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RESUMO

Souza, M. V. F. Deteccao de Arritmia Cardiaca a partir de Sinais ECG numa
Abordagem Intra-paciente. 2024. 56p. Monografia (MBA em Inteligéncia Artificial e
Big Data) - Instituto de Ciéncias Matematicas e de Computagao, Universidade de Sao
Paulo, Sao Carlos, 2024.

Sistole e diastole se referem a ondas elétricas emitidas pelos movimentos do coracao e sua
anormalidade pode caracterizar doenca cardiaca. Busca-se entendé-las para identificacao
de possiveis irregularidades no comportamento do coracao do paciente ou individuo. Até o
momento a previsao de irregulares ainda nao é possivel, sendo apenas deteccdo quando
esta ocorre. Um método para deteccao de arritmia cardiacas é através da andlise do sinal
de eletrocardiograma que ainda depende muito da experiéncia do examinador. Para isso é
treinado uma rede neural convolucional baseada em modelos funcionais para classificar
sinais de ECG com arritmia. 5 redes baseadas em transferéncia de aprendizado foram
treinadas a partir de uma base de dados publica, desbalanceada e rotulada de sinais ECG.
Aquela que apresentou melhor performance comparada a baseline consistindo uma rede
neural convolucional treinada do zero com sinais ECG pré-processados por transformadas
de Fourier de tempo curto usando os mesmos dados de treinamento. O modelo inteligente
final obteve um F1-Score de 91.67 % para o conjunto de teste contra 88.39% da baseline,
além de supera-la na classificacdo de cada uma das 4 classes. Observou-se também que
a aplicagao de transferéncia de aprendizado mitigou o problema de baixo niimero de
exemplos na base de dados e melhorou o aprendizado dos modelos inteligentes testados.
Assim, foi possivel treinar uma rede neural convolucional baseada na arquitetura MobileNet
capaz de detectar arritmia cardiaca a partir de sinais ECG com F1-Score maior que a
baseline definida e com ligeira dificuldade para deteccao de sinais que nao apresentam um

comportamento padrao como Ruido e Outro.

Palavras-chave: Sinais ECG. Anélise Intra-paciente. Redes Neurais Convolucionais.






ABSTRACT

Souza, M. V. F. Deteccao de Arritmia Cardiaca a partir de Sinais ECG numa
Abordagem Intra-paciente. 2024. 56p. Monograph (MBA in Artificial Intelligence and
Big Data) - Instituto de Ciéncias Matematicas e de Computagao, Universidade de Sao
Paulo, Sao Carlos, 2024.

Systole and diastole refer to electrical waves emitted by the heart’s movements and their
abnormality may characterize heart disease. The goal is to understand them to identify
possible irregularities in the behavior of the patient’s or individual’s heart. Forecasting
irregularities is not yet possible only detect them when they occur. One method for detecting
cardiac arrhythmia is analyzing the electrocardiogram signal, which still depends heavily
on the examiner’s experience. For this purpose, a convolutional neural network based on
foundational models is trained to classify ECG signals with arrhythmia. Five networks
based on transfer learning were trained from a public, unbalanced and labeled database
of ECG signals. The one that best performed was compared to a baseline consisting of
a convolutional neural network trained from scratch with ECG signals preprocessed by
short-time Fourier transformation using the same training data. The final intelligent model
obtained an F1-Score of 91.67% on the test set against 88.39% for the baseline, in addition
to outperforming it in the classification of each of the 4 classes. It was also observed that
the application of transfer learning mitigated the problem of a low number of examples in
the database and improved the understanding of the tested intelligent models. Thus, it
was possible to train a convolutional neural network based on the MobileNet foundational
model capable of detecting cardiac arrhythmia from ECG signals with F1-Score higher
than the defined baseline and with slight difficulty in detecting signals that do not present

a standard behavior such as Noise and Other.

Keywords: ECG signals. Intra-patient Analysis. Convolutional Neural Networks.
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1 INTRODUCAO

1.1 Contextualizacao, Motivacao e Lacunas

De acordo com a Sociedade Brasileira de Arritmias Cardiacas (SOBRAC), a
arritmia cardiaca ¢ uma anomalia na geracao ou na conduc¢ao do estimulo elétrico do
coragao (SOBRAC, Acesso 2024). De acordo com a Sociedade Brasileira de Cardiologia
(SBC), entre os anos de 2000 e 2018 foi registrado que 6.755.551 pessoas faleceram de
doengas cardiovasculares no Brasil (SBC, Acesso 2024 ).Ainda segundo a SBC, foi estimado
384.291 6bitos de 01 de Janeiro até o dia 14 de Dezembro de 2021, que em 2022 teria
chegado em 354.447 até o dia 17 de Novembro, tendo ultrapassado a marca de 400 até o
final do ano e que em 2023 foi de 296.000 até o dia 28 de Agosto.

Segundo National Heart, Lung and Blood Institute (NIH), os principais fatores de
risco sao: (i) Idade; (ii) Ambiente em que o individuo vive; (iii) Histérico Familiar; (iv)
Hébitos Diarios (fumo, consumo de alcool ou de drogas ilicitas); (v) Etnia; (vi) Género
e (vii) Histérico de cirurgia cardiaca (NIH, Acesso 2024 ). Neste contexto, alguns dos
maiores desafios sdo a individualidade do ritmo, frequéncia e atividade cardiaca, ja que
nao necessariamente o padrao de arritmia analisado em um individuo serd igual ao padrao
de outro (PANDEY; JANGHEL, 2021) e mesmo o padrao de um individuo pode variar
dependendo da atividade que estiver exercendo, seja dormindo, em repouso, caminhando

ou correndo.

O desafio de deteccao de arritmia cardiaca a partir de dados de ECG ja vém sendo
explorado na literatura com o uso de modelos computacionais baseados em aprendizado de
maquina cldssicos, como a aplicagdo de k vizinhos mais préximos (KNN) (KUTLU; KUN-
TALP, 2011), maquina de vetores de suporte (SVM) (KUMAR; PACHORI; ACHARYA,
2017), arvore de decisao (DT) (LIN; WANG; CHUNG, 2010) e classificadores bayesianos
(ABAWAJY; KELAREV; CHOWDHURY, 2013). Porém os esforgos tém se voltado para
detecgao de arritmia cardiaca a partir de redes neurais profundas (EBRAHIMI et al., 2020;
ANSARI et al., 2023), com o objetivo de eliminar a necessidade da extragdo manual de

atributos, que geralmente exige conhecimento especializado (ANSARI et al., 2023).

Desta forma, para resolver alguns dos desafios mencionados foram propostas diversas
abordagens como em (NG et al., 2023) que propoe o uso de uma Rede Neural Convolucional
Siamesa utilizando segmentos de 30 segundos de dados de ECG através de uma abordagem
de alternancia de dominio entre bases de dados e pré-treinamento do classificador e entao
ajustando no novo dominio, ja Chen et al utiliza uma combinacao de uma rede neural
convolucional (CNN) com uma rede Long Short-Term Memory (LSTM) para classificacao
de segmentos de 10 segundos de sinais de ECG em 6 classes distintas, em (KUMAR et al.,
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2022a) é apresentado uma arquitetura que combina camadas convolucionais com camadas
Bidirectional LSTM (BiLSTM) e tem como dados de entrada tanto segmentos de sinais
ECG, quanto intervalos RR (RRI) e caracteristicas contextuais do paciente como: tipo de

atividade que estd exercendo e posi¢cao do corpo.

Apesar das performances promissoras nas abordagens citadas acima, nenhuma delas
considera a aplicacao das informagoes de sinais ECG do usuario num formato intra-paciente
levando em consideracgao as individualidades do comportamento de ritmo, frequéncia e

atividade cardiaca.

Sendo assim este estudo vem para investigar os diferentes padroes de comportamento
do eletrocardiograma presentes em diferentes individuos com o objetivo de reduzir a
confusao de classificacdo de tipos de arritmia cardiaca considerando suas especificidades a
partir de modelos computacionais baseados em aprendizado de méaquina, utilizando dados

de eletrocardiogramas (ECG) numa abordagem intra-paciente.

1.2 Objetivos
1.2.1  Objetivo Geral

Projetar, implementar e avaliar o emprego de técnicas de pré-processamento e
modelos computacionais baseados em aprendizado de maquina capazes de, a partir de

dados de ECG identificar a ocorréncia de arritmia cardiaca de forma intra-paciente.

1.2.2  Objetivos Especificos

o Investigar bases de dados que possuem dados de ECG de usuarios separados por
individuo ou pacientes (ex. CACHET-CADB (KUMAR et al., 2022b)).

o Avaliar diferentes métodos de pré-processamento de dados de ECG;

o Avaliar o desempenho de diferentes modelos inteligentes supervisionados para detec-
¢do de arritmia cardiaca a partir de métricas ja estabelecidas na area como Acuracia,
Precisao, Revocagao e F1-Score, comparado-as com as métricas relatadas de outros

trabalhos encontrados na literatura.

o Investigar pardametros e hiper-parametros dos modelos computacionais baseados em

aprendizado de maquina mais adequados para o problema proposto.

1.3 Organizacao do texto

No Capitulo 2 sao apresentados os fundamentos tedricos necessarios para compre-
ensao dos conceitos tratados neste trabalho. O capitulo descreve conceitos da cardiologia

suas sub-areas, os profissionais responsaveis e suas atividades, exames para deteccao de
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doencas, em especial a arritmia cardiaca e entao detalha seu surgimento e diagnéstico,
a importancia e composicao do sinal de eletrocardiograma, para entao comentar como
sao tratados esses sinais através de abordagens de processamento digital de sinais como
Transformada de Fourier e Wavelet e por fim uma breve descricao das arquiteturas e

modelos inteligentes usados no estado da arte para identificacao de arritmia.

No Capitulo 3, detalham-se alguns trabalhos relacionados que apresentaram bons
resultados na darea para bases de dados iguais ou similares, quais abordagens de pré-
processamentos sao adequadas e apresentaram bons resultados e quais arquiteturas tem

boa performance na classificacao de sinais ECG em contexto intra-paciente.

No Capitulo 4 trata da metodologia utilizada nos experimentos deste trabalho, bem
como a proposta de sistema, a base de dados utilizada, os pré-processamentos estudados
na literatura que fazem sentido com o proposto, um modelo baseline que apresentou bons
resultados em trabalhos anteriores e por fim as arquiteturas baseadas em redes profundas

utilizadas nos testes.

No Capitulo 5 sao descritos os resultados dos treinamentos e avaliagoes dos modelos
propostos para o problema, a configuracao experimental de como o treinamento foi
conduzido a fim de nao haver preferéncias por um modelo A ou B, uma andlise de
classificacao intra-usuario com o modelo que apresentou os melhores resultados e entao

um discussao sobre os resultados alcancados.

Por fim no capitulo 6 sdao levantadas algumas consideracoes a cerca das comparagoes
feitas nos experimentos, vantagens da abordagem utilizada, alguns pontos a serem levados
em consideracao que acarreta uma baixa performance de forma geral e sugestao de préximos
passos da pesquisa em questao como uso dados de outros tipos para agregar informagao

contextual.
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2 FUNDAMENTACAO TEORICA

Neste capitulo sao descritos os fundamentos necessarios para compreensao deste
trabalho. Na Secao 2.1 estao inclusos os conceitos de cardiologia, ocorréncia de anomalias
que afetam o coragdo, métodos utilizados para diagnéstico de arritmia cardiaca como o ECG
e o uso de dados ambulatoriais para enriquecimento do diagnéstico de arritmias cardiacas.
Na Secao 2.2 é apresentada uma breve descricao dos métodos de processamento de sinais de
ECG como Transformada de Fourier de Tempo Curto. Na Secao 2.3 sao descritos os tipos
de aprendizagem de maquina e como podem ser utilizados para classificacao de arritmia
cardiaca. Por fim, na Secao 2.4 sao detalhados os modelos de aprendizagem de maquina
conhecidos como Redes Neurais artificiais, desde seu funcionamento até os arquiteturas

mais utilizadas para diagnostico de arritmias, dentre elas as CNNs e LSTMs.

2.1 Cardiologia

A cardiologia é a area da medicina responsavel pelo estudo, prevencao e tratamento
de patologias que acometem o coracao e os vasos sanguineos, podendo ser divida em 2
principais sub-dreas: Cardiologia Clinica ou Nao-invasiva e Cardiologia Invasiva (H9J,
2020).

Os cardiologistas clinicos sao os profissionais que realizam os atendimentos dos
pacientes para diagnosticar e orientar sobre exames para entao sugerir os tratamentos
necessarios. Entre estes exames estd o Eletrocardiograma (ECG) que se trata de um exame
clinico que avalia a atividade elétrica do coracao por meio de eletrodos. Com os dados
obtidos o cardiologista pode verificar se estd havendo ou nao alguma anomalia no ritmo
cardiaco do individuo (LAVOISIER, 2021).

Segundo (CARNEIRO et al., 2012), a arritmia cardiaca é resultado de uma anor-
malidade na geragao ou condugao do impulso elétrico levando a uma contragao nao ritmica.
Ainda segundo Carneiro et al. o diagnostico inicia-se com anélise do histoérico clinico do
paciente, entao a realizagdo de um exame fisico e com o registro eletrocardiogréafico (ECG)

durante sua ocorréncia.

Figura 1 — Exemplo de ECG normal
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O sinal ECG é reconhecido pelo padrao de onda retratado pelas letras P-QRS-T, a
onda em si é referenciada como complexo QRS (TEICH et al., 2000) como ilustrado na
Figura 2. A onda P representa a despolarizacao atrial e subsequente contragao, o complexo
QRS compreende 3 pontos e reflete a despolarizacdo ventricular, enquanto a onda T

representa o periodo de repolarizacao ventricular e reflete que o miocardio ventricular

retornou ao repouso (KINGSLEY; LEWIS; MARSON, 2005).

R

Q
S

Figura 2 — Complexo QRS

Apesar de ser um dos principais métodos para deteccao de arritmia cardiaca, o
ECG néao apresenta todos os detalhes necessarios para deteccao automatica dessa doenca,
ocasionando muitos falsos positivos quando capturados de pacientes em ambiente livre
(KUMAR et al., 2022a), ainda segundo Kumar et al. 62% dos casos de falso-positivos sdo
relacionados com variaveis ambulatoriais de contexto do paciente, como atividade fisica
sendo realizada, mudanca de posi¢ao do corpo e realizacao de movimentos com aceleragao
stubita. Assim, faz-se desejavel o uso destas informagoes com o fim de enriquecimento da

qualidade da deteccao automatica de arritmia cardiaca.

2.2 Processamento Digital de Sinais

Processamento Digital de Sinais (PDS) é uma area do conhecimento que compre-
ende teoria, aplica¢oes, algoritmos e implementac¢oes fundamentais de processamento ou
transferéncia de informacao contidas em diferentes formatos, podendo ser fisico, simbo-
lico ou abstrato amplamente designados como sinais e que usam matematica estatistica
e computacional, técnicas para representacao, modelagem, analise, sintese, descoberta,
sensoriamento, aquisicao, extragao de caracteristicas para se ter o entendimento de um
fendmeno que estd sendo verificado (MOURA, 2009).

Para realizar essa extracao de informagcoes dos dados primeiro ele deve ser captura-
dos por um sensor e entao processado de uma maneira que agregue informacao ou que o

torne mais amigavel para um profissional da area em questao possa analisa-lo de forma
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mais eficiente e entao aplicar técnicas de PDS, enriquecendo com informagoes para entao

o diagnéstico ou sugestao de diagnéstico seja feito de forma confiavel.

O sinal ECG geralmente possui muitas oscilagoes causadas seja pelas varidveis de
contexto ou por mal posicionamento dos eletrodos. Os ruidos no sinal pode causar erro na
avaliacdo sobre o paciente e reduz a confianca do diagnostico, para isto é recomendado a
aplicacao de alguns dos métodos processamento de sinais de como filtro de Butterworth

(KUMAR et al., 2022a) para remogao de interferéncias de baixa frequéncia.

Também sao usadas outros métodos para processamento do ECG com o objetivo de
enriquecimento de informagdes como o uso transformada de Fourier (HUANG et al., 2019;
RUBIN et al., 2018; XIA et al., 2018) para andlise de frequéncia e amplitude de ondas com
caracteristicas variaveis ao longo do tempo e a transformada Wavelet (RAJPUT et al.,
2019) usada para descrever caracteristicas morfolégicas do ECG representando informagoes

de tempo e frequéncia em diferentes resolucoes.

2.2.1 Transformada de Fourier de Tempo Curto

A Transformada de Fourier de Tempo de Discreto ou de Tempo Curto, do inglés
Short-Time Fourier Transformation ou STEFT, é uma técnica para a andlise de frequéncia
em uma distribuicao de sinal, ou seja, resulta nas frequéncias decompostas a partir do
tempo. A andlise é baseada em janelas deslizantes de tempo curto, portanto mostra

caracteristicas de frequéncia do sinal.

De acordo com Haykin e Van Veen a STFT pode ser usada para computar eficien-
temente a salda de um sistema caracterizado por uma resposta ao impulso de tamanho
finito. Sistema de tempo curto sdo frequentemente usados para filtrar sinais e as saidas
dos filtros relacionam-se com a entrada através da soma de convolu¢ao (HAYKIN; VEEN;
2001).

/ frequency

time

Figura 3 — Exemplo de transformada de Fourier
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2.3 Aprendizado de Maquina

Aprendizado de Méquina (AM), Aprendizado Indutivo ou Machine Learning, é
uma area da computacdo, mais especificamente da Inteligéncia Artificial, em que segundo
Mitchel em (MITCHELL, 1997) trata da capacidade de melhorar o desempenho na
realizagdo de alguma tarefa por meio da experiéncia. Em outras palavras, o software
aprende, a partir dos eventos vistos anteriormente, a resolver problemas similares aos
de sua base de conhecimento melhorando sua eficiéncia de acordo com a quantidade e a

qualidade dos exemplos apresentados a ele.

Os modelos inteligentes baseados em AM sao beneficiados pela aplicacao de algo-
ritmos de PDS, mesmo que seja possivel passar dados sem processamento para o modelo,
geralmente um modelo treinado com dados enriquecidos obtém um melhor desempenho
(ZHANG; ZHANG; YANG, 2003). Sinais ECGs sao suscetiveis a ruido e artefatos que
afetam o formato de onda e a precisao da analise, portanto técnicas de processamento de

sinais robustas se mostram necessarias para uma interpretagao confidavel (ANSARI et al.,

2023).

2.3.1 Tipos de Aprendizado

Os tipos de aprendizado divergem entre si em varios aspectos, dentre eles o formato
da base de conhecimento, avaliacao da eficiéncia do modelo inteligente e tipos de problemas
capazes de serem resolvidos. Entre eles podem ser definidos 3 tipos principais de aprendizado
de maquina: Aprendizado Supervisionado, Aprendizado Nao-Supervisionado e Aprendizado
por Reforco (LUDERMIR, 2021).

O Aprendizado Supervisionado envolve a aprendizagem de um modelo a partir dos
exemplos de suas entradas e saidas. Da classificacao de contetido em imagens e detecgao
de eventos sonoros sao problemas classicos deste tipo de aprendizado, no contexto deste
trabalho a detecgao de arritmia cardiaca estd contida neste tipo de aprendizado, mais

especificamente em classificacao supervisionada.

O Aprendizado Nao-Supervisionado envolve a aprendizagem de padrdes nos eventos
da base de conhecimento, quando nao sao fornecidos valores de saida especificos. Por
exemplo, uma loja de departamentos pode agrupar diferentes tipos de clientes que a

frequentam, a partir de suas preferéncias de compra.

O Aprendizado por Reforco, neste tipo um agente inteligente deve aprender uma
politica a partir de do sucesso e do fracasso, obtendo recompensas e castigos de acordo
com suas agoes. Por exemplo, no jogo de xadrez, o modelo inteligente iria ter como entrada
as regras do jogo, jogar e no fim iria receber sua recompensa ou punicao de acordo com

seu desempenho.
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Figura 4 — Tipos de Aprendizado de Maquina

2.3.2 Aprendizado Supervisionado

O aprendizado supervisionado, como dito anteriormente, trata da tentativa do
encontro do modelo que melhor descreve o dominio que se esta tratando, tendo suas
entradas em forma de caracteristicas do problema e sua saida em forma de uma ou mais

classes ou valor numérico. A forma da saida varia de acordo com o tarefa em questao, que

sdo a classificacao e regressao (BRINK; RICHARDS; FETHEROLF, 2016).

2.3.3 Classificacao Supervisionada

Nesta tarefa, o modelo possui o objetivo de, a partir dos exemplos na base de dados,
realizar a inferéncia de qual classe ou categoria o novo exemplo melhor se encaixa ou se

assemelha, com este exemplo sendo classificado com uma ou mais das classes conhecidas
(LUDERMIR, 2021).

Neste tipo de tarefa, o modelo inteligente é treinado com as caracteristicas dos
exemplos do dominio de interesse e com sua(s) classe(s), se ajustando de acordo com o

erro que apresenta.

Dentre as abordagens de modelos baseados em classificagdo supervisionada temos
os métodos simbdlicos, conexionistas, genéticos e estocasticos para aprendizado de maquina
(LUGER, 2013). De acordo com Ansari et al. os modelos conexiostas sdo os que vém
apresentando os resultados no estado do arte nas tarefas de deteccao e classificagao de

arritmia a partir de sinais ECG.

2.3.4 Modelos Conexionistas

Modelos neurais ou sistemas conexionistas utilizam de sistemas de componentes

simples por meio de um processo de adaptacao pelo qual as conexoes entre os componentes
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Figura 5 — Exemplo de Classificagao.
Fonte: (COCK, 2015)

sdo ajustadas, portanto o processamento nesses sistemas é distribuido por meio de conjuntos
de camadas de neuré6nios artificiais (LUGER, 2013).

2.4 Redes Neurais Artificiais

Em (BRAGA; FERREIRA; LUDERMIR, 2007), é descrito que as Redes Neural
Artificiais, ou simplesmente RNA, sao sistemas paralelos distribuidos compostos por
unidades de processamento simples (neurénios artificiais) que calculam determinadas
fungoes matematicas (normalmente nao-lineares). RNAs sdo modelos inteligentes baseados
em Aprendizado de Maquina Conexionista que passam pela fase de aprendizagem, em que
o conjunto de exemplos ¢ apresentado para a rede, a qual extrai caracteristicas necessarias

para representar a informacao fornecida.

2.4.1 Neuronio Artificial

O modelo proposto por Rosenblatt em (ROSENBLATT, 1958), conhecido como
perceptron, ou neurdnio artificial, era composto por um conjunto de variaveis de entrada,
um conjunto de pesos vinculado a cada variavel de entrada e por uma funcao de ativacgao.
Embora essa topologia original possua trés niveis, ela é conhecida como perceptron de

camada tnica, ja que somente o nivel de saida apresenta propriedades adaptativas.

O neur6nio possui a limitagdo de que somente é possivel ter um bom desempenho
se o problema em que ele esta sendo utilizado for linearmente separavel e para situagoes
nao linearmente separaveis com o XOR nao é possivel de ser solucionar com um tnico
neuronio (NITTA, 2003). Para resolver este problema, foram propostas as Rede Perceptron

de Multiplas Camadas.
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Figura 6 — Neurdnio Perceptron.
Fonte: (DUKOR, 2018)

2.4.2 Redes Perceptron de Multiplas Camadas

As Redes Perceptron de Miltiplas Camadas(MLP, do inglés multilayer perceptron)
apresentam uma ou mais camadas intermediarias de neurdnios artificiais e uma camada
de saida (FACELI et al., 2011). Segundo Cybenko em (CYBENKO, 1989), uma rede com
uma camada intermediaria pode implementar qualquer funcao continua. A utilizacao de

duas camadas intermedidrias permite a aproximacao de qualquer fun¢ao (DUDA; HART;

STORK, 2012).

Neste modelo inteligente, a rede possui 3 partes fundamentais: a camada de entrada,
uma ou mais camadas ocultas e a camada de saida. A camada de entrada é onde as
caracteristicas presentes na base de conhecimento serao apresentadas a rede MLP, entao
estes atributos de entrada sao processados nas camadas ocultas e a rede apresenta uma
resposta na camada de saida, € comum que o nimero de neuronios na camada de saida
esteja associado a uma das classes presentes no conjunto de dados (caso seja um problema

de classificacao) e tenha apenas 1 neur6nio se for uma tarefa de regressao (FACELI et al.,
2011).

Para treinamento de redes neurais em problemas de classificacdo supervisionada é
mais comum que seja usado o algoritmo de retro-propagacao proposto por (RUMELHART
et al., 1988).

2.4.3 Algoritmo Retro-propagagao

O Algoritmo de Retro-propagacao, por ser supervisionado, utiliza pares de entradas
e saldas para, por meio de um mecanismo de correcao de erros, ajustar os pesos da rede. O
treinamento ocorre em duas fases, em que cada fase percorre a rede em um sentido. Essas

duas fases sdo chamadas de fase forward e fase backward. A fase forward é utilizada para
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Figura 7 — Rede Neural de Multiplas Camadas

definir a saida da rede para um exemplo de entrada a partir de uma funcao de ativacao. A
fase backward utiliza a saida desejada e a saida fornecida pela rede para atualizar os pesos
de suas conexoes (BRAGA; FERREIRA; LUDERMIR, 2007).

Apesar de uma rede neural com duas camadas ter a capacidade de aproximar
qualquer funcdo, alguns problemas reais estao em espacos dimensionais maiores ou terem a
necessidade de um tratamento de dados diferente, por exemplo, em imagens a localizacao
espacial dos pizels faz diferenga durante a classificacao da mesma. Dessa forma se faz
necessario tomar algumas alternativas, como por exemplo aumentar o nimero de camadas
ocultas, aumentar o nimero de neur6nios nas camadas ou aplicar algum pré-processamento

nos dados de entrada para que entdao possam ser passados para a RNA.

2.4.4 Funcao de Ativacao

As fungoes de ativacao sao fung¢oes que determinam o que um neurdnio ird passar
durante a fase forward para o neurénio seguinte e para calcular o erro da rede durante a
fase backward. As 4 mais usadas sdao a Sigmdide, Tangente Hiperbdlica, ReLU(Rectified
Linear Unit) e Softmax (BRAGA; FERREIRA; LUDERMIR, 2007).

A funcao Sigmoéide, usa da Equagao 2.1:

1

fla) = l1+ex

(2.1)

Intuitivamente, significa que quando o logit é pequeno, a saida da funcao é muito
préoxima a 0. Quando o logit é grande, a saida fica perto de 1. Entre esses dois extremos, a

funcao assume um formato de S.
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A funcao Tangente Hiperbdlica possui um formato similar, no entanto em vez de

variar de 0 a 1, ela varia entre -1 e 1 e possui a Equacao 2.2.

f(z) = tanh(z) (2.2)

A fun¢ao ReLU, retorna o maior niimero entre a saida do neurdnio e 0, tendo a

Equagao 2.3.

f(z) = max(0, x) (2.3)

Softmax, Softargmax ou Funcao Exponencial Normalizada é uma func¢ao que possui
uma vetor de N posi¢oes de niimeros reais como argumento de entrada e normaliza em
uma distribuicao de probabilidades consistentes de N probabilidades proporcional ao
numero de entradas. Isto é, antes de aplicar a softmax, o vetor pode ter quaisquer valores
arbitrarios, no entanto apods a aplicagdo do softmax os valores somarao 1, assim podem ser
interpretados como probabilidades (BISHOP, 2006), a féormula desta fungao de ativagao se
da por Equacao 2.4 .

evi

= Zz o

(2.4)

o(x;)

2.4.5 Aprendizado Profundo

Aprendizado Profundo (do inglés Deep Learning) é uma sub-drea de Aprendizado
de Méaquina e da Inteligéncia Artificial, como ilustrado na Figura 8, que emprega algo-
ritmos para processar dados e imitar o processamento feito pelo cérebro humano. Foi
a partir desta area do conhecimento que tornou-se possivel grandes avancos nas areas
de visao computacional, reconhecimento de fala, processamento de linguagem natural e
reconhecimento de audio (DSA, 2019).

Inteligéncia Artificial

Aprendizado de Maquinas

Figura 8 — Aprendizado Profundo. Fonte: (CONSULTING, 2018)
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2.4.6 Rede Neural Convolucional

As Redes Neurais Convolucionais (CNN, do inglés Convolutional Neural Networks)
sao modelos derivados das RNAs com um pré-processamento inspirado no cortex visual de
animais, muitos populares para abordar o tema de visao computacional (VASCONCELOS;
CLUA, 2017).

A diferenga entre uma CNN e uma RNA convencional é usarem de camadas
convolucionais, cujas unidades realizam uma operagao de convolugao cujo filtro é aprendido
durante a otimizacao da rede, portanto difere de neurdnios do tipo Perceptron, que produz
uma combinacao linear entre as entradas e um vetor de pesos (GOODFELLOW; BENGIO;
COURVILLE, 2017). Em questao estrutural a CNN possui uma RNA, a diferenca consta
no pré-processamento dos dados que sao entregues a rede neural, os dados passam pelos
filtros convolucionais e entdo por camadas de reducao de dimensionalidade para entao os

dados serem passados para a RNA de fato, como pode ser visto na Figura 9.
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Figura 9 — Arquitetura de uma Rede CNN. Adaptado de (VEEN, 2016)

As camadas de reducao de dimensionalidade, também conhecidas como camadas de
pooling, tem como fun¢do substituir a saida da camada convolucional com uma estatistica
calculada a partir das saidas adjacentes (GOODFELLOW; BENGIO; COURVILLE, 2017),
por exemplo a variacao Awverage Pooling retorna a média das saidas dentro de uma

vizinhanga retangular. Uma ilustracao pode ser visualizada na Figura 10.

Average Pool . 4.95
. :

Filter - (2 x 2)

Stride - (2, 2) 4.25

Figura 10 — Ilustragao de uma operagao Average Pooling. Fonte: (KHOSLA, 2023)
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2.4.7 Transferéncia de Aprendizado

A arquitetura CNN é uma das mais conhecidas atualmente tanto para problemas
de visao computacional e pode ser utilizada sem grandes perdas de performance em
problemas de processamento de sinais. Porém, o seu uso apresenta alguns desafios como
necessidade de poder computacional para treinar os milhares de parametros pertencentes
a rede e necessidade de uma base de dados grande e robusta o suficiente para que nao
haja sub-ajuste do modelo aos dados. Segundo Silva (2018) , a capacidade de convergéncia
de uma CNN ¢ influenciada pela inicializagdo de seus pesos ao iniciar o seu treinamento.
Por isso, a etapa de definir valores iniciais é importante para obtencao de bons resultados,

ainda que acabe tornando-se subjetiva a depender do conhecimento de quem a manipula
(SANTOS et al., 2019).

Uma das solugoes propostas é o uso de pesos obtidos a partir de um treinamento
prévio em outro banco de dados para inicializar um novo modelo. Essa abordagem ¢
conhecida como transferéncia de aprendizado. Dessa maneira, a inicializagao dos pesos
¢é efetiva e o modelo pode convergir mais rapido exigindo menos dados, além de poder
ser utilizado para problemas que compartilham similaridades (SANTOS et al., 2019;
VOGADO et al., 2019). Utilizando desta solugao é possivel diminuir a necessidade de
retreinar todos os parametros, bem como utilizar as configuragoes ja existentes na rede
previamente (YOSINSKI et al., 2014).

Varias arquiteturas CNN foram treinadas no banco de imagens ImageNet (DENG
et al., 2009), um banco de dados com mais de 15 milhoes de imagens separadas em mais
de 22 mil classes proposto em 2009. Esses pesos podem ser reutilizados em outros modelos
para classificar outras bases de dados, ao invés de inicializar os pesos com valores gerados

de forma aleatoria.

Existem duas formas principais de se utilizar a transferéncia de aprendizado. A
primeira compreende na extracao das camadas densas originais e no congelamento do
restante das camadas com seus respectivos pesos e entdo adicionar outra configuracao de
camadas densas. A segunda forma de transferéncia de aprendizado é o ajuste fino que exige
o retreinamento de toda ou parte da rede original com os novos dados. Para o contexto

deste trabalho estaremos utilizando da primeira abordagem.

2.4.8 Arquiteturas CNN para transferéncia de aprendizado

Pesquisas na area de aprendizado profundo para classificagdo de imagens comegou
em 2012 com a introdugao da AlexNet, a qual introduziu a camada de ativagdo ReLLU
(KRIZHEVSKY; SUTSKEVER; HINTON, 2012). A exploracao desse tipo de rede neural
alcangou resultados mais precisos e eliminou a analise de cada imagem baseada em enge-
nharia de recursos. Logo, outras arquiteturas apareceram, tais como, ResNet, MobileNet,

e outras, as quais introduziram caracteristicas eficientes para classificagao de imagens.
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2481 VGG

Proposta em 2014 por Simonyan e Zisserman, venceu a competicao ImageNet
daquele ano com acuracia Top 5 de 92.7%, em seu trabalho propuseram seu uso com
variacao de profundidade de 16 ou 19 camadas com aproximadamente 138 milhoes de
parametros. Uma visao geral de sua estrutura pode ser visualizada na Imagem 11. Na
construcao deste modelo, foi levado em consideracao o uso de filtros convolucionais 3x3 e
camadas de pooling de 2x2 ao longo de toda a sua arquitetura em detrimento do tamanho

do modelo.
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Figura 11 — Arquitetura VGG16

2.4.8.2 ResNet

ResNet, também conhecida como rede residual, foi apresentada for He et al. (2016)
quando venceu a competicao ImageNet daquele ano com acuracia Top 5 de 94.29%
utilizando aproximadamente um total de 25 milhdes de parametros. Comparada a outras
arquiteturas, como a Inception, ela acaba sendo muito mais “profunda”, pois ela pode
atingir até 152 camadas. A ResNet possui uma conexao tinica chamada de conexao residual,
que é uma conexao aplicada entre as camadas convolucionais que garante que durante a
execucao da retropropagacao, os pesos aprendidos das camadas anteriores nao anteriores,
diminuido o decaimento do gradiente. O principal beneficio desta rede é o uso destas
conexoes, pois possibilita a utilizagdo de muitas camadas, além de diminuir a quantidade
de parametros extras. As principais desvantagens sao a utilizacao de tamanhos inicos

para filtros para que possa ser efetuada a soma em cada bloco residual e a necessidade de
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treinamento com grandes conjuntos de dados. Trés versoes desta rede foram apresentadas
e elas diferem no nimero de camadas: ResNet50, ResNet101 e ResNet152.

2.4.8.3 MobileNet

O modelo MobileNet foi proposta por Howard (2017) e é uma arquitetura de rede
neural convolucional projetada para ser leve e eficiente para aplicativos de visao moveis e
integrados. Difere de outros modelos em termos de design e casos de uso devido as suas

caracteristicas e vantagens tnicas.

Ao utilizar convolugoes separaveis em profundidade, o modelo MobileNet alcanca
um bom equilibrio entre precisao e eficiéncia. Ele pode alcancar uma precisao semelhante
a modelos maiores e mais caros computacionalmente, exigindo menos recursos, tornando-o
adequado para dispositivos com recursos limitados, como telefones celulares e sistemas
integrados. Essa escolha de design permite inferéncia em tempo real em dispositivos com

poder computacional limitado.

Outra vantagem do modelo MobileNet é sua flexibilidade e escalabilidade. Ele oferece
um parametro chamado "multiplicador de largura"que permite aos usuarios negociar entre
tamanho e precisao do modelo. Ao ajustar o multiplicador de largura, pode-se controlar
o numero de canais em cada camada da rede, aumentando ou diminuindo a escala do
modelo. Essa flexibilidade permite que o modelo MobileNet seja facilmente personalizado
para diferentes casos de uso e cenarios de implantagao, acomodando uma ampla gama de

requisitos computacionais.
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3 TRABALHOS RELACIONADOS

Diversos trabalhos vém atuando na identificacdo automatica de arritmia cardiaca
em sinais ECG a partir de modelos inteligentes baseados em aprendizado de maquina,
havendo uma tendéncia a utilizagdo de aprendizado profundo nesta tarefa (ANSARI et al.,
2023), entre as arquiteturas mais utilizadas estao as Redes Neurais Convolucionais (CNN),
Redes Neurais Recorrentes (RNN), Redes Long Short-term Memory (LSTM), Unidade
Recorrente Fechada ou Gated Recurrent Unit (GRU), as Redes Profundas de Crengas ou
Deep Belief Network e as redes Transformers (ANSARI et al., 2023).

Em (HUANG et al., 2019) é utilizado um modelo baseado em CNN a partir de
espectrogramas para realizar a deteccao de arritmia cardiaca em sinais ECG e as divide
em 5 categorias Batimento Normal (NOR), Bloqueio do ramo esquerdo do feixe de His
(LBB), Bloqueio do ramo direito do feixe de His (RBB), Contragao Ventricular Prematuro
(PVC) e Contragao Atrial Prematura (APC).

Ng et al. (2023) adota uma abordagem de transferéncia de aprendizado num
contexto few-shot para deteccao de fibrilagao atrial personalizada utilizando registros ECG

dos pacientes com um modelo baseado em redes neurais siamesas.

Ja Kumar et al. (2022) propoe um modelo hibrido para detecc¢ao de fibrilagao
atrial utilizando de camadas convolucionais 1D e em sequéncia camadas LSTM em cima
dos sinais ECG puros numa abordagem de captura de sinais livres a partir de dispositivos

vestiveis.
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4 METODOLOGIA

Neste capitulo ¢ descrita a metodologia utilizada no desenvolvimento deste trabalho.
Na Sec¢ao 4.1 estao inclusos a pipeline proposta contendo o pré-processamentos dos dados,
separacao de treinamento e teste destes dados para os classificadores e entdao a comparagao
com o modelo baseline. Na Secao 4.2 seré detalhado o tipo de dados utilizado pelos modelos
para classificagdo de arritmia, passando pelas configuragoes de captura dos sinais ECG.
Na Secao 4.3 serao detalhados os pré-processamentos utilizados para os sinais de ECG. Na
Secao 4.4 sera detalhado qual arquitetura, ja estabelecida na literatura, foi considerada
o baseline comparativo. Por fim, na Secao 4.5 serao detalhadas as topologias de redes

profundas testadas para o problema.

4.1 Proposta

A proposta desse trabalho é utilizar os dados rotulados presentes em (KUMAR et
al., 2022b) no treinamento de modelos baseados em aprendizado profundo projetados a fim
de obter um modelo capaz de identificar auséncia ou ocorréncia de arritmia cardiaca em
um conjunto de dados formado por sinais ECG do paciente. Um diagrama da configuracao

dessa proposta, bem como a pipeline seguida neste trabalho, é ilustrada na Figura 12.
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Figura 12 — Pipeline da Proposta.

Neste pipeline, serd obtido o conjunto de dados formado por sinais de eletrocar-
diograma do paciente e divididos em treino e teste. Ambos os subconjuntos sao pré-
processados, sendo que os sinais ECG além de normalizados é calculado o STFT. Posterior

ao pré-processamento, o modelo proposto serd treinado utilizando o conjunto de dados de
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treinamento e avaliados com o conjunto de teste. Por fim, o resultado obtido do modelo

proposto sera comparado ao resultado do baseline e uma analise sera realizada.

4.2 Base de Dados

O conjunto de dados foi obtido a partir de Kumar et al. (2022) e consiste de 2
tipos diferentes de informacoes, o primeiro sao os dados de ECG em paralelo a dados
contextuais compostos de informacoes sobre a atividade que estd sendo exercida pelo

paciente, posicionamento do corpo (ex. deitado, em pé, sentado) e nivel de estresse.

4.2.1 Eletrocardiograma

Os sinais ECG foram capturados ao longo de 259 dias de forma consensual de 24
pacientes e totalizam 1602 trechos de 10 segundos de sinais, capturados em uma frequéncia
de 1024 Hz, sob condicoes livres de vida e locomogao e anotados por 2 cardiologistas
qualificados em 4 classes distintas, sendo elas Fibrilagdo Atrial (FA), Ritmo Sinusal Regular
(RSR), Ruido e Outro em que podem ser observadas nos trechos de sinais ECG do paciente

P2 na Figura 13 e a distribuigao das classes como um todo no conjunto de dados na Figura
14.

Exemplo de FA Exemplo de RSR

03 03
02 02
01 01
0.0 0.0

0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000

Exemplo de Ruido Exemplo de Outro

02 02
01 01
0.0 0.0
-0.1 -0.1

0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000

Figura 13 — Exemplos de ECG para as classes FA, RSR, Ruido e Outro para o paciente
P2. Imagem criada pelo autor.

Com base na Figura 14, pode-se observar que as classes nao sdo igualmente dis-
tribuidas, sendo que a classe FA representa cerca de 46.63% do conjunto de dados. Essa
caracteristica do conjunto de dados pode prejudicar o treinamento de um modelo compu-
tacionais baseado em aprendizado de méaquina, pois as classes minoritarias podem acabar

sendo ignoradas devido a sua baixa representatividade no conjunto total. Portanto deverao
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ser levados em consideracao alguns fatores para minimizacao deste desbalanceamento como

o uso de diferentes pesos para as classes.

Distribuicao de Exemplos por Classe
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FA RSR Ruido Outro
Classe

Figura 14 — Distribuicdo das classes de ECG. Imagem criada pelo autor.

4.3 Pré-processamentos

Neste trabalho a etapa de pré-processamento foi realizada levando em consideragao
somente os dados de eletrocardiograma da base de dados. O eletrocardiograma, como
explicado em maiores detalhes na Sub-secao 2.2, foi aplicada a Transformada de Fourier
de Tempo Curto (STFT) através das bibliotecas Scipy' e Librosa®.

4.3.1 Processamento de Sinais

Para pré-processamento dos sinais ECG foi necesséario transformar o dado em
uma representacao bi-dimensional. Assim, os sinais ECG foram transformados em espec-
trogramas 2D de tempo-frequéncia usando a STEFT descrita na Equacao 4.1, onde z[n]
representa o sinal ECG e w[n] a fungao de janelamento. No método proposto, foi adotado
o janelamento Hanning, no qual a definicao se da pela Equagao 4.2 com tamanho de janela

igual a 512, onde M se trata do nimero de amostras.

https://scipy.org
2 https://librosa.org/doc/latest /index.html
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STFTz[n] = i z[n)wn — mle 7" (4.1)

n=—oo

M-1

w(n) =
() 0, senao

{0,5.[1—005(2“")], se0=n=M-1 (4.2)

4.4 Baseline

O modelo baseline utilizado foi o proposto (NG et al., 2023), que é baseado em
Redes Neurais Siamesas e foi utilizado para realizar a extracao de caracteristicas do
sinal ECG e entao passar para um classificador linear realizar a classificacao da instancia

observada, sua arquitetura é apresentada na Figura 15.
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Figura 15 — Arquitura da modelo Baseline. Adaptada de (GUPTA; BHASKARPANDIT;
GUPTA, 2021).

4.5 Arquiteturas baseadas em Redes Profundas

Nesta Secao serao apresentadas as arquiteturas consideradas para treinamento
e classificacdo dos sinais ECG, na Sub-secdo 4.5.1 serao descritos quais arquiteturas
fundacionais foram utilizadas para realizar a classificacao dos sinais ECG transformados

em espectrogramas como descrita na Secao 4.3.1.

4.5.1 Modelos fundacionais

Os modelos funcionais, ou seja, aqueles em que foram utilizados as camadas de
extracao de caracteristicas ja treinadas a partir do ImageNet, foram as versoes VGG16,
ResNet50, ResNet152V2, NASNetLarge e MobileNet, disponibilizados de forma gratuita
pela API do Keras® com um topo de rede comum composto por uma camada de achata-
mento, 2 camadas densas de configuragoes [512, 256] e fungao de ativagdo ReLU e entao
uma camada de saida com 4 neurdnios e fungao de ativacao Softmax referente a cada uma

das classes.

3 https://keras.io/api/applications/



45

5 AVALIACAO EXPERIMENTAL

Neste capitulo estd descrita a avaliagdo experimental deste trabalho. Na Secao 5.1
sera apresentada a configuragao experimental padrao para todos os modelos inteligentes
treinados para classificagdo de arritmias cardiacas a partir de sinais ECG, sendo estes
apresentados nas sub-se¢oes adequadas. Por fim, na Secao 5.3 sera apresentado uma tabela
comparativa dos modelos avaliados ao lado da linha de base a partir das métricas Precisao,

Revocacao e F1-Score.

5.1 Configuracao Experimental

Os testes foram realizados a partir de uma configuracao experimental padrao a
todas as arquiteturas baseadas em CNN avaliadas, sendo composto um vetor de entrada
composto de 1602 exemplos de sinais ECG, que entao foi inicialmente filtrado a partir de
filtro Butterworth a fim de eliminar possiveis ruidos para entao ser normalizado entre 0 e 1

e entao calculado a STFT para cada sinal como detalhado na Sub-se¢ao 4.3.1.

Para fim de treinamento e avaliacdo do modelo foi separado 1 paciente por vez
para ser o conjunto de teste e os sinais dos demais foram utilizados para treinamento dos
modelos, resultado em 24 treinamentos e avaliagoes de modelos totalizando ao final 1602

classificacoes para cada arquitetura considerada.

A avaliacao entao foi feita em 2 momentos sendo o primeiro a partir da analise
do relatorio de classificacdo e da matriz de confusao a fim de verificar a distribuigao de
erros dos modelos entre as 4 classes, estes serao apresentados na sub-se¢oes seguintes, e
por fim o calculo das métricas de performance Precisao, Revocacao e F1-Score que serao

apresentadas na Secao 5.3.

5.1.1 Configuracao Padrao de Topo de Rede Neural

Como caracteristicas padroes para as 5 arquiteturas de redes neurais convolucionais
profundas que foram avaliadas nos experimentos deste capitulo podemos citar o uso de 3
chamadas de sistema durante o treinamento dos modelos e 1 topo de camadas densas e de

saida comuns a todas as arquiteturas consideradas.

Sobre as chamadas de sistemas foram elas: 1) parada antecipada (early stopping)
monitorando a perda de validacdo com uma paciéncia de épocas, ou seja, se o modelo
nao apresentar melhorias na variavel monitorada durante 10 épocas de treinamento, este
sera encerrado mesmo que nao tenha alcangado o nimero de épocas méximo de 100; 2)
ponto de verificagdo (checkpoint) que salva o modelo em disco apés uma época em que

a perda de validacao foi reduzida, esta gravacao é realizada se e somente se a perda de
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validacao for reduzida nao havendo reescrita de arquivo em caso de deterioracao desta
métrica; e 3) Reducao de Taxa de Aprendizado num Platé novamente monitorando a
perda de validacao, com paciéncia de 4 épocas para uma reducao de 50% do valor atual,
ou seja, se for detectado que nas tltimas 4 épocas nao houve melhora na métrica de perda

de validagao, entao o valor da taxa de aprendizado é reduzido pela metade.

Em questao de alteragoes de arquitetura dos modelos, apos a camadas de extracao
de caracteristicas de cada arquitetura foi acrescentada uma camada de achatamento
(Flatten), uma camada densa com 512 neurdnios e fungdo de ativagdo ReLU, uma camada
densa com 256 neurénios e funcao de ativacdo ReLU e por fim uma camada de saida com

4 neuronios e funcao de ativacao softmax a fim de resultar na classe inferida.

Para compilacao do modelo foi considerado o otimizador Adam Ponderado, fungao
de perda entropia cruzada categérica e métricas de monitoramento acuracia e perda do

modelo ao longo das épocas de treinamento.

Por fim todas as arquiteturas foram avaliadas segundo seus relatorios de classificacao,
matriz de confusao, precisao, revocacao e F1-Score para cada 1 dos 24 sujeitos da base de
dados sob um regime de treinamento e avaliacao de treinamento de 23 sujeitos e o ultimo

para teste.

5.1.2  Arquitetura VGG16

A primeira arquitetura avaliada foi a VGG16 que apresentou nos seus relato-
rios de classificagao e matriz de confusao os resultados apresentados nas tabelas 1 e 2,

respectivamente, apés treinamento e inferéncia sobre cada paciente.

Precisao | Revocagao | F1-Score | Nuimero de Exemplos

FA 0.96 0.96 0.96 47
RSR 0.90 0.97 0.93 615
Ruido 0.98 0.85 0.91 221
Outro 1.00 0.16 0.27 19

Acuréacia 0.94 1602
Média Macro 0.96 0.73 0.77 1602
Média Ponderada 0.94 0.94 0.93 1602

Tabela 1 — Relatorio de Classificagao do modelo VGG16

FA | RSR | Ruido | Outro
FA 714 | 33 0 0
RSR 16 | 598 1 0
Ruido | 7 26 188 0
Outro | 5 9 2 3

Tabela 2 — Matriz de confusao do modelo VGG16
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5.1.3 Arquitetura ResNet50

A segunda arquitetura avaliada foi a ResNetb50 que apresentou nos seus relato-
rios de classificacdo e matriz de confusao os resultados apresentados nas tabelas 3 e 4,

respectivamente, apos treinamento e inferéncia sobre cada paciente.

Precisao | Revocacao | F1-Score | Nimero de Exemplos

FA 0.97 0.87 0.92 47
RSR 0.79 0.99 0.88 615
Ruido 0.99 0.71 0.83 221
Outro 1.00 0.21 0.35 19

Acurécia 0.88 1602
Média Macro 0.94 0.69 0.74 1602
Média Ponderada 0.90 0.88 0.88 1602

Tabela 3 — Relatério de Classificacado do modelo ResNet50

FA | RSR | Ruido | Outro
FA 648 | 99 0 0
RSR 7 607 1 0
Ruido | 7 56 158 0
Outro | 5 10 0 4

Tabela 4 — Matriz de confusao do modelo ResNet50

5.1.4  Arquitetura ResNet152V2

A terceira arquitetura avaliada foi a ResNet152V2 que apresentou nos seus rela-
torios de classificagao e matriz de confusao os resultados apresentados nas tabelas 5 e 6,

respectivamente, apds treinamento e inferéncia sobre cada paciente.

Precisao | Revocacao | F1-Score | Nuimero de Exemplos

FA 0.95 0.95 0.95 ey
RSR 0.93 0.94 0.93 615
Ruido 0.95 0.97 0.96 221
Outro 0.83 0.26 0.40 19

Acurécia 0.94 1602
Média Macro 0.91 0.78 0.81 1602
Média Ponderada 0.94 0.94 0.94 1602

Tabela 5 — Relatorio de Classificagdo do modelo ResNet152V2

5.1.5  Arquitetura NASNetLarge

A NASNetLarge foi a quarta arquitetura avaliada e apresentou nos seus relato-
rios de classificacdo e matriz de confusao os resultados apresentados nas tabelas 7 e 8,

respectivamente, apos treinamento e inferéncia sobre cada paciente.
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FA | RSR | Ruido | Outro
FA 707 | 34 6 0
RSR 34 | 577 3 1
Ruido | 3 3 215 0
Outro | 4 8 2 5

Tabela 6 — Matriz de confusao do modelo ResNet152V2

Precisao | Revocacao | F1-Score | Numero de Exemplos

FA 0.92 0.76 0.83 47
RSR 0.75 0.92 0.82 615
Ruido 0.96 0.95 0.95 221
Outro 0.60 0.47 0.53 19

Acuracia 0.84 1602
Média Macro 0.81 0.77 0.78 1602
Média Ponderada 0.85 0.84 0.84 1602

Tabela 7 — Relatorio de Classificagao do modelo NASNetLarge

FA | RSR | Ruido | Outro
FA 564 | 180 2 1
RSR 42 | 565 5 3
Ruido | 5 5 209 2
Outro | 4 5 1 9

Tabela 8 — Matriz de confusao do modelo NASNetLarge

5.1.6  Arquitetura MobileNet

Por fim, a MobileNet foi a quinta e dltima arquitetura avaliada, apresentando nos
seus relatorios de classificacdo e matriz de confusao os resultados apresentados nas tabelas

9 e 10, respectivamente, apos treinamento e inferéncia sobre cada paciente.

Precisao | Revocacao | F1-Score | Nimero de Exemplos

FA 0.99 0.94 0.96 747
RSR 0.92 0.98 0.95 615
Ruido 0.99 0.98 0.98 221
Outro 1.00 0.63 0.77 19

Acurécia 0.96 1602
Média Macro 0.97 0.88 0.92 1602
Média Ponderada 0.96 0.96 0.96 1602

Tabela 9 — Relatorio de Classificagao do modelo MobileNet

5.2 Andlise de classificacdo Intra-usuario

Para este experimento foi utilizada a arquitetura da MobileNet para se analisar

seus resultados de forma usuario por usuario, tendo em vista que objetiva-se uma alta
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FA | RSR | Ruido | Outro
FA 701 | 45 1 0
RSR 8 605 2 0
Ruido | 0 5 216 0
Outro | 2 5 0 12

Tabela 10 — Matriz de confusao do modelo MobileNet

performance intra-usuario, assim os resultados para cada usuario pode ser visualizado na
Tabela 11, a tabela apresenta entao o resultado do modelo MobileNet para cada um dos
24 pacientes presentes na base de dados mostrando a quantidade de exemplos por classe
(Suporte), a métrica F1-Score para cada classe, se houver, e entdo a Acuracia geral do
paciente em questao, quando nao houver casos para aquela classe nos registros do Paciente

sera considerado "Nao se aplica'(n.a.).

Paciente | Suporte | FA | RSR | Ruido | Outro | Acuracia
PO1 208 1.0 | n.a. 1.0 1.0 1.0
P02 70 0.67 | 0.99 1.0 1.0 0.99
P03 139 0.98 | n.a. 1.0 n.a. 0.96
P04 20 0.92 | 0.92 1.0 n.a. 0.95
P05 91 0.99 | n.a. 1.0 n.a. 0.98
P06 44 1.00 | 0.99 | n.a. 0.86 0.98
pPO7 82 0.93 | 0.99 1.0 1.0 0.99
P08 33 n.a. | 1.0 1.0 n.a. 1.0
P09 107 n.a. | 098 | 0.67 0.0 0.96
P10 32 n.a. | 1.0 1.0 n.a. 1.0
P11 75 n.a. | n.a. n.a. 1.0 1.0
P12 25 na. | 1.0 1.0 n.a. 1.0
P13 31 1.0 1.0 1.0 1.0 1.0
P14 94 na. | 1.0 1.0 n.a. 1.0
P15 95 0.98 | n.a. n.a. n.a. 0.98
P17 178 0.99 | n.a. 1.0 n.a. 0.99
P18 118 na. | 1.0 1.0 n.a. 1.0
P19 54 1.0 1.0 1.0 n.a. 1.0
P21 10 na. | 1.0 1.0 1.0 1.0
P23 14 na. | 1.0 1.0 n.a. 1.0
PNSR-1 18 n.a. | 0.91 | 0.96 n.a. 0.94
PNSR-3 33 n.a. | 0.98 1.0 n.a. 0.97
PNSR-4 31 n.a. | 0.98 1.0 n.a. 0.97

Tabela 11 — Avaliacao MobileNet por Paciente.

5.3 Resultados e Discussoes

Tendo sido treinados e avaliados com os mesmos conjuntos de dados pré-processados,
o modelo Baseline e os modelos profundos baseados em transferéncia de aprendizado tem

seus resultados comparadas na tabela 12.
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Arquitetura | Precisao (%) | Revocacao (%) | F1-Score (%)
Baseline 96.11 81.82 88.39
VGG16 96.11 73.42 76.95
ResNet50 93.79 69.50 74.28
ResNet152V2 91.44 78.02 81.02
NASNetLarge 80.71 77.33 78.42
MobileNet 97.22 88.28 91.67

Tabela 12 — Tabela Comparativa entre modelos avaliados

Esse resultado mostra que a MobileNet obteve maiores F1-Score entre todas
as arquiteturas testadas sob as mesmas condi¢oes de pré-processamento, arquitetura,
treinamento e avaliacao. Este é um resultado curioso devido ao fato de ser a rede de menor
profundidade entre as baseadas em transferéncia de aprendizado, isso pode ter sido uma
vantagem ja que devido ao fato da base de dados ter poucos exemplos, apenas 1602, nao
seria possivel treinar um modelo profundo sem uso de transferéncia de aprendizado com

uma performance consideravel, como foi o caso com o modelo Baseline.

Interessante também notar que nao s6 a MobileNet superou as demais arquiteturas
num contexto global como também no contexto local de cada uma das classes consideradas,
obtendo um desempenho de 0.96 na classe Fibrilagdo Atrial (FA), 0.95 na classe Ritmo
Sinusal Regular (RSR), 0.98 na classe Ruido e 0.77 na classe Outro.

Ainda vale notar que a classe Outro e Ruido nao tem um comportamento padrao
como as classes Fibrilacao Atrial (FA) e Ritmo Sinusal Regular (RSR), j4 que sao classes
que indicam ou erro de leitura ou ocorréncia de outros fenomenos que nao comportam nas
demais classes, em especial a classe Outro gerou resultados baixos para todos os modelos,
isso pode ser devido ao fato de se ter uma baixa representatividade de exemplos num geral,

representado apenas 0.74% da base total, como pelo seu comportamento irregular.
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6 CONCLUSOES

Através do estudo de arquiteturas e técnicas na literatura combinado com diversos
testes e andlises foi possivel obter uma rede rasa capaz de atingir uma acurdcia de 94.42%
na classificagao de sinais de eletrocardiograma em: Fibrilagao Atrial, Ritmo Sinusal Regular,
Ruido e Outro.

O uso de transferéncia de aprendizado nao s6 proporcionou uma maior robustez
da rede, mas também mitigou o problema do desbalanceamento de classes que existia no
conjunto de treinamento. Um indicativo desse ultimo resultado foi sua capacidade de obter
um bom valor de acuracia para todas as classes e nao se ajustando somente para a classe

majoritaria (Fibrilagdo Atrial).

A fim de avaliar os modelos propostos, foi considerado um baseline para referéncia.
Esse baseline simplesmente consistiu em modelo de rede neural convolucional treinado com
as janelas STFT extraidas do conjunto de dados. A comparacao resultou em um F1-Score
de 3.28% maior para o modelo MobileNet em relacao ao modelo baseline, indicando que

sua configuracao e treinamento foram satisfatorios.

Um ponto evidenciado é a baixa performance obtida nao sé pelo MobileNet, em
classificar as classes Ruido e Outro ja que estes nao apresentam um comportamento padrao

e nao ha exemplos suficientes para entender bem os diferentes fenémenos.

Um préximo passo desse trabalho seria considerar os dados contextuais para realizar
a classificacao do evento, ja que podem trazer maior entendimento do que estd ocorrendo
com o usuario naquele momento, detectando posi¢oes do corpo, entendimento de variagoes
no estado da pessoa visto que o comportamento do sinal ECG de uma pessoa deitada é
diferente da mesma pessoa correndo mas nao indica que esta ocorrendo uma irregularidade
no comportamento de seu coracao. Nesse caso teria que treinar outro modelo para este
proposito e considerar como realizar a comunicagao entre os modelos finais a fim de haver

essa interacao entre variaveis contextuais e sinais eletrocardiograficos.
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