
Universidade de São Paulo

Instituto de Ciências Matemáticas e de
Computação

Plataformas Virtuais para o Ensino de Computação
Paralela: Desafios e Desempenho Usando Contêineres

Marco Adriano Tette Schaefer

São Carlos (SP)

Plataformas Virtuais para o Ensino de Computação
Paralela: Desafios e Desempenho Usando Contêineres

Marco Adriano Tette Schaefer

Orientador: Paulo Sérgio Lopes de Souza

Monografia referente ao projeto de conclusão de
curso dentro do escopo da disciplina SSC0670
do Departamento de Sistemas de Computação
do Instituto de Ciências Matemáticas e de Com-
putação – ICMC-USP para obtenção do título
de Bacharel Engenheiro de Computação.

Área de concentração: Sistemas Distribuídos e
Programação Concorrente.

1

USP - São Carlos
25 de novembro de 2019

2

Agradecimentos
Esta seção é destinada a agradecer a todos aqueles que, de alguma forma, contribuíram para

que este trabalho fosse possível.
Primeiramente, gostaria de agradecer aos meus pais pelo apoio oferecido ao longo da

graduação. Sem esse apoio, não seria possível que eu participasse deste curso de graduação,
tampouco seria possível a realização deste trabalho.

Em seguida, gostaria de dedicar um agradecimento aos meus amigos e familiares, pelos
momentos em que convivemos juntos ao longo desta jornada. É gratificante sempre poder
contar com uma mão amiga em momentos de felicidade e momentos de dificuldade.

Tambémgostaria de dedicar umagradecimento aomeuorientador, o professor Paulo Sérgio, e
ao doutorandoNaylor Garcia. Agradeçomuito pelo esforço dedicado à revisão e orientação deste
trabalho, pelo empenho e reuniões que realizamos, bem como pela organização e construção do
artigo desenvolvido ao longo do projeto.

3

Resumo
Na prática do ensino de computação paralela, um dos maiores desafios atualmente é conse-

guir disponibilizar equipamentos, infraestrutura e ambiente para a execução de experimentos e
aprendizados na área. É custoso dispôr de um cluster com diversas máquinas para a execução
de códigos paralelos. Além disso, é oneroso preparar um ambiente facilmente replicável para
a execução de códigos que façam uso de frameworks. Nesse contexto, este trabalho disserta a
respeito da implementação de um sistema facilmente replicável, que permite executar códigos
paralelos em um cluster formado por contêineres.

4

Sumário
1 Introdução 8

1.1 Contextualização e motivação . 8
1.2 Objetivos . 9
1.3 Organização do trabalho . 9

2 Revisão bibliográfica 10
2.1 Programação Paralela . 10
2.2 Virtualização . 13

3 Desenvolvimento do trabalho 15
3.1 Considerações Iniciais . 15
3.2 Projeto . 15
3.3 Descrição das atividades realizadas . 16

3.3.1 Detalhes do Sistema Desenvolvido . 16
3.3.2 Avaliação de Desempenho do NFS e Docker Volumes 19

3.4 Resultados obtidos . 21
3.5 Dificuldades e limitações . 23
3.6 Considerações finais . 24

4 Conclusão 25
4.1 Contribuições . 25
4.2 Relacionamento entre o Curso e o Projeto . 25
4.3 Considerações sobre o Curso de Graduação 25
4.4 Trabalhos futuros . 26

A
Dockerfile base 32

B
Dockerfile do contêiner mestre do back-end 33

C
Docker-compose do back-end. 34

D Trabalhos de benchmarking relacionados 35

5

Listas

Lista de Tabelas
1 Trabalhos Relacionados . 35

6

Lista de Figuras
1 Representação da arquitetura do trabalho. 16
2 Exemplificação do back-end e front-end em funcionamento. 22
3 Quantidade de operações de leitura e escrita sem concorrência. 22
4 Quantidade de operações de leitura e escrita com 10 contêineres concorrentes. . 23
5 Exemplo de arquitetura utilizando o orquestrador Kubernetes. 27

7

1 Introdução

1.1 Contextualização e motivação
Sistemas computacionais atuais baseiam-se em paralelismo e multiprocessamento por conta

das limitações da famosa Lei de Moore [1]. Essa lei profetizou que o número de transistores
em um chip dobraria a cada 18 meses, pelo mesmo custo. Por muito tempo, observou-se esse
efeito nos processadores presentes no mercado, porém, já há alguns anos, percebe-se que não é
viável continuar aumentando apenas parâmetros como o número de transistores e a velocidade
de clock do chip. Como alternativa, sistemas atuais baseiam-se fortemente em paralelismo.

Atualmente no mercado é comum encontrar dispositivos com mais de um núcleo de proces-
samento. Dentre esses dispositivos, pode-se destacar máquinas dektop, notebooks, e até mesmo
dispositivos móveis como aparelhos celulares e tablets. Possuir mais de um núcleo de pro-
cessamento possibilita ao dispositivo processar simultaneamente instruções diferentes, podendo
executar mais tarefas em menos tempo, aumentando assim seu poder de processamento sem
necessariamente ter de aumentar seu número de transistores por núcleo, ou diminuir o tempo de
clock do chip.

A programação paralela está presente em diversos sistemas que fazem parte do dia-a-dia de
sociedades com fácil acesso à internet. Por exemplo, sistemas computacionais que analisam
grandes volumes de dados e requerem grande desempenho baseiam-se bastante em programação
paralela, como, por exemplo, sistemas para previsão do tempo, ou sistemas de inteligência
artificial e aprendizado de máquina. Em arquiteturas que requerem alta disponibilidade, como,
por exemplo, uma API web com grande número de acessos, é uma prática comum dispôr de
várias instâncias da mesma aplicação, que, paralelamente, conseguem suprir às requisições de
todos os usuários do sistema.

Os cursos de computação oferecem várias disciplinas de programação sequencial, em dife-
rentes contextos, mas isso não ocorre na mesma proporção para a programação paralela. Dentre
os possíveis fatores para isso, pode-se destacar o alto custo associado à compra e à manutenção
de hardware dedicado para o ensino de programação paralela como, por exemplo, um cluster
composto por diversos computadores interligados. Pode-se citar também, a alta complexidade
de configuração de um ambiente propício para a execução de códigos no contexto de progra-
mação paralela. De fato, a programação paralela não é trivial, pois, além dos pontos já citados,
pode empregar diferentes modelos de programação como PThreads [2], OpenMP [3],MPI [4],
CUDA [5] entre outros.

O ensino de programação paralela geralmente requer um alto gasto com hardware. Ge-
ralmente, é necessário dispôr de um cluster de diversas máquinas interligadas, que estejam
devidamente configuradas, e que sejam aptas a executar os códigos baseados na ferramenta de
programação paralela escolhida. Alémdisso, deve-se levar em conta os gastos com amanutenção
do mesmo.

Um outro fator de complexidade é que, mesmo para softwares paralelos básicos, o aluno
necessita pensar de uma maneira diferente quando comparado à programação sequencial, e seu
software precisa refletir isso. Em um ambiente no qual o processamento passa a ser distribuído,
a sincronização dos resultados passa a ser um problema frequente e não trivial.

No contexto dessa nova maneira de se projetar software, o aluno deve ter conhecimento em
um novo conceito: A comunicação. Processamento paralelo envolve muitas vezes comunicação
e sincronização entre as partes processantes. Isso pode ser feito, por exemplo, utilizando-
se passagem de mensagens, ou por meio de uma memória compartilhada entre os processos
participantes.

8

Caso os cursos de computação pudessem utilizar recursos já disponíveis em seus laboratórios
de ensino, desobrigando o conhecimento de detalhes da plataforma, e facilitando o uso durante
as aulas, o ensino da programação paralela seria popularizado, aumentando a oferta de futuros
profissionais melhor capacitados. A aptidão no contexto de programação paralela, poderá
permitir ao profissional desenvolver aplicações mais eficientes, que melhor aproveitem os multi-
processadores do dispositivo, e que, por consequência, tenham mais qualidade.

1.2 Objetivos
O grande, e principal, objetivo deste trabalho é contribuir para a popularização do ensino

da programação paralela, provendo camadas de abstração que escondam complexidades de
configuração do sistema e que sejam de baixo custo de implementação e utilização.

Para alcançar o grande objetivo, este trabalho deseja construir e preparar contêineres para
o ensino de programação paralela. Esses contêineres deverão ser de simples configuração, e
poderão ser utilizados por alunos e professores para a prática do ensino de programação. Nos
contêineres utilizados pelo professor, haverá um serviço que expõe uma API para o recebimento
de códigos que podem fazer uso das ferramentas de programação paralela OpenMP [3] e MPI
[4]. No contêiner utilizado pelos alunos, haverá um programa capaz de enviar um código para
execução remota, informando parâmetros adicionais de execução como, por exemplo, o número
de processos participantes da execução, e o número de hosts envolvidos.

1.3 Organização do trabalho
Este trabalho está organizado em 6 capítulos. No primeiro capítulo, encontra-se apenas esta

introdução ao trabalho realizado, destacando contexto, motivações e objetivos pretendidos. No
segundo capítulo, são apresentadas as listas figuras e tabelas deste trabalho. O terceiro capítulo
contém a introdução deste trabalho, apresentando ao leitor contextualização a respeito do tema,
a motivação para a realização do projeto, bem como os objetivos propostos e a organização
deste documento. No quarto capítulo encontra-se a revisão bibliográfica, na qual apresenta-se
para o leitor os conceitos de programação paralela e virtualização, conceitos estes que serão os
pontos chave do trabalho desenvolvido. No quinto capítulo é apresentado o desenvolvimento do
trabalho, discorrendo sobre o projeto em si, detalhes das atividades realizadas, detalhes do sis-
tema desenvolvido, avaliação entre diferentes tecnologias para o compartilhamento de arquivos
e diretórios, bem como os resultados obtidos nos projetos implementados e nos experimentos
propostos. No sexto e último capítulo são apresentadas as conclusões sobre o trabalho, bem
como listadas as contribuições realizadas, o relacionamento entre o curso e o projeto, além de
considerações sobre o curso de graduação e possíveis trabalhos futuros. Ao final do documento,
são apresentados apêndices referenciados ao longo do texto.

9

2 Revisão bibliográfica

2.1 Programação Paralela
A programação paralela viabiliza a utilização de diversos processos e cálculos simultâneos.

Da mesma forma que a programação paralela abre novas possibilidades por conta de permitir
execuções simultâneas, também introduz novos desafios por conta de sua complexidade adicional
em comparação à programação sequencial, além de introduzir também novas ferramentas [6].

Quando comparada à programação sequencial, uma das principais diferenças que a progra-
mação paralela introduz é a necessidade de comunicação entre diferentes processos, estejam
eles sendo executados na mesma máquina ou não. Por meio dessa comunicação, diferentes
processos podem trocar informações entre si [7].

A troca de informações entre diferentes processos pode ocorrer, por exemplo, por meio de
uma memória compartilhada. Nesse cenário, os processos participantes da execução têm acesso
à mesma memória e, com isso, podem escrever seus resultados diretamente nela para que sejam
acessados por outro processo. É necessário ter cautela para que não ocorram inconsistências
nos resultados, podendo ser necessário, por exemplo, o uso de um mutex [8] para não permitir
o acesso simultâneo de mais de um processo a um determinado dado na memória, quando este
for compartilhado para escrita e leitura entre diferentes processos ou threads.

A comunicação entre diferentes processos também pode ocorrer por meio de troca de
mensagens. Nesse cenário, os processos participantes não escrevem na memória utilizada
pelos demais, e realizam sua comunicação por meio de instruções de passagem de mensagens.
Portanto, em determinados trechos do código, haverá instruções que enviam ou que esperam o
recebimento de dados de demais processos.

Nesse contexto, a arquitetura paralela do hardware e os sistemas operacionais utilizados são
de fundamental importância. As arquiteturas paralelas podem ser classificadas de acordo com a
taxonomia de Flynn [9]. Essa taxonomia classifica as arquiteturas de acordo com a pluralidade
de processadores e pluralidade de dados utilizados nas execuções.

Dentre as arquiteturas classificadas por Flynn, pode-se destacar as arquiteturasMIMD (Mul-
tiple Instruction, Multiple Data). Hardwares baseados nessas arquiteturas são capazes de
processar múltiplas instruções com múltiplos dados simultaneamente. Sistemas baseados nes-
sas arquiteturas podem ainda contar com memória distribuída, ou memória compartilhada,
fator esse que pode influenciar na estratégia escolhida para a comunicação entre os processos
(passagem de mensagens ou acesso à memória compartilhada).

Também pode-se destacar as arquiteturas SIMD (Single instruction, multiple data). GPUs
(Graphics Processing Unit), por exemplo, são baseadas nesse tipo de arquitetura (embora
apresentem características amais quemáquinas SIMD puras. São hardwares capazes de executar
uma mesma instrução em um conjunto grande de dados. Esse tipo de arquitetura é muito útil
quando necessita-se, por exemplo, realizar operações em grandes matrizes de dados.

Do ponto de vista de sistemas operacionais, é muito comum atualmente encontrar siste-
mas operacionais de rede baseados em Linux. Os sistemas operacionais utilizados devem
implementar rotinas e funções de sistema que permitam a geração de processos e a comunica-
ção/sincronização entre os diversos processos/threads participantes da execução.

Para a criação de códigos de programação paralela, pode-se empregar diferentes modelos
de programação. Dentre os modelos disponíveis para a linguagem C, pode-se destacar, por
exemplo, PThreads. PThreads é a implementação de threads especificada pelo padrão POSIX
[10]. Essa implementação permite que o programador gerencie a criação e execução de diversas
threads simultaneamente, realizando chamadas de sistema. Para sua utilização, basta usar um

10

sistema operacional que implemente o padrão POSIX, que possua o compilador da linguagem C
(GCC) [11] e que possua a biblioteca pthread. No momento da compilação, basta informar para
o compilador a flag -lpthread. O Trecho 1 contém um exemplo básico da criação e finalização
de threads por meio das funções da biblioteca PThreads

Trecho 1: Uso básico da biblioteca PThreads
1 pthread_t threads[2];
2

3 int i;
4

5 for(i=0; i<2; i++) {
6 pthread_create(&(threads[i]), NULL, thread_func, NULL);
7 }
8

9 for(i=0; i<2; i++) {
10 pthread_join(threads[i], NULL);
11 }

Um outro modelo que merece destaque por sua grande utilização é o OpenMP (Open Multi-
Processing) [3]. O OpenMP é uma API que implementa métodos para executar e gerenciar
processos, permitindo a comunicação entre eles por meio de uma memória compartilhada. Sua
utilização requer a instalação de bibliotecas e dependências específicas, bem como o uso da flag
-fopenmp no momento da compilação. Sua utilização se dá por meio de diretivas de compilação
do tipo #pragma informadas no código, especificando um trecho do código sequencial no qual
se deseja paralelizar automaticamente pelo OpenMP. No Trecho 2 é possível observar um uso
trivial de uma diretiva do OpenMP, onde a impressão da string será feita por diferentes threads
(neste caso o número de threads será o mesmo que o número de núcleos do processador em
uso).

Trecho 2: Exemplo de diretiva da biblioteca OpenMP
1 #pragma omp parallel
2 {
3 printf("Hello World!\n");
4 }

Também é de grande importância o modelo de passagem de mensagens determinado pelo
padrão MPI (Message Passing Interface)[4]. O padrão MPI possui diversas implementações
como, por exemplo, OpenMPI [4], MPICH [12], LAM_MPI [13], entre outros. No padrão
MPI, a passagem de mensagens pode ser feita em um único host com processos distintos,
ou até mesmo em hosts distintos. Caso a passagem de mensagens seja realizada em um
mesmo host, a configuração da plataforma para a execução é mais simplificada, bastando apenas
instalar as dependências do MPI, e utilizar um compilador e um executor específicos para a
implementação. Caso a passagem de mensagens vá ocorrer entre hosts distintos, a configuração
torna-se mais complexa, sendo necessário configurar todo o acesso remoto (SSH [14]) entre os
hosts envolvidos, além de também ser desejável (e usual) configurar acesso a ummesmo sistema
de arquivos compartilhado, como, por exemplo, um diretório montado via NFS [15].

OTrecho 3 contémumsimples uso doMPI. O código ilustrado apenas retorna umamensagem
para cada processo participante da execução. Esta monografia não detalhará as funções doMPI
para a passagem de mensagens. Para mais informações sobre a construção de algoritmos com

11

o padrão MPI, consulte [4].

Trecho 3: Exemplo de uso doMPI
1 #include <mpi.h>
2 #include <stdio.h>
3

4 int main(int argc, char** argv) {
5 // Initialize the MPI environment
6 MPI_Init(NULL, NULL);
7

8 // Get the number of processes
9 int world_size;

10 MPI_Comm_size(MPI_COMM_WORLD, &world_size);
11

12 // Get the rank of the process
13 int world_rank;
14 MPI_Comm_rank(MPI_COMM_WORLD, &world_rank);
15

16 // Get the name of the processor
17 char processor_name[MPI_MAX_PROCESSOR_NAME];
18 int name_len;
19 MPI_Get_processor_name(processor_name, &name_len);
20

21 // Print off a hello world message
22 printf("Hello world from processor %s, rank %d out of %d

processors\n",
23 processor_name, world_rank, world_size);
24

25 // Finalize the MPI environment.
26 MPI_Finalize();
27 }

O Trecho 4 exemplifica a compilação e execução de um arquivo que faz uso do MPI. É
necessário o uso de scripts para a compilação e execução no MPI, respectivamente o mpicc e
o mpiexec (ou mpirun neste último). Tais scripts encapsulam detalhes de compilação pelo gcc
[11] e de execução dos processos em potencialmente diferentes hosts. Os hosts que participarão
da execução podem ser listados por meio de um hostfile nompiexec. Um hostfile é simplesmente
um arquivo que, em cada linha, contém um endereço (ou um nome que possa ser resolvido) de
um host.

Trecho 4: Exemplo de compilação e execução de um arquivo que faz uso doMPI
1 mpicc main.c -o main;
2 mpiexec -n 4 --hostfile ./hostfile main

A criação de programas no contexto da programação paralela requer conhecimentos não ape-
nas de programação em si, mas também de vários detalhes da infraestrutura básica, envolvendo
hardware e software. Considerando o ensino, essas aulas utilizam laboratórios compartilhados
com outras disciplinas, o que exige bastante flexibilidade destes para otimizar o uso dos recursos
disponíveis aos alunos na instituição de ensino. Nesse cenário, a virtualização é uma poderosa
ferramenta capaz de proporcionar flexibilidade na criação de hosts virtuais, sem a necessidade

12

de obtenção de hardware adicional. A virtualização também favorece em muito a configuração
dos sistemas que utilizarão a plataforma compartilhada, pois isola características específicas dos
sistemas que serão utilizados.

A alta complexidade na criação emanutenção de um cluster composto por diversas máquinas
físicas, além da dificuldade de se reutilizar o hardware para propósitos de disciplinas de outras
áreas, bem como a alta dificuldade de se configurar toda essa arquitetura, são problemas que
podem ser resolvidos ou atenuados por meio da virtualização.

2.2 Virtualização
A virtualização é o processo de se abstrair, por meio de software, componentes de hardware

e sistema operacional. Caso o hardware hospedeiro possua suporte, pode-se virtualizar até
mesmo um sistema operacional diferente do contido na máquina hospedeira, como se fosse, de
fato, uma máquina física diferente.

Dessa forma pode-se, por exemplo, possuindo uma única máquina, criar diversas máquinas
virtuais independentes, como se fossem, de fato, máquinas físicas diferentes. Esse processo
ajuda a reduzir gastos monetários em compras de novas máquinas, e permite boa flexibilização,
visto que, a qualquer momento, pode-se alterar as configurações das máquinas virtualizadas,
bem como acrescentar ou diminuir o número de máquinas, sem ser necessário fazer alterações
no hardware utilizado.

A virtualização pode impactar no desempenho das aplicações executadas, pois insere uma
camada extra de software entre as tais aplicações e o hardware que de fato as executará. No
contexto de programação paralela, a melhoria do desempenho é um fator essencial e motivador
para da mesma. Dentre os pontos críticos de desempenho em sistemas virtualizados pode-se
destacar, por exemplo, sistemas de arquivos remotos ou locais, como, por exemplo, o uso do
NFS [15].

ONFS, ouNetwork File System, é um sistema para compartilhamento de arquivos e diretórios
através da rede. Essa tecnologia permite que um diretório exposto seja montado na mesma
máquina física local, ou em uma máquina física remota. Dentre suas peculiaridades, pode-se
destacar que o NFS possui dois modos de operação: síncrono e assíncrono. No modo síncrono,
há persistência dos dados em disco a cada alteração, ou seja, as alterações são imediatamente
gravadas em disco. Já no modo assíncrono, os dados podem permanecer em memória durante
algum tempo antes de serem gravados em disco. Omodo assíncrono oferecemelhor desempenho
já que não precisa esperar o disco gravar as alterações; mas em caso de queda de energia por
exemplo, há maior risco de perda de dados, já que dados que estavam apenas em memória serão
perdidos no desligamento [16].

A virtualização não se faz presente apenas por meio de máquinas virtuais. Um outro re-
curso cada vez mais utilizado são os contêineres. Diferentemente de uma máquina virtual, um
contêiner é uma abstração de software, utilizada para replicar um determinado ambiente em
qualquer máquina capaz de executar tal tecnologia. É possível abstrair o sistema operacional
em um ambiente controlado, sem ser necessário abstrair o hardware como ocorre em máquinas
virtuais. Esse ambiente pode, teoricamente, ser replicado por qualquer máquina capaz de in-
terpretar tal tecnologia, de forma que a configuração e o ambiente da máquina hospedeira, não
interferem no ambiente criado pelo contêiner. Dessa forma, consegue-se eliminar interferências
causadas por configurações específicas da máquina do usuário e, assim, replicar a mesma execu-
ção em máquinas físicas diferentes com sistemas operacionais e configurações diferentes. Essa
característica é altamente utilizada pela indústria, tendo em vista que, por meio de contêineres,
um desenvolvedor pode garantir que o mesmo ambiente que foi utilizado durante o desenvol-

13

vimento em sua máquina local pode ser replicado em um servidor remoto, eliminando assim,
possíveis erros que poderiam ser causados por conta de se executar a aplicação em ambiente
com características e configurações diferentes [17].

A utilização de contêineres corrobora com algumas das boas práticas descritas nos 12 Fatores
[18], que são um manifesto com 12 metodologias para serem seguidas no desenvolvimento de
uma aplicação web. Dentre as boas práticas, pode-se destacar o décimo item da lista: "Paridade
entre desenvolvimento e produção"[19]. O uso de contêineres possibilita a criação de ambientes
de desenvolvimento e produção muito semelhantes.

A implementação de contêineres mais utilizada é a oferecida pelo Docker [20]. Docker é
um software capaz de criar e gerenciar contêineres em uma máquina hospedeira. Por meio de
um Dockerfile, o usuário pode especificar detalhadamente o ambiente que será construído em
seu contêiner, desde o sistema operacional que será utilizado, até as aplicações e dependências
que estarão instaladas, bem como até mesmo configurações de usuário e arquivos contidos no
contêiner. Além disso, é possível utilizar imagens de contêiner públicas disponibilizadas em
um Docker registry, e até mesmo compor novas imagens de contêiner utilizando imagens já
existentes. O Trecho 5 contém um exemplo básico da utilização de Docker para executar um
contêiner contendo Nginx, um popular servidor web, e mapeando a porta 80 do contêiner para
a porta 80 do host e, assim, conseguir expor externamente um serviço contido no contêiner.

Trecho 5: Exemplo básico de utilização do Docker
1 docker run -p 80:80 nginx

Observando o exemplo contido no Trecho 5 pode-se notar a simplicidade do processo. Por
meio doDocker, não é necessário instalar as dependências exigidas peloNginx, tampouco gastar
esforço em configurações do servidor. Com um único comando, pode-se utilizar um servidor
web e expor seus serviços externamente.

Devido à sua alta flexibilidade, contêineres são utilizados largamente em aplicações portadas
para a cloud. Provedores como a AWS (Amazon Web Services) [21] e a Google Cloud [22]
por exemplo, oferecem diversos serviços para a utilização de contêineres, como registros e
orquestradores.

No contexto do ensino de programação paralela, contêineres se fazem promissores devido
à sua alta flexibilidade, além de seu baixo custo de criação de manutenção quando comparado,
por exemplo, à utilização de um cluster composto por diversas máquinas físicas. Um ambiente
mais flexível e de menor custo, pode contribuir para a disseminação do ensino de programação
paralela.

14

3 Desenvolvimento do trabalho

3.1 Considerações Iniciais
Este capítulo tem a finalidade de descrever o trabalho desenvolvido. Discorre-se a respeito

dos objetivos específicos propostos no projeto, bem como sobre atividades que foram desen-
volvidas. São apresentados detalhes de implementação e decisões técnicas feitas ao longo do
desenvolvimento. O capítulo também apresenta os experimentos comparando as tecnologias
NFS e Docker Volumes, no que diz respeito ao compartilhamento de arquivos e diretórios en-
tre contêineres. Ao final do capítulo, são apresentados os resultados obtidos com o trabalho
desenvolvido.

3.2 Projeto
O projeto desenvolvido neste trabalho é um sistema para ajudar a disseminar o ensino da

programação paralela, diminuindo os custos de criação e manutenção, diminuindo a dificuldade
de configuração, e diminuindo o tempo necessário para sua utilização.

O sistema tem como objetivo permitir a execução de códigos que fazem uso das ferramentas
OpenMP eMPI de forma remota, em uma arquitetura que contém diversos hosts para participar
do processo de execução.

Dessa forma, o sistema foi dividido em back-end e front-end. O back-end é o componente
do sistema que deverá ser executado pela máquina utilizada pelo professor, e será responsável
por receber os códigos enviados pelos alunos, executá-los de acordo com os parâmetros de
execução recebidos, e devolver uma resposta para o aluno que enviou o código. O back-end
foi projetado para ser flexível, de forma que seja simples mudar as configurações do sistema,
podendo, por exemplo, adicionar ou remover hosts virtuais de forma simples, sem ser necessário
possuir conhecimentos avançados para isso. O back-end contém também, um serviço que expõe
uma API para realizar o recebimento e execução dos códigos enviados pelos alunos.

O front-end é o componente que deverá ser executado na(s) máquina(s) utilizada(s) pelo(s)
aluno(s). O front-end contém uma aplicação capaz de receber um arquivo desenvolvido em C
e que utilize as ferramentas citadas anteriormente, e enviá-lo para execução remota no back-
end. A aplicação também é capaz de receber parâmetros de execução como o número de hosts
envolvidos na execução e o número de processos que serão utilizados e informá-los ao back-end
via requisição HTTP.

Como desempenho é um fator importante em programação paralela, e o compartilhamento
de diretórios e arquivos é um ponto crítico, o projeto também envolve o estudo e comparação
do compartilhamento de diretórios e arquivos entre as tecnologias NFS [15] e Docker Volumes
[23]. Tem-se como objetivo compará-las sob os pontos de vista de desempenho e complexidade
de configuração.

A arquitetura geral do sistema é apresentada na Figura 1. Pode-se observar que a arquitetura
permite que diversos alunos utilizem o sistema simultaneamente.

15

Figura 1: Representação da arquitetura do trabalho.

3.3 Descrição das atividades realizadas
Para a construção do projeto, inicialmente foi realizado um estudo a respeito das depen-

dências necessárias para a criação de um ambiente com suporte à execução de códigos que
façam uso das ferramentasOpenMP eMPI. O resultado desse estudo foi aplicado na criação das
imagens Docker que descrevem os contêineres que compõem o sistema.

Idealizou-se a arquitetura ilustrada naFigura 1. A arquitetura foi proposta visando praticidade
e, principalmente, flexibilidade. Foi projetada demaneira a suportar o uso simultâneo de diversos
alunos, tanto para execuções locais nos próprios contêineres de front-end quanto remotamente
utilizando os contêineres que compõem o back-end. Além disso, pode-se facilmente alterar a
quantidade de contêineres escravos, podendo acrescentar ou diminuir o número de contêineres,
permitindo, por exemplo, que os alunos utilizem um número maior de hosts nas execuções dos
códigos enviados.

Também foi realizada uma avaliação comparativa entre as tecnologiasNFS eDocker Volumes
no que diz respeito ao compartilhamento de volumes entre contêineres dentro de um mesmo
host físico. A comparação levou em conta aspectos relativos à complexidade de configuração
e utilização, porém, o fator mais profundamente avaliado foi o desempenho. Foram realizados
testes de benchmark entre as tecnologias, incluindo dois modos diferentes de operação do NFS,
e com isso mensurou-se o desempenho de ambas as tecnologias em diferentes cenários. Os
resultados serão apresentados nas próximas seções.

3.3.1 Detalhes do Sistema Desenvolvido

Inicialmente, foi construída uma imagem de contêiner com suporte à execução dos códigos
que fazem uso das ferramentas OpenMP eMPI. Como sistema operacional base, foi escolhido o
sistema Debian, em sua versão 8. Utilizou-se uma imagem com uma versão mais enxuta desse
sistema operacional, denominada debian:8-slim, que está disponível publicamente no Docker
Hub [24].

Após a escolha da imagembase do contêiner dos hosts do back-end, foi necessário determinar
as dependências necessárias para a execução dos códigos. ODockerfile descreve a instalação dos
pacotes de cliente e servidor SSH [14], bem como a instalação das dependências específicas do

16

MPI que, nas distribuições baseadas em Debian, levam o nome de openmpi-bin e mpi-default-
dev.

Como o contêiner fará uso de SSH, foram gerados de antemão arquivos para a configuração
do serviço SSH. Gerou-se um par de chaves RSA, uma chave pública e uma chave privada,
para realizar a autenticação via SSH e assim habilitar o acesso remoto entre os contêineres que
compõem o back-end sem a necessidade de uma senha. Para o MPI poder utilizar múltiplos
hosts nas execuções, é necessário que o host que iniciou a execução do programa tenha acesso
remoto irrestrito aos demais hosts que irão participar da execução. O Trecho 6 ilustra um
exemplo de geração de um par de chaves RSA. Ao longo da execução do comando, pode-se
informar o caminho para a geração das chaves pública e privada.

Trecho 6: Exemplo de geração de um par de chaves RSA
1 ssh-keygen -t rsa -b 4096 -C "user@mail.com"

Além do par de chaves pública e privada, o serviço SSH permite a criação de um arquivo
denominado authorized_keys. Nesse arquivo, escreve-se a chave pública de todos os hosts
autorizados a acessar o host via SSH. Esse arquivo é o que garante que um contêiner possa ter
seu acesso autorizado a um outro contêiner, algo que é vital para a execução dos códigos que
fazem uso do MPI.

Adicionalmente, também é utilizado um arquivo denominado known_hosts. O cliente SSH
do host utiliza esse arquivo para identificar todos os hosts já conhecidos e que, portanto, podem
ser acessados sem que seja necessária uma confirmação por parte do usuário. Como o back-
end foi projetado para funcionar sem que seja necessária autorização do usuário para que os
contêineres possam se acessar via SSH, a presença desse arquivo é fundamental.

Para que todos esses arquivos relativos ao SSH possam ser utilizados, o serviço de SSH
impõe que eles tenham acesso restrito a certos níveis. No caso, o diretório que contém esses
arquivos (por padrão, dentro da home do usuário é criado um diretório denominado .ssh) deve
ser permissionado no modo 700. Esse modo permite que o dono do diretório tenha total controle
sobre ele, enquanto que os demais usuários não possuem nenhuma permissão sobre o mesmo.
No caso dos arquivos contidos no diretório, é necessário que os mesmos sejam permissionados
no modo 600. Esse modo permite que o dono dos arquivos possa lê-los e escrever neles,
enquanto que os demais usuários não possuem autorização para nenhuma ação sobre eles. O
Trecho 7 ilustra um exemplo de comando usado para alterar as permissões sobre um diretório
ou arquivo.

Trecho 7: Exemplo de comando para alterar as permissões de um arquivo
1 chmod 600 .ssh/authorized_keys

Após a preparação de todas as chaves de acesso e arquivos de configuração, é necessário
iniciar o serviço de SSH para que o host possa ser acessado remotamente. O Trecho 8 ilustra o
comando utilizado para iniciar o servidor SSH em distribuições Linux baseadas em Debian.

Trecho 8: Comando utilizado para iniciar o servidor SSH
1 service ssh start

A imagem base, que foi utilizada no início deste trabalho para compor as demais imagens
que serão apresentadas, está contida no Trecho 16.

Após a construção de uma imagem base de contêiner capaz de executar códigos OpenMP e
MPI, e capaz de acessar e ser acessada remotamente por outros hosts, foi projetado um serviço

17

que expõe uma API para o recebimento de código. Esse serviço tem como função expor uma
rota HTTP para o recebimento de código e parâmetros de execução. Em seguida, o serviço
coordena a execução desse código utilizando o número de hosts e processos informados nos
parâmetros de execução, e, por fim, retorna a resposta obtida ao remetente.

Esse serviço foi desenvolvido na linguagem Go [25], conhecida por ser uma linguagem de
alto desempenho.

O serviço expõe uma rota HTTP no endpoint /job. Nessa rota, ele escuta requisições HTTP
com o verbo POST, e espera como parâmetros o arquivo C informado em um parâmetro file,
o número de hosts utilizados na execução do código informado em um parâmetro hosts, e o
número de processos que serão utilizados na execução informado pelo parâmetro processes. O
Trecho 9 ilustra um exemplo de script que pode ser utilizado para enviar uma requisição com os
parâmetros citados usando a ferramenta curl, comumente presente em distribuições Linux.

Trecho 9: Exemplo de script que pode ser usado para enviar um código para execução.
1 curl -X POST \
2 http://localhost:8000/job \
3 -F hosts=5 \
4 -F processes=10 \
5 -F file=@/path/to/file.c

Após recebidos os parâmetros, o serviço irá preparar a execução do código recebido. A
primeira etapa é a geração de um arquivo hostfile, contendo uma lista dos hosts que participarão
da execução. O serviço contém um pequeno arquivo de configuração que lista todos os hosts
conhecidos. Ao receber o valor n no parâmetro hosts pela requisição HTTP, são escritos no
arquivo hostfile os n primeiros hosts lidos do arquivo de configuração, limitado até o número
máximo de hosts conhecidos.

Após preparado o arquivo com a lista de hosts, o serviço realiza a compilação do código
recebido. O código é compilado utilizando o mpicc [26], programa responsável por compilar
códigos que fazem uso do MPI. Dentre as flags de compilação, é informada também a flag que
habilita o uso da biblioteca doOpenMP. Dessa forma, é possível utilizar ambas as ferramentas e
manter sempre o mesmo comando para compilação do código. O Trecho 10 ilustra o comando
utilizado para compilar códigos que podem fazer uso tanto do OpenMP quanto do MPI.

Trecho 10: Comando usado para compilar os códigos recebidos.
1 mpicc -fopenmp main.c -o main

Após a compilação do código recebido, é realizada a execução com os parâmetros infor-
mados. O código é executando utilizando o mpiexec [27], programa responsável por executar
códigos que façam uso do MPI. Dentre as flags de execução, são informados o número de
processos participantes, bem como o caminho para o hostfile gerado anteriormente. O Trecho
11 ilustra o comando utilizado para executar os códigos recebidos, informando os parâmetros
de execução.

Trecho 11: Comando usado para executar os códigos recebidos.
1 mpiexec -n 4 --hostfile ./hostfile main

Ao final da execução, a resposta é devolvida ao usuário como resposta da própria requisição
HTTP.

Após a construção do serviço responsável pelo recebimento e execução dos códigos recebi-

18

dos, adaptou-se o Dockerfile apresentado no Trecho 16 para realizar também a compilação do
serviço e incluí-lo no contêiner final. Para tal, utilizou-se um processo conhecido como multi-
stage build [28]. Nesse processo, utilizou-se no início do Dockerfile uma outra imagem base,
que contém o ferramental necessário para compilar o serviço. Compila-se, então, a aplicação
em uma primeira imagem, e porta-se o binário obtido para a segunda imagem, que irá compor o
contêiner final que será utilizado. O Dockerfile final da imagem utilizada pelo contêiner mestre
do back-end encontra-se no Trecho 17.

3.3.2 Avaliação de Desempenho do NFS e Docker Volumes

Como pode ser observado na Figura 1, que ilustra a arquitetura geral do sistema, o back-end é
composto por um contêiner mestre, que contém o serviço de recebimento e execução de código,
e vários contêineres escravos que auxiliam na execução dos códigos recebidos. Todos esses
contêineres precisam ter acesso a um mesmo diretório no qual são compartilhados os binários
gerados após a compilação dos códigos. Tradicionalmente, implementações de clusters para
a execução de código MPI comumente utilizam o NFS [29] para realizar o compartilhamento
de diretórios. Por outro lado, quando se deseja compartilhar um mesmo volume entre dife-
rentes contêineres, é comum a utilização de Docker Volumes. Então, foi realizado um estudo
comparativo entre NFS e Docker Volumes, levando-se em conta desempenho e dificuldade de
configuração.

Inicialmente, comparou-se a dificuldade de configuração de ambas as tecnologias. No caso
doNFS, para que os contêineres possammontar um diretório externo, ou até mesmo permitir que
um diretório deles seja acessado por outro host, é necessário que a máquina hospedeira esteja
executando um serviço do NFS. Considerando o contexto de contêineres, em que deseja-se criar
ambientes que possam ser facilmente replicáveis em outras máquinas, o fato de ser necessário
que a máquina hospedeira esteja executando um serviço específico é uma grande desvantagem.
Além disso, os contêineres que farão uso do NFS precisam conter as dependências necessárias
para tal. O Trecho 12 mostra exemplos de comandos que podem ser utilizados para iniciar um
servidor NFS, e um comando que pode ser utilizado para montar um volume remoto pelo NFS.

Trecho 12: Exemplos de comandos utilizados para iniciar um servidor NFS, e para montar um
volume externo.

1 sudo systemctl start nfs-server.service;
2 sudo mount -v -t nfs 172.17.0.2:/ /mnt/nfs;

Por outro lado, a utilização de Docker volumes em contêineres tem uma configuração muito
mais simples. Diferentemente do NFS, não é necessário que a máquina hospedeira execute um
serviço a parte, tampouco é necessário instalar dependências específicas no contêiner. Iniciando
um contêiner pela linha de comando do Docker, basta informar uma flag adicional, contendo o
caminho do diretório da máquina hospedeira, e o caminho no qual o diretório será mapeado para
dentro do contêiner. O Trecho 13 ilustra um exemplo de comando que pode ser utilizado para
iniciar um contêiner, mapeando um volume da máquina hospedeira para dentro do contêiner.

Trecho 13: Exemplo de comando utilizado para iniciar um contêiner, mapeando um volume.
1 docker run -v /host/path:/container/path image_name

Em seguida, elaborou-se um experimento para comparar o desempenho entre NFS e Docker
Volumes. Foi utilizada uma máquina virtual com o sistema operacional Ubuntu Server 18.04.3
LTS. Para diminuir os efeitos de caching e aumentar a taxa de acessos a disco, foramprovisionado

19

apenas 512MB de memória RAM para a máquina virtual [30]. A máquina hospedeira do
experimento possui um processador Intel Core i7 -3537U, 8GB de memória RAM, um disco
rígido HDD, e um SSD [30].

A ferramenta de benchmarking utilizada foi o SysBench [31]. Escolheu-se essa ferramenta
com base em um levantamento de trabalhos relacionados, no qual notou-se que o Sysbench foi
a ferramenta mais utilizada por estes [30]. A Tabela 1 apresenta o levantamento obtido.

O experimento consiste em contêineres realizarem operações de escrita e leitura em um vo-
lume compartilhado. Ao todo, para compor os experimentos, foram realizadas 3100 medições,
comparando a performance entre os Docker Volumes, NFS no modo síncrono e NFS no modo
assíncrono [30]. Cada execução do experimento utilizou um payload de 2GB e foi realizada
durante 60 segundos [30]. Ao longo do experimento, foram avaliadas as performances em
operações de escrita e leitura. Também avaliou-se o impacto da concorrência sobre a perfor-
mance das operações, realizando o experimento tanto com um único contêiner quanto com 10
contêineres acessando simultaneamente o volume compartilhado [30].

Após o estudo sobre qual seria a tecnologia de compartilhamento de diretórios a ser utilizada,
escolheu-se a utilização dos Docker Volumes neste trabalho. Para facilitar a configuração de
toda arquitetura, utilizou-se o Docker Compose [32] para instanciar simultaneamente todos
os contêineres do back-end, e desinstanciá-los quando desejado. O arquivo de descrição do
Docker Compose é um arquivo no formato YAML, característico por ser bem legível e de fácil
edição. Além disso, é possível informar neste arquivo de descrição os Docker Volumes que
serão utilizados, facilitando ainda mais a configuração do ambiente. O arquivo de descrição do
Docker Compose utilizado neste trabalho encontra-se descrito no Trecho 18.

Realizada a construção do back-end, foi projetada uma aplicação capaz de enviar códigos
para execução remota, além de ser capaz de especificar alguns parâmetros de execução. Essa
aplicação será um serviço que ficará contido no contêiner do front-end que será utilizado pelo
aluno.

A aplicação também foi desenvolvida na linguagemGo [25], e sua utilização se dá pela linha
de comando. É possível informar alguns parâmetros por flags no momento da execução. Essas
flags serão enviadas como parâmetros na requisição HTTP para o back-end, e determinarão a
quantidade de hosts e processos participantes da execução. A aplicação foi chamada de rmtexec
(abreviação para remote execution). O Trecho 14 contém as intruções fornecidas pelo aplicação,
bem como um exemplo de uso.

Trecho 14: Instruções e exemplo de utilização do rmtexec.
1 $ rmtexec -h
2 Usage of rmtexec:
3 -file string
4 Arquivo .c para execucao. Exemplo: --file main.c
5 -hosts int
6 Numero de hosts que sero usados na execucao. Exemplo:

--hosts 3 (default 1)
7 -processes int
8 Numero de processos que sero usados na execucao. Exemplo:

--processes 4 (default 1)
9

10 $ rmtexec --file main.c --hosts 2 --processes 4

Os parâmetros hosts e processes, caso não sejam informados, foram projetados para terem
como padrão o valor 1. O único parâmetro obrigatório é o file, que especifica o caminho do

20

arquivo que será executado remotamente. Quando executada, então, a aplicação envia uma
requisição HTTP com o método POST utilizando um content-type do tipo multipart/form-data.
Cada um dos atributos, então, é enviado como um campo de um form-data na requisição. Ao
final da execução, a resposta da requisição é a resposta produzida pelo código enviado. Essa
resposta será exibida de volta para o aluno. No caso de erros de compilação ou execução, é
retornado um erro para o usuário.

A única configuração necessária para o rmtexec é a rota que será utilizada para reali-
zar a execução remota. Essa configuração será obtida ao carregar o arquivo localizado em
/etc/rmtexec/config.yaml. O diretório /etc é comumente utilizado em ambientes Linux para o
armazenamento de arquivos de configuração das aplicações do sistema. O Trecho 15 contém
um exemplo de arquivo de configuração da aplicação rmtexec.

Trecho 15: Exemplo de configuração do rmtexec.
1 remote: http://172.17.0.1:8000/job

Finalizada a construção da aplicação rmtexec, foi projetada a imagem que descreve o con-
têiner do front-end, que será utilizado pelos alunos para enviarem seus códigos para execução
remota. Esse contêiner por si só deve ser capaz de permitir execuções simples dentro de si (no
caso, com um único host), além de ser capaz de compilar e portar o rmtexec para si. Novamente
foi utilizada a técnica de multi-stage build [28] para gerar um contêiner construído em dois
estágios. No primeiro estágio, é compilada a aplicação rmtexec. No segundo estágio, que tem
como base a mesma imagem do Debian utilizada no back-end, são instaladas as dependências
relativas ao MPI. Além disso, o binário gerado no primeiro estágio é copiado para o contêiner
final, e alocado em um local contido no PATH do usuário. O PATH, em sistemas Linux, é o
conjunto de diretórios nos quais o sistema irá procurar um binário para execução.

Como um dos objetivos deste projeto é que ele seja de simples configuração, também foi
preparado um Makefile que abstrai os processos de construção e execução do contêiner. Na
primeira execução, pode-se construir o contêiner do front-end a partir de um simples make
build. Em seguida, pode-se executar o contêiner com um simples make run, e pode-se acessá-lo
com um make enter. Dentro do contêiner, a aplicação rmtexec estará disponível para utilização,
e, portanto, o aluno já poderá enviar seus códigos para execução remota.

3.4 Resultados obtidos
O sistema proposto e desenvolvido neste trabalho tem como principal objetivo, ajudar a popu-

larizar e disseminar a prática do ensino de programação paralela. Dessa forma, desenvolveu-se
uma arquitetura de um sistema simplificado para alunos e professores submeterem e executarem
aplicações paralelasMPI eOpenMP. A arquitetura foi projetada para trazer flexibilidade de uso,
fácil utilização e, principalmente, baixo custo de implementação e manutenção. Em situações
tradicionais, a construção de um cluster de diversas máquinas com suporte para a execução de
códigos com MPI e OpenMP é uma tarefa custosa e complexa. Por outro lado, a instancia-
ção de um cluster com suporte à execução de código com as ferramentas citadas formado por
contêineres em uma única máquina pode ser feito com um único comando. Tendo acesso ao
código do sistema, um simples comando de docker-compose up é suficiente para instanciar um
cluster de contêineres e já disponibilizá-lo para o uso. Além disso, desde que a máquina hospe-
deira tenha as dependências relativas ao Docker e ao Docker-compose, a arquitetura funcionará
de maneira independente do sistema operacional da máquina hospedeira, aumentando assim,
sua replicabilidade em diferentes máquinas com diferentes configurações. A Imagem 2 ilustra

21

ambos back-end e front-end em funcionamento, respectivamente dos lados esquerdo e direito.

Figura 2: Exemplificação do back-end e front-end em funcionamento.

Além disso, foi desenvolvida também uma API de código aberto capaz de receber códigos
enviados pelos alunos, gerenciar sua execução e devolver a resposta obtida na própria requisição.
A API é exposta por um serviço executado sobre uma plataforma virtualizada, construída para
ser capaz de executar códigos que fazem uso do MPI, de uma maneira muito mais simples do
que pelas práticas convencionais.

Também desenvolveu-se um estudo a respeito da utilização dos sistemas NFS e Docker
Volumes para o compartilhamento de diretórios e arquivos entre contêineres. Avaliou-se os
passos necessários para sua utilização, porém, o principal resultado deu-se na comparação de
desempenho [30].

Na Figura 3 são apresentados os resultados das execuções do experimento comparativo entre
NFS e Docker Volumes para operações de leitura e escrita em um cenário sem concorrência, ou
seja, com um único contêiner tendo acesso ao volume compartilhado. Pode-se observar que,
nesse experimento, o NFS em modo assíncrono foi responsável pelos melhores resultados [30],
tanto em operações de leitura, quanto em operações de escrita, mesmo em hardwares diferentes
como, no caso, um disco HDD e um disco SSD. O Docker Volume, por sua vez, apresentou
resultados levemente melhores do que os obtidos pelo NFS em modo síncrono. Dessa forma,
caso não seja possível arcar com os riscos de confiabilidade oferecidos pelo NFS assíncrono, o
Docker Volume seria uma melhor opção do ponto de vista de desempenho [30].

(a) Disco HDD (b) Disco SSD

Figura 3: Quantidade de operações de leitura e escrita sem concorrência.

Em um cenário com 10 contêineres acessando concorrente o volume compartilhado, mais
uma vez o NFS no modo assíncrono foi responsável pelos melhores resultados, apesar de uma

22

alta variação nos resultados das execuções. Nesse cenário, o NFS em modo síncrono também
performou de maneira melhor do que os Docker Volumes. A Figura 4 apresenta os resultados
obtidos nesta etapa do experimento [30].

(a) Disco HDD (b) Disco SSD

Figura 4: Quantidade de operações de leitura e escrita com 10 contêineres concorrentes.

Observou-se, portanto, que, se tratando de performance, o NFS em modo assíncrono pro-
porciona os melhores resultados, porém, vale ressaltar que esse ganho de performance se dá em
detrimento de confiabilidade, tendo em vista que o NFS nesse modo não persiste imediatamente
as alterações em disco, mantendo-as temporariamente apenas em memória. Também é impor-
tante observar que um outro fator importante que deve ser levando em consideração no momento
de escolher uma das tecnologias para o compartilhamento de volumes é a complexidade de con-
figuração. Conforme discorrido na seção anterior, a configuração inicial para o uso do NFS é
mais complexa do que a configuração inicial necessário para o uso de Docker Volumes, em um
cenário no qual os hosts são contêineres.

Os resultados da análise de desempenho do NFS e Docker Volumes no compartilhamento de
volumes em contêineres, em umamesmamáquina física, foram sintetizados em artigo, publicado
no Simpósio de Sistemas Computacionais de Alto Desempenho (WSCAD 2019), ocorrido em
Campo Grande/MS em outubro de 2019 [30].

3.5 Dificuldades e limitações
A maior dificuldade encontrada nas etapas iniciais do projeto foi com relação a utilização

do MPI em um sistema formado por contêineres. Há escassa documentação disponível publi-
camente sobre o assunto. A maioria das implementações de arquiteturas para a utilização do
MPI utiliza o NFS como sistema de compartilhamento de volumes e arquivos, enquanto que, se
tratando de contêineres, o uso de Docker Volumes para o compartilhamento desses diretórios
é uma prática mais comum. Como há pouca informação disponível a respeito do uso de NFS
em contêineres ao invés do uso de Docker Volumes, foi realizado um estudo comparativo entre
as tecnologias para auxiliar na escolha de qual ferramenta seria utilizada pelo sistema para
compartilhar os volumes entre os contêineres que compõem o back-end.

Outra grande dificuldade foi a construção dos contêineres que compõemo back-end, de forma
que o contêinermestre tenha acesso irrestrito aos contêineres escravos via SSH. As configurações
necessárias para habilitar acesso remoto via SSH por meio de chaves públicas e privadas sem

23

que seja necessária uma confirmação por parte do usuário são razoavelmente complexas, e, em
muitos casos, falham silenciosamente em caso de erro, sem informar o problema ocorrido.

Uma das limitações do sistema proposto é que, sem o uso de um orquestrador, Volumes
Docker só podem ser montados em contêineres na mesma máquina física, e não através da
rede como é o caso do NFS. Para possibilitar o uso de um mesmo volume Docker através da
rede em contêineres que estejam em máquinas físicas diferentes, é necessário o uso de algum
orquestrador de contêineres, como Kubernetes [33] ou Docker Swarm [34].

3.6 Considerações finais
Este capítulo apresentou detalhes sobre o desenvolvimento do projeto e os resultados ob-

tidos. Foram apresentadas as motivações e objetivos do projeto, a arquitetura e detalhes de
implementação e funcionamento das diferentes partes do sistema proposto, bem como os re-
sultados obtidos com a implementação. Além disso, discorreu-se sobre o estudo comparativo
realizado sobre as tecnologias NFS e Docker Volumes, dissertando a respeito de desempenho e
complexidade de configuração.

24

4 Conclusão

4.1 Contribuições
O trabalho desenvolvido apresenta uma solução de baixo custo de implementação, baixo custo

de manutenção, e baixa complexidade de configuração para a prática do ensino de programação
paralela com o uso das ferramentas OpenMP e MPI. Por conta dessas características, essa
solução contribui para a disseminação do ensino de programação paralela, uma vez que recursos
financeiros podem acabar deixando de ser um obstáculo.

A arquitetura desenvolvida é de simples utilização. Com um único comando, pode-se
instanciar um cluster de contêineres para atuarem como hosts na execução de códigos paralelos,
além de um serviço que expõe uma API para o recebimento de códigos externos, juntamente de
parâmetros de execução. Todo o sistema desenvolvido é open-source e encontra-se disponível
em repositórios públicos [35] [36], contribuindo assim, para disseminar o ensino prático de
programação paralela.

4.2 Relacionamento entre o Curso e o Projeto
Oprojeto desenvolvido se relaciona com diversas disciplinas apresentadas ao longo do curso.

O desenvolvimento desse projeto necessitou do conhecimento adquirido em diversas disciplinas
do curso, como, por exemplo, Algoritmos e Estruturas de Dados, Redes de Computadores,
Sistemas Operacionais, entre outras, podendo destacar, claro, Programação Concorrente, que
caracteriza o núcleo deste trabalho.

Além de se relacionar diretamente com as disciplinas vistas ao longo do curso, o projeto uti-
lizou diversas tecnologias e padrões presentes atualmente na indústria. As tecnologias utilizadas
na construção do sistema realizado neste projeto são, em grande parte, largamente utilizadas no
mercado. Por exemplo, é comum encontrar na indústria a utilização de Docker para a criação
de contêineres, a utilização de Go para a criação de aplicações, entre outros. Portanto, o projeto
relaciona-se bem como curso por utilizar os conhecimentos apresentados em diversas disciplinas
ministradas ao longo da formação, além de relacionar-se bem com a área de desenvolvimento
por utilizar tecnologias presentes no mercado atualmente.

4.3 Considerações sobre o Curso de Graduação
Ocurso de Engenharia de Computação tem como escopo o ensino de disciplinas relacionadas

tanto ao universo da computação, quanto ao universo da engenharia.
Tratando-se do escopo do ensino de computação, destaco os pontos que, em minha opinião,

são positivos:

• O curso fornece uma boa base a respeito de lógica e algoritmos. O aluno é capaz
de compreender os fundamentos ao longo do curso, e, caso possua interesse, tem total
capacidade de aprender por si tópicos mais complexos no assunto.

• A dificuldade e exigência das disciplinas de computação evolui bem ao longo do curso.

Em minha opinião, os pontos negativos que destaco são:

• A escolha da linguagem inicial apresentada no curso, no caso, a linguagem C, é um ponto
negativo. Acredito que, nas primeiras matérias de computação no curso, um dos objetivos

25

deve ser conseguir atrair o interesse dos alunos na área, e motivá-los a aprender mais sobre
o assunto por conta própria. Nesse cenário, não considero a linguagem C uma boa escolha
para isso, visto que é uma linguagem razoavelmente de baixo nível, na qual é necessária
muita complexidade e implementação para a realização de tarefas ainda simples. Em
contraste a isso, uma linguagem de mais alto nível como, por exemplo, Python, poderia
acabar motivando melhor os alunos do curso, visto que é possível realizar tarefas mais
complexas com menos esforço e menos dificuldade, fazendo com que os alunos vejam
melhor os poderes que a computação traz para aqueles que a utilizam.

• Um outro ponto que considero negativo é a omissão de alguns temas importantes no
currículo. Temas como desenvolvimento web, clean code, e até mesmo conteinerização
não são devidamente apresentados aos alunos em disciplinas obrigatórias. Considero
esses temas de extrema relevância, visto que grande parte dos alunos egressos acabando
tendo contato direto com esses assuntos no mercado.

4.4 Trabalhos futuros
Existem diversas etapas que poderiam compor trabalhos futuros realizados sobre os resul-

tados deste trabalho. Poderia-se, por exemplo, realizar a validação do sistema proposto com
alunos em sala de aula, podendo dessa forma, obter feedbacks a respeito do uso, e com isso
propor melhorias para serem acrescentas ao sistema proposto. Um outro trabalho que poderia
ser realizado é a portabilidade do sistema proposto para a cloud, fazendo com que não seja mais
necessário que o professor execute o back-end em sua máquina, e, dessa forma, seria necessário
apenas que os alunos configurassem seus contêineres locais para enviarem os códigos para o
endereço disponibilizado na cloud. Nesse mesmo trabalho, poderia-se utilizar um orquestrador
de contêineres, como Kubernetes, para gerenciar os contêineres que compõem o back-end e,
dessa forma, seria possível inclusive utilizar mais de um host físico para instanciar os contêine-
res do back-end e ainda assim utilizar o mesmo volume em todos os contêineres instanciados,
independentemente de em qual máquina física eles se encontram. Um exemplo de arquitetura
de sistema que faz o uso do Kubernetes é mostrado na Figura 5. Um outro trabalho possível,
seria a construção de um sistema para o cadastro de professores e alunos, de forma a executar
um Saas (Software as a Service) sobre o projeto proposto.

26

Figura 5: Exemplo de arquitetura utilizando o orquestrador Kubernetes.

27

Referências
[1] Moore’s law -Disponível em: <https://www.kth.se/social/upload/507d1d3af276540519000002/Moore’s%20law.pdf

>Acesso em Out. 2019.

[2] PTHREADS - Linux Programmer’sManual - Disponível em: <http://man7.org/linux/man-
pages/man7/pthreads.7.html >Acesso em Out. 2019.

[3] The OpenMP API specification for parallel programming - Disponível em:
<https://www.openmp.org>Acesso em Mai. 2019.

[4] Open MPI: Open Source High Performance Computing - Disponível em:
<https://www.open-mpi.org>Acesso em Mai. 2019.

[5] CUDA Toolkit Documentation - Disponível em: <https://docs.nvidia.com/cuda/ >Acesso
em Out. 2019.

[6] Michael Quinn. Parallel Programming. McGraw-Hill Science/Engineering/Math, 2003.

[7] A.S TANENBAUM. Sistemas Operacionais Modernos. Pearson, 2010.

[8] ExclusãoMútua (mutex) -Disponível em: <https://edisciplinas.usp.br/pluginfile.php/3061851/modr esource/content/2/36−
Mutex − v27.pdf > AcessoemOut .2019.

[9] Computer Architecture | Flynn’s taxonomy - Disponível em:
<https://www.geeksforgeeks.org/computer-architecture-flynns-taxonomy/ >Acesso
em Out. 2019.

[10] Posix Standard - Disponível em: <https://linuxhint.com/posix-standard/ >Acesso em Out.
2019.

[11] GCC, the GNU Compiler Collection - Disponível em: <https://gcc.gnu.org/ >Acesso em
Out. 2019.

[12] MPICH | High-Performance Portable MPI - Disponível em: <https://www.mpich.org/
>Acesso em Mai. 2019.

[13] LAM / MPI Parallel Computing - Disponível em:
<http://www.dcs.ed.ac.uk/home/trollius/www.osc.edu/lam.html >Acesso em Mai.
2019.

[14] ssh - Linux man page - Disponível em: <https://linux.die.net/man/1/ssh >Acesso em Out.
2019.

[15] NFS - Network File System - Disponível em: <http://web.mit.edu/rhel-doc/3/rhel-sag-
ptbr − 3/ch − n f s.html > AcessoemOut .2019.

[16] nfs - Linux man page - Disponível em: <https://linux.die.net/man/5/nfs >Acesso em Out.
2019.

[17] Docker and Reproducibility - Disponível em: <https://reproducible-analysis-
workshop.readthedocs.io/en/latest/8.Intro-Docker.html >Acesso em Out. 2019.

28

[18] The Twelve Factor App - Disponível em: <https://12factor.net/ptbr/>
AcessoemOut.2019.

[19] Dev/prod parity - Disponível em: <https://12factor.net/dev-prod-parity >Acesso em Out.
2019.

[20] Enterprise Container Platform for High-Velocity Innovation - Disponível em:
<https://www.docker.com/>Acesso em Mai. 2019.

[21] Amazon Web Services (AWS) - Disponível em: <https://aws.amazon.com/ >Acesso em
Out. 2019.

[22] Google Cloud: Cloud Computing Services - Disponível em: <https://cloud.google.com/
>Acesso em Out. 2019.

[23] Use volumes | Docker Documentation - Disponível em:
<https://docs.docker.com/storage/volumes/>Acesso em Mai. 2019.

[24] Debian - Docker Hub - Disponível em: <https://hub.docker.com//debian >
AcessoemOut.2019.

[25] The Go Programming Language - Disponível em: <https://golang.org/>Acesso em Out.
2019.

[26] Compiles and links MPI programs written in C - Disponível em:
<https://www.mpich.org/static/docs/v3.1.x/www1/mpicc.html >Acesso em Out. 2019.

[27] mpiexec - Disponível em: <https://www.mpich.org/static/docs/v3.1/www1/mpiexec.html
>Acesso em Out. 2019.

[28] Use multi-stage builds - Disponível em: <https://docs.docker.com/develop/develop-
images/multistage-build/ >Acesso em Out. 2019.

[29] Running an MPI Cluster within a LAN - Disponível em:
<https://mpitutorial.com/tutorials/running-an-mpi-cluster-within-a-lan/ >Acesso em
Out. 2019.

[30] N.G.; P.S.L. SOUZA M.A.T. Schaefer; N.G. Bachiega and S.M.S. Bruschi. Avaliação
do docker volume e do nfs no compartilhamento de sistemas de arquivos em contêineres.
In Simpósio de Sistemas Computacionais de Alto Desempenho (WSCAD2019), volume 1,
pages 1–8, October 2019.

[31] Sysbench - Scriptable database and system performance benchmark - Disponível em:
<https://github.com/akopytov/sysbench >Acesso em Out. 2019.

[32] Overview of Docker Compose - Disponível em: <https://docs.docker.com/compose/
>Acesso em Out. 2019.

[33] Orquestração de contêiner pronto para produção - Disponível em:
<https://kubernetes.io/pt/ >Acesso em Out. 2019.

[34] Swarmmode overview -Disponível em: <https://docs.docker.com/engine/swarm/ >Acesso
em Out. 2019.

29

[35] HPC Frontend with MPI support - Disponível em:
<https://github.com/MarcoSchaefer/hpc-frontend >Acesso em Out. 2019.

[36] HPC Backend with MPI support - Disponível em:
<https://github.com/MarcoSchaefer/hpc-backend >Acesso em Out. 2019.

[37] N. G. Bachiega, P. S. L. Souza, S. M. Bruschi, and S. d. R. S. de Souza. Container-based
performance evaluation: A survey and challenges. In 2018 IEEE International Conference
on Cloud Engineering (IC2E), pages 398–403, April 2018.

[38] J. Che, C. Shi, Y. Yu, and W. Lin. A synthetical performance evaluation of openvz, xen
and kvm. In 2010 IEEE Asia-Pacific Services Computing Conference, pages 587–594, Dec
2010.

[39] M. G. Xavier, M. V. Neves, F. D. Rossi, T. C. Ferreto, T. Lange, and C. A. F. De Rose.
Performance evaluation of container-based virtualization for high performance computing
environments. In 2013 21st Euromicro International Conference on Parallel, Distributed,
and Network-Based Processing, pages 233–240, Feb 2013.

[40] Anish Babu, Hareesh M. J., John Paul Martin, Sijo Cherian, and Yedhu Sastri. System per-
formance evaluation of para virtualization, container virtualization, and full virtualization
using xen, openvz, and xenserver. In 2014 Fourth International Conference on Advances
in Computing and Communications, pages 247–250, Aug 2014.

[41] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio. An updated performance comparison
of virtual machines and linux containers. In 2015 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS), pages 171–172, March 2015.

[42] C. Ruiz, E. Jeanvoine, and L. Nussbaum. Performance evaluation of containers for hpc. In
In: Hunold S. et al. (eds) Euro-Par 2015: Parallel Processing Workshops. Euro-Par 2015,
pages 813–824, December 2015.

[43] T. Adufu, J. Choi, andY.Kim. Is container-based technology awinner for high performance
scientific applications? In 2015 17th Asia-Pacific Network Operations and Management
Symposium (APNOMS), pages 507–510, Aug 2015.

[44] M. Amaral, J. Polo, D. Carrera, I. Mohomed, M. Unuvar, and M. Steinder. Performance
evaluation ofmicroservices architectures using containers. In 2015 IEEE14th International
Symposium on Network Computing and Applications, pages 27–34, Sept 2015.

[45] D. Beserra, E. D. Moreno, P. T. Endo, J. Barreto, D. Sadok, and S. Fernandes. Performance
analysis of lxc for hpc environments. In 2015 Ninth International Conference on Complex,
Intelligent, and Software Intensive Systems, pages 358–363, July 2015.

[46] A. M. Joy. Performance comparison between linux containers and virtual machines. In
2015 International Conference on Advances in Computer Engineering and Applications,
pages 342–346, March 2015.

[47] R. Morabito, J. Kjällman, and M. Komu. Hypervisors vs. lightweight virtualization: A
performance comparison. In 2015 IEEE International Conference on Cloud Engineering,
pages 386–393, March 2015.

30

[48] M. G. Xavier, I. C. D. Oliveira, F. D. Rossi, R. D. D. Passos, K. J. Matteussi, and C. A. F. D.
Rose. A performance isolation analysis of disk-intensive workloads on container-based
clouds. In 2015 23rd Euromicro International Conference on Parallel, Distributed, and
Network-Based Processing, pages 253–260, March 2015.

[49] M. T. Chung, N. Quang-Hung, M. T. Nguyen, and N. Thoai. Using docker in high
performance computing applications. In 2016 IEEE Sixth International Conference on
Communications and Electronics (ICCE), pages 52–57, July 2016.

[50] A. Jaikar, S.A.R. Shah, S. Bae, and S.Y. Noh. Performance evaluation of scientific work-
flow on openstack and openvz. Social-Informatics and Telecommunications Engineering,
LNICST, 167:126–135, 2016.

[51] B. Ruan, H. Huang, D. Wu, and H. Jin. A performance study of containers in cloud envi-
ronment. In: Wang G., Han Y., Martínez Pérez G. (eds) Advances in Services Computing.
APSCC 2016., 10065:343–356, 2016.

[52] S. Herbein, A. Dusia, A. Landwehr, S. McDaniel, J. Monsalve, Y. Yang, S.R. Seelam,
and M. Taufer. Resource management for running hpc applications in container clouds.
Lecture Notes in Computer Science, 9697:261–278, 2016.

[53] R. K. Barik, R. K. Lenka, K. R. Rao, and D. Ghose. Performance analysis of virtual machi-
nes and containers in cloud computing. In 2016 International Conference on Computing,
Communication and Automation (ICCCA), pages 1204–1210, April 2016.

[54] R. S. V. Eiras, R. S. Couto, and M. G. Rubinstein. Performance evaluation of a virtualized
http proxy in kvm and docker. In 2016 7th International Conference on the Network of the
Future (NOF), pages 1–5, Nov 2016.

[55] Z. Kozhirbayev and R.O. Sinnott. A performance comparison of container-based techno-
logies for the cloud. Future Generation Computer Systems, 68:175–182, 2017.

[56] Z. Li, M. Kihl, Q. Lu, and J. A. Andersson. Performance overhead comparison between
hypervisor and container based virtualization. In 2017 IEEE 31st International Conference
on Advanced Information Networking and Applications (AINA), pages 955–962, March
2017.

[57] I. Mavridis and H. Karatza. Performance and overhead study of containers running on
top of virtual machines. In 2017 IEEE 19th Conference on Business Informatics (CBI),
volume 02, pages 32–38, July 2017.

[58] A. Lingayat, R. R. Badre, and A. Kumar Gupta. Performance evaluation for deploying
docker containers on baremetal and virtual machine. In 2018 3rd International Conference
on Communication and Electronics Systems (ICCES), pages 1019–1023, Oct 2018.

[59] H. Zeng, B. Wang, W. Deng, and W. Zhang. Measurement and evaluation for docker
container networking. In 2017 International Conference on Cyber-Enabled Distributed
Computing and Knowledge Discovery (CyberC), pages 105–108, Oct 2017.

[60] N. Mizusawa, J. Kon, Y. Seki, J. Tao, and S. Yamaguchi. Performance improvement of file
operations on overlayfs for containers. In 2018 IEEE International Conference on Smart
Computing (SMARTCOMP), pages 297–302, June 2018.

31

A
Dockerfile base

Trecho 16: Dockerfile utilizado como base para a execução dos códigos
1 FROM debian:8-slim
2

3 RUN apt-get update
4 RUN apt-get install -y openssh-client
5 RUN apt-get install -y openssh-server
6 RUN apt-get install -y openmpi-bin
7 RUN apt-get install -y mpi-default-dev
8

9 RUN mkdir root/.ssh
10 RUN chmod 700 /root/.ssh
11 COPY ./ssh_keys/id_rsa.pub /root/.ssh/authorized_keys
12 COPY ./ssh_keys/id_rsa.pub /root/.ssh/id_rsa.pub
13 COPY ./ssh_keys/id_rsa /root/.ssh/id_rsa
14 COPY ./ssh_keys/known_hosts /root/.ssh/known_hosts
15 RUN chmod 600 /root/.ssh/*
16

17 RUN apt-get install -y make
18

19 COPY ./ssh_keys/ssh_host_ecdsa_key /etc/ssh/ssh_host_rsa_key
20 COPY ./ssh_keys/ssh_host_ecdsa_key.pub /etc/ssh/ssh_host_rsa_key.pub
21 RUN chmod 600 /etc/ssh/ssh_host_rsa_key
22

23 RUN apt-get install -y sudo
24

25 CMD service ssh start && tail -f /dev/null

32

B
Dockerfile do contêiner mestre do back-end

Trecho 17: Dockerfile utilizado pelo contêiner mestre do back-end
1 FROM golang:1.12.7-stretch as builder
2

3 COPY ./ /api
4

5 WORKDIR /api
6

7 RUN go get -d
8 RUN go build -o main
9

10 FROM debian:8-slim
11

12 RUN apt-get update
13 RUN apt-get install -y openssh-client
14 RUN apt-get install -y openssh-server
15 RUN apt-get install -y openmpi-bin
16 RUN apt-get install -y mpi-default-dev
17

18 RUN mkdir root/.ssh
19 RUN chmod 700 /root/.ssh
20 COPY ./ssh_keys/id_rsa.pub /root/.ssh/authorized_keys
21 COPY ./ssh_keys/id_rsa.pub /root/.ssh/id_rsa.pub
22 COPY ./ssh_keys/id_rsa /root/.ssh/id_rsa
23 COPY ./ssh_keys/known_hosts /root/.ssh/known_hosts
24 RUN chmod 600 /root/.ssh/*
25

26 RUN apt-get install -y make
27

28 COPY ./ssh_keys/ssh_host_ecdsa_key /etc/ssh/ssh_host_rsa_key
29 COPY ./ssh_keys/ssh_host_ecdsa_key.pub /etc/ssh/ssh_host_rsa_key.pub
30 RUN chmod 600 /etc/ssh/ssh_host_rsa_key
31

32 RUN apt-get install -y sudo
33

34 COPY --from=builder /api/main /api/main
35 COPY --from=builder /api/config /api/config
36

37 WORKDIR /api
38

39 CMD service ssh start && ./main && tail -f /dev/null

33

C
Docker-compose do back-end.

Trecho 18: Arquivo docker-compose.yaml, responsável por instanciar todo o back-end.
1 FROM golang:1.12.7-stretch as builder
2

3 COPY ./ /api
4

5 WORKDIR /api
6

7 RUN go get -d
8 RUN go build -o main
9

10 FROM debian:8-slim
11

12 RUN apt-get update
13 RUN apt-get install -y openssh-client
14 RUN apt-get install -y openssh-server
15 RUN apt-get install -y openmpi-bin
16 RUN apt-get install -y mpi-default-dev
17

18 RUN mkdir root/.ssh
19 RUN chmod 700 /root/.ssh
20 COPY ./ssh_keys/id_rsa.pub /root/.ssh/authorized_keys
21 COPY ./ssh_keys/id_rsa.pub /root/.ssh/id_rsa.pub
22 COPY ./ssh_keys/id_rsa /root/.ssh/id_rsa
23 COPY ./ssh_keys/known_hosts /root/.ssh/known_hosts
24 RUN chmod 600 /root/.ssh/*
25

26 RUN apt-get install -y make
27

28 COPY ./ssh_keys/ssh_host_ecdsa_key /etc/ssh/ssh_host_rsa_key
29 COPY ./ssh_keys/ssh_host_ecdsa_key.pub /etc/ssh/ssh_host_rsa_key.pub
30 RUN chmod 600 /etc/ssh/ssh_host_rsa_key
31

32 RUN apt-get install -y sudo
33

34 COPY --from=builder /api/main /api/main
35 COPY --from=builder /api/config /api/config
36

37 WORKDIR /api
38

39 CMD service ssh start && ./main && tail -f /dev/null

34

D Trabalhos de benchmarking relacionados
A Tabela 1 apresenta as ferramentas de benchmarking utilizadas por trabalhos relacionados.

Os resultados foram adaptados de [37].

Tabela 1: Trabalhos Relacionados

2[4]*Artigo 2[4]*Carga de Trabalho Recursos
P M R D CV O

[38] SPECCPU, LINPACK, RAMS-
PEED, LMbench, IOzone, Bon-
nie++, NetIO, WebBench, Sys-
Bench e SPECJBB

X X X X [t]

[39] LINPACK, STREAM, IO-zone,
NetPIPE, NPB e IBS

X X X X

[40] UnixBench X
[41] PXZ, LINPACK, STREAM, nuttcp,

netperf, FIO, Redis e SysBench
X X X X X

[42] NPB e TAU X X
[43] autodock3 X
[44] CPU-intensive, Sysbench e netperf X X X X
[45] HPL e NetPIPE X X X
[46] JMeter X
[47] Y-cruncher, NBENCH, Geekbench,

noploop, Linpack, Bonnie++, Sys-
bench, IOzone, STREAM e netperf

X X X X

[48] Swingbench e Sysbench X X X
[49] HPL e Graph500 X X
[50] HTCondor X X X
[51] SPEC CPU 2006, STREAM, FIO,

netperf e HiBench
X X X X

[52] LINPACK X X X
[53] AIO Stress, Ram-speed, IOzone,

Tbench, iperf, RuBBoS, Apache-
Bench, Blake2, 7-zip e OpenSSL
benchmark

X X X X

[45] fs test X X
[54] ApacheBench e Stress Tool X X
[55] Y-cruncher, LINPACK, Geekbench,

Bonnie++, Sysbench, STREAM,
netperf e iperf

X X X X

[56] Iperf, HardInfo, Bonnie++ e
STREAM

X X X X

[57] LINPACK, STREAM, IO-zone e
netperf

X X X X

[58] Ferramentas do Docker e Linux X X X
[59] Ferramentas do Docker e Linux X
[60] Ferramentas do Docker e Linux X [b]

35

	Introdução
	Contextualização e motivação
	Objetivos
	Organização do trabalho

	Revisão bibliográfica
	Programação Paralela
	Virtualização

	Desenvolvimento do trabalho
	Considerações Iniciais
	Projeto
	Descrição das atividades realizadas
	Detalhes do Sistema Desenvolvido
	Avaliação de Desempenho do NFS e Docker Volumes

	Resultados obtidos
	Dificuldades e limitações
	Considerações finais

	Conclusão
	Contribuições
	Relacionamento entre o Curso e o Projeto
	Considerações sobre o Curso de Graduação
	Trabalhos futuros

	Dockerfile base
	Dockerfile do contêiner mestre do back-end
	Docker-compose do back-end.
	Trabalhos de benchmarking relacionados

