawn. Default is False.
267     plot_areas_merge : Boolean. Optional. Determines whether a plot of the sum
268         of the areas
269             are drawn. Default is False.
270     plot_fourier_comparison : Boolean. Optional. Determines whether a plot of
271         the Fourier
272             Series is drawn. Default is False.
273     export_areas : Boolean. Optional. Determines whether intersected area
274         values are exported
275             as output. Default is False.
276
277     Returns
278     -----
279     (cd, opt:areas_export): The first is the value of  $c_d$  determined. The
280         second is an array
281             which contains arrays with the x coordinates and the areas
282                 intersected for each
283                     plane coordinate
284
285     """
286     print(f'Supersonic Drag Estimation for M={format(mach_number, "0.2f")}')
287     # Calculating Drag for a given M >= 1
```

```

276     # Rocket Body Geometric Data
277     f_interp = random_rocket.body_interp
278     xs_max = f_interp.x[-1]
279     xs_array = f_interp.x
280     rs_array = f_interp.y
281
282     # Fin geometric data
283     fin_xs = random_rocket.fin_points[0]
284     fin_top = random_rocket.fin_points[3]
285     fin_base = random_rocket.fin_points[2]
286     fin_th = random_rocket.fin_th
287
288     # Using interpolating functions for the area calculation function
289     f_int_top = interp1d(fin_xs, fin_top, kind='linear', bounds_error=False,
290                           fill_value=0)
291     f_int_base = interp1d(fin_xs, fin_base, kind='linear', bounds_error=False,
292                           fill_value=0)
293
294     mach_cotg = np.sqrt(mach_number ** 2 - 1) # Mach Cone Inclination
295         Component [-]
296     mach_sin = 1 / mach_number
297     mach_cos = mach_cotg * mach_sin
298
299     # Projecting Hull points into the r=0 axis by lines parallel to mach cone
300         (pos and negative)
301     xs_start_array = xs_array - rs_array * mach_cotg
302     xs_end_array = xs_array + rs_array * mach_cotg
303
304     n_start_l = np.argmin(xs_start_array)
305     n_end_l = np.argmax(xs_end_array)
306
307     interp_points = 15
308     points_vector = np.linspace(0, 1, interp_points)
309     interval = 4
310
311     if plot_rocket:
312         # plt.figure()
313         random_rocket.draw_rocket()
314
315     # Calculating the area intersection of the superior half of the rocket
316     area_sup = []
317     x_planes = []
318     for (i, x_plane) in enumerate(xs_start_array[n_start_l:-1:interval]):
```

```

314     r_hull = rs_array[n_start_l + i * interval]
315     x_hull = xs_array[n_start_l + i * interval]
316     d_plane = np.sqrt(r_hull ** 2 + (x_hull - x_plane) ** 2)
317     if x_plane < 0:
318         if i == 0:
319             area_sect = 0
320             x_points = x_hull
321             y_points = r_hull
322         else:
323             x_inter, y_inter = intersect_hull(x_hull, d_plane, f_interp,
324                                              mach_number, False)
324             d_plane = np.sqrt((r_hull - y_inter) ** 2 + (x_hull - x_inter)
325                               ** 2)
325             x_points = x_inter + points_vector * d_plane * mach_cos
326             y_points = y_inter + points_vector * d_plane * mach_sin
327             inter_rad = np.sqrt(abs(f_interp(x_points) ** 2 - y_points ** 2))
328             area_sect = trapezoid_integration(2 * inter_rad, y_points)
329     else:
330         x_points = x_plane + points_vector * d_plane * mach_cos
331         y_points = points_vector * d_plane * mach_sin
332         inter_rad = np.sqrt(abs(f_interp(x_points) ** 2 - y_points ** 2))
333         area_sect = trapezoid_integration(2 * inter_rad, y_points)
334
335     area_sup.append(area_sect)
336     x_planes.append(x_plane)
337     if plot_rocket:
338         plt.plot(x_points, y_points, color='lightgray')
339
340     # Getting the area of the last bit that ends on the rocket final length
341     if mach_number > 1:
342         for r_hull in np.linspace(f_interp(xs_max), 0, round(6 /
343                                                 mach_sin))[:-1]:
343             x_plane = xs_max - r_hull * mach_cotg
344             x_hull = xs_max
345             d_plane = np.sqrt(r_hull ** 2 + (x_hull - x_plane) ** 2)
346             x_points = x_plane + points_vector * d_plane * mach_cos
347             y_points = points_vector * d_plane * mach_sin
348             inter_rad = np.sqrt(abs(f_interp(x_points) ** 2 - y_points ** 2))
349             area_sect = trapezoid_integration(2 * inter_rad, y_points)
350             area_sup.append(area_sect)
351             x_planes.append(x_plane)

```



```

389     area_inf.append(area_sect)
390     x_planes_inf.append(x_plane)
391     if plot_rocket:
392         plt.plot(x_points, -y_points, color='lightblue')
393
394     # Defining the rotation of the plane for non-revolution components
395     # Only the angle between fins has to be studied as it's cyclical
396     thetas = np.linspace(0, 2 * np.pi / random_rocket.fin numb, 7)
397     cds = np.ndarray([0])
398     # print(thetas)
399     fourier_points = 150
400     for theta in thetas:
401
402         # Calculating the inclination for each fin
403         ang_phis = theta + np.linspace(0, 2 * np.pi, random_rocket.fin numb +
404             1)[:-1]
405         areas_fin = []
406         for angle in ang_phis:
407             cos_eff = mach_cos * np.cos(angle)
408             x_planes_fin, lengths = fin_segments(fin_xs, f_int_top, f_int_base,
409                 cos_eff, plot_fins)
410             fin_eff_thickness = fin_th
411             areas_fin.append([x_planes_fin, [length * fin_eff_thickness for
412                 length in lengths]])
413
414         # Summing different areas calculated in different ranges
415         areas_merge = [[x_planes, area_sup], [x_planes_inf, area_inf]]
416         areas_merge.extend(areas_fin)
417         x_merge, total_area = merge_areas(areas_merge,
418             plot_graphs=plot_areas_merge, point_number=fourier_points,)
419
420         if export_areas:
421             #print(theta)
422             areas_export[theta] = ([x_merge, total_area])
423
424         # Total Area first derivative
425         diff_total_area = []
426         delta_x = x_merge[1] - x_merge[0]
427         for (n, area) in enumerate(total_area):
428             if n == 0:
429                 derivative = (-3 * total_area[n] + 4 * total_area[n+1] - 1 *
430                     total_area[n+2])/(2 * delta_x)

```

```

426     elif area == total_area[-1] or n == fourier_points - 1:
427         derivative = (3 * total_area[n] - 4 * total_area[n - 1] + 1 *
428                         total_area[n-2])/(2 * delta_x)
429     else:
430         derivative = (- total_area[n-1] + total_area[n+1]) / delta_x
431     diff_total_area.append(derivative)
432
433     diff_total_area = np.array(diff_total_area)
434
435     # Applying a fourier series to approximate the function
436     fourier_series = fourier_series_sine_terms(x_merge, diff_total_area,
437                                                 n_max=20, full=True,
438                                                 plot_comparison=plot_fourier_comparison)
439
440     # Calculating Cd as a series based on the Fourier Sine Coefficients
441     c_d_sup = 0
442     for (n, a_n) in enumerate(fourier_series['b_array']):
443         c_d_sup += (n + 1) * a_n ** 2
444
445     c_d_sup = np.pi / 4 * c_d_sup / random_rocket.s_ref
446     cds = np.append(cds, c_d_sup)
447
448     cd_sup = trapezoid_integration(cds, thetas) / (thetas[-1] - thetas[0])
449     if export_areas:
450         return cd_sup, areas_export
451     else:
452         return cd_sup
453
454     def supersonic_drag_curve(random_rocket: Rocket, mach_max, points numb=8,
455                               mach_start=1.2, plot_curve=False):
456         """
457         This programs generates the interpolation curve of wave drag coefficient
458         by Mach number
459         The transonic region is estimated based on the theory presented in
460         Aircraft Project: A
461         Conceptual Approach, by Raymer.
462         Parameters
463         -----
464         random_rocket : Object of the rocket class. See documentation.
465         mach_max : maximum Mach number for the calculations
466         points numb : Int. Optional. Number of mach values to calculate drag

```

```
        coefficient. The
463        default is 8.
464    mach_start : Optional. Minimum mach number for the calculation of the drag
465        coefficient.
466        Default is 1.2
467    plot_curve : Boolean. Optional. Determines whether a plot of the MachxC_d
468        curve is drawn.
469        Default is False.
470
471    Returns
472    -----
473
474    cd_mach_curve : Function. Interpolates mach values for each mach number,
475        below the limit it
476        is set as 0, above it is set as the value of the point in mach_max
477
478    mach_number_list = 1 / np.cos(np.linspace(np.arccos(1 / mach_start),
479        np.arccos(1 / mach_max), points numb))
480    cd_curve = []
481
482    for mach_number in mach_number_list:
483        c_d = calculate_supersonic_drag(random_rocket, mach_number,
484            plot_rocket=False)
485        cd_curve.append(c_d)
486
487    # Raymer calculations
488    m_cr = 0.8
489    m_dd = m_cr + 0.08
490    m_c = 1
491    m_b = 1.05
492    machs_raymer = [m_cr, m_dd, m_c, m_b]
493    cds_raymer = [0, 0.002, cd_curve[0] / 2, cd_curve[0]]
494
495    mach_number_list = np.append(machs_raymer, mach_number_list)
496    cd_curve = np.append(cds_raymer, cd_curve)
497    cd_mach_curve = interp1d(mach_number_list, cd_curve, kind='linear',
498        bounds_error=False,
499                    fill_value=(0, cd_curve[-1]))
500
501    if plot_curve:
502        plt.figure()
503        xs = np.linspace(m_cr, mach_max, 1000)
```

---

```
498     cds = cd_mach_curve(xs)
499     plt.plot(xs, cds, color='orange')
500     plt.plot(mach_number_list, np.array(cd_curve), '.', color='blue')
501     plt.show()
502
503     return cd_mach_curve
```

---