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RESUMO

Souza, M. V. F. Detecção de Arritmia Cardíaca a partir de Sinais ECG numa
Abordagem Intra-paciente. 2024. 56p. Monografia (MBA em Inteligência Artificial e
Big Data) - Instituto de Ciências Matemáticas e de Computação, Universidade de São
Paulo, São Carlos, 2024.

Sístole e diástole se referem a ondas elétricas emitidas pelos movimentos do coração e sua
anormalidade pode caracterizar doença cardíaca. Busca-se entendê-las para identificação
de possíveis irregularidades no comportamento do coração do paciente ou indivíduo. Até o
momento a previsão de irregulares ainda não é possível, sendo apenas detecção quando
esta ocorre. Um método para detecção de arritmia cardíacas é através da análise do sinal
de eletrocardiograma que ainda depende muito da experiência do examinador. Para isso é
treinado uma rede neural convolucional baseada em modelos funcionais para classificar
sinais de ECG com arritmia. 5 redes baseadas em transferência de aprendizado foram
treinadas a partir de uma base de dados pública, desbalanceada e rotulada de sinais ECG.
Aquela que apresentou melhor performance comparada a baseline consistindo uma rede
neural convolucional treinada do zero com sinais ECG pré-processados por transformadas
de Fourier de tempo curto usando os mesmos dados de treinamento. O modelo inteligente
final obteve um F1-Score de 91.67 % para o conjunto de teste contra 88.39% da baseline,
além de superá-la na classificação de cada uma das 4 classes. Observou-se também que
a aplicação de transferência de aprendizado mitigou o problema de baixo número de
exemplos na base de dados e melhorou o aprendizado dos modelos inteligentes testados.
Assim, foi possível treinar uma rede neural convolucional baseada na arquitetura MobileNet
capaz de detectar arritmia cardíaca a partir de sinais ECG com F1-Score maior que a
baseline definida e com ligeira dificuldade para detecção de sinais que não apresentam um
comportamento padrão como Ruído e Outro.

Palavras-chave: Sinais ECG. Análise Intra-paciente. Redes Neurais Convolucionais.





ABSTRACT

Souza, M. V. F. Detecção de Arritmia Cardíaca a partir de Sinais ECG numa
Abordagem Intra-paciente. 2024. 56p. Monograph (MBA in Artificial Intelligence and
Big Data) - Instituto de Ciências Matemáticas e de Computação, Universidade de São
Paulo, São Carlos, 2024.

Systole and diastole refer to electrical waves emitted by the heart’s movements and their
abnormality may characterize heart disease. The goal is to understand them to identify
possible irregularities in the behavior of the patient’s or individual’s heart. Forecasting
irregularities is not yet possible only detect them when they occur. One method for detecting
cardiac arrhythmia is analyzing the electrocardiogram signal, which still depends heavily
on the examiner’s experience. For this purpose, a convolutional neural network based on
foundational models is trained to classify ECG signals with arrhythmia. Five networks
based on transfer learning were trained from a public, unbalanced and labeled database
of ECG signals. The one that best performed was compared to a baseline consisting of
a convolutional neural network trained from scratch with ECG signals preprocessed by
short-time Fourier transformation using the same training data. The final intelligent model
obtained an F1-Score of 91.67% on the test set against 88.39% for the baseline, in addition
to outperforming it in the classification of each of the 4 classes. It was also observed that
the application of transfer learning mitigated the problem of a low number of examples in
the database and improved the understanding of the tested intelligent models. Thus, it
was possible to train a convolutional neural network based on the MobileNet foundational
model capable of detecting cardiac arrhythmia from ECG signals with F1-Score higher
than the defined baseline and with slight difficulty in detecting signals that do not present
a standard behavior such as Noise and Other.

Keywords: ECG signals. Intra-patient Analysis. Convolutional Neural Networks.





LISTA DE FIGURAS

Figura 1 – Exemplo de ECG normal . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figura 2 – Complexo QRS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figura 3 – Exemplo de transformada de Fourier . . . . . . . . . . . . . . . . . . . 27
Figura 4 – Tipos de Aprendizado de Máquina . . . . . . . . . . . . . . . . . . . . 29
Figura 5 – Exemplo de Classificação.

Fonte: (COCK, 2015) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figura 6 – Neurônio Perceptron.

Fonte: (DUKOR, 2018) . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figura 7 – Rede Neural de Múltiplas Camadas . . . . . . . . . . . . . . . . . . . . 32
Figura 8 – Aprendizado Profundo. Fonte: (CONSULTING, 2018) . . . . . . . . . . 33
Figura 9 – Arquitetura de uma Rede CNN. Adaptado de (VEEN, 2016) . . . . . . 34
Figura 10 – Ilustração de uma operação Average Pooling. Fonte: (KHOSLA, 2023) . 34
Figura 11 – Arquitetura VGG16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Figura 12 – Pipeline da Proposta. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Figura 13 – Exemplos de ECG para as classes FA, RSR, Ruído e Outro para o

paciente P2. Imagem criada pelo autor. . . . . . . . . . . . . . . . . . . 42
Figura 14 – Distribuição das classes de ECG. Imagem criada pelo autor. . . . . . . 43
Figura 15 – Arquitura da modelo Baseline. Adaptada de (GUPTA; BHASKARPAN-

DIT; GUPTA, 2021). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44





LISTA DE TABELAS

Tabela 1 – Relatório de Classificação do modelo VGG16 . . . . . . . . . . . . . . 46
Tabela 2 – Matriz de confusão do modelo VGG16 . . . . . . . . . . . . . . . . . . 46
Tabela 3 – Relatório de Classificação do modelo ResNet50 . . . . . . . . . . . . . 47
Tabela 4 – Matriz de confusão do modelo ResNet50 . . . . . . . . . . . . . . . . . 47
Tabela 5 – Relatório de Classificação do modelo ResNet152V2 . . . . . . . . . . . 47
Tabela 6 – Matriz de confusão do modelo ResNet152V2 . . . . . . . . . . . . . . . 48
Tabela 7 – Relatório de Classificação do modelo NASNetLarge . . . . . . . . . . . 48
Tabela 8 – Matriz de confusão do modelo NASNetLarge . . . . . . . . . . . . . . . 48
Tabela 9 – Relatório de Classificação do modelo MobileNet . . . . . . . . . . . . . 48
Tabela 10 – Matriz de confusão do modelo MobileNet . . . . . . . . . . . . . . . . 49
Tabela 11 – Avaliação MobileNet por Paciente. . . . . . . . . . . . . . . . . . . . . 49
Tabela 12 – Tabela Comparativa entre modelos avaliados . . . . . . . . . . . . . . . 50





SUMÁRIO

1 INTRODUÇÃO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.1 Contextualização, Motivação e Lacunas . . . . . . . . . . . . . . . . . 21
1.2 Objetivos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.2.1 Objetivo Geral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.2.2 Objetivos Específicos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.3 Organização do texto . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2 FUNDAMENTAÇÃO TEÓRICA . . . . . . . . . . . . . . . . . . . . 25
2.1 Cardiologia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2 Processamento Digital de Sinais . . . . . . . . . . . . . . . . . . . . . 26
2.2.1 Transformada de Fourier de Tempo Curto . . . . . . . . . . . . . . . . . . 27
2.3 Aprendizado de Máquina . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3.1 Tipos de Aprendizado . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3.2 Aprendizado Supervisionado . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3.3 Classificação Supervisionada . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3.4 Modelos Conexionistas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4 Redes Neurais Artificiais . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4.1 Neurônio Artificial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4.2 Redes Perceptron de Múltiplas Camadas . . . . . . . . . . . . . . . . . . . 31
2.4.3 Algoritmo Retro-propagação . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.4.4 Função de Ativação . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.4.5 Aprendizado Profundo . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.4.6 Rede Neural Convolucional . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.4.7 Transferência de Aprendizado . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.4.8 Arquiteturas CNN para transferência de aprendizado . . . . . . . . . . . . 35
2.4.8.1 VGG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.4.8.2 ResNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.4.8.3 MobileNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3 TRABALHOS RELACIONADOS . . . . . . . . . . . . . . . . . . . . 39

4 METODOLOGIA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.1 Proposta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 Base de Dados . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2.1 Eletrocardiograma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3 Pré-processamentos . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43



4.3.1 Processamento de Sinais . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.4 Baseline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.5 Arquiteturas baseadas em Redes Profundas . . . . . . . . . . . . . . 44
4.5.1 Modelos fundacionais . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5 AVALIAÇÃO EXPERIMENTAL . . . . . . . . . . . . . . . . . . . . . 45
5.1 Configuração Experimental . . . . . . . . . . . . . . . . . . . . . . . . 45
5.1.1 Configuração Padrão de Topo de Rede Neural . . . . . . . . . . . . . . . . 45
5.1.2 Arquitetura VGG16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.1.3 Arquitetura ResNet50 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.1.4 Arquitetura ResNet152V2 . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.1.5 Arquitetura NASNetLarge . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.1.6 Arquitetura MobileNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.2 Análise de classificação Intra-usuário . . . . . . . . . . . . . . . . . . 48
5.3 Resultados e Discussões . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6 CONCLUSÕES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Referências . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53



21

1 INTRODUÇÃO

1.1 Contextualização, Motivação e Lacunas

De acordo com a Sociedade Brasileira de Arritmias Cardíacas (SOBRAC), a
arritmia cardíaca é uma anomalia na geração ou na condução do estímulo elétrico do
coração (SOBRAC, Acesso 2024 ). De acordo com a Sociedade Brasileira de Cardiologia
(SBC), entre os anos de 2000 e 2018 foi registrado que 6.755.551 pessoas faleceram de
doenças cardiovasculares no Brasil (SBC, Acesso 2024 ).Ainda segundo a SBC, foi estimado
384.291 óbitos de 01 de Janeiro até o dia 14 de Dezembro de 2021, que em 2022 teria
chegado em 354.447 até o dia 17 de Novembro, tendo ultrapassado a marca de 400 até o
final do ano e que em 2023 foi de 296.000 até o dia 28 de Agosto.

Segundo National Heart, Lung and Blood Institute (NIH), os principais fatores de
risco são: (i) Idade; (ii) Ambiente em que o indivíduo vive; (iii) Histórico Familiar; (iv)
Hábitos Diários (fumo, consumo de álcool ou de drogas ilícitas); (v) Etnia; (vi) Gênero
e (vii) Histórico de cirurgia cardíaca (NIH, Acesso 2024 ). Neste contexto, alguns dos
maiores desafios são a individualidade do ritmo, frequência e atividade cardíaca, já que
não necessariamente o padrão de arritmia analisado em um indivíduo será igual ao padrão
de outro (PANDEY; JANGHEL, 2021) e mesmo o padrão de um indivíduo pode variar
dependendo da atividade que estiver exercendo, seja dormindo, em repouso, caminhando
ou correndo.

O desafio de detecção de arritmia cardíaca a partir de dados de ECG já vêm sendo
explorado na literatura com o uso de modelos computacionais baseados em aprendizado de
máquina clássicos, como a aplicação de k vizinhos mais próximos (KNN) (KUTLU; KUN-
TALP, 2011), máquina de vetores de suporte (SVM) (KUMAR; PACHORI; ACHARYA,
2017), árvore de decisão (DT) (LIN; WANG; CHUNG, 2010) e classificadores bayesianos
(ABAWAJY; KELAREV; CHOWDHURY, 2013). Porém os esforços têm se voltado para
detecção de arritmia cardíaca a partir de redes neurais profundas (EBRAHIMI et al., 2020;
ANSARI et al., 2023), com o objetivo de eliminar a necessidade da extração manual de
atributos, que geralmente exige conhecimento especializado (ANSARI et al., 2023).

Desta forma, para resolver alguns dos desafios mencionados foram propostas diversas
abordagens como em (NG et al., 2023) que propõe o uso de uma Rede Neural Convolucional
Siamesa utilizando segmentos de 30 segundos de dados de ECG através de uma abordagem
de alternância de domínio entre bases de dados e pré-treinamento do classificador e então
ajustando no novo domínio, já Chen et al utiliza uma combinação de uma rede neural
convolucional (CNN) com uma rede Long Short-Term Memory (LSTM) para classificação
de segmentos de 10 segundos de sinais de ECG em 6 classes distintas, em (KUMAR et al.,
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2022a) é apresentado uma arquitetura que combina camadas convolucionais com camadas
Bidirectional LSTM (BiLSTM) e tem como dados de entrada tanto segmentos de sinais
ECG, quanto intervalos RR (RRI) e características contextuais do paciente como: tipo de
atividade que está exercendo e posição do corpo.

Apesar das performances promissoras nas abordagens citadas acima, nenhuma delas
considera a aplicação das informações de sinais ECG do usuário num formato intra-paciente
levando em consideração as individualidades do comportamento de ritmo, frequência e
atividade cardíaca.

Sendo assim este estudo vem para investigar os diferentes padrões de comportamento
do eletrocardiograma presentes em diferentes indivíduos com o objetivo de reduzir a
confusão de classificação de tipos de arritmia cardíaca considerando suas especificidades a
partir de modelos computacionais baseados em aprendizado de máquina, utilizando dados
de eletrocardiogramas (ECG) numa abordagem intra-paciente.

1.2 Objetivos

1.2.1 Objetivo Geral

Projetar, implementar e avaliar o emprego de técnicas de pré-processamento e
modelos computacionais baseados em aprendizado de máquina capazes de, a partir de
dados de ECG identificar a ocorrência de arritmia cardíaca de forma intra-paciente.

1.2.2 Objetivos Específicos

• Investigar bases de dados que possuem dados de ECG de usuários separados por
indivíduo ou pacientes (ex. CACHET-CADB (KUMAR et al., 2022b)).

• Avaliar diferentes métodos de pré-processamento de dados de ECG;

• Avaliar o desempenho de diferentes modelos inteligentes supervisionados para detec-
ção de arritmia cardíaca a partir de métricas já estabelecidas na área como Acurácia,
Precisão, Revocação e F1-Score, comparado-as com as métricas relatadas de outros
trabalhos encontrados na literatura.

• Investigar parâmetros e hiper-parâmetros dos modelos computacionais baseados em
aprendizado de máquina mais adequados para o problema proposto.

1.3 Organização do texto

No Capítulo 2 são apresentados os fundamentos teóricos necessários para compre-
ensão dos conceitos tratados neste trabalho. O capítulo descreve conceitos da cardiologia
suas sub-áreas, os profissionais responsáveis e suas atividades, exames para detecção de
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doenças, em especial a arritmia cardíaca e então detalha seu surgimento e diagnóstico,
a importância e composição do sinal de eletrocardiograma, para então comentar como
são tratados esses sinais através de abordagens de processamento digital de sinais como
Transformada de Fourier e Wavelet e por fim uma breve descrição das arquiteturas e
modelos inteligentes usados no estado da arte para identificação de arritmia.

No Capítulo 3, detalham-se alguns trabalhos relacionados que apresentaram bons
resultados na área para bases de dados iguais ou similares, quais abordagens de pré-
processamentos são adequadas e apresentaram bons resultados e quais arquiteturas tem
boa performance na classificação de sinais ECG em contexto intra-paciente.

No Capítulo 4 trata da metodologia utilizada nos experimentos deste trabalho, bem
como a proposta de sistema, a base de dados utilizada, os pré-processamentos estudados
na literatura que fazem sentido com o proposto, um modelo baseline que apresentou bons
resultados em trabalhos anteriores e por fim as arquiteturas baseadas em redes profundas
utilizadas nos testes.

No Capítulo 5 são descritos os resultados dos treinamentos e avaliações dos modelos
propostos para o problema, a configuração experimental de como o treinamento foi
conduzido a fim de não haver preferências por um modelo A ou B, uma análise de
classificação intra-usuário com o modelo que apresentou os melhores resultados e então
um discussão sobre os resultados alcançados.

Por fim no capítulo 6 são levantadas algumas considerações a cerca das comparações
feitas nos experimentos, vantagens da abordagem utilizada, alguns pontos a serem levados
em consideração que acarreta uma baixa performance de forma geral e sugestão de próximos
passos da pesquisa em questão como uso dados de outros tipos para agregar informação
contextual.
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2 FUNDAMENTAÇÃO TEÓRICA

Neste capítulo são descritos os fundamentos necessários para compreensão deste
trabalho. Na Seção 2.1 estão inclusos os conceitos de cardiologia, ocorrência de anomalias
que afetam o coração, métodos utilizados para diagnóstico de arritmia cardíaca como o ECG
e o uso de dados ambulatoriais para enriquecimento do diagnóstico de arritmias cardíacas.
Na Seção 2.2 é apresentada uma breve descrição dos métodos de processamento de sinais de
ECG como Transformada de Fourier de Tempo Curto. Na Seção 2.3 são descritos os tipos
de aprendizagem de máquina e como podem ser utilizados para classificação de arritmia
cardíaca. Por fim, na Seção 2.4 são detalhados os modelos de aprendizagem de máquina
conhecidos como Redes Neurais artificiais, desde seu funcionamento até os arquiteturas
mais utilizadas para diagnóstico de arritmias, dentre elas as CNNs e LSTMs.

2.1 Cardiologia

A cardiologia é a área da medicina responsável pelo estudo, prevenção e tratamento
de patologias que acometem o coração e os vasos sanguíneos, podendo ser divida em 2
principais sub-áreas: Cardiologia Clínica ou Não-invasiva e Cardiologia Invasiva (H9J,
2020).

Os cardiologistas clínicos são os profissionais que realizam os atendimentos dos
pacientes para diagnosticar e orientar sobre exames para então sugerir os tratamentos
necessários. Entre estes exames está o Eletrocardiograma (ECG) que se trata de um exame
clínico que avalia a atividade elétrica do coração por meio de eletrodos. Com os dados
obtidos o cardiologista pode verificar se está havendo ou não alguma anomalia no ritmo
cardíaco do indivíduo (LAVOISIER, 2021).

Segundo (CARNEIRO et al., 2012), a arritmia cardíaca é resultado de uma anor-
malidade na geração ou condução do impulso elétrico levando a uma contração não rítmica.
Ainda segundo Carneiro et al. o diagnóstico inicia-se com análise do histórico clínico do
paciente, então a realização de um exame físico e com o registro eletrocardiográfico (ECG)
durante sua ocorrência.

Figura 1 – Exemplo de ECG normal
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O sinal ECG é reconhecido pelo padrão de onda retratado pelas letras P-QRS-T, a
onda em si é referenciada como complexo QRS (TEICH et al., 2000) como ilustrado na
Figura 2. A onda P representa a despolarização atrial e subsequente contração, o complexo
QRS compreende 3 pontos e reflete a despolarização ventricular, enquanto a onda T
representa o período de repolarização ventricular e reflete que o miocárdio ventricular
retornou ao repouso (KINGSLEY; LEWIS; MARSON, 2005).

Figura 2 – Complexo QRS

Apesar de ser um dos principais métodos para detecção de arritmia cardíaca, o
ECG não apresenta todos os detalhes necessários para detecção automática dessa doença,
ocasionando muitos falsos positivos quando capturados de pacientes em ambiente livre
(KUMAR et al., 2022a), ainda segundo Kumar et al. 62% dos casos de falso-positivos são
relacionados com variáveis ambulatoriais de contexto do paciente, como atividade física
sendo realizada, mudança de posição do corpo e realização de movimentos com aceleração
súbita. Assim, faz-se desejável o uso destas informações com o fim de enriquecimento da
qualidade da detecção automática de arritmia cardíaca.

2.2 Processamento Digital de Sinais

Processamento Digital de Sinais (PDS) é uma área do conhecimento que compre-
ende teoria, aplicações, algoritmos e implementações fundamentais de processamento ou
transferência de informação contidas em diferentes formatos, podendo ser físico, simbó-
lico ou abstrato amplamente designados como sinais e que usam matemática estatística
e computacional, técnicas para representação, modelagem, análise, síntese, descoberta,
sensoriamento, aquisição, extração de características para se ter o entendimento de um
fenômeno que está sendo verificado (MOURA, 2009).

Para realizar essa extração de informações dos dados primeiro ele deve ser captura-
dos por um sensor e então processado de uma maneira que agregue informação ou que o
torne mais amigável para um profissional da área em questão possa analisá-lo de forma
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mais eficiente e então aplicar técnicas de PDS, enriquecendo com informações para então
o diagnóstico ou sugestão de diagnóstico seja feito de forma confiável.

O sinal ECG geralmente possui muitas oscilações causadas seja pelas variáveis de
contexto ou por mal posicionamento dos eletrodos. Os ruídos no sinal pode causar erro na
avaliação sobre o paciente e reduz a confiança do diagnóstico, para isto é recomendado a
aplicação de alguns dos métodos processamento de sinais de como filtro de Butterworth
(KUMAR et al., 2022a) para remoção de interferências de baixa frequência.

Também são usadas outros métodos para processamento do ECG com o objetivo de
enriquecimento de informações como o uso transformada de Fourier (HUANG et al., 2019;
RUBIN et al., 2018; XIA et al., 2018) para análise de frequência e amplitude de ondas com
características variáveis ao longo do tempo e a transformada Wavelet (RAJPUT et al.,
2019) usada para descrever características morfológicas do ECG representando informações
de tempo e frequência em diferentes resoluções.

2.2.1 Transformada de Fourier de Tempo Curto

A Transformada de Fourier de Tempo de Discreto ou de Tempo Curto, do inglês
Short-Time Fourier Transformation ou STFT, é uma técnica para a análise de frequência
em uma distribuição de sinal, ou seja, resulta nas frequências decompostas a partir do
tempo. A análise é baseada em janelas deslizantes de tempo curto, portanto mostra
características de frequência do sinal.

De acordo com Haykin e Van Veen a STFT pode ser usada para computar eficien-
temente a saída de um sistema caracterizado por uma resposta ao impulso de tamanho
finito. Sistema de tempo curto são frequentemente usados para filtrar sinais e as saídas
dos filtros relacionam-se com a entrada através da soma de convolução (HAYKIN; VEEN,
2001).

Figura 3 – Exemplo de transformada de Fourier
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2.3 Aprendizado de Máquina

Aprendizado de Máquina (AM), Aprendizado Indutivo ou Machine Learning, é
uma área da computação, mais especificamente da Inteligência Artificial, em que segundo
Mitchel em (MITCHELL, 1997) trata da capacidade de melhorar o desempenho na
realização de alguma tarefa por meio da experiência. Em outras palavras, o software
aprende, a partir dos eventos vistos anteriormente, a resolver problemas similares aos
de sua base de conhecimento melhorando sua eficiência de acordo com a quantidade e a
qualidade dos exemplos apresentados a ele.

Os modelos inteligentes baseados em AM são beneficiados pela aplicação de algo-
ritmos de PDS, mesmo que seja possível passar dados sem processamento para o modelo,
geralmente um modelo treinado com dados enriquecidos obtém um melhor desempenho
(ZHANG; ZHANG; YANG, 2003). Sinais ECGs são suscetíveis a ruído e artefatos que
afetam o formato de onda e a precisão da análise, portanto técnicas de processamento de
sinais robustas se mostram necessárias para uma interpretação confiável (ANSARI et al.,
2023).

2.3.1 Tipos de Aprendizado

Os tipos de aprendizado divergem entre si em vários aspectos, dentre eles o formato
da base de conhecimento, avaliação da eficiência do modelo inteligente e tipos de problemas
capazes de serem resolvidos. Entre eles podem ser definidos 3 tipos principais de aprendizado
de máquina: Aprendizado Supervisionado, Aprendizado Não-Supervisionado e Aprendizado
por Reforço (LUDERMIR, 2021).

O Aprendizado Supervisionado envolve a aprendizagem de um modelo a partir dos
exemplos de suas entradas e saídas. Da classificação de conteúdo em imagens e detecção
de eventos sonoros são problemas clássicos deste tipo de aprendizado, no contexto deste
trabalho a detecção de arritmia cardíaca está contida neste tipo de aprendizado, mais
especificamente em classificação supervisionada.

O Aprendizado Não-Supervisionado envolve a aprendizagem de padrões nos eventos
da base de conhecimento, quando não são fornecidos valores de saída específicos. Por
exemplo, uma loja de departamentos pode agrupar diferentes tipos de clientes que a
frequentam, a partir de suas preferências de compra.

O Aprendizado por Reforço, neste tipo um agente inteligente deve aprender uma
política a partir de do sucesso e do fracasso, obtendo recompensas e castigos de acordo
com suas ações. Por exemplo, no jogo de xadrez, o modelo inteligente iria ter como entrada
as regras do jogo, jogar e no fim iria receber sua recompensa ou punição de acordo com
seu desempenho.
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Figura 4 – Tipos de Aprendizado de Máquina

2.3.2 Aprendizado Supervisionado

O aprendizado supervisionado, como dito anteriormente, trata da tentativa do
encontro do modelo que melhor descreve o domínio que se está tratando, tendo suas
entradas em forma de características do problema e sua saída em forma de uma ou mais
classes ou valor numérico. A forma da saída varia de acordo com o tarefa em questão, que
são a classificação e regressão (BRINK; RICHARDS; FETHEROLF, 2016).

2.3.3 Classificação Supervisionada

Nesta tarefa, o modelo possui o objetivo de, a partir dos exemplos na base de dados,
realizar a inferência de qual classe ou categoria o novo exemplo melhor se encaixa ou se
assemelha, com este exemplo sendo classificado com uma ou mais das classes conhecidas
(LUDERMIR, 2021).

Neste tipo de tarefa, o modelo inteligente é treinado com as características dos
exemplos do domínio de interesse e com sua(s) classe(s), se ajustando de acordo com o
erro que apresenta.

Dentre as abordagens de modelos baseados em classificação supervisionada temos
os métodos simbólicos, conexionistas, genéticos e estocásticos para aprendizado de máquina
(LUGER, 2013). De acordo com Ansari et al. os modelos conexiostas são os que vêm
apresentando os resultados no estado do arte nas tarefas de detecção e classificação de
arritmia a partir de sinais ECG.

2.3.4 Modelos Conexionistas

Modelos neurais ou sistemas conexionistas utilizam de sistemas de componentes
simples por meio de um processo de adaptação pelo qual as conexões entre os componentes
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Figura 5 – Exemplo de Classificação.
Fonte: (COCK, 2015)

são ajustadas, portanto o processamento nesses sistemas é distribuído por meio de conjuntos
de camadas de neurônios artificiais (LUGER, 2013).

2.4 Redes Neurais Artificiais

Em (BRAGA; FERREIRA; LUDERMIR, 2007), é descrito que as Redes Neural
Artificiais, ou simplesmente RNA, são sistemas paralelos distribuídos compostos por
unidades de processamento simples (neurônios artificiais) que calculam determinadas
funções matemáticas (normalmente não-lineares). RNAs são modelos inteligentes baseados
em Aprendizado de Máquina Conexionista que passam pela fase de aprendizagem, em que
o conjunto de exemplos é apresentado para a rede, a qual extrai características necessárias
para representar a informação fornecida.

2.4.1 Neurônio Artificial

O modelo proposto por Rosenblatt em (ROSENBLATT, 1958), conhecido como
perceptron, ou neurônio artificial, era composto por um conjunto de variáveis de entrada,
um conjunto de pesos vinculado a cada variável de entrada e por uma função de ativação.
Embora essa topologia original possua três níveis, ela é conhecida como perceptron de
camada única, já que somente o nível de saída apresenta propriedades adaptativas.

O neurônio possui a limitação de que somente é possível ter um bom desempenho
se o problema em que ele está sendo utilizado for linearmente separável e para situações
não linearmente separáveis com o XOR não é possível de ser solucionar com um único
neurônio (NITTA, 2003). Para resolver este problema, foram propostas as Rede Perceptron
de Múltiplas Camadas.
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Figura 6 – Neurônio Perceptron.
Fonte: (DUKOR, 2018)

2.4.2 Redes Perceptron de Múltiplas Camadas

As Redes Perceptron de Múltiplas Camadas(MLP, do inglês multilayer perceptron)
apresentam uma ou mais camadas intermediárias de neurônios artificiais e uma camada
de saída (FACELI et al., 2011). Segundo Cybenko em (CYBENKO, 1989), uma rede com
uma camada intermediária pode implementar qualquer função contínua. A utilização de
duas camadas intermediárias permite a aproximação de qualquer função (DUDA; HART;
STORK, 2012).

Neste modelo inteligente, a rede possui 3 partes fundamentais: a camada de entrada,
uma ou mais camadas ocultas e a camada de saída. A camada de entrada é onde as
características presentes na base de conhecimento serão apresentadas à rede MLP, então
estes atributos de entrada são processados nas camadas ocultas e a rede apresenta uma
resposta na camada de saída, é comum que o número de neurônios na camada de saída
esteja associado a uma das classes presentes no conjunto de dados (caso seja um problema
de classificação) e tenha apenas 1 neurônio se for uma tarefa de regressão (FACELI et al.,
2011).

Para treinamento de redes neurais em problemas de classificação supervisionada é
mais comum que seja usado o algoritmo de retro-propagação proposto por (RUMELHART
et al., 1988).

2.4.3 Algoritmo Retro-propagação

O Algoritmo de Retro-propagação, por ser supervisionado, utiliza pares de entradas
e saídas para, por meio de um mecanismo de correção de erros, ajustar os pesos da rede. O
treinamento ocorre em duas fases, em que cada fase percorre a rede em um sentido. Essas
duas fases são chamadas de fase forward e fase backward. A fase forward é utilizada para
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Figura 7 – Rede Neural de Múltiplas Camadas

definir a saída da rede para um exemplo de entrada a partir de uma função de ativação. A
fase backward utiliza a saída desejada e a saída fornecida pela rede para atualizar os pesos
de suas conexões (BRAGA; FERREIRA; LUDERMIR, 2007).

Apesar de uma rede neural com duas camadas ter a capacidade de aproximar
qualquer função, alguns problemas reais estão em espaços dimensionais maiores ou terem a
necessidade de um tratamento de dados diferente, por exemplo, em imagens a localização
espacial dos pixels faz diferença durante a classificação da mesma. Dessa forma se faz
necessário tomar algumas alternativas, como por exemplo aumentar o número de camadas
ocultas, aumentar o número de neurônios nas camadas ou aplicar algum pré-processamento
nos dados de entrada para que então possam ser passados para a RNA.

2.4.4 Função de Ativação

As funções de ativação são funções que determinam o que um neurônio irá passar
durante a fase forward para o neurônio seguinte e para calcular o erro da rede durante a
fase backward. As 4 mais usadas são a Sigmóide, Tangente Hiperbólica, ReLU(Rectified
Linear Unit) e Softmax (BRAGA; FERREIRA; LUDERMIR, 2007).

A função Sigmóide, usa da Equação 2.1:

f(x) = 1
1 + e−x

(2.1)

Intuitivamente, significa que quando o logit é pequeno, a saída da função é muito
próxima a 0. Quando o logit é grande, a saída fica perto de 1. Entre esses dois extremos, a
função assume um formato de S.
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A função Tangente Hiperbólica possui um formato similar, no entanto em vez de
variar de 0 a 1, ela varia entre -1 e 1 e possui a Equação 2.2.

f(x) = tanh(x) (2.2)

A função ReLU, retorna o maior número entre a saída do neurônio e 0, tendo a
Equação 2.3.

f(x) = max(0, x) (2.3)

Softmax, Softargmax ou Função Exponencial Normalizada é uma função que possui
uma vetor de N posições de números reais como argumento de entrada e normaliza em
uma distribuição de probabilidades consistentes de N probabilidades proporcional ao
número de entradas. Isto é, antes de aplicar a softmax, o vetor pode ter quaisquer valores
arbitrários, no entanto após a aplicação do softmax os valores somarão 1, assim podem ser
interpretados como probabilidades (BISHOP, 2006), a fórmula desta função de ativação se
dá por Equação 2.4 .

σ(xj) = exj∑
i exi

(2.4)

2.4.5 Aprendizado Profundo

Aprendizado Profundo (do inglês Deep Learning) é uma sub-área de Aprendizado
de Máquina e da Inteligência Artificial, como ilustrado na Figura 8, que emprega algo-
ritmos para processar dados e imitar o processamento feito pelo cérebro humano. Foi
a partir desta área do conhecimento que tornou-se possível grandes avanços nas áreas
de visão computacional, reconhecimento de fala, processamento de linguagem natural e
reconhecimento de áudio (DSA, 2019).

Figura 8 – Aprendizado Profundo. Fonte: (CONSULTING, 2018)
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2.4.6 Rede Neural Convolucional

As Redes Neurais Convolucionais (CNN, do inglês Convolutional Neural Networks)
são modelos derivados das RNAs com um pré-processamento inspirado no córtex visual de
animais, muitos populares para abordar o tema de visão computacional (VASCONCELOS;
CLUA, 2017).

A diferença entre uma CNN e uma RNA convencional é usarem de camadas
convolucionais, cujas unidades realizam uma operação de convolução cujo filtro é aprendido
durante a otimização da rede, portanto difere de neurônios do tipo Perceptron, que produz
uma combinação linear entre as entradas e um vetor de pesos (GOODFELLOW; BENGIO;
COURVILLE, 2017). Em questão estrutural a CNN possui uma RNA, a diferença consta
no pré-processamento dos dados que são entregues a rede neural, os dados passam pelos
filtros convolucionais e então por camadas de redução de dimensionalidade para então os
dados serem passados para a RNA de fato, como pode ser visto na Figura 9.

Figura 9 – Arquitetura de uma Rede CNN. Adaptado de (VEEN, 2016)

As camadas de redução de dimensionalidade, também conhecidas como camadas de
pooling, tem como função substituir a saída da camada convolucional com uma estatística
calculada a partir das saídas adjacentes (GOODFELLOW; BENGIO; COURVILLE, 2017),
por exemplo a variação Average Pooling retorna a média das saídas dentro de uma
vizinhança retangular. Uma ilustração pode ser visualizada na Figura 10.

Figura 10 – Ilustração de uma operação Average Pooling. Fonte: (KHOSLA, 2023)
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2.4.7 Transferência de Aprendizado

A arquitetura CNN é uma das mais conhecidas atualmente tanto para problemas
de visão computacional e pode ser utilizada sem grandes perdas de performance em
problemas de processamento de sinais. Porém, o seu uso apresenta alguns desafios como
necessidade de poder computacional para treinar os milhares de parâmetros pertencentes
a rede e necessidade de uma base de dados grande e robusta o suficiente para que não
haja sub-ajuste do modelo aos dados. Segundo Silva (2018) , a capacidade de convergência
de uma CNN é influenciada pela inicialização de seus pesos ao iniciar o seu treinamento.
Por isso, a etapa de definir valores iniciais é importante para obtenção de bons resultados,
ainda que acabe tornando-se subjetiva a depender do conhecimento de quem a manipula
(SANTOS et al., 2019).

Uma das soluções propostas é o uso de pesos obtidos a partir de um treinamento
prévio em outro banco de dados para inicializar um novo modelo. Essa abordagem é
conhecida como transferência de aprendizado. Dessa maneira, a inicialização dos pesos
é efetiva e o modelo pode convergir mais rápido exigindo menos dados, além de poder
ser utilizado para problemas que compartilham similaridades (SANTOS et al., 2019;
VOGADO et al., 2019). Utilizando desta solução é possível diminuir a necessidade de
retreinar todos os parâmetros, bem como utilizar as configurações já existentes na rede
previamente (YOSINSKI et al., 2014).

Várias arquiteturas CNN foram treinadas no banco de imagens ImageNet (DENG
et al., 2009), um banco de dados com mais de 15 milhões de imagens separadas em mais
de 22 mil classes proposto em 2009. Esses pesos podem ser reutilizados em outros modelos
para classificar outras bases de dados, ao invés de inicializar os pesos com valores gerados
de forma aleatória.

Existem duas formas principais de se utilizar a transferência de aprendizado. A
primeira compreende na extração das camadas densas originais e no congelamento do
restante das camadas com seus respectivos pesos e então adicionar outra configuração de
camadas densas. A segunda forma de transferência de aprendizado é o ajuste fino que exige
o retreinamento de toda ou parte da rede original com os novos dados. Para o contexto
deste trabalho estaremos utilizando da primeira abordagem.

2.4.8 Arquiteturas CNN para transferência de aprendizado

Pesquisas na área de aprendizado profundo para classificação de imagens começou
em 2012 com a introdução da AlexNet, a qual introduziu a camada de ativação ReLU
(KRIZHEVSKY; SUTSKEVER; HINTON, 2012). A exploração desse tipo de rede neural
alcançou resultados mais precisos e eliminou a análise de cada imagem baseada em enge-
nharia de recursos. Logo, outras arquiteturas apareceram, tais como, ResNet, MobileNet,
e outras, as quais introduziram características eficientes para classificação de imagens.
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2.4.8.1 VGG

Proposta em 2014 por Simonyan e Zisserman, venceu a competição ImageNet
daquele ano com acurácia Top 5 de 92.7%, em seu trabalho propuseram seu uso com
variação de profundidade de 16 ou 19 camadas com aproximadamente 138 milhões de
parâmetros. Uma visão geral de sua estrutura pode ser visualizada na Imagem 11. Na
construção deste modelo, foi levado em consideração o uso de filtros convolucionais 3x3 e
camadas de pooling de 2x2 ao longo de toda a sua arquitetura em detrimento do tamanho
do modelo.

Figura 11 – Arquitetura VGG16

2.4.8.2 ResNet

ResNet, também conhecida como rede residual, foi apresentada for He et al. (2016)
quando venceu a competição ImageNet daquele ano com acurácia Top 5 de 94.29%
utilizando aproximadamente um total de 25 milhões de parâmetros. Comparada a outras
arquiteturas, como a Inception, ela acaba sendo muito mais “profunda”, pois ela pode
atingir até 152 camadas. A ResNet possui uma conexão única chamada de conexão residual,
que é uma conexão aplicada entre as camadas convolucionais que garante que durante a
execução da retropropagação, os pesos aprendidos das camadas anteriores não anteriores,
diminuído o decaimento do gradiente. O principal benefício desta rede é o uso destas
conexões, pois possibilita a utilização de muitas camadas, além de diminuir a quantidade
de parâmetros extras. As principais desvantagens são a utilização de tamanhos únicos
para filtros para que possa ser efetuada a soma em cada bloco residual e a necessidade de
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treinamento com grandes conjuntos de dados. Três versões desta rede foram apresentadas
e elas diferem no número de camadas: ResNet50, ResNet101 e ResNet152.

2.4.8.3 MobileNet

O modelo MobileNet foi proposta por Howard (2017) e é uma arquitetura de rede
neural convolucional projetada para ser leve e eficiente para aplicativos de visão móveis e
integrados. Difere de outros modelos em termos de design e casos de uso devido às suas
características e vantagens únicas.

Ao utilizar convoluções separáveis em profundidade, o modelo MobileNet alcança
um bom equilíbrio entre precisão e eficiência. Ele pode alcançar uma precisão semelhante
a modelos maiores e mais caros computacionalmente, exigindo menos recursos, tornando-o
adequado para dispositivos com recursos limitados, como telefones celulares e sistemas
integrados. Essa escolha de design permite inferência em tempo real em dispositivos com
poder computacional limitado.

Outra vantagem do modelo MobileNet é sua flexibilidade e escalabilidade. Ele oferece
um parâmetro chamado "multiplicador de largura"que permite aos usuários negociar entre
tamanho e precisão do modelo. Ao ajustar o multiplicador de largura, pode-se controlar
o número de canais em cada camada da rede, aumentando ou diminuindo a escala do
modelo. Essa flexibilidade permite que o modelo MobileNet seja facilmente personalizado
para diferentes casos de uso e cenários de implantação, acomodando uma ampla gama de
requisitos computacionais.
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3 TRABALHOS RELACIONADOS

Diversos trabalhos vêm atuando na identificação automática de arritmia cardíaca
em sinais ECG a partir de modelos inteligentes baseados em aprendizado de máquina,
havendo uma tendência a utilização de aprendizado profundo nesta tarefa (ANSARI et al.,
2023), entre as arquiteturas mais utilizadas estão as Redes Neurais Convolucionais (CNN),
Redes Neurais Recorrentes (RNN), Redes Long Short-term Memory (LSTM), Unidade
Recorrente Fechada ou Gated Recurrent Unit (GRU), as Redes Profundas de Crenças ou
Deep Belief Network e as redes Transformers (ANSARI et al., 2023).

Em (HUANG et al., 2019) é utilizado um modelo baseado em CNN a partir de
espectrogramas para realizar a detecção de arritmia cardíaca em sinais ECG e as divide
em 5 categorias Batimento Normal (NOR), Bloqueio do ramo esquerdo do feixe de His
(LBB), Bloqueio do ramo direito do feixe de His (RBB), Contração Ventricular Prematuro
(PVC) e Contração Atrial Prematura (APC).

Ng et al. (2023) adota uma abordagem de transferência de aprendizado num
contexto few-shot para detecção de fibrilação atrial personalizada utilizando registros ECG
dos pacientes com um modelo baseado em redes neurais siamesas.

Já Kumar et al. (2022) propõe um modelo híbrido para detecção de fibrilação
atrial utilizando de camadas convolucionais 1D e em sequência camadas LSTM em cima
dos sinais ECG puros numa abordagem de captura de sinais livres a partir de dispositivos
vestíveis.
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4 METODOLOGIA

Neste capítulo é descrita a metodologia utilizada no desenvolvimento deste trabalho.
Na Seção 4.1 estão inclusos a pipeline proposta contendo o pré-processamentos dos dados,
separação de treinamento e teste destes dados para os classificadores e então a comparação
com o modelo baseline. Na Seção 4.2 será detalhado o tipo de dados utilizado pelos modelos
para classificação de arritmia, passando pelas configurações de captura dos sinais ECG.
Na Seção 4.3 serão detalhados os pré-processamentos utilizados para os sinais de ECG. Na
Seção 4.4 será detalhado qual arquitetura, já estabelecida na literatura, foi considerada
o baseline comparativo. Por fim, na Seção 4.5 serão detalhadas as topologias de redes
profundas testadas para o problema.

4.1 Proposta

A proposta desse trabalho é utilizar os dados rotulados presentes em (KUMAR et
al., 2022b) no treinamento de modelos baseados em aprendizado profundo projetados a fim
de obter um modelo capaz de identificar ausência ou ocorrência de arritmia cardíaca em
um conjunto de dados formado por sinais ECG do paciente. Um diagrama da configuração
dessa proposta, bem como a pipeline seguida neste trabalho, é ilustrada na Figura 12.

Figura 12 – Pipeline da Proposta.

Neste pipeline, será obtido o conjunto de dados formado por sinais de eletrocar-
diograma do paciente e divididos em treino e teste. Ambos os subconjuntos são pré-
processados, sendo que os sinais ECG além de normalizados é calculado o STFT. Posterior
ao pré-processamento, o modelo proposto será treinado utilizando o conjunto de dados de
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treinamento e avaliados com o conjunto de teste. Por fim, o resultado obtido do modelo
proposto será comparado ao resultado do baseline e uma análise será realizada.

4.2 Base de Dados

O conjunto de dados foi obtido a partir de Kumar et al. (2022) e consiste de 2
tipos diferentes de informações, o primeiro são os dados de ECG em paralelo a dados
contextuais compostos de informações sobre a atividade que está sendo exercida pelo
paciente, posicionamento do corpo (ex. deitado, em pé, sentado) e nível de estresse.

4.2.1 Eletrocardiograma

Os sinais ECG foram capturados ao longo de 259 dias de forma consensual de 24
pacientes e totalizam 1602 trechos de 10 segundos de sinais, capturados em uma frequência
de 1024 Hz, sob condições livres de vida e locomoção e anotados por 2 cardiologistas
qualificados em 4 classes distintas, sendo elas Fibrilação Atrial (FA), Ritmo Sinusal Regular
(RSR), Ruído e Outro em que podem ser observadas nos trechos de sinais ECG do paciente
P2 na Figura 13 e a distribuição das classes como um todo no conjunto de dados na Figura
14.

Figura 13 – Exemplos de ECG para as classes FA, RSR, Ruído e Outro para o paciente
P2. Imagem criada pelo autor.

Com base na Figura 14, pode-se observar que as classes não são igualmente dis-
tribuídas, sendo que a classe FA representa cerca de 46.63% do conjunto de dados. Essa
característica do conjunto de dados pode prejudicar o treinamento de um modelo compu-
tacionais baseado em aprendizado de máquina, pois as classes minoritárias podem acabar
sendo ignoradas devido a sua baixa representatividade no conjunto total. Portanto deverão
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ser levados em consideração alguns fatores para minimização deste desbalanceamento como
o uso de diferentes pesos para as classes.

Figura 14 – Distribuição das classes de ECG. Imagem criada pelo autor.

4.3 Pré-processamentos

Neste trabalho a etapa de pré-processamento foi realizada levando em consideração
somente os dados de eletrocardiograma da base de dados. O eletrocardiograma, como
explicado em maiores detalhes na Sub-seção 2.2, foi aplicada a Transformada de Fourier
de Tempo Curto (STFT) através das bibliotecas Scipy1 e Librosa2.

4.3.1 Processamento de Sinais

Para pré-processamento dos sinais ECG foi necessário transformar o dado em
uma representação bi-dimensional. Assim, os sinais ECG foram transformados em espec-
trogramas 2D de tempo-frequência usando a STFT descrita na Equação 4.1, onde x[n]
representa o sinal ECG e w[n] a função de janelamento. No método proposto, foi adotado
o janelamento Hanning, no qual a definição se dá pela Equação 4.2 com tamanho de janela
igual a 512, onde M se trata do número de amostras.

1 https://scipy.org
2 https://librosa.org/doc/latest/index.html
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STFTx[n] =
∞∑

n=−∞
x[n]w[n − m]e−jωn (4.1)

w(n) =

 0.5 · [1 − cos( 2πn
M−1)], se 0 ≤ n ≤ M − 1

0, senão
(4.2)

4.4 Baseline

O modelo baseline utilizado foi o proposto (NG et al., 2023), que é baseado em
Redes Neurais Siamesas e foi utilizado para realizar a extração de características do
sinal ECG e então passar para um classificador linear realizar a classificação da instância
observada, sua arquitetura é apresentada na Figura 15.

Figura 15 – Arquitura da modelo Baseline. Adaptada de (GUPTA; BHASKARPANDIT;
GUPTA, 2021).

4.5 Arquiteturas baseadas em Redes Profundas

Nesta Seção serão apresentadas as arquiteturas consideradas para treinamento
e classificação dos sinais ECG, na Sub-seção 4.5.1 serão descritos quais arquiteturas
fundacionais foram utilizadas para realizar a classificação dos sinais ECG transformados
em espectrogramas como descrita na Seção 4.3.1.

4.5.1 Modelos fundacionais

Os modelos funcionais, ou seja, aqueles em que foram utilizados as camadas de
extração de características já treinadas a partir do ImageNet, foram as versões VGG16,
ResNet50, ResNet152V2, NASNetLarge e MobileNet, disponibilizados de forma gratuita
pela API do Keras3 com um topo de rede comum composto por uma camada de achata-
mento, 2 camadas densas de configurações [512, 256] e função de ativação ReLU e então
uma camada de saída com 4 neurônios e função de ativação Softmax referente a cada uma
das classes.

3 https://keras.io/api/applications/
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5 AVALIAÇÃO EXPERIMENTAL

Neste capítulo está descrita a avaliação experimental deste trabalho. Na Seção 5.1
será apresentada a configuração experimental padrão para todos os modelos inteligentes
treinados para classificação de arritmias cardíacas a partir de sinais ECG, sendo estes
apresentados nas sub-seções adequadas. Por fim, na Seção 5.3 será apresentado uma tabela
comparativa dos modelos avaliados ao lado da linha de base a partir das métricas Precisão,
Revocação e F1-Score.

5.1 Configuração Experimental

Os testes foram realizados a partir de uma configuração experimental padrão a
todas as arquiteturas baseadas em CNN avaliadas, sendo composto um vetor de entrada
composto de 1602 exemplos de sinais ECG, que então foi inicialmente filtrado a partir de
filtro Butterworth a fim de eliminar possíveis ruídos para então ser normalizado entre 0 e 1
e então calculado a STFT para cada sinal como detalhado na Sub-seção 4.3.1.

Para fim de treinamento e avaliação do modelo foi separado 1 paciente por vez
para ser o conjunto de teste e os sinais dos demais foram utilizados para treinamento dos
modelos, resultado em 24 treinamentos e avaliações de modelos totalizando ao final 1602
classificações para cada arquitetura considerada.

A avaliação então foi feita em 2 momentos sendo o primeiro a partir da análise
do relatório de classificação e da matriz de confusão a fim de verificar a distribuição de
erros dos modelos entre as 4 classes, estes serão apresentados na sub-seções seguintes, e
por fim o cálculo das métricas de performance Precisão, Revocação e F1-Score que serão
apresentadas na Seção 5.3.

5.1.1 Configuração Padrão de Topo de Rede Neural

Como características padrões para as 5 arquiteturas de redes neurais convolucionais
profundas que foram avaliadas nos experimentos deste capítulo podemos citar o uso de 3
chamadas de sistema durante o treinamento dos modelos e 1 topo de camadas densas e de
saída comuns a todas as arquiteturas consideradas.

Sobre as chamadas de sistemas foram elas: 1) parada antecipada (early stopping)
monitorando a perda de validação com uma paciência de épocas, ou seja, se o modelo
não apresentar melhorias na variável monitorada durante 10 épocas de treinamento, este
será encerrado mesmo que não tenha alcançado o número de épocas máximo de 100; 2)
ponto de verificação (checkpoint) que salva o modelo em disco após uma época em que
a perda de validação foi reduzida, esta gravação é realizada se e somente se a perda de
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validação for reduzida não havendo reescrita de arquivo em caso de deterioração desta
métrica; e 3) Redução de Taxa de Aprendizado num Platô novamente monitorando a
perda de validação, com paciência de 4 épocas para uma redução de 50% do valor atual,
ou seja, se for detectado que nas últimas 4 épocas não houve melhora na métrica de perda
de validação, então o valor da taxa de aprendizado é reduzido pela metade.

Em questão de alterações de arquitetura dos modelos, após a camadas de extração
de características de cada arquitetura foi acrescentada uma camada de achatamento
(Flatten), uma camada densa com 512 neurônios e função de ativação ReLU, uma camada
densa com 256 neurônios e função de ativação ReLU e por fim uma camada de saída com
4 neurônios e função de ativação softmax a fim de resultar na classe inferida.

Para compilação do modelo foi considerado o otimizador Adam Ponderado, função
de perda entropia cruzada categórica e métricas de monitoramento acurácia e perda do
modelo ao longo das épocas de treinamento.

Por fim todas as arquiteturas foram avaliadas segundo seus relatórios de classificação,
matriz de confusão, precisão, revocação e F1-Score para cada 1 dos 24 sujeitos da base de
dados sob um regime de treinamento e avaliação de treinamento de 23 sujeitos e o último
para teste.

5.1.2 Arquitetura VGG16

A primeira arquitetura avaliada foi a VGG16 que apresentou nos seus relató-
rios de classificação e matriz de confusão os resultados apresentados nas tabelas 1 e 2,
respectivamente, após treinamento e inferência sobre cada paciente.

Precisão Revocação F1-Score Número de Exemplos
FA 0.96 0.96 0.96 747
RSR 0.90 0.97 0.93 615
Ruído 0.98 0.85 0.91 221
Outro 1.00 0.16 0.27 19
Acurácia 0.94 1602
Média Macro 0.96 0.73 0.77 1602
Média Ponderada 0.94 0.94 0.93 1602

Tabela 1 – Relatório de Classificação do modelo VGG16

FA RSR Ruído Outro
FA 714 33 0 0
RSR 16 598 1 0
Ruído 7 26 188 0
Outro 5 9 2 3

Tabela 2 – Matriz de confusão do modelo VGG16
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5.1.3 Arquitetura ResNet50

A segunda arquitetura avaliada foi a ResNet50 que apresentou nos seus relató-
rios de classificação e matriz de confusão os resultados apresentados nas tabelas 3 e 4,
respectivamente, após treinamento e inferência sobre cada paciente.

Precisão Revocação F1-Score Número de Exemplos
FA 0.97 0.87 0.92 747
RSR 0.79 0.99 0.88 615
Ruído 0.99 0.71 0.83 221
Outro 1.00 0.21 0.35 19
Acurácia 0.88 1602
Média Macro 0.94 0.69 0.74 1602
Média Ponderada 0.90 0.88 0.88 1602

Tabela 3 – Relatório de Classificação do modelo ResNet50

FA RSR Ruído Outro
FA 648 99 0 0
RSR 7 607 1 0
Ruído 7 56 158 0
Outro 5 10 0 4

Tabela 4 – Matriz de confusão do modelo ResNet50

5.1.4 Arquitetura ResNet152V2

A terceira arquitetura avaliada foi a ResNet152V2 que apresentou nos seus rela-
tórios de classificação e matriz de confusão os resultados apresentados nas tabelas 5 e 6,
respectivamente, após treinamento e inferência sobre cada paciente.

Precisão Revocação F1-Score Número de Exemplos
FA 0.95 0.95 0.95 747
RSR 0.93 0.94 0.93 615
Ruído 0.95 0.97 0.96 221
Outro 0.83 0.26 0.40 19
Acurácia 0.94 1602
Média Macro 0.91 0.78 0.81 1602
Média Ponderada 0.94 0.94 0.94 1602

Tabela 5 – Relatório de Classificação do modelo ResNet152V2

5.1.5 Arquitetura NASNetLarge

A NASNetLarge foi a quarta arquitetura avaliada e apresentou nos seus relató-
rios de classificação e matriz de confusão os resultados apresentados nas tabelas 7 e 8,
respectivamente, após treinamento e inferência sobre cada paciente.
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FA RSR Ruído Outro
FA 707 34 6 0
RSR 34 577 3 1
Ruído 3 3 215 0
Outro 4 8 2 5

Tabela 6 – Matriz de confusão do modelo ResNet152V2

Precisão Revocação F1-Score Número de Exemplos
FA 0.92 0.76 0.83 747
RSR 0.75 0.92 0.82 615
Ruído 0.96 0.95 0.95 221
Outro 0.60 0.47 0.53 19
Acurácia 0.84 1602
Média Macro 0.81 0.77 0.78 1602
Média Ponderada 0.85 0.84 0.84 1602

Tabela 7 – Relatório de Classificação do modelo NASNetLarge

FA RSR Ruído Outro
FA 564 180 2 1
RSR 42 565 5 3
Ruído 5 5 209 2
Outro 4 5 1 9

Tabela 8 – Matriz de confusão do modelo NASNetLarge

5.1.6 Arquitetura MobileNet

Por fim, a MobileNet foi a quinta e última arquitetura avaliada, apresentando nos
seus relatórios de classificação e matriz de confusão os resultados apresentados nas tabelas
9 e 10, respectivamente, após treinamento e inferência sobre cada paciente.

Precisão Revocação F1-Score Número de Exemplos
FA 0.99 0.94 0.96 747
RSR 0.92 0.98 0.95 615
Ruído 0.99 0.98 0.98 221
Outro 1.00 0.63 0.77 19
Acurácia 0.96 1602
Média Macro 0.97 0.88 0.92 1602
Média Ponderada 0.96 0.96 0.96 1602

Tabela 9 – Relatório de Classificação do modelo MobileNet

5.2 Análise de classificação Intra-usuário

Para este experimento foi utilizada a arquitetura da MobileNet para se analisar
seus resultados de forma usuário por usuário, tendo em vista que objetiva-se uma alta
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FA RSR Ruído Outro
FA 701 45 1 0
RSR 8 605 2 0
Ruído 0 5 216 0
Outro 2 5 0 12

Tabela 10 – Matriz de confusão do modelo MobileNet

performance intra-usuário, assim os resultados para cada usuário pode ser visualizado na
Tabela 11, a tabela apresenta então o resultado do modelo MobileNet para cada um dos
24 pacientes presentes na base de dados mostrando a quantidade de exemplos por classe
(Suporte), a métrica F1-Score para cada classe, se houver, e então a Acurácia geral do
paciente em questão, quando não houver casos para aquela classe nos registros do Paciente
será considerado "Não se aplica"(n.a.).

Paciente Suporte FA RSR Ruído Outro Acurácia
P01 208 1.0 n.a. 1.0 1.0 1.0
P02 70 0.67 0.99 1.0 1.0 0.99
P03 139 0.98 n.a. 1.0 n.a. 0.96
P04 20 0.92 0.92 1.0 n.a. 0.95
P05 91 0.99 n.a. 1.0 n.a. 0.98
P06 44 1.00 0.99 n.a. 0.86 0.98
P07 82 0.93 0.99 1.0 1.0 0.99
P08 33 n.a. 1.0 1.0 n.a. 1.0
P09 107 n.a. 0.98 0.67 0.0 0.96
P10 32 n.a. 1.0 1.0 n.a. 1.0
P11 75 n.a. n.a. n.a. 1.0 1.0
P12 25 n.a. 1.0 1.0 n.a. 1.0
P13 31 1.0 1.0 1.0 1.0 1.0
P14 94 n.a. 1.0 1.0 n.a. 1.0
P15 95 0.98 n.a. n.a. n.a. 0.98
P17 178 0.99 n.a. 1.0 n.a. 0.99
P18 118 n.a. 1.0 1.0 n.a. 1.0
P19 54 1.0 1.0 1.0 n.a. 1.0
P21 10 n.a. 1.0 1.0 1.0 1.0
P23 14 n.a. 1.0 1.0 n.a. 1.0
PNSR-1 18 n.a. 0.91 0.96 n.a. 0.94
PNSR-3 33 n.a. 0.98 1.0 n.a. 0.97
PNSR-4 31 n.a. 0.98 1.0 n.a. 0.97

Tabela 11 – Avaliação MobileNet por Paciente.

5.3 Resultados e Discussões

Tendo sido treinados e avaliados com os mesmos conjuntos de dados pré-processados,
o modelo Baseline e os modelos profundos baseados em transferência de aprendizado tem
seus resultados comparadas na tabela 12.



50

Arquitetura Precisão (%) Revocação (%) F1-Score (%)
Baseline 96.11 81.82 88.39
VGG16 96.11 73.42 76.95
ResNet50 93.79 69.50 74.28
ResNet152V2 91.44 78.02 81.02
NASNetLarge 80.71 77.33 78.42
MobileNet 97.22 88.28 91.67

Tabela 12 – Tabela Comparativa entre modelos avaliados

Esse resultado mostra que a MobileNet obteve maiores F1-Score entre todas
as arquiteturas testadas sob as mesmas condições de pré-processamento, arquitetura,
treinamento e avaliação. Este é um resultado curioso devido ao fato de ser a rede de menor
profundidade entre as baseadas em transferência de aprendizado, isso pode ter sido uma
vantagem já que devido ao fato da base de dados ter poucos exemplos, apenas 1602, não
seria possível treinar um modelo profundo sem uso de transferência de aprendizado com
uma performance considerável, como foi o caso com o modelo Baseline.

Interessante também notar que não só a MobileNet superou as demais arquiteturas
num contexto global como também no contexto local de cada uma das classes consideradas,
obtendo um desempenho de 0.96 na classe Fibrilação Atrial (FA), 0.95 na classe Ritmo
Sinusal Regular (RSR), 0.98 na classe Ruído e 0.77 na classe Outro.

Ainda vale notar que a classe Outro e Ruído não tem um comportamento padrão
como as classes Fibrilação Atrial (FA) e Ritmo Sinusal Regular (RSR), já que são classes
que indicam ou erro de leitura ou ocorrência de outros fenômenos que não comportam nas
demais classes, em especial a classe Outro gerou resultados baixos para todos os modelos,
isso pode ser devido ao fato de se ter uma baixa representatividade de exemplos num geral,
representado apenas 0.74% da base total, como pelo seu comportamento irregular.
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6 CONCLUSÕES

Através do estudo de arquiteturas e técnicas na literatura combinado com diversos
testes e análises foi possível obter uma rede rasa capaz de atingir uma acurácia de 94.42%
na classificação de sinais de eletrocardiograma em: Fibrilação Atrial, Ritmo Sinusal Regular,
Ruído e Outro.

O uso de transferência de aprendizado não só proporcionou uma maior robustez
da rede, mas também mitigou o problema do desbalanceamento de classes que existia no
conjunto de treinamento. Um indicativo desse último resultado foi sua capacidade de obter
um bom valor de acurácia para todas as classes e não se ajustando somente para a classe
majoritária (Fibrilação Atrial).

A fim de avaliar os modelos propostos, foi considerado um baseline para referência.
Esse baseline simplesmente consistiu em modelo de rede neural convolucional treinado com
as janelas STFT extraídas do conjunto de dados. A comparação resultou em um F1-Score
de 3.28% maior para o modelo MobileNet em relação ao modelo baseline, indicando que
sua configuração e treinamento foram satisfatórios.

Um ponto evidenciado é a baixa performance obtida não só pelo MobileNet, em
classificar as classes Ruído e Outro já que estes não apresentam um comportamento padrão
e não há exemplos suficientes para entender bem os diferentes fenômenos.

Um próximo passo desse trabalho seria considerar os dados contextuais para realizar
a classificação do evento, já que podem trazer maior entendimento do que está ocorrendo
com o usuário naquele momento, detectando posições do corpo, entendimento de variações
no estado da pessoa visto que o comportamento do sinal ECG de uma pessoa deitada é
diferente da mesma pessoa correndo mas não indica que está ocorrendo uma irregularidade
no comportamento de seu coração. Nesse caso teria que treinar outro modelo para este
propósito e considerar como realizar a comunicação entre os modelos finais a fim de haver
essa interação entre variáveis contextuais e sinais eletrocardiográficos.
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