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2. RESUMO 

A geologia é uma ciência que envolve tanto estudos teóricos quanto práticos, bem 

como comporta interpretações qualitativas e quantitativas. O foco desse trabalho está 

relacionado à geoestatística aplicada aos dados do depósito aurífero localizado em 

uma das principais unidades metalogenéticas do Mato Grosso. A geoestatística é 

usada em diferentes áreas das geociências com suas respectivas finalidades, visto 

isso, as técnicas que serão empregadas ao longo desse projeto são a krigagem 

lognormal e a simulação estocástica, ambas comumente utilizadas na avaliação de 

recursos minerais. Justifica-se a utilização da simulação estocástica pelo fato das 

técnicas de krigagem serem incapazes de quantificar as incertezas das estimativas 

dos teores, além das estimativas serem suavizadas, desse modo, a simulação 

estocástica pode complementar o estudo das incertezas, porque gera n simulações 

com a mesma probabilidade de ocorrência. Os resultados obtidos das duas técnicas 

apresentaram-se semelhantes, porém, percebe-se que a simulação estocástica é a 

mais adequada para trabalhos geoestatísticos com objetivo de classificação de 

recursos minerais, uma vez que esse método apresenta os valores de incerteza 

associado à cada bloco simulado. 

 

 

Palavras-chave: geoestatística, simulação estocástica, simulação por bandas 

rotativas, krigagem, krigagem lognormal. 
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3. ABSTRACT 

Geology is a science that involves both theoretical and practical studies, as well as 

qualitative and quantitative interpretations. The focus of this work is related to 

geostatistics applied to data from the gold deposit located in one of the main 

metallogenic units in Mato Grosso. Geostatistics is used in different areas of 

geosciences for their respective purposes, therefore, the techniques that will be used 

throughout this project are lognormal kriging and stochastic simulation, both commonly 

used in the evaluation of mineral resources. The use of stochastic simulation is justified 

by the fact that kriging techniques are incapable of quantifying the uncertainties in 

grade estimates, in addition to the estimates being smoothed, thus, stochastic 

simulation can complement the study of uncertainties, because it generates n 

simulations with the same probability of occurrence. The results obtained from the two 

techniques were similar, however, it can be seen that stochastic simulation is the most 

suitable for geostatistical work with the objective of classifying mineral resources, since 

this method presents the uncertainty values associated with each simulated block. 

 

 

Keywords: geostatistics, stochastic simulation, rotating band simulation, kriging, 

lognormal kriging. 
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4. INTRODUÇÃO 

A geologia é uma ciência que inicialmente foi baseada em interpretações 

qualitativas das dinâmicas interna e externa da Terra. Porém, esta visão da geologia 

subjetiva vem sendo alterada nas últimas décadas com a introdução de diversos 

métodos quantitativos, sobretudo vinculados às áreas de geologia aplicada. Essa 

alteração nas geociências ocorreu associada ao avanço tecnológico, computacional e 

analítico, possibilitando a melhor compreensão e associação de diversos tipos de 

dados quantitativos e qualitativos, tornando a geologia uma ciência ainda mais exata. 

Diante dessa evolução, a necessidade de obter resultados com maior 

representatividade aumentou gradativamente e, neste contexto, a geoestatística 

disponibiliza uma série de métodos que permitem a realização de inferências que 

consideram, em seus cálculos, não apenas às estatísticas descritivas das variáveis de 

interesse, mas também sua distribuição no espaço e as inter-relações entre os 

diversos pontos de coleta de informação. 

Para a avaliação de recursos minerais, a geoestatística é uma ferramenta 

indispensável, uma vez que ela é composta por um conjunto de técnicas que 

proporcionam a interpretação da aparente aleatoriedade dos dados, através de uma 

função que descreve a dissimilaridade entre pares de pontos dispersos no espaço, 

auxiliando na quantificação de recursos e reservas minerais. 

O foco principal desse trabalho é realizar um estudo geoestatístico de um 

depósito aurífero, para quantificar teores e incertezas associadas, além de 

desenvolver o estudante no campo da geoestatística aplicada. 

5. OBJETIVOS E METAS 

O objetivo do trabalho foi realizar o estudo geoestatístico de um depósito 

aurífero localizado no Mato Grosso, com propósito de quantificar as incertezas 

associadas aos teores inferidos a partir da amostragem, por meio da simulação 

estocástica. Os resultados desta inferência apresentam menor suavização dos 

resultados quando comparadas às técnicas de krigagem, tradicionalmente 

empregadas para estimativa e classificação de recursos minerais. 

Com isso, foram realizadas as metas de: transformação gaussiana e lognormal 

dos dados; análise estatística e geoestatística dos dados transformados; estimativa 

por krigagem lognormal e por simulação estocástica; análise, interpretação e 

comparação dos resultados obtidos. 
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6. TRABALHOS PRÉVIOS 

6.1. Geologia Regional e Local do Depósito Aurífero 

O depósito aurífero está localizado no extremo Norte de uma serra, na região 

Oeste do estado de Mato Grosso, situada na Bacia Hidrográfica do Rio Guaporé, nas 

proximidades dos afluentes do Rio Galera (Paro, 1990). A divulgação da localização 

desse depósito não foi autorizada nesse trabalho. 

O depósito de ouro foi explorado a céu aberto, sendo classificada pelo Serviço 

Geológico do Brasil - Companhia de Pesquisa de Recursos Minerais (CPRM) - como 

um depósito de ouro (Au) de morfologia filoneana (Lacerda Filho et al., 2004b). 

De acordo com o Mapa de Recursos Minerais do Estado de Mato Grosso 

(2004a), o depósito está localizado na Província Estrutural Sunsás, relacionada a uma 

das principais unidades metalogenéticas do estado, o Distrito Aurífero do Alto 

Guaporé. 

A geologia da região está associada à Faixa Móvel Aguapeí, de 1,2 a 1,0 Ga. 

Nessa região o Grupo Aguapeí engloba a Formação Fortuna - rochas 

metassedimentares - e o seu embasamento - rochas vulcanossedimentares do 

Complexo Rio Alegre e rochas graníticas da Suíte Santa Helena (Lacerda Filho et al., 

2004b). Estas rochas têm idade mesoproterozóicas. A Formação Fortuna apresenta 

sedimentos clásticos, com litotipos variando entre metaconglomerados, metarenitos e 

metapelitos, enquanto a sequência vulcanossedimentar, apresenta rochas 

metassedimentares finas, como metassiltitos avermelhados e xistos, com 

intercalações de metavulcânicas ácidas, cortadas por intrusões félsicas e máficas 

(Scabora e Duarte, 1998). 

Segundo Souza et al. (2016), a mineralização aurífera está associada a uma 

faixa intensamente deformada de largura aproximada de 1km com orientação N40ºW. 

Nessa região, a mineralização é associada principalmente à alteração hidrotermal e 

veios de quartzo filonares, localizados em zonas de cisalhamento. 

De acordo com Scabora e Duarte (1998), o ouro da região pode estar associado 

a cinco principais estruturas mineralizadas: as zonas ou faixas de sericita, de 

comportamento do tipo stratabound; zonas de veios de quartzo, formadas por veios 

com orientação sub-vertical de espessuras de até 10 metros; zonas de quartzo inter-

boudins, relacionados a metaconglomerados em inflexão do flanco anticlinal SW, onde 

são encontrados os maiores teores; fraturas sub-verticais, que são preenchidas por 

óxidos de ferro de forma perpendicular ou oblíqua a estrutura da rocha e à fraturas de 
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baixo ângulo, preenchidas por veios de quartzo tabulares, que concentram o ouro 

grosso associado à pirita. 

O ouro encontrado no depósito geralmente está em sua forma nativa, 

apresentando granulação grossa em associação com os veios de quartzo, e fina 

quando associado às zonas sericíticas (Scabora e Duarte, 1998). 

Segundo Paro (1990), no Relatório Final de Pesquisas, o jazimento do depósito 

está distribuído em um nível topograficamente inferior à Serra São Vicente, ao longo 

de eluviões e cones de dejeção. Os sedimentos aluvionares estão dispostos segundo 

um horizonte estratigráfico bem definido, com espessuras de 5m. Já os depósitos de 

cones de dejeção estão situados em áreas topograficamente planas, entre 

acumulações aluviais e coluviais. Esse último depósito apresenta forma variada, 

sendo que nas porções mais próximas da Serra são encontrados blocos e matacões 

em distribuição aleatória com areias e argilas, enquanto nas porções mais distantes 

são encontrados depósitos granulometricamente bons, em que são observadas 

intercalações rítmicas entre cascalhos, areias e argilas laterizadas. 

Ainda de acordo com Paro (1990), a gênese do depósito está associada aos 

processos de reativação da plataforma durante o Ciclo Orogênico Transamazônico. 

Esses processos teriam propiciado a formação de bacias sedimentares em que 

estariam os sedimentos acumulados do Grupo Aguapeí. O ouro proveniente do 

Complexo Basal teria se depositado em grãos junto à sedimentação, e durante a 

última manifestação do Cráton, o ouro disperso nas rochas teria se remobilizado para 

zonas fraturadas. Outra hipótese acerca da gênese do depósito seria de que o ouro 

primário teve origem na extremidade de um plúton granítico intrusivo no Grupo 

Aguapeí, dessa forma, o ouro e quartzo num processo hidrotermal teriam atravessado 

os metassedimentos, concentrando o minério nos veios e vênulas de quartzo 

presentes nas rochas. 

 

6.2. Geoestatística 

A geoestatística foi inicialmente definida por Georges Matheron em 1963, a 

partir da formalização da Teoria das Variáveis Regionalizadas para a estimativa de 

depósitos minerais. Atualmente a geoestatística é usada em diversas áreas das 

geociências, como pedologia, hidrogeologia, mineração, geologia ambiental, além de 

diversas outras áreas que utilizam dados com localização referenciada no espaço 

(Yamamoto e Landim, 2013). 
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A avaliação de recursos minerais utiliza técnicas de geoestatística, por 

permitirem a associação de fenômenos aleatórios em função de estruturações 

espaciais1. Visto isso, alguns conceitos são fundamentais para se obter uma boa 

análise geoestatística. 

 

6.2.1. Variáveis regionalizadas e variáveis aleatórias 

Para que seja definido o que é um variograma é necessário estabelecer a 

diferença entre uma variável regionalizada e uma variável aleatória. Neste sentido, a 

regionalizada reconhece características específicas que a variável aleatória não 

reconhece (Matheron, 1963). 

A primeira característica que a variável regionalizada reconhece é a 

localização, ou seja, ela está associada a um sistema de coordenadas espaciais 

(Matheron, 1963); 

A segunda característica é o suporte, que está associado ao tamanho que cada 

unidade amostral apresenta, sendo ele o comprimento, área ou volume (Matheron, 

1963); 

A terceira característica é a anisotropia, na qual a variável regionalizada 

apresenta diferentes comportamentos em direções diferentes (Matheron, 1963); 

Por último a continuidade, que está relacionada à distância em que as amostras 

apresentam dependência espacial (Matheron, 1963). 

Diante desses conceitos, é elaborada uma hipótese que deve ser assumida 

como verdadeira, que é chamada de Hipótese Intrínseca. Por esta hipótese, assume-

se que quando o variograma existe, ele é válido para todo o domínio e os valores de 

variância espacial serão os mesmos em qualquer porção do domínio sempre que 

observados em uma mesma direção entre pontos separados por uma distância igual.2 

 

6.2.2. Variogramas 

De acordo com Matheron (1963), os variogramas são funções que medem a 

variância entre pontos separados por distância como h. São ferramentas básicas que 

                                                 
1 Anotações de aula da disciplina GSA 0404 - Avaliação de Recursos Minerais ministrada em 
2022. 
2 Anotações de aula da disciplina GSA 0404 - Avaliação de Recursos Minerais ministrada em 
2022. 
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possibilitam a descrição quantitativa da variação no espaço de um fenômeno 

regionalizado. 

A função variograma 2γ(h) é definida como (Yamamoto, 2001): 

2𝛾(ℎ) =  
1

𝑛
∑[𝑍(𝑥𝑖 + ℎ) − 𝑍(𝑥𝑖)]2

𝑛

𝑖=1

 (1) 

Que é a esperança matemática do quadrado da diferença entre os valores de 

pontos no espaço, a uma distância h, ou seja, [Z(xi+h)-Z(xi)] é a diferença entre os 

valores de distintos pontos no espaço. 

A relação da variância em função da distância h pode ser descrita da seguinte 

maneira: para pontos próximos, espera-se que a diferença entre eles seja pequena e, 

consequentemente, a variância espacial também, já para distâncias maiores espera-

se o oposto (Yamamoto, 2001). 

Apresenta-se na Figura 1 um exemplo de variograma com patamar clássico e 

indicam-se nela as principais propriedades do variograma (Yamamoto, 2001). 

 

 
Figura 1: Variograma típico e suas propriedades. Fonte: Yamamoto, 2001. 

 

A amplitude (a) é a distância a partir da qual as amostras passam a ser 

independentes; 

O patamar (C0 + C) é o valor máximo de variância espacial em que o 

variograma se estabiliza; 

O efeito pepita (C0) é uma descontinuidade próxima da origem; 

Variância espacial (C) é uma medida de dissimilaridade entre pares de pontos 

separados por uma distância h; 
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Uma vez calculado o variograma experimental deve-se ajustar o modelo teórico 

de variograma, que é uma função matemática contínua que permite a determinação 

dos valores de variância espacial para qualquer distância no domínio estudado. Existe 

pouco mais de uma dezena de modelos teóricos de variogramas, matematicamente 

autorizados, dos quais três são os mais frequentes, a saber: modelo esférico, modelo 

exponencial e modelo gaussiano (Yamamoto, 2001). 

Isaacs e Srivastava (1989), Deutsch e Journel (1992) e Yamamoto (2001), 

citam a existência de três tipos de anisotropia (Figura 2) denominadas: 

Anisotropia geométrica: quando há diferença entre as amplitudes de acordo 

com a direção analisada e os patamares são constantes, apresentando mesmo valor; 

Anisotropia zonal: quando há diferença entre os patamares conforme a direção 

analisada e suas amplitudes permanecem constantes com o mesmo valor; 

Anisotropia mista: quando os patamares e amplitudes variam conforme as 

direções mudam. 

 

 
Figura 2: Os três tipos de anisotropia. Fonte: Yamamoto, 2001. 

 

6.2.3. Krigagem 

Segundo Yamamoto (2013), krigagem são as diversas técnicas que com o 

auxílio do variograma produzem uma estimativa minimizando a variância do erro de 

estimativa. 
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Algumas técnicas de krigagem são: simples, ordinária, da média, universal, de 

variáveis indicadoras, lognormal, sequencial, de resíduos, com deriva externa e 

fatorial.3 

Dentre essas técnicas, a que será utilizada no trabalho é a Krigagem Lognormal 

(KL). Esta krigagem só pode ser desenvolvida após a conclusão dos estudos 

estatísticos preliminares, o que indicará se, de fato, esse método é apropriado para 

avaliar o comportamento da variável regionalizada (Yamamoto, 2013). 

De acordo com Yamamoto e Landim (2013), a krigagem ordinária é 

caracterizada como uma krigagem simples, cuja média local é calculada de acordo 

com uma região delimitada por n pontos próximos. 

Antes de calcular as estimativas, por qualquer técnica de krigagem, devem-se 

definir os parâmetros de vizinhança da krigagem e um modelo de blocos (malha 

regular tridimensional onde os teores são estimados). As estimativas associadas a 

krigagem ordinária pressupõem que o ponto estimado (x0) é gerado a partir da 

combinação linear dos valores selecionados na vizinhança. O estimador da krigagem, 

é calculado, de acordo com Yamamoto e Landim (2013), como: 

𝑧𝑘𝑜
∗ (𝑥0) = ∑ 𝜆𝑖𝑧(𝑥𝑖)  

𝑛

𝑖̇=1

(2) 

Com 

∑ 𝜆𝑖 = 1  

𝑛

𝑖̇=1

(3) 

Onde: 

𝑍𝐾𝑂
∗  é o valor estimado da variável regionalizada; 

𝑥0 é a localização do ponto que está sendo estimado; 

λ𝑖 é o ponderador a ser obtido para a i-ésima amostra; 

𝑍(𝑥𝑖) é o valor da variável nos pontos amostrados. 

 

6.2.4. Krigagem lognormal 

A krigagem lognormal é caracterizada por ser um método geoestatístico não 

linear, que está associada à variáveis com distribuição de frequência lognormal 

(Wellmer, 1998). 

                                                 
3 Anotações de aula da disciplina GSA 0404 - Avaliação de Recursos Minerais ministrada em 
2022. 
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A distribuição lognormal é definida como uma distribuição contínua que 

apresenta a propriedade em que os logaritmos dos valores seguem uma distribuição 

normal (Koch e Link,1970; Isaaks e Srivastava, 1989). 

 Dessa maneira, os dados devem assumir uma conservação logarítmica, que 

ocorre quando µx (o valor médio de xi – teor da amostra), seja uma variável lognormal, 

cuja média é µ, variância γ (x; x) e lnµx é uma variável normal conforme a seguinte 

relação (Dowd, 1982): 

γ[μ𝑥] = γ(x; x) = μ2 (𝑒γ(x;x)  −  1) (4) 

 Ainda de acordo com o mesmo autor, o estimador deve ser calculado a partir 

de: 

𝑍𝑥 = 𝑒𝑥𝑝 [(1 − ∑ 𝑏𝑖

𝑖

) ln μ + ∑ 𝑏𝑖

𝑖

ln 𝑥𝑖 +
1

2
∑  𝑏𝑖γ(x𝑖 , x𝑖) −

1

2
𝑖

∑∙ ∑ 𝑏𝑖

𝑗

𝑏𝑗

𝑖

∙ γ(x𝑖 , 𝑥𝑗)] (5) 

Assim, o suporte é xi e xj, sendo os pesos bj, como na equação seguinte 

(Rendu, 1979): 

∑ 𝑏𝑗

𝑗

γ(x𝑖x𝑗) = σ(x𝑖; x) (6) 

 E quando o valor da média µ é desconhecido, o estimador 𝑍𝑥 não será 

enviesado, se, e somente se:  

∑ 𝑏𝑖

𝑖

= 1 (7) 

 Dessa maneira, o estimador poderá ser calculado a partir de: 

𝑍𝑥 = 𝑒𝑥𝑝 [∑ 𝑏𝑖 ln 𝑥𝑖 +
1

2
∑  𝑏𝑖γ(x𝑖 , 𝑥𝑖) −

1

2
∑∙ ∑ 𝑏𝑖𝑏𝑗

𝑗𝑖

∙ γ(x𝑖 , x𝑗)

𝑖

 
𝑖

] (8) 

O valor do peso bj poderá ser obtido a partir do seguinte sistema, em que o λ é 

um multiplicador de Lagrange. 

∑ 𝑏𝑗

𝑗

γ(x𝑖x𝑗) = γ(x𝑖; x) + λ (9) 

∑ 𝑏𝑗

𝑗

= 1 (10) 
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6.2.5. Simulação estocástica 

 Segundo Yamamoto (2013), a simulação estocástica é o método preferido para 

estudos de variabilidade, porque a variância de krigagem não propicia uma medida 

precisa de incerteza relacionada à estimativa, enquanto a simulação permite que a 

incerteza seja quantificada. 

As realizações são aleatórias, mas reproduzem o histograma amostral e o 

modelo teórico de variograma (Yamamoto e Landim, 2013). 

 De acordo com Olea (1999), a simulação sequencial gaussiana considera a 

simulação de N variáveis aleatórias, {Z(xi), i=1, N}, distribuídas em nós de uma malha 

regular, condicionadas conforme o conjunto de n pontos de dados amostrais e 

previamente simulados {z(xi), i=1, n}. 

Olea (1999) define as etapas de uma simulação como um algoritmo genérico e 

comum a todos os algoritmos de simulação, em que as etapas são: 

i. Transformar os dados para uma distribuição gaussiana normal; 

ii. Calcular o variograma dos dados transformados e ajustar-lhe em um 

modelo teórico de variograma; 

iii. Organizar um caminho aleatório para simular os nós da malha regular; 

iv. Para cada nó a ser simulado deve-se definir um número de dados amostrais 

e previamente simulados de acordo com os parâmetros de vizinhança 

definidos; 

v. A partir da vizinhança definida deve-se construir uma curva acumulada de 

distribuição de frequência condicional local (lccdf); 

vi. Sortear aleatoriamente um valor da lccdf e atribuí-lo ao ponto simulado que 

será utilizado como ponto condicionante para simular novos pontos; 

vii. Repetir iv, v e vi sucessivamente até que todos os nós sejam simulados; 

viii. Fazer a transformação reversa dos dados de uma distribuição gaussiana 

para uma distribuição qualquer (distribuição amostral). 

 A técnica que será utilizada neste trabalho é a Simulação por Bandas Rotativas, 

ou Turning Bands Simulation (TBS). 

 De acordo com Olea (1999), a TBS foi o primeiro algoritmo de simulação em 

três dimensões largamente utilizado. A sua vantagem é destacada na eficiência 

computacional derivada da redução das dimensões do espaço em que a simulação é 

feita, as realizações simuladas da função aleatória multidimensional são alcançadas 

a partir da geração de uma série de realizações unidimensionais de uma função 
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aleatória de mesma covariância. E além disso, outra vantagem da simulação por 

bandas rotativas, em relação à simulação sequencial gaussiana é que a TBS 

necessita de somente uma krigagem para que as realizações sejam condicionadas 

aos dados. 

Segundo Olea (1999), as etapas da TBS são: 

i. Transformar os dados para atingir uma distribuição gaussiana; 

ii. Calcular o variograma dos dados transformados e ajustar-lhe em um 

modelo teórico de variograma; 

iii. Derivar a covariância (Cov1(h)) das realizações afim de se obter covariância 

Covn(h); 

iv. Calcular diversas realizações discretas, independentes e unidimensionais 

pelas linhas que irradiam por uma esfera multidimensional, sendo que todas 

as realizações apresentem covariância unidimensional Cov1(h); 

v. Somar as distribuições das linhas irradiadas para gerar realizações 

multidimensionais Zn(xi); 

vi. Calcular a largura ∆x, que é obtida a partir da divisão de planos 

multidimensionais provenientes dos planos gerados entre o espaçamento 

das realizações da etapa anterior; 

vii. Condicionar os dados, garantindo que os dados originais sejam honrados; 

viii. Realizar o condicionamento dos dados por krigagem; 

ix. Fazer a transformação reversa dos dados. 

 

6.3. Classificação de Recursos Minerais 

Os depósitos minerais são corpos rochosos que foram e estão sendo 

submetidos aos diferentes processos geológicos existentes no planeta. Esses 

depósitos são ocorrências minerais que apresentam concentrações naturais e 

anômalas de determinados elementos e/ou substâncias da crosta. 

 Os depósitos minerais normalmente são classificados em recurso ou reserva, 

conforme mostrado na Figura 3.  
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Figura 3: Quadro de classificação de Recursos e Reservas Minerais. Fonte: CBRR, 2022. 

 

 A Figura 3 destaca que os recursos podem ser classificados como inferido, 

indicado e medido a medida que há o aumento de confiabilidade e conhecimento 

geológico a respeito do depósito mineral, da mesma forma que as reservas podem 

ser classificadas como provável e provada a partir da aplicação bem-sucedida dos 

fatores modificadores. 

 De acordo com Andrade (2018), a classificação de recursos minerais, conforme 

as categorias propostas pelos códigos internacionais, tais como CRIRSCO 

(Committee for Mineral Reserves International Reporting Standards), JORC (Joint Ore 

Reserves Committee), NI 43-101 (National Instrument 43-101), entre outros, está 

relacionada a quantidade e nível de confiança dos dados, sendo diretamente 

associados ao aumento do nível de conhecimento geológico. 

A classificação de Recursos Minerais baseada em incertezas pode ser 

realizada a partir da krigagem, considerando medidas como a variância de krigagem, 

entre outros, mas essas medidas não levam em consideração a incerteza local 

(Andrade, 2018). 

 Ainda de acordo com Andrade (2018), a classificação de recursos minerais 

pode ser feita a partir de um modelo probabilístico, que pode ser obtido por simulação 

condicional, utilizando intervalos de confiança, nos quais são estabelecidos limites de 
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valores aceitáveis de incerteza para um dado nível de confiança para as diferentes 

classes de recurso mineral. 

 Segundo CRIRSCO (2013), a principal diferença entre os recursos minerais 

abordados na Figura 3 são: 

 Recurso Mineral Inferido: é a parte do recurso em que a quantidade e teor ou 

qualidade são estimadas com o apoio de evidências geológicas e amostragens 

limitadas; 

 Recurso Mineral Indicado: é a parte do recurso em que a quantidade, teor ou 

qualidade, densidades e características físicas são estimadas com grau de 

confiança suficiente para que possam ser aplicados os fatores modificadores, 

podendo auxiliar no planejamento da mina e avaliação da viabilidade 

econômica do depósito; 

 Recurso Mineral Medido: é a parte do recurso em que a quantidade, teor ou 

qualidade, densidades e características físicas são estimadas com grau de 

confiança suficiente para que possam ser aplicados os fatores modificadores, 

auxiliando o planejamento detalhado da mina e avaliação final da viabilidade 

do depósito. 

 

7. MATERIAIS E MÉTODOS 

7.1. Materiais 

Os dados fornecidos foram as informações de sondagem, que foram realizadas 

em dois tipos de sondagem percussiva motorizada – sonda pesada e sondas leves. A 

sonda pesada é um equipamento fabricado pela Prominas do Brasil, modelo NSP-

325, com 6’’ de diâmetro, com torre sobre rodas, utilizada em materiais de maior 

dureza, já as sondas leves, fabricadas pela Equipegeo e pela Sondeq, também com 

6’’ de diâmetro, são mais versáteis. 

A base de dados é composta por 249 sondagens (Figura 4), das quais apenas 

225 foram utilizadas porque eram as únicas que apresentavam todas as informações 

necessárias, como os valores das análises de ouro nas amostras. Além disso, houve 

a necessidade de unificar os dois tipos de concentrações em somente uma, ouro total, 

sendo ela a soma das concentrações de ouro gravimétrico e ouro equivalente. 

A média das profundidades das sondagens é de 110 metros e variam entre 

sondagens perpendiculares e inclinadas em relação ao solo. 
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O processamento dos dados foi realizado no programa especialista Isatis.neo 

mining® da Geovariances e parte da consolidação e visualização dos dados no 

programa Studio RM® da Datamine. 

 

 
Figura 4: Mapa da localização dos furos de sondagem. 

 

7.2. Métodos 

O estudo foi realizado desenvolvendo-se as etapas descritas: 

i. Revisão Bibliográfica; 

ii. Consolidação da Base de Dados; 

É a etapa mais importante em relação ao processo de avaliação de 

recursos/reservas minerais. 

Nessa etapa é feita a checagem dos dados de sondagem, de poços e 

escavações e das informações topográficas e geológicas obtidas em campo. 

Os dados fornecidos pela empresa foram tratados tendo em vista a conferência 

e correção das coordenadas, assim como foi feita a verificação dos valores de início 

e de fim para cada amostra descrita, que foram descritas em intervalos regulares de 

2 metros. 
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Também foi realizada a conferência das concentrações de ouro gravimétrico e 

ouro equivalente (ouro intersticial). Algumas amostras apresentavam valores iguais à 

-1, estas amostras foram descartadas. 

iii. Regularização das Amostras; 

A regularização das amostras dos furos de sonda foi feita em intervalos de 10 

metros. Essa regularização foi feita por conta dos diferentes tipos de tamanho entre 

as amostras, sendo assim, a regularização é a maneira de garantir o mesmo suporte 

para todas as amostras dentro do domínio. 

iv. Análise Estatística; 

Nesta etapa foram calculadas, como estatísticas descritivas, as medidas de 

tendência central (média e mediana), de dispersão em torno da média (desvio padrão, 

variância e coeficiente de variação) e os quartis. 

v. Transformação Lognormal; 

 O logaritmo da variável ouro total foi calculado a fim de se obter uma 

distribuição que apresenta o comportamento semelhante ao de uma distribuição 

normal. 

vi. Análise Geoestatística; 

Com o intuito de obter uma boa análise geoestatística e consequentemente 

gerar um bom variograma experimental, foi definida a melhor direção a ser trabalhada 

no momento do cálculo do variograma. Nesse momento, foi estabelecido que a 

orientação de referência que se adequava a melhor representatividade dos 

variogramas seria a N45º, sendo essa a direção que apresentou maior continuidade 

e coincide com a orientação dos pontos de amostragem. 

 Em seguida, foram definidos os parâmetros de cálculo do variograma 

experimental que são o tamanho do passo, número de passos, as direções utilizadas 

e suas tolerâncias. 

Após a definição dos parâmetros e o cálculo dos variogramas experimentais, 

foram ajustados os modelos teóricos de variograma aos variogramas experimentais. 

vii. Modelo Tridimensional de Blocos; 

Nessa etapa uma malha regular tridimensional é definida. Essa malha será 

utilizada em todos os métodos aplicados, pois os pontos são sempre iguais, o que 

modifica é a variável. 

Normalmente os blocos de cubagem tem o formato de um paralelepípedo, cujas 

dimensões devem respeitar a densidade de amostragem (Rocha, 1999). 
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viii. Definição dos Parâmetros de Vizinhança; 

Os parâmetros de vizinhança foram iguais para os dois métodos empregados. 

Nos dois casos o critério de seleção foi por quadrantes e foram selecionadas no 

máximo 8 amostras em cada setor. 

ix. Validação Cruzada; 

Segundo Rocha (1999), a validação cruzada é feita para comparar a estimativa 

de um ponto com valores conhecidos, assim a validação cruzada serve para estimar 

o ponto mascarado utilizando o modelo teórico de variograma e os parâmetros de 

vizinhança, não influenciando na krigagem. Essa técnica é utilizada para validar o 

modelo de variograma escolhido, e principalmente definir os parâmetros de vizinhança 

utilizados na krigagem e simulação. 

x. Simulação Estocástica; 

Foi realizada simulação por bandas rotativas, dos dados transformados por 

uma anamorfose gaussiana. Foram calculadas 100 realizações com um total de 400 

bandas utilizadas para simulação de novos pontos. 

xi. Estimativa por Krigagem Lognormal; 

Foi realizada a krigagem lognormal utilizando o modelo teórico de variograma 

ajustado aos dados transformados como o logaritmo da variável. 

xii. Classificação de Recursos Minerais. 

Como sugerido em Andrade (2018), a classificação de recursos minerais foi 

feita a partir das incertezas provenientes da simulação estocástica. O critério para a 

classificação do depósito nas três diferentes categorias se dá pelo valor de incerteza 

de cada bloco. 

O cálculo realizado para essa classificação foi (Andrade, 2018): 

𝐼𝑛𝑐𝑒𝑟𝑡𝑒𝑧𝑎 = [

𝑧
𝜎

√𝑛
𝐾𝑂

] ∗ 100 (11) 

 Para a classificação foi utilizado três intervalos de incerteza, sendo Recurso 

Mineral Inferido aqueles blocos com incerteza entre 30% e 100%, Recurso Mineral 

Indicado os blocos com incerteza entre 15% e 30%, Recurso Mineral Medido o 

intervalo de incerteza variou de 0 a 15% (Andrade, 2018). 
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8. RESULTADOS OBTIDOS 

8.1. Análise Estatística 

Apresentam-se na Tabela 1 as estatísticas descritivas das amostras das 

sondagens após a regularização e a seleção de teores acima de 0,01 g/t. Essa seleção 

foi necessária, pois a frequência de teores abaixo deste valor é elevada e grande 

quantidade de valores próximos a zero estavam obliterando os resultados e não 

representam rocha mineralizada. 

 

Tabela 1: Estatística descritiva das sondagens após a composição das amostras para as variáveis de 
ouro gravimétrico, equivalente e total. 

Variável 
Nº de 

amostras 
Mín 
[g/t] 

Máx 
[g/t] 

Média 
[g/t] 

Desv. 
Padrão 

[g/t] 

Variância 
[g/t]2 

1º 
Quartil 

[g/t] 

2º 
Quartil 

[g/t] 

3º 
Quartil 

[g/t] 

Ouro 
gravimétrico 

2038 0,01 15,49 0,17 0,48 0,234 0,02 0,06 0,17 

Ouro 
equivalente 

2038 0,01 12,4 0,27 0,85 0,7259 0 0,04 0,17 

Ouro total 2038 0,01 15,89 0,44 1,11 1,235 0,04 0,12 0,38 

 
A Figura 5 apresenta o histograma de ouro total, observa-se que a assimetria 

do histograma é positiva e reflete a estatística descritiva da Tabela 1. 

 
Figura 5: Histograma da variável ouro total (Au-T) – [g/t]. 
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Apresentam-se na Tabela 2 as estatísticas descritivas da variável ouro total 

após a transformação logarítmica dos teores. 

 

Tabela 2: Estatística descritiva da variável log ouro total. 

Variável 
Nº de 

amostras  
Mín 
[g/t] 

Máx 
[g/t] 

Média 
[g/t] 

Desv. 
Padrão 

[g/t] 

Variância 
[g/t]2 

1º 
Quartil 

[g/t] 

2º 
Quartil 

[g/t] 

3º 
Quartil 

[g/t] 

log ouro 
total (log 

Au-T) 
2038 -4,6 2,77 -2,01 1,5 2,242 -3,16 -2,08 -0,97 

 
A Figura 6 apresenta o histograma da variável log ouro total, observa-se que a 

forma do histograma resulta em um comportamento que sugere uma distribuição 

normal, porém não é simétrica ou bicaudal. 

 

 
Figura 6: Histograma da variável log ouro total (log Au-T) – [g/t]. 

 

Apresentam-se na Tabela 3 as estatísticas dos dados transformados por 

anamorfose da variável ouro total. 
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Tabela 3: Estatística dos dados transformados por anamorfose da variável ouro total. 

Variável 
Nº de 

amostras  
Mín 
[g/t] 

Máx 
[g/t] 

Média 
[g/t] 

Desv. 
Padrão 

[g/t] 

Variância 
[g/t]2 

1º 
Quartil 

[g/t] 

2º 
Quartil 

[g/t] 

3º 
Quartil 

[g/t] 

Anamorfose 
de ouro 

total 
2038 -3,49 3,49 0 1,0 1,0 -0,6745 0 0,6745 

 

8.2. Análise Geoestatística 

Os parâmetros definidos de acordo com o campo geométrico da área para 

cálculo do variograma experimental são apresentados na Tabela 4. Esses valores 

foram definidos a partir da análise exploratória realizada no programa Isatis.neo 

mining®. 

 

Tabela 4: Parâmetros de direções definidos para o cálculo do variograma experimental. 

Direção N45º N315º Vertical 

Tamanho do passo (m) 25 50 10 

Distância máxima (m) 200 450 200 

Tolerância do passo (%) 50 50 50 

Tolerância angular (°) 45 45 20 

 
O modelo teórico de variograma ajustado ao variograma experimental 

corresponde aos parâmetros apresentados na Tabela 5 e mostrado na Figura 7. 

O efeito pepita é um parâmetro que deve ser informado para o ajuste dos 

modelos teóricos do variograma, nesse caso o efeito pepita para a variável ouro total 

(Au-T) transformada por anamorfose gaussiana é de 0,34. 

 

Tabela 5: Parâmetros ajustados do modelo teórico de variograma para a variável de ouro total (Au-T). 

 Estrutura 1 Estrutura 2 Estrutura 3 

Tipo esférico esférico esférico 

Variância 0,25 0,27 0,14 

Alcance na direção U (m) 25 53 181 

Alcance na direção V (m) 40 173 250 

Alcance na direção W (m) 30 107 153 

Orientação N45° N45° N45° 
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Figura 7: Modelo teórico de variograma gaussiano ajustado. 

 

O modelo teórico de variograma do logaritmo de ouro total ajustado ao 

variograma experimental corresponde aos parâmetros apresentados na Tabela 6 e 

mostrado na Figura 8. 

O efeito pepita é de 1,32. 

 

Tabela 6: Parâmetros ajustados do modelo teórico de variograma do logaritmo da variável de ouro 
total. 

 Estrutura 1 Estrutura 2 Estrutura 3 

Tipo esférico esférico esférico 

Variância 0,62 0,20 0,14 

Alcance na direção U (m) 50 100 1E+30 

Alcance na direção V (m) 78 183 200 

Alcance na direção W (m) 78 104 189 

Orientação N45° N45° N45° 
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Figura 8: Modelo teórico de variograma do logaritmo da variável de ouro total ajustado. 

 

8.3. Modelo Tridimensional de Blocos 

 Os limites do modelo tridimensional respeitam os valores da Tabela 7. 

Possuindo um total de 31.008 nós. 

 

Tabela 7: Limites do modelo tridimensional. 

Limites do 
modelo 

X (m) Y  (m) Z (m) 

Mín. 199 838 30 

Máx. 201 839 410 

 
 A estrutura do modelo tridimensional de blocos é detalhada conforme a Tabela 

8, o modelo de blocos não foi rotacionado. 

 

Tabela 8: Estrutura do modelo tridimensional. 

Estrutura do modelo X Y Z 

Número de nós 34 24 38 

Tamanho da malha 25 m 50 m 10 m 

Origem do modelo (centro) 199 m 838 m 35 m 

 

8.4. Definição dos Parâmetros de Vizinhança 

 Os melhores parâmetros de vizinhança foram obtidos para a seleção de 

amostras por quadrantes, com no máximo 8 amostras por setor, sendo a configuração 



21 

que apresentou o maior valor de coeficiente de correlação e a maior seleção possível 

de amostras, conforme apresentado no item 8.5. 

O raio de busca variou para cada método, para a simulação estocástica os 

valores selecionados foram: na direção U=180m, na direção V=250m e na direção 

W=150m; enquanto para a técnica de krigagem lognormal os valores selecionados 

para as direções foram: U=100m, V=200m e W=180m. 

 

8.5. Validação Cruzada 

Os melhores resultados obtidos durante essa etapa foram: para a técnica da 

simulação estocástica o valor do coeficiente de correlação obtido foi de 0,44; para a 

técnica de krigagem lognormal o valor do coeficiente de correlação obtido foi de 0,45. 

Esses dois valores são relativamente baixos, normalmente valores de coeficiente de 

correlação acima de 0,70 são mais satisfatórios e podem gerar melhores resultados 

sobre os estudos do depósito. 

 Os resultados da validação cruzada podem ser observados nas Figuras 9 e 10. 

 

 
Figura 9: Validação cruzada para a simulação estocástica e seu valor do coeficiente de correlação. 
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Figura 10: Validação cruzada para a krigagem lognormal e seu valor do coeficiente de correlação. 

 

8.6. Simulação Estocástica 

A simulação estocástica por bandas rotativas foi calculada com 100 realizações 

e 400 bandas para os dados de ouro total [g/t]. A quantidade de realizações foi definida 

com o objetivo de o resultado honrar o modelo de covariância. 

Nas figuras 11 e 12 são apresentadas duas visadas da média da simulação 

estocástica, respectivamente, uma visada olhando para SW e outra olhando para NE. 
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Figura 11: Média das realizações da simulação por bandas rotativas, visada para SW. 

 

 
Figura 12: Média das realizações da simulação por bandas rotativas, visada para NE. 

 

8.7. Estimativa por Krigagem 

 Apresenta-se na Figura 13 o histograma dos teores de ouro total 

destransformados após os cálculos da krigagem lognormal e seu resultado está 

representado nas Figuras 14 e 15. 
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Figura 13: Histograma da variável ouro total (exp (log Au-T)) – [g/t]. 

 

 
Figura 14: Resultado da estimativa por krigagem lognormal, com visada para SW. 
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Figura 15: Resultado da estimativa por krigagem lognormal, com visada para NE. 

 

8.8. Classificação de Recursos Minerais 

 A classificação dos recursos minerais do depósito foi realizada conforme 

descrito em Métodos. Apresenta-se na Tabela 9 o percentual de blocos classificados 

como inferido, indicado e medido. O teor de corte do depósito no ano de 1992 (ano 

em que a mina entrou em atividade) era de 0,5 g/t. 

 

Tabela 9: Percentual de blocos classificados acima do teor de corte. 

Classes [%] 

Inferido 9,0 

Indicado 85,3 

Medido 5,7 

 
 Nas Figuras 16, 17 e 18 são representados espacialmente os dados da Tabela 

9, onde são apresentados os blocos classificados em cada classe. 
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Figura 16: Blocos classificados como inferidos, com visada para SW. 

 

 
Figura 17: Blocos classificados como indicados, com visada para SW. 

 



27 

 
Figura 18: Blocos classificados como medidos, com visada para SW. 

9. INTERPRETAÇÃO E DISCUSSÃO DOS RESULTADOS 

 A principal informação da Tabela 1 é a análise estatística do ouro total 

regularizado. Ele apresenta medidas de tendência central como a média e a mediana. 

A média de 0,44 g/t para o ouro total regularizado é menor do que o teor de corte (0,5 

g/t) praticado em 1992 indicando que a mina pode ser considerada uma mina com 

teores marginais. O histograma da Figura 5 apresenta a assimetria positiva da 

distribuição amostral, conforme o esperado para depósitos de ouro. 

 Nota-se que a média do ouro total e do log de ouro total apresentam valores 

bem diferentes, porém seus valores de desvio padrão ultrapassam 1,0 g/t, o que já 

reafirma o alto índice de variabilidade, como pode ser observado nos valores de 

variância entre as Tabelas 1 e 2. 

 O histograma da variável log de ouro total (Figura 6) apresenta o 

comportamento de uma distribuição normal, com uma certa assimetria positiva em 

relação a distribuição de frequência dos valores transformados. Assim como a Figura 

13, em que o resultado da krigagem lognormal foi calculado a partir da exponencial 

dos valores estimados, apresentando o modelo do depósito revertido ao esperado do 

real. 
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 Durante a etapa de análise geoestatística, os variogramas das diferentes 

orientações não apresentaram um campo estruturado bem definido, o variograma 

experimental que apresentou melhores resultados foi o variograma gaussiano, o que 

era esperado por tratar de valores que foram transformados previamente. Nesse 

sentido, durante o ajuste do modelo de variograma gaussiano buscou-se atingir um 

valor de patamar igual a 1 respeitando uma distribuição gaussiana, o que pode ser 

observado na Figura 7. 

 Considerando os dados de sondagem, o percentual de amostras acima do 

teor de corte do depósito é de aproximadamente 14%, porém, nos resultados obtidos 

pelas duas técnicas obtiveram-se resultados dispares e a simulação estocástica se 

aproximou do resultado esperado, pois 11,21% de blocos estão acima do teor e a 

krigagem lognormal apresentou o pior resultado, visto que somente 0,22% dos blocos 

ultrapassam o teor de 0,5 g/t. 

 Para a avaliação das incertezas, utilizou-se o desvio padrão calculado a partir 

das 100 simulações por bandas rotativas, obtendo os resultados apresentados nas 

Figuras do item 8.8. 

 A Figura 19 mostra a comparação entre as realizações e a quantidade de 

blocos em porcentagem que apresentam teores acima do corte em relação ao 

depósito inteiro, nota-se que a média das realizações apresenta um percentual maior 

que a maioria das realizações. As proporções de blocos acima do teor de corte variam 

entre, aproximadamente, 6% e 13%. 

 

 
Figura 19: Gráfico comparando a proporção de blocos acima do teor de corte para cada realização. 
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10. CONCLUSÕES 

 O objetivo deste trabalho foi realizar um estudo geoestatístico, a fim de se 

obter a quantificação de incertezas com base nos teores inferidos associados a 

amostragem de um depósito de ouro. Os resultados da simulação estocástica 

atingiram parcialmente seus objetivos, que era corrigir o efeito de suavização da 

krigagem, porém, embora a suavização tenha sido minimizada, a variabilidade dos 

dados não foi plenamente reproduzida. 

 A partir dos resultados obtidos, é visível que as duas técnicas apresentam 

vantagens e desvantagens. Comparando os dois métodos aplicados, pode ser 

observado que na etapa de validação cruzada ambos apresentaram coeficientes de 

correlação muito próximos, provavelmente por se tratar de um depósito de ouro em 

que sua variabilidade é relativamente alta, mesmo na direção de maior continuidade 

e do controle estrutural da mineralização, o que aumenta o grau de complexidade das 

análises geoestatísticas. 

 Os altos valores de desvio padrão gerados pelo resultado da simulação por 

bandas rotativas podem estar associados à variância das distribuições dos dados.

 Mesmo enfrentando esse problema associado a variabilidade do depósito, 

conclui-se que para esse tipo de depósito, a melhor técnica geoestatística que pode 

ser empregada é a simulação estocástica, pois está técnica reproduziu melhor as 

estatísticas descritivas dos dados. 

 O resultado da média das realizações da simulação por bandas rotativas é 

semelhante ao da krigagem, embora com maior suavização, mas de qualquer modo, 

no caso de trabalhos geoestatísticos com objetivo de classificação de recursos 

minerais ele é mais adequado do que a krigagem, pois apresenta associado à cada 

bloco simulado um valor de incerteza que permite classificar os recursos minerais no 

depósito. 
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APÊNDICE A - HISTOGRAMAS POR VARIÁVEL 

 

Apêndice A: Histograma da variável ouro equivalente (Au-C) – [g/t]. 

 

 

Apêndice A: Histograma da variável ouro gravimétrico (Au-G) – [g/t]. 
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APÊNDICE B - AJUSTE DOS MODELOS TEÓRICOS DE VARIOGRAMA 

 

Apêndice B: Ajuste do modelo teórico de variograma gaussiano da direção N45°. 

 

 

Apêndice B: Ajuste do modelo teórico de variograma gaussiano da direção N315°. 
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Apêndice B: Ajuste do modelo teórico de variograma gaussiano da direção vertical. 

 

 

Apêndice B: Ajuste do modelo teórico de variograma da variável log de ouro total da direção N45°. 
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Apêndice B: Ajuste do modelo teórico de variograma da variável log de ouro total da direção N315°. 

 

 

Apêndice B: Ajuste do modelo teórico de variograma da variável log de ouro total da direção vertical. 

 


