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2. RESUMO

A geologia € uma ciéncia que envolve tanto estudos tedricos quanto praticos, bem
como comporta interpretacdes qualitativas e quantitativas. O foco desse trabalho esta
relacionado a geoestatistica aplicada aos dados do depésito aurifero localizado em
uma das principais unidades metalogenéticas do Mato Grosso. A geoestatistica é
usada em diferentes areas das geociéncias com suas respectivas finalidades, visto
isso, as técnicas que serdo empregadas ao longo desse projeto sdo a krigagem
lognormal e a simulagéo estocastica, ambas comumente utilizadas na avaliagdo de
recursos minerais. Justifica-se a utilizacdo da simulacdo estocastica pelo fato das
técnicas de krigagem serem incapazes de quantificar as incertezas das estimativas
dos teores, além das estimativas serem suavizadas, desse modo, a simulacéo
estocastica pode complementar o estudo das incertezas, porque gera n simulacdes
com a mesma probabilidade de ocorréncia. Os resultados obtidos das duas técnicas
apresentaram-se semelhantes, porém, percebe-se que a simulacdo estocastica € a
mais adequada para trabalhos geoestatisticos com objetivo de classificacdo de
recursos minerais, uma vez que esse método apresenta os valores de incerteza

associado a cada bloco simulado.

Palavras-chave: geoestatistica, simulacdo estocastica, simulacdo por bandas
rotativas, krigagem, krigagem lognormal.



3. ABSTRACT

Geology is a science that involves both theoretical and practical studies, as well as
gualitative and quantitative interpretations. The focus of this work is related to
geostatistics applied to data from the gold deposit located in one of the main
metallogenic units in Mato Grosso. Geostatistics is used in different areas of
geosciences for their respective purposes, therefore, the techniques that will be used
throughout this project are lognormal kriging and stochastic simulation, both commonly
used in the evaluation of mineral resources. The use of stochastic simulation is justified
by the fact that kriging techniques are incapable of quantifying the uncertainties in
grade estimates, in addition to the estimates being smoothed, thus, stochastic
simulation can complement the study of uncertainties, because it generates n
simulations with the same probability of occurrence. The results obtained from the two
techniques were similar, however, it can be seen that stochastic simulation is the most
suitable for geostatistical work with the objective of classifying mineral resources, since

this method presents the uncertainty values associated with each simulated block.

Keywords: geostatistics, stochastic simulation, rotating band simulation, kriging,

lognormal kriging.



4. INTRODUCAO

A geologia é uma ciéncia que inicialmente foi baseada em interpretacdes
gualitativas das dinadmicas interna e externa da Terra. Porém, esta visdo da geologia
subjetiva vem sendo alterada nas ultimas décadas com a introducdo de diversos
métodos quantitativos, sobretudo vinculados as areas de geologia aplicada. Essa
alteracao nas geociéncias ocorreu associada ao avango tecnoldgico, computacional e
analitico, possibilitando a melhor compreensdo e associagdo de diversos tipos de
dados quantitativos e qualitativos, tornando a geologia uma ciéncia ainda mais exata.

Diante dessa evolucdo, a necessidade de obter resultados com maior
representatividade aumentou gradativamente e, neste contexto, a geoestatistica
disponibiliza uma série de métodos que permitem a realizacdo de inferéncias que
consideram, em seus célculos, ndo apenas as estatisticas descritivas das variaveis de
interesse, mas também sua distribuicdo no espaco e as inter-relacbes entre os
diversos pontos de coleta de informacéo.

Para a avaliacdo de recursos minerais, a geoestatistica é uma ferramenta
indispensavel, uma vez que ela é composta por um conjunto de técnicas que
proporcionam a interpretacao da aparente aleatoriedade dos dados, através de uma
funcdo que descreve a dissimilaridade entre pares de pontos dispersos no espaco,
auxiliando na quantificagcédo de recursos e reservas minerais.

O foco principal desse trabalho é realizar um estudo geoestatistico de um
depdsito aurifero, para quantificar teores e incertezas associadas, além de

desenvolver o estudante no campo da geoestatistica aplicada.

5. OBJETIVOS E METAS

O objetivo do trabalho foi realizar o estudo geoestatistico de um depdsito
aurifero localizado no Mato Grosso, com propésito de quantificar as incertezas
associadas aos teores inferidos a partir da amostragem, por meio da simulacéo
estocastica. Os resultados desta inferéncia apresentam menor suavizacdo dos
resultados quando comparadas as técnicas de krigagem, tradicionalmente
empregadas para estimativa e classificagdo de recursos minerais.

Com isso, foram realizadas as metas de: transformacéo gaussiana e lognormal
dos dados; analise estatistica e geoestatistica dos dados transformados; estimativa
por krigagem lognormal e por simulacdo estocastica; analise, interpretacdo e
comparacgao dos resultados obtidos.



6. TRABALHOS PREVIOS

6.1. Geologia Regional e Local do Depésito Aurifero
O depdsito aurifero esta localizado no extremo Norte de uma serra, na regiao

Oeste do estado de Mato Grosso, situada na Bacia Hidrogréfica do Rio Guaporé, nas
proximidades dos afluentes do Rio Galera (Paro, 1990). A divulgacao da localizagao
desse depdsito ndo foi autorizada nesse trabalho.

O deposito de ouro foi explorado a céu aberto, sendo classificada pelo Servico
Geoldgico do Brasil - Companhia de Pesquisa de Recursos Minerais (CPRM) - como
um depdsito de ouro (Au) de morfologia filoneana (Lacerda Filho et al., 2004b).

De acordo com o Mapa de Recursos Minerais do Estado de Mato Grosso
(20044a), o depbsito esta localizado na Provincia Estrutural Sunsas, relacionada a uma
das principais unidades metalogenéticas do estado, o Distrito Aurifero do Alto
Guaporé.

A geologia da regido esta associada a Faixa Movel Aguapei, de 1,2 a 1,0 Ga.
Nessa regido o Grupo Aguapei engloba a Formagdo Fortuna - rochas
metassedimentares - e 0 seu embasamento - rochas vulcanossedimentares do
Complexo Rio Alegre e rochas graniticas da Suite Santa Helena (Lacerda Filho et al.,
2004b). Estas rochas tém idade mesoproterozéicas. A Formacao Fortuna apresenta
sedimentos clasticos, com litotipos variando entre metaconglomerados, metarenitos e
metapelitos, enquanto a sequéncia vulcanossedimentar, apresenta rochas
metassedimentares finas, como metassiltitos avermelhados e xistos, com
intercalagbes de metavulcanicas acidas, cortadas por intrusdes félsicas e méficas
(Scabora e Duarte, 1998).

Segundo Souza et al. (2016), a mineralizacao aurifera esta associada a uma
faixa intensamente deformada de largura aproximada de 1km com orientacdo N40°W.
Nessa regido, a mineralizacdo € associada principalmente a alteracéo hidrotermal e
veios de quartzo filonares, localizados em zonas de cisalhamento.

De acordo com Scabora e Duarte (1998), o ouro da regido pode estar associado
a cinco principais estruturas mineralizadas: as zonas ou faixas de sericita, de
comportamento do tipo stratabound; zonas de veios de quartzo, formadas por veios
com orientacdo sub-vertical de espessuras de até 10 metros; zonas de quartzo inter-
boudins, relacionados a metaconglomerados em inflexao do flanco anticlinal SW, onde
sao encontrados 0s maiores teores; fraturas sub-verticais, que sdo preenchidas por

oxidos de ferro de forma perpendicular ou obliqua a estrutura da rocha e a fraturas de



baixo angulo, preenchidas por veios de quartzo tabulares, que concentram 0 ouro
grosso associado a pirita.

O ouro encontrado no depdésito geralmente estd em sua forma nativa,
apresentando granulagdo grossa em associacdo com os veios de quartzo, e fina
guando associado as zonas sericiticas (Scabora e Duarte, 1998).

Segundo Paro (1990), no Relatério Final de Pesquisas, o jazimento do depdsito
esta distribuido em um nivel topograficamente inferior a Serra S&o Vicente, ao longo
de eluvides e cones de dejecao. Os sedimentos aluvionares estéo dispostos segundo
um horizonte estratigrafico bem definido, com espessuras de 5m. Ja os depdsitos de
cones de dejecdo estdo situados em areas topograficamente planas, entre
acumulacdes aluviais e coluviais. Esse ultimo depdsito apresenta forma variada,
sendo que nas por¢des mais proximas da Serra sdo encontrados blocos e matacfes
em distribuicdo aleatdria com areias e argilas, enquanto nas por¢des mais distantes
sdo encontrados depésitos granulometricamente bons, em que sdo observadas
intercalacdes ritmicas entre cascalhos, areias e argilas laterizadas.

Ainda de acordo com Paro (1990), a génese do depdsito esta associada aos
processos de reativacdo da plataforma durante o Ciclo Orogénico Transamazonico.
Esses processos teriam propiciado a formacdo de bacias sedimentares em que
estariam os sedimentos acumulados do Grupo Aguapei. O ouro proveniente do
Complexo Basal teria se depositado em graos junto a sedimentacédo, e durante a
ultima manifestacdo do Créaton, o ouro disperso nas rochas teria se remobilizado para
zonas fraturadas. Outra hipétese acerca da génese do depdsito seria de que 0 ouro
primario teve origem na extremidade de um platon granitico intrusivo no Grupo
Aguapei, dessa forma, 0 ouro e quartzo num processo hidrotermal teriam atravessado
0s metassedimentos, concentrando o minério nos veios e vénulas de quartzo

presentes nas rochas.

6.2. Geoestatistica
A geoestatistica foi inicialmente definida por Georges Matheron em 1963, a

partir da formalizacdo da Teoria das Variaveis Regionalizadas para a estimativa de
depdsitos minerais. Atualmente a geoestatistica € usada em diversas areas das
geociéncias, como pedologia, hidrogeologia, mineragéo, geologia ambiental, além de
diversas outras areas que utilizam dados com localizac&o referenciada no espaco

(Yamamoto e Landim, 2013).



A avaliacdo de recursos minerais utiliza técnicas de geoestatistica, por
permitirem a associacdo de fendmenos aleatérios em funcdo de estruturacdes
espaciais?. Visto isso, alguns conceitos sdo fundamentais para se obter uma boa

analise geoestatistica.

6.2.1. Variaveis regionalizadas e variaveis aleatorias

Para que seja definido o que é um variograma € necessario estabelecer a
diferenca entre uma variavel regionalizada e uma variavel aleatéria. Neste sentido, a
regionalizada reconhece caracteristicas especificas que a variavel aleatdria nao
reconhece (Matheron, 1963).

A primeira caracteristica que a variavel regionalizada reconhece é a
localizac&o, ou seja, ela estd associada a um sistema de coordenadas espaciais
(Matheron, 1963);

A segunda caracteristica é o suporte, que esta associado ao tamanho que cada
unidade amostral apresenta, sendo ele o comprimento, area ou volume (Matheron,
1963);

A terceira caracteristica € a anisotropia, na qual a variavel regionalizada
apresenta diferentes comportamentos em dire¢fes diferentes (Matheron, 1963);

Por ultimo a continuidade, que esta relacionada a distancia em que as amostras
apresentam dependéncia espacial (Matheron, 1963).

Diante desses conceitos, é elaborada uma hipétese que deve ser assumida
como verdadeira, que € chamada de Hipotese Intrinseca. Por esta hipotese, assume-
se que quando o variograma existe, ele € valido para todo o dominio e os valores de
variancia espacial serdo os mesmos em qualquer por¢cdo do dominio sempre que

observados em uma mesma direcdo entre pontos separados por uma distancia igual.?

6.2.2. Variogramas
De acordo com Matheron (1963), os variogramas séo funcdes que medem a
variancia entre pontos separados por distancia como h. S&o ferramentas basicas que

! AnotagGes de aula da disciplina GSA 0404 - Avaliagdo de Recursos Minerais ministrada em
2022.
2 AnotacGes de aula da disciplina GSA 0404 - Avaliacdo de Recursos Minerais ministrada em
2022.



possibilitam a descricdo quantitativa da variacdo no espaco de um fendémeno
regionalizado.

A funcéo variograma 2y(h) é definida como (Yamamoto, 2001):

n

20 () = 3 [2x+ ) ~ ZGe)F? W

i=1

Que é a esperanca matematica do quadrado da diferenca entre os valores de
pontos no espaco, a uma distancia h, ou seja, [Z(xi+h)-Z(x;)] é a diferenca entre os
valores de distintos pontos no espacgo.

A relacdo da variancia em fungéo da distancia h pode ser descrita da seguinte
maneira: para pontos préximos, espera-se que a diferenca entre eles seja pequena e,
consequentemente, a variancia espacial também, ja para distancias maiores espera-
se o0 oposto (Yamamoto, 2001).

Apresenta-se na Figura 1 um exemplo de variograma com patamar classico e

indicam-se nela as principais propriedades do variograma (Yamamoto, 2001).

nll"

=

= CANMPO i CAMPO

. ESTRUTURADO |  ALEATORIO
Co+0r PATAMAR

VARIANCIA :
ESPACIAL !

Co i
WARIANCLA |
ALEATORIA i o

. >
a=AMBLITUDE h

Figura 1: Variograma tipico e suas propriedades. Fonte: Yamamoto, 2001.

A amplitude (a) é a distancia a partir da qual as amostras passam a ser
independentes;

O patamar (Co + C) € o valor maximo de variancia espacial em que o
variograma se estabiliza;

O efeito pepita (Co) € uma descontinuidade préxima da origem;

Variancia espacial (C) é uma medida de dissimilaridade entre pares de pontos

separados por uma distancia h;



Uma vez calculado o variograma experimental deve-se ajustar o modelo teérico
de variograma, que é uma funcdo matematica continua que permite a determinagao
dos valores de variancia espacial para qualquer distancia no dominio estudado. Existe
pouco mais de uma dezena de modelos tedricos de variogramas, matematicamente
autorizados, dos quais trés sdo os mais frequentes, a saber: modelo esférico, modelo
exponencial e modelo gaussiano (Yamamoto, 2001).

Isaacs e Srivastava (1989), Deutsch e Journel (1992) e Yamamoto (2001),
citam a existéncia de trés tipos de anisotropia (Figura 2) denominadas:

Anisotropia geométrica: quando h& diferenca entre as amplitudes de acordo
com a direcao analisada e os patamares sdo constantes, apresentando mesmo valor;

Anisotropia zonal: quando héa diferenca entre os patamares conforme a dire¢céo
analisada e suas amplitudes permanecem constantes com o0 mesmo valor;

Anisotropia mista: quando os patamares e amplitudes variam conforme as

direcbes mudam.

Anisotropia Geométrica Anisotropia Zonal

Y (h)
Y (h)

=
v

'
a,=d, h

Y (h)

Anisotropia Mista

-

a, a, ¥

Figura 2: Os trés tipos de anisotropia. Fonte: Yamamoto, 2001.

6.2.3. Krigagem
Segundo Yamamoto (2013), krigagem sao as diversas técnicas que com 0
auxilio do variograma produzem uma estimativa minimizando a variancia do erro de

estimativa.



Algumas técnicas de krigagem sédo: simples, ordinaria, da média, universal, de
variaveis indicadoras, lognormal, sequencial, de residuos, com deriva externa e
fatorial.®

Dentre essas técnicas, a que sera utilizada no trabalho é a Krigagem Lognormal
(KL). Esta krigagem sé pode ser desenvolvida apds a conclusdo dos estudos
estatisticos preliminares, o que indicara se, de fato, esse método é apropriado para
avaliar o comportamento da variavel regionalizada (Yamamoto, 2013).

De acordo com Yamamoto e Landim (2013), a krigagem ordinaria é
caracterizada como uma krigagem simples, cuja média local é calculada de acordo
com uma regido delimitada por n pontos préximos.

Antes de calcular as estimativas, por qualquer técnica de krigagem, devem-se
definir os parametros de vizinhanca da krigagem e um modelo de blocos (malha
regular tridimensional onde os teores sdo estimados). As estimativas associadas a
krigagem ordinaria pressupfem que o ponto estimado (xo) € gerado a partir da
combinacéo linear dos valores selecionados na vizinhancga. O estimador da krigagem,

é calculado, de acordo com Yamamoto e Landim (2013), como:

ZhoGt0) = ) Aiz(x) (2)
Com N

n
i=1

Onde:

Zxo € o0 valor estimado da variavel regionalizada;

X, € alocalizacdo do ponto que esta sendo estimado;

A; € 0 ponderador a ser obtido para a i-ésima amostra;

Z(x;) é o valor da variavel nos pontos amostrados.

6.2.4. Krigagem lognormal
A krigagem lognormal é caracterizada por ser um método geoestatistico n&o
linear, que esta associada a variaveis com distribuicdo de frequéncia lognormal
(Wellmer, 1998).

3 Anotacdes de aula da disciplina GSA 0404 - Avaliacédo de Recursos Minerais ministrada em
2022.



A distribuicdo lognormal é definida como uma distribuicdo continua que
apresenta a propriedade em que os logaritmos dos valores seguem uma distribuicado
normal (Koch e Link,1970; Isaaks e Srivastava, 1989).

Dessa maneira, os dados devem assumir uma conservagao logaritmica, que
ocorre quando x (o valor médio de x; — teor da amostra), seja uma variavel lognormal,
cuja meédia € Y, variancia y (x; x) e Inpx € uma variavel normal conforme a seguinte
relagao (Dowd, 1982):

Vi = y(x %) = p? (Y™ — 1) (4)

Ainda de acordo com o mesmo autor, o estimador deve ser calculado a partir
de:

1 1
Z, = exp <1 - Z bl-) Inp+ Z b; In x; + EZ biy(xi,%x;) — EZ Z b; b; -y(xi,xj) (5)
7 7 i

i i
Assim, 0 suporte € xi e xj, sendo 0S pesos b;, como na equacgdo seguinte
(Rendu, 1979):

Z b; Y(Xixj) = o(x;; %) (6)
J

E quando o valor da média p é desconhecido, o estimador Z, ndo sera

Zbl- —1 7)

Dessa maneira, o estimador poderd ser calculado a partir de:

1 1
Zx = exp Z bi In X; + Ez biY(Xi,Xi) — Ez z bibj 'Y(Xi' Xj) (8)
i i J

i

enviesado, se, e somente se:

O valor do peso bj podera ser obtido a partir do seguinte sistema, emque o A é

um multiplicador de Lagrange.

z by v(xix;) = v(xi%) + A )

]
> b=1 (10)
J



6.2.5. Simulacéo estocastica

Segundo Yamamoto (2013), a simulac&o estocastica € o método preferido para
estudos de variabilidade, porque a variancia de krigagem nao propicia uma medida
precisa de incerteza relacionada a estimativa, enquanto a simulacdo permite que a
incerteza seja quantificada.

As realizacbes sdo aleatérias, mas reproduzem o histograma amostral e o
modelo tedrico de variograma (Yamamoto e Landim, 2013).

De acordo com Olea (1999), a simulagdo sequencial gaussiana considera a
simulacdo de N variaveis aleatorias, {Z(xi), i=1, N}, distribuidas em n6s de uma malha
regular, condicionadas conforme o conjunto de n pontos de dados amostrais e
previamente simulados {z(xi), i=1, n}.

Olea (1999) define as etapas de uma simulagdo como um algoritmo genérico e
comum a todos os algoritmos de simulagcéo, em que as etapas sao:

I Transformar os dados para uma distribuicdo gaussiana normal;

i. Calcular o variograma dos dados transformados e ajustar-lhe em um
modelo tedrico de variograma;

lil. Organizar um caminho aleatorio para simular os nés da malha regular;

V. Para cada no a ser simulado deve-se definir um nimero de dados amostrais
e previamente simulados de acordo com os parametros de vizinhanca
definidos;

V. A partir da vizinhanga definida deve-se construir uma curva acumulada de
distribuicdo de frequéncia condicional local (Iccdf);

Vi. Sortear aleatoriamente um valor da Iccdf e atribui-lo ao ponto simulado que
sera utilizado como ponto condicionante para simular novos pontos;

Vil. Repetir iv, v e vi sucessivamente até que todos 0s nés sejam simulados;

viii.  Fazer a transformacao reversa dos dados de uma distribuicdo gaussiana
para uma distribuicdo qualquer (distribuicdo amostral).

A técnica que sera utilizada neste trabalho € a Simulacdo por Bandas Rotativas,
ou Turning Bands Simulation (TBS).

De acordo com Olea (1999), a TBS foi o primeiro algoritmo de simulagdo em
trés dimensdes largamente utilizado. A sua vantagem € destacada na eficiéncia
computacional derivada da reducéo das dimensdes do espaco em que a simulacao &
feita, as realizacdes simuladas da funcéo aleatéria multidimensional sédo alcancadas

a partir da geracdo de uma série de realizagdes unidimensionais de uma funcao



aleatéria de mesma covariancia. E além disso, outra vantagem da simulacdo por
bandas rotativas, em relacdo a simulacdo sequencial gaussiana € que a TBS
necessita de somente uma krigagem para que as realiza¢cdes sejam condicionadas
aos dados.

Segundo Olea (1999), as etapas da TBS séo:

I. Transformar os dados para atingir uma distribuicdo gaussiana;

ii. Calcular o variograma dos dados transformados e ajustar-lhe em um
modelo tedrico de variograma,

iii. Derivar a covariancia (Covi(h)) das realiza¢des afim de se obter covariancia
Covn(h);

iv. Calcular diversas realizacfes discretas, independentes e unidimensionais
pelas linhas que irradiam por uma esfera multidimensional, sendo que todas
as realizacdes apresentem covariancia unidimensional Covi(h);

V. Somar as distribuicbes das linhas irradiadas para gerar realizacbes
multidimensionais Zn(Xi);

Vi. Calcular a largura Ax, que €& obtida a partir da divisdo de planos
multidimensionais provenientes dos planos gerados entre o espagamento

das realizacdes da etapa anterior;

Vii. Condicionar os dados, garantindo que os dados originais sejam honrados;
viii.  Realizar o condicionamento dos dados por krigagem;
iX. Fazer a transformacéao reversa dos dados.

6.3. Classificacdo de Recursos Minerais
Os depdsitos minerais sdo corpos rochosos que foram e estdo sendo

submetidos aos diferentes processos geologicos existentes no planeta. Esses
depésitos sdo ocorréncias minerais que apresentam concentracdes naturais e
andomalas de determinados elementos e/ou substancias da crosta.

Os depésitos minerais normalmente sdo classificados em recurso ou reserva,

conforme mostrado na Figura 3.
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Informagoes de

Exploragao
RECURSOS RESERVAS
MINERAIS MINERAIS

Aumento do
nivel de 1
confiabilidade e Inferido
conhecimento
geoldgico

Indicado Provavel

Medido Provada

Consideracdes sobre fatores de lavra, beneficiamento, metalurgia, economicidade,
mercado, aspectos legais, infraestrutura, governamentais e de meio ambiente,
performance social e governanga (ESG)

(os “Fatores Modificadores”)

Figura 3: Quadro de classificagdo de Recursos e Reservas Minerais. Fonte: CBRR, 2022.

A Figura 3 destaca que os recursos podem ser classificados como inferido,
indicado e medido a medida que ha o aumento de confiabilidade e conhecimento
geoldgico a respeito do depdsito mineral, da mesma forma que as reservas podem
ser classificadas como provavel e provada a partir da aplicacdo bem-sucedida dos
fatores modificadores.

De acordo com Andrade (2018), a classificacao de recursos minerais, conforme
as categorias propostas pelos coédigos internacionais, tais como CRIRSCO
(Committee for Mineral Reserves International Reporting Standards), JORC (Joint Ore
Reserves Committee), NI 43-101 (National Instrument 43-101), entre outros, esta
relacionada a quantidade e nivel de confianca dos dados, sendo diretamente
associados ao aumento do nivel de conhecimento geolégico.

A classificagdo de Recursos Minerais baseada em incertezas pode ser
realizada a partir da krigagem, considerando medidas como a variancia de krigagem,
entre outros, mas essas medidas ndo levam em consideracdo a incerteza local
(Andrade, 2018).

Ainda de acordo com Andrade (2018), a classificacdo de recursos minerais
pode ser feita a partir de um modelo probabilistico, que pode ser obtido por simulacao

condicional, utilizando intervalos de confianca, nos quais sdo estabelecidos limites de
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valores aceitaveis de incerteza para um dado nivel de confianca para as diferentes
classes de recurso mineral.

Segundo CRIRSCO (2013), a principal diferenca entre os recursos minerais
abordados na Figura 3 séo:

e Recurso Mineral Inferido: é a parte do recurso em que a quantidade e teor ou
gualidade sdo estimadas com o apoio de evidéncias geoldgicas e amostragens
limitadas;

e Recurso Mineral Indicado: é a parte do recurso em que a quantidade, teor ou
gualidade, densidades e caracteristicas fisicas sdo estimadas com grau de
confianca suficiente para que possam ser aplicados os fatores modificadores,
podendo auxiliar no planejamento da mina e avaliacdo da viabilidade
econdmica do deposito;

e Recurso Mineral Medido: é a parte do recurso em que a quantidade, teor ou
gualidade, densidades e caracteristicas fisicas sdo estimadas com grau de
confianca suficiente para que possam ser aplicados os fatores modificadores,
auxiliando o planejamento detalhado da mina e avaliagdo final da viabilidade

do deposito.

7. MATERIAIS E METODOS

7.1. Materiais
Os dados fornecidos foram as informagdes de sondagem, que foram realizadas

em dois tipos de sondagem percussiva motorizada — sonda pesada e sondas leves. A
sonda pesada € um equipamento fabricado pela Prominas do Brasil, modelo NSP-
325, com 6” de didmetro, com torre sobre rodas, utilizada em materiais de maior
dureza, ja as sondas leves, fabricadas pela Equipegeo e pela Sondeq, também com
6” de didmetro, sdo mais verséteis.

A base de dados é composta por 249 sondagens (Figura 4), das quais apenas
225 foram utilizadas porque eram as unicas que apresentavam todas as informacdes
necessarias, como os valores das analises de ouro nas amostras. Além disso, houve
a necessidade de unificar os dois tipos de concentra¢cées em somente uma, ouro total,
sendo ela a soma das concentra¢des de ouro gravimétrico e ouro equivalente.

A média das profundidades das sondagens € de 110 metros e variam entre

sondagens perpendiculares e inclinadas em relacéo ao solo.
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O processamento dos dados foi realizado no programa especialista Isatis.neo
mining® da Geovariances e parte da consolidacdo e visualizacdo dos dados no
programa Studio RM® da Datamine.

199.000 199.500 200.000 200.500
| 1 | 1 | 1 |

391.000 — [ 391.000

390.500 e 0 I 390.500

(+8e+06 m)

390.000 74 . - 390.000

0 50 100 | 200 400 m
[ ="

Isatisneo Mining & |

T T T T
199.000 199,500 200.000 200,500

[m] iocs! coordinate sy=tam

Figura 4: Mapa da localizacdo dos furos de sondagem.

7.2. Métodos
O estudo foi realizado desenvolvendo-se as etapas descritas:

i Reviséo Bibliografica;
. Consolida¢cao da Base de Dados;
E a etapa mais importante em relacdo ao processo de avaliagdo de
recursos/reservas minerais.
Nessa etapa é feita a checagem dos dados de sondagem, de pocos e
escavacoes e das informacg@es topograficas e geolbgicas obtidas em campo.
Os dados fornecidos pela empresa foram tratados tendo em vista a conferéncia
e correcdo das coordenadas, assim como foi feita a verificacdo dos valores de inicio
e de fim para cada amostra descrita, que foram descritas em intervalos regulares de

2 metros.
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Também foi realizada a conferéncia das concentracdes de ouro gravimétrico e
ouro equivalente (ouro intersticial). Algumas amostras apresentavam valores iguais a
-1, estas amostras foram descartadas.

iii. Regularizacado das Amostras;

A regularizacdo das amostras dos furos de sonda foi feita em intervalos de 10
metros. Essa regularizacao foi feita por conta dos diferentes tipos de tamanho entre
as amostras, sendo assim, a regularizacédo é a maneira de garantir 0 mesmo suporte
para todas as amostras dentro do dominio.

iv. Analise Estatistica;

Nesta etapa foram calculadas, como estatisticas descritivas, as medidas de
tendéncia central (média e mediana), de dispersao em torno da média (desvio padréo,
variancia e coeficiente de variagdo) e os quartis.

V. Transformacédo Lognormal;

O logaritmo da variavel ouro total foi calculado a fim de se obter uma
distribuicdo que apresenta o comportamento semelhante ao de uma distribuicao
normal.

Vi. Analise Geoestatistica,;

Com o intuito de obter uma boa analise geoestatistica e consequentemente
gerar um bom variograma experimental, foi definida a melhor direcdo a ser trabalhada
no momento do calculo do variograma. Nesse momento, foi estabelecido que a
orientacdo de referéncia que se adequava a melhor representatividade dos
variogramas seria a N45°, sendo essa a direcdo que apresentou maior continuidade
e coincide com a orientacdo dos pontos de amostragem.

Em seguida, foram definidos os parametros de calculo do variograma
experimental que sdo o tamanho do passo, numero de passos, as dire¢des utilizadas
e suas tolerancias.

Apés a definicdo dos parametros e o calculo dos variogramas experimentais,
foram ajustados os modelos tedricos de variograma aos variogramas experimentais.

Vii. Modelo Tridimensional de Blocos;

Nessa etapa uma malha regular tridimensional é definida. Essa malha sera
utilizada em todos os métodos aplicados, pois 0s pontos sdo sempre iguais, o que
modifica é a variavel.

Normalmente os blocos de cubagem tem o formato de um paralelepipedo, cujas

dimensbes devem respeitar a densidade de amostragem (Rocha, 1999).
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viii.  Definicdo dos Parametros de Vizinhanca,

Os parametros de vizinhanca foram iguais para os dois métodos empregados.
Nos dois casos o critério de selecdo foi por quadrantes e foram selecionadas no
maximo 8 amostras em cada setor.

IX. Validacao Cruzada;

Segundo Rocha (1999), a validac&o cruzada é feita para comparar a estimativa
de um ponto com valores conhecidos, assim a validagdo cruzada serve para estimar
0 ponto mascarado utilizando o modelo tedérico de variograma e 0s parametros de
vizinhancga, néo influenciando na krigagem. Essa técnica € utilizada para validar o
modelo de variograma escolhido, e principalmente definir os parametros de vizinhanca
utilizados na krigagem e simulacao.

X. Simulagao Estocastica;

Foi realizada simulacéo por bandas rotativas, dos dados transformados por
uma anamorfose gaussiana. Foram calculadas 100 realizacdes com um total de 400
bandas utilizadas para simulacdo de novos pontos.

Xi. Estimativa por Krigagem Lognormal;

Foi realizada a krigagem lognormal utilizando o modelo teérico de variograma

ajustado aos dados transformados como o logaritmo da variavel.
Xil. Classificacao de Recursos Minerais.

Como sugerido em Andrade (2018), a classificagcdo de recursos minerais foi
feita a partir das incertezas provenientes da simulacdo estocastica. O critério para a
classificacdo do deposito nas trés diferentes categorias se da pelo valor de incerteza
de cada bloco.

O calculo realizado para essa classificacéo foi (Andrade, 2018):

g
Vn
7 ‘ %100 (11)

Z

Incerteza =

Para a classificagéo foi utilizado trés intervalos de incerteza, sendo Recurso
Mineral Inferido aqueles blocos com incerteza entre 30% e 100%, Recurso Mineral
Indicado os blocos com incerteza entre 15% e 30%, Recurso Mineral Medido o
intervalo de incerteza variou de 0 a 15% (Andrade, 2018).
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8. RESULTADOS OBTIDOS

8.1. Andlise Estatistica
Apresentam-se na Tabela 1 as estatisticas descritivas das amostras das

sondagens ap6és a regularizacao e a selecéo de teores acima de 0,01 g/t. Essa selecao
foi necesséria, pois a frequéncia de teores abaixo deste valor € elevada e grande
guantidade de valores préximos a zero estavam obliterando os resultados e nao

representam rocha mineralizada.

Tabela 1: Estatistica descritiva das sondagens apds a composicdo das amostras para as variaveis de
ouro gravimétrico, equivalente e total.

. , - Desv. A 1° 20 3°
N° de Min Max Média ~_ Variancia . . )
amostras  [g/] [g/t] [o/t] Padréo Quartil Quartil Quartil

Variavel
ol 9T T e o

Ouro

gravimétrico 2038 0,01 1549 0,17 0,48 0,234 0,02 0,06 0,17

Ouro

) 2038 0,01 124 0,27 0,85 0,7259 0 0,04 0,17
equivalente

Ouro total 2038 0,01 1589 0,44 1,11 1,235 0,04 0,12 0,38

A Figura 5 apresenta o histograma de ouro total, observa-se que a assimetria

do histograma € positiva e reflete a estatistica descritiva da Tabela 1.

80 —

Frequéncia [%]

T T T T T T T T T T T
5 10 15
Quro total {Au-T) - [g/t]

Figura 5: Histograma da variavel ouro total (Au-T) — [g/t].
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Apresentam-se na Tabela 2 as estatisticas descritivas da variavel ouro total

apos a transformacao logaritmica dos teores.

Tabela 2: Estatistica descritiva da variavel log ouro total.

N° de Min Max Média Desv. Variancia 1° 2° 3
Variavel amostras  [g/t] [o/t] [o/t] Padrao e Quartil  Quartil  Quartil
[9/] [9/t] [9/1] [9/1]

log ouro

total (log 2038 -4,6 2,77 -2,01 15 2,242 -3,16 -2,08 -0,97
Au-T)

A Figura 6 apresenta o histograma da variavel log ouro total, observa-se que a
forma do histograma resulta em um comportamento que sugere uma distribuicédo

normal, porém ndo é simétrica ou bicaudal.

T : : T : : : T : : : T : ]
-4 -2 a 2
log ouro total {Au-T) - [g/t]

Figura 6: Histograma da variavel log ouro total (log Au-T) — [g/].

Apresentam-se na Tabela 3 as estatisticas dos dados transformados por

anamorfose da variavel ouro total.
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Tabela 3: Estatistica dos dados transformados por anamorfose da variavel ouro total.

(o] o] 0
N° de Min Max Média Desv. Variancia 1 2 3

Variavel Padrao Quartil  Quartil  Quartil
amostras It It It /t]?
Anamorfose
de ouro 2038 -3,49 3,49 0 1,0 1,0 -0,6745 0 0,6745
total

8.2. Andlise Geoestatistica
Os parametros definidos de acordo com o campo geométrico da area para

célculo do variograma experimental sdo apresentados na Tabela 4. Esses valores

foram definidos a partir da analise exploratéria realizada no programa lsatis.neo
mining®.

Tabela 4: Parametros de direg6es definidos para o célculo do variograma experimental.

Direg&o N45° N315° Vertical
Tamanho do passo (m) 25 50 10
Distancia maxima (m) 200 450 200
Tolerancia do passo (%) 50 50 50
Tolerancia angular (°) 45 45 20

O modelo tedrico de variograma ajustado ao variograma experimental
corresponde aos parametros apresentados na Tabela 5 e mostrado na Figura 7.

O efeito pepita € um parametro que deve ser informado para o ajuste dos
modelos tedricos do variograma, nesse caso o efeito pepita para a variavel ouro total
(Au-T) transformada por anamorfose gaussiana é de 0,34.

Tabela 5: Pardmetros ajustados do modelo teérico de variograma para a variavel de ouro total (Au-T).

Estrutura 1 Estrutura 2 Estrutura 3
Tipo esférico esférico esférico
Variancia 0,25 0,27 0,14
Alcance na direcdo U (m) 25 53 181
Alcance na dire¢éo V (m) 40 173 250
Alcance na direcdo W (m) 30 107 153
Orientacao N45° N45° N45°
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Figura 7: Modelo tedrico de variograma gaussiano ajustado.

O modelo tedrico de variograma do logaritmo de ouro total ajustado ao
variograma experimental corresponde aos parametros apresentados na Tabela 6 e
mostrado na Figura 8.

O efeito pepita é de 1,32.

Tabela 6: Parametros ajustados do modelo tedrico de variograma do logaritmo da variavel de ouro

total.
Estrutura 1 Estrutura 2 Estrutura 3

Tipo esférico esférico esférico
Variancia 0,62 0,20 0,14

Alcance na direcdo U (m) 50 100 1E+30
Alcance na diregéo V (m) 78 183 200
Alcance na dire¢cdo W (m) 78 104 189
Orientacao N45° N45° N45°
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Figura 8: Modelo tedrico de variograma do logaritmo da variavel de ouro total ajustado.

8.3. Modelo Tridimensional de Blocos
Os limites do modelo tridimensional respeitam os valores da Tabela 7.

Possuindo um total de 31.008 nos.

Tabela 7: Limites do modelo tridimensional.

Limites do
modelo X (m) Y (m) Z (m)
Min. 199 838 30
Max. 201 839 410

A estrutura do modelo tridimensional de blocos é detalhada conforme a Tabela

8, 0 modelo de blocos nao foi rotacionado.

Tabela 8: Estrutura do modelo tridimensional.

Estrutura do modelo X Y Z

NUmero de noés 34 24 38
Tamanho da malha 25 m 50 m 10 m
Origem do modelo (centro) 199 m 838 m 35m

8.4. Definicdo dos Parametros de Vizinhanca
Os melhores parametros de vizinhanca foram obtidos para a selecédo de

amostras por quadrantes, com no maximo 8 amostras por setor, sendo a configuracdo
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gue apresentou o maior valor de coeficiente de correlacdo e a maior selecéo possivel
de amostras, conforme apresentado no item 8.5.

O raio de busca variou para cada método, para a simulagcdo estocastica os
valores selecionados foram: na direcdo U=180m, na direcdo V=250m e na direcao
W=150m; enquanto para a técnica de krigagem lognormal os valores selecionados

para as direcbes foram: U=100m, V=200m e W=180m.

8.5. Validacéo Cruzada
Os melhores resultados obtidos durante essa etapa foram: para a técnica da

simulacdo estocastica o valor do coeficiente de correlacédo obtido foi de 0,44; para a
técnica de krigagem lognormal o valor do coeficiente de correlacao obtido foi de 0,45.
Esses dois valores sdo relativamente baixos, normalmente valores de coeficiente de
correlagcdo acima de 0,70 sdo mais satisfatérios e podem gerar melhores resultados
sobre os estudos do depdsito.

Os resultados da validacao cruzada podem ser observados nas Figuras 9 e 10.

p=0.44

Oura katal gaussiano (Au-T)
L=}
1

Ouro total gaussiano {Au-T) - Krigagem

Figura 9: Validacao cruzada para a simulacéo estocastica e seu valor do coeficiente de correlacao.

21



|| p=0.45 + 4F i -

log ouro total {log Au-T)

log ouro total (log Au-T) - Krigagem
Figura 10: Validacéo cruzada para a krigagem lognormal e seu valor do coeficiente de correlacéo.

8.6. Simulacdo Estocéastica
A simulacao estocastica por bandas rotativas foi calculada com 100 realizacGes

e 400 bandas para os dados de ouro total [g/t]. A quantidade de realiza¢des foi definida
com o objetivo de o resultado honrar o modelo de covariancia.
Nas figuras 11 e 12 sdo apresentadas duas visadas da média da simulacéo

estocastica, respectivamente, uma visada olhando para SW e outra olhando para NE.
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Figura 11: Média das realiza¢bes da simulacé@o por bandas rotativas, visada para SW.

Isatis neo Mining ®)

8.7. Estimativa por Krigagem
Apresenta-se na Figura 13 o histograma dos teores de ouro total

Figura 12: Média das realiza¢cbes da simulacdo por bandas rotativas, visada para NE.

destransformados apo6s os calculos da krigagem lognormal e seu resultado esta

representado nas Figuras 14 e 15.
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Figura 13: Histograma da variavel ouro total (exp (log Au-T)) — [g/t].
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Figura 14: Resultado da estimativa por krigagem lognormal, com visada para SW.
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Figura 15: Resultado da estimativa por krigagem lognormal, com visada para NE.

8.8. Classificacdo de Recursos Minerais
A classificacdo dos recursos minerais do depésito foi realizada conforme

descrito em Métodos. Apresenta-se na Tabela 9 o percentual de blocos classificados
como inferido, indicado e medido. O teor de corte do depdsito no ano de 1992 (ano

em gue a mina entrou em atividade) era de 0,5 g/t.

Tabela 9: Percentual de blocos classificados acima do teor de corte.

Classes [%0]
Inferido 9,0
Indicado 85,3
Medido 5,7

Nas Figuras 16, 17 e 18 séo representados espacialmente os dados da Tabela

9, onde sao apresentados os blocos classificados em cada classe.
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Figura 16: Blocos classificados como inferidos, com visada para SW.
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Figura 17: Blocos classificados como indicados, com visada para SW.
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Figura 18: Blocos classificados como medidos, com visada para SW.

9. INTERPRETACAO E DISCUSSAO DOS RESULTADOS

A principal informacdo da Tabela 1 é a analise estatistica do ouro total
regularizado. Ele apresenta medidas de tendéncia central como a média e a mediana.
A média de 0,44 g/t para o ouro total regularizado é menor do que o teor de corte (0,5
g/t) praticado em 1992 indicando que a mina pode ser considerada uma mina com
teores marginais. O histograma da Figura 5 apresenta a assimetria positiva da
distribuicdo amostral, conforme o esperado para depdésitos de ouro.

Nota-se que a média do ouro total e do log de ouro total apresentam valores
bem diferentes, porém seus valores de desvio padrao ultrapassam 1,0 g/t, o que ja
reafirma o alto indice de variabilidade, como pode ser observado nos valores de
variancia entre as Tabelas 1 e 2.

O histograma da varidvel log de ouro total (Figura 6) apresenta o
comportamento de uma distribuicdo normal, com uma certa assimetria positiva em
relacdo a distribuicdo de frequéncia dos valores transformados. Assim como a Figura
13, em que o resultado da krigagem lognormal foi calculado a partir da exponencial
dos valores estimados, apresentando o modelo do depdsito revertido ao esperado do

real.
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Durante a etapa de analise geoestatistica, os variogramas das diferentes
orientacdes ndo apresentaram um campo estruturado bem definido, o variograma
experimental que apresentou melhores resultados foi o variograma gaussiano, 0 que
era esperado por tratar de valores que foram transformados previamente. Nesse
sentido, durante o ajuste do modelo de variograma gaussiano buscou-se atingir um
valor de patamar igual a 1 respeitando uma distribuicdo gaussiana, o que pode ser
observado na Figura 7.

Considerando os dados de sondagem, o percentual de amostras acima do
teor de corte do depdsito é de aproximadamente 14%, porém, nos resultados obtidos
pelas duas técnicas obtiveram-se resultados dispares e a simulacdo estocastica se
aproximou do resultado esperado, pois 11,21% de blocos estdo acima do teor e a
krigagem lognormal apresentou o pior resultado, visto que somente 0,22% dos blocos
ultrapassam o teor de 0,5 g/t.

Para a avaliacdo das incertezas, utilizou-se o desvio padrédo calculado a partir
das 100 simulacdes por bandas rotativas, obtendo os resultados apresentados nas
Figuras do item 8.8.

A Figura 19 mostra a comparacao entre as realizagdes e a quantidade de
blocos em porcentagem que apresentam teores acima do corte em relacdo ao
deposito inteiro, nota-se que a média das realizacGes apresenta um percentual maior
gue a maioria das realizacdes. As proporc¢des de blocos acima do teor de corte variam
entre, aproximadamente, 6% e 13%.

Blocos acima do teor de corte

o 14.00

-g 12.00 A N A - - N A A l‘\
o 9% VIWANN WA MWWV /W T
O —

c(gé 8.00 V v v v \'/

o o 6.00

Q£

gg 4.00

©

_— 0.00 TTTTTTTT T T T T T T I I T I T T T T T T I T T T T T T T T T T T T T T T T T T I T T T T T T T T I T T I T T T T T I T T T T T T I I T TTITIITrIT Tl
83 AWOMNMNALONNALOMN A DM~ AW DM~
Ea—a T A NN NOOMNOITTITTOHOLW O O ON~NDMNODWOWOWO O
§ Realiza¢des da simulacao

[]

o

——Propor¢éo de blocos acima do teor de corte
Proporcéo de blocos acima do teor de corte na média das simulagbes

Figura 19: Gréafico comparando a proporcao de blocos acima do teor de corte para cada realizacéo.
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10. CONCLUSOES

O objetivo deste trabalho foi realizar um estudo geoestatistico, a fim de se
obter a quantificacdo de incertezas com base nos teores inferidos associados a
amostragem de um depésito de ouro. Os resultados da simulacdo estocastica
atingiram parcialmente seus objetivos, que era corrigir o efeito de suavizagdo da
krigagem, porém, embora a suavizacao tenha sido minimizada, a variabilidade dos
dados néo foi plenamente reproduzida.

A partir dos resultados obtidos, € visivel que as duas técnicas apresentam
vantagens e desvantagens. Comparando os dois métodos aplicados, pode ser
observado que na etapa de validacdo cruzada ambos apresentaram coeficientes de
correlagdo muito proximos, provavelmente por se tratar de um depdsito de ouro em
gue sua variabilidade é relativamente alta, mesmo na direcdo de maior continuidade
e do controle estrutural da mineralizagcédo, o que aumenta o grau de complexidade das
analises geoestatisticas.

Os altos valores de desvio padréo gerados pelo resultado da simulagéo por
bandas rotativas podem estar associados a variancia das distribuicbes dos dados.

Mesmo enfrentando esse problema associado a variabilidade do depésito,
conclui-se que para esse tipo de depdsito, a melhor técnica geoestatistica que pode
ser empregada é a simulacdo estocastica, pois esta técnica reproduziu melhor as
estatisticas descritivas dos dados.

O resultado da média das realiza¢des da simulacao por bandas rotativas é
semelhante ao da krigagem, embora com maior suavizagdo, mas de qualquer modo,
no caso de trabalhos geoestatisticos com objetivo de classificacdo de recursos
minerais ele é mais adequado do que a krigagem, pois apresenta associado a cada
bloco simulado um valor de incerteza que permite classificar 0s recursos minerais no

depadsito.
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APENDICE A - HISTOGRAMAS POR VARIAVEL
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Apéndice A: Histograma da variavel ouro equivalente (Au-C) — [g/t].
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Apéndice A: Histograma da variavel ouro gravimétrico (Au-G) — [g/t].
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APENDICE B - AJUSTE DOS MODELOS TEORICOS DE VARIOGRAMA

1_
- o -\._""-.\_
j R ¢
0,8 7
0,6 1
ol 7
= ]
0,4 7
0,2 -
D_
—_, G5
o 50 100 150 200
Distdncia [m]
-4- N45%Exp) = N45%(Model)
Apéndice B: Ajuste do modelo tedrico de variograma gaussiano da direcdo N45°.
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Apéndice B: Ajuste do modelo teérico de variograma gaussiano da direcdo N315°.
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Apéndice B: Ajuste do modelo teérico de variograma gaussiano da dire¢do vertical.

0,5

o] 50 100 150 200
Distanda [m]

-4~ N45%(Exp) = N45%(Model)

Apéndice B: Ajuste do modelo tedrico de variograma da variavel log de ouro total da diregcdo N45°.

34



2,5 4
i & (9]
B 2 L&
) Ay o EEEEEE T TR TR EERTEEE—
] F o oe®
2 —_
] P @
1lle%e
g 15 ]
3 4
el 7
=]
1 —_
0,5 7
D u—
-7 1
u} 100 200 300 400 500
Disténcia [m]
Q- M315%(Exp) M315%(Model)

Apéndice B: Ajuste do modelo tedrico de variograma da variavel log de ouro total da dire¢do N315°.
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Apéndice B: Ajuste do modelo teérico de variograma da variavel log de ouro total da direcdo vertical.
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