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RESUMO 

LOPES, I.F. Fotoestabilidade de filtros solares encapsulados/incorporados na 
SBA-15. 2020. 33 f. Trabalho de Conclusão de Curso de Farmácia-Bioquímica – 
Faculdade de Ciências Farmacêuticas – Universidade de São Paulo, São Paulo, 2020. 
 

Palavras-chave: SBA-15, filtros solares, Avobenzona, Metoxicinamato de octila. 

 

A radiações ultravioletas (UVA e UVB) estão envolvidas em alterações clínicas da 
pele, como envelhecimento precoce e até câncer, o que aponta preocupação da 
comunidade médica, indústria cosmética e meios de comunicação para o alerta à 
população sobre tais danos. A utilização de filtros solares em formulações 
fotoprotetoras tem como objetivo absorver as radiações UV. Porém, é sabido que o 
formulador encontra desafios no desenvolvimento de formulações fotoprotetoras com 
os filtros orgânicos, pois podem possuir fotoinstabilidade, provocar fotosensibilização 
e geração de fotoprodutos, entre outros. Entre os materiais estudados para solucionar 
esse problema, estão os materiais nanoestruturados, devido às suas propriedades 
como segurança, estabilidade térmica, hidrotérmica, química e mecânica. Com base 
nessa problemática, este trabalho utilizou a sílica mesoporosa altamente ordenada do 
tipo SBA-15 como suporte para aumentar a fotoestabilidade e fator de proteção solar 
dos filtros orgânicos, como a avobenzona e o metoxicinamato de octila. Neste estudo, 
investigou-se a fotoestabilidade dos filtros solares avobenzona e metoxicinamato de 
octila nas formas livres e encapsulados/incorporados em SBA-15 em dois tipos de 
emolientes: o óleo mineral e o triglicérides do ácido cáprico e caprílico. O método de 
espectrofotometria de refletância difusa com esfera de integração foi utilizado para 
determinar a eficácia fotoprotetora in vitro das amostras. O simulador solar Atlas 
Suntest® foi utilizado para os ensaios de fotodegradação e sua análise quantitativa foi 
pelo método de cromatografia líquida de alta eficiência. Constatou-se que a 
combinação das amostras encapsuladas/incorporadas apresentou aumento no fator 
de proteção solar (FPS) de 65% em relação às não nanoestruturadas. Os resultados 
de fotodegradação não apresentaram interferência entre as amostras quanto ao 
tempo de retenção dos filtros orgânicos (pesquisa de interferentes). A SBA-15 auxiliou 
na manutenção dos filtros UV quando expostos à radiação artificial, corroborando com 
o propósito do trabalho. 
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1. INTRODUÇÃO 

As radiações ultravioletas B (UVB, 290-320 nm) e A (UVA, 320-400 nm) estão 

envolvidas nos processos degenerativos da pele, como envelhecimento precoce e 

câncer (LEVI, 2013; WANG et al., 2010). Com o objetivo de reduzir potenciais danos 

causados pela exposição UV, nas últimas décadas, a comunidade dermatológica e 

até a indústria cosmética vem conscientizando a população em geral sobre a 

importância da utilização de fotoprotetores, evitando os efeitos deletérios à pele e ao 

DNA deste tipo de radiação (WANG et al., 2010; CESTARI; OLIVEIRA; BOZA, 2012). 

No entanto, o desenvolvimento de produtos contendo filtros orgânicos é um desafio 

ao formulador, em função da instabilidade inerente a alguns. A maioria das 

substâncias empregadas como filtros UV apresenta fotorreatividade e podem conduzir 

a formação de fotoprodutos. A preocupação com este tema pode ser constatada pelo 

aumento de publicações a partir da década de 90 (COELHO et al., 2018; GONZALEZ 

et al., 2011; MAIER et al., 2001; TARRAS-WAHLBERG et al., 1999). 

 A combinação da avobenzona (UVA) e do metoxicinamato de octila (UVB) é 

conhecida e muito utilizada em formulações manipuladas e industrializadas, por 

proporcionar amplo espectro de proteção, porém, apresenta alteração negativa na 

absorção espectral após irradiação UV (TARRAS-WAHLBERG et al., 1999; HOUNG 

et al., 2008; PARIS et al., 2009), isto é, fotoinstabilidade. 

 Atualmente, várias estratégias têm sido utilizadas a fim de aumentar a 

fotoestabilidade de formulações fotoprotetoras contendo a combinação de 

avobenzona e metoxicinamato de octila. A associação de fotoestabilizadores, como o 

octocrileno, um filtro solar UVB e UVA II (290-350 nm), assim como compostos 

bioativos, são formas de evitar seu processo de fotodegradação (LHIAUBET-VALLET 

et al., 2010; PARIS et al., 2009; VELASCO et al., 2008; DANELUTI et al., 2018). 

 Ademais, novas tecnologias, como as nanopartículas ou materiais 

nanoestruturados carreadores, também estão sendo estudados com o intuito de 

aumentar a fotoestabilidade ou diminuir a fotodegradação dos filtros solares, devido à 

suas propriedades, como a segurança, estabilidade térmica, hidrotérmica, química e 

mecânica (DANELUTI et al., 2017 ; DA SILVA et al., 2015; WANG et al., 2015) 

 O propósito deste trabalho foi avaliar e comparar a fotoestabilidade dos filtros 

solares avobenzona e metoxicinamato de octila, nas formas livres e 
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encapsulados/incorporados em SBA-15. O método da espectrofotometria de 

refletância difusa com esfera de integração foi utilizado para determinar a eficácia 

fotoprotetora in vitro das formulações. O simulador solar Atlas Suntest® foi utilizado 

para os ensaios de fotodegradação e sua análise quantitativa foi pelo método de CLAE 

(cromatografia líquida de alta eficiência). 
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2. REVISÃO DE LITERATURA 

2.1. RADIAÇÕES ULTRAVIOLETAS 

A distribuição das ondas solares na superfície terrestre inclui radiações 

ultravioletas (UV) de três tipos: ultravioleta C (100 a 280 nm), ultravioleta B (290 a 320 

nm) e ultravioleta A, sendo este último subdividido em UVA II (320 a 340 nm) e UVA I 

(340 a 400 nm) (DIFFEY, 2015). As radiações UVB e UVA estão envolvidas nos 

processos degenerativos da pele, como envelhecimento precoce, desidratação, 

pigmentação e câncer (LEVI, 2013; WANG et al., 2010).  

Estudos sobre os efeitos das radiações UV apontam que a exposição crônica 

está associada ao desenvolvimento de ceratose actínica, carcinoma espinocelular e 

câncer basocelular; já, para a exposição intermitente, os estudos apontam para o 

desenvolvimento do tipo mais grave de câncer de pele, o melanoma (ABID et al., 2017; 

GILBERT et al., 2016; HANSON et al., 2015). 

Com o objetivo de reduzir os potenciais danos causados pela exposição aos 

raios UV, nas últimas décadas, a comunidade dermatológica, meios de comunicação 

e indústria cosmética vem trabalhando para conscientizar e educar a população em 

geral sobre a importância da utilização de fotoprotetores (WANG et al., 2010; 

CESTARI; OLIVEIRA; BOZA, 2012). 

 

2.2. FOTOPROTETORES 

Os fotoprotetores são produtos cosméticos compostos por filtros solares que 

atuam na proteção da pele contra os efeitos danosos causados pela exposição às 

radiações UV. Eles podem ser classificados de acordo com veículos utilizados como, 

emulsões, óleos e aerossóis, entre outros, e possuem em sua composição filtros UV 

que são moléculas ou um complexo molecular capazes de absorver, refletir ou 

dispersar as radiações UV (WU et al., 2014; BALOGH et al., 2011; MIKSA et al., 2016). 

Além de não poderem penetrar na pele, acarretando em efeitos deletérios ao 

DNA, os filtros UV também devem possuir outras características para que possam ser 

componentes de formulações cosméticas. A fotoestabilidade é um fator importante, 

assim como a dissipação da energia absorvida que deve ser feita de forma 

suficientemente eficaz para que se evite a formação das espécies reativas de 
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oxigênio, do oxigênio singlet, e de outros intermediários prejudiciais à saúde 

(CESTARI; OLIVEIRA; BOZA, 2012; SERPONE et al., 2007). Entretanto, muitos filtros 

solares são fotoinstáveis, o que pode prejudicar a sua eficácia e causar 

fotossensibilização cutânea ao paciente (AMBROGI et al., 2013a; KILIMOVÁ et al., 

2015.) 

Os filtros solares possuem duas classes, filtros orgânicos e físicos. O filtro 

orgânico possui efeito químico e, o inorgânico, efeito físico (CESTARI; OLIVEIRA; 

BOZA, 2012; SERPONE et al., 2007). Com a finalidade de compreender um amplo 

espectro de proteção, as formulações fotoprotetoras que encontra-se atualmente no 

mercado possuem combinação dos dois tipos de filtros UV (MIKSA et al., 2016; 

BATTISTIN et al., 2020)  

2.2.1. FILTROS UVB 

Os filtros UVB absorvem aproximadamente 90% da radiação de comprimento 

de onda (λ) entre 280 a 320 nm. O 4-metoxicinamato de 2-etilhexila, chamado, 

também, de metoxicinamato de octila, é um exemplo deste grupo de filtros, sendo o 

mais potente, capaz de absorver radiação de λ entre 270-328 nm. Estudos 

evidenciaram que a nanoencapsulação deste em poly-D,L-lactide-co-glycolide 

resultou na diminuição da fotodegradação (PERUGINI et al., 2002). A Figura 1 ilustra 

a estrutura química do metoxicinamato de octila. 

 
Figura 1. Estrutura química do metoxicinamato de octila (PALM; O’DONOGHUE, 

2007). 

 

2.2.2. FILTROS UVA 

A avobenzona (AVO) foi introduzida no final da década de 80 e início da década 

de 90 (Figura 2). Este filtro UVA revolucionou a proteção contra a radiação UVA. Foi 

o primeiro a apresentar proteção UVA I, abrangendo o intervalo de comprimento de 
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onda de 310 a 400 nm. A avobenzona sofre significante degradação perante 

exposição à luz. Apenas 60 minutos de exposição à radiação UV reduz sua efetividade 

de 50 a 90%, tornando-se necessária à sua fotoestabilização. Pesquisas recentes 

visaram ao desenvolvimento de novos veículos para a AVO, contendo estabilizantes 

mais efetivos. Indústrias investem no desenvolvimento de formulações, envolvendo, 

por exemplo, combinações da AVO com octocrileno (2-ciano-3,3-difenilacrilato de 2-

etilexila), aumentando sua fotoestabilidade (PALM et al., 2007; BISSONETTE, 2008; 

DEFLANDRE et al., 1988; DANELUTTI et al., 2019). 

 
Figura 2. Estrutura química da avobenzona (PALM; O’DONOGHUE, 2007). 

 

2.3. ENCAPSULAÇÃO DE FILTROS SOLARES EM MATERIAIS 

NANOESTRUTRADOS 

As formas farmacêuticas de liberação vem ganhando notoriedade na área 

farmacêutica devido às suas diversas vantagens sobre as formas convencionais de 

liberação de fármacos, tais como: otimização da distribuição do fármaco no 

organismo, auxilio na redução de efeitos colaterais e redução de oscilações 

indesejáveis da concentração plasmática do fármaco para que permaneça em sua 

concentração terapêutica por maior tempo, o que, consequentemente, melhorara a 

biodisponibilidade do fármaco (UHRICH et al., 1999). Ainda, pode fornecer maior 

proteção destes compostos frente às reações de degradação no organismo (QIU et 

al., 2001).  

Desde a descoberta das peneiras moleculares mesoporosas da família M41S 

pelos cientistas da Mobil Oil Corporation na década de 90 (KRESGE et al., 1992), o 

estudo das sílicas mesoporosas com estrutura ordenada tem recebido especial 

atenção dos pesquisadores devido às suas potenciais aplicações em adsorção, 

separação, catálise, na proteção e liberação modificada de fármacos. As sílicas 
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mesoporosas amorfas (MCM-41, MCM-48, SBA-15, FDU-1 etc.) têm sido pesquisadas 

como suportes de fármacos devido à sua natureza atóxica, estrutura mesoporosa 

ordenada, diâmetro e volumes de poros ajustáveis com a presença de muitos grupos 

silanóis nas superfícies dos poros. Além disso, estes materiais mesoporosos 

apresentam elevada estabilidade térmica, hidrotérmica, química e mecânica, 

dependendo da espessura da parede do poro (VARTULI et al., 1998; DA SILVA et al., 

2015).  

O estudo das propriedades de armazenamento e liberação de fármacos em 

sílicas mesoporosas ordenadas como a MCM-41 e SBA-15 indicou que o tamanho e 

o volume adequado dos poros desses materiais os tornam suportes promissores para 

encapsulação e posterior liberação de uma grande variedade de moléculas com 

atividade terapêutica (ZHU et al., 2005a). A sílica mesoporosa do tipo SBA-15 

apresenta estreita faixa de distribuição de tamanho de poros, os quais se apresentam 

ordenados hexagonalmente e o tamanho e a espessura das paredes destes poros 

podem variar de 4,6 a 30 nm e de 3,1 a 6,4 nm, respectivamente. A sílica mesosporosa 

do tipo SBA-15 apresenta, ainda, maior estabilidade hidrotérmica frente à MCM-41 

(KRUK et al., 2000), e área superficial que pode superar 1000 m2.g-1. Essas 

características possibilitam a encapsulação de inúmeros fármacos nestas estruturas, 

permitindo originar caminhos para a sua difusão (ZHU et al., 2005b). Com isto, as 

sílicas mesoporosas altamente ordenadas (SMAO) tornaram-se matrizes promissoras 

no desenvolvimento de sistemas de liberação modificada de fármacos (VALLET-REGI 

et al., 2001; CHENG-YU et al.,2003; RÁMILA et al., 2003; SONG; HIDAJAT; KAWI, 

2005). Portanto, tem-se utilizado a sílica mesoporosa do tipo MCM-41 para encapsular 

protetores solares, com o objetivo de reduzir sua fotodegradação, o contato entre o 

protetor solar e a pele e, consequentemente, evitar a absorção sistêmica (PERIOLI et 

al.,2006a; AMBROGI et al., 2002; PERIOLI et al., 2006b).  

Em vista dos tópicos apresentados e da necessidade de obtenção de filtros UV 

mais eficientes, tornam-se interessante o estudo e o desenvolvimento de materiais 

que associem filtros orgânicos em matrizes, por exemplo, sílicas mesoporosas 

ordenadas do tipo SBA-15, que possam aumentar a fotoestabilidade, fotoproteção e 

reduzir a permeação cutânea desses. Conforme mencionado anteriormente, a SBA-

15 apresenta estabilidade térmica, hidrotérmica e mecânica com área superficial e 

tamanho de poro superior, quando comparada aos outros materiais mesoporosos. 
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Porém, até o momento, poucos foram os artigos encontrados na literatura que 

apresentaram estudos envolvendo filtros UV encapsulados em sílica mesoporosa 

ordenada, como evidenciado por COELHO et al. (2018). 

 

2.4. AVALIAÇÃO DA EFICÁCIA FOTOPROTETORA 

Existem alguns parâmetros utilizados atualmente para avaliar a eficácia 

fotoprotetora de uma formulação cosmética. Com o Fator de Proteção Solar (FPS) é 

possível quantificar o nível de proteção para a radiação UVB; já, para quantificar o 

nível de proteção contra a radiação UVA, é utilizado o Fator de Proteção UVA (UVA-

PF). A amplitude de proteção, considerando o espectro completo da radiação UV, é 

fornecida pelo comprimento de onda (λ crit) (UNITED STATES, 2011). Segundo a 

Legislação Brasileira, uma formulação só pode ser considerada como fotoprotetora se 

apresentar FPS a partir de 6, comprimento de onda crítico a partir de 370 nm e UVA-

PF igual a, no mínimo, 1/3 do FPS (BRASIL, 2012). 

Para a determinação do UVA-PF e do comprimento de onda crítico é utilizado 

o método espectrofotométrico de refletância difusa, acoplado à esfera de integração. 

O espectrofotômetro possui uma lâmpada de arco de xenônio, de faixa espectral 

abrangendo de 250 a 450 nm, habilitado ao processamento dos dados de 

transmitância em cada comprimento de onda e transformá-los em parâmetros de 

eficácia fotoprotetora. O desenho ótico do equipamento está ilustrado na Figura 3 

(SPRINGSTEEN et al., 1999). 
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Figura 3. Ilustração do desenho ótico do espectrofotômetro de refletância difusa 

com esfera de integração (adaptado de SPRINGSTEEN et al., 1999; DANELUTI, 

2019) 

 

A utilização de equipamentos para ensaios in vitro é de grande importância, 

uma vez que auxilia no estudo, pesquisa e aprimoramento de formulações 

fotoprotetoras. Além de apresentar parâmetros de efetividade fotoprotetora de forma 

rápida, econômica e segura (não expõe os voluntários às radiações UV, empregadas 

nas análises in vivo) (ANDREASSI, 2011; TANNER, 2006). 
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3. OBJETIVOS 

Este trabalho avaliou e comparou a fotoestabilidade e eficácia fotoprotetora de 

filtros UV, avobenzona e metoxicinamato de octila, nas formas livres e 

encapsulados/incorporados na SBA-15 em dois veículos: óleo mineral e triglicérides 

ácido cáprico/caprílico. O método de espectrofotometria de refletância difusa com 

esfera de integração foi utilizado para determinar a eficácia fotoprotetora in vitro. O 

simulador solar Atlas Suntest® foi utilizado para os ensaios de fotodegradação e a 

quantificação das amostras foi realizada por CLAE. 
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4. MATERIAL E MÉTODOS 

4.1. MATERIAL 

Lista de reagentes, solventes e afins utilizados neste trabalho estão apresentados 

na Tabela 1. 

Tabela 1. Reagentes, solventes e afins utilizados 

Nome químico Procedência 
Acetona Chromasol®/Synth® 

Metanol Fischer Scientific® 

Água ultrapura MILLIQ® 

SBA-15 Instituto de Química USP 

Óleo Mineral Mapric®  

Triglicérides do Ácido Cáprico e 

Caprílico 
Crodamol® 

Placas de polimetilmetacrilato (PMMA) HelioScreen® Helioplate HD6 

 

 As amostras de filtros UV, apresentando grau de pureza cosmético ou 

farmacêutico, estão apresentadas na  
Tabela 2. 

Tabela 2. Amostras de filtros orgânicos 

Nome 
químico 

Procedência 
INCI* Fórmula 

Molecular 
Massa 
Molar 

Avobenzona 

(AVO) 

 

Pharma 

Special® 

Butyl 

methoxydibenzoyl

methane 

C20H22O3 310,39 

p-

metoxicinamat

o de octila 

(MCO) 

Mapric® 

Ethylhexyl 

methoxycinnamate 

C18H26O3 290,40 

*International nomenclature of cosmetic ingredients 
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4.2. MÉTODOS  

4.2.1. INCORPORAÇÃO FILTROS E SBA-15 

A síntese da SBA-15 foi realizada baseada no método de síntese proposto por 

MATOS et al. (2001), já preparada e disponível aos estudos deste projeto. Para a 

encapsulação/incorporação dos filtros UV na sílica mesoporosa do tipo SBA-15, 

inicialmente foi feita solubilização dos filtros UV em acetona. O processo de 

solubilização foi feito pela adição de aproximadamente 20 mL de acetona e misturas 

de SBA-15 e filtro solar, que obedeceram a razão mássica 1:1, conduzido sob leve 

agitação magnética para a encapsulação/incorporação dos compostos à temperatura 

de 25ºC por 48 horas e, posteriormente, foi feita a evaporação do solvente, também, 

à temperatura ambiente. Com a evaporação completa do solvente, obteve-se o 

produto em pó (AMBROGI et al., 2013a, 2013b) 

O material obtido no processo de encapsulação foi submetido à caracterização 

por meio de técnicas analíticas como: termogravimetria/termogravimetria derivada 

(TG/TGD), calorimetria exploratória diferencial (DSC), análise elementar, 

espectroscopia de absorção na região do infravermelho, isoterma de 

adsorção/dessorção de nitrogênio e difratometria de raios X (DANELUTI, 2019). 

4.2.2. ADIÇÃO DAS AMOSTRAS DE FILTROS SOLARES E MATERIAIS 

ENCAPSULADOS/INCORPORADOS EM INGREDIENTE COSMÉTICO 

De acordo com a legislação vigente no Brasil (BRASIL, 2012), os filtros solares 

encapsulados/incorporados e filtros solares livres foram empregados nas 

concentrações que estão descritas na Tabela 3 e foram adicionados ingredientes 

cosméticos, a saber: óleo mineral e triglicérides do ácido cáprico e caprílico.  Para o 

teste de fotoestabilidade, foi utilizado o filtro no veículo na proporção indicada na 

Tabela 3, em qsp de 3 mL de veículo. Já, para o teste de fotodegradação, foram 

utilizados 25 mg de filtro com veículo qsp de 25 mL. Ambas as formulações foram 

submetidas a 15 minutos em banho ultrassônico (Ultrasonic Cleaner - Unique®) para 

melhor dispersão. 
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Tabela 3. Concentração dos filtros UV livres e encapsulados/incorporados na SBA-

15 adicionados ao veículo. 

Amostras Concentração (%m/m) 
p-metoxicinamato de octila (MCO) 5,00 

SBA-15/MCO* (2:1) 15,00 

Avobenzona (AVO) 3,00 

SBA-15/AVO** (1:1) 6,00 

*metoxicinamato de octila; **avobenzona 

4.2.3. EFICÁCIA FOTOPROTETORA ESTIMADA IN VITRO 

A eficácia fotoprotetora in vitro das formulações foi determinada por meio da 

espectrofotometria de refletância difusa com esfera de integração (Labsphere UV-

2000S® UV Transmittance Analyzer). Alíquotas de 1,3 mg/cm das amostras foram 

aplicadas uniformemente, na forma de filme fino em movimentos circulares sobre a 

superfície de placa de polimetilmetacrilato (PMMA) Helioplate® utilizada como 

substrato (COSMETIC EUROPE, 2011; FDA, 2011). Após secagem de 20 minutos e 

protegidas da luz, as placas foram submetidas à leitura espectrofotométrica, utilizando 

uma placa de PMMA sem nenhum produto, como branco de leitura. Os registros dos 

valores espectrofotométricos foram realizados em intervalo de comprimento de onda 

entre 250 e 450 nm, na taxa de progressão de 1 nm. Leituras em triplicata foram 

empregadas com repetições de leituras por réplica (DIFFEY; GRICE, 1997; 

SPRINGSTEEN et al., 1999; VELASCO et al., 2008b). Os dados foram convertidos 

em valores estimados de fator de proteção solar (FPS) e comprimento de onda crítico 

(λ crit) das amostras (COSMETIC EUROPE, 2011; DIFFEY et al., 2000; 

SPRINGSTEEN et al., 1999).  O FPS estimado in vitro foi obtido a partir da Equação 
1 (SPRINGSTEEN et al., 1999). 
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Equação 1. Cálculo para estimar FPS in vitro 

Eλ = eficácia eritematógena espectral da CIE (Commission Internationale de 

l'Eclairage); Sλ = irradiância solar espectral; Tλ = transmitância espectral da 

amostra; dλ = intervalo dos comprimentos de onda. 

  

 O comprimento de onda crítico das amostras foi determinado pela Equação 2 

(UNITED STATES, 2011).   

 
Equação 2. Cálculo para estimar comprimento de onda crítico 

A(λ) = absorbância espectral da amostra;  

d(λ) = intervalo dos comprimentos de onda. 

 

4.2.4. ENSAIO DE FOTOESTABILIDADE 

Após o ensaio de fotoproteção in vitro, as placas com as amostras foram 

irradiadas por 1 hora com simulador solar (Suntest® CPS+, Atlas, Linsengericht, 

Alemanha) equipado com lâmpada de xenônio, filtro bloqueador de raios UV para 

evitar efeito térmico e filtro ótico para reduzir os comprimentos de ondas mais curtos 

do que 290 nm. A emissão do simulador solar foi mantida a 580 W/m correspondente 

a uma radiação UV de 55 W/m (dose de irradiação, 198 kJ m-2), de acordo com os 

valores previamente relatados para testes de fotodegradação de filtros UV (SCALIA; 

MEZZENA, 2010).  Os parâmetros de FPS e de comprimento de onda crítico foram 

analisados pós-irradiação e comparados com os resultados de pré-irradiação. As 

medidas foram realizadas em triplicata e nove pontos diferentes por placa foram 

medidos para cada amostra (COSMETIC EUROPE, 2011; DE OLIVEIRA et al., 2016; 

NISHIKAWA et al., 2013; DANELUTI, 2019). 
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4.2.5. ENSAIO DE FOTODEGRADAÇÃO  

Alíquotas de 300µL das amostras, descritas em 4.2.2, foram armazenadas em 

um recipiente cúbico de quartzo, o qual foi submetido ao procedimento da irradiação.  

Para a avaliação da fotodegradação, foi empregada a mesma irradiância do teste de 

fotoestabilidade (Atlas Suntest® CPS+), sendo observadas no tempo 0 (sem irradiar), 

tempo 30 e 60 minutos de irradiação. Tais alíquotas foram diluídas em 10 mL de 

metanol com posterior filtração em membrana de 0,45 µm (Analítica®), sendo 

analisados simultaneamente em cromatógrafo em fase líquida Shimadzu® LC-20A 

Prominence Modular HPLC com detector DAD, empregando metanol:água 88:12 (v/v) 

como fase móvel, fluxo de 0,8 mLmin-1 , volume de injeção de 20 μL em coluna 

cromatográfica de fase-reversa Luna®  RP-C18 (100 A, 5 μm, 250x4.6 mm) equilibrada 

à temperatura ambiente e eluída sob condições isocráticas em comprimento de onda 

325 nm. 

 

4.3. ANÁLISE ESTATÍSTICA DOS RESULTADOS 

O tratamento estatístico foi realizado em Minitab® versão 17. Foram conduzidas 

análises em triplicata, com nível de significância de 5% (p ≤ 0,05) para a determinação 

de resultados significativos. Nos estudos de fotodegradação, foram utilizados o 

Minitab® versão 17 e o Microsoft® Office Excel 2017.  
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5. RESULTADOS E DISCUSSÃO 

5.1. RESULTADOS 

5.1.1. ENSAIO DE EFICÁCIA IN VITRO E FOTOESTABILIDADE 

Para a determinação da fotoestabilidade das amostras, foi empregada a 

comparação entre os resultados da caracterização funcional in vitro obtidos antes e 

após a irradiação, para os parâmetros FPS e comprimento de onda crítico (λc), 

descritos na Tabela 4 e na Tabela 5. 

 

Tabela 4. Valores de FPS in vitro e comprimentos de onda crítico das amostras de 

filtros solares encapsulados/incorporados na sílica SBA-15 e filtros solares isolados. 

Amostras (Composição) FPS λc (nm) 
Triglicérides Ác. Cáprico/Caprílico (Crodamol®) 1,0± 1,0D N.A. 

Óleo mineral (OM) 1,0± 1,0D N.A. 

SBA-15 1,0± 1,0D N.A. 

MCO (Crodamol®) 11,0± 1,0CD 326,3 C 

MCO (OM) 10,3±0,6CD 334,7 C 

AVO (Crodamol®) 5,00± 0,0CD 380,0 AB 

AVO (OM) 3,33± 0,6CD 375,0 AB 

AVO + MCO (Crodamol®) 57, 00 ± 18,6B 377,6 AB 

AVO + MCO (OM) 45,00± 1,0B 373,3 AB 

SBA-15/MCO (Crodamol®) 18,33 ± 2,3C 328,6 C 

SBA-15/MCO (OM) 16,67 ± 6,3CD 332,7 C 

SBA-15/AVO (Crodamol®) 1,33 ± 0,6D 382,7 AB 

SBA-15/AVO (OM) 1,33 ± 0,6D 385,3 AB 

SBA15/AVO + SBA15/MCO (Crodamol®) 87,33 ± 6,6A 372,7 AB 

SBA15/AVO + SBA15/MCO (OM) 46,00 ± 2,6B  370,3 AB 

Legenda: N.A. = não aplicável; FPS = Fator de Proteção Solar Estimado; λc = 

Comprimento de onda crítico. Resultados de eficácia fotoprotetora expressos como 

média ± desvio padrão. Letras diferentes na mesma coluna representam diferenças 

significativas entre os grupos. 
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Tabela 5. Fotoestabilidade das amostras dos filtros UV de melhor desempenho 

quanto ao FPS. 

Amostras 
Irradiaçã

o 
FPS 

Valor 
de p 

% de 
decaime
nto do 
FPS 

λc (nm) 
Valor 
de p 

AVO + MCO 

(OM) 

NI 

IR 

45,00 ± 1,0 

30,00 ± 2,0 
0,004 33,33 

373,33 ± 1,1 

372,67 ± 2,1 
0,529 

AVO + MCO 

(Crodamol®) 

NI 

IR 

57,00 ± 18,6 

30,00 ±10,0 
0,117 47,4 

377,67 ±0,6 

377,00 ± 1,0 
0,184 

SBA15/AVO 

+ 

SBA15/MCO 

(OM) 

NI 

IR 

46,00 ± 2,6 

23,67 ± 1,5 
0,011 48,5 

370,33 ± 0,6 

364,67 ± 2,3 
0,042 

SBA15/AVO 

+ 

SBA15/MCO 

(Crodamol®) 

NI 

IR 

87,33 ± 6,6 

25,33 ± 1,5 
0,002 70,9 

372,67 ± 0,6 

366,33 ± 2,3 
0,063 

 

5.1.2. ENSAIO DE FOTODEGRADAÇÃO 

Para analisar a influência da SBA-15, assim como dos veículos selecionados, 

foi realizado o ensaio de fotodegradação. Neste ensaio foi utilizado a CLAE para 

realizar quantificação das amostras irradiadas nos tempos de 0, 30 e 60 minutos de 

irradiação. O método utilizado apresentou linearidade no intervalo de 0,4 a 122,0 

µg.mL-1 e 0,02 a 123,8 µg.mL-1 para os filtros avobenzona e metoxicinamato de octila, 

com valores de 0,9966 e 0,9993, respectivamente. Não foi observada interferência do 

material usado no encapsulamento dos filtros UV no tempo de retenção da 

avobenzona e do metoxicinamato de octila. 

As Figura 4, Figura 5, Figura 6 e Figura 7 ilustram a curva de decaimento, em 

porcentagem, dos filtros UV em função do tempo de exposição à irradiação. Na Figura 
4, a avobenzona encapsulada/incorporada na SBA-15 obteve elevação percentual no 
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valor de concentração do filtro de 125.14 e 140.28% para os tempos 30 e 60 minutos 

de irradiação, respectivamente. Essa elevação percentual também pode ser 

observada na Figura 5 para a amostra de metoxicinamato de octila 

encapsulada/incorporada na SBA-15, de 140.34 e 198.88% para os tempos 30 e 60 

minutos de irradiação, respectivamente. A Figura 6 ilustra o comportamento dos filtros 

avobenzona (108.50 e 81.33%) e metoxicinamato de octila (98.20 e 54.85%) nas 

formas livres, para os tempos 30 e 60 minutos. Na Figura 7 também se pode observar 

elevação percentual para a amostra de avobenzona encapsulada/incorporada na 

SBA-15 na qual apresentou 156.15 e 154.56% para os tempos 30 e 60 minutos, 

respectivamente. Já, o metoxicinamato de octila baixou a concentração percentual 

com valores de 78.20 e 59.25% para os tempos 30 e 60 minutos, respectivamente 

 

 
Figura 4. Curva de decaimento da avobenzona livre e encapsulada em SBA-15. 
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Figura 5. Curva de decaimento do metoxicinamato de octila livre e encapsulada em 

SBA-15. 

 

 
Figura 6. Curva de decaimento dos filtros UV livres 

 

Andre Baby
Ingrid, favor, completar os dados aqui das placas.
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Figura 7. Curva de decaimento dos filtros UV encapsulados em SBA-15. 

5.2. DISCUSSÃO 

Constatou-se aumento relevante de FPS para amostra SBA-15/AVO + SBA-

15/MCO adicionada ao veículo Crodamol®. Tal resposta foi equivalente a um 

acréscimo de, aproximadamente, 65% em relação à combinação das amostras não 

encapsuladas com o mesmo veículo (amostras AVO + MCO Crodamol®) e 

encapsuladas/incorporadas com veículo óleo mineral (SBA-15/AVO+ SBA-15/MCO 

(OM)). Tal aumento pode estar relacionado com os grupos funcionais (silanóis e 

hidroxilas) presentes na superfície e no interior dos poros da SBA-15 que interagem 

com os grupos cetonas e hidroxilas presentes nas estruturas dos filtros, por meio de 

ligações de hidrogênio e forças de van der Waals. Propõe-se que tais interações sejam 

responsáveis por estabilizar os grupamentos de filtros orgânicos. Estudos ainda 

demonstraram que essas interações foram responsáveis por aumentar a estabilidade 

de fármacos na matriz do material mesoporo (DANELUTI, 2018). 

A SBA-15 não auxiliou na redução do processo de fotodegradação dos filtros, 

havendo decréscimo de, aproximadamente, 30% do valor do FPS da amostra SBA-

15/AVO + SBA-15/MCO adicionada ao veículo Crodamol®. Situação que pode ser 

explicada pelo fato de que parte dos filtros UV estaria na superfície do material 

mesoporoso, expostos a radiação UV, o que reduz a sua fotoestabilidade (KOCLER 

et al., 2013; WU et al., 2014). A amostra que apresentou melhor resultado após o 

processo de irradiação foi a amostra AVO + MCO (Crodamol®), a qual apresentou o 
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maior valor de FPS e conservou maior comprimento de onda crítico. A respeito da 

combinação de AVO e MCO, observou-se que tanto as amostras 

encapsuladas/incorporadas ou não à SBA-15, adicionados ao óleo mineral, não 

apresentaram aumento nos valores de FPS. Estudos constataram que a adição de 

óleo mineral em formulações contendo filtros solares provoca diminuição na atividade 

fotoprotetora destes compostos, pois o óleo mineral apresenta baixo poder de 

dissolvência e, consequentemente, não solubilizando adequadamente os filtros 

solares na formulação (RODRIGUES; SALKA, 2001; DAHER, 2014). Tal informação 

pode ser corroborada por meio dos resultados apresentados neste trabalho. Diluições 

com óleo mineral não from completas mesmo com a aplicação do ultrassom para 

auxiliar na dissolução, apresentando compostos insolúveis na amostra, 

principalmente as que envolveram a AVO, como ilustrado na Figura 8. 

  

 
Figura 8. Dissolução das amostras (1) avobenzona, (2) avobenzona/SBA-15, (3) 

metoxicinamato de octila e (4) metoxicinamato de octila/SBA-15 em óleo mineral. 

 
 Verificou-se que as amostras encapsuladas/incorporadas na SBA-15 não 

apresentaram aumento da fotoestabilidade, já que a etapa de irradiação causou 

alterações expressivas nas amostras em estudo. Estes resultados corroboraram com 

a literatura, considerando que Puglia et al. (2014) incorporaram a avobenzona e o p-

metoxicinamato de octila em nanoestruturas lipídicas e, após o processo de 

Lopes, Ingrid /BR
Como deixar esse ponto explicado aqui?


Andre Baby
Ingrid, não sei se te entendi bem! Acho que poderia suprimir.



29 
 

 
 

irradiação, houve diminuição da fotoestabilidade destes presentes nesta matriz 

lipídica.  

Ainda, analisando os resultados apresentados na Tabela 5, observa-se que a 

irradiação também provocou diminuição no comprimento de onda crítico para as 

amostras AVO + MCO (OM), AVO + MCO (Crodamol®) e SBA15/AVO + SBA15/MCO 

(Crodamol®) (valor de p < 0,05), deslocando a curva de absorbância do comprimento 

de onda UVA dos compostos. O deslocamento pode ser melhor compreendido como 

ilustra a Figura 9. 

 
Figura 9. Curvas de absorbância das amostras de filtros UV livres e 

encapsulados/incorporados na SBA-15, mensurados entre 290 - 400 nm antes e 

após irradiação (Adaptado de DANELUTI, 2018) 

 

A SBA-15 auxiliou, razoavelmente, na manutenção do filtro UVA, quando 

exposto à irradiação, como ilustrado nas Figuras 4 e 7. Observou-se que houve 

redução mais acentuada do filtro UVB nas condições do estudo, que justificaria a 

fotoestabilidade inadequada dos sistemas em função da diminuição dos valores de 

FPS. 
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6. CONCLUSÕES 

A sílica mesoporosa do tipo SBA-15 auxiliou no aumento do FPS na amostra 

composta pelos dois filtros UV em triglicérides do ácido cáprico/caprílico. A SBA-15 

auxiliou na manutenção da estabilidade química do filtro UVA, evidenciada pelas 

curvas de decaimento. Porém, com a incorporação da SBA-15, não foi possível 

fotoestabilizar as amostras em função do FPS. 
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