André Hahn Pereira
Henrique Carvalho Silva

Yuka Kyushima Solano

WARM: Arcabouco para programacao de
aplicacoes em redes de sensores sem fio

Sao Paulo
2015

Catalogacao-na-publicacéo

Pereira, Andre

WARM: Arcabouco para programacédo de aplicagcdes em redes de sensores
sem fio / A. Pereira, H. Silva, Y. Solano -- Sdo Paulo, 2015.

89 p.

Trabalho de Formatura - Escola Politécnica da Universidade de Sao
Paulo. Departamento de Engenharia de Computacao e Sistemas Digitais.

1.Redes de sensores sem fio 2.Programacédo 3.Gerenciamento de
recursos 4.Desenvolvimento de aplicagbes 5.Gerenciamento de aplicagbes
I.Universidade de Sao Paulo. Escola Politécnica. Departamento de
Engenharia de Computacgédo e Sistemas Digitais Il.t. lll.Silva, Henrique
IV.Solano, Yuka

André Hahn Pereira
Henrique Carvalho Silva

Yuka Kyushima Solano

WARM: Arcabouco para programacao de aplicacoes em
redes de sensores sem fio

Trabalho de Formatura apresentado ao De-
partamento de Engenharia de Computagao
e Sistemas Digitais da Escola Politécnica da
Universidade de Sao Paulo para obtengao do
Diploma de Engenheiro

Orientador: Profa. Dra. Cintia Borges Margi

Coorientador: Msc. Bruno T. de Oliveira

Sao Paulo

2015

Resumo

A Internet das Coisas é cada vez mais um conceito presente no cotidiano com
multiplas aplicages. Entretanto, o correto funcionamento da Internet das Coisas
depende da existéncia de redes de sensores presentes no ambiente para o forneci-
mento de informagoes para a tomada de decisbes acertadas. Porém, atualmente a
implementacio e operagao de redes de sensores sao tarefas que dependem de conhe-
cimentos de especialistas devido a sua alta complexidade. Dessa forma, o projeto
se propoe a facilitar a implementacao e operacdo de uma rede de sensores sem fio
através da criagdo de um arcabouco para programacao de aplicacoes em redes de
sensores sem fio. O framework proposto, WARM, oferece como principais vantagens
o facil desenvolvimento e gerenciamento de tais aplica¢des, sem que seja necessario
aos seus usuarios conhecimento especifico na area de redes de sensores sem fio.

Palavras-chaves: Redes de sensores sem fio; Programacao; Desenvolvimento de
aplicagoes; Gerenciamento de aplicaces; Gerenciamento de recursos.

Abstract

The Internet of Things is a concept present in the daily life with several
applications. Even so, the Internet of Things relies on the existence of sensor net-
works in the environment to provide data for a proper decision making. However,
specialist knowledge in sensor networks is still required to implement and operate
them due to their complexity. To try and solve this problem, this project proposes
the creation of a framework for the programming of applications in wireless sensor
networks. The proposed framework, WARM, has as main advantages the ease of
development and management of such applications without the need of user specific
knowledge about wireless sensor networks.

Key-words: Wireless sensor networks; Programming; Application development;
Application management; Resource management.

Lista de Figuras

Figura 1 — Cronograma do projeto., 15
Figura 2 — Componentes do TinySDN. 23
Figura 3 — Diagrama de arquitetura simplificado. 28
Figura 4 — Diagrama de arquitetura do controlador. 49
Figura 5 — Diagrama ER do banco de dados do controlador. 51
Figura 6 — Diagrama de arquitetura do middleware. 52
Figura 7 — Foto do TelosB vistode cima. 60
Figura 8 — Teste do middleware realizado com o simulador COOJA. 78
Figura 9 — Aba ‘Tasks’ da interface desenvolvida. 81
Figura 10 —Aba ‘Query’ da interface desenvolvida. 81

Figura 11 —Aba ‘Network’ da interface desenvolvida. 82

Tabela 1
Tabela 2
Tabela 3
Tabela 4
Tabela 5

Tabela 6

Tabela 7

Tabela 8

Tabela 9

Tabela 10

Tabela 11

Tabela 12
Tabela 13

Tabela 14

Tabela 15
Tabela 16
Tabela 17
Tabela 18

Tabela 19

Lista de Tabelas

— Estrutura do pacote de descricao de caracteristicas de um no sensor.
— Estrutura do pacote de confirmagao da inscricdo de um né sensor. . . .
— Estrutura do pacote de requisicao da descricao de uma tarefa.
— Estrutura do pacote de resposta da descricao de uma tarefa.
— Estrutura do pacote de requisicao do agendamento de uma tarefa pe-
riddica.
— Estrutura do pacote de confirmacdo do agendamento de uma tarefa
periddica.
— Estrutura do pacote de requisicao do agendamento de uma tarefa ins-
tantanea.
— Estrutura do pacote de confirmacdo do agendamento de uma tarefa
instantanea. L.
— Estrutura do pacote de requisicao do agendamento de um trigger. . . .
—Estrutura do pacote de confirmacao do agendamento de um trigger. . .
—Estrutura do pacote de requisicao do cancelamento de uma tarefa agen-
dada.
—Estrutura do pacote de resposta do cancelamento de uma tarefa.
—Estrutura do pacote de requisicao do relatério de execugao de uma
tarefa agendada. oo
—Estrutura do pacote de resposta do relatério de execucao de uma tarefa
agendada.o
—Estrutura do pacote de requisicao do estado de um né sensor.
—Estrutura do pacote de resposta do estado de um né sensor.
—Estrutura do pacote de transmissao de dados.

—Estrutura do pacote de transmissao de um sinal de trigger.

—Tempos de execucao do middleware

36
36

Lista de Siglas e Simbolos

API Application Programming Interface. 6, 13-15, 50, 65, 83-86
CORBA (Common Object Request Broker Architecture. 6, 54
DAO Data Access Object. 6, 59, 68

ER Entidade-Relacionamento. 5, 6, 51, 59, 68

GPS Global Positioning System. 6, 36, 84

GSN Global Sensor Networks. 6, 19, 20

HTML HyperText Markup Language. 6, 64

HTTP HyperText Transfer Protocol. 6, 54, 65

ID identificador. 6, 36-49, 51
IDE Integrated Development Environment. 6, 57

IEEE Institute of Electrical and Electronics Engineers. 6, 17, 37, 60

JSON JavaScript Object Notation. 6, 65, 80

JVM Java Virtual Machine. 6, 56

LR-WPAN Low Rate Wireless Personal Area Network. 6, 21
MVC Model-View-Controller. 6, 55

nesC network embedded systems C. 6, 18, 59, 64, 69

ORM Object-Relational Mapper. 6, 58, 59

REST Representational State Transfer. 6, 10, 11, 13-15, 28, 29, 50, 54-56, 58, 6365,
83-86

RPC Remote Procedure Call. 6, 54

RSSF Redes de Sensores sem Fio. 6, 9, 12-14, 17-19, 21-23, 25, 26, 28, 37, 5961, 83-86

SDN Software Defined Networks. 6, 9, 1214, 17, 20-24, 28, 35, 37, 50, 59, 75, 84, 86
SDWN Software Defined Wireless Networks. 6, 21

SMTP Simple Mail Transfer Protocol. 6, 54

SO Sistema Operacional. 6, 18, 21, 59, 85

SOAP Simple Object Access Protocol. 6, 10, 54, 55

SQL Structured Query Language. 6, 19, 20, 59

URI Uniform Resource Identifier. 6, 54

USB Universal Serial Bus. 6, 60

WSGI Web Service Gateway Interface. 6, 55

WSN Wireless Sensor Networks. 6, 17

XML Eaxtensible Markup Language. 6, 19, 54

1

Sumario

Introducao L e e e e e e e e e e e 12
1.1 Objetivo 13
1.2 Metodologia de elaboragao do projeto 13
1.3 Cronograma e atividades o0 14
1.4 Organizacao do Documento 15
Planejamento 16
Revisao bibliografica 0. 17
2.1 Redesdesensoressem fio. 17
2.1.1 TinyOS 18
2.2 Gerenciamento e consultas para Redes de Sensores sem Fio (RSSF) 18
221 TinyDB e 18
222 PyoT e 19
2.2.3 Global Sensor Networks, 19
2.3 Software Defined Networks 20
2.4 SDN aplicadoa RSSF 21
2.4.1 Software Defined Wireless Networks 21
2.4.2 Sensor OpenFlow 22
2.4.3 TinySDN e 23
Especificacdo e e 25
3.1 Escopo do projeto 25
3.2 Requisitos do projeto 26
3.2.1 Requisitos funcionais L. 27
3.2.2 Requisitos ndo-funcionais 27
3.2.3 Garantias para os requisitos nao-funcionais 28
3.3 Diagrama de arquitetura simplificado 28
3.4 Protocolo de interface com o usuario 29
3.4.1 Caracteristicas dos nos sensores 29
3.4.2 Disponibilidade das tarefas 31
3.4.3 Parametros de agendamento das tarefas 32
3.4.4 Agendamentos em execucao 33
3.4.5 Agendamento de uma tarefa 33

3.4.6 Cancelamento de um agendamento 35

3.5 Protocolo de interface com o middleware 35
3.5.1 Descrigao de caracteristicas de um né sensor 36
3.5.2 Descrigao de um dispositivo 37
3.5.3 Descricao de uma tarefa 38
3.5.4 Agendamento de uma tarefa periédica L. 40
3.5.5 Agendamento de uma tarefa instantanea 42
3.5.6 Agendamento de um trigger 43
3.5.7 Cancelamento de uma tarefa agendada 46
3.5.8 Relatorio de execucao de uma tarefa agendada 46
3.5.9 Estado de um né sensor 47
3.5.10 Transmissao dedados. 48
3.5.11 Transmissao de sinal de trigger 49

3.6 Arquitetura do controlador 49
3.6.1 Bancos de dados do controladoro 50

3.7 Arquitetura do middleware 51

Tecnologias o e e e e e e e e e e e e 54

4.1 Tecnologias de interface com o usuario 54
4.1.1 Representational State Transfer (REST) 54
4.1.2 Simple Object Access Protocol (SOAP) 54
4.1.3 Escolhaemotivos L 59

4.2 Tecnologias de implementacao para o servidor REST 55
421 Djangoo 95
422 Flask oo 55

4.3 Linguagens para o controlador do framework 56
431 GO . .. 56
4.3.2 Java ... 56
4.3.3 Python. 57
4.3.4 Escolha emotivos Lo 58

44 Bancode Dados 58
4.4.1 SQLite 58
4.4.2 SQLAlchemy 59

4.5 Middleware 29
4.5.1 TinyOS 59
4.5.2 TimySDN 59
4.5.3 TelosB e 60

454 COOJA 61

Il Aplicacao 62

5 Desenvolvimento e e 63
5.1 Metodologias de desenvolvimento 63
5.1.1 Versionamento de cédigo 63
5.1.2 Revisaodecoddigoo 63
5.1.3 Testes de componentes L 64
5.1.4 Documentacao de codigoo 64

5.2 Servidor REST 64
5.3 Controlador 66
5.3.1 Mapeamento de tarefas L. 66
5.3.2 Monitoramentodarede L 66
5.3.2.1 Controlador do TinySDN 67

5.3.2.2 N6 da rede conectado por serial 67

5.3.3 Bancodedados 68

54 Middleware 69
5.4.1 Processador de Respostas do Protocolo 69
54.2 Escalonador 69
54.3 APl de Tarefas 71
54.4 Receptor 74
5.4.5 Emissor 75

6 Testes i e e e e e e e e e e e e e e e e e e e 76
6.1 Testes do controlador 76
6.1.1 Testes de componentes 76
6.1.2 Teste de funcionamento L. 76

6.2 Testes do middleware 7
6.2.1 Testes de componentes L. 7
6.2.2 Teste de funcionamento 7
6.2.3 Desempenho 79

6.3 Testes de integracao 80
6.4 Demonstracdo de usoo 80
7 Conclusdo e e e e e e e e e e e 83
7.1 Resultados alcancados L 83
7.2 Trabalhos futuros 85
7.3 Consideragoes finais 86

Referéncias & o i v o e 88

12

1 Introducao

O advento da Internet das Coisas inclui a existéncia de uma rede de objetos fisicos,
e até de pessoas e animais, com a capacidade - a eles atribuida por meio de dispositivos
eletronicos embarcados providos de sensores e interfaces de comunicacao - de se conectar
uns aos outros e transferir dados entre si sem nenhuma interacdo homem-homem ou

homem-maquina.

Uma parte importante da visdo sugerida pelo conceito de Internet das Coisas,
de acordo com Piuri e Minerva (2015), é o desenvolvimento de aplica¢oes de Redes de
Sensores sem Fio (RSSF). Uma RSSF é um tipo de rede composta por nds sensores
auténomos com o objetivo de monitorar ambientes (CULLER; ESTRIN; SRIVASTAVA,
2004).

Apesar dessa importancia, entretanto, a elaboracao de uma uma aplicagdo para
RSSFs ainda ¢ uma tarefa muito custosa e complexa. Tal custo e complexidade sao devidos
ao fato de que o desenvolvimento de uma aplicagao dessa tecnologia costuma requerer a

especificacao e a programacao completa de toda a infra-estrutura de uma RSSF.

Isso acontece em razao das dificuldades envolvidas na reutilizagdo de uma infra-
estrutura de rede existente para o desempenho de novas tarefas, bem como no aprovei-
tamento de seus recursos ociosos para potenciais novas aplicagoes. Nao obstante, essa
atividade de programacao requer conhecimento especifico relacionado ao hardware e ao
sistema operacional dos nds sensores da rede, dificultando ainda mais esse custoso e com-

plexo processo.

Em face desse problema, o trabalho proposto consiste na implementacao de um
framework (arcabougo) para o desenvolvimento de aplicagdes em RSSFs: o WARM (Wi-

reless Sensor Network Application development and Resource Management).

WARM ¢é uma ferramenta open-source baseada no paradigma de Redes Definidas
por Software, do inglés Software Defined Networks (SDN), que tem por objetivo centralizar
o controle de redes de computadores. Além disso, tem uma arquitetura altamente modular,
evitando ao maximo a necessidade de interagao direta com o hardware ou com tecnologias

usada em camadas inferiores, de forma a permitir uma maior reutilizacao.

Com o objetivo de especifica-lo, foi realizada uma revisao bibliografica com o pro-
posito de obter conhecimento acerca do estado da arte no que se refere as solugoes para
o problema de se desenvolver e gerenciar aplicacoes para RSSFs. Com base no contetido

pesquisado, WARM foi especificado e implementado de forma a atender aos requisitos

Capitulo 1. Introdugdo 13

apresentados pelos trabalhos anteriores nessa area, também focando na reutilizagdo da

infra-estrutura disponivel para multiplas aplicagoes.

A arquitetura do framework proposto é, resumidamente, composta por dois com-

ponentes de software:

e Controlador: Responsavel por fazer a interface do usuédrio com o controlador SDN
que gerencia a infraestrutura de rede. O controlador do WARM interage com o
usudrio através de uma Application Programming Interface (APT) REST, armazena
informacoes sobre os nds presentes na rede e também conhece todas as tarefas sendo

executadas atualmente, bem como os atributos e capacidades de cada né.

o Middleware dos noés sensores: Responsavel por fazer a interface entre a camada de
rede e a camada de aplicagao dos nds sensores participantes da rede mantida pelo

arcabouco.

1.1 Objetivo

O objetivo do trabalho é a concepcao, especificagao, implementacao, validacao e
andlise de desempenho de um framework open source que facilite o desenvolvimento e o
gerenciamento de aplicagoes em RSSFs. O framework deve permitir o aproveitamento da
infra-estrutura de uma mesma rede existente por multiplas aplica¢des simultaneas. Além
disso, o usuario deve poder configurar novas aplicacbes sem que haja a necessidade de

reprogramar cada né sensor.

Nao sera necessario, para isso, que o usuario conheca a topologia de uma RSSF
nem caracteristicas especificas de cada n6. O framework deve ser capaz de abstrair esses
detalhes, de forma que mesmo usuarios sem conhecimento prévio da rede sejam capazes

de utiliza-la.

Essa caracteristica de facil configuracao e reconfiguracao de multiplas aplicagoes
em uma mesma RSSF pode ser obtida através de um controle centralizado da mesma,

possivel com a aplicacdo do paradigma de redes definidas por software.

1.2 Metodologia de elaboracao do projeto

A elaboracao do projeto foi dividida em duas etapas principais, especificacao e

desenvolvimento, e a metodologia adotada ¢ apresentada a seguir.

A primeira etapa comecgou com a definicdo do escopo do projeto, com base em
interesses dos integrantes do grupo e sugestoes dos orientadores. De posse da ideia inicial

de escopo foi realizado o levantamento bibliografico sobre o estado da arte na area de

Capitulo 1. Introdugdo 14

interesse: suporte ao desenvolvimento de aplicagoes para RSSFs. Nesse levantamento,
procurou-se dar maior relevancia a artigos considerados como referéncias ja consolidadas
na area, mas também foram considerados trabalhos mais recentes que tivessem grande

relagao com a proposta deste projeto.

A principio, a busca se concentrou em trabalhos que esclarecessem as defini¢oes e
as caracteristicas dos conceitos-chave para a realizacdo do trabalho, como RSSF e SDN.
Conforme se deu o amadurecimento de tais conceitos, o enfoque da pesquisa se voltou a
trabalhos que pudessem trazer luz aos principais problemas existentes nas RSSFs e como
eles poderiam ser solucionados através da proposta de um framework para o desenvolvi-

mento e gerenciamento desse tipo de ambiente de rede.

A partir da revisao bibliografica, foi realizado o levantamento dos requisitos do
projeto e, com base neles, uma concepcao de alto nivel da sua arquitetura. Essa concepcao
permitiu que se tivesse uma ideia melhor dos dois moédulos principais do framework, o

controlador e o middleware ja mencionados, bem como das interfaces entre eles.

Identificadas as interfaces entre os principais componentes do projeto, buscou-se
entao especifica-las em grande nivel de detalhe. Tal empenho resultou na especificacao
de uma API REST para interface do controlador com o usuério e de um protocolo para
a comunicacao sem fio entre o controlador e o middleware presente nos nds sensores da

rede.

Conhecendo-se as entradas e saidas dos dois principais moédulos mencionados,
pode-se entao especificar a arquitetura interna de cada um deles. O passo final da especifi-
cagao consistiu na pesquisa e na decisao das tecnologias adequadas para a implementacao

de tais arquiteturas.

A segunda etapa do projeto consistiu na implementacao do projeto e na realizacao
de testes para verificar seu correto funcionamento e desempenho. Uma descricio mais
detalhada da metodologia de desenvolvimento encontra-se na Segao 5.1.

1.3 Cronograma e atividades

O projeto esta dividido em seis partes principais:

Pesquisa de tecnologias e estado da arte;

Especificacao dos componentes, protocolos de comunicacao e tecnologias a serem

usadas no projeto;

Documentagao do andamento do projeto e escrita da monografia;

Implementacao do controlador do framework;

Capitulo 1. Introdugdo 15

e Implementacao do middleware;
e Integracao dos componentes;
e Realizacao dos testes, validagao e analise de desempenho;

e Desenvolvimento da aplicagao de demonstracao.

O cronograma de execucao das atividades é apresentado na Figura 1.

Figura 1 — Cronograma do projeto.

JAN FEV MAR ABR MAI JUN JUL AGO SET OUT NOV DEZ

Pesquisa | N A I
[[]

Especificagdo

Monografia ' | ! ' [[[|
Framework ---
Middleware ---
Integragdo [[]
Testes ---
Demo ---

1.4 Organizacdo do Documento

No Capitulo 2 é apresentada uma revisao bibliografica sobre os temas pesquisados
para a realizacao do projeto. Os temas de pesquisa relevantes sao apresentados, junto com

um breve resumo e referéncias bibliograficas dos assuntos estudados.

No Capitulo 3 é apresentada a especificacao técnica do projeto, apresentando es-
copo do trabalho, requisitos funcionais e nao funcionais, arquitetura da solucao do projeto

e os protocolos de comunicagao entre as interfaces.

No Capitulo 4 sao apresentadas as tecnologias consideradas e adotadas no projeto,

bem como andlises e justificativas das escolhas realizadas.

No Capitulo 5 sao apresentados os métodos de desenvolvimento adotados para a
implementacao do projeto, incluindo versionamento, revisao, documentacao e testes. Em
seguida, sao relatadas as implementagoes dos trés componentes principais da arquitetura
do WARM: o servidor da API REST, o controlador do framework e o middleware presente

nos nds sensores.

No Capitulo 6 sao apresentados os testes realizados para garantir e validar o funci-
onamento do framework implementado, incluindo testes de modulos e componentes, testes

isolados dos principais componentes e testes de integracao entre eles.

O Capitulo 7 da encerramento ao trabalho, discutindo os resultados obtidos, re-
latando possiveis caminhos para o seu prosseguimento, e tecendo reflexdes a respeito do

significado que ele teve enquanto trabalho final de graduacéao.

Parte |

Planejamento

17

2 Revisao bibliografica

Neste capitulo encontra-se uma revisao bibliografica geral sobre assuntos que fo-
ram pesquisados e estudados para permitir a realizacao deste trabalho. Primeiro ha uma
apresentacao sobre os conceitos de Redes de Sensores sem Fio (RSSF), seguido por uma
apresentacao de outros trabalhos presentes na literatura sobre gerenciamento e consultas
para RSSF. Em sequéncia, apresenta-se a definicao de Software Defined Networks (SDN),

para entao descrever alguns trabalhos da literatura sobre SDN aplicada a RSSF.

2.1 Redes de sensores sem fio

Redes de Sensores sem Fio (RSSF) (CULLER; ESTRIN; SRIVASTAVA, 2004) (em
inglés Wireless Sensor Networks (WSN)) sdo redes compostas por sensores auténomos es-
pacialmente distribuidos para monitorar condigoes fisicas e ambientais, como temperatura
e pressao. Os noés destas redes sao dispositivos de baixo custo capazes de se comunicar
entre si através de conexoes sem fio, de modo a colaborar uns com os outros para a re-
alizagdo do proposito de uma aplicacdo de RSSF. Além disso, podem ainda ser moveis,

heterogéneos e, em alguns cenérios, podem suportar condi¢des ambientais adversas.

Denominados de nés sensores, os elementos que compoem uma RSSF sdo disposi-
tivos marcados por duas limitacoes principais: a de recursos computacionais — incluindo
armazenamento e processamento — e a de fonte de energia — geralmente fornecida por
uma bateria de baixa capacidade. Tais caracteristicas exigem que a programagcao de apli-
cagoes para nés sensores seja eficiente na utilizacdo dos recursos disponibilizados pelo
hardware desses dispositivos. Alguns exemplos de plataformas de nés sensores utilizadas

em aplicagoes para RSSF sao o TelosB e o micaZ.

Outra caracteristica importante de uma RSSF ¢é a sua arquitetura de rede, que
pode ser encarada como uma classe especial de redes ad hoc de multiplos saltos (MARGI,
2015). Devido ao requisito adicional de baixo consumo de energia e as caracteristicas dos
dispositivos de radio empregados nessas redes — como baixas taxas de transferéncia e
laténcia elevada — sao necessarios protocolos diferenciados para a comunicagao nesse tipo
de rede. Um dos protocolos de comunicacao de camada de enlace mais utilizados em RSSF
¢é o IEEE 802.15.4, que prevé baixas taxas de transferéncia e tem foco no baixo consumo

de energia.

Aplicagoes de RSSF estao se tornando cada vez mais populares em diversas areas

Capitulo 2. Revisdo bibliogrifica 18

da atividade econdémica, como agricultura de precisao, construcao civil, controle de tra-
fego, monitoramento de pacientes e logistica de produtos. Ainda assim, o que vemos hoje é
apenas uma sombra do verdadeiro potencial representado pelas RSSFs, que s6 se tornara
claro com o advento da Internet das Coisas — que tornara extremamente populares as
aplicacoes dessa tecnologia. No entanto, ha diversos desafios para a popularizacao das RS-
SFs, a maioria relacionada a dificuldade de gerenciar e programar suas aplicagoes (PIURI;
MINERVA, 2015).

2.1.1 TinyOS

O TinyOS (LEVIS et al., 2005) é um Sistema Operacional (SO) de cédigo aberto
para RSSF. Ele foi criado na Universidade da Califérnia em Berkeley com o objetivo de
facilitar a programacao de aplicagoes para RSSFs e é amplamente utilizado por pesquisa-

dores na comunidade académica.

O TinyOS é um SO orientado a eventos e sua programacao é feita na linguagem
network embedded systems C' (nesC) (GAY et al., 2003), uma extensao da linguagem C.
Ele foi projetado tendo em vista um baixo consumo de energia e de memoria, de forma a
permitir a operagdo em nés sensores com energia e memoria limitadas. O SO é capaz de

executar multiplas tarefas concorrentes de maneira segura.

Foi desenvolvido também um simulador para o TinyOS chamado TOSSIM (LEVIS
et al., 2003), que permite a simulacdo de aplicagoes para o TinyOS e possui interface de

programacao em C++ e Python.

2.2 Gerenciamento e consultas para RSSF

Nessa secao sao apresentadas breves descri¢cdes de alguns dos principais trabalhos
relacionados ao gerenciamento e ao monitoramento de redes sensores e internet das coisas.
Eles serviram de base para a definicdo de requisitos funcionais e nao-funcionais neste

projeto.

22.1 TinyDB

O TinyDB (MADDEN et al., 2005) é um processador de consultas distribuido que

roda sobre o TinyOS, desenvolvido na Universidade da Califérnia em Berkeley.

O TinyDB tem a maioria das caracteristicas de um processador de consultas tra-
dicional, mas também incorpora caracteristicas projetadas para minimizar o consumo de
energia através de técnicas aquisicionais. Nesse trabalho as consultas sao feitas através de

um PC, responsavel por interpretar, otimizar e enviar as consultas para a RSSF.

Capitulo 2. Revisdo bibliogrifica 19

As principais questoes consideradas acerca do processamento de consultas em RS-
SFs por esse trabalho sdao: em que momento as amostras de uma consulta devem ser
tomadas; quais nés tém dados relevantes para a consulta; qual a ordem na qual as amos-

tras devem ser feitas; e como intercalar a amostragem com outras operagoes.

As consultas no TinyDB seguem o padrao basico do Structured Query Language
(SQL), com o acréscimo da op¢ao de definir um intervalo entre medidas, bem como a
duracao da consulta. Consultas também podem realizar agdes, como o acionamento de

evento em um nod ou de um atuador.

222 PyoT

O PyoT (AZZARA et al., 2014) é um framework de “macroprogramacao” para

internet das coisas. Esse é um trabalho recente, de 2014, desenvolvido em Pisa, na Italia.

Seu foco é esconder completamente os nés e a rede do usuario. Suas funcionalida-
des incluem: descobrir recursos disponiveis de maneira automatica, monitorar dados de
sensores, manipular seu armazenamento, controlar atuadores, definir eventos e suas agoes,
e interagir com seus recursos utilizando linguagem de script. O PyoT foi projetado para
rodar em redes IP e a obtencao de dados da rede pode ser feita através de requisi¢oes do
tipo GET.

O PyoT nao leva em conta restricoes de processamento, comunicagdo ou energia
nos nos da rede, pois grande parte da légica da rede é executada nos préprios noés, e
protocolos web convencionais sao utilizados para comunicac¢ao, além da programacao ser
realizada em Python, uma linguagem pouco eficiente do ponto de vista de processamento

e memoria.

2.2.3 Global Sensor Networks

O Global Sensor Networks (GSN) (ABERER; HAUSWIRTH; SALEHI, 2006) é
um middleware open-source que suporta a descoberta e a integracao flexivel de RSSFs.
Seus objetivos sao tornar possiveis a configuracao dindmica de aplicacoes de RSSFEs em
operacao e a realizacao de consultas, filtros e combinacao de dados coletados por sensores

de forma distribuida.

O principal obstaculo para a realizacao de tais objetivos esta na heterogeneidade
das plataformas de hardware e software disponiveis para RSSF atualmente. Para contornar
esse problema, os autores propoem uma maneira — denominada por eles de “sensores
virtuais” — de se abstrair os nés sensores através em descritores baseados em Fxtensible
Markup Language (XML).

Os sensores virtuais sao a peca principal no modelo de abstracao provido pelo

GSN. Eles abstraem o acesso aos dados produzidos por nés sensores e sao administrados

Capitulo 2. Revisdo bibliogrifica 20

e disponibilizados, pelo GSN, na forma de servigos. O modelo propoe que um né sensor
tenha um ntmero qualquer de entradas de dados, advindos de sensores ou de outros nés

da rede, mas apenas uma saida de dados.

Entre as informacgoes que devem ser providas na especificacao de um sensor virtual,

vale a pena ressaltar as seguintes:

Metadados para a identificacao e descoberta dos sensores;

A estrutura das entradas e saidas de dados;

e Uma especificagao declarativa do processamento de dados que o sensor é capaz de

realizar, que no caso do GSN é baseada em SQL;

Propriedades funcionais relacionadas a persisténcia, tratamento de erros ocorridos,

ciclo de vida e instalacao fisica do sensor.

2.3 Software Defined Networks

Redes Definidas por Software, do inglés Software Defined Networks (SDN), é um
paradigma para a arquitetura de redes de computadores caracterizado sobretudo pelo
desacoplamento entre o plano de dados e o plano de controle da rede (KOLDEHOFE et
al., 2012). Esse principio permite que a rede seja vista como uma tnica entidade virtual,
cuja configuracao pode ser feita de forma centralizada e automatizada via software — ao
invés de demandar a reprogramacao manual de conjuntos distintos de configuragoes em

centenas e até milhares de dispositivos.

As vantagens do paradigma para a administragdo dos recursos de uma rede estao
relacionadas sobretudo a flexibilizacao da configuragdo, do gerenciamento, da seguranca
e da otimizacao dos recursos da rede. Essas vantagens contribuem ainda para facilitar a
definicao e a aplicacao de politicas de rede. Uma outra vantagem é a abstracao dos detalhes
de funcionamento dos dispositivos presentes em uma rede, que, apesar de heterogéneos,

podem ser todos configurados da mesma forma utilizando SDN.

O funcionamento de uma rede definida por software estd baseado no conceito de
fluxos para identificar o trafego de dados na rede. Um pacote transmitido recebe um rétulo
referente ao seu fluxo, que determina as regras para o seu trafego na rede. Dispositivos que
encaminham pacotes na rede, como switches e roteadores, sao configurados com regras que
determinam o que deve ser feito com um pacote recebido com o rétulo de um determinado
fluxo. Essas regras podem ser simples, como “descartar”, “receber” ou “encaminhar”, mas
também podem ser complexas, considerando partes do contetido do pacote e variaveis de

estado da rede.

Capitulo 2. Revisdo bibliogrifica 21

2.4 SDN aplicado a RSSF

Essa secao descreve trés trabalhos relacionados a area de SDN aplicado a redes

sem fio e redes de sensores sem fio.

2.4.1 Software Defined Wireless Networks

O trabalho de Costanzo et al. (2012) examina como o paradigma SDN pode ser
benéfico a ambientes de rede sem fio sem infra-estrutura, denominados como Low Rate
Wireless Personal Area Network (LR-WPAN) pelos autores, e como ele deveria ser ex-
pandido para levar em conta as caracteristicas de tais ambientes. Tais vantagens nao
estariam relacionadas a aumentos de eficiéncia ou de desempenho, mas sim a flexibilidade

na escolha de solugoes de controle e administracao de tais ambientes.

Algumas das caracteristicas de SDN sdo bastante adequadas a sua aplicagdo a
LR-WPAN;, sobretudo no que diz respeito as restrigbes de consumo de energia desses
ambientes. Entre essas caracteristicas esta a flexibilidade na definicdo de regras de fluxo e
de algoritmos de otimizacao, que, entre outras coisas, possibilitam a agregacao de dados

através de regras de roteamento.

Além de apresentar as vantagens de se aplicar SDN a LR-WPAN o trabalho tam-
bém apresenta uma arquitetura de Software Defined Wireless Networks (SDWN), que poe

em pratica essa aplicacdo. Ela define uma estrutura geral baseada em dois componentes:

e N6 sorvedouro: um dispositivo conectado a um sistema embarcado rodando um
SO baseado em Linux, capaz de desempenhar as tarefas do controlador SDN. A
arquitetura de software proposta para esse dispositivo envolve principalmente duas

camadas:
— Camada de controle, responsavel por aplicar as politicas de administracao da
rede;
— Camada de virtualizacao, responsavel por manter uma representacao do estado

atual da rede.

e Noés genéricos: demais dispositivos conectados a rede. A arquitetura de software

proposta para eles envolve também duas camadas principais:
— Camada de agregacado, capaz de agregar informagoes circulando através da
rede;

— Camada de encaminhamento, capaz de encaminhar pacotes de acordo com os

fluxos determinados pelo controlador SDN.

Capitulo 2. Revisdo bibliogrifica 22

Por fim, o artigo também menciona alguns detalhes de implementacao, entre eles
alguns tipos de pacotes, como data, beacon, report, rule/action request e rule/action res-
ponse, que transmitem desde dados e regras de fluxo até informacoes sobre a topologia
da rede. Também sao propostos quatro tipos de ac¢oes que uma regra poderia aplicar a
um pacote de dados: modificar, descartar, agregar e desligar o radio. A preocupagao com

o uso eficiente de memoéria no armazenamento das regras de fluxo é enfatizada.

2.4.2 Sensor OpenFlow

O trabalho de Luo, Tan e Quek (2012) tem por objetivo apontar como a arquitetura
atual adotada para RSSF é complexa e deficitaria de boas abstragoes, sugerindo como
solugao a aplicagao do paradigma SDN por meio do protocolo Sensor OpenFlow, baseado
no padrao OpenFlow de SDN.

O fato das RSSFs terem sido concebidas para serem especificas a aplicagoes dis-

tintas lhes d4 caracteristicas como:

e Subutilizacao de recursos, pois miltiplas RSSFs sao utilizadas para aplicagoes res-

pectivas, ao invés de se utilizar uma tnica RSSF versatil para multiplas aplicagoes;

e Contra-produtividade, devido a falta de interoperabilidade entre produtos desenvol-
vidos para RSSFs, o que prejudica a velocidade de desenvolvimento de uma aplica-

ao;

e Rigidez das regras de negocio, devida a necessidade de reconfiguracado manual de

tais regras em cada um dos nés que compoem a rede.

e Dificuldade de administracao, pois o desenvolvimento de um sistema de administra-

¢ao para RSSFs é uma tarefa dificil e suscetivel a muitos erros.

Para combater esses problemas, os autores propoem a adogao de uma nova arquite-
tura para as RSSFs, baseada no paradigma de SDN. Tal arquitetura dividiria claramente

os planos de dados e de comunicacao em uma RSSF.

O plano de dados seria constituido pelos nés sensores da rede, que produzem e
encaminham dados conforme os fluxos especificados por um controlador. Ja o plano de
controle estaria nas maos de um ou mais nés controladores, que centralizaria as tarefas de
roteamento e controle de qualidade de servigo. A comunicacao entre esses planos se daria

por meio do protocolo Sensor OpenFlow.

O objetivo principal é fazer com que os nés sensores no plano de dados sejam
programados através da manipulacao de regras de fluxo da rede. Isso tornaria uma RSSF

versatil, flexivel e facil de administrar.

Capitulo 2. Revisdo bibliogrifica 23

O artigo prossegue levantando os principais desafios técnicos para a implementacao
de tal arquitetura, sobretudo no que se refere a adaptacao do protocolo OpenFlow ao caso
das RSSFs, que foi inicialmente concebido para redes cabeadas. Entre os desafios esta
a necessidade de se lidar com a geragao e o processamento de dados em rede, algo que
nao esta previsto no paradigma SDN. Para os autores, entretanto, tal problema pode
ser solucionado com a implementac¢ao, nos nés sensores, de médulos especificos para as

aplicacoes a que eles se destinam.

2.4.3 TinySDN

O TinySDN (OLIVEIRA; MARGI; GABRIEL, 2014) é um framework de redes
definidas por software para Redes de Sensores sem Fio (RSSF) que permite o uso de

multiplos controladores. Ele esta sendo desenvolvido na Escola Politécnica da USP.

O TinySDN é implementado sobre o TinyOS e possui dois componentes principais:
o n6 sensor compativel com SDN, que consiste do switch SDN e de um dispositivo final
SDN; e do né controlador SDN, onde o plano de controle é programado. Os componentes
sao ilustrados na figura 2. A conexao entre um no sensor e o controlador é feita através

de uma rede sem fio de multiplos saltos.

Figura 2 — Componentes do TinySDN.

SDN-enabled Sensor Nodes SDN Controller Node
<TinyOS Application> I L 1
y PP <Controller Application> n .. Controller
i | Server
Sensor TinySdnP I E :
Motes ™ | I:[Serial/lUSB connection
: ActiveMessageC 1 ’
. SerialActiveMessageC
[1
! ¥ H
1 H
. “.... Sensor
i TinySdnControllerC " “Mote
i
? _ _ ActiveMessageC
: Multi-hop Wireless
! Communication !

Fonte: (OLIVEIRA; MARGI; GABRIEL, 2014)

Nao existem mecanismos de confirmacao de entrega de mensagens no 7TinySDN,
dessa forma perdas de pacotes podem ocorrer. Quando um né da rede recebe uma mensa-
gem com fluxo ainda nao presente em sua tabela de fluxos ele se comunica com o contro-
lador, perguntando qual o proximo salto do fluxo a partir do né. O controlador consulta
sua programacao e responde ao no, que armazena a informacao em sua tabela e trata
o pacote de acordo com a resposta. H4 duas agoes possiveis de resposta do controlador:

forward e drop, que direcionam o pacote ou o descartam, respectivamente.

Capitulo 2. Revisdo bibliogrifica 24

Assim que um né compativel com SDN é ligado ele busca um controlador SDN
e associa-se a ele. Para identificacao dos vizinhos os nds fazem broadcast de pacotes de
beacon e aguardam respostas, medindo a qualidade do sinal dos pacotes recebidos. De

posse da informagcao sobre os nés vizinhos, o né envia esses dados ao controlador.

25

3 Especificacao

No Capitulo 2 foram vistas quais as caracteristicas desejadas na infraestrutura de
uma RSSF e como ja existem alguns trabalhos com o objetivo de determinar o papel
que um framework deve ter na facilitacdo do desenvolvimento e do gerenciamento de
aplicagoes em uma RSSF com essas caracteristicas. Esse capitulo se propoe a especificar

uma solucao técnica para o desempenho desse papel.

O primeiro passo para isso é a defini¢ao, feita na Secao 3.1, do que deve ser incluido
e do que deve ser excluido da solucao técnica especificada, devido a limitacao dos recursos
disponiveis ao projeto. Em seguida, sao levantados, na Se¢ao 3.2, os requisitos funcionais

e nao-funcionais para o cumprimento dos itens especificados no escopo.

A partir dos requisitos do projeto, foi entao proposta, na Secao 3.3, uma arquite-
tura simplificada da solug¢ao do projeto, com o objetivo de dividir o papel de cada com-
ponente do projeto no cumprimento dos requisitos levantados. Com base nesse diagrama,
foram definidas as interfaces entre os componentes do projeto, para entao especificar pro-

tocolos para elas nas Secoes 3.4 e 3.5.

Por fim, tendo sido definidas e especificadas as interfaces entre os principais compo-
nentes do projeto, foi possivel dividi-los em médulos que desempenhem fungoes relaciona-
das as entradas e saidas previstas pelas interfaces elaboradas. Essa divisao em modulos é
apresentada nas segoes 3.6 e 3.7, sendo base para a descri¢ao que se faz do comportamento

de cada um.

3.1 Escopo do projeto

O Capitulo 2 mostrou que um framework que facilite o desenvolvimento de apli-

cagoes em RSSFs tem como principais objetivos e caracteristicas:

e Facil configuragdo de uma aplicagdo para uma RSSF;

e Auséncia da necessidade de se programar, especificamente para uma aplicacao con-

figurada, cada um dos nds sensores presentes na infraestrutura da RSSF;

e Compartilhamento, por miltiplas aplicacoes, da infraestrutura existente de uma
RSSF;

e Facil configuracdo dos parametros da rede, incluindo protocolos de roteamento,

otimizacoes e ciclos de trabalho;

Capitulo 3. FEspecificagdo 26

e Facil adicao e remocao de nods sensores a uma RSSF existente;
e Possibilidade de suporte a multiplas plataformas de nés sensores;

e Auséncia da necessidade de que o usuario conheca detalhes do funcionamento e da

programacao de cada um dos nos sensores.

Devido a limitagao de tempo e de pessoas envolvidas no projeto, é necessario limi-
tar seu escopo a somente alguns desses itens, cuja importancia se sobressaia em relacao
aos demais. Tais itens foram escolhidos tendo em vista a viabilidade de sua especifica-
¢do e implementagdo com os recursos disponiveis, e também a sua importancia para o

cumprimento dos objetivos do projeto. Eles serdo detalhados na Secao 3.2.

Os itens listados a seguir nao serao incluidos na especificacao, principalmente de-

vido a um ou mais dentre os seguintes motivos:

1. Necessidade de um esfor¢o incompativel com os recursos disponiveis para a sua

especificacdo e implementacao;
2. Existéncia de uma ampla gama de solugdes para problemas similares;
3. Possibilidade de se estender o projeto futuramente, com o objetivo de inclui-los;

4. Importancia secundéria para que o objetivo principal do projeto seja alcangado.
Segue uma relagao do que nao sera nem especificado nem implementado no projeto:

e Autenticacao do usuario, devido as razoes 2, 3 e 4 apresentadas acima;

e Confidencialidade, integridade e autenticidade na transmissao de dados entre nos

sensores da rede, devido as razoes 1 e 3;

e [solamento entre os dados pertencentes a aplicacoes diferentes, devido as razoes 1 e
4;

e Mobdulos de extensao externos que provenham outros tipos de usabilidade no acesso

as funcionalidades disponibilizadas pelo framework, devido as razoes 1 e 3;

e Reprogramagao remota dos nds sensores que se encontram em campo, devido as
razoes 1 e 3;

3.2 Requisitos do projeto

Na subsecoes que se seguem, sao apresentados os requisitos funcionais e nao-

funcionais levantados para o escopo do projeto.

Capitulo 3. FEspecificagdo 27

3.2.1 Requisitos funcionais

RF1 Usuéario deve ser capaz de configurar aplicagoes que utilizem a infraestrutura da

rede de sensores sem fio;

RF2 Usudrio deve ser capaz de obter uma lista dos nés sensores baseada em identifi-

cadores ou em localizacao geografica;

RF3 Usuédrio deve ser capaz de obter informagoes sobre os nds sensores que compoem a

rede, incluindo as tarefas que podem desempenhar e dados sobre o seu desempenho;

RF4 Usudrio deve ser capaz de agendar tarefas, a serem desempenhadas pelos nés
sensores da rede que componham a aplicagdo configurada, sem que seja necessario

reprogramar os nos;

RF5 Usuario deve ser capaz de especificar parametros de configuragao especificos de

cada tarefa a ser realizada pelos nos sensores;

RF6 Usuéario deve ser capaz de referenciar os dados produzidos por nos sensores através

de rétulos, de forma a especificar tarefas encadeadas;

RF7 Usuario deve ser capaz de determinar um destino, dentro da rede, dos dados

recolhidos para a sua aplicagao.

3.2.2 Requisitos nao-funcionais

RNF1 Controle centralizado da rede;

RNF2 Novos nos que passem a integrar a rede devem ser incorporados automatica-

mente a infraestrutura disponibilizada ao usuario;

RNF3 O usuéario leigo no funcionamento dos noés sensores e da rede deve ser capaz de

obter dados a partir deles;

RNF4 Extensibilidade no que se refere a inclusao de novas plataformas de hardware e

software de nds sensores e novos tipos de funcionalidades que elas envolvam;

RNF5 Interoperabilidade com outros sistemas, de forma que os servigos providos pos-

sam ser acessados de forma transparente;
RNF6 Garantir o uso balanceado dos recursos disponiveis na rede e nos nés sensores;
RNF7 Portabilidade do sistema em relagao a plataformas de hardware e software;

RNF8 Mapeamento automatico de sequéncias de tarefas especificadas pelo usudrio

através dos noés sensores da rede.

Capitulo 3. FEspecificagdo 28

3.2.3 Garantias para os requisitos nao-funcionais

Os requisitos nao-funcionais RNF1, RNF2 e RNF6 podem ser garantidos através
do paradigma de SDN. Os requisitos RNF3 e RNF5 podem ser alcangados através do
uso de um protocolo de interface com o usuério que seja popular, como o REST, que é

descrito na Se¢ao 4.1.

Uma arquitetura que desacople as funcionalidades dos nés sensores do restante do
sistema ira satisfazer os requisitos nao-funcionais RNF4 e RNF7 que, juntamente com o

RNF5, também sao favorecidos com uma solugdo modular para o sistema.

3.3 Diagrama de arquitetura simplificado

A arquitetura do framework é composta por um controlador e pelo middleware

presente nos nés sensores da rede, como ilustrado na figura 3.

Figura 3 — Diagrama de arquitetura simplificado.

_ .:.----.-‘7

No sensor P

Middleware

TinySDN

TinyOS

T Dados coletados—

O controlador é responsavel por fazer a interface do usuario com o controlador
SDN. O controlador do framework ira interagir com o usudario através de arquitetura
REST, por meio da qual o usuario conseguira fazer consultas, agendar tarefas e, de maneira
geral, gerenciar aplicagoes da RSSF sem a necessidade de saber detalhes especificos da
topologia da rede ou dos nés existentes. O controlador armazena informagoes sobre os nés
presentes na rede e também conhece todas as tarefas sendo executadas atualmente, bem

como os atributos de cada né.

O middleware nos nés sensores é responsavel por fazer a interface entre a camada de

rede e a camada de aplicacao dos nds sensores participantes do framework. Ele é responsa-

Capitulo 3. FEspecificagdo 29

vel por receber as mensagens e processa-las, extraindo as informagoes como agendamento
de tarefas e envio de dados requisitados por alguma aplicacao. Também é responséavel por
fazer o bootstrap do framework quando o né é adicionado a rede, conectando o né sensor

ao controlador e passando a ele informagoes sobre as capacidades do no.

3.4 Protocolo de interface com o usuario

Essa secao descreve o protocolo de interface entre o controlador e o usuario.

Através desta interface, serd possivel agendar tarefas para os nds sensores executa-
rem. Sera possivel, também, solicitar informacoes da rede, dos nés sensores e das tarefas

disponiveis, assim como os parametros necessarios para o agendamento de cada tarefa.

Para garantir a interoperabilidade na comunicagao, essa interagao entre usuario
e controlador sera feita através de um protocolo REST. Dessa forma o usuario podera
realizar as solicitacoes ao controlador do framework independentemente da linguagem e

da maquina que sua aplicacao utilizar.

A seguir, encontram-se as solicitacoes disponibilizadas pelo servidor REST, bem

como os parametros necessarios e o formato de respostas de cada uma.

3.4.1 Caracteristicas dos nds sensores

Método que recupera as caracteristicas dos nos sensores, como o sistema opera-
cional, dispositivo, localizacio do né e tarefas disponiveis. E possivel limitar a busca
estabelecendo uma area para que, dessa forma, sejam retornados apenas os nés sensores
dentro da regiao delimitada. Além disso, se for especificado o identificador do nd, apenas

as informacgoes deste né serao retornadas.
GET /NODES

Parametros de entrada opcional:

node__id: Inteiro que representa o identificador do né sensor.

latitude: Decimal que representa a latitude do centro da area para realizar a busca.

longitude: Decimal que representa a longitude do centro da area para realizar a

busca.

e range: Decimal que representa o raio da area para realizar a busca em metros.

Observagao: Para realizar a busca por regiao é necessario fornecer os trés parame-

tros: latitude, longitude e range.

Capitulo 3. FEspecificagdo 30

O método retorna uma lista contendo as caracteristicas dos nds sensores. Cada

item da lista apresenta os seguintes parametros:

e node_id: Identificador do né sensor;

e device: Modelo do dispositivo (e.g. TelosB, MicaZ).Esse objeto possui o identificador

do dispositivo, nome e descri¢ao;

e operating _system: Sistema operacional em execucao (e.g. TinyOS, Contiki). Esse

objeto possui o identificador do sistema operacional, nome e descrigao;
e mobility: Grau de mobilidade do né. Estatico: false; Mével: true;

e cnergy_autonomy: Fonte de energia do nd. Continua (i.e. rede elétrica): false; ou

bateria: true;
e latitude: Latitude do no;
e longitude: Longitude do no;
e height: Altura do né;
e periodic_task qtty: Quantidade de tarefas periddicas;
e max_periodic_task qtty: Quantidade maxima de tarefas periddicas;
e data_ task qtty: Quantidade de tarefas instantaneas;
e mazx_data_task qtty: Quantidade méxima de tarefas instantaneas;
e occupied_ram __percentage: Porcentagem de memoria RAM ocupada;
e current_battery level: Atual nivel de bateria;

e tasks: Lista de tarefas disponiveis no né. A seguir, sdo apresentados os parametros

de cada item desta lista de tarefas.
Cada item da lista de tarefas apresenta os seguintes parametros:

e task id: Identificador da tarefa;

e description: Descricao da tarefa;

e generates data: Indica se a tarefa gera dados;

e controls actuator: Indica se a tarefa controla atuador;

e aggregates data: Indica se a tarefa agrega dados;

Capitulo 3. FEspecificagdo 31

e data_sink: Indica se a tarefa foi definida como tarefa sorvedouro, com dados desti-

nados a sair da rede;

e type: Tipo da tarefa (Instantaneous ou Periodic). Esse objeto possui o identificador

do tipo e a sua descricao;

e currently scheduled_task instances: Quantidade de instancias dessa tarefa que se

encontram agendadas;

e mazx_scheduled task instances: Quantidade maxima de instancias dessa tarefa que

podem ser agendadas.

3.4.2 Disponibilidade das tarefas

Método que retorna uma lista de tarefas disponiveis. E possivel limitar a busca
estabelecendo uma &area, um identificador do né sensor ou o tipo da tarefa. Além disso,
se for especificado o identificador da tarefa, apenas as informagoes desta tarefa serao

retornadas.
GET /TASKS

Parametros de entrada opcionais:

node__id: Inteiro que representa o identificador do né sensor.

task_id: Inteiro que representa o identificador da tarefa.

type: Inteiro que representa o identificador do tipo de tarefa. Tarefa instantanea: 1;

tarefa periddica: 2.

latitude: Decimal que representa a latitude do centro da area para realizar a busca.

longitude: Decimal que representa a longitude do centro da area para realizar a

busca.

e range: Decimal que representa o raio da area para realizar a busca em metros.

Observacao: Para realizar a busca por regiao é necessario fornecer os trés parame-

tros: latitude, longitude e range.

Retorna uma lista contendo de tarefas disponiveis.

Capitulo 3. FEspecificagdo 32

3.4.3 Parametros de agendamento das tarefas

Método que retorna os parametros necessarios para o agendamento das tarefas.
Dependendo da tarefa e do n6 sensor os parametros necessarios para agendamento podem
mudar. Por exemplo, para agendamento de uma tarefa periddica, é preciso do periodo e
duragao da tarefa, ja para o agendamento de uma tarefa de agregacao de dados, como

um somador, é preciso saber de onde vem os dados que se deseja somar e a quantidade

de dados.
GET /PARAMETERS

Parametros de entrada obrigatérios:

e task_parameter id: Inteiro que representa o identificador do parametro.

e task id: Inteiro que representa o identificador da tarefa.

Retorna as caracteristicas dos parametros necessarios de entrada para o agenda-

mento e as caracteristicas dos parametros de saida.

task id: Identificador da tarefa;

e task parameter id: identificador do parametro;
e description: Descricao do parametro;
e input: Define se é parametro de saida ou de entrada;

e max_qtty per_task _execution: Quantidade maxima que pode ser utilizada em uma

lUnica execugao (e.g. quantos operandos em uma soma);
e support_floating point: Define se parametro suporta o tipo de dado ponto flutuante;
e support_fized point: Define se parametro suporta o tipo de dado ponto fixo;
e support_integer: Define se parametro suporta o tipo de dado inteiro;

e support_unsigned__integer: Define se parametro suporta o tipo de dado inteiro sem

sinal;
e support_bit_array: Define se parametro suporta o tipo de dado vetor de bits;
e support_8bits: Define se parametro suporta o comprimento de dados de 8 bits;
e support_16bits: Define se parametro suporta o comprimento de dados de 16 bits;
e support_32bits: Define se parametro suporta o comprimento de dados de 32 bits;

e support_64bits: Define se parametro suporta o comprimento de dados de 64 bits;

Capitulo 3. FEspecificagdo 33

3.4.4 Agendamentos em execucao

Método que retorna uma lista de agendamentos em execugao. E possivel limitar
a busca fornecendo o identificador do n6 ou da tarefa. Assim, apenas os agendamentos
presentes neste né ou desta tarefa serdo retornados. Além disso, se for especificado o

identificador do agendamento, apenas as informacoes deste agendamento serao retornadas.
GET /SCHEDULES

Parametros de entrada opcional:

e node_id: Inteiro que representa o identificador do né sensor.
e task _id: Inteiro que representa o identificador da tarefa.

e task_scheduling id: Inteiro que representa o identificador do agendamento.

Retorna uma lista contendo os agendamentos em execucao. Cada item da lista
apresenta os seguintes parametros:
o task_scheduling id: Identificador do agendamento;
e scheduling instance _number: Nimero da instancia do agendamento;
e task id: Identificador da tarefa;
e node id: Identificador do no;
e cxecution period: Periodo de execucao;

e parameter validity period: Periodo de validade para a utilizagdo dos dados recebi-

dos da rede para processamento por uma tarefa;

e period__precision__millis _micro: Indica se a precisao da tarefa é de milissegundos ou

microssegundos.

3.45 Agendamento de uma tarefa

Método que agenda uma tarefa. Dependendo do tipo da tarefa os parametros
necessarios para agendamento podem mudar, por exemplo, para agendamento de uma
tarefa periddica, é preciso do periodo e duracao da tarefa, ja para o agendamento de
uma tarefa de agregacao de dados, como um somador, é preciso saber de onde vem os
dados que se deseja somar e quantidade de dados. A seguir, alguns desses pardmetros sao
apresentados. Para saber exatamente quais sao os parametros necessarios de cada tarefa
usa-se 0 método GET /PARAMETERS/:TID descrito na subsegao 3.4.3.

Capitulo 3. FEspecificagdo 34

POST /SCHEDULES/

Parametros de entrada:

e NID: Identificador do né onde a tarefa serd agendada;
e TID: Identificador da tarefa a ser agendada no no;

e Period: Periodo de execugao da tarefa periddica;

e Duration: Duragdo para execucao da tarefa periddica;

e Address: Endereco do n6 para destino dos dados coletados, esse endereco nao é

obrigatorio;

o Ref: Reférencia para o agendamento desta tarefa. Se for necessario usar os dados
coletados desta tarefa em outra, é possivel usar essa referéncia. Por exemplo, usar

os dados coletados da leitura de sensor de temperatura para alimentar um somador;

e Data: Referéncia para onde buscar os dados a serem usados como entrada de uma
tarefa de agregacao, como no exemplo do somador. Ela pode ser uma expressao de
comparacgao, por exemplo "tempValue > 10", nesse caso o valor sé sera utilizado se
atender a restricao. A expressao de comparacao deve ser separada da referéncia por

espaco;

e Quantity: Quantidade de dados para usar, indicando, por exemplo, quantos dados

devem ser utilizados em uma tnica soma.

Retorna uma mensagem confirmando o agendamento ou informando a falha.

A seguir é mostrado um exemplo de aplicacao composta por dois agendamentos: no
primeiro é feito o agendamento de uma tarefa periddica e no segundo é feito o agendamento

de uma tarefa instantanea.

O primeiro agendamento solicita a instanciacdo de uma tarefa para ler o sensor
de temperatura TS1 a cada 10 segundos por 1 hora. E feita atribuicdo da referéncia

“tempSensor” para este agendamento.

POST /SCHEDULES/
Body = {
NID: 5,
TID: 3,
Period: 10,
Duration: 3600,

Capitulo 3. FEspecificagdo 35

Ref: ‘tempSensor’

J& o segundo consiste no agendamento de uma tarefa para calcular a média de 10
dados do sensor de temperatura TS1 e enviar o resultado para o endereco 1P 194.66.82.12.

E atribuida a referéncia “avgTempSensor” para o resultado da média.

POST /SCHEDULES/
Body = {
NID: 6,
TID: 9,
Data: ‘tempSensor’,
Quantity: 10,
Address: 194.66.82.12,

Ref: ‘avgTempSensor’

3.4.6 Cancelamento de um agendamento

Método que cancela o agendamento de uma tarefa. Dado o identificador do agen-

damento é possivel cancelar o mesmo.
DELETE /SCHEDULES/:SID

Retorna uma mensagem confirmando o cancelamento ou informando a falha.

3.5 Protocolo de interface com o middleware

Essa secao descreve o protocolo de descricao, agendamento e encadeamento de
tarefas, responsavel por padronizar a interface entre o controlador do framework e o

middleware de cada no6 sensor da rede.

Os objetivos desse protocolo sao, portanto, a obtencao de informagoes relacionadas
a caracteristicas, relatorios e descrigoes de um dispositivo e suas tarefas, além de agendar
tarefas que ele deve executar. Com relacao a esse tultimo aspecto em especial, o protocolo
faz bastante uso do conceito de fluxo proposto pelo paradigma SDN, fazendo referéncia
a fluxos de dados que carregam informacao de como transmitir e tratar pacotes de dados

recebidos por um no.

A seguir, serao listados cada um dos pares de requisicao-resposta desse protocolo,

bem como as informagoes manipuladas por cada um. Cada um dos campos presentes nas

Capitulo 3. FEspecificagdo 36

tabelas especificando o formato dos pacotes é descrito juntamente a elas, com excecao de

campos “X”, que representam bits de padding.

3.5.1 Descricao de caracteristicas de um né sensor

Pacote enviado pelo middleware de um né sensor ao controlador do framework,
com o objetivo de inscrever seus servigos e de informar as caracteristicas do dispositivo.

Como resposta, o middleware espera uma confirmagao de inscrigao.

Os pacotes de descri¢ao de caracteristicas e de confirmagao de inscrigao de um no

sensor tém a estrutura descrita, respectivamente, nas tabelas 1 e 2.

Tabela 1 — Estrutura do pacote de descricao de caracteristicas de um né sensor.

0\1\2\3(\)4\5\6\7 0\1\2\3\14\5\6 |7 0\1\2\3\24\5\6\7
PID | NID [M[E DID
DID \ OS LOC - Latitude

LOC - Latitude
LOC - Longitude

LOC - Longitude \ LOC - Altitude
LOC - Altitude PTQ
IDQ \ NTQ NTN \ X
TID [x NTN]

Tabela 2 — Estrutura do pacote de confirmacdo da inscricio de um né sensor.
| 0 | ! | 2 |
of1]2[3[4]5]6|7]0][1][2]3]4]5[6][7]0]1][2][3][4]5]6]7]
PID CFI

As informagoes manipuladas por esses pacotes sao listadas a seguir:

e PID: identificador (ID) do tipo de pacote do protocolo, no caso 0;
e NID: ID do né sensor;

e M : Grau de mobilidade do né: estatico ou mével;

e E : Fonte de energia: continua (i.e. rede elétrica) ou bateria;

e OS : Sistema operacional em execucao (e.g. TinyOS, Contiki);

e DID: Modelo do dispositivo: ID do modelo (e.g. TelosB, MicaZ), ou 0 se nao tiver

um modelo padrao, como o caso de um arduino;

e LOC: Localizacao do n6 sensor: coordenadas Global Positioning System (GPS) do

n6 sensor (latitude, longitude e altitude) expressas em ponto fixo;

Capitulo 3. FEspecificagdo 37

PTQ: Quantidade maxima de tarefas periédicas que pode ser agendada;

e IDQ: Quantidade maxima de dados que podem ser recebidos da rede como entrada

para tarefas agendadas;
e NTQ: Quantidade maxima de tarefas que podem enviar dados a rede;
e N'TN: Numero de tarefas distintas carregadas no no;

e TID: Para cada uma das tarefas carregadas no n6, um ID relacionando-a a sua

descricao;

e CFI: ID do fluxo SDN que leva as respostas de protocolo do middleware até o

controlador do framewortk.

E importante observar a restricdo de um valor maximo de 31 para o campo NTN,
de modo que o tamanho dos pacotes da requisicao especificada na tabela 1 e da resposta
especificada na tabela 16 nao exceda 90 bytes, que é o limite de tamanho do payload
de um quadro do IEEE 802.15.4, tecnologia de radio preponderante na comunicagao em
RSSF. Um quadro de IEEE 802.15.4 tem tamanho de 127 bytes, subtraindo o tamanho
do cabecalho padrao e de informacoes de outras camadas, como a de SDN, restam cerca
de 90 bytes.

3.5.2 Descricao de um dispositivo

A descricao das caracteristicas de um nd sensor prevista pela secdo 3.5.1 assume
que este se trata de um dispositivo padrao, disponivel no mercado, cujas caracteristicas
imutaveis podem ser armazenadas em um banco de dados. Essas caracteristicas, portanto,

nao precisariam ser consultadas pelo controlador ao dispositivo via rede.

No entanto, o né sensor pode nao ser um dispositivo canonico, podendo ter sido
montado, por exemplo, a partir de um arduino. Nesse caso precisamos de um par requisi¢ao-
resposta para pedir informacoes mais especificas sobre um dispositivo. Contudo, considera-
se que uma descricao detalhada de tais pacotes fuja ao escopo desse trabalho e, por isso,
somente serd feito aqui um levantamento de algumas caracteristicas de dispositivos que

merecem estar presentes em tal pacote:

e (Caracteristicas e quantidade de memoéria RAM,;
e Modelo e caracteristicas do processador;
e Modelo e caracteristicas do rddio do né sensor;

e Capacidades de sensoreamento e atuacgao;

Capitulo 3. FEspecificagdo 38

e Numero de fontes de energia distintas que se encontram disponiveis.

Mesmo nao descrevendo-o em detalhes, reservamos o PID de valor 1 para esse par

de pacotes requisicao-resposta.

3.5.3 Descricao de uma tarefa

Requisicao feita pelo controlador do framework ao middleware de um noé sensor,
com o objetivo de obter as seguintes informacoes sobre uma determinada tarefa que pode

ser desempenhada pelo dispositivo.

Os pacotes de requisicao e resposta da descricdo de uma tarefa tém a estrutura

descrita, respectivamente, nas tabelas 3 e 4.

Tabela 3 — Estrutura do pacote de requisicdo da descri¢do de uma tarefa.

0 1 2
of1]2[3[4][5]6|7]0]1][2]3]4]5[6][7]0]1]2][3][4]5]6]7
[PID | TID |

Tabela 4 — Estrutura do pacote de resposta da descricdo de uma tarefa.

0 1 2
01]2]3]4]5]6|7]0[1]2]3]4][5][6]7]0]1]2[3][4]5]6]7
PID \ TID | TTI | X
MSQ \ ODF | IPN X
D[A[G][S] X IPQ [0]
IPF [0] IPQ [IPN - 1]
IPF [IPN - 1]

As informagoes inquiridas pelo controlador com esse tipo de requisi¢do sao as
seguintes:
e PID: ID do tipo de pacote do protocolo, no caso 2;
e TID: ID da tarefa descrita;

e TTI: ID do tipo de tarefa descrita, podendo ser uma tarefa periddica, instantanea

ou um trigger;

e MSQ: Quantidade méxima de agendamentos (i.e. instancias) suportados pela ta-

refa;
e Descritores da terefa:

— D: Bit indicando se a tarfa gera dados;

Capitulo 3. FEspecificagdo 39

— A: Bit indicando se a tarefa controla um atuador;

— G: Bit indicando se a tarefa agrega dados;

— S: Bit indicando se a tarefa atua como sorvedouro;

e Parametro de saida:

— ODF: Tipos de dado e comprimentos suportados. Vetor de 10 bits em que

cada bit representa uma possibilidade de tipo ou comprimento de dado aceito:

0.

e A A o B o

Floating point;
Fized point;
Integer;
Unsigned integer;
Bit array;
Boolean;

8 bits;

16 bits;

32 bits;

64 bits;

e IPN: Nuimero de pardmetros de entrada (i.e. operandos da tarefa);

e Descrigao de cada parametro de entrada:

— O ID do parametro, relacionando-o a sua descri¢ao, é dado pelo offset de sua

descrigdo em relagdo ao oitavo byte do pacote (i.e. o parametro de ID 0 é

descrito nos bytes 8 e 9, 0 de ID 1 é descrito nos bytes 10 e 11, etc.);

— IPQ: Quantidade maxima que pode ser utilizada em uma tnica execugao (e.g.

quantos operandos em uma soma);

— IPF': Tipos de dado e comprimentos suportados. Vetor de 10 bits em que cada

bit representa uma possibilidade de tipo ou comprimento de dado aceito:

0.

© X N O W=

Floating point;
Fized point;
Integer;
Unsigned integer:;
Bit array;
Boolean;

8 bits;

16 bits;

32 bits;

64 bits;

Capitulo 3. FEspecificagdo 40

3.5.4 Agendamento de uma tarefa periddica

Requisicao feita pelo controlador do framework ao middleware de um noé sensor,
com o objetivo de agendar uma das tarefas de um fluxo de tarefas especificado pelo usuario.
Uma tarefa peridédica é aquela que deve ser executada uma vez em um certo intervalo de
tempo. Como resposta, o controlador espera uma confirmagao de que o agendamento foi

efetuado com sucesso.

Os pacotes de requisicao e resposta para o agendamento de uma tarefa periddica

tém sua estrutura descrita, respectivamente, nas tabelas 5 e 6.

Tabela 5 — Estrutura do pacote de requisigdo do agendamento de uma tarefa peridédica.

0 1 2
0j1]2[3[4]5]6|7[0[1]2][3[4][5]6|7|0][1[2]3]4]5][6]7
PID TID \ X

TA | ODT [ODL|[P] TP
TP \ OF1I
OF1I \

Tabela 6 — Estrutura do pacote de confirmagao do agendamento de uma tarefa peridédica.

| 0 | ! | 2
0[1]2[3[4]5]6|7]0]1|2]3[4][5][6][7[0][1[2]3]4]5]6]7
PID TID X

TIN [SIT|I|N|P[D|R[X]

As informacoes que o middleware necessita para o agendamento de uma tarefa

periddica sao as seguintes:

e PID: ID do tipo de pacote do protocolo, no caso 3;

TID: ID da tarefa que se deseja agendar;

TA : Acionamento por trigger:
— 00: nao é ativada por trigger;
— 10: apés ativagao por um trigger, estara sempre ativa;

— 11: cada nova execugao necessita de um trigger.

P : Precisao da periodicidade da tarefa:

— 0: Se o periodo for de milissegundos;

— 1: Se o periodo for de microssegundos.

e TP : Periodicidade da tarefa (valor do periodo ou 0 indicando execugao tunica);

Capitulo 3. FEspecificagdo 41

e Resultado produzido (se houver):

— ODT: Tipo de dado do resultado produzido pela tarefa:

x 000: Floating point;
* 001: Fized point;
x 010: Integer;
x 011: Unsigned integer;
* 100: Bit array;
* 101: Boolean;
— ODL: Comprimento do dado do resultado produzido pela tarefa:
x 00: 8 bits;
* 01: 16 bits;
x 10: 32 bits;
x 11: 64 bits;

— OFT: ID do fluxo de dados que levara o resultado ao seu destino;

e TIN: ID da instancia da tarefa que corresponde ao agendamento realizado, que foi

alocada pelo middleware para o agendamento realizado;
e S : Bit indicando sucesso da operacao;
e Indicadores de erro de agendamento:
— T : Bit indicando erro por nao haver mais instancias da tarefa disponiveis para

agendamento;

— I : Bit indicando erro por nao haver mais capacidade de recep¢ao de dados da

rede como entrada da tarefa no né sensor;

— NN : Bit indicando erro por nao haver mais capacidade de envio de dados a rede

no né sensor;

— P : Bit indicando erro por nao haver mais capacidade de agendamento de

tarefas periédicas no né sensor;

D : Bit indicando erro por nao haver mais capacidade de agendamento de

tarefas instantaneas;

— R : Bit indicando erro por nao haver mais capacidade de agendamento de

tarefas de trigger.

Capitulo 3. FEspecificagdo 42

3.5.5 Agendamento de uma tarefa instantanea

Requisicao feita pelo controlador do framework ao middleware de um noé sensor,
com o objetivo de agendar uma das tarefas de um fluxo de tarefas especificado pelo
usuario. Uma tarefa instantanea é aquela que pode ser executada assim que todos os seus
parametros de entrada estiverem disponiveis. Como resposta, o controlador espera uma

confirmacao de que o agendamento foi efetuado com sucesso.

Os pacotes de requisicao e resposta para o agendamento de uma tarefa instantanea
tem a estrutura descrita, respectivamente, nas tabelas 7 e 8. Note que a resposta para
o agendamento de uma tarefa instantanea tem o formato idéntico ao da resposta para o

agendamento de uma tarefa periédica.

Tabela 7 — Estrutura do pacote de requisicdo do agendamento de uma tarefa instantanea.

0 1 2
of1]2[3[4][5]6|7[0[1]2][3[4][5]6|7|0][1][2]3]4]5][6]7
PID | TID | IPN

TA | ODT |ODL|P | PTW
PTW \ OFI

OF1I IFI [x IPN]
PN [x IPN] ARG [x 31] \ 0x00

Tabela 8 — Estrutura do pacote de confirmagao do agendamento de uma tarefa instantanea.

| 0 | 1 | 2 |
0l1]2[3]4]5]6|7]o[1][2]3]4][5][6][7]0[1]2][3]4]5][6]7
PID TID X
TIN [SIT|I|N|P[D|R[X]

As informagoes que o middleware necessita para o agendamento de uma tarefa

instantanea sao as seguintes:

e PID: ID do tipo de pacote do protocolo, no caso 4;

TID: ID da tarefa que se deseja agendar;
e IPN: Nuimero de pardmetros de entrada (i.e. operandos da tarefa);
e TA : Acionamento por trigger:

— 00: nao ¢é ativada por trigger;
— 10: apds ativagao por um trigger, estara sempre ativa;

— 11: cada nova execuc¢ao necessita de um trigger.

P : Precisao da janela de tempo méaxima para a espera pela chegada de dados:

Capitulo 3. FEspecificagdo 43

— 0: Se o periodo for de milissegundos;

— 1: Se o periodo for de microssegundos.

e PTW: Janela de tempo maxima para a espera pela chegada dos dados utilizados

em uma execucao;
e Para cada parametro de entrada:

— IFT: ID do fluxo de dados que trara os valores para esse parametro de entrada;

— PN : Nimero de dados desse tipo de parametro que devem ser utilizados em

uma Unica execugao.
e Resultado produzido (se houver):

— ODT: Tipo de dado do resultado produzido pela tarefa, de acordo com a

descrigao da secao 3.5.4;

— ODL: Comprimento do dado do resultado produzido pela tarefa, de acordo

com a descricao da secao 3.5.4;

— OFT: ID do fluxo de dados que levara o resultado ao seu destino.

e ARG: Sequencia de caracteres com comprimento maximo de 31 bytes que pode ser
utilizada como parametro de configuragdo de uma tarefa instantanea. O dltimo byte
desse pacote deve ser nulo, limitando o tamanho méaximo da string passada como

parametro.

3.5.6 Agendamento de um trigger

Requisicao feita pelo controlador do framework ao middleware de um né sensor,
com o objetivo de agendar uma das tarefas de um fluxo de tarefas especificado pelo usuario.
Um trigger ¢ um tipo de tarefa especial que tem o papel de monitorar dados coletados
na rede, compara-los e acionar a execucao de outras tarefas com base no resultado da
comparacao efetuada. Como resposta, o controlador espera uma confirmacdo de que o

agendamento foi efetuado com sucesso.

Os pacotes de requisicao e resposta para o agendamento de um trigger tém a
estrutura descrita, respectivamente, nas tabelas 9 e 10. Note que a resposta para o agen-
damento de um trigger tem o formato idéntico ao da resposta para o agendamento de

uma tarefa periddica.

As informagdes que o middleware necessita para o agendamento de um trigger sao

as seguintes:

e PID: ID do tipo de pacote do protocolo, no caso 5;

Capitulo 3. FEspecificagdo 44
Tabela 9 — Estrutura do pacote de requisicdo do agendamento de um trigger.

0 1 2
0l1]2[3]4][5]6]7][0]1][2][3]4][5]6]7[0]1[2]3]4][5]6]7
PID TID | TMC |

TSC| TCS | TRC | TMI
TMI
TMI
TSI
TSI

TSI ‘ TRI

TRI
TRI

TRI \ OFI

Tabela 10 — Estrutura do pacote de confirmacao do agendamento de um trigger.

| 0 | ! | 2
0l1]2[3]4]5]6]|7]o[1][2]3]4][5][6][7]0[1]2][3]4]5][6]7
PID TID X

TIN [SIT|I|N|P[D|R[X]
e TID: ID da tarefa que se deseja agendar;

e TMC: Configuragdo do minuendo:

— 000:
— 001:
— 010:
— 011:

— 100:
— 101:
— 110:
— 111:

constante;

parametro de entrada;

valor armazenado do subtraendo — regra: valor mais recente;

valor armazenado do subtraendo — regra: valor maior que o atual;

valor armazenado do subtraendo — regra: valor menor que o atual;

valor armazenado da referencia — regra:
valor armazenado do referéncia — regra:

valor armazenado do referéncia — regra:

e TSC: Configuracao do subtraendo:

— 000:
— 001:
— 010:
— 011:
— 100:
— 101:

constante;

parametro de entrada;

valor armazenado do minuendo — regra:
valor armazenado do minuendo — regra:
valor armazenado do minuendo — regra:

valor armazenado da referencia — regra:

valor mais recente;
valor maior que o atual;

valor menor que o atual.

valor mais recente;
valor maior que o atual;
valor menor que o atual;

valor mais recente;

Capitulo 3. FEspecificagdo 45

— 110
— 111

: valor armazenado do referéncia — regra: valor maior que o atual;

: valor armazenado do referéncia — regra: valor menor que o atual.

e TCS: Sinal de comparagao utilizado (<, >, <=, >=, ==, |=, &&, ||);

— 000:
— 001:
— 010:
— 011:
— 100:
— 101:
— 110:
— 111

Y

=,

I

e TRC: Configuracao da referéncia:

— 000

— 001:
— 010:
— 011:
— 100:
— 101:
— 110:
— 111:

: constante;

parametro de entrada;

valor armazenado do minuendo — regra: valor mais recente;

valor armazenado do minuendo — regra: valor maior que o atual;
valor armazenado do minuendo — regra: valor menor que o atual;
valor armazenado da subtraendo — regra: valor mais recente;
valor armazenado do subtraendo — regra: valor maior que o atual;

valor armazenado do subtraendo — regra: valor menor que o atual;

TMI: Valor de inicializacao para o minuendo:

— Valor numérico no caso de constante ou valor armazenado;

— ID do fluxo de dados que trara os valores no caso de um parametro de entrada.

TSI: Valor de inicializacao para o subtraendo;

— Valor numérico no caso de constante ou valor armazenado;

— ID do fluxo de dados que trara os valores no caso de um parametro de entrada.

TRI: Valor de inicializagao para a referéncia;

— Valor numérico no caso de constante ou valor armazenado;

— ID do fluxo de dados que trara os valores no caso de um parametro de entrada.

Sinal de

- OF

trigger produzido:

I: ID do fluxo de dados que levara o sinal de trigger ao seu destino;

Capitulo 3. FEspecificagdo 46

3.5.7 Cancelamento de uma tarefa agendada

Requisicao feita pelo controlador do framework ao middleware de um noé sensor,
com o objetivo de cancelar a execucao de uma tarefa agendada para um fluxo de tarefas
especificado pelo usuario. Como resposta, o controlador espera uma confirmacao de que

o cancelamento foi efetuado com sucesso.

Os pacotes de requisicao e resposta para o cancelamento de uma tarefa tem a

estrutura descrita, respectivamente, nas tabelas 11 e 12.

Tabela 11 — Estrutura do pacote de requisi¢cdo do cancelamento de uma tarefa agendada.

0\1\2\3?4\5\6\7 0\1\2\314\5\6\7 0\1\2\3T4\5\6\7
PID TID [TIN |
TIN

Tabela 12 — Estrutura do pacote de resposta do cancelamento de uma tarefa.

0\1\2\304\5\6\7 0\1\2\3}4\5\6\7 0\1\2\324\5\6\7
PID TID TIN
TIN S |

As informacoes que o middleware necessita para cancelar uma tarefa agendada sao

as seguintes:

e PID: ID do tipo de pacote do protocolo, no caso 6;
e TID: ID da tarefa que se deseja agendar;

e TIN: ID da instancia da tarefa que corresponde ao agendamento realizado, que foi

alocada pelo middleware para o agendamento realizado;

e S : Bit indicando sucesso da operacao.

3.5.8 Relatério de execucdo de uma tarefa agendada

Requisic¢ao feita pelo controlador do framework ao middleware de um né sensor,
com o objetivo de descobrir quantas vezes foi executada uma tarefa especifica, agendada

para um fluxo de tarefas especificado pelo usuério.

Os pacotes de requisicao e resposta para a requisicao do relatorio de execucao de

uma tarefa agendada tém a estrutura descrita, respectivamente, nas tabelas 13 e 14.

As informagoes que o middleware necessita para identificar a tarefa cuja quantidade

de execugoes ele deverd retornar sao as seguintes:

Capitulo 3. FEspecificagdo 47

Tabela 13 — Estrutura do pacote de requisicao do relatério de execugdo de uma tarefa agendada.
0 1 2
0l1]2[3]4][5]6]7][0]1][2][3]4][5]6]7[0]1[2]3]4][5]6]7
PID | TID \ X |

TIN \

Tabela 14 — Estrutura do pacote de resposta do relatério de execugdo de uma tarefa agendada.
0 1 2
oj1]2[3[4]5]6|7]0][1[2]|3]4]5[6][7][0]1]2][3][4]5]6]7
PID | TID X

TIN | TEN

PID: ID do tipo de pacote do protocolo, no caso 7;

e TID: ID da tarefa que se deseja agendar;

TIN: ID da instancia da tarefa que corresponde ao agendamento realizado, que foi

alocada pelo middleware para o agendamento realizado;

e TEN: niimero de execugoes da tarefa consultada.

3.5.9 Estado de um nd sensor

Requisicao feita pelo controlador do framework ao middleware de um né sensor,

com o objetivo de descobrir o uso dos recursos disponiveis no dispositivo.

Os pacotes de requisicao e resposta para a requisicao do relatério sobre o estado

de um noé sensor tem a estrutura descrita, respectivamente, nas tabelas 15 e 16.

Tabela 15 — Estrutura do pacote de requisi¢ao do estado de um né sensor.

0 1 2
0j1]2[3[4]5]6|7]0][1[2]3]4]5[6][7][0]1]2][3][4]5]6]7
] PID \
Tabela 16 — Estrutura do pacote de resposta do estado de um né sensor.

0 1 2
O[1[2[3[4][5]6[7][o[1][2][3][4][5][6][7[0[1][2][3[4][5][6]7
PID CPQ CIQ CNQ

CNQ X \ CBL \ CRP
CL - Latitude
CL - Latitude \ CL - Longitude
CL - Longitude ‘ CL - Altitude
CL - Altitude
CSQ [x NTN] \

Capitulo 3. FEspecificagdo 48

As informagoes que o controlador pode obter sao as seguintes:

e PID: ID do tipo de pacote do protocolo, no caso 8;
e CPQ: Quantidade atual de tarefas periédicas agendadas;

o CIQ: Quantidade atual de dados agendados para recebimento da rede como entrada

de tarefas agendadas;
e CNQ: Quantidade atual de tarefas produzindo dados enviados a rede;
e CBL: Nivel da bateria;
e CRP: Percentual de memoria RAM ocupada.
e CL : Localizacao atual do né sensor;

e CSQ: Para cada tipo de tarefa (ordenado por TID): quantidade atual de agenda-

mentos;

3.5.10 Transmissao de dados

Requisicao feita por qualquer né sensor que deseje enviar, a outro dispositivo,
o resultado produzido por uma tarefa. O nd sensor pode esperar uma confirmagao do

recebimento do dado pelo destinatario.

O pacote de transmissao de dados tem a estrutura descrita na tabela 17.

Tabela 17 — Estrutura do pacote de transmissao de dados.

0 1 2
0J1]2[3[4]5]6|7]0][1][2]3]4]5]6[7][0]1]2[3[4]5]6]7
PID [ODT [ODL | X \ TD
TD
TD
TD \

As informacbes que o recipiente necessita para saber como encaminhar o dado

recebido sao as seguintes:

PID: ID do tipo de pacote do protocolo, no caso 9;

ODT: Tipo do dado transmitido, de acordo com a descricao da secao 3.5.4;
e ODL: Comprimento do dado transmitido, de acordo com a descri¢ao da secao 3.5.4;

e TD : Dado a ser transmitido.

Capitulo 3. FEspecificagdo 49

3.5.11 Transmissao de sinal de trigger

Requisicao feita por qualquer né sensor que deseje enviar, a outro dispositivo, o
sinal de acionamento emitido por um trigger. O né sensor pode esperar uma confirmagao

do recebimento do dado pelo destinatario.

O pacote de transmissao de sinal de trigger tem a estrutura descrita na tabela 18.

Tabela 18 — Estrutura do pacote de transmissao de um sinal de trigger.

0 1 2
0[1[2[3[4[5]6[7|0[1[2[3]4[5]6]7|0[1[2]3]4]5]6]7
[PID |

As informagdes que o recipiente necessita para saber como encaminhar o sinal

recebido sao as seguintes:

e PID: ID do tipo de pacote do protocolo, no caso 10;

3.6 Arquitetura do controlador

A figura 4 mostra a estrutura interna do controlador do framework, formulada
a partir dos protocolos de comunicacao que especificam suas interfaces. Essa estrutura

evidencia cada um de seus médulos, que serdao explicados ao longo dessa secao.

Figura 4 — Diagrama de arquitetura do controlador.

Controlador do Framework

¥
APl de acesso ao
Framework

Fluxos de Tarefas,
Tarefas Agendadas

Mapeamento da
Tarefa

Servidor REST

Caracteristicas e Estado
dos Nos da Rede

Interface com o
Usuario

Monitor da Rede

Camada de Abstragio da Rede

Controlador do SDN

Capitulo 3. FEspecificagdo 50

e Servidor REST: moédulo externo ao controlador que faz uso de sua API para

prover servicos a um usuario remoto.

e API de Acesso ao Framework: conjunto de métodos que implementa as fun-
cionalidades previstas na se¢ao 3.4, e que sao disponibilizados ao usuario final por
meio do servidor REST.

e Mapeamento de Tarefas: médulo responsavel por:

Quebrar um fluxo de tarefas descrito pelo usuario, no formato previsto pelo
protocolo descrito na Secao 3.4, em uma sequéncia de tarefas no formato pre-

visto pelo protocolo descrito na Se¢ao 3.5;

Alocar cada uma das tarefas em um nd sensor, considerando eficiéncia e o

balanceamento do uso dos recursos da rede;

Emitir requisicoes de agendamento ou de cancelamento das tarefas aos nés

sensores escolhidos;

— Armazenar as informagoes de mapeamento de tarefas agendadas na rede no

banco de dados destinado a isso.

e Monitor da Rede: moédulo responsavel por receber alertas de eventos na rede,
enviados ao controlador tanto por nés sensores quanto pelo controlador SDN. Esses
alertas devem ser processados de maneira que o banco de dados que guarda as
caracteristicas e o estado dos nés da rede possa ser mantido sempre atualizado.
Além disso, no caso de um alerta comunicando o desligamento de um né sensor, esse
modulo deve requisitar um novo mapeamento das tarefas que estavam agendadas

no né desligado.

e Camada de Abstracdo da Rede: moddulo responsavel pela interface com o con-
trolador SDN, abstraindo todos os métodos de envio e recepcao de mensagens através
da rede, bem como o acesso a funcionalidades providas pelo controlador SDN, como
a criacao de fluxos SDN. O objetivo dessa camada é tornar os demais moédulos in-
dependentes de uma implementacao especifica de um controlador SDN, garantindo

assim a portabilidade do controlador do framework.

3.6.1 Bancos de dados do controlador
Como visto na Figura 4, o controlador possui dois bancos de dados para armaze-

namento de informagoes. A descrigao deles é a seguinte:

e Caracteristicas e estado dos nds da rede: responsavel por armaze-

nar informagoes de topologia da rede (adjacéncias entre nds, bem como qualidade

Capitulo 3. FEspecificagdo 51

das conexoes) e caracteristicas dos nés (grau de mobilidade, sistema operacional,
ID do n6 sensor, localizacao, tipo da fonte de alimentacao, modelo do dispositivo,

IDs das tarefas implementadas).

e Fluxos de tarefas e tarefas agendadas: armazena as informacoes das
tarefas agendadas e em quais nos elas foram agendadas, bem como a ordem de

execucao entre elas, se houver.

A figura 5 é um diagrama Entidade-Relacionamento (ER) contendo a especifi-
cacao de um modelo unificado desses dois bancos de dados. A opc¢ao de unificacdo dos
dois bancos de dados na hora de modela-los foi realizada devido a grande quantidade de

relacionamentos entre as informacoes armazenadas nos dois.

Figura 5 — Diagrama ER do banco de dados do controlador.

*application_id uint | | application_task_chain_relationship Task_soheduling. In_out
des t string

[ook chain . T|'apelication id uinc - cask_scheduling id wint
1 r l'cask_chain_id uint cask_id aint

node_connection

n

[+node_id uint
*neighbour node id uint
°Link strength uint

n

‘trigger_com parison

*trigger_comparison_id uint

*task_parameter_id uint
g id

task_scheduling
*task_scheduling_id uint
csduling_instancs_numbsr uint

d uint |

device

ntln

*device_id uint

“name string
“decription string

data_length

*data_length_id uint

*description strin

“description strin

task_in_out_parameter

*rask_ia uint |
[+trigger_rule_id uint *task_parameter_id uint

cscription strin *deccription string
[+ bool

operating_system
+0s_1a uint

[+ name string
*dsscription string

sensor_node task i y_per_task_swecution uint
1 bool

+node_id
+rask_id

bool

bool

control flows bool

n
[*node_id uint
+san_r1ow_ia uint

bool
bool

pport_8hit: bool
1

i ncoming outgoing bool
E— bool

+task_type_id uint
[*des t stril bool

rt_Bbits
* support_64bits bool

3.7 Arquitetura do middleware

A figura 6 mostra a estrutura interna do middleware presente nos nés sensores
da rede, formulada a partir do protocolo de comunicacao especificado na Secao 3.5. Essa

estrutura evidencia cada um de seus moédulos, que serao explicados ao longo dessa secao.

e Receptor: responsavel por receber e desmontar pacotes vindos da rede, remetendo

seu conteudo ao modulo do middleware que devera trata-lo:

— Parametros de tarefas devem ser enviados a tarefas;

— Requisig¢oes do protocolo, como agendamento de tarefas e descrigoes de tarefas e
de caracteristicas do né sensor devem ser enviadas ao Processador de Respostas

do Protocolo.

Capitulo 3. FEspecificagdo 52

Figura 6 — Diagrama de arquitetura do middleware.

Middleware do No Sensor

-%—Configuracdo

Receptor Escalonador Configuraco

Configuragdo
Execugdo

Notificacdo de

) tarefa pronta
Parametros de entrada

Sinais de trigger

Descricdo da tarefa

*

- o
G L)
L Pedido de agendamento o b
L 1] w
= nquisigdc de status 8 <
= o
- ER al
& Banco de c & =
= v TR r o
™ Descricoes o
LDescricdo do né sensor—w Processador de nquisicdo de status

e T s MMM [- <10 stas do Protocolo Pacote de ssida—

P2 BESOPEUY

e Escalonador: responsavel por manter controle das tarefas agendadas:

— Coordena a execucgao de tarefas peridédicas, disparando-as nos instantes ade-

quados;

— Dispara as tarefas instantaneas que ja tiverem todos os parametros necessarios
a sua execucao, mantendo controle do tempo de expiracao dos parametros

recebidos por cada tarefa;

— Ao agendar uma tarefa, configura os médulos receptor e emissor com seus pa-
rametros de entradas e saida, e pede ao Processador de Respostas do Protocolo

para enviar uma confirmacao de que a tarefa foi agendada;

— Deve manter controle de quantas tarefas foram agendadas.

e Processador de Respostas de Protocolo:responsavel por desmontar pa-
cotes de requisicao vindos do controlador do framework através da rede, de coordenar
a realizacao das solicitacoes representadas por tais pacotes, através do acionamento
dos demais componentes do middleware. Finalmente, também é responsavel por
receber os resultados das agoes comandadas, e de empacota-los para enviar as res-

postas aos pedidos feitos pelo controlador.

Capitulo 3. FEspecificagdo 53

e Emissor: responsavel por receber um dado produzido por uma tarefa, montar um

pacote de dados com ele, e envid-lo a rede em direcao ao seu destinatario.

e Tarefas: sao abstragoes de aplicagoes de um no sensor da rede, implementadas de
maneira a utilizar os recursos do né com o objetivo de realizar uma tarefa ou acao
especifica, como a coleta de dados, o acionamento de um atuador ou a agregacao
de dados coletados na rede. Em geral, elas podem possuir varios parametros de
entrada, um parametro de saida e diversos tipos de configuragoes, de acordo com a

especificacao do protocolo na secao 3.5.

e API de Tarefas: responsavel por abstrair o restante da estrutura do middleware
para a implementacao das tarefas a serem executadas pelo no sensor. Seu papel é
facilitar a implementacao de tarefas, possibilitando ao programador que se concentre
apenas nos parametros recebidos pela tarefa, nos recursos disponibilizados pelo n6
sensor e em como programar a rotina que executa o objetivo de uma tarefa — tudo
isso sem se preocupar com todo o gerenciamento que é feito pelo escalonador ou
com o empacotamento e o desempacotamento de dados realizados pelo emissor e

pelo receptor.

54

4 Tecnologias

Este capitulo descreve as tecnologias que foram consideradas para a implementagao
deste trabalho. As vantagens e desvantagens de cada uma das tecnologias consideradas

sao discutidas e as decisoes tomadas sao descritas.

4.1 Tecnologias de interface com o usuario

Duas tecnologias de interface com o usuério foram consideradas para a implemen-

tacdo no projeto. Elas sao REST e SOAP e sao descritas e analisadas a seguir.

41.1 REST

Transferéncia de Estado Representacional (em inglés, Representational State Trans-
fer - REST) (FIELDING; TAYLOR, 2000) é um estilo de arquitetura para projetar aplica-
¢oes de rede, que substitui mecanismos mais complexos de conexao como Common Object
Request Broker Architecture (CORBA), Remote Procedure Call (RPC) e SOAP. Para re-
alizar essa comunicacdo o REST usa o protocolo HyperText Transfer Protocol (HTTP)
que é um protocolo cliente-servidor sem estado bastante utilizado para comunicag¢ao na

web.

No sistema REST cada recurso é unicamente direcionado através da sua Uniform
Resource Identifier (URI) e é possivel realizar as operagoes CRUD (Create, Read, Update
e Delete) solicitando os métodos PUT, GET, POST e DELETE do protocolo HTTP.
Isso torna o uso de REST mais simples que as demais arquiteturas citadas e mais rapida

também, pois nao é necessario um processamento de dados extensivo.

4.1.2 SOAP

Protocolo Simples de Acesso a Objeto (em inglés, Simple Object Access Protocol -
SOAP) (World Wide Web Consortium, 2015) é um protocolo de comunicagao via Internet.
Ele disponibiliza uma forma de comunicacao entre aplicagdes que sdao executadas em
diferentes sistemas operacionais com diferentes tecnologias e linguagens de programacao.
SOAP utiliza o formato XML para suas mensagens de solicitacao e resposta e usa qualquer
protocolo de transporte para transmissao destas mensagens, sendo os mais utilizados os
protocolos HTTP e Simple Mail Transfer Protocol (SMTP).

Capitulo 4. Tecnologias 55

O protocolo consiste de trés partes, um envelope, que define a estrutura da men-
sagem; um conjunto de regras de codificacao para representar as instancias dos tipos
definidos pela aplicagao; e uma convencao para representar chamadas de rotinas e respos-

tas.

4.1.3 Escolha e motivos

A principio havia sido decidida a adocao do SOAP para a interface devido a sua
maior versatilidade. Entretanto, apds pesquisas a respeito de frameworks para o protocolo,
foi notado que ele nao ¢é tao utilizado atualmente e que nao existem boas implementacoes
completas de SOAP.

Dessa forma, foi decidida a adogao do REST, pois ela ¢ uma arquitetura muito
popular e utilizada e que possui muitas implementacoes disponiveis, mas ainda com a

capacidade de comunicagao necessaria para este projeto.

4.2 Tecnologias de implementacdo para o servidor REST

Para auxiliar na implementacao do servidor REST optou-se pela utilizacao de um
framework web, que é uma colecao de pacotes e modulos que permite que desenvolvedores
escrevam aplicacoes web ou servicos web sem a necessidade tratar detalhes de baixo nivel,

como protocolos, sockets e gerenciamento de processos e/ou threads.

4.2.1 Django

Um dos frameworks de full-stack mais populares para Python é o Django (Django
Project, 2015). Ele é um framework de cédigo aberto que segue o padrao arquitetural
Model-View-Controller (MVC). Seu objetivo é facilitar o desenvolvimento de sites com-

plexos focados em bancos de dados.

Justamente pelo fato de Django ser um framework web completo, focado em sis-

temas complexos com modelo MVC, decidiu-se que ele nao era o ideal para este projeto.

4272 Flask

O Flask (Flask, 2015) é um microframework web também bastante popular para
Python, que nao é full-stack, mas que fornece a base de necessaria para criar um servidor
web. Ele é baseado nas tecnologias Werkzeug e Jinja 2 e possui conformidade com Web
Service Gateway Interface (WSGI) e solicitagoes REST. O Flask nao forga o desenvolvedor
a utilizar nenhuma ferramenta ou biblioteca especifica, ao invés disso ele possui suporte

a extensoes que adicionam funcionalidades as aplicagoes como se fossem nativas.

Capitulo 4. Tecnologias 56

Devido a sua maior simplicidade e flexibilidade, o Flask foi considerado mais ade-
quado para o projeto, pois dessa forma é possivel implementar servigos web com REST

de forma simples.

4.3 Linguagens para o controlador do framework

Algumas linguagens foram analisadas para a defini¢do da melhor opgao de lingua-

gem para o controlador do framework. Elas sdo descritas e analisadas a seguir.

43.1 Go

Go (golang, 2015), frequentemente chamada também de golang, ¢ uma linguagem
de programacao desenvolvida no Google em 2007. Sua sintaxe é fracamente derivada da
linguagem C, mas a linguagem em si conta com a adicao de garbage collection, type safety
e algumas capacidades de tipagem dindmica. Go ja possui versoes estaveis e suas futuras

atualizagoes serao retrocompativeis com as especificacoes atuais da linguagem.

Desenvolvida para ser usada em sistemas de larga escala, a linguagem possui compi-
ladores extremamente rapidos, gerenciamento remoto de pacotes e também caracteristicas
de linguagens dinamicas, como inferéncia de tipos. Go possui primitivas de processamento
paralelo embutidas na linguagem e ferramentas que por padrao geram binarios estatica-
mente ligados sem dependéncias externas. Faz parte da filosofia de criagao da linguagem
a ideia de que as especificagoes da linguagem devem ser simples o suficiente para que o

programador consiga memoriza-las.

Suas vantagens incluem possuir maneiras simples e eficientes de paralelismo, além
de eficiéncia por ser compilada. O sistema de gerenciamento de pacotes facilita a utilizagao
de bibliotecas e ferramentas desenvolvidas por terceiros e sua comunidade ¢é ativa. Dessa
forma, ela possui diversas caracteristicas favoraveis para um sistema que tem que lidar

com multiplas tarefas simultaneas.

Seu principal problema nesse projeto é a total auséncia de experiéncia por parte

dos integrantes do grupo com a linguagem.

432 Java

Java (Oracle Corporation, 2015) é uma linguagem de programacao que foi langada
em 1996. A linguagem é compilada para bytecode que é executado pela Java Virtual
Machine (JVM), de forma que o mesmo c6digo compilado pode ser executado em qualquer
sistema que possua uma JVM. Java é uma linguagem com suporte a concorréncia, baseada

em classes e orientada a objetos.

Capitulo 4. Tecnologias 57

A linguagem foi desenvolvida para ser de uso geral, permitindo seu uso nos mais
diversos tipos de aplicagoes. Ela possui uma vasta comunidade de desenvolvedores, sendo
uma das linguagens mais populares do mundo. Por ser bem consolidada ja possui uma
solida biblioteca padrao de implementacoes e também um grande nimero de materiais
de referéncia na Internet a respeito dos mais diversos tipos de uso da linguagem. O

desenvolvimento de aplicativos para o sistema operacional Android é feito em Java.

Suas principais vantagens incluem uma sélida adocao por parte da comunidade
de desenvolvedores e ferramentas soélidas de desenvolvimento para a linguagem, como
as populares Integrated Development Environment (IDE) Eclipse e Netbeans. O fato da
linguagem possuir mecanismos embutidos de documentacao de codigo também ajuda na

colaboracao de desenvolvedores no desenvolvimento de programas.

O principal problema de Java é o tamanho do c6digo necessario para o desenvol-
vimento de software nesta linguagem, por sua sintaxe muito estrita. Tais caracteristicas
a tornam menos indicada para a rapida prototipagem de projetos, algo essencial neste
trabalho devido ao curto tempo de implementacao previsto no cronograma apresentado
na secao 1.3. Outro problema ¢ a auséncia de possibilidade de utilizar outros paradigmas

além da orientagao a objetos.

4.3.3 Python

Python (Python Software Foundation, 2015) é uma linguagem de programacao que
surgiu em 1991. Sua filosofia enfatiza facilidade de leitura de codigo, de forma a permitir a
utilizagdo de um niimero menor de linhas de c6édigo do que outras linguagens como C++
e Java. Python tem suporte a diversos paradigmas de programacao, incluindo orientagao
a objetos, funcional e procedural, ¢ uma linguagem interpretada, portanto nao existe a

necessidade de recompilar o cédigo apods alteracoes.

A linguagem possui atualmente duas versoes, Python 2 e Python 3. Essa diferenca
existe pois a versao 3 nao é retrocompativel com a 2. O Python 3 foi lancado em 2008
e é considerado o presente e o futuro da linguagem, enquanto o Python 2 é considerado

legado. Entretanto, o suporte de bibliotecas ainda é mais extenso para a versao 2.

Python possui tipagem dindmica, gerenciamento automatico de memoria e uma
vasta biblioteca padrao. Diferentemente da grande maioria das linguagens, os blocos de
cddigos da linguagem sao delimitados por indentagdo. A linguagem possui uma grande
adocao em todo mundo, sendo uma das linguagens mais populares para ensino de progra-
magcao devido a sua simplicidade. Gragas a sua popularidade, ela possui um grande niimero
de referéncias na Internet e muitos projetos sao implementados em Python, permitindo

encontrar exemplos de cddigo para as mais diversas aplicagoes.

Suas vantagens incluem ser de facil utilizagao, além de ser amplamente adotada

Capitulo 4. Tecnologias 58

nas mais diversas areas. Python possui sistemas de gerenciamento de pacotes com a dispo-
nibilidade de milhares de bibliotecas desenvolvidas por terceiros e sua comunidade é bem
ativa. Essas caracteristicas, somadas ao dominio da linguagem por parte dos integrantes

do grupo, tornam-na uma opc¢ao atraente para o projeto.

O seu principal problema gira em torno de sua eficiéncia, pois ela é interpretada e
portanto muito mais lenta do que linguagens compiladas. Ainda no quesito eficiéncia, seu
interpretador nao permite paralelismo verdadeiro durante a execugao de multiplas threads
para manter a integridade de memoéria. Dessa forma ela nao é a linguagem mais indicada

em contextos multi-processados em que a eficiéncia é fundamental.

4.3.4 Escolha e motivos

Baseado nos pontos apresentados nessa secao, a linguagem Python foi escolhida
para o controlador do framework. Ela é uma linguagem sélida e simples, dominada pelo
grupo, permitindo a implementacao de sistemas de maneira rapida. A escolha do Flask
para o servidor REST também contribuiu para a decisao pelo uso da linguagem Python,

j& que ele também é escrito nessa linguagem.

4.4 Banco de Dados

Essa secao descreve um pouco sobre o sistema gerenciador de banco de dados
utilizado e a ferramenta Object-Relational Mapper (ORM) escolhida para trabalhar com

ele.

441 SQLite

SQLite (SQLite, 2015) é um sistema de gerenciamento de banco de dados relacional
escrito em linguagem C. Ele é em grande parte autossuficiente, exigindo pouquissimo
suporte de bibliotecas externas e do sistema operacional. Outra vantagem do SQLite é
que nao ha necessidade de comunicag¢ao com um servidor: se um processo solicita acessar o
banco de dados, ele simplesmente 1é e escreve diretamente nos arquivos do banco no disco.
Dessa forma, nao existe um servidor que precise ser iniciado e configurado; programas que
usam o SQLite nao precisam de um suporte administrativo para configurar o mecanismo

do banco antes de serem executados.

Assim, o SQLite é ideal para este projeto, ja que o banco de dados necessario é
simples e seu sistema gerenciador deve ser leve para poder ser incorporado ao framewortk,

que muitas vezes podera ser executado em sistemas embarcados.

Capitulo 4. Tecnologias 59

4.4.2 SQLAIchemy

O SQLAlchemy é um conjunto de ferramentas open-source de mapeamento objeto-
relacional de bancos de dados SQL para a linguagem Python. Por se tratar de um dos
ORMs mais populares para Python, o SQLAlchemy é compativel com os principais siste-
mas gerenciadores de bancos de dados relacionais, como MySQL, Postgresql e SQLite, o

que o torna bastante flexivel.

O uso do SQLAlchemy facilita a implementagao de uma interface com banco de
dados através de Data Access Objects(DAQOs), pois torna desnecessaria a escrita de qual-
quer linha em linguagem SQL. Ao programador, basta a criacao de classes de mapeamento
para as entidades em um diagrama ER, deixando para o SQLAlquemy a tarefa de gerar

as tabelas SQL correspondentes de forma automatica.

A abstracao proporcionada pelo SQLAlchemy torna minimas as alteracdes ne-
cessarias ao cddigo desenvolvido no caso de uma mudanca de plataforma. Dessa forma,
outra das principais vantagens do seu uso ¢ a portabilidade do cédigo entre as diversas

plataformas de sistemas gerenciadores de bancos de dados mencionadas.

4.5 Middleware

Essa secao descreve as tecnologias adotadas para a implementacao do middleware,
incluindo sistema operacional, suporte a SDN, plataforma de hardware para foco do de-
senvolvimento e ferramenta de simulacdo para testes. A escolha dessas tecnologias estd
fortemente condicionadas a vinculos de dependéncia do TinySDN, framework de SDN

escolhido para utilizacao no projeto.

451 TinyOS

Como dito na subse¢ao 2.1.1, o TinyOS é um SO de codigo aberto para RSSFs.
Ele é orientado a eventos e programado em nesC, extensao da linguagem C, e é focado
em baixo consumo de energia e operagao em sistemas com processamento e memoria

limitados.

Como o TinyOS é um dos SOs mais utilizados pela comunidade académica na
area de RSSF e ja possui todo um ecossistema — além de o TinySDN atualmente s6
dispor de implementacao para esse SO — sua adocao foi considerada pertinente para a

implementagao do middleware.

452 TinySDN

O TinySDN (OLIVEIRA; MARGI; GABRIEL, 2014) é um framework de SDN

para RSSFs e que atualmente é implementado sobre o TinyOS. Sua descricdo mais deta-

Capitulo 4. Tecnologias 60

lhada pode ser encontrada na subsecao 2.4.3. Ainda assim, cabe dizer que ele é interessante
para o projeto pois permite um controle centralizado da rede, inclusive com a possibilidade

de multiplos controladores.

O controle centralizado é uma caracteristica crucial da arquitetura do projeto,
pois é ele que permite que a rede seja facilmente gerenciavel e vista como entidade tinica
pelo usuario. O TinySDN torna-se entdo o componente responsavel pela capacidade de
abstragao da topologia da rede ao lidar com a interacao dos nés e fazer o roteamento das

mensagens nha rede.

453 TelosB

O TelosB (TELOSB, 2015) ¢ um n6 sensor da Memsic, desenvolvido e publicado
para a comunidade académica pela Universidade da Califérnia Berkeley. A plataforma do
TelosB tem cédigo aberto e foi desenvolvida para permitir a realizacdo de experimentos

com RSSF pela comunidade cientifica.

Ele possui radio compativel com o protocolo IEEE 802.15.4 e com o ZigBee, taxa
de transferéncia de até 250kbps e antena integrada. Seu processador é um TI1 MSP430
de 8MHz com 10kB de memoéria RAM e 48 kB de memoria flash programavel. Possui
ainda programagao via Universal Serial Bus (USB), baixo consumo de energia e a versao
utilizada no projeto também possui sensores de umidade, temperatura e luminosidade,
além de LEDs programaveis. Sua alimentacao se da através do conector USB ou através
de duas pilhas do tipo AA.

O TelosB é compativel com o TinyOS e foi escolhido como foco inicial para a

implementagao do projeto. A figura 7 apresenta o modelo de TelosB utilizado.

Figura 7 — Foto do TelosB visto de cima.

Fonte: wikimedia.org

Capitulo 4. Tecnologias 61

454 COOJA

O COOJA é um simulador de RSSF desenvolvido originalmente para o sistema
operacional Contiki, mas que é capaz de simular nds sensores com codigo desenvolvido

para TinyOS também.

Devido a sua facilidade de uso o COOJA foi usado para as simulagoes realizadas
durante o desenvolvimento e testes do sistema ao invés do TOSSIM, que é o simulador
desenvolvido para o TinyOS. Ele utiliza um simulador do né sensor como um todo —
processador, LEDs e chip de rddio — e permite a definicao de localizacao espacial dos nés
sensores, bem como as condigoes da comunicagdo (envio de mensagens com ou ou sem

perdas, alcance do radio, entre outros).

A utilizagdo do COOJA é simples, basta criar uma nova simulagao e adicionar nés
com o codigo compilado da aplicagao desejada. E inclusive possivel adicionar nés com

diferentes aplica¢oes instaladas em uma mesma simulacao.

Gragcas a sua agilidade de uso o COOJA foi a solucao escolhida para a realizacao
dos testes de unidade dos componentes do middleware. O fato dele também permitir a si-
mulacao de conexao serial foi fundamental para os testes de integragao entre o controlador

e o middleware.

Parte ||

Aplicacao

63

5 Desenvolvimento

Esse capitulo trata do desenvolvimento de uma implementacdo da especificagao
feita no capitulo 3 utilizando as tecnologias escolhidas no capitulo 4. Primeiramente sao
descritas as metodologias utilizadas para o desenvolvimento do projeto. Em seguida, sao
relatados os detalhes de implementacao para os principais componentes do WARM: o

servidor REST, o controlador do framework e o middleware.

5.1 Metodologias de desenvolvimento

Para o desenvolvimento do cédigo para o WARM, procurou-se seguir boas prati-
cas de programacao tendo em vista a posterior divulgacao do codigo-fonte para outros

interessados, além de permitir uma melhor qualidade do produto final desenvolvido.

5.1.1 Versionamento de cédigo

Para o desenvolvimento do projeto foi utilizado um sistema de versionamento de
c6digo. O sistema escolhido foi o Git (Git, 2015), sobretudo devido & familiaridade dos
integrantes do grupo com esse sistema. Além da familiaridade dos integrantes, ele possui
caracteristicas interessantes para desenvolvimento realizado em equipe, sendo distribuido
e facilitando a criagao de ramos locais sem causar interferéncia com outros desenvolvedores

até a hora de juntar o ramo local ao ramo principal.

Buscou-se fazer bom uso da facilidade de criacdo e uniao de ramos de cddigo,
definindo-se 0 uso de um ramo para cada érea principal do framework (interface de usudrio,
controlador e middleware). Fora esses ramos existe ainda o ramo de desenvolvimento, para
onde os ramos individuais sao unidos quando ha alteragoes significativas e por fim existe o
ramo mestre, que s6 deve conter versoes funcionais do c6digo. Com esse modelo é possivel
garantir que o ramo principal sempre tera uma versao funcional e estavel do codigo,
permitindo o lancamento de releases peridédicos, apds terem sido devidamente testados no

ramo de desenvolvimento.

5.1.2 Revisao de cédigo

Para garantir a corretude do cédigo e a boa qualidade do mesmo, foi adotada a
metodologia de revisao por pares, do inglés peer review, onde o c6digo escrito por um dos

membros do grupo é revisado por ao menos um outro membro antes dele ser adicionado

Capitulo 5. Desenvolvimento 64

ao repositorio principal. Utilizando a metodologia de revisao por pares é possivel detectar
um nimero maior de erros no codigo antes de ele poder causar problemas maiores. Além
de contribuir para o melhor conhecimento da base de cédigo por todos os integrantes da

equipe.

5.1.3 Testes de componentes

Para garantir que cada componente de c6digo completado funcione de acordo com
as especificagoes propostas, foi adotada a metodologia de testes de componentes. Segundo
ela, cada componente funcional que estiver completo dentro do coédigo é submetido a uma
rotina de testes automaticos que avaliam o funcionamento correto de suas interfaces. Tal
metodologia é bastante importante para garantir o funcionamento isolado dos compo-
nentes e, dessa forma, facilitar sua integracao, além de facilitar a introdugao de futuras
modifica¢oes, garantindo que elas nao comprometam o bom funcionamento de componen-

tes ja funcionais.

5.1.4 Documentacao de cédigo

O cédigo é implementado com o objetivo de ser legivel e auto-documentado, com
comentarios relevantes sobre seu funcionamento para facilitar o entendimento de um pos-

sivel leitor.

No caso do controlador a documentacao de funcoes, classes e métodos é feita
seguindo o padrao definido pela PEP 257!, Esse padrao estipula um formato para as
docstrings de descricao do codigo. Para gerar a documentagao, foi utilizada a ferramenta
Sphinz (Sphinx, 2015), que é capaz de fazer a geragdo da documentagao em formato Hy-
perText Markup Language (HTML) para visualizacao externa e para servir como referéncia

das fungoes disponiveis sem necessidade de acessar diretamente o cédigo.

Para o middleware, a documentacao de mddulos, configuracoes e interfaces é gerada
através da ferramenta nesdoc, desenvolvida especialmente para a documentacao de codigo
na linguagem nesC. O padrao de documentacao é baseado em blocos de comentarios, de
acordo com a especifica¢do presente no manual da ferramenta Dozygen (HEESCH, 2015)

— cujo uso é bastante popular para geracao de documentacao de cddigo.

5.2 Servidor REST

O servidor REST foi criado para facilitar a utilizacdo do framework. Com esta

interface, o usuario pode solicitar informagoes da rede e agendar tarefas simplesmente

L' http://legacy.python.org/dev/peps/pep-0257

http://legacy.python.org/dev/peps/pep-0257

—_

at

-3

11

Capitulo 5. Desenvolvimento 65

utilizando o protocolo HT'TP. Deixando-o livre para escolher a linguagem de programacao

e a plataforma mais apropriada para a sua aplicacao.

Além de utiliza-lo, o usuario também tem a opcao de realizar as solicitagoes atra-
vés da API desenvolvida na linguagem Python. Os métodos disponiveis por meio da API
sao os mesmos que os disponibilizados pelo servidor REST, com parametros de entrada
equivalentes. Entretanto, a saida fornecida pelas duas APIs é um pouco diferente: en-
quanto o servidor retorna objetos JavaScript Object Notation (JSON), a API em Python

retorna um objeto dessa linguagem.

O servidor REST foi implementado utilizando o microframework Flask, descrito na
subsecao 4.2.2, que facilitou bastante o seu processo de desenvolvimento. Com o Flask é
necessario apenas definir as rotas e o que sera retornado para o usudrio. Para a inicializacao

de um servidor para uma aplicacao do framework, basta a execu¢ao do método “run()”.

A seguir, estd apresentada a maneira com que a rota “/nodes” foi desenvolvida.
Analisando o c6digo do método “get_nodes()”, podemos notar que, primeiramente, os
parametros de entrada recebidos sdao separados, de modo a serem fornecidos a API em
Python do controlador. A API é chamada logo em seguida, de modo a retornar um resul-
tado que necessita ser convertido para o formato JSON. E esse resultado convertido que

¢ finalmente retornado ao usuério.

from flask import Flask
from API import GetNodes, GetNodesJSON

app = Flask(__name__)

@app . route (’/nodes’, methods=['GET’])

def get_nodes():
#Get parameters
node_id = str2float (request.args.get(’'node id’))
latitude = str2float (request.args.get(’latitude’))
longitude = str2float (request.args.get(’longitude’))
range = str2float (request.args.get(’'range’))

#Call API

nodes = GetNodes(node_id=node_id, latitude=latitude , longitude=
longitude , range=range)

return jsonify ({ 'nodes’: GetNodesJSON (nodes)})

if name & main :

app.run ()

Essa forma de implementacao torna o servidor REST totalmente desacoplado do

controlador do framework. Ele utiliza diretamente a API desenvolvida em Python, da

Capitulo 5. Desenvolvimento 66

mesma forma com que um usuério poderia optar por utiliza-la. As demais rotas “/tasks”,

“/schedules” e “/parameters”, sdo implementadas de maneira similar a da rota “/nodes”.

5.3 Controlador

O controlador é composto de multiplas partes, cujas ideias e técnicas adotadas em

sua implementacao serdao explicadas a seguir.

5.3.1 Mapeamento de tarefas

O mapeamento de tarefas é responsavel por receber os pedidos de agendamento e
cancelamento de tarefas e converté-los em agendamentos de instancias de tarefas na rede

de sensores.

Existem muitas caracteristicas que o controlador deve analisar ao receber um pe-
dido de agendamento antes de criar a tarefa e os fluxos de dados entre os nds sensores.

As principais dessas caracteristicas sao:

e O no existe na rede?

e O no é capaz de realizar a tarefa? Se sim, ainda pode agendar mais tarefas desse

tipo?

e J4 existe outro né recebendo os dados de referéncia que essa tarefa deseja receber?
Se sim, a tarefa nao pode ser criada pois a referéncia s6 pode ser recebida por um

n6 devido a auséncia de suporte do TinySDN a multicast.

e Ja existem noés que desejam receber os dados da referéncia de dados gerados pela

tarefa? Se sim, é preciso criar um fluxo ligando os noés.

Apos determinar a resposta para essas perguntas, é necessario que o controlador
consulte o banco de dados e obtenha as informagoes necessarias para criar os fluxos e
agendar as tarefas. A maneira como uma tarefa é agendada depende do seu tipo, sendo
diferente, por exemplo, se ela receber ou nao dados vindos da rede como parametros de

entrada.

5.3.2 Monitoramento da rede

Na implementacao atual existem dois mdédulos distintos responsaveis pelo moni-
toramento da rede, um que se comunica com o controlador do TinySDN e o outro que se

comunica diretamente com um no sensor através de comunicacao serial.

Capitulo 5. Desenvolvimento 67

A necessidade de dois médulos diferentes advém do fato de que o controlador
do TinySDN nao da suporte ao envio e recebimento de mensagens direto da rede. Essa
restricao torna necessario que o controlador se comunique com a rede através de um
né dedicado, de modo a poder enviar e receber do middleware os pacotes do protocolo

especificado na secao 3.5.

5.3.2.1 Controlador do TinySDN

A comunicacao com o controlador do TinySDN ¢ feita através de uma conexao
por socket e é responsavel por duas atribuigoes: criagdo de fluxos na rede e recebimento

de informacoes sobre a topologia da rede.

A criacao de fluxos é feita através da passagem de uma lista de arestas junto
com o numero do fluxo para o controlador do TinySDN. No controlador do WARM, o
responsavel pela criacao de fluxos é o médulo mapeador de tarefas, que cria os fluxos para

conectar nos que precisam realizar troca de informagoes.

A topologia da rede é passada pelo controlador do TinySDN através de uma lista
de arestas que indica as conexoes entre os nés existentes na rede. Quem chama a funcao
de obtencao da topologia é também o modulo de mapeamento de tarefas, que utiliza as

informagoes recebidas para decidir o caminho a ser seguido pelos fluxos.

5.3.2.2 N6 da rede conectado por serial

A comunicagao direta com a rede — para o envio e recebimento de mensagens de
controle do WARM, bem como de mensagens de dados com destino fora da rede — é feita

através da comunicagao serial com um né sensor rodando o TinySDN.

A comunicacao serial consiste de duas partes: um né sensor rodando versao modi-
ficada do TinySDN capaz de realizar envio e recepcao de dados através de comunicacao
serial; e um modulo do controlador do WARM, que gerencia a conexao serial e faz a

interface entre o controlador e a conexao serial.

A programacao do né sensor transmite, através da comunicacao serial, os payloads
dos pacotes recebidos com destino ao controlador. Juntamente, sao transmitidas também
informagoes acerca do né de origem e do comprimento do payload recebido. No outro
sentido, esse no sensor é capaz de receber comunicacao serial de envio de pacotes para a
rede. Para isso ele recebe o payload, comprimento do pacote e fluxo para o seu envio. A
implementacao desse né de gateway foi feita utilizando como base o TinySDN em um no

sensor do tipo TelosB.

Por sua vez, o médulo de monitoramento da rede através de serial ¢ implemen-
tado em Python e é o responsavel pela interpretacao dos payloads dos pacotes recebidos,

bem como pela elaboragao de payloads dos pacotes a serem enviados para a rede. Para

[\

16

—

ot

-3

11

Capitulo 5. Desenvolvimento 68

lidar com a comunicacao serial em si, uma thread é criada pelo controlador para cuidar
especificamente da conexao serial. A criacao de pacotes e extragao de dados dos mesmos
é feita utilizando-se funcionalidades providas pelo TinyOS para a geragao de codigo em

Python que faca o processamento de pacotes.

5.3.3 Banco de dados

Para a implementacao do banco de dados, foi utilizado o SQLAlchemy, como men-
cionado na subsecao 4.4.2. Fazendo uso de suas ferramentas, foram escritas classes de
mapeamento para as entidades no diagrama ER da figura 5. A partir de tais classes, as

tabelas SQLite correspondentes foram geradas de forma automatica.

Além das entidades, foi implementada uma classe DAO para tratar toda a conexao
com o banco. Dessa forma, para realizar qualquer acesso ao banco é preciso apenas usar

o método “GetSession()” do DAO. A seguir, é apresentada a implementagao dessa classe.

from sqlalchemy import create_engine
from sqlalchemy.orm import sessionmaker

from sqlalchemy.ext.declarative import declarative__base
Base = declarative_base ()

class DAO:
nnon DAO LI]
def ___init__ (self):
self.engine = create_engine(’sqlite:///warm.db’, echo=True)

Base.metadata.create all(self.engine)

def GetSession(self):
Session = sessionmaker (bind=self.engine)
self.session = Session ()

return self.session

A seguir, vemos um caso simples que exemplifica o uso da classe DAO:

dao = DAO() . GetSession ()

#Para criar uma instancia de um no usamos a classe Sensor_Node.
node = Sensor_ Node ()

dao.add (node)

dao . commit ()

#Para buscar todos os nos na tabela sensor_ node usamos o metodo query

nodes = dao.query (Sensor_Node). all ()

Capitulo 5. Desenvolvimento 69

54 Middleware

Na se¢ao 3.7, a arquitetura do middleware presente nos nés sensores foi especificada
como uma série de componentes interconectados de acordo com o diagrama da figura 6. Tal
estrutura ¢ bastante condizente com o paradigma de programacao adotado pela linguagem
nesC, que condiciona o desenvolvimento de aplicagoes do TinyOS a implementagao de

modulos e suas respectivas configuragoes.

A linguagem dita que os médulos implementados devem utilizar ou prover interfa-
ces, e que as configuragoes desses modulos devem relacionar as interfaces utilizadas com
seus provedores. Tais interfaces, por sua vez, sdo constituidas basicamente pela especifi-
cagao das assinaturas dos métodos que um moédulo deve implementar quando prové uma

determinada interface.

Dessa forma, um sistema é composto por uma configuracao que relaciona os diver-
sos sub-mdédulos implementados por meio de suas interfaces, o que faz com que a tarefa
de implementar o middleware se torne basicamente o esfor¢o de implementar cada um dos
componentes da figura 6, e de especificar as interfaces constituidas pelas liga¢oes entre

tais componentes.

A seguir sdo descritos os principais detalhes de implementagao desses componentes

e suas interfaces.

5.4.1 Processador de Respostas do Protocolo

Esse componente recebe todos os pacotes de controle vindos do controlador do
framework e aciona os demais de maneira que eles desempenhem as solicitagoes do con-
trolador ou que providenciem os dados solicitados por ele. Dessa forma, uma de suas
principais tarefas é desmontar os pacotes do protocolo especificado na se¢do 3.5 e identi-

ficar tais comandos e solicitagoes de dados.

Para isso, cada um dos pacotes do protocolo foi descrito através de estruturas de
dados alinhadas, as nz_structs da linguagem nesC, utilizando o recurso bit field, também
presente na linguagem C. Uma vez lidos os campos de um pacote, o Processador de
Respostas do Protocolo precisa solicitar aos demais componentes, através das interfaces
adequadas, as a¢oes ou os dados correspondentes a solicitacao do controlador. Em seguida,
de posse da resposta enviada pelos médulos consultados, deve montar o pacote de resposta

ao controlador, fazendo novamente uso das estruturas de dados que descrevemos.

5.4.2 Escalonador

Esse componente tem diversas fungoes relacionadas a execucao de tarefas carre-

gadas em um noé sensor, que podemos agrupar em dois conjuntos de funcionalidades: o

Capitulo 5. Desenvolvimento 70

primeiro relacionado ao agendamento de uma tarefa, e o segundo relacionado ao co-

mando de sua execugao nos momentos convenientes.

No que diz respeito ao agendamento, que é acionado pelo Processador de Respos-
tas do Protocolo, esta sob a responsabilidade do escalonador desempenhar as seguintes

fungoes no momento do agendamento de uma tarefa:

e Pedir a API de Tarefas que reserve uma instancia da tarefa que esta sendo agendada;

e Pedir ao Receptor que encaminhe parametros de entrada vindos da rede com deter-
minados rétulos a tarefa que esta sendo agendada, caso ela receba parametros de

entrada;

e Pedir ao Emissor que empacote e envie os dados de saida produzidos pela tarefa

que esta sendo agendada, caso haja algum;

e Comunicar o sucesso ou o fracasso do agendamento, dependendo do resultado dos

pedidos feitos anteriormente.

Para desempenhar tais fungoes, o Escalonador s6 precisa solicitar os pedidos des-

critos aos componentes adequados, utilizando as interfaces apropriadas.

No que se refere ao ao grupo de funcionalidades que estao relacionadas ao co-
mando de execucao de instancias agendadas de uma tarefa nos momentos convenientes,

hé diversas varidveis cujo controle precisa ser mantido pelo Escalonador:

e Se a tarefa for do tipo periddica, é necessario comandar a execucao de suas instan-
cias nos intervalos de tempo que correspondem ao seu periodo, e somente em tais

instantes;

e Se a tarefa depender de parametros recebidos da rede, é necessario comandar a
execucao de suas instancias somente quando essas tiverem a sua disposicao todos

os dados de que precisam para executar;

e No caso de a tarefa depender de parametros recebidos da rede, ha ainda a necessidade
de se verificar se os parametros que uma instancia ja tem disponiveis ainda nao
expiraram, isto é, perderam sua validade pelo fato de ter transcorrido um certo

periodo de tempo desde que foram recebidos;

e Se a instancia de uma tarefa precisar ser acionada por um trigger, é necessario saber

se ela ja recebeu o sinal de trigger que sinaliza a possibilidade de sua execucao;

Para saber se a instancia de uma tarefa esta pronta para ser executada — isto é,

dispoe de todos os parametros de entrada necessarios ou foi acionada pelo sinal de trigger

Capitulo 5. Desenvolvimento 71

adequado — o Escalonador recebe notificagoes da API de Tarefas, que as envia assim que
uma instancia de uma tarefa fica pronta. Se a instancia de uma tarefa fica pronta e ela

nao é periodica, ela pode ser executada imediatamente.

Para tratar os casos de tarefas periddicas ou de tarefas cujos parametros de entrada
recebidos tém tempo de validade, o Escalonador faz uso basicamente de duas filas: uma
fila de instancias de tarefas periédicas e uma fila de instancias de tarefas cuja validade
dos parametros irda expirar. Dispondo dessas duas filas, o componente programa dois
timers (um para cada fila) em cujo evento de disparo ele ird extrair o primeiro da fila
correspondente e realizar a acdo apropriada: a execucao da tarefa, no caso de uma instancia
de tarefa peridédica pronta; ou o descarte dos parametros da instancia, no caso de a validade

dos seus parametros ter expirado.

Por fim, o Escalonador também é responsavel por coordenar o cancelamento de um
agendamento. Isso implica na remo¢ao da instancia da tarefa da fila em que se encontra,
e da comunicacao, aos demais componentes — Receptor, Emissor e API de Tarefas —, de
que os recursos alocados por eles para o agendamento em questao podem ser liberados.
Feito tudo isso, é necessario enviar a confirmacao do cancelamento ao Processador de

Respostas do Protocolo, para finalizar a acao de cancelamento.

5.4.3 API de Tarefas

Esse componente é responsavel por abstrair as funcionalidades dos demais médulos
da logica de execugao de uma tarefa. Para isso, seu papel constitui em tornar transparen-

tes, para o programador de uma tarefa, as seguintes funcionalidades do middleware:

e A recepcao de dados da rede, que devem se tornar disponiveis a uma tarefa progra-
mada sem que seja necessario checar sua procedéncia, fazer o seu desempacotamento
ou identificar a que parametro de entrada um dado recebido se refere. O programa-
dor deve se preocupar basicamente em utilizar os parametros que estao disponiveis,

com a consciéncia de que eles estarao disponiveis quando a tarefa for executada;

e O envio de dados a rede, que deve poder ser feito sem que seja necessario se preo-
cupar com o destino do dado ou fazer o seu empacotamento de maneira adequada.
O programador deve se preocupar basicamente com a sinalizacao do dado que ele

deseja que seja enviado a rede;

e A notificagdo de que uma tarefa estd pronta para ser executada pelo escalonador,
algo que nao deve ser uma preocupacao do programador — que s deve se preocupar

com o uso dos dados recebidos e nao com sua disponibilidade;

ot

-

Capitulo 5. Desenvolvimento 72

e A alocacao de instancias de uma tarefa para um agendamento, cujo controle nao
deve ser uma preocupacao do programador, que s precisa informar qual o niimero

méaximo de instancias suportado por uma tarefa;
e A manutencao e o envio de relatorios de execugao de uma tarefa;

e O envio da descricdo de uma tarefa quando esta for solicitada — o que, no caso
da presente implementacao, ja cumpre todos os papéis que seriam designados ao

moédulo “Banco de Descrigoes”, mostrado na figura 6.

Para a realizacao de tais objetivos, a API de Tarefas serve como uma interface
entre os demais componentes do middleware — que efetivamente realizam grande parte
das funcionalidades listadas acima — e as tarefas carregadas em um né sensor. Isso é feito
com a disponibilizagao de fungoes, macros e componentes que implementam grande parte
das funcionalidades de comunicagdo com os demais componentes do middleware. Isso
inclui médulos que atuam como parametros de entrada da tarefa, gerenciando os dados
que sao recebidos para cada instancia e notificando quando todos os dados necessarios se

encontram disponiveis.

Fazendo uso das ferramentas oferecidas pela API de Tarefas, o processo de progra-
mar uma nova tarefa se resume a instanciar os parametros de entrada da tarefa, declarar
os componentes que provém interface para os recursos do né que se deseja utilizar, e im-
plementar duas fun¢des: uma de inicializacdo — chamada quando o né sensor é ligado —
e uma de execucdo — chamada quando o Escalonador a executa. Além de simplificar a
estrutura do modulo de uma tarefa, essas ferramentas também incluem macros e fungoes
que simplificam descrever uma tarefa, informar ao Emissor o resultado da tarefa e acessar

os dados recebidos da rede que foram enderecados a tarefa.

O uso da API de Tarefas para a implementacao de médulos de tarefas é demons-

trado nos dois exemplos que se seguem.

Abaixo temos o exemplo da implementacao de uma tarefa periédica que utiliza o
conversor analdgico-digital para amostrar dados de temperatura ambiente e depois envia-

los & rede.

module SenseTemperatureP {
provides interface Task;

uses interface Read<uintl6_t> as temperatureSensor;

}

implementation {

uint8_t currentTaskInstance;

PERIODIC_TASK API HELPER

11

21

[\
-~

33

37

39

41

J—

at

e

Capitulo 5. Desenvolvimento 73

IET:
% @brief Task initialization routine.
*/
void taskInit (void) {
/**% Initialize task description =/
INITTALIZE TASK DESCRIPTION (SUPPORT INT |
SUPPORT 2 BYTE LENGTH, // intl6 t
OUTPUT TO NETWORK TRUE,
CONTROL_ACTUATOR, FALSE,
AGGREGATE_DATA_FALSE,
DATA_SINK_FALSE) ;

/%%

* @brief Task execution routine.

*/

uint8_t taskRoutine (uint8_t taskInstance) {

currentTaskInstance = taskInstance;

call temperatureSensor.read();

return 1;

/%%

x @brief Event signalizing ADC result is ready.

*/

event void temperatureSensor.readDone(error_t result, uintl6_t data) {
OUTPUT TO NETWORK(currentTaskInstance , data);

A seguir temos o exemplo da implementagao de uma tarefa instantanea que recebe
parametros vindos da rede como termos para o calculo de uma média, efetua esse calculo

e em seguida envia o seu resultado a rede.

module AveragelntP {
provides interface Task;

uses {
interface TaskParameterInput as input[uint8_t index];
interface TaskArrayParameterAccess<IERM INPUT TYPE> as terms;

}

implementation {

INSTANTANEOUS_TASK API HELPER

19

21

39

43

49

Capitulo 5. Desenvolvimento 74

TASK_OUTPUT_TYPE averageOutput ;

/ %%
x @brief Task initialization routine.
+/
void taskInit(void) {
/**% Initialize task description =x/
INITTIALIZE TASK DESCRIPTION (SUPPORT INT |
SUPPORT 2 BYTE LENGTH, // intl6_t
OUTPUT_TO NETWORK_TRUE,
CONTROL,_ACTUATOR, FALSE,
AGGREGATE_DATA_TRUE,
DATA_SINK FAISE) ;

INITILIZE_TASK_INPUT_DESCRIPTION (TERM_INPUT _ID,
NUMBER OF TERMS, /] size
SUPPORT INT |
SUPPORT 2 BYTE IENGTH); // intl6_t

£

% @brief Task execution routine.

*/

uint8_t taskRoutine (uint8_ t taskInstance) {

uint8_t i;

uint8_t numberOfTerms = call terms.getInstanceSize (taskInstance);
/#% Sum terms in order to compute average */

averageOutput = 0;

for (i = 0; i < numberOfTerms; i++) {

averageOutput += call terms.get(taskInstance, 1i);

/**% Compute average by dividing sum result x/

averageOutput /= numberOfTerms;

return 1;

5.4.4 Receptor

Esse componente é responsavel por receber dados da rede e transmiti-los aos com-

ponentes do middleware a que eles se destinam. S6 hé dois destinos possiveis para um

Capitulo 5. Desenvolvimento 75

pacote recebido: o Processador de Respostas do Protocolo, no caso de um pacote de con-
trole (vide subsegoes 3.5.1 a 3.5.9), e a API de Tarefas, no caso de um pacote de dados
(vide subsegoes 3.5.10 e 3.5.11).

Pacotes de controle podem ser transmitidos na integra para o seu componente de
destino, mas pacotes de dados precisam ser mapeados para a instancia da tarefa a que se
destinam como entrada. Para isso, o Receptor mantém uma tabela que mapeia — para
cada parametro de entrada da instancia de uma tarefa — o identificador do fluxo SDN

por meio do qual um pacote de dados encaminhado a ela podera ser recebido.

Consultando essa tabela, o Receptor pode informar a API de Tarefas o dado rece-
bido e a que parametro da instancia de uma tarefa ele se refere. Essa tabela é atualizada
quando o Receptor recebe comandos vindos do Escalonador, no momento do agendamento

ou do cancelamento de uma instancia de uma tarefa.

5.45 Emissor

Esse componente é responsavel por enviar a rede os dados de saida produzidos
pelos demais componentes do middleware. S6 ha duas possiveis origens de um dado que
se quer destinar a rede: o Processador de Respostas do Protocolo, no caso de uma resposta
a um pacote de controle, e a API de Tarefas, no caso de um dado produzido por uma

instancia de uma tarefa.

Pacotes de resposta ao controlador do framework podem ser simplesmente enviados
a rede rotulados com o identificador do fluxo SDN que os levara até o controlador. Dados
vindos da API de Tarefas, no entanto, precisam ser mapeados ao né e a instancia da
tarefa a que se destinam. Para isso, o Emissor mantém uma tabela que mapeia — para
cada instancia de uma tarefa — o identificador do fluxo SDN por meio do qual o pacote
carregando o dado chegara ao seu destino, além de outros detalhes relativos ao tipo e ao

comprimento do dado enviado.

Consultando essa tabela, o Emissor descobre como montar e rotular o pacote de
dados que ira transmitir, via rede, o dado produzido por uma instancia de uma tarefa.
Essa tabela ¢ atualizada quando o Emissor recebe comandos vindos do Escalonador, no

momento do agendamento ou do cancelamento de uma instancia de uma tarefa.

76

6 Testes

Este capitulo descreve os testes realizados e resultados obtidos. Primeiramente, sdo
descritos os testes realizados com o controlador do framework, de maneira a verificar seu
correto funcionamento. Em seguida, sdo descritos os testes realizados com o objetivo de
verificar o correto funcionamento do middleware. Depois da verificagdo do funcionamento
isolado dos componentes do projeto, descreve-se como foram feitos os testes de integracao
entre o controlador do framework e o middleware presente nos noés sensores. Por fim,

apresenta-se a demonstracao de funcionamento do projeto WARM como um todo.

6.1 Testes do controlador

Esta secao apresenta os testes realizados com o objetivo de verificar o funciona-

mento correto do controlador.

6.1.1 Testes de componentes

Para a realizacao dos testes iniciais foi utilizada a metodologia de testes descrita na
subsecao 5.1.3, utilizando testes de unidade para testar as funcionalidades de cada novo
componente e também testes de integragao parcial sempre que possivel para verificar a

interacao correta entre os méodulos.

As unidades de teste sdo desenvolvidas de maneira separada do cédigo principal,
utilizando uma instancia diferente do banco de dados, preenchida de acordo com as ne-
cessidades dos testes a serem realizados. O codigo dos modulos é também aparelhado
com verificagOes especiais para emular funcionalidades de outros médulos quando neces-
sario. Dessa forma, é possivel isolar completamente o seu funcionamento e verificar a sua

corretude de maneira independente dos demais modulos.

Os arquivos utilizados para testes foram mantidos no repositério de coédigo do
projeto e podem ser vistos e até mesmo utilizados como referéncia de uso das fungoes que

eles testam.

6.1.2 Teste de funcionamento

Para realizar o teste de funcionamento completo do controlador também foi uti-
lizado o simulador COOJA, descrito na subsecao 4.5.4. Primeiramente foi criada uma

simulagao com apenas um no sensor rodando uma versao modificada do controlador do

Capitulo 6. Testes 7

WARM. Essa versao modificada emula a presenca de mais nés na rede, criando mensagens

de descri¢ao de nés e respondendo a mensagens enviadas pelo controlador.

Apo6s os testes realizados com a versao modificada do né sensor foram iniciados os

testes de integracao, descritos na secao 6.3.

6.2 Testes do middleware

Esta secao apresenta os testes realizados com o objetivo de verificar o funciona-

mento correto do middleware.

6.2.1 Testes de componentes

Como parte da metodologia de desenvolvimento, foram previstos testes de com-
ponentes para verificar o funcionamento correto de cada um dos moédulos do middleware
que sao mostrados na figura 6. Essas unidades de testes foram elaboradas juntamente
com o desenvolvimento dos componentes do middleware, de maneira a verificar que cada
um funcionasse de forma isolada, a cada incremento de funcionalidade previsto na fase
de implementagao. Além disso, elas também colaboram para que a inclusao de novas fun-
cionalidades nos componentes possa ser feita sem comprometer funcionalidades que ja

operem corretamente.

A implementacao das unidades de teste de componentes é feita na forma de com-
ponentes complementares aqueles que se deseja testar, isto é: de componentes que im-
plementam, de forma simplificada e controlada, as interfaces que o componente testado
utiliza e que estimulam, com entradas variadas, as interfaces implementadas pelo compo-
nente testado. As ac¢oes das rotinas de testes e seus resultados sdo informados por meio da
comunicagao serial com o n6. De maneira a facilitar a realizacao dos testes, as unidades
foram executadas fazendo uso da ferramenta de simulacao COOJA, descrita na subsecao
4.5.4.

6.2.2 Teste de funcionamento

Para testar o funcionamento do middleware como um todo, de forma isolada do

controlador do framework, foi realizado um setup de testes com sete nds sensores:

e Um, de enderego 1, contendo uma versdao extremamente simplificada do controla-
dor do TinySDN, que simplesmente configurava fluxos de dados entre trés dos nés

sensores, de enderecos 3, 5 e 7;

Capitulo 6. Testes 78

e Um, de enderego 3, contendo uma versao extremamente simplificada do controla-
dor do framework, que simplesmente enviava pacotes predeterminados do protocolo

descrito na secao 3.5 para os dois nés sensores programados com o middleware;

e Dois, de enderegos 5 e 7, programados com o middleware desenvolvido, ambos com
somente duas tarefas carregadas, sendo uma periddica que amostra dados de tem-

peratura e outra instantanea que recebe dados da rede e os “imprime” via serial;

e Trés, de enderecos 2, 4 e 6, programados somente com a camada do TinySDN de ma-
neira a atuar como roteadores e confirmar o funcionamento de troca de informagoes

na rede mesmo em cenarios com multiplos saltos.

Figura 8 — Teste do middleware realizado com o simulador COOJA.

File Simulation Motes Tools Settings Help

u Network ?[ij ﬁ
R ey File Edit View
Time | Mote | Message
17:49.550 ID:7? Temp: 253~~Ed
18:09.108 ID:7? Temp: 232~~Ed
§ 15:28,.643 ID:7 Tems: 21lg~~BEd
15:48, 180 ID:7 Teme: 130~~BEd
12:07.705 ID:7 Temg: 163{~~Ed
‘ 12:27.246 ID:7 Temg: 145/~~Ed
12:45,.776 ID:7 Temgp: 1278~~Ed
‘ 20:06, 307 ID:7? Temgp: lO6~~Ed
20:25,839 TID:7 Temo: 35~~Ed
‘ 20: 45,370 TID:7 Temo: 64 [~~Ed
21:0d,.899 ID:7 Temgs: 43~~EBEd
é 2l:24.427 ID:7 Temp: 22J<~~Fd
21:45, 963 ID:7 Temg: 1-~EBd
22:02. 502 ID: 7 Teng: 236~~Ed
22:23.034 ID:7? Temp: 215x~~Ed
\ 22:42,561 ID:7? Temg: 19d~~Fd
23:02,09% ID:7? Temp: 173~~Ed
\ 22:21.620 ID:7 Tempe: 152E~~Ed
\ 23:41, 168 ID:7? Terg: 131:~~Fd
24:00,635 ID:7 Tempe: ll0Ch\~~Ed
24:20,225 IDn7? Temp: 39~~Ed
{ 24:39,761 ID:7 Tems: &3.~~Ed
\ / 24:59,259 ID:7 Tems: 47C~~Bd
4 25:15.823 ID:7 Temp: 26~~Ed
\ / 25: 38, 358 ID:? Terg: S¥Y~~Ed
f / 25:57.894 TID:7 Temp: 240~~Ed
26:17.413 ID:7 Teme: 219Y|~~Ed
\@\ /@j 26:36,951 ID:7 Temp: 198g~~Ed
/ 26:56, 454 ID:7 Temgp: 177-~Ed
BN // 27:16, 019 ID:7 Tems: 156n~~Ed
\t@)&’ 27:35,.544 ID:7 Terp: 135%~~Fd
27:55.086 ID:7 Temp: lldh~~Fd
25:14a,. 605 ID:7 Temg: 953~~Ed
25:3d, 148 ID:7 Temg: 72~~Ed
28:53.674 ID:7 Temgp: Slk-~Ed
— - - - — 29:12.210 ID:7 Temp: 30~~Ed
tJ Simulation control L:J@J@J 29:32.74% ID:7 Temp: 9K-~Ed
Run Speed limit 29:52.,270 ID:7 Temp: 24d~~Ed
30:11, 805 ID:7 Tems: 2253~~Bd
- 30: 31, 338 ID: 7 Teng: 202~~Ed
Start Pause Step Reload 30:31.340 ID:7 Tems: 151
Z0: 50,864 II:i7?7 ~~BEd
Time: 31:20.165 31:10,400 ID:7 Terge: 1608~~Fd
Spesad: 1469.25% Filter: | ID:7

Utilizando o simulador COOJA, foi criada uma simulacdo em que estes nés foram
dispostos em fileira, de modo que cada um s6 pudesse se comunicar com os dois nos que lhe

fossem adjacentes. Nela, o n6 3 agenda uma instancia da tarefa que amostra temperatura

Capitulo 6. Testes 79

no nd 5, e no nd 7 uma instancia da tarefa que recebe os dados de temperatura amostrados

e os imprime via comunicacao serial. Esse cenéario pode ser visto na figura 8.

A execucao desse teste comprovou o correto funcionamento do middleware, com o
envio correto de respostas as requisigoes feitas pelo controlador simplificado, e também

com o desempenho correto das tarefas agendadas.

6.2.3 Desempenho

A partir da execugao do teste de funcionamento descrito na se¢ao 6.2.2, foi possivel
obter resultados relacionados ao desempenho do middleware. Esses resultados podem ser

vistos na tabela 19.

Tabela 19 — Tempos de execugao do middleware

’ Funcionalidade \ Tempo aproximado (s) ‘
Boot de um n6 sensor programado com o middleware 10,690
Associagdo de um no sensor ao controlador 0,010
Requisicao da descrigdo de uma tarefa 0,005
Agendamento de uma tarefa periédica 0,005
Agendamento de uma tarefa instantanea 0,005
Cancelamento de uma tarefa periddica 0,005
Cancelamento de uma tarefa instantanea 0,005
Requisicao de relatério de execucao de uma tarefa 0,005
Requisicao de relatério de estado de um né sensor 0,005

Dada a proximidade dos resultados obtidos para os tempos de requisicao e res-
posta, pode-se inferir que o overhead de processamento das requisi¢oes pelo middleware é
desprezivel se comparado ao tempo da troca de mensagens na rede. E necessario lembrar
que tais resultados consideram somente o tempo de resposta do middleware, nao levando
em conta os tempos de processamento que o controlador levaria para processar respostas
do usudrio, ou realizar agoes como a inscricao de um noé associado antes de enviar uma

confirmacao.

Além disso, foi possivel verificar o desempenho do middleware em termos de espago
em memoria. O middleware programado nos noés sensores do teste realizado, carregado
com somente duas tarefas, ocupava 34962 bytes de meméria de programa e 5516 bytes de
memoria de dados. Em um né sensor como o TelosB, descrito na secao 4.5.3 e utilizado

nos testes realizados, isso significa uma ocupacao de 72,84 % da memoria de programa e
de 55,16 % da memoria de dados.

Capitulo 6. Testes 80

6.3 Testes de integracao

Apos a realizagao dos testes separados do middleware e do controlador foram
realizados também testes de integracao. Os testes de integracao consistem de testes para
garantir que o sistema inteiro interage corretamente entre as partes e esta funcionando

corretamente como um todo.

Os testes iniciais de integracao também utilizaram o simulador COOJA, utilizando
inclusive a mesma topologia de rede descrita na subsecao 6.2.2. A tnica alteracdo na
configuragao de testes com relagao ao utilizado nos testes do middleware foi a substituicao
da versao simplificada do controlador do WARMpela versao completa, com comunicacao

serial. Nesses testes ainda foi utilizada a versao simplificada do controlador do TinySDN.

A partir dessa simulacao simplificada foi possivel testar o correto funcionamento
do sistema como um todo, desde o agendamento de tarefas, passando pela comunicacao

serial e indo até a correta comunicagao entre o controlador e o middleware.

6.4 Demonstracao de uso

Um exemplo de uso foi criado com o objetivo de demonstrar como o framework
WARM pode ser utilizado de forma simples. O exemplo foi desenvolvido em Javascript
e consiste em uma interface amigavel ao usuario para realizar solicitacoes ao framework
através da API disponibilizada. H4 quatro abas nesta interface: ‘Home’, ‘Tasks’, ‘Query’
e ‘Network’. Em ‘Home’, o usudrio encontrard uma breve explicacdo sobre o WARM e

um tutorial para o uso do sistema.

Em ‘Tasks’ é possivel realizar o agendamento e cancelamento de todas as tarefas
disponiveis na rede apenas preenchendo o formulario apresentado. Para agendar uma
tarefa periddica é preciso fornecer o identificador a tarefa e do nd, o periodo, a duracao,
o endereco de destino dos dados coletados e uma referéncia, para caso o usudario queira
usar esses dados coletados como entrada de outra tarefa, como por exemplo, uma tarefa
que calcule a média desses dados. Para agendar uma tarefa instantanea, é preciso do
identificador da tarefa e do nd, uma referéncia para os dados que serao usados como
entrada, a quantidade desses dados, o endereco de destino da informacao gerada e uma

referéncia para essa informacao.

Em ‘Query’, o usuario pode solicitar informacoes da rede e receber o resultado em
formato JSON. H& cinco categorias de buscas disponiveis: ‘Nodes’, ‘Tasks’, ‘Schedules’,
‘Parameters’, ‘NodesStatistics’ e ‘TasksStatistics’. E possivel restringir a busca preen-
chendo os campos disponiveis em cada categoria, por exemplo, o usuario pode fazer uma
requisicao das informagoes apenas dos nds que se encontram em uma especifica regiao

fornecendo uma determinada area através da latitude e longitude de um ponto central e

Capitulo 6. Testes 81

Figura 9 — Aba ‘Tasks’ da interface desenvolvida.

History Clean History

[15/11/2015 - 20:56:42] Task (tid=2.0) scheduled successfully! Task
Task ID 1 Scheduling ID =8

[15/11/2015 - 20:55:39] Task (tid=4.0) not scheduled. Error -2

[15/11/2015 - 20:55:18] Task (tid=1.0) scheduled successfully! Task

Node ID 3 Scheduling ID =7
[15/11/2015 - 20:54:35] Error: There is no enough parameters.
Data Temperatura [15/11/2015 - 20:53:35] Task (tid=2.0) scheduled successfully! Task

Scheduling ID = 6
[15/11/2015 - 20:52:22] Task (tid=2.0) scheduled successfully! Task

Quantity 10 Scheduling ID =5
[15/11/2015 - 20:50:03] Task (tid=1.0) not scheduled. Error -10
Address 10.3.0.0
Reference Average
A
Schedule

Projeto de Formatura da Escola Politécnica da USP

André Hahn, Henrigue Carvalho, Yuka Solano

o raio para a busca.

Figura 10 — Aba ‘Query’ da interface desenvolvida.

Query

Search for something Answer
Category Tasks v “description”: "Average” -
"generates_data™ true,
"nodes™: [
Node Identifier {
“"currently_scheduled_task_instances™ 1,
Task Identifier 1 "max_scheduled_task_instances™ 2
"node_id": 5
Area]}
“task_id": 1,
Task Type v “type™: { hd
"Aacsrintinn” Minctant! |
Search

Projeto de Formatura da Escola Politécnica da USP

Em ‘Network’ é possivel visualizar como os nos estao distribuidos na rede de uma
forma interativa para o usuario. Se um né for clicado as suas informacoes aparecerao na

barra lateral da interface.

Capitulo 6. Testes 82

Figura 11 — Aba ‘Network’ da interface desenvolvida.

Network

Network

Draw Graph Node information

"energy_autonomy”: false, -
"heigl .5,
"latitude": -23.557246,
. "longitude”: -46.730236
™ "max_data_task_gity": 10
—~ P "max_periodic_task_qtty": 10,
"mobility”: true,
"node_id": 1.
"occupied_ram_percentage™ 0.67
"operating_system": {
"description”; "tinyos",
"name": "TinyOs"
"os_id™ 1

[w

}

"periodic_task_qtty". 5

Projeto de Formatura da Escola Politécnica da USP

André Hahn, Henrique Carvalho, Yuka Solano

83

7 Conclusao

Esse capitulo encerra este trabalho, retomando seus objetivos e discutindo como
eles foram alcancados tendo em vista os resultados de seu desenvolvimento. Primeira-
mente, os resultados alcancados apds término do projeto sao relatados e discutidos em
relacdo aos requisitos levantados. Em seguida, comenta-se acerca dos possiveis desdobra-
mentos para o trabalho realizado, descrevendo algumas das possibilidades para lhe dar
prosseguimento. Finalmente, sdo realizadas algumas reflexdes acerca do que o projeto

significou, de uma maneira mais ampla, enquanto trabalho final de graduacao.

7.1 Resultados alcancados

Conforme apresentado na secao 1.1, o objetivo principal deste trabalho consiste na
concepcao, especificacao, implementacao, validacao e analise de desempenho do WARM,
um framework open source que facilita o desenvolvimento e o gerenciamento de aplica¢oes
em RSSFs. Com relagdo a concepcao e a especificagdo desse framework, considera-se que
o trabalho cumpriu seus objetivos, levantando requisitos e propondo uma solugao concei-
tual bastante completa para o problema levantado, incluindo protocolos de comunicacao,

organizacao da arquitetura e armazenamento dos dados necessarios para a sua operacao.

Cabe comentar aqui que, devido a sua robustez, foram poucas as modifica¢oes
realizadas sobre a especificacao inicialmente proposta durante a fase de implementacao,
devido a alguma inviabilidade técnica encontrada nessa etapa de projeto. As poucas alte-
ragoes que foram necessarias diziam respeito sobretudo a detalhes pontuais dos protocolos

de comunicacao descritos nas segoes 3.4 e 3.5.

Com relacao aos requisitos funcionais e nao funcionais do projeto, levantados na
secao 3.2, os testes realizados no capitulo 6 nos permitem afirmar que todos, com excegao
do requisito nao-funcional RNF6, foram atendidos. Entretanto, nem todos os itens pre-
sentes na especificacdo proposta no capitulo 5 foram implementados, sobretudo por falta
de tempo e recursos. Para evidenciar como foi possivel atender a maioria dos requisitos
mesmo sem cumprir a risca o que estava na especificacao, iremos discutir como a imple-
mentacao realizada atende a esses requisitos e de que maneira os itens nao implementados

afetam esse atendimento.

O requisito funcional RF1 é atendido pela possibilidade que a API REST da ao

usuéario de agendar multiplas tarefas distintas compondo uma ou mais aplicagoes para

Capitulo 7. Conclusdo 84

uma RSSF. O RF2 também é possivel através da API REST, mas a localizagdo infor-
mada para um né sensor so serd baseada em dados obtidos via GPS caso ele disponha
de um sensor apropriado — o que nao foi o caso da plataforma 7TelosB, utilizada nos
testes, que informava uma localizagao pré-fixada. A API também atende o RF3, forne-
cendo informagoes armazenadas no banco de dados do controlador do framework e que
sao atualizadas em eventos de recepcao de pacotes vindos do middleware, informando
caracteristicas dos nés, descrigoes de tarefas e informagoes de estado atual tanto dos nés

quanto das tarefas executadas.

O RF14 foi atendido no que se refere a possibilidade do usuario de agendar tarefas
através da API REST. No entanto, foram especificadas tarefas de trés tipos: periddicas,
instantaneas e triggers. Desses trés, a implementagao realizada sé fornece suporte aos dois
primeiros. Devido a falta de tempo e recursos, o suporte a tarefas do tipo trigger nao foi
completamente implementado tanto no middleware quanto no controlador do framework.
Entretanto, é possivel programar tarefas instantaneas que se comportem de maneira muito
parecida com triggers, embora o seu mapeamento e agendamento através de rétulos e

referéncias, conforme especificado na secao 3.4.5, ndo seja possivel dessa forma.

A configuracao das tarefas por meio da API REST também atende ao RF5, que
possibilita a configuracao de todos os parametros dos dois tipos de tarefas suportados,
com excecao de um. O tempo de validade de pardmetros recebidos, via rede, de outras
tarefas como entrada para tarefas instantaneas ¢ um parametro de configuragdo que nao
é suportado pelas implementacoes atuais do middleware ou do controlador do framework.
Com as mesmas restrigoes ja observadas, o referenciamento e o encadeamento de tarefas
também ¢é suportado, satisfazendo o RF6. O ultimo requisito funcional, RF7 é atendido
devido a possibilidade de se agendar tarefas instantaneas apropriadas ao encerramento de
uma cadeia de tarefas, dando destino aos dados coletados ao longo dela, como o envio dos

dados a internet ou o seu registro em disco.

O requisito nao-funcional RNF1 é atendido pelo uso do paradigma SDN, mais
especificamente através do TinySDN, que centraliza o controle da rede de sensores. O
TinySDN também possibilita o atendimento do RNF2, pois associa novos dispositivos
a infraestrutura da rede automaticamente, mas o middleware presente nos nds sensores
também tem um papel muito importante, fornecendo ao controlador as caracteristicas e
capacidades de um no associado, de maneira que ele possa ser utilizado pelas aplicagoes
em execucao. Essas funcionalidades do middleware também sdo importantes para atender
o requisito RNF3, uma vez que um usuario leigo nao precisa se preocupar com a progra-
macao dos nos sensores que for utilizar — no caso de ja estarem pré-programados com o

middleware e ja carregados com uma diversidade apropriada de tarefas.

A API de Tarefas, componente do middleware, também permite o facil desenvol-

vimento de novas tarefas que utilizem novos recursos presentes em novas plataformas de

Capitulo 7. Conclusdo 85

hardware, tornando o projeto extensivel no que se refere ao requisito RNF4. Essa carac-
teristica, aliada ao fato de o middleware ser baseado no SO TinyOS, contribui para a
portabilidade do sistema — que pode ser transportado sem grandes dificuldades para ou-
tras plataformas de hardware suportadas pelo TinyOS, embora nenhum teste nesse sentido
tenha sido feito —, de acordo com o requisito RNF7. O uso da linguagem Python, também
altamente portavel, na implementacao do controlador é mais um fator que contribui para

o atendimento desse requisito.

A interoperabilidade do framework projetado com outros sistemas é proporcionada
pela sua API REST, arquitetura cuja popularidade e facilidade de uso contribuem para
a facil integracao do WARM a outros sistemas, satisfazendo o RNF5. O mapeamento
de tarefas, implementado pelo controlador, faz com que o sistema atenda o requisito
RNFS8, desde que uma entrada submetida pelo usuario nao inclua o uso de uma tarefa de
trigger, como ja foi esclarecido acima. Por fim, apesar de o requisito nao-funcional RNF6
nao ter sido atendido por falta de recursos e tempo, varias das informacoes atualmente
disponibilizadas pelo middleware ao framework possibilitam que seja implementada —
para o médulo de monitoramento da rede presente no controlador — a funcionalidade de

balanceamento automatico dos recursos da rede.

Finalmente, além de comentar que a grande maioria dos requisitos do projeto
foram atendidos de maneira satisfatoria, é importante ressaltar que os resultados obtidos
ainda mostram que WARM apresenta um tempo de resposta compativel com o que se
espera de uma RSSF — considerando caracteristicas inerentes a esse tipo de rede e seus
componentes, como laténcia de comunicacao e baixo poder de processamento — conforme

observa-se pelos resultados dos testes no capitulo 6.

7.2 Trabalhos futuros

Na secao 7.1 foram mencionados alguns itens da especificagao feita no capitulo
3 que nao puderam ser implementados devido a falta de tempo e de recursos. A forma
mais imediata de dar continuidade a este trabalho seria complementar a implementacao

de forma que ela esteja completamente de acordo com a especificacdo proposta.

Isso significaria incluir, na implementacao atual, o suporte a tarefas de trigger, a
possibilidade de configuragao de uma janela de validade para os parametros de entrada
de tarefas instantdneas e o balanceamento automatico, pelo controlador, dos recursos
alocados nos nos da rede. Concluida essa fase de melhoria da implementacao, caberiam
novos testes, para assegurar que os requisitos foram cumpridos e avaliar o desempenho do

framework apés tais modificagoes.

Completar a implementac¢ao de acordo com o especificado é, no entanto, somente

uma das possibilidades para dar continuidade a este projeto. Uma etapa seguinte seria

Capitulo 7. Conclusdo 86

a de otimizacdo do middleware, para que ele ocupe um espago menor em memoria nos
nos sensores, possibilitando que uma quantidade maior e mais diversificada de tarefas
seja carregada em um né. Além disso, seria importante escrever grande nimero de tarefas
periodicas e instantaneas, que aproveitassem os recursos presentes no TelosB. Inclusive,
seria interessante testar o sistema em outras plataformas de hardware suportadas pelo
TinyOS e até porta-lo para outros sistemas operacionais e outras implementacoes de

SDN para RSSF, de forma que ele dé suporte a um ntimero ainda maior de nés sensores.

Finalmente, é necessario lembrar que, durante o recorte de escopo, documentado
na secao 3.1, varias funcionalidades foram removidas antes de sequer serem incluidas nos

requisitos ou na especificagdo. Dentre elas, merecem destaque:

e A inclusdo de uma camada para a comunicacao segura de dados entre os nés sensores
— um requisito cada vez mais importante para RSSFs, a medida que elas passam
a coletar dados de carater privado, como em aplicagoes para o monitoramento de

pacientes, residéncias, plantas industriais, entre outros;

e A viabilizagdo da reprogramacao remota das tarefas carregadas em um né sensor
através da API REST, que contribuiria para o aumento da flexibilidade da infraes-

trutura de uma RSSF instalada;

e A melhoria do balanceamento da carga nos nos sensores da rede, permitindo que o
controlador seja capaz nao somente de redistribuir tarefas quando necessario ou em

caso de falhas, mas também carregar novas tarefas onde haja demanda.

A adicao de alguma das funcionalidades descritas acima — incluindo sua especi-
ficagdo, implementacao e teste — mereceria atencao especial em possiveis dobramentos

futuros para este trabalho.

7.3 Consideracoes finais

A realizacao desse trabalho possibilitou o exercicio de diversos conceitos e prati-
cas com que os alunos de Engenharia Elétrica e Computacao tém contato ao longo da
graduacgao. O projeto e o desenvolvimento do sistema proposto, por si 80, requisitou a apli-
cagao de diversas técnicas aprendidas nas disciplinas de Engenharia de Software, como
metodologias de desenvolvimento, levantamento de requisitos, modelagem de sistemas e
de bancos de dados, metodologias de teste, técnicas de versionamento, documentacao de

codigo e diversos conceitos de arquitetura de software.

A execugao do projeto demandou também sélidos conceitos de arquitetura de redes
e de computadores, bem como conceitos de sistemas operacionais, relacionados a proto-

colos de comunicagao, programagao de sistemas, programagcao paralela e programacao de

Capitulo 7. Conclusdo 87

sistemas embarcados. Além disso, ela possibilitou o emprego de diversas técnicas obser-
vadas em laboratérios realizados durante a graduacao, como Laboratério de Redes de
Computadores, Laboratoério de Fundamentos de Engenharia de Computacao, Laboratorio

de Programacao e Laboratorio de Processadores.

Finalmente, cabe aqui destacar outros aspectos que também foram alcancados com
o desenvolvimento desse trabalho, que tem grande importancia devido ao seu papel como
marco na conclusao da graduagao em Engenharia Elétrica com énfase em Computacao.
Um desses aspectos é, sem duvida, a pratica do trabalho em grupo, fundamental na
carreira da Engenharia. Outro foi a aquisicao de vivéncia e experiéncia no projeto e
execucao de um trabalho de grande porte, aplicando de forma relacionada uma ampla
gama de conceitos e técnicas vistas durante a graduacao. E, por fim, destaca-se o contato
que a realizagao desse trabalho possibilitou com a inovagao, com a pesquisa e com a
tecnologia em estado da arte, que devem ser parte do cotidiano dos profissionais na area

da Engenharia.

88

Referéncias

ABERER, K.; HAUSWIRTH, M.; SALEHI, A. A middleware for fast and flexible sensor
network deployment. In: Proceedings of the 32Nd International Conference on Very
Large Data Bases. VLDB Endowment, 2006. (VLDB ’06), p. 1199-1202. Disponivel em:
<http://dl.acm.org/citation.cfm?id=1182635.1164243>.

AZZARA, A. et al. PyoT, a macroprogramming framework for the Internet of
Things. In: IEEE. Industrial Embedded Systems (SIES), 2014 9th IEEE International
Symposium on. 2014. p. 96-103. Disponivel em: <http://ieecexplore.icee.org/xpls/abs_all-
Jsp?arnumber=6871193>.

COSTANZO, S. et al. Software Defined Wireless Networks: Unbridling SDNs. In: Software
Defined Networking (EWSDN), 2012 European Workshop on. IEEE, 2012. p. 1-6. ISBN
978-1-4673-4554-5. Disponivel em: <http://dx.doi.org/10.1109/ewsdn.2012.12>.

CULLER, D.; ESTRIN, D.; SRIVASTAVA, M. Overview of sensor networks. Computer
Magazine, IEEE Computer Society, v. 37, n. 8, p. 41-49, 2004.

Django Project. The Web framework for perfectionists with deadlines | Django. 2015.
Disponivel em: <https://www.djangoproject.com>. Acesso em: 22.06.2015.

FIELDING, R. T.; TAYLOR, R. N. Principled design of the modern web architecture.
In: Proceedings of the 22Nd International Conference on Software Engineering. New
York, NY, USA: ACM, 2000. (ICSE ’00), p. 407-416. ISBN 1-58113-206-9. Disponivel
em: <http://doi.acm.org/10.1145/337180.337228>.

Flask. Welcome | Flask (A Python Microframework). 2015. Disponivel em: <http: /-
/flask.pocoo.org/>. Acesso em: 22.06.2015.

GAY, D. et al. The nesC language: A holistic approach to networked embedded
systems. In: ACM. Acm Sigplan Notices. 2003. v. 38, n. 5, p. 1-11. Disponivel em:
<http://dl.acm.org/citation.cfm?id=781133>.

Git. Git. 2015. Disponivel em: <http://www.git-scm.com/>. Acesso em: 11.09.2015.

golang. The Go programming language. 2015. Disponivel em: <https://golang.org>.
Acesso em: 13.06.2015.

HEESCH, D. van. Dozygen Manual. 2015. Disponivel em: <http://www.doxygen.org/>.
Acesso em: 05.11.2015.

KOLDEHOFE, B. et al. The power of software-defined networking: Line-rate content-
based routing using openflow. In: Proceedings of the 7th Workshop on Middleware for
Next Generation Internet Computing. New York, NY, USA: ACM, 2012. (MW4NG
"12), p. 3:1-3:6. ISBN 978-1-4503-1607-1. Disponivel em: <http://doi.acm.org/10.1145-
/2405178.2405181>.

Referéncias 89

LEVIS, P. et al. TOSSIM: Accurate and scalable simulation of entire TinyOS applications.
In: ACM. Proceedings of the 1st international conference on Embedded networked sensor
systems. 2003. p. 126-137. Disponivel em: <http://dl.acm.org/citation.cfm?id=958506>.

LEVIS, P. et al. TinyOS: An operating system for sensor networks. In: Ambient
intelligence. Springer, 2005. p. 115-148. Disponivel em: <http://link.springer.com-
/chapter/10.1007/3-540-27139-2_7>.

LUO, T.; TAN, H.-P.; QUEK, T. Q. S. Sensor OpenFlow: Enabling Software-Defined
Wireless Sensor Networks. IEEE Communications Letters, v. 16, n. 11, p. 18961899,
2012. Disponivel em: <http://dblp.uni-trier.de/db/journals/icl/icl16.htmlLuoTQ12>.

MADDEN, S. R. et al. TinyDB: an acquisitional query processing system for sensor
networks. ACM Transactions on database systems (TODS), ACM, v. 30, n. 1, p. 122-173,
2005.

MARGI, C. B. Comunicacio, sequranca e gerenciamento em redes de sensores sem fio.
2015. Tese (Livre-Docéncia) — Universidade de Sao Paulo.

OLIVEIRA, B. Trevizan de; MARGI, C. B.; GABRIEL, L. B. TinySDN: Enabling
multiple controllers for software-defined wireless sensor networks. In: IEEE.
Communications (LATINCOM), 2014 IEEE Latin-America Conference on. 2014. p. 1-6.
Disponivel em: <http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7041885>.

Oracle Corporation. java.com: Java + You. 2015. Disponivel em: <https://www.java-
.com/en>. Acesso em: 14.06.2015.

PIURI, V.; MINERVA, R. Building the internet of things. Computer Now, IEEE
Computer Society, v. 8, n. 7, 2015.

Python Software Foundation. Welcome to Python.org. 2015. Disponivel em: <https: /-
/www.python.org>. Acesso em: 13.06.2015.

Sphinx. Sphinz 1.8.1 Documentation. 2015. Disponivel em: <http://sphinx-doc.org/>.
Acesso em: 05.11.2015.

SQLite. SQLite. 2015. Disponivel em: <https://www.sqlite.org/>. Acesso em: 22.06.2015.

TELOSB. TelosB - Crossbow Technology. 2015. Disponivel em: <http://www.willow.co-
.uk/html/telosb_mote_platform.php>. Acesso em: 17.6.2015.

World Wide Web Consortium. SOAP Specifications. 2015. Disponivel em: <http://www-
.w3.org/TR/soap/>. Acesso em: 22.06.2015.

	Folha de rosto
	Resumo
	Abstract
	Lista de Figuras
	Lista de Tabelas
	Sumário
	Introdução
	Objetivo
	Metodologia de elaboração do projeto
	Cronograma e atividades
	Organização do Documento

	Planejamento
	Revisão bibliográfica
	Redes de sensores sem fio
	TinyOS

	Gerenciamento e consultas para rssf
	TinyDB
	PyoT
	Global Sensor Networks

	Software Defined Networks
	sdn aplicado a rssf
	Software Defined Wireless Networks
	Sensor OpenFlow
	TinySDN

	Especificação
	Escopo do projeto
	Requisitos do projeto
	Requisitos funcionais
	Requisitos não-funcionais
	Garantias para os requisitos não-funcionais

	Diagrama de arquitetura simplificado
	Protocolo de interface com o usuário
	 Características dos nós sensores
	 Disponibilidade das tarefas
	 Parâmetros de agendamento das tarefas
	 Agendamentos em execução
	 Agendamento de uma tarefa
	 Cancelamento de um agendamento

	Protocolo de interface com o middleware
	Descrição de características de um nó sensor
	Descrição de um dispositivo
	Descrição de uma tarefa
	Agendamento de uma tarefa periódica
	Agendamento de uma tarefa instantânea
	Agendamento de um trigger
	Cancelamento de uma tarefa agendada
	Relatório de execução de uma tarefa agendada
	Estado de um nó sensor
	Transmissão de dados
	Transmissão de sinal de trigger

	Arquitetura do controlador
	Bancos de dados do controlador

	Arquitetura do middleware

	Tecnologias
	Tecnologias de interface com o usuário
	rest
	soap
	Escolha e motivos

	Tecnologias de implementação para o servidor rest
	Django
	Flask

	Linguagens para o controlador do framework
	Go
	Java
	Python
	Escolha e motivos

	Banco de Dados
	SQLite
	SQLAlchemy

	Middleware
	TinyOS
	TinySDN
	TelosB
	COOJA

	Aplicação
	Desenvolvimento
	Metodologias de desenvolvimento
	Versionamento de código
	Revisão de código
	Testes de componentes
	Documentação de código

	Servidor rest
	Controlador
	Mapeamento de tarefas
	Monitoramento da rede
	Controlador do TinySDN
	Nó da rede conectado por serial

	Banco de dados

	Middleware
	Processador de Respostas do Protocolo
	Escalonador
	API de Tarefas
	Receptor
	Emissor

	Testes
	Testes do controlador
	Testes de componentes
	Teste de funcionamento

	Testes do middleware
	Testes de componentes
	Teste de funcionamento
	Desempenho

	Testes de integração
	Demonstração de uso

	Conclusão
	Resultados alcançados
	Trabalhos futuros
	Considerações finais

	Referências

