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RESUMO 

SOUZA, A. V. (2010).  Estudo do escoamento confinado em membranas micro-
porosas com equacionamento de Ergun para condições de permeação.  

Trabalho de Conclusão de Curso - Escola de Engenharia de São Carlos, 
Universidade de São Paulo, São Carlos, 2010. 

 

Estudos aplicados ao processo de filtração tangencial, por meio de membranas 

micro-porosas, tem sido objetivo de diversas pesquisas devido ao grande campo de 

aplicação industrial. O princípio deste trabalho se baseia na aplicação de conceitos de 

fenômenos de transporte ao longo de uma membrana tubular micro-porosa e junto à 

superfície de membrana porosa partindo das equações de Navier-Stokes no seio do 

escoamento e da equação de Ergun na superfície porosa. 

Este trabalho de conclusão de curso apresenta modelos que caracterizam o 

comportamento de escoamentos de fluidos, em diversos regimes de escoamento, em 

membranas tubulares com parede porosa e aplicada ao processo de microfiltração. Os 

modelos analíticos envolvem as equações de conservação de massa, quantidade de 

movimento e espécie química, estas associadas às leis de Darcy [3], resultando em 

expressões simplificadas para pressão e perfis de velocidade radial e axial na membrana 

tubular.  Os modelos computacionais, simulados em software comercial, envolvem as 

equações de conservação de massa e quantidade de movimento, e como condição de 

contorno do meio poroso, o equacionamento de Ergun [7] caracterizando resistência 

isotrópica e tratando o meio como um leito empacotado do tipo “packed bed”. 

Os resultados produzidos a partir dos modelos analíticos são analisados e 

confrontados com os resultados de simulações em software comercial. Objetiva-se, 

assim, verificar a proximidade dos resultados dos modelos analíticos e modelos 

computacionais, caracterizando se há ou não a presença de resultados satisfatórios, uma 

vez que os modelos analíticos encontram-se validados segundo a literatura. 

PALAVRAS-CHAVES: membrana porosa; equacionamento de Ergun; equações de 

Navier-Stokes; modelagem analítica; modelagem computacional. 
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ABSTRACT 

SOUZA, A. V. (2010).  Study of confined flow in micro-porous membranes with the 
Ergun equation for permeation conditions.  

Graduation Work - Escola de Engenharia de São Carlos, Universidade de São 
Paulo, São Carlos, 2010. 

 

Studies applied to the process of tangential filtration through micro-porous 

membranes have been the purpose of several researches due to the large application field 

at the industry. The principle of this work is based on applying the concept of transport 

phenomena through a tubular micro-porous membrane and near the surface of porous 

membrane, starting from the Navier-Stokes equations within the flow and the Ergun 

equation in the porous surface. 

This graduation work presents models that characterize the behavior of fluid flow in 

various flow regimes in tubular membranes with porous wall and applied to the 

microfiltration process. The analytical models involve the conservation equations of mass, 

momentum and chemical species, those associated with the Darcy law [3], resulting in 

simplified expressions for pressure and velocity profiles in axial and radial tubular 

membrane. The computacional models simulated in commercial software, involving the 

conservation equations of mass and momentum, and as a boundary condition of the 

porous medium, the equation of Ergun [7] characterizing isotropic resistance and treating 

the environment as “packed bed”. 

 The results produced from the analytical models are analyzed and compared with 

the simulation results in commercial software. Objective is thus to verify the proximity of 

the results of analytical and computacional models, characterizing whether or not the 

presence of satisfactory results, since the analytical models are validated in the literature. 

KEYWORDS: porous membrane; equation of Ergun; equations of Navier-Stokes; 

analytical models; computacional models. 
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1. INTRODUÇÃO E JUSTIFICATIVA 

 

Os estudos de escoamentos aplicados em engenharia podem ser abordados por 

três métodos: método experimental, método teórico e método de simulação. Todos têm 

como objetivo a descrição e compreensão do problema em um domínio físico. O método 

experimental pode vir a exigir equipamentos com preços elevados, sendo estes pouco 

aproveitados para os diferentes problemas, ou não suficientes para permitir a descrição 

do problema em amplos regimes de testes, tornando esta prática, muitas das vezes, 

injustificável. 

O método teórico converte para relações matemáticas as equações de análise do 

problema, empregando-se cálculo diferencial ou outras artifícios que permitam uma 

análise satisfatória e coerente. Por fim, o método de simulação computacional consiste 

em discretizar as equações primordiais do método teórico e resolvê-las aproximadamente 

nos pontos do domínio definido. Com algoritmos computacionais robustos e com 

computadores de grande estrutura e capacidade de armazenamento de dados, as 

simulações tornam-se cada vez mais próximas de soluções reais e diminuem os custos 

na cadeia de desenvolvimento de uma solução. 

Uma vez definidos os métodos de abordagem, este trabalho se encaixa nestes 

estudos direcionados à indústria com foco no método de simulação. 

Os processos industriais buscam a utilização de modelos computacionais para 

auxiliar o processo de desenvolvimento. Exemplos práticos são escoamentos de fluidos 

por meio de paredes, membranas ou meios porosos, presentes na indústria alimentícia: 

filtração de substâncias; clarificação de vinhos, sucos de frutas e vinagre; remoção de 

levedura de cerveja; separação de bactérias e gorduras do leite; nas indústrias químicas: 

processamento de tintas; nas indústrias farmaceuticas e de cosméticos: seleção de 

elementos e produção de água ultrapura; na indústria automobilística: tratamento de 

emissões; na indústria petrolífera: separação de susbtâncias; entre outras [1]. 

Nas últimas décadas, o processo de filtração, por membranas porosas, tem sido 

largamente adotado por diferentes indústrias, e apresenta grande potencial de expansão 

em setores de importância, nos quais as exigências do mercado demandam melhores 

tecnologias. Este processo tem, então, sua utilização justificada de maneira significativa e 
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sua aplicação motivada pelo seu baixo custo de operação comparado a outros processos 

convencionais de filtração. 

A menor partícula que pode ser vista a olho nu, sob as melhores condições de 

iluminação, apresenta cerca de 40 mícrons de diâmetro. Um fio de cabelo humano tem o 

diâmetro de aproximadamente 80 mícrons. Isto significa que membranas filtram partículas 

que são invisíveis a olho nu. Dentre os processos de filtração existem classes para a 

filtração tangencial, e estas classes são distinguidas pelo tamanho das partículas a serem 

separadas, sendo elas: microfiltração, ultrafiltração, nanofiltração e osmose reversa. 

Sendo assim, a microfiltração tem como característica, tamanho de poro de 0,1 a 10 

micrômetros; a Ultrafiltração tem como característica, tamanho de poro de 0,001 a 0,1 

micrômetros; a Nanofiltração tem como característica, tamanho de poro menor que 0,002 

micrômetros; e por fim, a Osmose Reversa possui como característica o tamanho de poro 

menor que 0,001 micrômetros. 

 

Figura 1. Tamanho físico de bloqueio em filtração com membranas.  

 

Alguns exemplos de elementos e os correspondentes métodos de filtração são 

apresentados. 
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Tamanho Exemplo 
Processo da 
Membrana 

100 μm Polén 

Microfiltração 

    

10 μm Amido 

  Células Sanguíneas 

  Bactéria Típica 

1 μm   

  Bactérias Menores 

1000 Å   

  DNA, Vírus 

Ultrafiltração 

    

100 Å Albumina 

    

  Vitamina B12 

    

10 Å Glicose 

Osmose 
Reversa 

    

  Água 

    

1 Å NaᶧCl‾ 

Tabela 1. Exemplos de aplicação de processos com membranas. 

Foi estimado que, atualmente, a quantidade de equipamentos que tem o princípio 

de funcionamento com membranas, é avaliada em 1,6 bilhões de dólares a cada ano no 

mercado (incluindo hemodiálise). Novas aplicações no campo de biotecnologia emergente 

com o uso expansivo em tratamentos prometem rápido crescimento em poucos anos. É 

esperado que este volume fará significante contribuição para entender o potencial e as 

limitações das tecnologias de membranas. 

Atualmente, membranas são usadas em larga escala para produzir água potável a 

partir de água do mar por osmose reversa; para limpar efluentes industriais e recuperar 

valiosos constituintes de eletrodiálise; para fracionar soluções macromoleculares em 

alimentos e remédios por ultrafiltração; para remover uréia e outras toxinas do fluxo 

sanguíneo por diálise em rins artificiais; e para gerar substâncias como scopolamin, 

nitroglicerina, etc, em taxas predeterminadas de tratamento médico. Embora os processos 

de membrana sejam bem diferentes em seus modos de operação, nas estruturas usadas 

como barreira de separação, e nas forças motrizes utilizadas para o transporte de 
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diferentes componentes químicos, estes processos têm várias características em comum 

que os tornam atraentes como ferramenta de separação. Em muitos casos, processos 

envolvendo membranas são mais rápidos, eficientes, e econômicos que técnicas de 

separação convencional. 

Com membranas, a separação é geralmente realizada em temperatura ambiente, 

permitindo que soluções sensíveis à temperatura sejam tratadas sem que os 

componentes sejam alterados ou quimicamente alterados. Isto é importante na indústria 

alimentícia, farmacêutica e de biotecnologia onde os produtos sensíveis à temperatura 

devem ser processados.  

Nos processos de separação por membrana, existem três formas básicas de 

transporte de massa. A mais simples forma é chamada de “transporte passivo”. Neste a 

membrana atua como uma barreira física pela qual todos os componentes são 

transportados por forças motrizes de um gradiente em seus potenciais eletroquímicos. 

Gradientes no potencial eletroquímico de um componente na interface da membrana 

podem ser causados por diferenças de pressão hidrostática, de concentração, de 

temperatura, ou potencial elétrico entre as duas fases separadas pela membrana. A 

segunda forma de transporte de massa por uma interface de membrana é chamada de 

transporte “facilitado”. Neste, a força motriz para o transporte de vários componentes é 

novamente o gradiente no potencial eletroquímico através da membrana. Os diferentes 

componentes, porém, são acoplados a um portador específico na fase da membrana. O 

transporte facilitado, portanto, é uma forma especial de transporte passivo.  

Completamente diferente, porém, é a terceira forma de transporte de massa pela 

membrana. Geralmente se refere a um transporte ativo. Neste, vários componentes 

podem ser transportados contra o gradiente de potencial eletroquímico. A força motriz 

para o transporte provém de uma reação química dentro da fase da membrana. O 

transporte ativo é acoplado a um portador na interface da membrana e é encontrado 

principalmente em membranas de células vivas; este tem, até a presente data, nenhuma 

ocorrência em membranas sintéticas. 

O transporte de massa em uma membrana é um processo de não-equilíbrio e é 

convencionalmente descrito por equações fenomenológicas, como exemplo a lei de Fick 

[8], que relaciona os fluxos de matéria para as forças motrizes correspondentes, ou seja, 

um gradiente de concentração. 
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Quanto aos tipos de membrana, é válido ressaltar um diferente tipo de membrana 

explorado que é a membrana líquida. Duas diferentes técnicas são usadas hoje para a 

preparação de membranas líquidas. No primeiro caso, o material para barreira líquida 

seletiva é estabilizado como um fino filme por um atuante de superfície em uma mistura 

do tipo emulsão. Na segunda técnica para fazer membranas líquidas, um polímero de 

estrutura microporosa é completado com o líquido da fase de membrana. Nesta 

configuração, a estrutura microporosa fornece a resistência mecânica e a de poros cheios 

de líquidos fornece a barreira de separação seletiva. 

Nos estudos relacionados a membranas, os maiores obstáculo são os estudos 

para levantar perfis de velocidades e perda de carga causada pela membrana ao 

escoamento. Por isso, um estudo da dinâmica dos fluidos é necessário para o melhor 

entendimento do comportamento do escoamento. Sendo assim, vários trabalhos sobre 

filtração tangencial com membranas são encontrados na literatura sob as mais diversas 

abordagens. Trabalhos que descrevem modelagens numéricas de escoamentos em tubos 

permeáveis aplicadas ao processo de filtração tangencial e trabalhos que descrevem 

escoamentos de fluido em meio porosos de uma forma geral formam a base de referência 

bibliográfica para este trabalho de conclusão de curso. 

A complexidade do problema estudado neste trabalho se restringe ao escoamento 

monofásico, pois, para estudo e tratamento de escoamentos multifásicos, há a demanda 

de tempo de análise, recursos e conhecimentos que vão além dos disponíveis no último 

ano de graduação. Em particular, para este trabalho foram estudados modelos analíticos 

referentes à velocidade (validados segundo a literatura) para o caso de escoamento em 

diferentes regimes (laminar, transição entre laminar e turbulento, e turbulento) de fluido 

Newtoniano. Os perfis de velocidades destes estudos foram, então, confrontados com 

resultados de velocidades de simulações em software comercial de CFD [22]. 
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2. OBJETIVOS 

 

O estudo do comportamento do escoamento em superfícies permeáveis 

associadas à filtração tangencial torna-se necessário devido à expansão da aplicação de 

processos de filtração na indústria. Logo, este trabalho tem como objetivo o estudo de 

modelos analíticos que descrevem o escoamento de fluidos Newtonianos em diferentes 

regimes de escoamento e, por conseguinte, suas velocidades. Para atender esta 

finalidade, têm-se os objetivos específicos: 

- analisar modelos analíticos referentes às velocidades, disponíveis na literatura e 

validados experimentalmente, para descrição do comportamento de membranas tubulares 

perante escoamentos de fluidos Newtonianos em diferentes regimes de perturbação; 

- verificar a representatividade dos modelos analíticos perante o comportamento 

do escoamento sob simulação em software comercial de CFD, buscando a validação 

indireta dos modelos computacionais a partir da comparação com os resultados das 

velocidades dos modelos analíticos. 

- apresentar os perfis de velocidade radial e axial, e, quando necessário, também 

perfis de velocidade rotacional ao longo do tubo poroso para estudo de comportamento do 

escoamento. 
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3. REVISÃO BIBLIOGRÁFICA 

 

Uma pesquisa bibliográfica foi realizada com a intenção de melhor compreensão 

do problema estudado e de se verificar a relevância deste trabalho perante a literatura. 

Este tópico apresenta uma revisão bibliográfica dos temas relacionados ao problema de 

escoamentos em membranas tubulares ou tubos micro-porosos. 

 

3.1. Conceitos básicos de filtração 

 

A membrana possui uma estrutura microporosa e separa partículas, de acordo 

com o tamanho dos poros, de um líquido ou de uma fase de gás. A separação é baseada 

no efeito físico de "peneira". Conseqüentemente, o efeito de separação limita-se na maior 

parte à superfície exterior da membrana. A estrutura porosa da membrana deve ter uma 

estreita distribuição de poros a fim de assegurar a retenção quantitativa das partículas de 

um determinado tamanho. Outra característica importante de membranas porosas é a 

elevada porosidade que conduz às taxas de filtração elevadas mesmo em pequenas 

diferenças de pressões. 

A separação de partículas de materiais distintos ocorre espontaneamente em 

função de seus tamanhos, independentemente da temperatura e da densidade do 

material a separar, e então no processo, a pressão faz fluir somente parte do produto 

através da membrana, enquanto que o restante flui tangencialmente à superfície da 

membrana como na figura abaixo. 
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Figura 2. Adaptado de Silva (2008). 

 

O escoamento através da membrana é influenciado pela porosidade, 

caracterizando uma perda de carga e declínio do fluxo global em função do tempo. Por 

isso, um melhor conhecimento do comportamento da parede porosa pode resultar em 

utilizações diferenciadas de escoamentos tangenciais por tubos ou membranas porosas 

em diversas aplicações técnicas. 

Para definir a perda de carga do escoamento ou fluxo de permeado e descrever as 

consequências da presença de parede porosa, alguns modelos foram estudados e se 

encontram presentes na referência [1]. Estes modelos são importantes, pois formam base 

para alguns conceitos utilizados neste trabalho. 

 

3.2. Modelos de fluxo transmembrana 

 

 Modelo de gel polarizado: O modelo de gel polarizado é um dos mais usados para 

análise do fluxo no processo de ultrafiltração ([2], [3], [4]). Baseado na teoria do filme [3], o 

modelo pode ser usado para preverem um limite do fluxo com a suposição que ocorre na 

superfície permeável uma máxima concentração, chamada de concentração gel. Supõe-
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se, geralmente, que essa máxima concentração, reflete no ponto de gelatificação, 

precipitação e/ou agregação das macromoléculas na superfície da membrana [3], 

formando-se a chamada camada gel. O modelo é definido da seguinte forma: 

�� = �	�� �	
	�� 

em que 	
  é a concentração gel, � é o coeficiente de transferência de massa, 	� é a 

concentração de alimentação e �� é a velocidade de permeação. 

De acordo com esse modelo, a espessura da camada gel aumenta com a pressão, 

e a concentração na camada gel é constante e somente depende do soluto [4]. Porém, a 

condição de 	
 ser constante é questionável. Estudos verificaram que a concentração na 

camada gel não é constante, mas uma função da concentração [2] e velocidade de 

alimentação [4]. 

 Modelo de pressão osmótica: O modelo de pressão osmótica considera o limite do 

fluxo como conseqüência do aumento da pressão osmótica produzida por altas 

concentrações de soluto rejeitado próximo à superfície da membrana, levando-se em 

conta que a concentração de soluto rejeitado aumente com a aplicação da pressão. 

Assim, pelo modelo, o fluxo de permeado pode ser expresso por: 

�� = 
��∆� − ∆П�, 

em que 
� é permeabilidade da membrana, ∆� é pressão transmembrana e ∆П é a 

pressão osmótica de soluções macromoleculares, a qual pode ser representada pela 

expressão [3]: 

∆П = ��	 + ��	 + ��	, 

em que ��, �� e �� são valores constantes determinados por dados experimentais. 

Estudos indicam que esses valores são insignificantes quando comparados com a 

pressão transmembrana [4]. Por isso, o modelo de pressão osmótica não pode fornecer 

uma completa teoria para o limite do fluxo no processo de ultrafiltração, pois a pressão 

osmótica é desprezível em muitos processos. 

Modelo de resistência em série: O modelo de resistência em série relaciona o fluxo 

de permeado com a pressão transmembrana e com algumas resistências para o 
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escoamento do solvente devido ao entupimento da membrana (fouling) e à concentração 

de polarização. 

A lei de Darcy [3] determina o fluxo transmembrana para água pura e é um dos 

fundamentos para abordagens adotadas neste trabalho: 

�� = ∆�
�� 

em que �� = ��� é resistência da membrana, determinada experimentalmente por meio de 

medições do fluxo de permeado médio, ������, para várias pressões transmembrana. 

Com o uso de soluções nos processos de filtração tangencial, a resistência do 

entupimento da membrana, ��, e a resistência da camada de polarização e da camada 

limite de concentração, ��, são adicionadas ao modelo: 

�� = ∆��� + �� + ∅∆� 
Os parâmetros �� e ∅ são obtidos utilizando-se: dados experimentais do fluxo de 

permeado médio, ������, da solução, para várias pressões transmembrana; o método linear 

simples para a equação da reta e a equação 

1�� = "�� + ��# 1∆� + ∅ 

Estudos [5] verificaram que os dados experimentais concordam com a correlação 

desenvolvida, baseada no modelo de resistência em série. Concluíram também que, a 

correlação seria apropriada a outros sistemas de ultrafiltração. 

 

 Para descrição do escoamento viscoso, são utilizadas as equações gerais do 

movimento [6]: 

$%& + '())') + '*+)'+ + '*,)', = $ -'.'/ + . '.') + � '.'+ + 0 '.',1 

$%2 + '*)+') + '(++'+ + '*,+', = $ -'�'/ + . '�') + � '�'+ + 0 '�',1 
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$%3 + '*),') + '*+,'+ + '(,,', = $ -'0'/ + . '0') + � '0'+ + 0 '0', 1 

Quando se deseja incorporar os efeitos viscosos nas análises diferenciais dos 

escoamentos, é necessário analisar as equações acima. Torna-se necessário estabelecer 

uma relação entre velocidades e tensões. 

 

3.3. Relações entre Tensões e Deformações 

 

Sabe-se que as relações entre tensões e taxas de deformação são lineares nos 

fluidos Newtonianos e incompressíveis. Utilizando um sistema cartesiano de coordenadas 

para exprimir as tensões normais, tem-se: 

(&& = −� + 25 '.') 

(22 = −� + 25 '�'+ 

(33 = −� + 25 '0',  

Mantendo-se o sistema de coordenadas, as tensões de cisalhamento são 

expressas por: 

*&2 = *2& = 5 �'.'+ + '�')� 

*23 = *32 = 5 �'�', + '0'+ � 

*3& = *&3 = 5 �'0') + '.',� 

onde p é a pressão definida como o negativo da média das três tensões normais, ou seja, −� = 1/3"(&& + (22 + (33#. As três tensões normais não são necessariamente iguais para 

os fluidos viscosos em movimento e assim deve-se definir a pressão deste modo. Quando 

o fluido está em repouso, ou em situações onde os efeitos viscosos são desprezíveis, as 
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três tensões normais são iguais. Um ponto importante a ser notado é que as tensões 

estão linearmente relacionadas às deformações nos corpos elásticos e que as tensões 

estão linearmente relacionadas às taxas de deformação nos fluidos Newtonianos. 

 Mudando para um sistema de coordenadas cilíndrico, tem-se: 

(88 = −� + 25 '�8'9  

(:: = −� + 25 �19 '�:'; + �89 � 

(33 = −� + 25 '�3',  

No mesmo sistema de coordenadas, as tensões de cisalhamento são expressas 

por: 

*8: = *:8 = 5 <9 ''9 =�:9 > + 19 '�8'; ? 
*:3 = *3: = 5 �'�:', + 19 '�3'; � 

*38 = *83 = 5 �'�8', + '�3'9 � 

O duplo índice tem o mesmo significado daquele utilizado no sistema de 

coordenadas cartesiano, ou seja, o primeiro índice indica o plano aonde atua a tensão e o 

segundo índice indica a direção. 

 

3.4. Equações de Navier – Stokes 

 

Aplicando-se as tensões apresentadas na equação geral de movimento, e 

simplificando as equações resultantes com a equação da continuidade, obtêm-se: 
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Direção x 

$ �'.'/ + . '.') + � '.'+ + 0 '.',� = − '�') + $%& + 5 -'�.')� + '�.'+� + '�.',�1 

Direção y 

$ �'�'/ + . '�') + � '�'+ + 0 '�',� = − '�'+ + $%2 + 5 -'��')� + '��'+� + '��',�1 

Direção z 

$ �'0'/ + . '0') + � '0'+ + 0 '0', � = − '�', + $%3 + 5 -'�0')� + '�0'+� + '�0',� 1 

Dada a equação da continuidade: 

19 ''9 �9�8� + 19 '�:'; + '�&') = 0 

Estas três equações combinadas com a equação da conservação da massa 

fornecem uma descrição matemática completa do escoamento incompressível de um 

fluido Newtoniano. Infelizmente, a complexidade das equações de Navier – Stokes 

(equações diferenciais parciais de segunda ordem e não lineares) impede a existência de 

muitas soluções analíticas. É importante ressaltar que apenas os escoamentos simples 

apresentam soluções analíticas. Entretanto, nestes casos, onde é possível obter soluções 

analíticas, a aderência entre as soluções e os dados experimentais é muito boa. Assim, 

as equações de Navier – Stokes são consideradas as equações diferenciais que 

descrevem o movimento de um fluido incompressível e Newtoniano. 

Modificando o sistema de coordenadas para um sistema de coordenadas 

cilíndricas polar, tem-se: 

Direção r 

$ -'�8'/ + �8 '�8'9 + �:9 '�8'; − �:�9 + �3 '�8', 1 =
= − '�'9 + $%8 + 5 A19 ''9 �9 '�8'9 � − �89� + 19� ' �8�

';� − 29� '�:'; + ' �8�
',� B 
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Direção θ 

$ �'�:'/ + �8 '�:'9 + �:9 '�:'; + �8�:9 + �3 '�:', � =
= − 19 '�'; + $%: + 5 A19 ''9 �9 '�:'9 � − �:9� + 19� ' �:�

';� + 29� '�8'; + ' �:�
',� B 

Direção z 

$ �'�3'/ + �8 '�3'9 + �:9 '�3'; + �3 '�3', � =
= − '�', + $%3 + 5 A19 ''9 �9 '�3'9 � + 19� ' �3�

';� + ' �3�
',� B 

A combinação da equação da continuidade com as três equações de conservação 

da quantidade de movimento caracterizam os fundamentos dos modelos analíticos 

estudados neste trabalho. 

 

3.5. Modelos analíticos 

 

 De acordo com o trabalho de Munson [11], soluções aproximadas de escoamento 

através de um tubo poroso, como aquelas encontradas no processo de filtração 

tangencial, foram encontradas. A conservação da massa para toda a unidade porosa 

combinada com a hipótese de variância quadrática de pressão ao longo do comprimento 

da unidade e com a validade local da lei de Hagen-Poiseuille resulta em expressões 

simplificadas para perfis de pressão e velocidade axial e radial. Sendo assim, os 

resultados indicam que as análises estão na margem de 0,5% entre si, para escoamentos 

laminares em tubos porosos longos. 

 O objetivo era desenvolver uma expressão analítica aproximada para servir como 

solução inicial para análise de elementos finitos. Determinada a dinâmica dos fluidos, 

seria possível avaliar a eficiência da unidade porosa determinando a concentração 

contaminante do permeado (i. e. a solução clarificada). Então, a aproximação analítica foi 

desenvolvida com interesse em satisfazer a conservação da massa sendo menos precisa 

com respeito à pressão e componentes de velocidade. 
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 O modelo físico consiste em um tubo cilíndrico com raio constante R e 

comprimento L com uma constante e uniforme permeabilidade k e com coordenadas 

radiais e axiais denotadas por r e z, respectivamente. Um fluido, com densidade ρ e 

viscosidade µ conhecidas e constantes, escoa pelo tubo, e devido à diferença de pressão  

entre o interior e o exterior, uma porção do fluido escoa através da parede porosa. 

 O escoamento na região de entrada é adotado em regime laminar e desenvolvido, 

sendo a pressão na entrada e o número de Reynolds especificados como parte do 

problema; propriedades do fluido são conhecidas e constantes; a lei de Hagen-Poiseuille 

para descrever a velocidade axial é localmente válida por todo o comprimento do tubo; o 

tubo é radialmente simétrico; termos inerciais e gravitacionais nas equações de Navier-

Stokes foram negligenciados. 

 Uma das soluções aproximadas é explicitada a seguir e é denominada modelo de 

perturbação: 

�
�,� = 12 ��C
 + DE� FG3 + 12 ��C
 − DE� FHG3 

�8�9, ,� = − AE���325 B <=9�>� − 2 =9�>? <��C
 + DE� FG3 + ��C
 − DE� FHG3? 
�3�9, ,� = − AE��85 B <=9�>� − 1? <��C
 + DE� FG3 − ��C
 − DE� FHG3? 

onde: 

�C
 = �C − �K&L 

E = 4� N�5�  

D = − 45�$�� �F 

Apesar do modelo acima ser válido, este não trata explicitamente os fenômenos de 

transferência de massa. Então, um modelo que satisfaça explicitamente a conservação de 

massa ao longo de toda a unidade porosa foi desejado. A outra solução aproximada é 

apresentada a seguir e é denominada modelo quadrático: 
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��,� = O + P, + 	,� 

O = �C 

P = − 45�$�� �F 

	 = 245�$�� A��C − �K&L�$�� − 25�
�F3�� − 85�
� B 
�8�9, ,� = �Q��C − �K&L� + P, + 	,�R <2 =9�> − =9�>�? 

�3�9, ,� = − �5�F$� � S1 − 4�$5�F A��C − �K&L�, + P,�2 + 	,�3 BT <1 − =9�>�? 
Neste trabalho, a variação axial da pressão, que foi assumida independente da 

posição radial, é aproximadamente linear a baixas pressões de entrada, mas se torna 

não-linear à medida que a pressão de entrada aumenta. Além do mais, o gradiente de 

pressão também aumenta à medida que a pressão de entrada aumenta. Para todas as 

pressões de entrada, a velocidade axial na parede da membrana porosa é nula, e existe 

um decréscimo monotônico e permanente na velocidade axial na linha de centro. Todos 

os perfis de velocidade radial demonstram um máximo em 9 = U�� � e dependem 

fortemente da pressão de entrada.  

 Dos resultados apresentados, é aparente que as diferenças entre os modelos de 

perturbação e quadrático são suaves, a ponto de serem difíceis de notadas. 

 Em se tratando do desenvolvimento dos modelos acima, todo o processo teve 

como justificativa o estudo do efeito de tamanho de partícula e distribuição de tamanho de 

poro em filtração tangencial [12]. Escoamento a um número de Reynolds de entrada de 

2000 foi examinado a pressão de entrada e externa constantes. Uma vez que os perfis de 

velocidade foram determinados, perfis de concentração e concentração de permeado 

foram calculados para partículas monodispersas como função da distribuição de tamanho 

de poro. A concentração de permeado foi então numericamente integrada para determinar 

a concentração de permeado de partículas polidispersas. Os resultados mostram que 

uma redução de sexta ordem de magnitude no permeado só pode ser alcançada quando 

ambas as distribuições de tamanho de poro e de partícula são estreitas. Além do mais, 
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elas guiam o tamanho médio de poro necessariamente a atingir um nível de pureza 

especificado no permeado dependendo da distribuição do tamanho de partícula e 

condições operacionais da unidade de filtração. 

 Nestes modelos foram utilizados alguns conceitos e destes alguns serão mais bem 

explicados posteriormente. Como exemplo temos a Lei de Darcy, concentração da 

espécie química, dentre outros. 

 Como resultados, foram determinados os perfis de pressão, velocidade axial, e 

velocidade radial para dadas condições operacionais resolvendo as equações de Navier-

Stokes usando análise de elementos finitos. Foram determinados perfis de concentração 

de partículas monodispersas resolvendo a equação de continuidade em conjunto com 

análise de peneiramento e a distribuição de tamanho de poro da membrana para vários 

tamanhos de partículas usando análise de elementos finitos. As concentrações 

normalizadas também foram determinadas para cada tamanho de partícula no permeado 

e a concentração de contaminante normalizada no permeado foi determinada usando o 

peso de cada concentração de tamanho de partícula individual pela distribuição de 

tamanho de partícula inicial. 

 De acordo com o trabalho de Yuan et al. [13], outro modelo analítico fornece uma 

solução aproximada para unidade porosa. A solução foi gerada a partir de um estudo 

sobre um fluido incompressível, com densidade e viscosidade constantes, sob regime 

laminar, em escoamento axial, para um fluido homogêneo. Uma das principais condições 

para este estudo foi a de que a velocidade axial máxima é igual à velocidade máxima 

axial do escoamento de Poiseuille. 

 Esta solução é explicitada a seguir, sendo a terceira solução aproximada que este 

trabalho apresenta, porém não será objetivo deste estudo, não sendo considerada nos 

resultados finais: 

V��9� = A1 − � 9�C�� + �F�36 -−2 + 9 � 9�C�� − 9 � 9�C�Y + 2 � 9�C�Z1
+ ��F���10800 -166 − 760 � 9�C�� + 825 � 9�C�Y − 300 � 9�C�Z + 75 � 9�C�] − 6 � 9�C�^1B 

V��,� = _ 1
1 − �F�18 + 835400 ��F��� + 4 �F��F ,�C` 
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V�,, 9� = V��9�. V��,� 
b�9� = −2�F��F� A� 9�C�� − 12 � 9�C�Y + �F�72 -−4 � 9�C�� + 9 � 9�C�Y − 6 � 9�C�Z + � 9�C�]1

+ ��F���10800 -166 � 9�C�� − 380 � 9�C�Y + 275 � 9�C�Z − 75 � 9�C�] + 15 � 9�C�^

− � 9�C�c1B 

��,� = �C − 4$VC�
�F <1 + 34 �F� − 11270 ��F���? _ 1

1 − �F�18 + 835400 ��F0��� + 2 �F��F ,�C` ,�C 

 

 

3.6. Permeabil idade 

 

 Todos os modelos analisados usam uma propriedade referente ao meio poroso 

denominada permeabilidade �. De acordo com a literatura [3], [14], existem várias 

relações que demonstram as dependências desta propriedade com relação ao meio 

poroso e ao fluido que escoa através dele, sendo as principais relações derivadas da lei 

de Darcy. 

 A primeira relação vem da Lei de Darcy na forma de indicação de fluxo através da 

parede: 

d = �e5
 

onde: 

J: fluxo; 

P: pressão; 

µ: viscosidade; 

L: espessura da membrana. 
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 A segunda relação vem da lei de Hagen-Poiseuille: 

� = �9�8f  

onde: 

n: número de capilares cilíndricos; 

r: raio dos capilares. 

 A terceira relação nos mostra uma proporção e vem da lei de Kozeni-Carman: 

� ∝ h��1 − h�� 
onde: 

ε: porosidade. 

 Na tese de Roberta DelColle [14], esta terceira relação é explicitada: 

� = h�i5j��1 − h�� 1
 

onde: 

ε: porosidade; 

C: constante de Kozeni-Carman; 

µ: viscosidade; 

S: área superficial por unidade de volume do meio poroso; 

L: espessura da membrana. 

 A quarta relação vem da lei de Keden-Katchalsky: 

� = h9�85
 

onde: 
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ε: porosidade; 

r: raio do poro; 

µ: viscosidade; 

L: espessura da membrana. 

 A quinta relação é encontrada na tese de Roberta Del Colle [14]: 

� = h9�85*
 

onde: 

ε: porosidade; 

r: raio médio dos poros; 

µ: viscosidade; 

*: tortuosidade dos poros; 

L: espessura da membrana. 

 A sexta relação é derivada das equações de Ergun e indiretamente da lei de 

Darcy: 

1� = 150�1 − h��h��29��  

onde: 

ε: porosidade; 

r: raio médio dos poros. 

 Neste trabalho, o equacionamento de Ergun é utilizado como condição de fronteira 

no meio poroso para as simulações de CFD. Então, a relação acima foi adotada e a 

seguir apresenta-se o equacionamento de Ergun. 
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3.7. Equações de Ergun 

 

 As fronteiras do meio poroso fornecem velocidades de saída do permeado na 

direção radial de acordo com os modelos analíticos. Isto indica um comportamento de 

resistência isotrópica do meio poroso, e então o equacionamento de Ergun é apresentado 

para resistências isotrópicas. Este comportamento é descrito pela equação de 

Forchheimer [15] para leitos empacotados, sendo a equação de Ergun aplicada em uma 

classe particular de escoamento. 

 Umas das equações clássicas que descreve o escoamento através de um meio 

poroso é a lei de Darcy, que relata a velocidade do escoamento ao gradiente de pressão 

baseado na medida de permeabilidade. Esta lei, que se aplica ao escoamento rastejante, 

é dada por Forchheimer [15] como: 

−∇� = 5� � 

onde µ é a viscosidade molecular do fluido (Pa.s), k é a permeabilidade (considerada uma 

propriedade intrínseca ao meio poroso, l�) e v é a velocidade superficial através do meio 

(lmH�). 

À medida que a velocidade do escoamento aumenta, a relação entre velocidade e 

gradiente de pressão se torna não-linear. Dupuit e Forchheimer (como reportado em [15]) 

propuseram a adição de um termo quadrático como abaixo: 

−∇� = 5� � + D$�� 

A equação acima é comumente conhecida como equação de Forchheimer. O fator 

beta β deve ser deduzido dependendo do escoamento em particular e do meio de 

interesse, e é freqüentemente determinado por experimentos. 

Um exemplo da equação de Forchheimer para uma classe particular de 

escoamento é a equação de Ergun (como discutido em [16]), que é um modelo empírico 

para perda de carga, n�, por um comprimento, L, de fluido escoando através de um leito 

empacotado: 
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n�
 = 1505�1 − h���h��29�� + 1,75$�1 − h���h��29�  

onde ρ é a densidade do fluido (�%. lH�), 9 é o raio médio das partículas (l) e ε é a 

porosidade do volume (adimensional). Comparando a equação de Forchheimer e a de 

Ergun, mostra-nos que a permeabilidade e o fator beta são dados por: 

1� = 150�1 − h��h��29��  

e 

D = 1,75�1 − h�h��29�  

Existe ainda a equação que trata dos termos viscosos e inerciais de um meio 

poroso: 

e = eo + ep|�| 
onde P é definido como Tensor Resistência Porosa, eo é o termo viscoso do meio poroso 

e ep é o termo inercial. 

 A perda de carga neste caso é dada por: 

∆� = e. � 

Comparando a equação de Forchheimer com a equação acima, temos que: 

eo = 1505�1 − h��h��29��  

e 

ep = 1,75$�1 − h�h��29�  

 

 

 



29 
 

3.8. Resumos de referências 

 

• De acordo com a referência [17], o desenvolvimento hidrodinâmico de 

escoamento de fluido não-Newtoniano na região de entrada de um tubo com parede 

porosa é analisado numericamente resolvendo as equações modificadas de Navier-

Stokes. Casos envolvendo bolhas, sucção e a não transferência de massa pelas paredes 

são considerados. Distribuição de velocidades, perda de carga e coeficiente de atrito 

viscoso são apresentados para cada caso de escoamento. Sendo assim, uma 

concavidade definida é encontrada no perfil de velocidade próximo à região de entrada 

para todos os casos estudados. 

 Os resultados para fluidos Newtonianos são comparados com estudos anteriores 

da literatura em que a teoria de camada limite é utilizada. A conclusão é que nas regiões 

longe da entrada, são encontrados resultados concordantes com trabalhos anteriores da 

literatura. Na região próxima a entrada, ou em casos de sucção, a teoria de camada limite 

mostra-se inapropriada especialmente para bolhas e sucção devido à presença de 

velocidades ultrapassadas. 

 Para esta referência [17] foi analisado o escoamento sob regime permanente, 

laminar isotérmico, com fluido não-Newtoniano incompressível entrando em tubo cilíndrico 

com parede porosa e adotando um modelo bidimensional. 

 

• De acordo com a referência [18], há o estudo em que há a investigação do 

problema de convecção forçada na região de entrada de um meio poroso cilíndrico com 

desenvolvimento da camada limite térmica. O comportamento hidrodinâmico do 

escoamento é assumido como permanente e totalmente desenvolvido, e tanto efeito 

Darciano como não-Darciano são considerados. Gradientes térmicos são criados devido a 

mudanças de temperatura do tipo degrau na parede do tubo. Propriedades como 

comprimento de onda térmica, parâmetros da matriz sólida no número de Nusselt, calor 

total absorvido e temperatura na região de mistura são considerados. 

 Nesta referência [18], a troca de calor começa na região de entrada a partir de sua 

seção transversal e então a camada limite térmica é desenvolvida, com respeito às 
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coordenadas espaciais (r, z), simultaneamente. Para esta referência [18], as propriedades 

físicas do fluido e da matriz sólida são constantes e independem da temperatura. 

 Para esta referência [18], foi analisado escoamento em regime permanente e 

transiente, com modelo espacial axissimétrico a partir de um sistema de coordenadas 

polar, fluido Newtoniano, sem geração interna de calor, negligenciando dissipação viscosa 

e condução axial de calor. 

 Os resultados indicam que a temperatura na região de mistura aumenta com o 

aumento do efeito inercial; se diminuir a permeabilidade do meio poroso, a temperatura 

principal do volume aumenta; depois de um certo tempo, se aumentar o parâmetro de 

inércia, o calor total absorvido aumenta; diminuir a permeabilidade diminui variações, 

resultando em altos valores de calor total absorvido, antes em baixa permeabilidade que 

em alta; aumentar o parâmetro inercial aumenta o número de Nusselt; o aumento do 

parâmetro inercial devido à mistura mais vigorosa do fluido causa um perfil cada vez mais 

uniforme de velocidade; diminuir a permeabilidade aumenta o valor do número de Nusselt; 

aumentar o valor do número de Prandtl causa o aumento do valor do número de Nusselt; 

para um valor do número de Prandtl constante, o número de Nusselt aumenta se 

aumentar o valor da porosidade; e por fim, o comprimento de onda térmica é menor para 

um meio poroso de alta permeabilidade. 

 

• De acordo com a referência [19], a caracterização do escoamento em um leito 

empacotado requer uma descrição completa das características geométricas de poro e do 

fenômeno de escoamento local. 

 Um modelo de rede bidimensional descrevendo o fenômeno do escoamento em 

leito empacotado foi desenvolvido, e este consiste em dois diferentes tipos de elementos: 

câmaras modeladas como esferas, e canais modelados como cilindros. A distribuição de 

tamanho dos elementos da rede é obtida considerando o modelo geométrico que usa 

porosidade e o diâmetro médio de partícula como dados de entrada. 

 A partir desta abordagem, um simulador de escoamento foi desenvolvido, baseado 

no modelo de rede. Resultados mostram que efeitos inerciais devido a conexões entre 

canais e câmaras são levados em conta, e este simulador é capaz de descrever 

escoamentos de fase simples em todos os regimes de escoamento possíveis, do laminar 
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ao turbulento. Os resultados mostram também uma boa concordância entre valores 

previstos pela rede do modelo e dados experimentais disponíveis na literatura. 

 Nesta referência [19], duas conclusões são observadas: 

• modelos mais antigos assumiam que um meio poroso podia ser 

representado como um feixe de tubos, sem interconexões entre eles. As 

equações de Carman-Kozeni e Ergun são baseadas neste modelo e 

dados experimentais de distribuição de tamanho de poro obtidos por 

porosimetria são geralmente analisados com este tipo de modelo. 

• Equações de Ergun tornaram-se correlações padronizadas, mas ainda 

existem: equação de Kozeni, válida para escoamento laminar; e equação 

de Forchheimer, válida para escoamento não-linear, no qual a pressão 

não varia linearmente com a taxa de escoamento. 

 Para esta referência [19] foi analisado escoamento isotérmico, com fluido 

incompressível e em regime permanente, negligenciando a gravidade. Como conclusão 

há uma ótima concordância entre valores previstos pelo modelo e experimentais, tanto no 

regime laminar como no turbulento. São levados em conta efeitos de atrito e efeitos 

inerciais e assim, os resultados mostram que os fatores principais que controlam o 

escoamento são característica dimensional dos canais (diâmetro) e regularidade espacial 

da rede. 

 

• Alguns comportamentos sobre a concentração de massa são analisados na 

referência [1]. Esta referência [1] trata dos estudos aplicados ao processo de filtração 

tangencial. Os mecanismos de transferência associados a esse processo envolvem 

basicamente o escoamento em tubos permeáveis (ou membranas) com fenômenos de 

transferência de massa presentes junto à superfície. 

 Esta referência [1] apresenta uma modelagem numérica capaz de representar o 

escoamento de fluidos newtonianos e não-newtonianos em tubos permeáveis e esta 

modelagem é aplicada ao processo de filtração tangencial para os regimes de 

escoamento laminar e turbulento utilizando o modelo de comprimento de mistura de 

Prandtl. 
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 O modelo numérico envolveu as equações de conservação da massa, da 

quantidade de movimento e das espécies químicas, acopladas a adequadas condições de 

fronteira. Em particular, por se tratar de um modelo numérico, analisou-se a discretização 

dos termos convectivos por meio da implementação de três esquemas: WACEB, 

CUBISTA e QUICKEST adaptativo. Os resultados produzidos pela implementação dos 

esquemas convectivos foram analisados por meio de comparações com resultados 

analíticos e experimentais da literatura, para regimes de escoamento laminar e turbulento. 

De acordo com as comparações realizadas, o esquema QUICKEST adaptativo 

apresentou melhor desempenho na modelagem desse escoamento. Diversas simulações 

numéricas geraram resultados, os quais foram comparados com expressões analíticas e 

dados experimentais da literatura e com dados produzidos pelo laboratório do Núcleo de 

Engenharia Térmica e Fluidos (NETeF) da USP/São Carlos. Verificou-se assim que o 

modelo matemático produziu resultados compatíveis com o fenômeno estudado, tendo-

se, portanto, uma ferramenta para descrição do problema convectivo mássico do 

escoamento em tubos permeáveis. 

 Quanto ao transporte de massa, algumas conclusões foram tiradas. Devido à 

porosidade elevada, ocorrem taxas de filtração elevada em pequenas diferenças de 

pressão; a separação de partículas (diferentes materiais) ocorre espontaneamente em 

função de tamanhos e independente de temperatura e densidade; a concentração de 

soluto na região adjacente à membrana origina-se na concentração na superfície da 

membrana e vai até a concentração de alimentação determinando a espessura da 

camada limite de concentração; e por fim, quanto maior for o número de Reynolds na 

direção axial e o número de Schmidt, menor a espessura da camada limite de 

concentração. 

 Nesta referência [1], o escoamento adotado foi de fluido incompressível, em tubo 

com simetria radial, sem variância de temperatura e não-desenvolvido. Para uma 

abordagem completa considerou-se a conservação da massa, conservação da 

quantidade de movimento ou momento linear levando-se em conta as equações de 

Navier-Stokes, e por fim, a conservação das espécies químicas. 

 

• No trabalho de Berman [21], as equações de Navier-Stokes foram resolvidas 

para obter uma descrição completa do escoamento do fluido em um canal com secção 
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retangular e duas paredes igualmente porosas. O escopo se limitou a um escoamento 

bidimensional laminar em regime permanente com fluido incompressível, sendo algumas 

considerações adicionais levadas em conta, como nenhuma força externa agindo no 

fluido, e a velocidade do fluido deixando a parede do canal é independente da posição. 

 A solução das equações do escoamento levou a expressões detalhadas para a 

dependência das componentes de velocidade e pressão em relação a posições 

coordenadas, dimensões dos canais, e propriedades dos fluidos.  Como conclusão, 

obteve-se uma investigação detalhada dos efeitos de porosidade da parede no 

escoamento bidimensional laminar em regime permanente para fluidos incompressíveis 

em canal com secção retangular através da solução das equações de Navier-Stokes. 

 Assumindo sucção uniforme nas paredes, uma exata solução para as equações do 

escoamento é obtida levando a uma equação diferencial não-linear de terceira ordem com 

condições de contorno apropriadas. Para pequenos escoamentos através da parede 

porosa, esta equação é resolvida por um modelo de perturbação, e então o perfil de 

velocidade na direção principal encontra-se desviado da parábola de Poiseuille sendo 

mais plano no centro do canal e mais íngreme na região próxima a parede, e o grau de 

desvio depende assim do número de Reynolds para o escoamento através da parede. 

 Por fim, a perda de carga na direção principal é apreciavelmente menor em um 

canal com parede porosa que em um canal com parede sólida, tendo estes as mesmas 

dimensões e o mesmo número de Reynolds na entrada. 

 

• Esta referência [21] foi base para o trabalho de Karode [10], que estudou uma 

solução analítica para perda de carga de escoamento de fluido em fenda retangular e 

tubo cilíndrico com parede porosa, todos com permeabilidade constante. 

Foi mostrado que as previsões do modelo para o caso particular de velocidade 

constante na parede para fendas retangulares com paredes permeáveis concorda muito 

bem com a solução de Berman [21]. A derivação apresentada nesta referência [10] leva à 

expressão analítica de perda de carga em função da permeabilidade da parede, dimensão 

do canal, posição axial e propriedades do fluido. A expressão analítica para 

permeabilidade constante poderia ser usada para rotinas numéricas de benchmarking, 
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para modelos de escoamento de fluidos em membranas semipermeáveis, e para rápidas 

estimativas de perda de carga em módulos de membranas com fluxo cruzado. 

No trabalho de Karode [10], algumas hipóteses foram assumidas: escoamento em 

regime permanente, fluido incompressível, regime laminar, nenhuma força externa agindo 

sobre o fluido, e a velocidade deixando a parede do canal é independente da posição. 

Desta maneira Karode obteve um modelo para o escoamento em fenda e um 

modelo para escoamento em tubo. Neste trabalho de conclusão de curso, apenas o 

modelo de escoamento em tubo revela-se importante para comparações dos resultados 

de simulação. 

Para permeabilidade constante, a perda de carga é dada por: 

∆e = 12 85rp2f�Ys "Ft3 − FHt3# + �ep − eu� -1 − Ft3 + FHt32 1 

onde 

s = +N165���  

rp: vazão na entrada (l� m⁄ ); 

µ: viscosidade (Pa.s); 

R: raio do tubo (l); 

Z: coordenada axial na direção do escoamento do fluido (l); 

ep: pressão na entrada (Pa); 

eu: pressão no lado do permeado (Pa); 

k: permeabilidade. 

 Sobre esta referência [10], é importante ressaltar que ela é válida para 

escoamentos em tubos onde a componente transversal (fendas) e radial (tubos) da perda 

de carga são desprezíveis em relação à perda de carga axial. 
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3.9. Dinâmica dos Fluidos Computacional 

 

 De acordo com a referência [20], são apresentados guias para o acesso à 

credibilidade da modelagem e simulação em dinâmica dos fluidos computacional. Os dois 

principais critérios tratados para assegurar a credibilidade são verificação e validação. 

 Verificação é o processo de determinar se uma simulação computacional 

representa com precisão o modelo conceitual sem reivindicar uma relação entre 

simulação e mundo real.  Validação é o processo de determinar se uma simulação 

computacional representa o devido comportamento no mundo real. 

Então, definem-se vários termos chaves, são discutidos conceitos fundamentais, e 

especificam-se procedimentos gerais para conduzir a verificação e validação de 

simulações de dinâmica dos fluidos computacional. O objetivo desta referência é fornecer 

base para a maior parte das questões e conceitos em verificação e validação. Porém, 

esta referência não recomenda padrões nestas áreas, porque parte de questões 

importantes ainda não foi resolvida. 

É esperado que esta referência ajude em pesquisa, desenvolvimento, e uso de 

simulações em dinâmica dos fluidos computacional, estabelecendo uma terminologia 

comum e uma metodologia para verificação e validação. 

Deste modo, busca-se uma terminologia e metodologia útil para a área de 

simulação e também, outras engenharias e ciências. 
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4. METODOLOGIA 

 

O presente trabalho utilizou a metodologia de avaliar e levantar os perfis de 

velocidades de determinados escoamentos sob específicas condições de fronteira, em 

pontos e secções pré-determinadas. Assumindo diversas geometrias de tubo poroso, é 

iniciado o estudo do escoamento, sob diferentes regimes de escoamento, e a coleta de 

resultados é dada nestes pontos pré-determinados. 

Define-se aqui o número de cinco (5) geometrias de tubos porosos para levantar 

resultados. 

As primeiras análises basearam-se na aplicação dos modelos analíticos sob as 

geometrias. Destes modelos analíticos foram utilizadas as equações de velocidade (antes 

mencionadas neste trabalho de conclusão de curso e abaixo repetidas) para 

levantamento dos perfis de velocidades axiais e radiais. 

- Modelo de Perturbação: 

�
�,� = 12 ��C
 + DE� FG3 + 12 ��C
 − DE� FHG3 

�8�9, ,� = − AE���325 B <=9�>� − 2 =9�>? <��C
 + DE� FG3 + ��C
 − DE� FHG3? 
�3�9, ,� = − AE��85 B <=9�>� − 1? <��C
 + DE� FG3 − ��C
 − DE� FHG3? 

onde: 

�C
 = �C − �K&L 

E = 4� N�5�  

D = − 45�$�� �F 
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- Modelo Quadrático: 

��,� = O + P, + 	,� 

O = �C 

P = − 45�$�� �F 

	 = 245�$�� A��C − �K&L�$�� − 25�
�F3�� − 85�
� B 
�8�9, ,� = �Q��C − �K&L� + P, + 	,�R <2 =9�> − =9�>�? 

�3�9, ,� = − �5�F$� � S1 − 4�$5�F A��C − �K&L�, + P,�2 + 	,�3 BT <1 − =9�>�? 
 

Os modelos analíticos foram então analisados utilizando como ferramenta principal 

o software EXCEL da Microsoft®. Nestas análises, foram gerados gráficos dos perfis de 

velocidades para futuras comparações de resultados. Os pontos pré-determinados de 

coletas de resultados foram fixados nas secções axiais variando-se o raio, onde z 

corresponde a direção axial e r a direção radial. Assim, as secções localizam-se em z = 

0.L; z = 0,25.L; z = 0,5.L; z = 0,75.L e z = 1.L, variando o raio com intervalo de 0,2.R, ou 

seja, em r = 0.R; r = 0,2.R; r = 0,4.R; r = 0,6.R; r = 0,8.R e por fim r = 1.R. 

Estes modelos analíticos são frutos de aproximações matemáticas com objetivo de 

simplificação das equações de Navier-Stokes, não utilizam teoria de camada limite para 

tratamento do escoamento próximo à parede, não utilizam teoria para modelagem de 

turbulência nos casos de regime de escoamento turbulento e ainda negligenciam 

escoamento na direção rotacional. Logo, é de se esperar que os resultados não serão os 

mais precisos como numa simulação numérica que busca as melhores aproximações 

para solução das equações de Navier-Stokes, que realiza o devido tratamento teórico 

para estudo da camada limite próxima à parede do escoamento, que modela turbulência 
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de maneira complexa com embasamento teórico em modelos tradicionais de turbulência, 

e que em hipótese alguma negligencia escoamento rotacional. Além destes argumentos, 

os modelos analíticos não utilizam teorias fortemente embasadas em teorias de meios 

porosos. Do contrário, as simulações pertencentes a este trabalho de conclusão de curso 

se baseiam nas equações de Ergun para fluido empacotado. 

A fim de levantar os perfis de velocidade nas simulações para comparação com os 

modelos analíticos, foram configurados modelos de simulação CFD em software 

comercial denominado STAR-CCM+ desenvolvido pela CD-Adapco. Neste caso, foram 

geradas malhas volumétricas para as cinco (5) geometrias definidas anteriormente, e os 

modelos computacionais foram configurados sob diferentes condições de contorno para 

as diferentes simulações. Neste caso, os escoamentos foram simulados sob regime de 

escoamento laminar e sob regime de escoamento turbulento com o modelo físico de 

turbulência k – ε.  

Os resultados dos modelos computacionais e suas análises foram tratados pelo 

pós-processamento, este realizado internamente ao software. Os pontos de coleta de 

resultados se deram nos mesmos locais coletados pelos modelos analíticos. 

Vale salientar que os modelos de simulação, diferente dos modelos analíticos, 

calculam o escoamento rotacional resultando assim em soluções mais próximas do 

comportamento real de um escoamento em meio poroso. 

 Por fim, todos os resultados de velocidades mencionados, tanto dos modelos 

analíticos como das simulações, foram confrontados entre si, garantindo assim a 

validação indireta dos modelos computacionais de simulação, uma vez que os modelos 

analíticos de acordo com a literatura foram validados diretamente por métodos 

experimentais. 
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5. RESULTADOS E DISCUSSÃO 

Neste tópico, uma breve descrição do comportamento dos modelos é apresentada 

e em seguida todos os resultados quantitativos são explicitados e comentados. 

 

5.1. Modelo de Perturbação de Munson 

 

 No caso particular da tubulação com parede impermeável, não é possível avaliar 

esse modelo. A parede impermeável nos garante que o valor da permeabilidade é nulo, 

ou seja, k = 0. Isto indica que o valor de alfa do modelo é nulo e conseqüentemente este 

modelo apresenta divisões por zero nos cálculos da pressão manométrica, velocidade na 

direção axial (z) e velocidade na direção radial (r). 

 

5.2. Modelo Quadrático de Munson 

 

 Este é um modelo mais “bem comportado” numericamente comparado ao de 

perturbação, pois em casos que a permeabilidade é nula, ou seja, k = 0, os valores dos 

coeficientes do polinômio de pressão e das equações de velocidade nunca se anulam, 

sendo possível obter resultados satisfatórios. 

 

5.3. Modelos CFD 

 

 São executadas 1110 iterações em cada modelo com condição de fronteira inicial 

de velocidade na entrada. Este número de iterações garante que o modelo atinja valores 

satisfatórios para todos os parâmetros fundamentais, caracterizando a convergência e 

estabilidade numérica. Depois de executadas as 1110 iterações, a análise chega ao fim e 

os valores das grandezas fundamentais explicitadas nos objetivos deste trabalho são 

coletadas em pontos de monitoramento pré determinados. 
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 Os modelos analíticos não consideram a espessura da membrana. Como 

observado nas membranas descritas por DelColle [14], a espessura da membrana para 

simulação corresponderá sempre a 30% do diâmetro interno do tubo poroso. 

 Os modelos analíticos também não consideram fluido empacotado (“packed 

beds”). Então, como ressaltado anteriormente, deve ser adotado um valor de porosidade 

ou diâmetro de partícula para o leito empacotado nas simulações em CFD, uma vez que, 

as simulações utilizaram esta condição de contorno. Segundo a referência [23], a 

porosidade característica de uma estrutura porosa não deve ser inferior a 40%. Sendo 

assim, a porosidade para todos os modelos será adotada e fixada em 40%. A partir do 

equacionamento de Ergun descrito neste trabalho, podem-se obter os valores de diâmetro 

de partículas com a relação entre porosidade e permeabilidade. 

O pré-processamento dos modelos CFD utiliza a teoria de Volumes Finitos para 

geração da malha volumétrica. Para estes modelos foram geradas as malhas 

volumétricas: 
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Figura 3. Malha volumétrica 

 

 Na figura acima (figura 3), a membrana é ressaltada em amarelo e o domínio do 

volume de controle tratado pela teoria de volumes finitos é ressaltado em cinza. 

 Para cada modelo há um número correspondente de células ou elementos: 

 

Modelo 1 2 3 4 5 

Número 

de 

células 

542858 347458 388272 388272 388272 

Tabela 2. Número de células poliédricas 
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 O primeiro modelo apresenta um número muito maior de células, pois como se 

trata de um tubo impermeável, apresenta um devido tratamento de camada limite próximo 

à parede. 

 Os modelos físicos da análise CFD são: 

- 3D 

-  Regime Permanente 

-  Escoamento segregado: resolve as equações do escoamento (uma equação para 

cada componente de velocidade, e uma para pressão) de maneira segregada, ou 

desacoplada. A ligação entre as equações de momento e continuidade é 

alcançada com uma aproximação por método Preditor-Corretor.  

-  Líquido – Água 

-  Densidade: 1000 kg/m3 

-  Escoamento Laminar e Turbulento (K-ε) 

 

5.4. Escoamento em tubos com paredes impermeáveis 

 

A título de organização, cada conjunto de valores de entrada caracteriza um 

modelo. Sendo assim, este modelo é denominado número um e os outros seguem a 

seqüência. 

Modelo 1: 

Nessa primeira análise, implementou-se um dos modelos mais simplificados para 

escoamento de fluidos: o escoamento de fluidos newtonianos em tubos impermeáveis 

para o regime laminar. Os dados da simulação são os seguintes (Tabela 3): 

Grandeza Valor Unidade 

R 1,5 cm 

k 0 (cm^2.s)/g 

μ 0,01 g/(cm.s) 

po 2000000 dyn/cm^2 



 

ρ

Re

pext

L
Tabela

 

Verifica-se na Figura 4

 

Validação 

Seguem abaixo (Figura 5) 

posições axiais antes mencionadas:

ρ 1 g/cm^3 

Re 100 adm 

pext 1000000 dyn/cm^2 

L 10 cm 
Tabela 3. Dados de entrada para modelo 1 

Figura 4 que todos os erros numéricos são inferior

Figura 4. Resíduo Numérico – modelo 1 

(Figura 5) os gráficos para validação indireta do modelo CFD nas 

posições axiais antes mencionadas: 

43 

inferiores a 10-06.  

 

os gráficos para validação indireta do modelo CFD nas 
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Figura 5. Validação – modelo 1 

 

Pode-se analisar pelos gráficos (Figura 5) que o modelo de Perturbação de 

Munson não fornece valores para velocidade axial devido à inconsistência numérica 

resultante de divisões por zero, como antes comentado. Apesar da velocidade na parede 

sempre ser nula, há uma variação nos valores de velocidade radial muito bem definida 
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pelos gráficos. Uma das diferenças entre os modelos analíticos e a simulação baseia-se 

na negligência explícita do tratamento de velocidade rotacional do escoamento (Figura 6) 

pelos modelos analíticos. Isto indica que nos modelos analíticos não há rotação do fluido, 

porém pela simulação denota-se que apesar de pequenos os valores das velocidades, 

como nas figuras abaixo, este termo não deve ser totalmente negligenciado. 
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Figura 6: Velocidade rotacional do escoamento – modelo 1 

 

5.5. Escoamento em tubos com paredes permeáveis 

 

Nas próximas simulações, investiga-se o escoamento em tubos com paredes 
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comportamento descrito pela condição de contorno baseada no equacionamento de 

Ergun. 

Modelo 2: 

Os dados da simulação são os seguintes (Tabela 4): 

Grandeza Valor Unidade 

R 0,2 cm 

k 1,40311E-09 (cm^2.s)/g 

μ 0,02145 g/(cm.s) 

po 2000000 dyn/cm^2 

ρ 1 g/cm^3 

Re 100 adm 

pext 1000000 dyn/cm^2 

L 10 cm 

Rm 7127000000 kg/(m^2.s) 
Tabela 4. Dados de entrada do modelo 2 

 

Verificação 

 

Verifica-se na Figura 7 que todos os erros numéricos são inferiores a 0,002. 



 

Validação 

Seguem abaixo (Figura 8)

posições axiais antes mencionadas:

Figura 7. Resíduo Numérico – modelo 2 

(Figura 8) os gráficos para validação indireta do modelo CFD nas 

posições axiais antes mencionadas: 
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os gráficos para validação indireta do modelo CFD nas 
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Figura 8. Validação – modelo 2 

Pode-se analisar pelos gráficos (Figura 8) que há divergências de valores para 

velocidade radial tanto no seio do escoamento como para a parede em algumas secções. 

A primeira justificativa é explicitada no modelo 1, e trata da influência da velocidade 

rotacional do escoamento, que pode ser analisada pelos gráficos abaixo (Figura 9). 
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Figura 9. Velocidade rotacional do escoamento – modelo 2 
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equações de Navier-Stokes. Ressalta também, que os modelos computacionais de 

simulação, são muito mais complexos, não simplificados no mesmo nível que os modelos 

analíticos, e, sobretudo ressalta que ao invés de ser uma coletânea de aproximações 

simplificadas para descrição do comportamento do escoamento em meio poroso, trata-se 

de discretização de parâmetros e utilização de métodos numéricos para solução do 

problema. Além disso, o fato de ser utilizado o modelo físico de escoamento segregado, 

nos garante que seja utilizado um método preditor-corretor. Logo, verifica-se o quão mais 

complexo é a metodologia das simulações sobre a metodologia dos modelos analíticos. 

 

Modelo 3: 

Os dados da simulação são os seguintes (Tabela 5): 

Grandeza Valor Unidade 

R 0,3 cm 

k 1,72239E-11 (cm^2.s)/g 

μ 0,02145 g/(cm.s) 

po 3000000 dyn/cm^2 

ρ 1 g/cm^3 

Re 69000 Adm 

pext 1000000 dyn/cm^2 

L 10 Cm 

Rm 5,80588E+11 kg/(m^2.s) 
Tabela 5. Dados de entrada do modelo 3 

Verificação 

 

Verifica-se na Figura 10 que todos os erros numéricos são inferiores a 0,03, sendo 

o maior erro caracterizado pela solução da equação de continuidade. 



 

Figura 1

 

Validação 

Seguem abaixo (Figura 11) 

posições axiais antes mencionadas:

Figura 10. Resíduo Numérico – modelo 3 

(Figura 11) os gráficos para validação indireta do modelo CFD nas 

posições axiais antes mencionadas: 
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Figura 11. Validação – modelo 3 
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modelos analíticos apresentarem o número de Reynolds em sua formulação, modelos de 

turbulência são mais complexos quando se deseja estudá-los, e assim os modelos 

analíticos apresentam muitas simplificações para um devido tratamento de turbulência. 

Seguem as velocidades rotacionais (Figura 12): 
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Figura 12. Velocidade Rotacional do escoamento – modelo 3 

 

 

 

 

 

-1,00E-04

-5,00E-05

0,00E+00

5,00E-05

1,00E-04

1,50E-04

2,00E-04

2,50E-04

0 0,5 1

u
/u

0

r/R

Simulação CFD Vθ

z=0,75.L

Simulação CFD 
'Modelo 3'

-1,00E-04

0,00E+00

1,00E-04

2,00E-04

3,00E-04

4,00E-04

0 0,5 1

u
/u

0

r/R

Simulação CFD Vθ

z=1.L

Simulação CFD 
'Modelo 3'



66 
 

Modelo 4: 

Os dados da simulação são os seguintes (Tabela 6): 

Grandeza Valor Unidade 

R 0,3 Cm 

k 7,98161E-11 (cm^2.s)/g 

μ 0,02145 g/(cm.s) 

po 3000000 dyn/cm^2 

ρ 1 g/cm^3 

Re 240000 adm 

pext 1000000 dyn/cm^2 

L 10 Cm 

Rm 1,25288E+11 kg/(m^2.s) 
Tabela 6. Dados de entrada – modelo 4 

 

Verificação 

 

Verifica-se na Figura 13 que os erros numéricos são inferiores a 0,03, sendo o 

maior erro caracterizado pela solução da equação de turbulência. 



 

Figura 1

 

Validação 

Seguem abaixo (Figura 14)

posições axiais antes mencionadas:

Figura 13. Resíduo Numérico – modelo 4 

(Figura 14) os gráficos para validação indireta do modelo CFD nas 

posições axiais antes mencionadas: 
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Figura 14. Validação – modelo 4 

Pode-se analisar pelos gráficos (Figura 14) que há divergências de valores para 

velocidade radial tanto no seio do escoamento como para a parede em algumas secções. 

As justificativas são as mesmas apresentadas para o modelo 3. Seguem as velocidades 

de rotação do fluido (Figura 15). 
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Figura 15. Velocidade rotacional do escoamento – modelo 4 
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Modelo 5: 

Os dados da simulação são os seguintes (Tabela 7): 

Grandeza Valor Unidade 

R 0,3 Cm 

k 5,71429E-10 (cm^2.s)/g 

μ 0,01 g/(cm.s) 

po 3000000 dyn/cm^2 

ρ 1 g/cm^3 

Re 6000 Adm 

pext 1000000 dyn/cm^2 

L 10 cm 

Rm 17500000000 kg/(m^2.s) 
Tabela 7. Dados de entrada – modelo 5 

 

Verificação 

Verifica-se na Figura 16 que os erros numéricos são próximos a 0,002, sendo o 

maior erro caracterizado pela solução da equação de continuidade.  



 

Figura 1

 

Validação 

Seguem abaixo (Figura 17) 

posições axiais antes mencionadas:

Figura 16. Resíduo Numérico – modelo 5 

(Figura 17) os gráficos para validação indireta do modelo CFD nas 

posições axiais antes mencionadas: 
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Figura 17. Validação – modelo 5 

 

Pode-se analisar pelos gráficos (Figura 17) que há divergências de valores para 

velocidade radial tanto no seio do escoamento como para a parede em algumas secções. 

As justificativas são as mesmas apresentadas para os modelos 3 e 4. Seguem as 

velocidades de rotação do fluido (Figura 18). 
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Figura 18. Velocidade rotacional do escoamento – modelo 5 

Apresentados os resultados, seguem as conclusões a respeito da implementação 

dos modelos analíticos e do confronto de resultados destes com simulações. 
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6. CONCLUSÕES 

 Neste trabalho, foi investigado o comportamento dos perfis de velocidades de 

modelos analíticos de escoamentos em tubos micro-porosos, e então, estes resultados 

foram comparados com resultados de velocidades de simulações de escoamentos com 

software de mecânica dos fluidos computacional. As simulações foram executadas sob os 

regimes laminar e turbulento de fluido newtoniano aplicado ao processo de filtração 

tangencial. Baseados nas equações de conservação, os modelos analíticos e de 

simulação apresentaram condições de contorno apropriadas para o problema proposto de 

filtração tangencial. Assim, foram levantados os campos de velocidades, tanto axiais 

como radiais para modelos analíticos e de simulação, e velocidades rotacionais para os 

modelos de simulação. 

 A partir das simulações realizadas por software de mecânica dos fluidos 

computacional, e comparações com os modelos analíticos da literatura previamente 

validados por métodos experimentais, pode-se concluir que: 

(i) Para paredes impermeáveis, em regime de escoamento laminar, o modelo 

analítico de perturbação de Munson não aponta resultados, uma vez que a 

permeabilidade é nula para estas condições e o modelo apresenta parâmetros 

resultantes de divisões por zero; 

(ii) As simulações apresentam membranas com características de escoamento 

isotrópico, condição esta assumida também para os modelos analíticos; 

(iii) Os campos de velocidades das simulações, comparados aos campos dos modelos 

analíticos, indicam pequena discordância, garantindo assim que a condição de 

contorno de fluido empacotado ou “packed bed” possa ser utilizada em 

membranas que não necessariamente apresentem comportamento similar, desde 

que os parâmetros de porosidade sejam assumidos de maneira consistente. 

(iv) Apesar da velocidade axial na parede sempre ser nula, há uma variação nos 

valores de velocidade radial muito bem definida pelos gráficos. Isto leva à 

identificação de uma das principais diferenças entre os modelos analíticos e as 

simulações. Esta diferença baseia-se na negligência explícita do tratamento de 

velocidade rotacional do escoamento pelos modelos analíticos. Isto indica que nos 

modelos analíticos não há rotação do fluido. No entanto, pelas simulações denota-

se que apesar dos valores das velocidades rotacionais serem pequenos, estes 
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não devem ser totalmente negligenciados, pois possuem importância na 

caracterização do comportamento do escoamento, especialmente em 

escoamentos que ocorrem em regime turbulento. 

(v) Os modelos analíticos são frutos de aproximações matemáticas com objetivo de 

simplificação das equações de Navier-Stokes. No entanto, os modelos 

computacionais de simulação, são muito mais complexos, não simplificados no 

mesmo nível que os modelos analíticos, e, sobretudo, ao invés de serem uma 

coletânea de aproximações simplificadas para descrição do comportamento do 

escoamento em meio poroso, tratam de discretizações de parâmetros e utilização 

de métodos numéricos para a solução do problema. Além disso, o fato de ser 

utilizado o modelo físico de escoamento segregado, nos garante que seja utilizado 

um método preditor-corretor. Logo, conclui-se o quão mais complexo é a 

metodologia das simulações sobre a metodologia dos modelos analíticos. 

(vi) Modelos de turbulência são mais complexos, e desta forma os modelos analíticos 

apresentam muitas simplificações para um devido tratamento de turbulência. 

(vii) As malhas volumétricas nas simulações são relativamente grosseiras, 

ocasionando resultados não muito precisos. No entanto, elevar o número de 

células poliédricas aumenta o custo computacional, tornando a simulação inviável, 

pois a demanda de tempo computacional cresce de maneira significativa. Além 

disto, a maior quantidade de células requer mais capacidade de processamento, e 

assim computadores mais avançados e caros. 

 

 Portanto, conclui-se que utilizar um modelo de fluido empacotado para 

membranas ou tubos porosos que não apresentam necessariamente este comportamento 

é válido, oferecendo uma ferramenta importante para avaliação de campos de 

velocidades e descrição de problemas de filtração tangencial baseados nas equações de 

conservação, equações de Navier-Stokes e equação de Ergun. 
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7. SUGESTÕES 

 

As sugestões para trabalhos futuros são amplas, caracterizando a flexibilidade de 

parâmetros referentes a escoamentos em meios porosos. 

Como sugestão pode-se mudar os valores de porosidade. Neste trabalho foi 

adotada porosidade para todos os modelos de 40%, sendo este o valor mínimo indicado 

pela literatura. 

Outro parâmetro que apresenta grau de liberdade é a malha volumétrica da 

simulação. Quanto menores os elementos (ou células da malha volumétrica) mais 

precisos são os resultados, porém, maior o custo computacional. Além disto, os 

elementos utilizados na geração da malha volumétrica são poliédricos. Podem-se mudar 

estes elementos para malha cartesiana, uma vez que o escoamento apresenta uma 

direção principal, e este é um dos fundamentos para garantir a convergência da 

simulação. 

Uma tentativa de diminuir o custo computacional baseia-se na modificação do 

modelo de simulação de tridimensional para bidimensional tratando todo o diâmetro dos 

tubos porosos, ou criando-se um modelo axissimétrico. 

Verifica-se a flexibilidade de tornar o modelo mais complexo. A sugestão, então, 

seria de estudar um modelo bifásico com concentração de uma das fases próximo à 

parede da membrana porosa. 

Por fim, outra flexibilidade quanto à simulação é executar as análises com outros 

modelos de turbulência. Neste trabalho foi utilizado o modelo de turbulência k-ε, porém 

são disponíveis no software Star-CCM+ os modelos k-ω, Spalart-Allmaras e Tensor de 

Reynolds. 
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