
André Hahn Pereira
Henrique Carvalho Silva
Yuka Kyushima Solano

WARM: Arcabouço para programação de
aplicações em redes de sensores sem fio

São Paulo
2015

Catalogação-na-publicação

Pereira, Andre
 WARM: Arcabouço para programação de aplicações em redes de sensores
sem fio / A. Pereira, H. Silva, Y. Solano -- São Paulo, 2015.
 89 p.

 Trabalho de Formatura - Escola Politécnica da Universidade de São
Paulo. Departamento de Engenharia de Computação e Sistemas Digitais.

 1.Redes de sensores sem fio 2.Programação 3.Gerenciamento de
recursos 4.Desenvolvimento de aplicações 5.Gerenciamento de aplicações
I.Universidade de São Paulo. Escola Politécnica. Departamento de
Engenharia de Computação e Sistemas Digitais II.t. III.Silva, Henrique
IV.Solano, Yuka

André Hahn Pereira
Henrique Carvalho Silva
Yuka Kyushima Solano

WARM: Arcabouço para programação de aplicações em
redes de sensores sem fio

Trabalho de Formatura apresentado ao De-
partamento de Engenharia de Computação
e Sistemas Digitais da Escola Politécnica da
Universidade de São Paulo para obtenção do
Diploma de Engenheiro

Orientador: Profa. Dra. Cíntia Borges Margi
Coorientador: Msc. Bruno T. de Oliveira

São Paulo
2015

Resumo

A Internet das Coisas é cada vez mais um conceito presente no cotidiano com
múltiplas aplicações. Entretanto, o correto funcionamento da Internet das Coisas
depende da existência de redes de sensores presentes no ambiente para o forneci-
mento de informações para a tomada de decisões acertadas. Porém, atualmente a
implementação e operação de redes de sensores são tarefas que dependem de conhe-
cimentos de especialistas devido a sua alta complexidade. Dessa forma, o projeto
se propõe a facilitar a implementação e operação de uma rede de sensores sem fio
através da criação de um arcabouço para programação de aplicações em redes de
sensores sem fio. O framework proposto, WARM, oferece como principais vantagens
o fácil desenvolvimento e gerenciamento de tais aplicações, sem que seja necessário
aos seus usuários conhecimento específico na área de redes de sensores sem fio.

Palavras-chaves: Redes de sensores sem fio; Programação; Desenvolvimento de
aplicações; Gerenciamento de aplicações; Gerenciamento de recursos.

Abstract

The Internet of Things is a concept present in the daily life with several
applications. Even so, the Internet of Things relies on the existence of sensor net-
works in the environment to provide data for a proper decision making. However,
specialist knowledge in sensor networks is still required to implement and operate
them due to their complexity. To try and solve this problem, this project proposes
the creation of a framework for the programming of applications in wireless sensor
networks. The proposed framework, WARM, has as main advantages the ease of
development and management of such applications without the need of user specific
knowledge about wireless sensor networks.

Key-words: Wireless sensor networks; Programming; Application development;
Application management; Resource management.

Lista de Figuras

Figura 1 – Cronograma do projeto. 15

Figura 2 – Componentes do TinySDN. 23

Figura 3 – Diagrama de arquitetura simplificado. 28
Figura 4 – Diagrama de arquitetura do controlador. 49
Figura 5 – Diagrama ER do banco de dados do controlador. 51
Figura 6 – Diagrama de arquitetura do middleware. 52

Figura 7 – Foto do TelosB visto de cima. 60

Figura 8 – Teste do middleware realizado com o simulador COOJA. 78
Figura 9 – Aba ‘Tasks’ da interface desenvolvida. 81
Figura 10 –Aba ‘Query’ da interface desenvolvida. 81
Figura 11 –Aba ‘Network’ da interface desenvolvida. 82

Lista de Tabelas

Tabela 1 – Estrutura do pacote de descrição de características de um nó sensor. . 36
Tabela 2 – Estrutura do pacote de confirmação da inscrição de um nó sensor. . . . 36
Tabela 3 – Estrutura do pacote de requisição da descrição de uma tarefa. 38
Tabela 4 – Estrutura do pacote de resposta da descrição de uma tarefa. 38
Tabela 5 – Estrutura do pacote de requisição do agendamento de uma tarefa pe-

riódica. 40
Tabela 6 – Estrutura do pacote de confirmação do agendamento de uma tarefa

periódica. 40
Tabela 7 – Estrutura do pacote de requisição do agendamento de uma tarefa ins-

tantânea. 42
Tabela 8 – Estrutura do pacote de confirmação do agendamento de uma tarefa

instantânea. 42
Tabela 9 – Estrutura do pacote de requisição do agendamento de um trigger. . . . 44
Tabela 10 –Estrutura do pacote de confirmação do agendamento de um trigger. . . 44
Tabela 11 –Estrutura do pacote de requisição do cancelamento de uma tarefa agen-

dada. 46
Tabela 12 –Estrutura do pacote de resposta do cancelamento de uma tarefa. . . . 46
Tabela 13 –Estrutura do pacote de requisição do relatório de execução de uma

tarefa agendada. 47
Tabela 14 –Estrutura do pacote de resposta do relatório de execução de uma tarefa

agendada. 47
Tabela 15 –Estrutura do pacote de requisição do estado de um nó sensor. 47
Tabela 16 –Estrutura do pacote de resposta do estado de um nó sensor. 47
Tabela 17 –Estrutura do pacote de transmissão de dados. 48
Tabela 18 –Estrutura do pacote de transmissão de um sinal de trigger. 49

Tabela 19 –Tempos de execução do middleware . 79

Lista de Siglas e Símbolos

API Application Programming Interface. 6, 13–15, 50, 65, 83–86

CORBA Common Object Request Broker Architecture. 6, 54

DAO Data Access Object. 6, 59, 68

ER Entidade-Relacionamento. 5, 6, 51, 59, 68

GPS Global Positioning System. 6, 36, 84

GSN Global Sensor Networks. 6, 19, 20

HTML HyperText Markup Language. 6, 64

HTTP HyperText Transfer Protocol. 6, 54, 65

ID identificador. 6, 36–49, 51

IDE Integrated Development Environment. 6, 57

IEEE Institute of Electrical and Electronics Engineers. 6, 17, 37, 60

JSON JavaScript Object Notation. 6, 65, 80

JVM Java Virtual Machine. 6, 56

LR-WPAN Low Rate Wireless Personal Area Network. 6, 21

MVC Model-View-Controller . 6, 55

nesC network embedded systems C . 6, 18, 59, 64, 69

ORM Object-Relational Mapper . 6, 58, 59

REST Representational State Transfer . 6, 10, 11, 13–15, 28, 29, 50, 54–56, 58, 63–65,
83–86

RPC Remote Procedure Call. 6, 54

RSSF Redes de Sensores sem Fio. 6, 9, 12–14, 17–19, 21–23, 25, 26, 28, 37, 59–61, 83–86

SDN Software Defined Networks. 6, 9, 12–14, 17, 20–24, 28, 35, 37, 50, 59, 75, 84, 86

SDWN Software Defined Wireless Networks. 6, 21

SMTP Simple Mail Transfer Protocol. 6, 54

SO Sistema Operacional. 6, 18, 21, 59, 85

SOAP Simple Object Access Protocol. 6, 10, 54, 55

SQL Structured Query Language. 6, 19, 20, 59

URI Uniform Resource Identifier . 6, 54

USB Universal Serial Bus. 6, 60

WSGI Web Service Gateway Interface. 6, 55

WSN Wireless Sensor Networks. 6, 17

XML Extensible Markup Language. 6, 19, 54

Sumário

1 Introdução . 12
1.1 Objetivo . 13
1.2 Metodologia de elaboração do projeto . 13
1.3 Cronograma e atividades . 14
1.4 Organização do Documento . 15

I Planejamento 16

2 Revisão bibliográfica . 17
2.1 Redes de sensores sem fio . 17

2.1.1 TinyOS . 18
2.2 Gerenciamento e consultas para Redes de Sensores sem Fio (RSSF) 18

2.2.1 TinyDB . 18
2.2.2 PyoT . 19
2.2.3 Global Sensor Networks . 19

2.3 Software Defined Networks . 20
2.4 SDN aplicado a RSSF . 21

2.4.1 Software Defined Wireless Networks 21
2.4.2 Sensor OpenFlow . 22
2.4.3 TinySDN . 23

3 Especificação . 25
3.1 Escopo do projeto . 25
3.2 Requisitos do projeto . 26

3.2.1 Requisitos funcionais . 27
3.2.2 Requisitos não-funcionais . 27
3.2.3 Garantias para os requisitos não-funcionais 28

3.3 Diagrama de arquitetura simplificado . 28
3.4 Protocolo de interface com o usuário . 29

3.4.1 Características dos nós sensores 29
3.4.2 Disponibilidade das tarefas . 31
3.4.3 Parâmetros de agendamento das tarefas 32
3.4.4 Agendamentos em execução . 33
3.4.5 Agendamento de uma tarefa . 33
3.4.6 Cancelamento de um agendamento 35

3.5 Protocolo de interface com o middleware 35
3.5.1 Descrição de características de um nó sensor 36
3.5.2 Descrição de um dispositivo . 37
3.5.3 Descrição de uma tarefa . 38
3.5.4 Agendamento de uma tarefa periódica 40
3.5.5 Agendamento de uma tarefa instantânea 42
3.5.6 Agendamento de um trigger . 43
3.5.7 Cancelamento de uma tarefa agendada 46
3.5.8 Relatório de execução de uma tarefa agendada 46
3.5.9 Estado de um nó sensor . 47
3.5.10 Transmissão de dados . 48
3.5.11 Transmissão de sinal de trigger . 49

3.6 Arquitetura do controlador . 49
3.6.1 Bancos de dados do controlador . 50

3.7 Arquitetura do middleware . 51

4 Tecnologias . 54
4.1 Tecnologias de interface com o usuário . 54

4.1.1 Representational State Transfer (REST) 54
4.1.2 Simple Object Access Protocol (SOAP) 54
4.1.3 Escolha e motivos . 55

4.2 Tecnologias de implementação para o servidor REST 55
4.2.1 Django . 55
4.2.2 Flask . 55

4.3 Linguagens para o controlador do framework 56
4.3.1 Go . 56
4.3.2 Java . 56
4.3.3 Python . 57
4.3.4 Escolha e motivos . 58

4.4 Banco de Dados . 58
4.4.1 SQLite . 58
4.4.2 SQLAlchemy . 59

4.5 Middleware . 59
4.5.1 TinyOS . 59
4.5.2 TinySDN . 59
4.5.3 TelosB . 60
4.5.4 COOJA . 61

II Aplicação 62

5 Desenvolvimento . 63
5.1 Metodologias de desenvolvimento . 63

5.1.1 Versionamento de código . 63
5.1.2 Revisão de código . 63
5.1.3 Testes de componentes . 64
5.1.4 Documentação de código . 64

5.2 Servidor REST . 64
5.3 Controlador . 66

5.3.1 Mapeamento de tarefas . 66
5.3.2 Monitoramento da rede . 66

5.3.2.1 Controlador do TinySDN 67
5.3.2.2 Nó da rede conectado por serial 67

5.3.3 Banco de dados . 68
5.4 Middleware . 69

5.4.1 Processador de Respostas do Protocolo 69
5.4.2 Escalonador . 69
5.4.3 API de Tarefas . 71
5.4.4 Receptor . 74
5.4.5 Emissor . 75

6 Testes . 76
6.1 Testes do controlador . 76

6.1.1 Testes de componentes . 76
6.1.2 Teste de funcionamento . 76

6.2 Testes do middleware . 77
6.2.1 Testes de componentes . 77
6.2.2 Teste de funcionamento . 77
6.2.3 Desempenho . 79

6.3 Testes de integração . 80
6.4 Demonstração de uso . 80

7 Conclusão . 83
7.1 Resultados alcançados . 83
7.2 Trabalhos futuros . 85
7.3 Considerações finais . 86

Referências . 88

12

1 Introdução

O advento da Internet das Coisas inclui a existência de uma rede de objetos físicos,
e até de pessoas e animais, com a capacidade - a eles atribuída por meio de dispositivos
eletrônicos embarcados providos de sensores e interfaces de comunicação - de se conectar
uns aos outros e transferir dados entre si sem nenhuma interação homem-homem ou
homem-máquina.

Uma parte importante da visão sugerida pelo conceito de Internet das Coisas,
de acordo com Piuri e Minerva (2015), é o desenvolvimento de aplicações de Redes de
Sensores sem Fio (RSSF). Uma RSSF é um tipo de rede composta por nós sensores
autônomos com o objetivo de monitorar ambientes (CULLER; ESTRIN; SRIVASTAVA,
2004).

Apesar dessa importância, entretanto, a elaboração de uma uma aplicação para
RSSFs ainda é uma tarefa muito custosa e complexa. Tal custo e complexidade são devidos
ao fato de que o desenvolvimento de uma aplicação dessa tecnologia costuma requerer a
especificação e a programação completa de toda a infra-estrutura de uma RSSF.

Isso acontece em razão das dificuldades envolvidas na reutilização de uma infra-
estrutura de rede existente para o desempenho de novas tarefas, bem como no aprovei-
tamento de seus recursos ociosos para potenciais novas aplicações. Não obstante, essa
atividade de programação requer conhecimento específico relacionado ao hardware e ao
sistema operacional dos nós sensores da rede, dificultando ainda mais esse custoso e com-
plexo processo.

Em face desse problema, o trabalho proposto consiste na implementação de um
framework (arcabouço) para o desenvolvimento de aplicações em RSSFs: o WARM (Wi-
reless Sensor Network Application development and Resource Management).

WARM é uma ferramenta open-source baseada no paradigma de Redes Definidas
por Software, do inglês Software Defined Networks (SDN), que tem por objetivo centralizar
o controle de redes de computadores. Além disso, tem uma arquitetura altamente modular,
evitando ao máximo a necessidade de interação direta com o hardware ou com tecnologias
usada em camadas inferiores, de forma a permitir uma maior reutilização.

Com o objetivo de especificá-lo, foi realizada uma revisão bibliográfica com o pro-
pósito de obter conhecimento acerca do estado da arte no que se refere às soluções para
o problema de se desenvolver e gerenciar aplicações para RSSFs. Com base no conteúdo
pesquisado, WARM foi especificado e implementado de forma a atender aos requisitos

Capítulo 1. Introdução 13

apresentados pelos trabalhos anteriores nessa área, também focando na reutilização da
infra-estrutura disponível para múltiplas aplicações.

A arquitetura do framework proposto é, resumidamente, composta por dois com-
ponentes de software:

∙ Controlador: Responsável por fazer a interface do usuário com o controlador SDN
que gerencia a infraestrutura de rede. O controlador do WARM interage com o
usuário através de uma Application Programming Interface (API) REST, armazena
informações sobre os nós presentes na rede e também conhece todas as tarefas sendo
executadas atualmente, bem como os atributos e capacidades de cada nó.

∙ Middleware dos nós sensores: Responsável por fazer a interface entre a camada de
rede e a camada de aplicação dos nós sensores participantes da rede mantida pelo
arcabouço.

1.1 Objetivo
O objetivo do trabalho é a concepção, especificação, implementação, validação e

análise de desempenho de um framework open source que facilite o desenvolvimento e o
gerenciamento de aplicações em RSSFs. O framework deve permitir o aproveitamento da
infra-estrutura de uma mesma rede existente por múltiplas aplicações simultâneas. Além
disso, o usuário deve poder configurar novas aplicações sem que haja a necessidade de
reprogramar cada nó sensor.

Não será necessário, para isso, que o usuário conheça a topologia de uma RSSF
nem características específicas de cada nó. O framework deve ser capaz de abstrair esses
detalhes, de forma que mesmo usuários sem conhecimento prévio da rede sejam capazes
de utilizá-la.

Essa característica de fácil configuração e reconfiguração de múltiplas aplicações
em uma mesma RSSF pode ser obtida através de um controle centralizado da mesma,
possível com a aplicação do paradigma de redes definidas por software.

1.2 Metodologia de elaboração do projeto
A elaboração do projeto foi dividida em duas etapas principais, especificação e

desenvolvimento, e a metodologia adotada é apresentada a seguir.

A primeira etapa começou com a definição do escopo do projeto, com base em
interesses dos integrantes do grupo e sugestões dos orientadores. De posse da ideia inicial
de escopo foi realizado o levantamento bibliográfico sobre o estado da arte na área de

Capítulo 1. Introdução 14

interesse: suporte ao desenvolvimento de aplicações para RSSFs. Nesse levantamento,
procurou-se dar maior relevância a artigos considerados como referências já consolidadas
na área, mas também foram considerados trabalhos mais recentes que tivessem grande
relação com a proposta deste projeto.

A princípio, a busca se concentrou em trabalhos que esclarecessem as definições e
as características dos conceitos-chave para a realização do trabalho, como RSSF e SDN.
Conforme se deu o amadurecimento de tais conceitos, o enfoque da pesquisa se voltou a
trabalhos que pudessem trazer luz aos principais problemas existentes nas RSSFs e como
eles poderiam ser solucionados através da proposta de um framework para o desenvolvi-
mento e gerenciamento desse tipo de ambiente de rede.

A partir da revisão bibliográfica, foi realizado o levantamento dos requisitos do
projeto e, com base neles, uma concepção de alto nível da sua arquitetura. Essa concepção
permitiu que se tivesse uma ideia melhor dos dois módulos principais do framework, o
controlador e o middleware já mencionados, bem como das interfaces entre eles.

Identificadas as interfaces entre os principais componentes do projeto, buscou-se
então especificá-las em grande nível de detalhe. Tal empenho resultou na especificação
de uma API REST para interface do controlador com o usuário e de um protocolo para
a comunicação sem fio entre o controlador e o middleware presente nos nós sensores da
rede.

Conhecendo-se as entradas e saídas dos dois principais módulos mencionados,
pôde-se então especificar a arquitetura interna de cada um deles. O passo final da especifi-
cação consistiu na pesquisa e na decisão das tecnologias adequadas para a implementação
de tais arquiteturas.

A segunda etapa do projeto consistiu na implementação do projeto e na realização
de testes para verificar seu correto funcionamento e desempenho. Uma descrição mais
detalhada da metodologia de desenvolvimento encontra-se na Seção 5.1.

1.3 Cronograma e atividades
O projeto está dividido em seis partes principais:

∙ Pesquisa de tecnologias e estado da arte;

∙ Especificação dos componentes, protocolos de comunicação e tecnologias a serem
usadas no projeto;

∙ Documentação do andamento do projeto e escrita da monografia;

∙ Implementação do controlador do framework;

Capítulo 1. Introdução 15

∙ Implementação do middleware;

∙ Integração dos componentes;

∙ Realização dos testes, validação e análise de desempenho;

∙ Desenvolvimento da aplicação de demonstração.

O cronograma de execução das atividades é apresentado na Figura 1.

Figura 1 – Cronograma do projeto.

1.4 Organização do Documento
No Capítulo 2 é apresentada uma revisão bibliográfica sobre os temas pesquisados

para a realização do projeto. Os temas de pesquisa relevantes são apresentados, junto com
um breve resumo e referências bibliográficas dos assuntos estudados.

No Capítulo 3 é apresentada a especificação técnica do projeto, apresentando es-
copo do trabalho, requisitos funcionais e não funcionais, arquitetura da solução do projeto
e os protocolos de comunicação entre as interfaces.

No Capítulo 4 são apresentadas as tecnologias consideradas e adotadas no projeto,
bem como análises e justificativas das escolhas realizadas.

No Capítulo 5 são apresentados os métodos de desenvolvimento adotados para a
implementação do projeto, incluindo versionamento, revisão, documentação e testes. Em
seguida, são relatadas as implementações dos três componentes principais da arquitetura
do WARM : o servidor da API REST, o controlador do framework e o middleware presente
nos nós sensores.

No Capítulo 6 são apresentados os testes realizados para garantir e validar o funci-
onamento do framework implementado, incluindo testes de módulos e componentes, testes
isolados dos principais componentes e testes de integração entre eles.

O Capítulo 7 dá encerramento ao trabalho, discutindo os resultados obtidos, re-
latando possíveis caminhos para o seu prosseguimento, e tecendo reflexões a respeito do
significado que ele teve enquanto trabalho final de graduação.

Parte I

Planejamento

17

2 Revisão bibliográfica

Neste capítulo encontra-se uma revisão bibliográfica geral sobre assuntos que fo-
ram pesquisados e estudados para permitir a realização deste trabalho. Primeiro há uma
apresentação sobre os conceitos de Redes de Sensores sem Fio (RSSF), seguido por uma
apresentação de outros trabalhos presentes na literatura sobre gerenciamento e consultas
para RSSF. Em sequência, apresenta-se a definição de Software Defined Networks (SDN),
para então descrever alguns trabalhos da literatura sobre SDN aplicada a RSSF.

2.1 Redes de sensores sem fio
Redes de Sensores sem Fio (RSSF) (CULLER; ESTRIN; SRIVASTAVA, 2004) (em

inglês Wireless Sensor Networks (WSN)) são redes compostas por sensores autônomos es-
pacialmente distribuídos para monitorar condições físicas e ambientais, como temperatura
e pressão. Os nós destas redes são dispositivos de baixo custo capazes de se comunicar
entre si através de conexões sem fio, de modo a colaborar uns com os outros para a re-
alização do propósito de uma aplicação de RSSF. Além disso, podem ainda ser móveis,
heterogêneos e, em alguns cenários, podem suportar condições ambientais adversas.

Denominados de nós sensores, os elementos que compõem uma RSSF são disposi-
tivos marcados por duas limitações principais: a de recursos computacionais − incluindo
armazenamento e processamento − e a de fonte de energia − geralmente fornecida por
uma bateria de baixa capacidade. Tais características exigem que a programação de apli-
cações para nós sensores seja eficiente na utilização dos recursos disponibilizados pelo
hardware desses dispositivos. Alguns exemplos de plataformas de nós sensores utilizadas
em aplicações para RSSF são o TelosB e o micaZ.

Outra característica importante de uma RSSF é a sua arquitetura de rede, que
pode ser encarada como uma classe especial de redes ad hoc de múltiplos saltos (MARGI,
2015). Devido ao requisito adicional de baixo consumo de energia e as características dos
dispositivos de rádio empregados nessas redes − como baixas taxas de transferência e
latência elevada − são necessários protocolos diferenciados para a comunicação nesse tipo
de rede. Um dos protocolos de comunicação de camada de enlace mais utilizados em RSSF
é o IEEE 802.15.4, que prevê baixas taxas de transferência e tem foco no baixo consumo
de energia.

Aplicações de RSSF estão se tornando cada vez mais populares em diversas áreas

Capítulo 2. Revisão bibliográfica 18

da atividade econômica, como agricultura de precisão, construção civil, controle de trá-
fego, monitoramento de pacientes e logística de produtos. Ainda assim, o que vemos hoje é
apenas uma sombra do verdadeiro potencial representado pelas RSSFs, que só se tornará
claro com o advento da Internet das Coisas − que tornará extremamente populares as
aplicações dessa tecnologia. No entanto, há diversos desafios para a popularização das RS-
SFs, a maioria relacionada à dificuldade de gerenciar e programar suas aplicações (PIURI;
MINERVA, 2015).

2.1.1 TinyOS

O TinyOS (LEVIS et al., 2005) é um Sistema Operacional (SO) de código aberto
para RSSF. Ele foi criado na Universidade da Califórnia em Berkeley com o objetivo de
facilitar a programação de aplicações para RSSFs e é amplamente utilizado por pesquisa-
dores na comunidade acadêmica.

O TinyOS é um SO orientado a eventos e sua programação é feita na linguagem
network embedded systems C (nesC) (GAY et al., 2003), uma extensão da linguagem C.
Ele foi projetado tendo em vista um baixo consumo de energia e de memória, de forma a
permitir a operação em nós sensores com energia e memória limitadas. O SO é capaz de
executar múltiplas tarefas concorrentes de maneira segura.

Foi desenvolvido também um simulador para o TinyOS chamado TOSSIM (LEVIS
et al., 2003), que permite a simulação de aplicações para o TinyOS e possui interface de
programação em C++ e Python.

2.2 Gerenciamento e consultas para RSSF
Nessa seção são apresentadas breves descrições de alguns dos principais trabalhos

relacionados ao gerenciamento e ao monitoramento de redes sensores e internet das coisas.
Eles serviram de base para a definição de requisitos funcionais e não-funcionais neste
projeto.

2.2.1 TinyDB

O TinyDB (MADDEN et al., 2005) é um processador de consultas distribuído que
roda sobre o TinyOS, desenvolvido na Universidade da Califórnia em Berkeley.

O TinyDB tem a maioria das características de um processador de consultas tra-
dicional, mas também incorpora características projetadas para minimizar o consumo de
energia através de técnicas aquisicionais. Nesse trabalho as consultas são feitas através de
um PC, responsável por interpretar, otimizar e enviar as consultas para a RSSF.

Capítulo 2. Revisão bibliográfica 19

As principais questões consideradas acerca do processamento de consultas em RS-
SFs por esse trabalho são: em que momento as amostras de uma consulta devem ser
tomadas; quais nós têm dados relevantes para a consulta; qual a ordem na qual as amos-
tras devem ser feitas; e como intercalar a amostragem com outras operações.

As consultas no TinyDB seguem o padrão básico do Structured Query Language
(SQL), com o acréscimo da opção de definir um intervalo entre medidas, bem como a
duração da consulta. Consultas também podem realizar ações, como o acionamento de
evento em um nó ou de um atuador.

2.2.2 PyoT

O PyoT (AZZARA et al., 2014) é um framework de “macroprogramação” para
internet das coisas. Esse é um trabalho recente, de 2014, desenvolvido em Pisa, na Itália.

Seu foco é esconder completamente os nós e a rede do usuário. Suas funcionalida-
des incluem: descobrir recursos disponíveis de maneira automática, monitorar dados de
sensores, manipular seu armazenamento, controlar atuadores, definir eventos e suas ações,
e interagir com seus recursos utilizando linguagem de script. O PyoT foi projetado para
rodar em redes IP e a obtenção de dados da rede pode ser feita através de requisições do
tipo GET.

O PyoT não leva em conta restrições de processamento, comunicação ou energia
nos nós da rede, pois grande parte da lógica da rede é executada nos próprios nós, e
protocolos web convencionais são utilizados para comunicação, além da programação ser
realizada em Python, uma linguagem pouco eficiente do ponto de vista de processamento
e memória.

2.2.3 Global Sensor Networks

O Global Sensor Networks (GSN) (ABERER; HAUSWIRTH; SALEHI, 2006) é
um middleware open-source que suporta a descoberta e a integração flexível de RSSFs.
Seus objetivos são tornar possíveis a configuração dinâmica de aplicações de RSSFs em
operação e a realização de consultas, filtros e combinação de dados coletados por sensores
de forma distribuída.

O principal obstáculo para a realização de tais objetivos está na heterogeneidade
das plataformas de hardware e software disponíveis para RSSF atualmente. Para contornar
esse problema, os autores propõem uma maneira − denominada por eles de “sensores
virtuais” − de se abstrair os nós sensores através em descritores baseados em Extensible
Markup Language (XML).

Os sensores virtuais são a peça principal no modelo de abstração provido pelo
GSN. Eles abstraem o acesso aos dados produzidos por nós sensores e são administrados

Capítulo 2. Revisão bibliográfica 20

e disponibilizados, pelo GSN, na forma de serviços. O modelo propõe que um nó sensor
tenha um número qualquer de entradas de dados, advindos de sensores ou de outros nós
da rede, mas apenas uma saída de dados.

Entre as informações que devem ser providas na especificação de um sensor virtual,
vale a pena ressaltar as seguintes:

∙ Metadados para a identificação e descoberta dos sensores;

∙ A estrutura das entradas e saídas de dados;

∙ Uma especificação declarativa do processamento de dados que o sensor é capaz de
realizar, que no caso do GSN é baseada em SQL;

∙ Propriedades funcionais relacionadas à persistência, tratamento de erros ocorridos,
ciclo de vida e instalação física do sensor.

2.3 Software Defined Networks
Redes Definidas por Software, do inglês Software Defined Networks (SDN), é um

paradigma para a arquitetura de redes de computadores caracterizado sobretudo pelo
desacoplamento entre o plano de dados e o plano de controle da rede (KOLDEHOFE et
al., 2012). Esse princípio permite que a rede seja vista como uma única entidade virtual,
cuja configuração pode ser feita de forma centralizada e automatizada via software − ao
invés de demandar a reprogramação manual de conjuntos distintos de configurações em
centenas e até milhares de dispositivos.

As vantagens do paradigma para a administração dos recursos de uma rede estão
relacionadas sobretudo à flexibilização da configuração, do gerenciamento, da segurança
e da otimização dos recursos da rede. Essas vantagens contribuem ainda para facilitar a
definição e a aplicação de políticas de rede. Uma outra vantagem é a abstração dos detalhes
de funcionamento dos dispositivos presentes em uma rede, que, apesar de heterogêneos,
podem ser todos configurados da mesma forma utilizando SDN.

O funcionamento de uma rede definida por software está baseado no conceito de
fluxos para identificar o tráfego de dados na rede. Um pacote transmitido recebe um rótulo
referente ao seu fluxo, que determina as regras para o seu tráfego na rede. Dispositivos que
encaminham pacotes na rede, como switches e roteadores, são configurados com regras que
determinam o que deve ser feito com um pacote recebido com o rótulo de um determinado
fluxo. Essas regras podem ser simples, como “descartar”, “receber” ou “encaminhar”, mas
também podem ser complexas, considerando partes do conteúdo do pacote e variáveis de
estado da rede.

Capítulo 2. Revisão bibliográfica 21

2.4 SDN aplicado a RSSF
Essa seção descreve três trabalhos relacionados à área de SDN aplicado a redes

sem fio e redes de sensores sem fio.

2.4.1 Software Defined Wireless Networks

O trabalho de Costanzo et al. (2012) examina como o paradigma SDN pode ser
benéfico a ambientes de rede sem fio sem infra-estrutura, denominados como Low Rate
Wireless Personal Area Network (LR-WPAN) pelos autores, e como ele deveria ser ex-
pandido para levar em conta as características de tais ambientes. Tais vantagens não
estariam relacionadas a aumentos de eficiência ou de desempenho, mas sim à flexibilidade
na escolha de soluções de controle e administração de tais ambientes.

Algumas das características de SDN são bastante adequadas à sua aplicação a
LR-WPAN, sobretudo no que diz respeito às restrições de consumo de energia desses
ambientes. Entre essas características está a flexibilidade na definição de regras de fluxo e
de algoritmos de otimização, que, entre outras coisas, possibilitam a agregação de dados
através de regras de roteamento.

Além de apresentar as vantagens de se aplicar SDN a LR-WPAN, o trabalho tam-
bém apresenta uma arquitetura de Software Defined Wireless Networks (SDWN), que põe
em prática essa aplicação. Ela define uma estrutura geral baseada em dois componentes:

∙ Nó sorvedouro: um dispositivo conectado a um sistema embarcado rodando um
SO baseado em Linux, capaz de desempenhar as tarefas do controlador SDN. A
arquitetura de software proposta para esse dispositivo envolve principalmente duas
camadas:

– Camada de controle, responsável por aplicar as políticas de administração da
rede;

– Camada de virtualização, responsável por manter uma representação do estado
atual da rede.

∙ Nós genéricos: demais dispositivos conectados à rede. A arquitetura de software
proposta para eles envolve também duas camadas principais:

– Camada de agregação, capaz de agregar informações circulando através da
rede;

– Camada de encaminhamento, capaz de encaminhar pacotes de acordo com os
fluxos determinados pelo controlador SDN.

Capítulo 2. Revisão bibliográfica 22

Por fim, o artigo também menciona alguns detalhes de implementação, entre eles
alguns tipos de pacotes, como data, beacon, report, rule/action request e rule/action res-
ponse, que transmitem desde dados e regras de fluxo até informações sobre a topologia
da rede. Também são propostos quatro tipos de ações que uma regra poderia aplicar a
um pacote de dados: modificar, descartar, agregar e desligar o rádio. A preocupação com
o uso eficiente de memória no armazenamento das regras de fluxo é enfatizada.

2.4.2 Sensor OpenFlow

O trabalho de Luo, Tan e Quek (2012) tem por objetivo apontar como a arquitetura
atual adotada para RSSF é complexa e deficitária de boas abstrações, sugerindo como
solução a aplicação do paradigma SDN por meio do protocolo Sensor OpenFlow, baseado
no padrão OpenFlow de SDN.

O fato das RSSFs terem sido concebidas para serem específicas a aplicações dis-
tintas lhes dá características como:

∙ Subutilização de recursos, pois múltiplas RSSFs são utilizadas para aplicações res-
pectivas, ao invés de se utilizar uma única RSSF versátil para múltiplas aplicações;

∙ Contra-produtividade, devido à falta de interoperabilidade entre produtos desenvol-
vidos para RSSFs, o que prejudica a velocidade de desenvolvimento de uma aplica-
ção;

∙ Rigidez das regras de negócio, devida à necessidade de reconfiguração manual de
tais regras em cada um dos nós que compõem a rede.

∙ Dificuldade de administração, pois o desenvolvimento de um sistema de administra-
ção para RSSFs é uma tarefa difícil e suscetível a muitos erros.

Para combater esses problemas, os autores propõem a adoção de uma nova arquite-
tura para as RSSFs, baseada no paradigma de SDN. Tal arquitetura dividiria claramente
os planos de dados e de comunicação em uma RSSF.

O plano de dados seria constituído pelos nós sensores da rede, que produzem e
encaminham dados conforme os fluxos especificados por um controlador. Já o plano de
controle estaria nas mãos de um ou mais nós controladores, que centralizaria as tarefas de
roteamento e controle de qualidade de serviço. A comunicação entre esses planos se daria
por meio do protocolo Sensor OpenFlow.

O objetivo principal é fazer com que os nós sensores no plano de dados sejam
programados através da manipulação de regras de fluxo da rede. Isso tornaria uma RSSF
versátil, flexível e fácil de administrar.

Capítulo 2. Revisão bibliográfica 23

O artigo prossegue levantando os principais desafios técnicos para a implementação
de tal arquitetura, sobretudo no que se refere à adaptação do protocolo OpenFlow ao caso
das RSSFs, que foi inicialmente concebido para redes cabeadas. Entre os desafios está
a necessidade de se lidar com a geração e o processamento de dados em rede, algo que
não está previsto no paradigma SDN. Para os autores, entretanto, tal problema pode
ser solucionado com a implementação, nos nós sensores, de módulos específicos para as
aplicações a que eles se destinam.

2.4.3 TinySDN

O TinySDN (OLIVEIRA; MARGI; GABRIEL, 2014) é um framework de redes
definidas por software para Redes de Sensores sem Fio (RSSF) que permite o uso de
múltiplos controladores. Ele está sendo desenvolvido na Escola Politécnica da USP.

O TinySDN é implementado sobre o TinyOS e possui dois componentes principais:
o nó sensor compatível com SDN, que consiste do switch SDN e de um dispositivo final
SDN; e do nó controlador SDN, onde o plano de controle é programado. Os componentes
são ilustrados na figura 2. A conexão entre um nó sensor e o controlador é feita através
de uma rede sem fio de múltiplos saltos.

Figura 2 – Componentes do TinySDN.

Fonte: (OLIVEIRA; MARGI; GABRIEL, 2014)

Não existem mecanismos de confirmação de entrega de mensagens no TinySDN,
dessa forma perdas de pacotes podem ocorrer. Quando um nó da rede recebe uma mensa-
gem com fluxo ainda não presente em sua tabela de fluxos ele se comunica com o contro-
lador, perguntando qual o próximo salto do fluxo a partir do nó. O controlador consulta
sua programação e responde ao nó, que armazena a informação em sua tabela e trata
o pacote de acordo com a resposta. Há duas ações possíveis de resposta do controlador:
forward e drop, que direcionam o pacote ou o descartam, respectivamente.

Capítulo 2. Revisão bibliográfica 24

Assim que um nó compatível com SDN é ligado ele busca um controlador SDN
e associa-se a ele. Para identificação dos vizinhos os nós fazem broadcast de pacotes de
beacon e aguardam respostas, medindo a qualidade do sinal dos pacotes recebidos. De
posse da informação sobre os nós vizinhos, o nó envia esses dados ao controlador.

25

3 Especificação

No Capítulo 2 foram vistas quais as características desejadas na infraestrutura de
uma RSSF e como já existem alguns trabalhos com o objetivo de determinar o papel
que um framework deve ter na facilitação do desenvolvimento e do gerenciamento de
aplicações em uma RSSF com essas características. Esse capítulo se propõe a especificar
uma solução técnica para o desempenho desse papel.

O primeiro passo para isso é a definição, feita na Seção 3.1, do que deve ser incluído
e do que deve ser excluído da solução técnica especificada, devido à limitação dos recursos
disponíveis ao projeto. Em seguida, são levantados, na Seção 3.2, os requisitos funcionais
e não-funcionais para o cumprimento dos itens especificados no escopo.

A partir dos requisitos do projeto, foi então proposta, na Seção 3.3, uma arquite-
tura simplificada da solução do projeto, com o objetivo de dividir o papel de cada com-
ponente do projeto no cumprimento dos requisitos levantados. Com base nesse diagrama,
foram definidas as interfaces entre os componentes do projeto, para então especificar pro-
tocolos para elas nas Seções 3.4 e 3.5.

Por fim, tendo sido definidas e especificadas as interfaces entre os principais compo-
nentes do projeto, foi possível dividi-los em módulos que desempenhem funções relaciona-
das às entradas e saídas previstas pelas interfaces elaboradas. Essa divisão em módulos é
apresentada nas seções 3.6 e 3.7, sendo base para a descrição que se faz do comportamento
de cada um.

3.1 Escopo do projeto
O Capítulo 2 mostrou que um framework que facilite o desenvolvimento de apli-

cações em RSSFs tem como principais objetivos e características:

∙ Fácil configuração de uma aplicação para uma RSSF;

∙ Ausência da necessidade de se programar, especificamente para uma aplicação con-
figurada, cada um dos nós sensores presentes na infraestrutura da RSSF;

∙ Compartilhamento, por múltiplas aplicações, da infraestrutura existente de uma
RSSF;

∙ Fácil configuração dos parâmetros da rede, incluindo protocolos de roteamento,
otimizações e ciclos de trabalho;

Capítulo 3. Especificação 26

∙ Fácil adição e remoção de nós sensores a uma RSSF existente;

∙ Possibilidade de suporte a múltiplas plataformas de nós sensores;

∙ Ausência da necessidade de que o usuário conheça detalhes do funcionamento e da
programação de cada um dos nós sensores.

Devido à limitação de tempo e de pessoas envolvidas no projeto, é necessário limi-
tar seu escopo a somente alguns desses itens, cuja importância se sobressaia em relação
aos demais. Tais itens foram escolhidos tendo em vista a viabilidade de sua especifica-
ção e implementação com os recursos disponíveis, e também a sua importância para o
cumprimento dos objetivos do projeto. Eles serão detalhados na Seção 3.2.

Os itens listados a seguir não serão incluídos na especificação, principalmente de-
vido a um ou mais dentre os seguintes motivos:

1. Necessidade de um esforço incompatível com os recursos disponíveis para a sua
especificação e implementação;

2. Existência de uma ampla gama de soluções para problemas similares;

3. Possibilidade de se estender o projeto futuramente, com o objetivo de incluí-los;

4. Importância secundária para que o objetivo principal do projeto seja alcançado.

Segue uma relação do que não será nem especificado nem implementado no projeto:

∙ Autenticação do usuário, devido às razões 2, 3 e 4 apresentadas acima;

∙ Confidencialidade, integridade e autenticidade na transmissão de dados entre nós
sensores da rede, devido às razões 1 e 3;

∙ Isolamento entre os dados pertencentes a aplicações diferentes, devido às razões 1 e
4;

∙ Módulos de extensão externos que provenham outros tipos de usabilidade no acesso
às funcionalidades disponibilizadas pelo framework, devido às razões 1 e 3;

∙ Reprogramação remota dos nós sensores que se encontram em campo, devido às
razões 1 e 3;

3.2 Requisitos do projeto
Na subseções que se seguem, são apresentados os requisitos funcionais e não-

funcionais levantados para o escopo do projeto.

Capítulo 3. Especificação 27

3.2.1 Requisitos funcionais

RF1 Usuário deve ser capaz de configurar aplicações que utilizem a infraestrutura da
rede de sensores sem fio;

RF2 Usuário deve ser capaz de obter uma lista dos nós sensores baseada em identifi-
cadores ou em localização geográfica;

RF3 Usuário deve ser capaz de obter informações sobre os nós sensores que compõem a
rede, incluindo as tarefas que podem desempenhar e dados sobre o seu desempenho;

RF4 Usuário deve ser capaz de agendar tarefas, a serem desempenhadas pelos nós
sensores da rede que componham a aplicação configurada, sem que seja necessário
reprogramar os nós;

RF5 Usuário deve ser capaz de especificar parâmetros de configuração específicos de
cada tarefa a ser realizada pelos nós sensores;

RF6 Usuário deve ser capaz de referenciar os dados produzidos por nós sensores através
de rótulos, de forma a especificar tarefas encadeadas;

RF7 Usuário deve ser capaz de determinar um destino, dentro da rede, dos dados
recolhidos para a sua aplicação.

3.2.2 Requisitos não-funcionais

RNF1 Controle centralizado da rede;

RNF2 Novos nós que passem a integrar a rede devem ser incorporados automatica-
mente à infraestrutura disponibilizada ao usuário;

RNF3 O usuário leigo no funcionamento dos nós sensores e da rede deve ser capaz de
obter dados a partir deles;

RNF4 Extensibilidade no que se refere à inclusão de novas plataformas de hardware e
software de nós sensores e novos tipos de funcionalidades que elas envolvam;

RNF5 Interoperabilidade com outros sistemas, de forma que os serviços providos pos-
sam ser acessados de forma transparente;

RNF6 Garantir o uso balanceado dos recursos disponíveis na rede e nos nós sensores;

RNF7 Portabilidade do sistema em relação a plataformas de hardware e software;

RNF8 Mapeamento automático de sequências de tarefas especificadas pelo usuário
através dos nós sensores da rede.

Capítulo 3. Especificação 28

3.2.3 Garantias para os requisitos não-funcionais

Os requisitos não-funcionais RNF1, RNF2 e RNF6 podem ser garantidos através
do paradigma de SDN. Os requisitos RNF3 e RNF5 podem ser alcançados através do
uso de um protocolo de interface com o usuário que seja popular, como o REST, que é
descrito na Seção 4.1.

Uma arquitetura que desacople as funcionalidades dos nós sensores do restante do
sistema irá satisfazer os requisitos não-funcionais RNF4 e RNF7 que, juntamente com o
RNF5, também são favorecidos com uma solução modular para o sistema.

3.3 Diagrama de arquitetura simplificado
A arquitetura do framework é composta por um controlador e pelo middleware

presente nos nós sensores da rede, como ilustrado na figura 3.

Figura 3 – Diagrama de arquitetura simplificado.

O controlador é responsável por fazer a interface do usuário com o controlador
SDN. O controlador do framework irá interagir com o usuário através de arquitetura
REST, por meio da qual o usuário conseguirá fazer consultas, agendar tarefas e, de maneira
geral, gerenciar aplicações da RSSF sem a necessidade de saber detalhes específicos da
topologia da rede ou dos nós existentes. O controlador armazena informações sobre os nós
presentes na rede e também conhece todas as tarefas sendo executadas atualmente, bem
como os atributos de cada nó.

O middleware nos nós sensores é responsável por fazer a interface entre a camada de
rede e a camada de aplicação dos nós sensores participantes do framework. Ele é responsá-

Capítulo 3. Especificação 29

vel por receber as mensagens e processá-las, extraindo as informações como agendamento
de tarefas e envio de dados requisitados por alguma aplicação. Também é responsável por
fazer o bootstrap do framework quando o nó é adicionado à rede, conectando o nó sensor
ao controlador e passando a ele informações sobre as capacidades do nó.

3.4 Protocolo de interface com o usuário
Essa seção descreve o protocolo de interface entre o controlador e o usuário.

Através desta interface, será possível agendar tarefas para os nós sensores executa-
rem. Será possível, também, solicitar informações da rede, dos nós sensores e das tarefas
disponíveis, assim como os parâmetros necessários para o agendamento de cada tarefa.

Para garantir a interoperabilidade na comunicação, essa interação entre usuário
e controlador será feita através de um protocolo REST. Dessa forma o usuário poderá
realizar as solicitações ao controlador do framework independentemente da linguagem e
da máquina que sua aplicação utilizar.

A seguir, encontram-se as solicitações disponibilizadas pelo servidor REST, bem
como os parâmetros necessários e o formato de respostas de cada uma.

3.4.1 Características dos nós sensores

Método que recupera as características dos nós sensores, como o sistema opera-
cional, dispositivo, localização do nó e tarefas disponíveis. É possível limitar a busca
estabelecendo uma área para que, dessa forma, sejam retornados apenas os nós sensores
dentro da região delimitada. Além disso, se for especificado o identificador do nó, apenas
as informações deste nó serão retornadas.

GET /NODES

Parâmetros de entrada opcional:

∙ node_id: Inteiro que representa o identificador do nó sensor.

∙ latitude: Decimal que representa a latitude do centro da área para realizar a busca.

∙ longitude: Decimal que representa a longitude do centro da área para realizar a
busca.

∙ range: Decimal que representa o raio da área para realizar a busca em metros.

Observação: Para realizar a busca por região é necessário fornecer os três parâme-
tros: latitude, longitude e range.

Capítulo 3. Especificação 30

O método retorna uma lista contendo as características dos nós sensores. Cada
item da lista apresenta os seguintes parâmetros:

∙ node_id: Identificador do nó sensor;

∙ device: Modelo do dispositivo (e.g. TelosB, MicaZ).Esse objeto possui o identificador
do dispositivo, nome e descrição;

∙ operating_system: Sistema operacional em execução (e.g. TinyOS, Contiki). Esse
objeto possui o identificador do sistema operacional, nome e descrição;

∙ mobility: Grau de mobilidade do nó. Estático: false; Móvel: true;

∙ energy_autonomy: Fonte de energia do nó. Contínua (i.e. rede elétrica): false; ou
bateria: true;

∙ latitude: Latitude do nó;

∙ longitude: Longitude do nó;

∙ height: Altura do nó;

∙ periodic_task_qtty: Quantidade de tarefas periódicas;

∙ max_periodic_task_qtty: Quantidade máxima de tarefas periódicas;

∙ data_task_qtty: Quantidade de tarefas instantâneas;

∙ max_data_task_qtty: Quantidade máxima de tarefas instantâneas;

∙ occupied_ram_percentage: Porcentagem de memória RAM ocupada;

∙ current_battery_level: Atual nível de bateria;

∙ tasks: Lista de tarefas disponíveis no nó. A seguir, são apresentados os parâmetros
de cada item desta lista de tarefas.

Cada item da lista de tarefas apresenta os seguintes parâmetros:

∙ task_id: Identificador da tarefa;

∙ description: Descrição da tarefa;

∙ generates_data: Indica se a tarefa gera dados;

∙ controls_actuator : Indica se a tarefa controla atuador;

∙ aggregates_data: Indica se a tarefa agrega dados;

Capítulo 3. Especificação 31

∙ data_sink: Indica se a tarefa foi definida como tarefa sorvedouro, com dados desti-
nados a sair da rede;

∙ type: Tipo da tarefa (Instantaneous ou Periodic). Esse objeto possui o identificador
do tipo e a sua descrição;

∙ currently_scheduled_task_instances: Quantidade de instâncias dessa tarefa que se
encontram agendadas;

∙ max_scheduled_task_instances: Quantidade máxima de instâncias dessa tarefa que
podem ser agendadas.

3.4.2 Disponibilidade das tarefas

Método que retorna uma lista de tarefas disponíveis. É possível limitar a busca
estabelecendo uma área, um identificador do nó sensor ou o tipo da tarefa. Além disso,
se for especificado o identificador da tarefa, apenas as informações desta tarefa serão
retornadas.

GET /TASKS

Parâmetros de entrada opcionais:

∙ node_id: Inteiro que representa o identificador do nó sensor.

∙ task_id: Inteiro que representa o identificador da tarefa.

∙ type: Inteiro que representa o identificador do tipo de tarefa. Tarefa instantânea: 1;
tarefa periódica: 2.

∙ latitude: Decimal que representa a latitude do centro da área para realizar a busca.

∙ longitude: Decimal que representa a longitude do centro da área para realizar a
busca.

∙ range: Decimal que representa o raio da área para realizar a busca em metros.

Observação: Para realizar a busca por região é necessário fornecer os três parâme-
tros: latitude, longitude e range.

Retorna uma lista contendo de tarefas disponíveis.

Capítulo 3. Especificação 32

3.4.3 Parâmetros de agendamento das tarefas

Método que retorna os parâmetros necessários para o agendamento das tarefas.
Dependendo da tarefa e do nó sensor os parâmetros necessários para agendamento podem
mudar. Por exemplo, para agendamento de uma tarefa periódica, é preciso do período e
duração da tarefa, já para o agendamento de uma tarefa de agregação de dados, como
um somador, é preciso saber de onde vem os dados que se deseja somar e a quantidade
de dados.

GET /PARAMETERS

Parâmetros de entrada obrigatórios:

∙ task_parameter_id: Inteiro que representa o identificador do parâmetro.

∙ task_id: Inteiro que representa o identificador da tarefa.

Retorna as características dos parâmetros necessários de entrada para o agenda-
mento e as características dos parâmetros de saída.

∙ task_id: Identificador da tarefa;

∙ task_parameter_id: identificador do parâmetro;

∙ description: Descrição do parâmetro;

∙ input: Define se é parâmetro de saída ou de entrada;

∙ max_qtty_per_task_execution: Quantidade máxima que pode ser utilizada em uma
única execução (e.g. quantos operandos em uma soma);

∙ support_floating_point: Define se parâmetro suporta o tipo de dado ponto flutuante;

∙ support_fixed_point: Define se parâmetro suporta o tipo de dado ponto fixo;

∙ support_integer : Define se parâmetro suporta o tipo de dado inteiro;

∙ support_unsigned_integer : Define se parâmetro suporta o tipo de dado inteiro sem
sinal;

∙ support_bit_array: Define se parâmetro suporta o tipo de dado vetor de bits;

∙ support_8bits: Define se parâmetro suporta o comprimento de dados de 8 bits;

∙ support_16bits: Define se parâmetro suporta o comprimento de dados de 16 bits;

∙ support_32bits: Define se parâmetro suporta o comprimento de dados de 32 bits;

∙ support_64bits: Define se parâmetro suporta o comprimento de dados de 64 bits;

Capítulo 3. Especificação 33

3.4.4 Agendamentos em execução

Método que retorna uma lista de agendamentos em execução. É possível limitar
a busca fornecendo o identificador do nó ou da tarefa. Assim, apenas os agendamentos
presentes neste nó ou desta tarefa serão retornados. Além disso, se for especificado o
identificador do agendamento, apenas as informações deste agendamento serão retornadas.

GET /SCHEDULES

Parâmetros de entrada opcional:

∙ node_id: Inteiro que representa o identificador do nó sensor.

∙ task_id: Inteiro que representa o identificador da tarefa.

∙ task_scheduling_id: Inteiro que representa o identificador do agendamento.

Retorna uma lista contendo os agendamentos em execução. Cada item da lista
apresenta os seguintes parâmetros:

∙ task_scheduling_id: Identificador do agendamento;

∙ scheduling_instance_number : Número da instância do agendamento;

∙ task_id: Identificador da tarefa;

∙ node_id: Identificador do nó;

∙ execution_period: Período de execução;

∙ parameter_validity_period: Período de validade para a utilização dos dados recebi-
dos da rede para processamento por uma tarefa;

∙ period_precision_millis_micro: Indica se a precisão da tarefa é de milissegundos ou
microssegundos.

3.4.5 Agendamento de uma tarefa

Método que agenda uma tarefa. Dependendo do tipo da tarefa os parâmetros
necessários para agendamento podem mudar, por exemplo, para agendamento de uma
tarefa periódica, é preciso do período e duração da tarefa, já para o agendamento de
uma tarefa de agregação de dados, como um somador, é preciso saber de onde vem os
dados que se deseja somar e quantidade de dados. A seguir, alguns desses parâmetros são
apresentados. Para saber exatamente quais são os parâmetros necessários de cada tarefa
usa-se o método GET /PARAMETERS/:TID descrito na subseção 3.4.3.

Capítulo 3. Especificação 34

POST /SCHEDULES/

Parâmetros de entrada:

∙ NID: Identificador do nó onde a tarefa será agendada;

∙ TID: Identificador da tarefa a ser agendada no nó;

∙ Period: Período de execução da tarefa periódica;

∙ Duration: Duração para execução da tarefa periódica;

∙ Address: Endereço do nó para destino dos dados coletados, esse endereço não é
obrigatório;

∙ Ref : Refêrencia para o agendamento desta tarefa. Se for necessário usar os dados
coletados desta tarefa em outra, é possível usar essa referência. Por exemplo, usar
os dados coletados da leitura de sensor de temperatura para alimentar um somador;

∙ Data: Referência para onde buscar os dados a serem usados como entrada de uma
tarefa de agregação, como no exemplo do somador. Ela pode ser uma expressão de
comparação, por exemplo "tempValue > 10", nesse caso o valor só será utilizado se
atender à restrição. A expressão de comparação deve ser separada da referência por
espaço;

∙ Quantity: Quantidade de dados para usar, indicando, por exemplo, quantos dados
devem ser utilizados em uma única soma.

Retorna uma mensagem confirmando o agendamento ou informando a falha.

A seguir é mostrado um exemplo de aplicação composta por dois agendamentos: no
primeiro é feito o agendamento de uma tarefa periódica e no segundo é feito o agendamento
de uma tarefa instantânea.

O primeiro agendamento solicita a instanciação de uma tarefa para ler o sensor
de temperatura TS1 a cada 10 segundos por 1 hora. É feita atribuição da referência
“tempSensor” para este agendamento.

POST /SCHEDULES/

Body = {

NID: 5,

TID: 3,

Period: 10,

Duration: 3600,

Capítulo 3. Especificação 35

Ref: ‘tempSensor’

}

Já o segundo consiste no agendamento de uma tarefa para calcular a média de 10
dados do sensor de temperatura TS1 e enviar o resultado para o endereço IP 194.66.82.12.
É atribuída a referência “avgTempSensor” para o resultado da média.

POST /SCHEDULES/

Body = {

NID: 6,

TID: 9,

Data: ‘tempSensor’,

Quantity: 10,

Address: 194.66.82.12,

Ref: ‘avgTempSensor’

}

3.4.6 Cancelamento de um agendamento

Método que cancela o agendamento de uma tarefa. Dado o identificador do agen-
damento é possível cancelar o mesmo.

DELETE /SCHEDULES/:SID

Retorna uma mensagem confirmando o cancelamento ou informando a falha.

3.5 Protocolo de interface com o middleware
Essa seção descreve o protocolo de descrição, agendamento e encadeamento de

tarefas, responsável por padronizar a interface entre o controlador do framework e o
middleware de cada nó sensor da rede.

Os objetivos desse protocolo são, portanto, a obtenção de informações relacionadas
a características, relatórios e descrições de um dispositivo e suas tarefas, além de agendar
tarefas que ele deve executar. Com relação a esse último aspecto em especial, o protocolo
faz bastante uso do conceito de fluxo proposto pelo paradigma SDN, fazendo referência
a fluxos de dados que carregam informação de como transmitir e tratar pacotes de dados
recebidos por um nó.

A seguir, serão listados cada um dos pares de requisição-resposta desse protocolo,
bem como as informações manipuladas por cada um. Cada um dos campos presentes nas

Capítulo 3. Especificação 36

tabelas especificando o formato dos pacotes é descrito juntamente a elas, com exceção de
campos “X”, que representam bits de padding.

3.5.1 Descrição de características de um nó sensor

Pacote enviado pelo middleware de um nó sensor ao controlador do framework,
com o objetivo de inscrever seus serviços e de informar as características do dispositivo.
Como resposta, o middleware espera uma confirmação de inscrição.

Os pacotes de descrição de características e de confirmação de inscrição de um nó
sensor têm a estrutura descrita, respectivamente, nas tabelas 1 e 2.

Tabela 1 – Estrutura do pacote de descrição de características de um nó sensor.

0 1 2
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

PID NID M E DID
DID OS LOC - Latitude

LOC - Latitude
LOC - Longitude

LOC - Longitude LOC - Altitude
LOC - Altitude PTQ

IDQ NTQ NTN X
TID [x NTN]

Tabela 2 – Estrutura do pacote de confirmação da inscrição de um nó sensor.

0 1 2
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

PID CFI

As informações manipuladas por esses pacotes são listadas a seguir:

∙ PID: identificador (ID) do tipo de pacote do protocolo, no caso 0;

∙ NID: ID do nó sensor;

∙ M : Grau de mobilidade do nó: estático ou móvel;

∙ E : Fonte de energia: contínua (i.e. rede elétrica) ou bateria;

∙ OS : Sistema operacional em execução (e.g. TinyOS, Contiki);

∙ DID: Modelo do dispositivo: ID do modelo (e.g. TelosB, MicaZ), ou 0 se não tiver
um modelo padrão, como o caso de um arduino;

∙ LOC: Localização do nó sensor: coordenadas Global Positioning System (GPS) do
nó sensor (latitude, longitude e altitude) expressas em ponto fixo;

Capítulo 3. Especificação 37

∙ PTQ: Quantidade máxima de tarefas periódicas que pode ser agendada;

∙ IDQ: Quantidade máxima de dados que podem ser recebidos da rede como entrada
para tarefas agendadas;

∙ NTQ: Quantidade máxima de tarefas que podem enviar dados à rede;

∙ NTN: Número de tarefas distintas carregadas no nó;

∙ TID: Para cada uma das tarefas carregadas no nó, um ID relacionando-a à sua
descrição;

∙ CFI: ID do fluxo SDN que leva as respostas de protocolo do middleware até o
controlador do framework.

É importante observar a restrição de um valor máximo de 31 para o campo NTN,
de modo que o tamanho dos pacotes da requisição especificada na tabela 1 e da resposta
especificada na tabela 16 não exceda 90 bytes, que é o limite de tamanho do payload
de um quadro do IEEE 802.15.4, tecnologia de rádio preponderante na comunicação em
RSSF. Um quadro de IEEE 802.15.4 tem tamanho de 127 bytes, subtraindo o tamanho
do cabeçalho padrão e de informações de outras camadas, como a de SDN, restam cerca
de 90 bytes.

3.5.2 Descrição de um dispositivo

A descrição das características de um nó sensor prevista pela seção 3.5.1 assume
que este se trata de um dispositivo padrão, disponível no mercado, cujas características
imutáveis podem ser armazenadas em um banco de dados. Essas características, portanto,
não precisariam ser consultadas pelo controlador ao dispositivo via rede.

No entanto, o nó sensor pode não ser um dispositivo canônico, podendo ter sido
montado, por exemplo, a partir de um arduino. Nesse caso precisamos de um par requisição-
resposta para pedir informações mais específicas sobre um dispositivo. Contudo, considera-
se que uma descrição detalhada de tais pacotes fuja ao escopo desse trabalho e, por isso,
somente será feito aqui um levantamento de algumas características de dispositivos que
merecem estar presentes em tal pacote:

∙ Características e quantidade de memória RAM;

∙ Modelo e características do processador;

∙ Modelo e características do rádio do nó sensor;

∙ Capacidades de sensoreamento e atuação;

Capítulo 3. Especificação 38

∙ Número de fontes de energia distintas que se encontram disponíveis.

Mesmo não descrevendo-o em detalhes, reservamos o PID de valor 1 para esse par
de pacotes requisição-resposta.

3.5.3 Descrição de uma tarefa

Requisição feita pelo controlador do framework ao middleware de um nó sensor,
com o objetivo de obter as seguintes informações sobre uma determinada tarefa que pode
ser desempenhada pelo dispositivo.

Os pacotes de requisição e resposta da descrição de uma tarefa têm a estrutura
descrita, respectivamente, nas tabelas 3 e 4.

Tabela 3 – Estrutura do pacote de requisição da descrição de uma tarefa.

0 1 2
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

PID TID

Tabela 4 – Estrutura do pacote de resposta da descrição de uma tarefa.

0 1 2
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

PID TID TTI X
MSQ ODF IPN X

D A G S X IPQ [0]
IPF [0] ... IPQ [IPN - 1]

IPF [IPN - 1]

As informações inquiridas pelo controlador com esse tipo de requisição são as
seguintes:

∙ PID: ID do tipo de pacote do protocolo, no caso 2;

∙ TID: ID da tarefa descrita;

∙ TTI: ID do tipo de tarefa descrita, podendo ser uma tarefa periódica, instantânea
ou um trigger ;

∙ MSQ: Quantidade máxima de agendamentos (i.e. instâncias) suportados pela ta-
refa;

∙ Descritores da terefa:

– D: Bit indicando se a tarfa gera dados;

Capítulo 3. Especificação 39

– A: Bit indicando se a tarefa controla um atuador;

– G: Bit indicando se a tarefa agrega dados;

– S: Bit indicando se a tarefa atua como sorvedouro;

∙ Parâmetro de saída:

– ODF: Tipos de dado e comprimentos suportados. Vetor de 10 bits em que
cada bit representa uma possibilidade de tipo ou comprimento de dado aceito:

0. Floating point;
1. Fixed point;
2. Integer ;
3. Unsigned integer ;
4. Bit array;
5. Boolean;
6. 8 bits;
7. 16 bits;
8. 32 bits;
9. 64 bits;

∙ IPN: Número de parâmetros de entrada (i.e. operandos da tarefa);

∙ Descrição de cada parâmetro de entrada:

– O ID do parâmetro, relacionando-o à sua descrição, é dado pelo offset de sua
descrição em relação ao oitavo byte do pacote (i.e. o parâmetro de ID 0 é
descrito nos bytes 8 e 9, o de ID 1 é descrito nos bytes 10 e 11, etc.);

– IPQ: Quantidade máxima que pode ser utilizada em uma única execução (e.g.
quantos operandos em uma soma);

– IPF: Tipos de dado e comprimentos suportados. Vetor de 10 bits em que cada
bit representa uma possibilidade de tipo ou comprimento de dado aceito:

0. Floating point;
1. Fixed point;
2. Integer ;
3. Unsigned integer ;
4. Bit array;
5. Boolean;
6. 8 bits;
7. 16 bits;
8. 32 bits;
9. 64 bits;

Capítulo 3. Especificação 40

3.5.4 Agendamento de uma tarefa periódica

Requisição feita pelo controlador do framework ao middleware de um nó sensor,
com o objetivo de agendar uma das tarefas de um fluxo de tarefas especificado pelo usuário.
Uma tarefa periódica é aquela que deve ser executada uma vez em um certo intervalo de
tempo. Como resposta, o controlador espera uma confirmação de que o agendamento foi
efetuado com sucesso.

Os pacotes de requisição e resposta para o agendamento de uma tarefa periódica
têm sua estrutura descrita, respectivamente, nas tabelas 5 e 6.

Tabela 5 – Estrutura do pacote de requisição do agendamento de uma tarefa periódica.

0 1 2
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

PID TID X
TA ODT ODL P TP

TP OFI
OFI

Tabela 6 – Estrutura do pacote de confirmação do agendamento de uma tarefa periódica.

0 1 2
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

PID TID X
TIN S T I N P D R X

As informações que o middleware necessita para o agendamento de uma tarefa
periódica são as seguintes:

∙ PID: ID do tipo de pacote do protocolo, no caso 3;

∙ TID: ID da tarefa que se deseja agendar;

∙ TA : Acionamento por trigger :

– 00: não é ativada por trigger ;

– 10: após ativação por um trigger, estará sempre ativa;

– 11: cada nova execução necessita de um trigger.

∙ P : Precisão da periodicidade da tarefa:

– 0: Se o período for de milissegundos;

– 1: Se o período for de microssegundos.

∙ TP : Periodicidade da tarefa (valor do período ou 0 indicando execução única);

Capítulo 3. Especificação 41

∙ Resultado produzido (se houver):

– ODT: Tipo de dado do resultado produzido pela tarefa:

* 000: Floating point;
* 001: Fixed point;
* 010: Integer ;
* 011: Unsigned integer ;
* 100: Bit array;
* 101: Boolean;

– ODL: Comprimento do dado do resultado produzido pela tarefa:

* 00: 8 bits;
* 01: 16 bits;
* 10: 32 bits;
* 11: 64 bits;

– OFI: ID do fluxo de dados que levará o resultado ao seu destino;

∙ TIN: ID da instância da tarefa que corresponde ao agendamento realizado, que foi
alocada pelo middleware para o agendamento realizado;

∙ S : Bit indicando sucesso da operação;

∙ Indicadores de erro de agendamento:

– T : Bit indicando erro por não haver mais instâncias da tarefa disponíveis para
agendamento;

– I : Bit indicando erro por não haver mais capacidade de recepção de dados da
rede como entrada da tarefa no nó sensor;

– N : Bit indicando erro por não haver mais capacidade de envio de dados à rede
no nó sensor;

– P : Bit indicando erro por não haver mais capacidade de agendamento de
tarefas periódicas no nó sensor;

– D : Bit indicando erro por não haver mais capacidade de agendamento de
tarefas instantâneas;

– R : Bit indicando erro por não haver mais capacidade de agendamento de
tarefas de trigger.

Capítulo 3. Especificação 42

3.5.5 Agendamento de uma tarefa instantânea

Requisição feita pelo controlador do framework ao middleware de um nó sensor,
com o objetivo de agendar uma das tarefas de um fluxo de tarefas especificado pelo
usuário. Uma tarefa instantânea é aquela que pode ser executada assim que todos os seus
parâmetros de entrada estiverem disponíveis. Como resposta, o controlador espera uma
confirmação de que o agendamento foi efetuado com sucesso.

Os pacotes de requisição e resposta para o agendamento de uma tarefa instantânea
tem a estrutura descrita, respectivamente, nas tabelas 7 e 8. Note que a resposta para
o agendamento de uma tarefa instantânea tem o formato idêntico ao da resposta para o
agendamento de uma tarefa periódica.

Tabela 7 – Estrutura do pacote de requisição do agendamento de uma tarefa instantânea.

0 1 2
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

PID TID IPN
TA ODT ODL P PTW

PTW OFI
OFI IFI [x IPN]

PN [x IPN] ARG [x 31] 0x00

Tabela 8 – Estrutura do pacote de confirmação do agendamento de uma tarefa instantânea.

0 1 2
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

PID TID X
TIN S T I N P D R X

As informações que o middleware necessita para o agendamento de uma tarefa
instantânea são as seguintes:

∙ PID: ID do tipo de pacote do protocolo, no caso 4;

∙ TID: ID da tarefa que se deseja agendar;

∙ IPN: Número de parâmetros de entrada (i.e. operandos da tarefa);

∙ TA : Acionamento por trigger :

– 00: não é ativada por trigger ;

– 10: após ativação por um trigger, estará sempre ativa;

– 11: cada nova execução necessita de um trigger.

∙ P : Precisão da janela de tempo máxima para a espera pela chegada de dados:

Capítulo 3. Especificação 43

– 0: Se o período for de milissegundos;

– 1: Se o período for de microssegundos.

∙ PTW: Janela de tempo máxima para a espera pela chegada dos dados utilizados
em uma execução;

∙ Para cada parâmetro de entrada:

– IFI: ID do fluxo de dados que trará os valores para esse parâmetro de entrada;

– PN : Número de dados desse tipo de parâmetro que devem ser utilizados em
uma única execução.

∙ Resultado produzido (se houver):

– ODT: Tipo de dado do resultado produzido pela tarefa, de acordo com a
descrição da seção 3.5.4;

– ODL: Comprimento do dado do resultado produzido pela tarefa, de acordo
com a descrição da seção 3.5.4;

– OFI: ID do fluxo de dados que levará o resultado ao seu destino.

∙ ARG: Sequencia de caracteres com comprimento máximo de 31 bytes que pode ser
utilizada como parâmetro de configuração de uma tarefa instantânea. O último byte
desse pacote deve ser nulo, limitando o tamanho máximo da string passada como
parâmetro.

3.5.6 Agendamento de um trigger

Requisição feita pelo controlador do framework ao middleware de um nó sensor,
com o objetivo de agendar uma das tarefas de um fluxo de tarefas especificado pelo usuário.
Um trigger é um tipo de tarefa especial que tem o papel de monitorar dados coletados
na rede, compará-los e acionar a execução de outras tarefas com base no resultado da
comparação efetuada. Como resposta, o controlador espera uma confirmação de que o
agendamento foi efetuado com sucesso.

Os pacotes de requisição e resposta para o agendamento de um trigger têm a
estrutura descrita, respectivamente, nas tabelas 9 e 10. Note que a resposta para o agen-
damento de um trigger tem o formato idêntico ao da resposta para o agendamento de
uma tarefa periódica.

As informações que o middleware necessita para o agendamento de um trigger são
as seguintes:

∙ PID: ID do tipo de pacote do protocolo, no caso 5;

Capítulo 3. Especificação 44

Tabela 9 – Estrutura do pacote de requisição do agendamento de um trigger.

0 1 2
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

PID TID TMC
TSC TCS TRC TMI

TMI
TMI
TSI
TSI

TSI TRI
TRI
TRI

TRI OFI

Tabela 10 – Estrutura do pacote de confirmação do agendamento de um trigger.

0 1 2
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

PID TID X
TIN S T I N P D R X

∙ TID: ID da tarefa que se deseja agendar;

∙ TMC: Configuração do minuendo:

– 000: constante;

– 001: parâmetro de entrada;

– 010: valor armazenado do subtraendo − regra: valor mais recente;

– 011: valor armazenado do subtraendo − regra: valor maior que o atual;

– 100: valor armazenado do subtraendo − regra: valor menor que o atual;

– 101: valor armazenado da referencia − regra: valor mais recente;

– 110: valor armazenado do referência − regra: valor maior que o atual;

– 111: valor armazenado do referência − regra: valor menor que o atual.

∙ TSC: Configuração do subtraendo:

– 000: constante;

– 001: parâmetro de entrada;

– 010: valor armazenado do minuendo − regra: valor mais recente;

– 011: valor armazenado do minuendo − regra: valor maior que o atual;

– 100: valor armazenado do minuendo − regra: valor menor que o atual;

– 101: valor armazenado da referencia − regra: valor mais recente;

Capítulo 3. Especificação 45

– 110: valor armazenado do referência − regra: valor maior que o atual;

– 111: valor armazenado do referência − regra: valor menor que o atual.

∙ TCS: Sinal de comparação utilizado (<, >, <=, >=, ==, !=, &&, ||);

– 000: ==;

– 001: !=;

– 010: <;

– 011: >;

– 100: <=;

– 101: >=;

– 110: &&;

– 111: ||.

∙ TRC: Configuração da referência:

– 000: constante;

– 001: parâmetro de entrada;

– 010: valor armazenado do minuendo − regra: valor mais recente;

– 011: valor armazenado do minuendo − regra: valor maior que o atual;

– 100: valor armazenado do minuendo − regra: valor menor que o atual;

– 101: valor armazenado da subtraendo − regra: valor mais recente;

– 110: valor armazenado do subtraendo − regra: valor maior que o atual;

– 111: valor armazenado do subtraendo − regra: valor menor que o atual;

∙ TMI: Valor de inicialização para o minuendo:

– Valor numérico no caso de constante ou valor armazenado;

– ID do fluxo de dados que trará os valores no caso de um parâmetro de entrada.

∙ TSI: Valor de inicialização para o subtraendo;

– Valor numérico no caso de constante ou valor armazenado;

– ID do fluxo de dados que trará os valores no caso de um parâmetro de entrada.

∙ TRI: Valor de inicialização para a referência;

– Valor numérico no caso de constante ou valor armazenado;

– ID do fluxo de dados que trará os valores no caso de um parâmetro de entrada.

∙ Sinal de trigger produzido:

– OFI: ID do fluxo de dados que levará o sinal de trigger ao seu destino;

Capítulo 3. Especificação 46

3.5.7 Cancelamento de uma tarefa agendada

Requisição feita pelo controlador do framework ao middleware de um nó sensor,
com o objetivo de cancelar a execução de uma tarefa agendada para um fluxo de tarefas
especificado pelo usuário. Como resposta, o controlador espera uma confirmação de que
o cancelamento foi efetuado com sucesso.

Os pacotes de requisição e resposta para o cancelamento de uma tarefa tem a
estrutura descrita, respectivamente, nas tabelas 11 e 12.

Tabela 11 – Estrutura do pacote de requisição do cancelamento de uma tarefa agendada.

0 1 2
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

PID TID TIN
TIN

Tabela 12 – Estrutura do pacote de resposta do cancelamento de uma tarefa.

0 1 2
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

PID TID TIN
TIN S

As informações que o middleware necessita para cancelar uma tarefa agendada são
as seguintes:

∙ PID: ID do tipo de pacote do protocolo, no caso 6;

∙ TID: ID da tarefa que se deseja agendar;

∙ TIN: ID da instância da tarefa que corresponde ao agendamento realizado, que foi
alocada pelo middleware para o agendamento realizado;

∙ S : Bit indicando sucesso da operação.

3.5.8 Relatório de execução de uma tarefa agendada

Requisição feita pelo controlador do framework ao middleware de um nó sensor,
com o objetivo de descobrir quantas vezes foi executada uma tarefa específica, agendada
para um fluxo de tarefas especificado pelo usuário.

Os pacotes de requisição e resposta para a requisição do relatório de execução de
uma tarefa agendada têm a estrutura descrita, respectivamente, nas tabelas 13 e 14.

As informações que o middleware necessita para identificar a tarefa cuja quantidade
de execuções ele deverá retornar são as seguintes:

Capítulo 3. Especificação 47

Tabela 13 – Estrutura do pacote de requisição do relatório de execução de uma tarefa agendada.

0 1 2
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

PID TID X
TIN

Tabela 14 – Estrutura do pacote de resposta do relatório de execução de uma tarefa agendada.

0 1 2
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

PID TID X
TIN TEN

∙ PID: ID do tipo de pacote do protocolo, no caso 7;

∙ TID: ID da tarefa que se deseja agendar;

∙ TIN: ID da instância da tarefa que corresponde ao agendamento realizado, que foi
alocada pelo middleware para o agendamento realizado;

∙ TEN: número de execuções da tarefa consultada.

3.5.9 Estado de um nó sensor

Requisição feita pelo controlador do framework ao middleware de um nó sensor,
com o objetivo de descobrir o uso dos recursos disponíveis no dispositivo.

Os pacotes de requisição e resposta para a requisição do relatório sobre o estado
de um nó sensor tem a estrutura descrita, respectivamente, nas tabelas 15 e 16.

Tabela 15 – Estrutura do pacote de requisição do estado de um nó sensor.

0 1 2
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

PID

Tabela 16 – Estrutura do pacote de resposta do estado de um nó sensor.

0 1 2
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

PID CPQ CIQ CNQ
CNQ X CBL CRP

CL - Latitude
CL - Latitude CL - Longitude

CL - Longitude CL - Altitude
CL - Altitude

CSQ [x NTN]

Capítulo 3. Especificação 48

As informações que o controlador pode obter são as seguintes:

∙ PID: ID do tipo de pacote do protocolo, no caso 8;

∙ CPQ: Quantidade atual de tarefas periódicas agendadas;

∙ CIQ: Quantidade atual de dados agendados para recebimento da rede como entrada
de tarefas agendadas;

∙ CNQ: Quantidade atual de tarefas produzindo dados enviados à rede;

∙ CBL: Nível da bateria;

∙ CRP: Percentual de memória RAM ocupada.

∙ CL : Localização atual do nó sensor;

∙ CSQ: Para cada tipo de tarefa (ordenado por TID): quantidade atual de agenda-
mentos;

3.5.10 Transmissão de dados

Requisição feita por qualquer nó sensor que deseje enviar, a outro dispositivo,
o resultado produzido por uma tarefa. O nó sensor pode esperar uma confirmação do
recebimento do dado pelo destinatário.

O pacote de transmissão de dados tem a estrutura descrita na tabela 17.

Tabela 17 – Estrutura do pacote de transmissão de dados.

0 1 2
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

PID ODT ODL X TD
TD
TD

TD

As informações que o recipiente necessita para saber como encaminhar o dado
recebido são as seguintes:

∙ PID: ID do tipo de pacote do protocolo, no caso 9;

∙ ODT: Tipo do dado transmitido, de acordo com a descrição da seção 3.5.4;

∙ ODL: Comprimento do dado transmitido, de acordo com a descrição da seção 3.5.4;

∙ TD : Dado a ser transmitido.

Capítulo 3. Especificação 49

3.5.11 Transmissão de sinal de trigger

Requisição feita por qualquer nó sensor que deseje enviar, a outro dispositivo, o
sinal de acionamento emitido por um trigger. O nó sensor pode esperar uma confirmação
do recebimento do dado pelo destinatário.

O pacote de transmissão de sinal de trigger tem a estrutura descrita na tabela 18.

Tabela 18 – Estrutura do pacote de transmissão de um sinal de trigger.

0 1 2
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

PID

As informações que o recipiente necessita para saber como encaminhar o sinal
recebido são as seguintes:

∙ PID: ID do tipo de pacote do protocolo, no caso 10;

3.6 Arquitetura do controlador
A figura 4 mostra a estrutura interna do controlador do framework, formulada

a partir dos protocolos de comunicação que especificam suas interfaces. Essa estrutura
evidencia cada um de seus módulos, que serão explicados ao longo dessa seção.

Figura 4 – Diagrama de arquitetura do controlador.

Capítulo 3. Especificação 50

∙ Servidor REST: módulo externo ao controlador que faz uso de sua API para
prover serviços a um usuário remoto.

∙ API de Acesso ao Framework: conjunto de métodos que implementa as fun-
cionalidades previstas na seção 3.4, e que são disponibilizados ao usuário final por
meio do servidor REST.

∙ Mapeamento de Tarefas: módulo responsável por:

– Quebrar um fluxo de tarefas descrito pelo usuário, no formato previsto pelo
protocolo descrito na Seção 3.4, em uma sequência de tarefas no formato pre-
visto pelo protocolo descrito na Seção 3.5;

– Alocar cada uma das tarefas em um nó sensor, considerando eficiência e o
balanceamento do uso dos recursos da rede;

– Emitir requisições de agendamento ou de cancelamento das tarefas aos nós
sensores escolhidos;

– Armazenar as informações de mapeamento de tarefas agendadas na rede no
banco de dados destinado a isso.

∙ Monitor da Rede: módulo responsável por receber alertas de eventos na rede,
enviados ao controlador tanto por nós sensores quanto pelo controlador SDN. Esses
alertas devem ser processados de maneira que o banco de dados que guarda as
características e o estado dos nós da rede possa ser mantido sempre atualizado.
Além disso, no caso de um alerta comunicando o desligamento de um nó sensor, esse
módulo deve requisitar um novo mapeamento das tarefas que estavam agendadas
no nó desligado.

∙ Camada de Abstração da Rede: módulo responsável pela interface com o con-
trolador SDN, abstraindo todos os métodos de envio e recepção de mensagens através
da rede, bem como o acesso a funcionalidades providas pelo controlador SDN, como
a criação de fluxos SDN. O objetivo dessa camada é tornar os demais módulos in-
dependentes de uma implementação específica de um controlador SDN, garantindo
assim a portabilidade do controlador do framework.

3.6.1 Bancos de dados do controlador

Como visto na Figura 4, o controlador possui dois bancos de dados para armaze-
namento de informações. A descrição deles é a seguinte:

∙ Características e estado dos nós da rede: responsável por armaze-
nar informações de topologia da rede (adjacências entre nós, bem como qualidade

Capítulo 3. Especificação 51

das conexões) e características dos nós (grau de mobilidade, sistema operacional,
ID do nó sensor, localização, tipo da fonte de alimentação, modelo do dispositivo,
IDs das tarefas implementadas).

∙ Fluxos de tarefas e tarefas agendadas: armazena as informações das
tarefas agendadas e em quais nós elas foram agendadas, bem como a ordem de
execução entre elas, se houver.

A figura 5 é um diagrama Entidade-Relacionamento (ER) contendo a especifi-
cação de um modelo unificado desses dois bancos de dados. A opção de unificação dos
dois bancos de dados na hora de modelá-los foi realizada devido à grande quantidade de
relacionamentos entre as informações armazenadas nos dois.

Figura 5 – Diagrama ER do banco de dados do controlador.

3.7 Arquitetura do middleware
A figura 6 mostra a estrutura interna do middleware presente nos nós sensores

da rede, formulada a partir do protocolo de comunicação especificado na Seção 3.5. Essa
estrutura evidencia cada um de seus módulos, que serão explicados ao longo dessa seção.

∙ Receptor: responsável por receber e desmontar pacotes vindos da rede, remetendo
seu conteúdo ao módulo do middleware que deverá tratá-lo:

– Parâmetros de tarefas devem ser enviados a tarefas;

– Requisições do protocolo, como agendamento de tarefas e descrições de tarefas e
de características do nó sensor devem ser enviadas ao Processador de Respostas
do Protocolo.

Capítulo 3. Especificação 52

Figura 6 – Diagrama de arquitetura do middleware.

∙ Escalonador: responsável por manter controle das tarefas agendadas:

– Coordena a execução de tarefas periódicas, disparando-as nos instantes ade-
quados;

– Dispara as tarefas instantâneas que já tiverem todos os parâmetros necessários
à sua execução, mantendo controle do tempo de expiração dos parâmetros
recebidos por cada tarefa;

– Ao agendar uma tarefa, configura os módulos receptor e emissor com seus pa-
râmetros de entradas e saída, e pede ao Processador de Respostas do Protocolo
para enviar uma confirmação de que a tarefa foi agendada;

– Deve manter controle de quantas tarefas foram agendadas.

∙ Processador de Respostas de Protocolo: responsável por desmontar pa-
cotes de requisição vindos do controlador do framework através da rede, de coordenar
a realização das solicitações representadas por tais pacotes, através do acionamento
dos demais componentes do middleware. Finalmente, também é responsável por
receber os resultados das ações comandadas, e de empacotá-los para enviar as res-
postas aos pedidos feitos pelo controlador.

Capítulo 3. Especificação 53

∙ Emissor: responsável por receber um dado produzido por uma tarefa, montar um
pacote de dados com ele, e enviá-lo à rede em direção ao seu destinatário.

∙ Tarefas: são abstrações de aplicações de um nó sensor da rede, implementadas de
maneira a utilizar os recursos do nó com o objetivo de realizar uma tarefa ou ação
específica, como a coleta de dados, o acionamento de um atuador ou a agregação
de dados coletados na rede. Em geral, elas podem possuir vários parâmetros de
entrada, um parâmetro de saída e diversos tipos de configurações, de acordo com a
especificação do protocolo na seção 3.5.

∙ API de Tarefas: responsável por abstrair o restante da estrutura do middleware
para a implementação das tarefas a serem executadas pelo nó sensor. Seu papel é
facilitar a implementação de tarefas, possibilitando ao programador que se concentre
apenas nos parâmetros recebidos pela tarefa, nos recursos disponibilizados pelo nó
sensor e em como programar a rotina que executa o objetivo de uma tarefa − tudo
isso sem se preocupar com todo o gerenciamento que é feito pelo escalonador ou
com o empacotamento e o desempacotamento de dados realizados pelo emissor e
pelo receptor.

54

4 Tecnologias

Este capítulo descreve as tecnologias que foram consideradas para a implementação
deste trabalho. As vantagens e desvantagens de cada uma das tecnologias consideradas
são discutidas e as decisões tomadas são descritas.

4.1 Tecnologias de interface com o usuário
Duas tecnologias de interface com o usuário foram consideradas para a implemen-

tação no projeto. Elas são REST e SOAP e são descritas e analisadas a seguir.

4.1.1 REST

Transferência de Estado Representacional (em inglês, Representational State Trans-
fer - REST) (FIELDING; TAYLOR, 2000) é um estilo de arquitetura para projetar aplica-
ções de rede, que substitui mecanismos mais complexos de conexão como Common Object
Request Broker Architecture (CORBA), Remote Procedure Call (RPC) e SOAP. Para re-
alizar essa comunicação o REST usa o protocolo HyperText Transfer Protocol (HTTP)
que é um protocolo cliente-servidor sem estado bastante utilizado para comunicação na
web.

No sistema REST cada recurso é unicamente direcionado através da sua Uniform
Resource Identifier (URI) e é possível realizar as operações CRUD (Create, Read, Update
e Delete) solicitando os métodos PUT, GET, POST e DELETE do protocolo HTTP.
Isso torna o uso de REST mais simples que as demais arquiteturas citadas e mais rápida
também, pois não é necessário um processamento de dados extensivo.

4.1.2 SOAP

Protocolo Simples de Acesso a Objeto (em inglês, Simple Object Access Protocol -
SOAP) (World Wide Web Consortium, 2015) é um protocolo de comunicação via Internet.
Ele disponibiliza uma forma de comunicação entre aplicações que são executadas em
diferentes sistemas operacionais com diferentes tecnologias e linguagens de programação.
SOAP utiliza o formato XML para suas mensagens de solicitação e resposta e usa qualquer
protocolo de transporte para transmissão destas mensagens, sendo os mais utilizados os
protocolos HTTP e Simple Mail Transfer Protocol (SMTP).

Capítulo 4. Tecnologias 55

O protocolo consiste de três partes, um envelope, que define a estrutura da men-
sagem; um conjunto de regras de codificação para representar as instâncias dos tipos
definidos pela aplicação; e uma convenção para representar chamadas de rotinas e respos-
tas.

4.1.3 Escolha e motivos

A princípio havia sido decidida a adoção do SOAP para a interface devido a sua
maior versatilidade. Entretanto, após pesquisas a respeito de frameworks para o protocolo,
foi notado que ele não é tão utilizado atualmente e que não existem boas implementações
completas de SOAP.

Dessa forma, foi decidida a adoção do REST, pois ela é uma arquitetura muito
popular e utilizada e que possui muitas implementações disponíveis, mas ainda com a
capacidade de comunicação necessária para este projeto.

4.2 Tecnologias de implementação para o servidor REST
Para auxiliar na implementação do servidor REST optou-se pela utilização de um

framework web, que é uma coleção de pacotes e módulos que permite que desenvolvedores
escrevam aplicações web ou serviços web sem a necessidade tratar detalhes de baixo nível,
como protocolos, sockets e gerenciamento de processos e/ou threads.

4.2.1 Django

Um dos frameworks de full-stack mais populares para Python é o Django (Django
Project, 2015). Ele é um framework de código aberto que segue o padrão arquitetural
Model-View-Controller (MVC). Seu objetivo é facilitar o desenvolvimento de sites com-
plexos focados em bancos de dados.

Justamente pelo fato de Django ser um framework web completo, focado em sis-
temas complexos com modelo MVC, decidiu-se que ele não era o ideal para este projeto.

4.2.2 Flask

O Flask (Flask, 2015) é um microframework web também bastante popular para
Python, que não é full-stack, mas que fornece a base de necessária para criar um servidor
web. Ele é baseado nas tecnologias Werkzeug e Jinja 2 e possui conformidade com Web
Service Gateway Interface (WSGI) e solicitações REST. O Flask não força o desenvolvedor
a utilizar nenhuma ferramenta ou biblioteca específica, ao invés disso ele possui suporte
a extensões que adicionam funcionalidades às aplicações como se fossem nativas.

Capítulo 4. Tecnologias 56

Devido a sua maior simplicidade e flexibilidade, o Flask foi considerado mais ade-
quado para o projeto, pois dessa forma é possível implementar serviços web com REST
de forma simples.

4.3 Linguagens para o controlador do framework
Algumas linguagens foram analisadas para a definição da melhor opção de lingua-

gem para o controlador do framework. Elas são descritas e analisadas a seguir.

4.3.1 Go

Go (golang, 2015), frequentemente chamada também de golang, é uma linguagem
de programação desenvolvida no Google em 2007. Sua sintaxe é fracamente derivada da
linguagem C, mas a linguagem em si conta com a adição de garbage collection, type safety
e algumas capacidades de tipagem dinâmica. Go já possui versões estáveis e suas futuras
atualizações serão retrocompatíveis com as especificações atuais da linguagem.

Desenvolvida para ser usada em sistemas de larga escala, a linguagem possui compi-
ladores extremamente rápidos, gerenciamento remoto de pacotes e também características
de linguagens dinâmicas, como inferência de tipos. Go possui primitivas de processamento
paralelo embutidas na linguagem e ferramentas que por padrão geram binários estatica-
mente ligados sem dependências externas. Faz parte da filosofia de criação da linguagem
a ideia de que as especificações da linguagem devem ser simples o suficiente para que o
programador consiga memorizá-las.

Suas vantagens incluem possuir maneiras simples e eficientes de paralelismo, além
de eficiência por ser compilada. O sistema de gerenciamento de pacotes facilita a utilização
de bibliotecas e ferramentas desenvolvidas por terceiros e sua comunidade é ativa. Dessa
forma, ela possui diversas características favoráveis para um sistema que tem que lidar
com múltiplas tarefas simultâneas.

Seu principal problema nesse projeto é a total ausência de experiência por parte
dos integrantes do grupo com a linguagem.

4.3.2 Java

Java (Oracle Corporation, 2015) é uma linguagem de programação que foi lançada
em 1996. A linguagem é compilada para bytecode que é executado pela Java Virtual
Machine (JVM), de forma que o mesmo código compilado pode ser executado em qualquer
sistema que possua uma JVM. Java é uma linguagem com suporte a concorrência, baseada
em classes e orientada a objetos.

Capítulo 4. Tecnologias 57

A linguagem foi desenvolvida para ser de uso geral, permitindo seu uso nos mais
diversos tipos de aplicações. Ela possui uma vasta comunidade de desenvolvedores, sendo
uma das linguagens mais populares do mundo. Por ser bem consolidada já possui uma
sólida biblioteca padrão de implementações e também um grande número de materiais
de referência na Internet a respeito dos mais diversos tipos de uso da linguagem. O
desenvolvimento de aplicativos para o sistema operacional Android é feito em Java.

Suas principais vantagens incluem uma sólida adoção por parte da comunidade
de desenvolvedores e ferramentas sólidas de desenvolvimento para a linguagem, como
as populares Integrated Development Environment (IDE) Eclipse e Netbeans. O fato da
linguagem possuir mecanismos embutidos de documentação de código também ajuda na
colaboração de desenvolvedores no desenvolvimento de programas.

O principal problema de Java é o tamanho do código necessário para o desenvol-
vimento de software nesta linguagem, por sua sintaxe muito estrita. Tais características
a tornam menos indicada para a rápida prototipagem de projetos, algo essencial neste
trabalho devido ao curto tempo de implementação previsto no cronograma apresentado
na seção 1.3. Outro problema é a ausência de possibilidade de utilizar outros paradigmas
além da orientação a objetos.

4.3.3 Python

Python (Python Software Foundation, 2015) é uma linguagem de programação que
surgiu em 1991. Sua filosofia enfatiza facilidade de leitura de código, de forma a permitir a
utilização de um número menor de linhas de código do que outras linguagens como C++
e Java. Python tem suporte a diversos paradigmas de programação, incluindo orientação
a objetos, funcional e procedural, é uma linguagem interpretada, portanto não existe a
necessidade de recompilar o código após alterações.

A linguagem possui atualmente duas versões, Python 2 e Python 3. Essa diferença
existe pois a versão 3 não é retrocompatível com a 2. O Python 3 foi lançado em 2008
e é considerado o presente e o futuro da linguagem, enquanto o Python 2 é considerado
legado. Entretanto, o suporte de bibliotecas ainda é mais extenso para a versão 2.

Python possui tipagem dinâmica, gerenciamento automático de memória e uma
vasta biblioteca padrão. Diferentemente da grande maioria das linguagens, os blocos de
códigos da linguagem são delimitados por indentação. A linguagem possui uma grande
adoção em todo mundo, sendo uma das linguagens mais populares para ensino de progra-
mação devido a sua simplicidade. Graças a sua popularidade, ela possui um grande número
de referências na Internet e muitos projetos são implementados em Python, permitindo
encontrar exemplos de código para as mais diversas aplicações.

Suas vantagens incluem ser de fácil utilização, além de ser amplamente adotada

Capítulo 4. Tecnologias 58

nas mais diversas áreas. Python possui sistemas de gerenciamento de pacotes com a dispo-
nibilidade de milhares de bibliotecas desenvolvidas por terceiros e sua comunidade é bem
ativa. Essas características, somadas ao domínio da linguagem por parte dos integrantes
do grupo, tornam-na uma opção atraente para o projeto.

O seu principal problema gira em torno de sua eficiência, pois ela é interpretada e
portanto muito mais lenta do que linguagens compiladas. Ainda no quesito eficiência, seu
interpretador não permite paralelismo verdadeiro durante a execução de múltiplas threads
para manter a integridade de memória. Dessa forma ela não é a linguagem mais indicada
em contextos multi-processados em que a eficiência é fundamental.

4.3.4 Escolha e motivos

Baseado nos pontos apresentados nessa seção, a linguagem Python foi escolhida
para o controlador do framework. Ela é uma linguagem sólida e simples, dominada pelo
grupo, permitindo a implementação de sistemas de maneira rápida. A escolha do Flask
para o servidor REST também contribuiu para a decisão pelo uso da linguagem Python,
já que ele também é escrito nessa linguagem.

4.4 Banco de Dados
Essa seção descreve um pouco sobre o sistema gerenciador de banco de dados

utilizado e a ferramenta Object-Relational Mapper (ORM) escolhida para trabalhar com
ele.

4.4.1 SQLite

SQLite (SQLite, 2015) é um sistema de gerenciamento de banco de dados relacional
escrito em linguagem C. Ele é em grande parte autossuficiente, exigindo pouquíssimo
suporte de bibliotecas externas e do sistema operacional. Outra vantagem do SQLite é
que não há necessidade de comunicação com um servidor: se um processo solicita acessar o
banco de dados, ele simplesmente lê e escreve diretamente nos arquivos do banco no disco.
Dessa forma, não existe um servidor que precise ser iniciado e configurado; programas que
usam o SQLite não precisam de um suporte administrativo para configurar o mecanismo
do banco antes de serem executados.

Assim, o SQLite é ideal para este projeto, já que o banco de dados necessário é
simples e seu sistema gerenciador deve ser leve para poder ser incorporado ao framework,
que muitas vezes poderá ser executado em sistemas embarcados.

Capítulo 4. Tecnologias 59

4.4.2 SQLAlchemy

O SQLAlchemy é um conjunto de ferramentas open-source de mapeamento objeto-
relacional de bancos de dados SQL para a linguagem Python. Por se tratar de um dos
ORMs mais populares para Python, o SQLAlchemy é compatível com os principais siste-
mas gerenciadores de bancos de dados relacionais, como MySQL, Postgresql e SQLite, o
que o torna bastante flexível.

O uso do SQLAlchemy facilita a implementação de uma interface com banco de
dados através de Data Access Objects(DAOs), pois torna desnecessária a escrita de qual-
quer linha em linguagem SQL. Ao programador, basta a criação de classes de mapeamento
para as entidades em um diagrama ER, deixando para o SQLAlquemy a tarefa de gerar
as tabelas SQL correspondentes de forma automática.

A abstração proporcionada pelo SQLAlchemy torna mínimas as alterações ne-
cessárias ao código desenvolvido no caso de uma mudança de plataforma. Dessa forma,
outra das principais vantagens do seu uso é a portabilidade do código entre as diversas
plataformas de sistemas gerenciadores de bancos de dados mencionadas.

4.5 Middleware
Essa seção descreve as tecnologias adotadas para a implementação do middleware,

incluindo sistema operacional, suporte a SDN, plataforma de hardware para foco do de-
senvolvimento e ferramenta de simulação para testes. A escolha dessas tecnologias está
fortemente condicionadas a vínculos de dependência do TinySDN, framework de SDN
escolhido para utilização no projeto.

4.5.1 TinyOS

Como dito na subseção 2.1.1, o TinyOS é um SO de código aberto para RSSFs.
Ele é orientado a eventos e programado em nesC, extensão da linguagem C, e é focado
em baixo consumo de energia e operação em sistemas com processamento e memória
limitados.

Como o TinyOS é um dos SOs mais utilizados pela comunidade acadêmica na
área de RSSF e já possui todo um ecossistema − além de o TinySDN atualmente só
dispor de implementação para esse SO − sua adoção foi considerada pertinente para a
implementação do middleware.

4.5.2 TinySDN

O TinySDN (OLIVEIRA; MARGI; GABRIEL, 2014) é um framework de SDN
para RSSFs e que atualmente é implementado sobre o TinyOS. Sua descrição mais deta-

Capítulo 4. Tecnologias 60

lhada pode ser encontrada na subseção 2.4.3. Ainda assim, cabe dizer que ele é interessante
para o projeto pois permite um controle centralizado da rede, inclusive com a possibilidade
de múltiplos controladores.

O controle centralizado é uma característica crucial da arquitetura do projeto,
pois é ele que permite que a rede seja facilmente gerenciável e vista como entidade única
pelo usuário. O TinySDN torna-se então o componente responsável pela capacidade de
abstração da topologia da rede ao lidar com a interação dos nós e fazer o roteamento das
mensagens na rede.

4.5.3 TelosB

O TelosB (TELOSB, 2015) é um nó sensor da Memsic, desenvolvido e publicado
para a comunidade acadêmica pela Universidade da Califórnia Berkeley. A plataforma do
TelosB tem código aberto e foi desenvolvida para permitir a realização de experimentos
com RSSF pela comunidade científica.

Ele possui rádio compatível com o protocolo IEEE 802.15.4 e com o ZigBee, taxa
de transferência de até 250kbps e antena integrada. Seu processador é um TI MSP430
de 8MHz com 10kB de memória RAM e 48 kB de memória flash programável. Possui
ainda programação via Universal Serial Bus (USB), baixo consumo de energia e a versão
utilizada no projeto também possui sensores de umidade, temperatura e luminosidade,
além de LEDs programáveis. Sua alimentação se dá através do conector USB ou através
de duas pilhas do tipo AA.

O TelosB é compatível com o TinyOS e foi escolhido como foco inicial para a
implementação do projeto. A figura 7 apresenta o modelo de TelosB utilizado.

Figura 7 – Foto do TelosB visto de cima.

Fonte: wikimedia.org

Capítulo 4. Tecnologias 61

4.5.4 COOJA

O COOJA é um simulador de RSSF desenvolvido originalmente para o sistema
operacional Contiki, mas que é capaz de simular nós sensores com código desenvolvido
para TinyOS também.

Devido a sua facilidade de uso o COOJA foi usado para as simulações realizadas
durante o desenvolvimento e testes do sistema ao invés do TOSSIM, que é o simulador
desenvolvido para o TinyOS. Ele utiliza um simulador do nó sensor como um todo −
processador, LEDs e chip de rádio − e permite a definição de localização espacial dos nós
sensores, bem como as condições da comunicação (envio de mensagens com ou ou sem
perdas, alcance do rádio, entre outros).

A utilização do COOJA é simples, basta criar uma nova simulação e adicionar nós
com o código compilado da aplicação desejada. É inclusive possível adicionar nós com
diferentes aplicações instaladas em uma mesma simulação.

Graças a sua agilidade de uso o COOJA foi a solução escolhida para a realização
dos testes de unidade dos componentes do middleware. O fato dele também permitir a si-
mulação de conexão serial foi fundamental para os testes de integração entre o controlador
e o middleware.

Parte II

Aplicação

63

5 Desenvolvimento

Esse capítulo trata do desenvolvimento de uma implementação da especificação
feita no capítulo 3 utilizando as tecnologias escolhidas no capítulo 4. Primeiramente são
descritas as metodologias utilizadas para o desenvolvimento do projeto. Em seguida, são
relatados os detalhes de implementação para os principais componentes do WARM : o
servidor REST, o controlador do framework e o middleware.

5.1 Metodologias de desenvolvimento
Para o desenvolvimento do código para o WARM, procurou-se seguir boas práti-

cas de programação tendo em vista a posterior divulgação do código-fonte para outros
interessados, além de permitir uma melhor qualidade do produto final desenvolvido.

5.1.1 Versionamento de código

Para o desenvolvimento do projeto foi utilizado um sistema de versionamento de
código. O sistema escolhido foi o Git (Git, 2015), sobretudo devido à familiaridade dos
integrantes do grupo com esse sistema. Além da familiaridade dos integrantes, ele possui
características interessantes para desenvolvimento realizado em equipe, sendo distribuído
e facilitando a criação de ramos locais sem causar interferência com outros desenvolvedores
até a hora de juntar o ramo local ao ramo principal.

Buscou-se fazer bom uso da facilidade de criação e união de ramos de código,
definindo-se o uso de um ramo para cada área principal do framework (interface de usuário,
controlador e middleware). Fora esses ramos existe ainda o ramo de desenvolvimento, para
onde os ramos individuais são unidos quando há alterações significativas e por fim existe o
ramo mestre, que só deve conter versões funcionais do código. Com esse modelo é possível
garantir que o ramo principal sempre terá uma versão funcional e estável do código,
permitindo o lançamento de releases periódicos, após terem sido devidamente testados no
ramo de desenvolvimento.

5.1.2 Revisão de código

Para garantir a corretude do código e a boa qualidade do mesmo, foi adotada a
metodologia de revisão por pares, do inglês peer review, onde o código escrito por um dos
membros do grupo é revisado por ao menos um outro membro antes dele ser adicionado

Capítulo 5. Desenvolvimento 64

ao repositório principal. Utilizando a metodologia de revisão por pares é possível detectar
um número maior de erros no código antes de ele poder causar problemas maiores. Além
de contribuir para o melhor conhecimento da base de código por todos os integrantes da
equipe.

5.1.3 Testes de componentes

Para garantir que cada componente de código completado funcione de acordo com
as especificações propostas, foi adotada a metodologia de testes de componentes. Segundo
ela, cada componente funcional que estiver completo dentro do código é submetido a uma
rotina de testes automáticos que avaliam o funcionamento correto de suas interfaces. Tal
metodologia é bastante importante para garantir o funcionamento isolado dos compo-
nentes e, dessa forma, facilitar sua integração, além de facilitar a introdução de futuras
modificações, garantindo que elas não comprometam o bom funcionamento de componen-
tes já funcionais.

5.1.4 Documentação de código

O código é implementado com o objetivo de ser legível e auto-documentado, com
comentários relevantes sobre seu funcionamento para facilitar o entendimento de um pos-
sível leitor.

No caso do controlador a documentação de funções, classes e métodos é feita
seguindo o padrão definido pela PEP 2571. Esse padrão estipula um formato para as
docstrings de descrição do código. Para gerar a documentação, foi utilizada a ferramenta
Sphinx (Sphinx, 2015), que é capaz de fazer a geração da documentação em formato Hy-
perText Markup Language (HTML) para visualização externa e para servir como referência
das funções disponíveis sem necessidade de acessar diretamente o código.

Para o middleware, a documentação de módulos, configurações e interfaces é gerada
através da ferramenta nesdoc, desenvolvida especialmente para a documentação de código
na linguagem nesC. O padrão de documentação é baseado em blocos de comentários, de
acordo com a especificação presente no manual da ferramenta Doxygen (HEESCH, 2015)
− cujo uso é bastante popular para geração de documentação de código.

5.2 Servidor REST
O servidor REST foi criado para facilitar a utilização do framework. Com esta

interface, o usuário pode solicitar informações da rede e agendar tarefas simplesmente
1 http://legacy.python.org/dev/peps/pep-0257

http://legacy.python.org/dev/peps/pep-0257

Capítulo 5. Desenvolvimento 65

utilizando o protocolo HTTP. Deixando-o livre para escolher a linguagem de programação
e a plataforma mais apropriada para a sua aplicação.

Além de utilizá-lo, o usuário também tem a opção de realizar as solicitações atra-
vés da API desenvolvida na linguagem Python. Os métodos disponíveis por meio da API
são os mesmos que os disponibilizados pelo servidor REST, com parâmetros de entrada
equivalentes. Entretanto, a saída fornecida pelas duas APIs é um pouco diferente: en-
quanto o servidor retorna objetos JavaScript Object Notation (JSON), a API em Python
retorna um objeto dessa linguagem.

O servidor REST foi implementado utilizando o microframework Flask, descrito na
subseção 4.2.2, que facilitou bastante o seu processo de desenvolvimento. Com o Flask é
necessário apenas definir as rotas e o que será retornado para o usuário. Para a inicialização
de um servidor para uma aplicação do framework, basta a execução do método “run()”.

A seguir, está apresentada a maneira com que a rota “/nodes” foi desenvolvida.
Analisando o código do método “get_nodes()”, podemos notar que, primeiramente, os
parâmetros de entrada recebidos são separados, de modo a serem fornecidos à API em
Python do controlador. A API é chamada logo em seguida, de modo a retornar um resul-
tado que necessita ser convertido para o formato JSON. É esse resultado convertido que
é finalmente retornado ao usuário.

1 from f l a s k import Flask
from API import GetNodes , GetNodesJSON

3

app = Flask (__name__)
5

@app . route (’ / nodes ’ , methods=[’GET’])
7 de f get_nodes () :

#Get parameters
9 node_id = s t r 2 f l o a t (r eques t . a rgs . get (’ node_id ’))

l a t i t u d e = s t r 2 f l o a t (r eque s t . a rgs . get (’ l a t i t u d e ’))
11 l ong i tude = s t r 2 f l o a t (r eques t . a rgs . get (’ l ong i tude ’))

range = s t r 2 f l o a t (r eques t . a rgs . get (’ range ’))
13

#Cal l API
15 nodes = GetNodes (node_id=node_id , l a t i t u d e=l a t i t u d e , l ong i tude=

long i tude , range=range)
re turn j s o n i f y ({ ’ nodes ’ : GetNodesJSON(nodes) })

17

19 i f __name__ == "__main__" :
app . run ()

Essa forma de implementação torna o servidor REST totalmente desacoplado do
controlador do framework. Ele utiliza diretamente a API desenvolvida em Python, da

Capítulo 5. Desenvolvimento 66

mesma forma com que um usuário poderia optar por utilizá-la. As demais rotas “/tasks”,
“/schedules” e “/parameters”, são implementadas de maneira similar à da rota “/nodes”.

5.3 Controlador
O controlador é composto de múltiplas partes, cujas ideias e técnicas adotadas em

sua implementação serão explicadas a seguir.

5.3.1 Mapeamento de tarefas

O mapeamento de tarefas é responsável por receber os pedidos de agendamento e
cancelamento de tarefas e convertê-los em agendamentos de instâncias de tarefas na rede
de sensores.

Existem muitas características que o controlador deve analisar ao receber um pe-
dido de agendamento antes de criar a tarefa e os fluxos de dados entre os nós sensores.
As principais dessas características são:

∙ O nó existe na rede?

∙ O nó é capaz de realizar a tarefa? Se sim, ainda pode agendar mais tarefas desse
tipo?

∙ Já existe outro nó recebendo os dados de referência que essa tarefa deseja receber?
Se sim, a tarefa não pode ser criada pois a referência só pode ser recebida por um
nó devido à ausência de suporte do TinySDN a multicast.

∙ Já existem nós que desejam receber os dados da referência de dados gerados pela
tarefa? Se sim, é preciso criar um fluxo ligando os nós.

Após determinar a resposta para essas perguntas, é necessário que o controlador
consulte o banco de dados e obtenha as informações necessárias para criar os fluxos e
agendar as tarefas. A maneira como uma tarefa é agendada depende do seu tipo, sendo
diferente, por exemplo, se ela receber ou não dados vindos da rede como parâmetros de
entrada.

5.3.2 Monitoramento da rede

Na implementação atual existem dois módulos distintos responsáveis pelo moni-
toramento da rede, um que se comunica com o controlador do TinySDN e o outro que se
comunica diretamente com um nó sensor através de comunicação serial.

Capítulo 5. Desenvolvimento 67

A necessidade de dois módulos diferentes advém do fato de que o controlador
do TinySDN não dá suporte ao envio e recebimento de mensagens direto da rede. Essa
restrição torna necessário que o controlador se comunique com a rede através de um
nó dedicado, de modo a poder enviar e receber do middleware os pacotes do protocolo
especificado na seção 3.5.

5.3.2.1 Controlador do TinySDN

A comunicação com o controlador do TinySDN é feita através de uma conexão
por socket e é responsável por duas atribuições: criação de fluxos na rede e recebimento
de informações sobre a topologia da rede.

A criação de fluxos é feita através da passagem de uma lista de arestas junto
com o número do fluxo para o controlador do TinySDN. No controlador do WARM, o
responsável pela criação de fluxos é o módulo mapeador de tarefas, que cria os fluxos para
conectar nós que precisam realizar troca de informações.

A topologia da rede é passada pelo controlador do TinySDN através de uma lista
de arestas que indica as conexões entre os nós existentes na rede. Quem chama a função
de obtenção da topologia é também o módulo de mapeamento de tarefas, que utiliza as
informações recebidas para decidir o caminho a ser seguido pelos fluxos.

5.3.2.2 Nó da rede conectado por serial

A comunicação direta com a rede − para o envio e recebimento de mensagens de
controle do WARM, bem como de mensagens de dados com destino fora da rede − é feita
através da comunicação serial com um nó sensor rodando o TinySDN.

A comunicação serial consiste de duas partes: um nó sensor rodando versão modi-
ficada do TinySDN capaz de realizar envio e recepção de dados através de comunicação
serial; e um módulo do controlador do WARM, que gerencia a conexão serial e faz a
interface entre o controlador e a conexão serial.

A programação do nó sensor transmite, através da comunicação serial, os payloads
dos pacotes recebidos com destino ao controlador. Juntamente, são transmitidas também
informações acerca do nó de origem e do comprimento do payload recebido. No outro
sentido, esse nó sensor é capaz de receber comunicação serial de envio de pacotes para a
rede. Para isso ele recebe o payload, comprimento do pacote e fluxo para o seu envio. A
implementação desse nó de gateway foi feita utilizando como base o TinySDN em um nó
sensor do tipo TelosB.

Por sua vez, o módulo de monitoramento da rede através de serial é implemen-
tado em Python e é o responsável pela interpretação dos payloads dos pacotes recebidos,
bem como pela elaboração de payloads dos pacotes a serem enviados para a rede. Para

Capítulo 5. Desenvolvimento 68

lidar com a comunicação serial em si, uma thread é criada pelo controlador para cuidar
especificamente da conexão serial. A criação de pacotes e extração de dados dos mesmos
é feita utilizando-se funcionalidades providas pelo TinyOS para a geração de código em
Python que faça o processamento de pacotes.

5.3.3 Banco de dados

Para a implementação do banco de dados, foi utilizado o SQLAlchemy, como men-
cionado na subseção 4.4.2. Fazendo uso de suas ferramentas, foram escritas classes de
mapeamento para as entidades no diagrama ER da figura 5. A partir de tais classes, as
tabelas SQLite correspondentes foram geradas de forma automática.

Além das entidades, foi implementada uma classe DAO para tratar toda a conexão
com o banco. Dessa forma, para realizar qualquer acesso ao banco é preciso apenas usar
o método “GetSession()” do DAO. A seguir, é apresentada a implementação dessa classe.
from sqla lchemy import create_engine

2 from sqla lchemy . orm import sess ionmaker
from sqla lchemy . ext . d e c l a r a t i v e import dec la ra t ive_base

4

Base = dec la ra t ive_base ()
6

c l a s s DAO:
8 " " "DAO" " "

de f __init__(s e l f) :
10 s e l f . eng ine = create_engine (’ s q l i t e :///warm . db ’ , echo=True)

Base . metadata . c r e a t e _ a l l (s e l f . eng ine)
12

de f GetSess ion (s e l f) :
14 Ses s i on = sess ionmaker (bind=s e l f . eng ine)

s e l f . s e s s i o n = Ses s i on ()
16 re turn s e l f . s e s s i o n

A seguir, vemos um caso simples que exemplifica o uso da classe DAO:
1 dao = DAO() . GetSess ion ()

3 #Para c r i a r uma i n s t a n c i a de um no usamos a c l a s s e Sensor_Node .

5 node = Sensor_Node ()
dao . add (node)

7 dao . commit ()

9 #Para buscar todos os nos na tabe l a sensor_node usamos o metodo query

11 nodes = dao . query (Sensor_Node) . a l l ()

Capítulo 5. Desenvolvimento 69

5.4 Middleware
Na seção 3.7, a arquitetura do middleware presente nos nós sensores foi especificada

como uma série de componentes interconectados de acordo com o diagrama da figura 6. Tal
estrutura é bastante condizente com o paradigma de programação adotado pela linguagem
nesC, que condiciona o desenvolvimento de aplicações do TinyOS à implementação de
módulos e suas respectivas configurações.

A linguagem dita que os módulos implementados devem utilizar ou prover interfa-
ces, e que as configurações desses módulos devem relacionar as interfaces utilizadas com
seus provedores. Tais interfaces, por sua vez, são constituídas basicamente pela especifi-
cação das assinaturas dos métodos que um módulo deve implementar quando provê uma
determinada interface.

Dessa forma, um sistema é composto por uma configuração que relaciona os diver-
sos sub-módulos implementados por meio de suas interfaces, o que faz com que a tarefa
de implementar o middleware se torne basicamente o esforço de implementar cada um dos
componentes da figura 6, e de especificar as interfaces constituídas pelas ligações entre
tais componentes.

A seguir são descritos os principais detalhes de implementação desses componentes
e suas interfaces.

5.4.1 Processador de Respostas do Protocolo

Esse componente recebe todos os pacotes de controle vindos do controlador do
framework e aciona os demais de maneira que eles desempenhem as solicitações do con-
trolador ou que providenciem os dados solicitados por ele. Dessa forma, uma de suas
principais tarefas é desmontar os pacotes do protocolo especificado na seção 3.5 e identi-
ficar tais comandos e solicitações de dados.

Para isso, cada um dos pacotes do protocolo foi descrito através de estruturas de
dados alinhadas, as nx_structs da linguagem nesC, utilizando o recurso bit field, também
presente na linguagem C. Uma vez lidos os campos de um pacote, o Processador de
Respostas do Protocolo precisa solicitar aos demais componentes, através das interfaces
adequadas, as ações ou os dados correspondentes à solicitação do controlador. Em seguida,
de posse da resposta enviada pelos módulos consultados, deve montar o pacote de resposta
ao controlador, fazendo novamente uso das estruturas de dados que descrevemos.

5.4.2 Escalonador

Esse componente tem diversas funções relacionadas à execução de tarefas carre-
gadas em um nó sensor, que podemos agrupar em dois conjuntos de funcionalidades: o

Capítulo 5. Desenvolvimento 70

primeiro relacionado ao agendamento de uma tarefa, e o segundo relacionado ao co-
mando de sua execução nos momentos convenientes.

No que diz respeito ao agendamento, que é acionado pelo Processador de Respos-
tas do Protocolo, está sob a responsabilidade do escalonador desempenhar as seguintes
funções no momento do agendamento de uma tarefa:

∙ Pedir à API de Tarefas que reserve uma instância da tarefa que está sendo agendada;

∙ Pedir ao Receptor que encaminhe parâmetros de entrada vindos da rede com deter-
minados rótulos à tarefa que está sendo agendada, caso ela receba parâmetros de
entrada;

∙ Pedir ao Emissor que empacote e envie os dados de saída produzidos pela tarefa
que está sendo agendada, caso haja algum;

∙ Comunicar o sucesso ou o fracasso do agendamento, dependendo do resultado dos
pedidos feitos anteriormente.

Para desempenhar tais funções, o Escalonador só precisa solicitar os pedidos des-
critos aos componentes adequados, utilizando as interfaces apropriadas.

No que se refere ao ao grupo de funcionalidades que estão relacionadas ao co-
mando de execução de instâncias agendadas de uma tarefa nos momentos convenientes,
há diversas variáveis cujo controle precisa ser mantido pelo Escalonador:

∙ Se a tarefa for do tipo periódica, é necessário comandar a execução de suas instân-
cias nos intervalos de tempo que correspondem ao seu período, e somente em tais
instantes;

∙ Se a tarefa depender de parâmetros recebidos da rede, é necessário comandar a
execução de suas instâncias somente quando essas tiverem à sua disposição todos
os dados de que precisam para executar;

∙ No caso de a tarefa depender de parâmetros recebidos da rede, há ainda a necessidade
de se verificar se os parâmetros que uma instância já tem disponíveis ainda não
expiraram, isto é, perderam sua validade pelo fato de ter transcorrido um certo
período de tempo desde que foram recebidos;

∙ Se a instância de uma tarefa precisar ser acionada por um trigger, é necessário saber
se ela já recebeu o sinal de trigger que sinaliza a possibilidade de sua execução;

Para saber se a instância de uma tarefa está pronta para ser executada − isto é,
dispõe de todos os parâmetros de entrada necessários ou foi acionada pelo sinal de trigger

Capítulo 5. Desenvolvimento 71

adequado − o Escalonador recebe notificações da API de Tarefas, que as envia assim que
uma instância de uma tarefa fica pronta. Se a instância de uma tarefa fica pronta e ela
não é periódica, ela pode ser executada imediatamente.

Para tratar os casos de tarefas periódicas ou de tarefas cujos parâmetros de entrada
recebidos têm tempo de validade, o Escalonador faz uso basicamente de duas filas: uma
fila de instâncias de tarefas periódicas e uma fila de instâncias de tarefas cuja validade
dos parâmetros irá expirar. Dispondo dessas duas filas, o componente programa dois
timers (um para cada fila) em cujo evento de disparo ele irá extrair o primeiro da fila
correspondente e realizar a ação apropriada: a execução da tarefa, no caso de uma instância
de tarefa periódica pronta; ou o descarte dos parâmetros da instância, no caso de a validade
dos seus parâmetros ter expirado.

Por fim, o Escalonador também é responsável por coordenar o cancelamento de um
agendamento. Isso implica na remoção da instância da tarefa da fila em que se encontra,
e da comunicação, aos demais componentes − Receptor, Emissor e API de Tarefas −, de
que os recursos alocados por eles para o agendamento em questão podem ser liberados.
Feito tudo isso, é necessário enviar a confirmação do cancelamento ao Processador de
Respostas do Protocolo, para finalizar a ação de cancelamento.

5.4.3 API de Tarefas

Esse componente é responsável por abstrair as funcionalidades dos demais módulos
da lógica de execução de uma tarefa. Para isso, seu papel constitui em tornar transparen-
tes, para o programador de uma tarefa, as seguintes funcionalidades do middleware:

∙ A recepção de dados da rede, que devem se tornar disponíveis a uma tarefa progra-
mada sem que seja necessário checar sua procedência, fazer o seu desempacotamento
ou identificar a que parâmetro de entrada um dado recebido se refere. O programa-
dor deve se preocupar basicamente em utilizar os parâmetros que estão disponíveis,
com a consciência de que eles estarão disponíveis quando a tarefa for executada;

∙ O envio de dados à rede, que deve poder ser feito sem que seja necessário se preo-
cupar com o destino do dado ou fazer o seu empacotamento de maneira adequada.
O programador deve se preocupar basicamente com a sinalização do dado que ele
deseja que seja enviado à rede;

∙ A notificação de que uma tarefa está pronta para ser executada pelo escalonador,
algo que não deve ser uma preocupação do programador − que só deve se preocupar
com o uso dos dados recebidos e não com sua disponibilidade;

Capítulo 5. Desenvolvimento 72

∙ A alocação de instâncias de uma tarefa para um agendamento, cujo controle não
deve ser uma preocupação do programador, que só precisa informar qual o número
máximo de instâncias suportado por uma tarefa;

∙ A manutenção e o envio de relatórios de execução de uma tarefa;

∙ O envio da descrição de uma tarefa quando esta for solicitada − o que, no caso
da presente implementação, já cumpre todos os papéis que seriam designados ao
módulo “Banco de Descrições”, mostrado na figura 6.

Para a realização de tais objetivos, a API de Tarefas serve como uma interface
entre os demais componentes do middleware − que efetivamente realizam grande parte
das funcionalidades listadas acima − e as tarefas carregadas em um nó sensor. Isso é feito
com a disponibilização de funções, macros e componentes que implementam grande parte
das funcionalidades de comunicação com os demais componentes do middleware. Isso
inclui módulos que atuam como parâmetros de entrada da tarefa, gerenciando os dados
que são recebidos para cada instância e notificando quando todos os dados necessários se
encontram disponíveis.

Fazendo uso das ferramentas oferecidas pela API de Tarefas, o processo de progra-
mar uma nova tarefa se resume a instanciar os parâmetros de entrada da tarefa, declarar
os componentes que provêm interface para os recursos do nó que se deseja utilizar, e im-
plementar duas funções: uma de inicialização − chamada quando o nó sensor é ligado −
e uma de execução − chamada quando o Escalonador a executa. Além de simplificar a
estrutura do módulo de uma tarefa, essas ferramentas também incluem macros e funções
que simplificam descrever uma tarefa, informar ao Emissor o resultado da tarefa e acessar
os dados recebidos da rede que foram endereçados à tarefa.

O uso da API de Tarefas para a implementação de módulos de tarefas é demons-
trado nos dois exemplos que se seguem.

Abaixo temos o exemplo da implementação de uma tarefa periódica que utiliza o
conversor analógico-digital para amostrar dados de temperatura ambiente e depois enviá-
los à rede.

1 module SenseTemperatureP {
prov ides i n t e r f a c e Task ;

3 uses i n t e r f a c e Read<uint16_t> as temperatureSensor ;
}

5 implementation {

7 uint8_t currentTaskInstance ;

9 PERIODIC_TASK_API_HELPER

Capítulo 5. Desenvolvimento 73

11 /**
* @brie f Task i n i t i a l i z a t i o n rout in e .

13 */
void t a s k I n i t (void) {

15 /** I n i t i a l i z e task d e s c r i p t i o n */
INITIALIZE_TASK_DESCRIPTION(SUPPORT_INT |

17 SUPPORT_2_BYTE_LENGTH, // int16_t
OUTPUT_TO_NETWORK_TRUE,

19 CONTROL_ACTUATOR_FALSE,
AGGREGATE_DATA_FALSE,

21 DATA_SINK_FALSE) ;
}

23

/**
25 * @brie f Task execut ion rout in e .

*/
27 uint8_t taskRoutine (uint8_t ta sk In s tance) {

29 currentTaskInstance = task In s tance ;
c a l l temperatureSensor . read () ;

31

re turn 1 ;
33 }

35 /**
* @brie f Event s i g n a l i z i n g ADC r e s u l t i s ready .

37 */
event void temperatureSensor . readDone (error_t r e s u l t , uint16_t data) {

39 OUTPUT_TO_NETWORK(currentTaskInstance , data) ;
}

41 }

A seguir temos o exemplo da implementação de uma tarefa instantânea que recebe
parâmetros vindos da rede como termos para o cálculo de uma média, efetua esse cálculo
e em seguida envia o seu resultado à rede.

1 module AverageIntP {
prov ides i n t e r f a c e Task ;

3

uses {
5 i n t e r f a c e TaskParameterInput as input [uint8_t index] ;

i n t e r f a c e TaskArrayParameterAccess<TERM_INPUT_TYPE> as terms ;
7 }

}
9 implementation {

11 INSTANTANEOUS_TASK_API_HELPER

Capítulo 5. Desenvolvimento 74

13 TASK_OUTPUT_TYPE averageOutput ;

15 /**
* @brie f Task i n i t i a l i z a t i o n rout in e .

17 */
void t a s k I n i t (void) {

19 /** I n i t i a l i z e task d e s c r i p t i o n */
INITIALIZE_TASK_DESCRIPTION(SUPPORT_INT |

21 SUPPORT_2_BYTE_LENGTH, // int16_t
OUTPUT_TO_NETWORK_TRUE,

23 CONTROL_ACTUATOR_FALSE,
AGGREGATE_DATA_TRUE,

25 DATA_SINK_FALSE) ;

27 INITILIZE_TASK_INPUT_DESCRIPTION(TERM_INPUT_ID,
NUMBER_OF_TERMS, // s i z e

29 SUPPORT_INT |
SUPPORT_2_BYTE_LENGTH) ; // int16_t

31 }

33 /**
* @brie f Task execut ion rout in e .

35 */
uint8_t taskRoutine (uint8_t ta sk In s tance) {

37 uint8_t i ;

39 uint8_t numberOfTerms = c a l l terms . g e t I n s t a n c e S i z e (ta sk In s tance) ;

41 /** Sum terms in order to compute average */
averageOutput = 0 ;

43 f o r (i = 0 ; i < numberOfTerms ; i++) {
averageOutput += c a l l terms . get (taskIns tance , i) ;

45 }

47 /** Compute average by d i v i d i n g sum r e s u l t */
averageOutput /= numberOfTerms ;

49

re turn 1 ;
51 }

}

5.4.4 Receptor

Esse componente é responsável por receber dados da rede e transmiti-los aos com-
ponentes do middleware a que eles se destinam. Só há dois destinos possíveis para um

Capítulo 5. Desenvolvimento 75

pacote recebido: o Processador de Respostas do Protocolo, no caso de um pacote de con-
trole (vide subseções 3.5.1 a 3.5.9), e a API de Tarefas, no caso de um pacote de dados
(vide subseções 3.5.10 e 3.5.11).

Pacotes de controle podem ser transmitidos na íntegra para o seu componente de
destino, mas pacotes de dados precisam ser mapeados para a instância da tarefa a que se
destinam como entrada. Para isso, o Receptor mantém uma tabela que mapeia − para
cada parâmetro de entrada da instância de uma tarefa − o identificador do fluxo SDN
por meio do qual um pacote de dados encaminhado a ela poderá ser recebido.

Consultando essa tabela, o Receptor pode informar à API de Tarefas o dado rece-
bido e a que parâmetro da instância de uma tarefa ele se refere. Essa tabela é atualizada
quando o Receptor recebe comandos vindos do Escalonador, no momento do agendamento
ou do cancelamento de uma instância de uma tarefa.

5.4.5 Emissor

Esse componente é responsável por enviar à rede os dados de saída produzidos
pelos demais componentes do middleware. Só há duas possíveis origens de um dado que
se quer destinar à rede: o Processador de Respostas do Protocolo, no caso de uma resposta
a um pacote de controle, e a API de Tarefas, no caso de um dado produzido por uma
instância de uma tarefa.

Pacotes de resposta ao controlador do framework podem ser simplesmente enviados
à rede rotulados com o identificador do fluxo SDN que os levará até o controlador. Dados
vindos da API de Tarefas, no entanto, precisam ser mapeados ao nó e à instância da
tarefa a que se destinam. Para isso, o Emissor mantém uma tabela que mapeia − para
cada instância de uma tarefa − o identificador do fluxo SDN por meio do qual o pacote
carregando o dado chegará ao seu destino, além de outros detalhes relativos ao tipo e ao
comprimento do dado enviado.

Consultando essa tabela, o Emissor descobre como montar e rotular o pacote de
dados que irá transmitir, via rede, o dado produzido por uma instância de uma tarefa.
Essa tabela é atualizada quando o Emissor recebe comandos vindos do Escalonador, no
momento do agendamento ou do cancelamento de uma instância de uma tarefa.

76

6 Testes

Este capítulo descreve os testes realizados e resultados obtidos. Primeiramente, são
descritos os testes realizados com o controlador do framework, de maneira a verificar seu
correto funcionamento. Em seguida, são descritos os testes realizados com o objetivo de
verificar o correto funcionamento do middleware. Depois da verificação do funcionamento
isolado dos componentes do projeto, descreve-se como foram feitos os testes de integração
entre o controlador do framework e o middleware presente nos nós sensores. Por fim,
apresenta-se a demonstração de funcionamento do projeto WARM como um todo.

6.1 Testes do controlador
Esta seção apresenta os testes realizados com o objetivo de verificar o funciona-

mento correto do controlador.

6.1.1 Testes de componentes

Para a realização dos testes iniciais foi utilizada a metodologia de testes descrita na
subseção 5.1.3, utilizando testes de unidade para testar as funcionalidades de cada novo
componente e também testes de integração parcial sempre que possível para verificar a
interação correta entre os módulos.

As unidades de teste são desenvolvidas de maneira separada do código principal,
utilizando uma instância diferente do banco de dados, preenchida de acordo com as ne-
cessidades dos testes a serem realizados. O código dos módulos é também aparelhado
com verificações especiais para emular funcionalidades de outros módulos quando neces-
sário. Dessa forma, é possível isolar completamente o seu funcionamento e verificar a sua
corretude de maneira independente dos demais módulos.

Os arquivos utilizados para testes foram mantidos no repositório de código do
projeto e podem ser vistos e até mesmo utilizados como referência de uso das funções que
eles testam.

6.1.2 Teste de funcionamento

Para realizar o teste de funcionamento completo do controlador também foi uti-
lizado o simulador COOJA, descrito na subseção 4.5.4. Primeiramente foi criada uma
simulação com apenas um nó sensor rodando uma versão modificada do controlador do

Capítulo 6. Testes 77

WARM. Essa versão modificada emula a presença de mais nós na rede, criando mensagens
de descrição de nós e respondendo a mensagens enviadas pelo controlador.

Após os testes realizados com a versão modificada do nó sensor foram iniciados os
testes de integração, descritos na seção 6.3.

6.2 Testes do middleware
Esta seção apresenta os testes realizados com o objetivo de verificar o funciona-

mento correto do middleware.

6.2.1 Testes de componentes

Como parte da metodologia de desenvolvimento, foram previstos testes de com-
ponentes para verificar o funcionamento correto de cada um dos módulos do middleware
que são mostrados na figura 6. Essas unidades de testes foram elaboradas juntamente
com o desenvolvimento dos componentes do middleware, de maneira a verificar que cada
um funcionasse de forma isolada, a cada incremento de funcionalidade previsto na fase
de implementação. Além disso, elas também colaboram para que a inclusão de novas fun-
cionalidades nos componentes possa ser feita sem comprometer funcionalidades que já
operem corretamente.

A implementação das unidades de teste de componentes é feita na forma de com-
ponentes complementares àqueles que se deseja testar, isto é: de componentes que im-
plementam, de forma simplificada e controlada, as interfaces que o componente testado
utiliza e que estimulam, com entradas variadas, as interfaces implementadas pelo compo-
nente testado. As ações das rotinas de testes e seus resultados são informados por meio da
comunicação serial com o nó. De maneira a facilitar a realização dos testes, as unidades
foram executadas fazendo uso da ferramenta de simulação COOJA, descrita na subseção
4.5.4.

6.2.2 Teste de funcionamento

Para testar o funcionamento do middleware como um todo, de forma isolada do
controlador do framework, foi realizado um setup de testes com sete nós sensores:

∙ Um, de endereço 1, contendo uma versão extremamente simplificada do controla-
dor do TinySDN, que simplesmente configurava fluxos de dados entre três dos nós
sensores, de endereços 3, 5 e 7;

Capítulo 6. Testes 78

∙ Um, de endereço 3, contendo uma versão extremamente simplificada do controla-
dor do framework, que simplesmente enviava pacotes predeterminados do protocolo
descrito na seção 3.5 para os dois nós sensores programados com o middleware;

∙ Dois, de endereços 5 e 7, programados com o middleware desenvolvido, ambos com
somente duas tarefas carregadas, sendo uma periódica que amostra dados de tem-
peratura e outra instantânea que recebe dados da rede e os “imprime” via serial;

∙ Três, de endereços 2, 4 e 6, programados somente com a camada do TinySDN de ma-
neira a atuar como roteadores e confirmar o funcionamento de troca de informações
na rede mesmo em cenários com múltiplos saltos.

Figura 8 – Teste do middleware realizado com o simulador COOJA.

Utilizando o simulador COOJA, foi criada uma simulação em que estes nós foram
dispostos em fileira, de modo que cada um só pudesse se comunicar com os dois nós que lhe
fossem adjacentes. Nela, o nó 3 agenda uma instância da tarefa que amostra temperatura

Capítulo 6. Testes 79

no nó 5, e no nó 7 uma instância da tarefa que recebe os dados de temperatura amostrados
e os imprime via comunicação serial. Esse cenário pode ser visto na figura 8.

A execução desse teste comprovou o correto funcionamento do middleware, com o
envio correto de respostas às requisições feitas pelo controlador simplificado, e também
com o desempenho correto das tarefas agendadas.

6.2.3 Desempenho

A partir da execução do teste de funcionamento descrito na seção 6.2.2, foi possível
obter resultados relacionados ao desempenho do middleware. Esses resultados podem ser
vistos na tabela 19.

Tabela 19 – Tempos de execução do middleware

Funcionalidade Tempo aproximado (s)
Boot de um nó sensor programado com o middleware 10,690
Associação de um nó sensor ao controlador 0,010
Requisição da descrição de uma tarefa 0,005
Agendamento de uma tarefa periódica 0,005
Agendamento de uma tarefa instantânea 0,005
Cancelamento de uma tarefa periódica 0,005
Cancelamento de uma tarefa instantânea 0,005
Requisição de relatório de execução de uma tarefa 0,005
Requisição de relatório de estado de um nó sensor 0,005

Dada a proximidade dos resultados obtidos para os tempos de requisição e res-
posta, pode-se inferir que o overhead de processamento das requisições pelo middleware é
desprezível se comparado ao tempo da troca de mensagens na rede. É necessário lembrar
que tais resultados consideram somente o tempo de resposta do middleware, não levando
em conta os tempos de processamento que o controlador levaria para processar respostas
do usuário, ou realizar ações como a inscrição de um nó associado antes de enviar uma
confirmação.

Além disso, foi possível verificar o desempenho do middleware em termos de espaço
em memória. O middleware programado nos nós sensores do teste realizado, carregado
com somente duas tarefas, ocupava 34962 bytes de memória de programa e 5516 bytes de
memória de dados. Em um nó sensor como o TelosB, descrito na seção 4.5.3 e utilizado
nos testes realizados, isso significa uma ocupação de 72,84 % da memória de programa e
de 55,16 % da memória de dados.

Capítulo 6. Testes 80

6.3 Testes de integração
Após a realização dos testes separados do middleware e do controlador foram

realizados também testes de integração. Os testes de integração consistem de testes para
garantir que o sistema inteiro interage corretamente entre as partes e está funcionando
corretamente como um todo.

Os testes iniciais de integração também utilizaram o simulador COOJA, utilizando
inclusive a mesma topologia de rede descrita na subseção 6.2.2. A única alteração na
configuração de testes com relação ao utilizado nos testes do middleware foi a substituição
da versão simplificada do controlador do WARMpela versão completa, com comunicação
serial. Nesses testes ainda foi utilizada a versão simplificada do controlador do TinySDN.

A partir dessa simulação simplificada foi possível testar o correto funcionamento
do sistema como um todo, desde o agendamento de tarefas, passando pela comunicação
serial e indo até a correta comunicação entre o controlador e o middleware.

6.4 Demonstração de uso
Um exemplo de uso foi criado com o objetivo de demonstrar como o framework

WARM pode ser utilizado de forma simples. O exemplo foi desenvolvido em Javascript
e consiste em uma interface amigável ao usuário para realizar solicitações ao framework
através da API disponibilizada. Há quatro abas nesta interface: ‘Home’, ‘Tasks’, ‘Query’
e ‘Network’. Em ‘Home’, o usuário encontrará uma breve explicação sobre o WARM e
um tutorial para o uso do sistema.

Em ‘Tasks’ é possível realizar o agendamento e cancelamento de todas as tarefas
disponíveis na rede apenas preenchendo o formulário apresentado. Para agendar uma
tarefa periódica é preciso fornecer o identificador a tarefa e do nó, o período, a duração,
o endereço de destino dos dados coletados e uma referência, para caso o usuário queira
usar esses dados coletados como entrada de outra tarefa, como por exemplo, uma tarefa
que calcule a média desses dados. Para agendar uma tarefa instantânea, é preciso do
identificador da tarefa e do nó, uma referência para os dados que serão usados como
entrada, a quantidade desses dados, o endereço de destino da informação gerada e uma
referência para essa informação.

Em ‘Query’, o usuário pode solicitar informações da rede e receber o resultado em
formato JSON. Há cinco categorias de buscas disponíveis: ‘Nodes’, ‘Tasks’, ‘Schedules’,
‘Parameters’, ‘NodesStatistics’ e ‘TasksStatistics’. É possível restringir a busca preen-
chendo os campos disponíveis em cada categoria, por exemplo, o usuário pode fazer uma
requisição das informações apenas dos nós que se encontram em uma especifica região
fornecendo uma determinada área através da latitude e longitude de um ponto central e

Capítulo 6. Testes 81

Figura 9 – Aba ‘Tasks’ da interface desenvolvida.

o raio para a busca.

Figura 10 – Aba ‘Query’ da interface desenvolvida.

Em ‘Network’ é possível visualizar como os nós estão distribuídos na rede de uma
forma interativa para o usuário. Se um nó for clicado as suas informações aparecerão na
barra lateral da interface.

Capítulo 6. Testes 82

Figura 11 – Aba ‘Network’ da interface desenvolvida.

83

7 Conclusão

Esse capítulo encerra este trabalho, retomando seus objetivos e discutindo como
eles foram alcançados tendo em vista os resultados de seu desenvolvimento. Primeira-
mente, os resultados alcançados após término do projeto são relatados e discutidos em
relação aos requisitos levantados. Em seguida, comenta-se acerca dos possíveis desdobra-
mentos para o trabalho realizado, descrevendo algumas das possibilidades para lhe dar
prosseguimento. Finalmente, são realizadas algumas reflexões acerca do que o projeto
significou, de uma maneira mais ampla, enquanto trabalho final de graduação.

7.1 Resultados alcançados
Conforme apresentado na seção 1.1, o objetivo principal deste trabalho consiste na

concepção, especificação, implementação, validação e análise de desempenho do WARM,
um framework open source que facilita o desenvolvimento e o gerenciamento de aplicações
em RSSFs. Com relação à concepção e à especificação desse framework, considera-se que
o trabalho cumpriu seus objetivos, levantando requisitos e propondo uma solução concei-
tual bastante completa para o problema levantado, incluindo protocolos de comunicação,
organização da arquitetura e armazenamento dos dados necessários para a sua operação.

Cabe comentar aqui que, devido à sua robustez, foram poucas as modificações
realizadas sobre a especificação inicialmente proposta durante a fase de implementação,
devido a alguma inviabilidade técnica encontrada nessa etapa de projeto. As poucas alte-
rações que foram necessárias diziam respeito sobretudo a detalhes pontuais dos protocolos
de comunicação descritos nas seções 3.4 e 3.5.

Com relação aos requisitos funcionais e não funcionais do projeto, levantados na
seção 3.2, os testes realizados no capítulo 6 nos permitem afirmar que todos, com exceção
do requisito não-funcional RNF6, foram atendidos. Entretanto, nem todos os itens pre-
sentes na especificação proposta no capítulo 5 foram implementados, sobretudo por falta
de tempo e recursos. Para evidenciar como foi possível atender a maioria dos requisitos
mesmo sem cumprir a risca o que estava na especificação, iremos discutir como a imple-
mentação realizada atende a esses requisitos e de que maneira os itens não implementados
afetam esse atendimento.

O requisito funcional RF1 é atendido pela possibilidade que a API REST dá ao
usuário de agendar múltiplas tarefas distintas compondo uma ou mais aplicações para

Capítulo 7. Conclusão 84

uma RSSF. O RF2 também é possível através da API REST, mas a localização infor-
mada para um nó sensor só será baseada em dados obtidos via GPS caso ele disponha
de um sensor apropriado − o que não foi o caso da plataforma TelosB, utilizada nos
testes, que informava uma localização pré-fixada. A API também atende o RF3, forne-
cendo informações armazenadas no banco de dados do controlador do framework e que
são atualizadas em eventos de recepção de pacotes vindos do middleware, informando
características dos nós, descrições de tarefas e informações de estado atual tanto dos nós
quanto das tarefas executadas.

O RF4 foi atendido no que se refere à possibilidade do usuário de agendar tarefas
através da API REST. No entanto, foram especificadas tarefas de três tipos: periódicas,
instantâneas e triggers. Desses três, a implementação realizada só fornece suporte aos dois
primeiros. Devido à falta de tempo e recursos, o suporte a tarefas do tipo trigger não foi
completamente implementado tanto no middleware quanto no controlador do framework.
Entretanto, é possível programar tarefas instantâneas que se comportem de maneira muito
parecida com triggers, embora o seu mapeamento e agendamento através de rótulos e
referências, conforme especificado na seção 3.4.5, não seja possível dessa forma.

A configuração das tarefas por meio da API REST também atende ao RF5, que
possibilita a configuração de todos os parâmetros dos dois tipos de tarefas suportados,
com exceção de um. O tempo de validade de parâmetros recebidos, via rede, de outras
tarefas como entrada para tarefas instantâneas é um parâmetro de configuração que não
é suportado pelas implementações atuais do middleware ou do controlador do framework.
Com as mesmas restrições já observadas, o referenciamento e o encadeamento de tarefas
também é suportado, satisfazendo o RF6. O último requisito funcional, RF7 é atendido
devido à possibilidade de se agendar tarefas instantâneas apropriadas ao encerramento de
uma cadeia de tarefas, dando destino aos dados coletados ao longo dela, como o envio dos
dados à internet ou o seu registro em disco.

O requisito não-funcional RNF1 é atendido pelo uso do paradigma SDN, mais
especificamente através do TinySDN, que centraliza o controle da rede de sensores. O
TinySDN também possibilita o atendimento do RNF2, pois associa novos dispositivos
à infraestrutura da rede automaticamente, mas o middleware presente nos nós sensores
também tem um papel muito importante, fornecendo ao controlador as características e
capacidades de um nó associado, de maneira que ele possa ser utilizado pelas aplicações
em execução. Essas funcionalidades do middleware também são importantes para atender
o requisito RNF3, uma vez que um usuário leigo não precisa se preocupar com a progra-
mação dos nós sensores que for utilizar − no caso de já estarem pré-programados com o
middleware e já carregados com uma diversidade apropriada de tarefas.

A API de Tarefas, componente do middleware, também permite o fácil desenvol-
vimento de novas tarefas que utilizem novos recursos presentes em novas plataformas de

Capítulo 7. Conclusão 85

hardware, tornando o projeto extensível no que se refere ao requisito RNF4. Essa carac-
terística, aliada ao fato de o middleware ser baseado no SO TinyOS, contribui para a
portabilidade do sistema − que pode ser transportado sem grandes dificuldades para ou-
tras plataformas de hardware suportadas pelo TinyOS, embora nenhum teste nesse sentido
tenha sido feito −, de acordo com o requisito RNF7. O uso da linguagem Python, também
altamente portável, na implementação do controlador é mais um fator que contribui para
o atendimento desse requisito.

A interoperabilidade do framework projetado com outros sistemas é proporcionada
pela sua API REST, arquitetura cuja popularidade e facilidade de uso contribuem para
a fácil integração do WARM a outros sistemas, satisfazendo o RNF5. O mapeamento
de tarefas, implementado pelo controlador, faz com que o sistema atenda o requisito
RNF8, desde que uma entrada submetida pelo usuário não inclua o uso de uma tarefa de
trigger, como já foi esclarecido acima. Por fim, apesar de o requisito não-funcional RNF6
não ter sido atendido por falta de recursos e tempo, várias das informações atualmente
disponibilizadas pelo middleware ao framework possibilitam que seja implementada −
para o módulo de monitoramento da rede presente no controlador − a funcionalidade de
balanceamento automático dos recursos da rede.

Finalmente, além de comentar que a grande maioria dos requisitos do projeto
foram atendidos de maneira satisfatória, é importante ressaltar que os resultados obtidos
ainda mostram que WARM apresenta um tempo de resposta compatível com o que se
espera de uma RSSF − considerando características inerentes a esse tipo de rede e seus
componentes, como latência de comunicação e baixo poder de processamento − conforme
observa-se pelos resultados dos testes no capítulo 6.

7.2 Trabalhos futuros
Na seção 7.1 foram mencionados alguns itens da especificação feita no capítulo

3 que não puderam ser implementados devido à falta de tempo e de recursos. A forma
mais imediata de dar continuidade a este trabalho seria complementar a implementação
de forma que ela esteja completamente de acordo com a especificação proposta.

Isso significaria incluir, na implementação atual, o suporte a tarefas de trigger, a
possibilidade de configuração de uma janela de validade para os parâmetros de entrada
de tarefas instantâneas e o balanceamento automático, pelo controlador, dos recursos
alocados nos nós da rede. Concluída essa fase de melhoria da implementação, caberiam
novos testes, para assegurar que os requisitos foram cumpridos e avaliar o desempenho do
framework após tais modificações.

Completar a implementação de acordo com o especificado é, no entanto, somente
uma das possibilidades para dar continuidade a este projeto. Uma etapa seguinte seria

Capítulo 7. Conclusão 86

a de otimização do middleware, para que ele ocupe um espaço menor em memória nos
nós sensores, possibilitando que uma quantidade maior e mais diversificada de tarefas
seja carregada em um nó. Além disso, seria importante escrever grande número de tarefas
periódicas e instantâneas, que aproveitassem os recursos presentes no TelosB. Inclusive,
seria interessante testar o sistema em outras plataformas de hardware suportadas pelo
TinyOS e até portá-lo para outros sistemas operacionais e outras implementações de
SDN para RSSF, de forma que ele dê suporte a um número ainda maior de nós sensores.

Finalmente, é necessário lembrar que, durante o recorte de escopo, documentado
na seção 3.1, várias funcionalidades foram removidas antes de sequer serem incluídas nos
requisitos ou na especificação. Dentre elas, merecem destaque:

∙ A inclusão de uma camada para a comunicação segura de dados entre os nós sensores
− um requisito cada vez mais importante para RSSFs, a medida que elas passam
a coletar dados de caráter privado, como em aplicações para o monitoramento de
pacientes, residências, plantas industriais, entre outros;

∙ A viabilização da reprogramação remota das tarefas carregadas em um nó sensor
através da API REST, que contribuiria para o aumento da flexibilidade da infraes-
trutura de uma RSSF instalada;

∙ A melhoria do balanceamento da carga nos nós sensores da rede, permitindo que o
controlador seja capaz não somente de redistribuir tarefas quando necessário ou em
caso de falhas, mas também carregar novas tarefas onde haja demanda.

A adição de alguma das funcionalidades descritas acima − incluindo sua especi-
ficação, implementação e teste − mereceria atenção especial em possíveis dobramentos
futuros para este trabalho.

7.3 Considerações finais
A realização desse trabalho possibilitou o exercício de diversos conceitos e práti-

cas com que os alunos de Engenharia Elétrica e Computação têm contato ao longo da
graduação. O projeto e o desenvolvimento do sistema proposto, por si só, requisitou a apli-
cação de diversas técnicas aprendidas nas disciplinas de Engenharia de Software, como
metodologias de desenvolvimento, levantamento de requisitos, modelagem de sistemas e
de bancos de dados, metodologias de teste, técnicas de versionamento, documentação de
código e diversos conceitos de arquitetura de software.

A execução do projeto demandou também sólidos conceitos de arquitetura de redes
e de computadores, bem como conceitos de sistemas operacionais, relacionados a proto-
colos de comunicação, programação de sistemas, programação paralela e programação de

Capítulo 7. Conclusão 87

sistemas embarcados. Além disso, ela possibilitou o emprego de diversas técnicas obser-
vadas em laboratórios realizados durante a graduação, como Laboratório de Redes de
Computadores, Laboratório de Fundamentos de Engenharia de Computação, Laboratório
de Programação e Laboratório de Processadores.

Finalmente, cabe aqui destacar outros aspectos que também foram alcançados com
o desenvolvimento desse trabalho, que tem grande importância devido ao seu papel como
marco na conclusão da graduação em Engenharia Elétrica com ênfase em Computação.
Um desses aspectos é, sem dúvida, a prática do trabalho em grupo, fundamental na
carreira da Engenharia. Outro foi a aquisição de vivência e experiência no projeto e
execução de um trabalho de grande porte, aplicando de forma relacionada uma ampla
gama de conceitos e técnicas vistas durante a graduação. E, por fim, destaca-se o contato
que a realização desse trabalho possibilitou com a inovação, com a pesquisa e com a
tecnologia em estado da arte, que devem ser parte do cotidiano dos profissionais na área
da Engenharia.

88

Referências

ABERER, K.; HAUSWIRTH, M.; SALEHI, A. A middleware for fast and flexible sensor
network deployment. In: Proceedings of the 32Nd International Conference on Very
Large Data Bases. VLDB Endowment, 2006. (VLDB ’06), p. 1199–1202. Disponível em:
<http://dl.acm.org/citation.cfm?id=1182635.1164243>.

AZZARA, A. et al. PyoT, a macroprogramming framework for the Internet of
Things. In: IEEE. Industrial Embedded Systems (SIES), 2014 9th IEEE International
Symposium on. 2014. p. 96–103. Disponível em: <http://ieeexplore.ieee.org/xpls/abs all-
.jsp?arnumber=6871193>.

COSTANZO, S. et al. Software Defined Wireless Networks: Unbridling SDNs. In: Software
Defined Networking (EWSDN), 2012 European Workshop on. IEEE, 2012. p. 1–6. ISBN
978-1-4673-4554-5. Disponível em: <http://dx.doi.org/10.1109/ewsdn.2012.12>.

CULLER, D.; ESTRIN, D.; SRIVASTAVA, M. Overview of sensor networks. Computer
Magazine, IEEE Computer Society, v. 37, n. 8, p. 41–49, 2004.

Django Project. The Web framework for perfectionists with deadlines | Django. 2015.
Disponível em: <https://www.djangoproject.com>. Acesso em: 22.06.2015.

FIELDING, R. T.; TAYLOR, R. N. Principled design of the modern web architecture.
In: Proceedings of the 22Nd International Conference on Software Engineering. New
York, NY, USA: ACM, 2000. (ICSE ’00), p. 407–416. ISBN 1-58113-206-9. Disponível
em: <http://doi.acm.org/10.1145/337180.337228>.

Flask. Welcome | Flask (A Python Microframework). 2015. Disponível em: <http:/-
/flask.pocoo.org/>. Acesso em: 22.06.2015.

GAY, D. et al. The nesC language: A holistic approach to networked embedded
systems. In: ACM. Acm Sigplan Notices. 2003. v. 38, n. 5, p. 1–11. Disponível em:
<http://dl.acm.org/citation.cfm?id=781133>.

Git. Git. 2015. Disponível em: <http://www.git-scm.com/>. Acesso em: 11.09.2015.

golang. The Go programming language. 2015. Disponível em: <https://golang.org>.
Acesso em: 13.06.2015.

HEESCH, D. van. Doxygen Manual. 2015. Disponível em: <http://www.doxygen.org/>.
Acesso em: 05.11.2015.

KOLDEHOFE, B. et al. The power of software-defined networking: Line-rate content-
based routing using openflow. In: Proceedings of the 7th Workshop on Middleware for
Next Generation Internet Computing. New York, NY, USA: ACM, 2012. (MW4NG
’12), p. 3:1–3:6. ISBN 978-1-4503-1607-1. Disponível em: <http://doi.acm.org/10.1145-
/2405178.2405181>.

Referências 89

LEVIS, P. et al. TOSSIM: Accurate and scalable simulation of entire TinyOS applications.
In: ACM. Proceedings of the 1st international conference on Embedded networked sensor
systems. 2003. p. 126–137. Disponível em: <http://dl.acm.org/citation.cfm?id=958506>.

LEVIS, P. et al. TinyOS: An operating system for sensor networks. In: Ambient
intelligence. Springer, 2005. p. 115–148. Disponível em: <http://link.springer.com-
/chapter/10.1007/3-540-27139-2 7>.

LUO, T.; TAN, H.-P.; QUEK, T. Q. S. Sensor OpenFlow: Enabling Software-Defined
Wireless Sensor Networks. IEEE Communications Letters, v. 16, n. 11, p. 1896–1899,
2012. Disponível em: <http://dblp.uni-trier.de/db/journals/icl/icl16.htmlLuoTQ12>.

MADDEN, S. R. et al. TinyDB: an acquisitional query processing system for sensor
networks. ACM Transactions on database systems (TODS), ACM, v. 30, n. 1, p. 122–173,
2005.

MARGI, C. B. Comunicação, segurança e gerenciamento em redes de sensores sem fio.
2015. Tese (Livre-Docência) – Universidade de São Paulo.

OLIVEIRA, B. Trevizan de; MARGI, C. B.; GABRIEL, L. B. TinySDN: Enabling
multiple controllers for software-defined wireless sensor networks. In: IEEE.
Communications (LATINCOM), 2014 IEEE Latin-America Conference on. 2014. p. 1–6.
Disponível em: <http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=7041885>.

Oracle Corporation. java.com: Java + You. 2015. Disponível em: <https://www.java-
.com/en>. Acesso em: 14.06.2015.

PIURI, V.; MINERVA, R. Building the internet of things. Computer Now, IEEE
Computer Society, v. 8, n. 7, 2015.

Python Software Foundation. Welcome to Python.org. 2015. Disponível em: <https:/-
/www.python.org>. Acesso em: 13.06.2015.

Sphinx. Sphinx 1.3.1 Documentation. 2015. Disponível em: <http://sphinx-doc.org/>.
Acesso em: 05.11.2015.

SQLite. SQLite. 2015. Disponível em: <https://www.sqlite.org/>. Acesso em: 22.06.2015.

TELOSB. TelosB - Crossbow Technology. 2015. Disponível em: <http://www.willow.co-
.uk/html/telosb mote platform.php>. Acesso em: 17.6.2015.

World Wide Web Consortium. SOAP Specifications. 2015. Disponível em: <http://www-
.w3.org/TR/soap/>. Acesso em: 22.06.2015.

	Folha de rosto
	Resumo
	Abstract
	Lista de Figuras
	Lista de Tabelas
	Sumário
	Introdução
	Objetivo
	Metodologia de elaboração do projeto
	Cronograma e atividades
	Organização do Documento

	Planejamento
	Revisão bibliográfica
	Redes de sensores sem fio
	TinyOS

	Gerenciamento e consultas para rssf
	TinyDB
	PyoT
	Global Sensor Networks

	Software Defined Networks
	sdn aplicado a rssf
	Software Defined Wireless Networks
	Sensor OpenFlow
	TinySDN

	Especificação
	Escopo do projeto
	Requisitos do projeto
	Requisitos funcionais
	Requisitos não-funcionais
	Garantias para os requisitos não-funcionais

	Diagrama de arquitetura simplificado
	Protocolo de interface com o usuário
	 Características dos nós sensores
	 Disponibilidade das tarefas
	 Parâmetros de agendamento das tarefas
	 Agendamentos em execução
	 Agendamento de uma tarefa
	 Cancelamento de um agendamento

	Protocolo de interface com o middleware
	Descrição de características de um nó sensor
	Descrição de um dispositivo
	Descrição de uma tarefa
	Agendamento de uma tarefa periódica
	Agendamento de uma tarefa instantânea
	Agendamento de um trigger
	Cancelamento de uma tarefa agendada
	Relatório de execução de uma tarefa agendada
	Estado de um nó sensor
	Transmissão de dados
	Transmissão de sinal de trigger

	Arquitetura do controlador
	Bancos de dados do controlador

	Arquitetura do middleware

	Tecnologias
	Tecnologias de interface com o usuário
	rest
	soap
	Escolha e motivos

	Tecnologias de implementação para o servidor rest
	Django
	Flask

	Linguagens para o controlador do framework
	Go
	Java
	Python
	Escolha e motivos

	Banco de Dados
	SQLite
	SQLAlchemy

	Middleware
	TinyOS
	TinySDN
	TelosB
	COOJA

	Aplicação
	Desenvolvimento
	Metodologias de desenvolvimento
	Versionamento de código
	Revisão de código
	Testes de componentes
	Documentação de código

	Servidor rest
	Controlador
	Mapeamento de tarefas
	Monitoramento da rede
	Controlador do TinySDN
	Nó da rede conectado por serial

	Banco de dados

	Middleware
	Processador de Respostas do Protocolo
	Escalonador
	API de Tarefas
	Receptor
	Emissor

	Testes
	Testes do controlador
	Testes de componentes
	Teste de funcionamento

	Testes do middleware
	Testes de componentes
	Teste de funcionamento
	Desempenho

	Testes de integração
	Demonstração de uso

	Conclusão
	Resultados alcançados
	Trabalhos futuros
	Considerações finais

	Referências

