Universidade de Sao Paulo

ICMCUSVJj Instituto de Ciéncias Matematicas e de
S

S GRS Computagio

PLATAFORMAS VIRTUAIS PARA O ENSINO DE COMPUTACAO
PARALELA: DESAFIOS E DESEMPENHO USANDO CONTEINERES

MARCO ADRIANO TETTE SCHAEFER

SAxo CarrLos (SP)

PLATAFORMAS VIRTUAIS PARA O ENSINO DE COMPUTACAO
PARALELA: DESAFIOS E DESEMPENHO USANDO CONTEINERES

MARCO ADRIANO TETTE SCHAEFER

ORIENTADOR: PAULO SERGIO LOPES DE Souza

Monografia referente ao projeto de conclusio de
curso dentro do escopo da disciplina SSC0670
do Departamento de Sistemas de Computacdo
do Instituto de Ciéncias Matematicas e de Com-
putacdo — ICMC-USP para obten¢do do titulo
de Bacharel Engenheiro de Computacio.

Area de concentragio: Sistemas Distribuidos e
Programacdo Concorrente.

USP - Sao Carlos
25 de novembro de 2019

Agradecimentos

Esta secdo € destinada a agradecer a todos aqueles que, de alguma forma, contribuiram para
que este trabalho fosse possivel.

Primeiramente, gostaria de agradecer aos meus pais pelo apoio oferecido ao longo da
graduagdo. Sem esse apoio, ndao seria possivel que eu participasse deste curso de graduacgdo,
tampouco seria possivel a realizacdo deste trabalho.

Em seguida, gostaria de dedicar um agradecimento aos meus amigos e familiares, pelos
momentos em que convivemos juntos ao longo desta jornada. E gratificante sempre poder
contar com uma mao amiga em momentos de felicidade e momentos de dificuldade.

Também gostaria de dedicar um agradecimento ao meu orientador, o professor Paulo Sérgio, e
ao doutorando Naylor Garcia. Agrade¢o muito pelo esfor¢o dedicado a revisao e orientacao deste
trabalho, pelo empenho e reunides que realizamos, bem como pela organizacdo e constru¢ao do
artigo desenvolvido ao longo do projeto.

Resumo

Na pratica do ensino de computagdo paralela, um dos maiores desafios atualmente € conse-
guir disponibilizar equipamentos, infraestrutura e ambiente para a execucdo de experimentos e
aprendizados na drea. E custoso dispdr de um cluster com diversas maquinas para a execugio
de codigos paralelos. Além disso, é oneroso preparar um ambiente facilmente replicavel para
a execucao de codigos que fagam uso de frameworks. Nesse contexto, este trabalho disserta a
respeito da implementagdo de um sistema facilmente replicdvel, que permite executar codigos
paralelos em um cluster formado por contéineres.

Sumario

(1 Introducao 8
(1.1 Contextualizacao e motivacao| 8
(1.2 Objetivos| e 9
(1.3 Organizacao do trabalho| L . 9

[2° Revisao bibliografical 10
2.1 Programacao Paralela 10
[2.2 Virtualizacao| 13

3__Desenvolvimento do trabalhol 15
[3.1 Consideragoes Iniciais| 15
....................................... 15
[3.3 Descricao das atividades realizadas|. 16

[3.3.1 Detalhes do Sistema Desenvolvidol 16
[3.3.2 Avaliacao de Desempenho do NES e Docker Volumes| 19
B4 Resultadosobtidos] 21
(3.5 Dificuldades e limitacoes| L L. 23
[3.6 Consideracoes finais| 24

4 Conclusaol 25
4.1 ContribuicOes| 25
4.2 Relacionamento entre o Cursoe o Projeto| 25
4.3 Consideragoes sobre o Curso de Graduacao| 25
4.4 Trabalhos futuros|o 26

A |

[Dockerfile base| 32

B |

| Dockerfile do conteiner mestre do back-end| 33

(8 |

| Docker-compose do back-end.| 34

D Trabalhos de benchmarking relacionados| 35

Listas

Lista de Tabelas

1 Irabalhos Relacion

Lista de Figuras

(1 Representacao da arquitetura do trabalho.|o 000000 16
[2 Exemplificacao do back-end e front-end em funcionamento.| 22
[3 Quantidade de operacoes de leitura e escrita sem concorrencia.| 22
%) Quantidade de operacoes de leitura e escrita com 10 cont€ineres concorrentes.| . 23
[5 Exemplo de arquitetura utilizando o orquestrador Kubernetes.|. 27

1 Introducao

1.1 Contextualizacao e motivacao

Sistemas computacionais atuais baseiam-se em paralelismo e multiprocessamento por conta
das limitacdes da famosa Lei de Moore [1]. Essa lei profetizou que o ntimero de transistores
em um chip dobraria a cada 18 meses, pelo mesmo custo. Por muito tempo, observou-se esse
efeito nos processadores presentes no mercado, porém, ja héd alguns anos, percebe-se que nao é
vidvel continuar aumentando apenas parametros como o nimero de transistores e a velocidade
de clock do chip. Como alternativa, sistemas atuais baseiam-se fortemente em paralelismo.

Atualmente no mercado € comum encontrar dispositivos com mais de um nicleo de proces-
samento. Dentre esses dispositivos, pode-se destacar maquinas dektop, notebooks, € at€ mesmo
dispositivos mdveis como aparelhos celulares e tablets. Possuir mais de um nucleo de pro-
cessamento possibilita ao dispositivo processar simultaneamente instrugdes diferentes, podendo
executar mais tarefas em menos tempo, aumentando assim seu poder de processamento sem
necessariamente ter de aumentar seu nimero de transistores por nicleo, ou diminuir o tempo de
clock do chip.

A programacdo paralela estd presente em diversos sistemas que fazem parte do dia-a-dia de
sociedades com fécil acesso a internet. Por exemplo, sistemas computacionais que analisam
grandes volumes de dados e requerem grande desempenho baseiam-se bastante em programacgao
paralela, como, por exemplo, sistemas para previsao do tempo, ou sistemas de inteligéncia
artificial e aprendizado de maquina. Em arquiteturas que requerem alta disponibilidade, como,
por exemplo, uma API web com grande niimero de acessos, é uma pratica comum dispOr de
vdrias instancias da mesma aplicacdo, que, paralelamente, conseguem suprir as requisicoes de
todos os usudrios do sistema.

Os cursos de computacdo oferecem vdrias disciplinas de programacgdo sequencial, em dife-
rentes contextos, mas isso ndo ocorre na mesma propor¢ao para a programacao paralela. Dentre
os possiveis fatores para isso, pode-se destacar o alto custo associado a compra e a manutengao
de hardware dedicado para o ensino de programacdo paralela como, por exemplo, um cluster
composto por diversos computadores interligados. Pode-se citar também, a alta complexidade
de configuracdo de um ambiente propicio para a execugao de cddigos no contexto de progra-
magcao paralela. De fato, a programacao paralela ndo € trivial, pois, além dos pontos j4 citados,
pode empregar diferentes modelos de programacao como PThreads 2], OpenMP (3], MPI [4],
CUDA [35]] entre outros.

O ensino de programacdo paralela geralmente requer um alto gasto com hardware. Ge-
ralmente, € necessdrio dispor de um cluster de diversas maquinas interligadas, que estejam
devidamente configuradas, e que sejam aptas a executar os cédigos baseados na ferramenta de
programacao paralela escolhida. Além disso, deve-se levar em conta os gastos com a manutengao
do mesmo.

Um outro fator de complexidade € que, mesmo para softwares paralelos basicos, o aluno
necessita pensar de uma maneira diferente quando comparado a programacao sequencial, e seu
software precisa refletir isso. Em um ambiente no qual o processamento passa a ser distribuido,
a sincronizacdo dos resultados passa a ser um problema frequente e nao trivial.

No contexto dessa nova maneira de se projetar software, o aluno deve ter conhecimento em
um novo conceito: A comunicacdo. Processamento paralelo envolve muitas vezes comunicagao
e sincronizacdo entre as partes processantes. Isso pode ser feito, por exemplo, utilizando-
se passagem de mensagens, ou por meio de uma memoria compartilhada entre os processos
participantes.

Caso os cursos de computacdo pudessem utilizar recursos ja disponiveis em seus laboratérios
de ensino, desobrigando o conhecimento de detalhes da plataforma, e facilitando o uso durante
as aulas, o ensino da programacao paralela seria popularizado, aumentando a oferta de futuros
profissionais melhor capacitados. A aptiddo no contexto de programac¢do paralela, poderd
permitir ao profissional desenvolver aplicagdes mais eficientes, que melhor aproveitem os multi-
processadores do dispositivo, e que, por consequéncia, tenham mais qualidade.

1.2 Objetivos

O grande, e principal, objetivo deste trabalho € contribuir para a popularizacdo do ensino
da programacdo paralela, provendo camadas de abstragdo que escondam complexidades de
configuracdo do sistema e que sejam de baixo custo de implementacao e utilizagao.

Para alcancar o grande objetivo, este trabalho deseja construir e preparar contéineres para
o ensino de programacgdo paralela. Esses cont€ineres deverdo ser de simples configuragao, e
poderao ser utilizados por alunos e professores para a pratica do ensino de programacgao. Nos
contéineres utilizados pelo professor, haverda um servico que expde uma API para o recebimento
de cédigos que podem fazer uso das ferramentas de programagao paralela OpenMP [3]] e MPI
[4]. No contéiner utilizado pelos alunos, haverd um programa capaz de enviar um cédigo para
execu¢do remota, informando parametros adicionais de execu¢@o como, por exemplo, o nimero
de processos participantes da execucdo, e o nimero de hosts envolvidos.

1.3 Organizacao do trabalho

Este trabalho estd organizado em 6 capitulos. No primeiro capitulo, encontra-se apenas esta
introducdo ao trabalho realizado, destacando contexto, motivacoes e objetivos pretendidos. No
segundo capitulo, sdo apresentadas as listas figuras e tabelas deste trabalho. O terceiro capitulo
contém a introducao deste trabalho, apresentando ao leitor contextualizagdo a respeito do tema,
a motivacao para a realizacdo do projeto, bem como os objetivos propostos e a organizacao
deste documento. No quarto capitulo encontra-se a revisdo bibliogréfica, na qual apresenta-se
para o leitor os conceitos de programacao paralela e virtualizacao, conceitos estes que serdo os
pontos chave do trabalho desenvolvido. No quinto capitulo € apresentado o desenvolvimento do
trabalho, discorrendo sobre o projeto em si, detalhes das atividades realizadas, detalhes do sis-
tema desenvolvido, avaliacao entre diferentes tecnologias para o compartilhamento de arquivos
e diretdrios, bem como os resultados obtidos nos projetos implementados e nos experimentos
propostos. No sexto e ultimo capitulo sdo apresentadas as conclusdes sobre o trabalho, bem
como listadas as contribui¢des realizadas, o relacionamento entre o curso e o projeto, além de
consideragdes sobre o curso de graduagado e possiveis trabalhos futuros. Ao final do documento,
sdo apresentados apéndices referenciados ao longo do texto.

2 Revisao bibliografica

2.1 Programacao Paralela

A programagao paralela viabiliza a utilizagao de diversos processos e cdlculos simultaneos.
Da mesma forma que a programacao paralela abre novas possibilidades por conta de permitir
execucoes simultaneas, também introduz novos desafios por conta de sua complexidade adicional
em comparagdo a programacao sequencial, além de introduzir também novas ferramentas [0].

Quando comparada a programagdo sequencial, uma das principais diferencas que a progra-
macao paralela introduz € a necessidade de comunicacdo entre diferentes processos, estejam
eles sendo executados na mesma méquina ou ndo. Por meio dessa comunicagdo, diferentes
processos podem trocar informacoes entre si [[7]].

A troca de informacdes entre diferentes processos pode ocorrer, por exemplo, por meio de
uma memoria compartilhada. Nesse cendrio, os processos participantes da execugdo tém acesso
a mesma memoria e, com isso, podem escrever seus resultados diretamente nela para que sejam
acessados por outro processo. E necessério ter cautela para que ndo ocorram inconsisténcias
nos resultados, podendo ser necessdrio, por exemplo, o uso de um mutex [[8] para ndo permitir
0 acesso simultaneo de mais de um processo a um determinado dado na memoria, quando este
for compartilhado para escrita e leitura entre diferentes processos ou threads.

A comunicagdo entre diferentes processos também pode ocorrer por meio de troca de
mensagens. Nesse cendrio, os processos participantes nao escrevem na memoria utilizada
pelos demais, e realizam sua comunicagdo por meio de instrugdes de passagem de mensagens.
Portanto, em determinados trechos do c6digo, haverd instrucdes que enviam ou que esperam o
recebimento de dados de demais processos.

Nesse contexto, a arquitetura paralela do hardware e os sistemas operacionais utilizados sao
de fundamental importancia. As arquiteturas paralelas podem ser classificadas de acordo com a
taxonomia de Flynn [9]]. Essa taxonomia classifica as arquiteturas de acordo com a pluralidade
de processadores e pluralidade de dados utilizados nas execugdes.

Dentre as arquiteturas classificadas por Flynn, pode-se destacar as arquiteturas MIMD (Mul-
tiple Instruction, Multiple Data). Hardwares baseados nessas arquiteturas sdo capazes de
processar multiplas instru¢cdes com multiplos dados simultaneamente. Sistemas baseados nes-
sas arquiteturas podem ainda contar com memoria distribuida, ou memdria compartilhada,
fator esse que pode influenciar na estratégia escolhida para a comunicacao entre os processos
(passagem de mensagens ou acesso a memoria compartilhada).

Também pode-se destacar as arquiteturas SIMD (Single instruction, multiple data). GPUs
(Graphics Processing Unit), por exemplo, sdo baseadas nesse tipo de arquitetura (embora
apresentem caracteristicas a mais que maquinas SIMD puras. Sao hardwares capazes de executar
uma mesma instru¢ao em um conjunto grande de dados. Esse tipo de arquitetura é muito util
quando necessita-se, por exemplo, realizar operacdes em grandes matrizes de dados.

Do ponto de vista de sistemas operacionais, € muito comum atualmente encontrar siste-
mas operacionais de rede baseados em Linux. Os sistemas operacionais utilizados devem
implementar rotinas e fungdes de sistema que permitam a geragao de processos € a comunica-
cao/sincronizagdo entre os diversos processos/threads participantes da execugao.

Para a criacdo de cddigos de programacgdo paralela, pode-se empregar diferentes modelos
de programacdo. Dentre os modelos disponiveis para a linguagem C, pode-se destacar, por
exemplo, PThreads. PThreads é a implementacdo de threads especificada pelo padrao POSIX
[10]. Essa implementacdo permite que o programador gerencie a criagdo e execugao de diversas
threads simultaneamente, realizando chamadas de sistema. Para sua utilizacao, basta usar um

10

sistema operacional que implemente o padrao POSIX, que possua o compilador da linguagem C
(GCC) [11] e que possua a biblioteca pthread. No momento da compilacao, basta informar para
o compilador a flag -Ipthread. O Trecho[I] contém um exemplo bdsico da criacdo e finaliza¢do
de threads por meio das funcdes da biblioteca PThreads

Trecho 1: Uso basico da biblioteca PThreads
pthread_t threads[2];

int 1i;

for(i=0; i<2; i++) {
pthread_create(&(threads[i]), NULL, thread_func, NULL);

for(i=0; i<2; i++) {
pthread_join(threads[i], NULL);
}

Um outro modelo que merece destaque por sua grande utilizacdo é o OpenMP (Open Multi-
Processing) [3]. O OpenMP é uma API que implementa métodos para executar e gerenciar
processos, permitindo a comunicagao entre eles por meio de uma memoria compartilhada. Sua
utilizagdo requer a instalacdo de bibliotecas e dependéncias especificas, bem como o uso da flag
-fopenmp no momento da compilacdo. Sua utilizacdo se d4 por meio de diretivas de compilagao
do tipo #pragma informadas no cédigo, especificando um trecho do cédigo sequencial no qual
se deseja paralelizar automaticamente pelo OpenMP. No Trecho [2] é possivel observar um uso
trivial de uma diretiva do OpenMP, onde a impressao da string serd feita por diferentes threads
(neste caso o numero de threads serd o0 mesmo que o nimero de nucleos do processador em
uso).

Trecho 2: Exemplo de diretiva da biblioteca OpenMP

#pragma omp parallel
{

printf("Hello World!\n");
}

Também € de grande importancia o modelo de passagem de mensagens determinado pelo
padrao MPI (Message Passing Interface)[4]. O padrao MPI possui diversas implementacoes
como, por exemplo, OpenMPI [4], MPICH [12], LAM_MPI [13], entre outros. No padrdao
MPI, a passagem de mensagens pode ser feita em um unico host com processos distintos,
ou até mesmo em hosts distintos. Caso a passagem de mensagens seja realizada em um
mesmo host, a configuracdo da plataforma para a execucdo € mais simplificada, bastando apenas
instalar as dependéncias do MPI, e utilizar um compilador e um executor especificos para a
implementagdo. Caso a passagem de mensagens va ocorrer entre hosts distintos, a configuragao
torna-se mais complexa, sendo necessario configurar todo o acesso remoto (SSH [14]) entre os
hosts envolvidos, além de também ser desejdvel (e usual) configurar acesso a um mesmo sistema
de arquivos compartilhado, como, por exemplo, um diretério montado via NFS [15].

O Trecho[3|contém um simples uso do MPI. O cédigo ilustrado apenas retorna uma mensagem
para cada processo participante da execucao. Esta monografia ndo detalhard as fun¢des do MPI
para a passagem de mensagens. Para mais informagdes sobre a construg¢ao de algoritmos com

11

S}

o padrao MPI, consulte [4].

Trecho 3: Exemplo de uso do MPI

#include <mpi.h>

#include <stdio.h>

int main(int argc, char** argv) {
// Initialize the MPI environment
MPI_Init(NULL, NULL);

// Get the number of processes
int world_size;
MPI_Comm_size (MPI_COMM_WORLD, &world_size);

// Get the rank of the process
int world_rank;
MPI_Comm_rank (MPI_COMM_WORLD, &world_rank);

// Get the name of the processor

char processor_name[MPI_MAX_ PROCESSOR_NAME] ;

int name_len;
MPI_Get_processor_name(processor_name, &name_len);

// Print off a hello world message
printf("Hello world from processor %s, rank %d out of %d
processors\n",
processor_name, world_rank, world_size);

// Finalize the MPI environment.
MPI_Finalize();
}

O Trecho [4| exemplifica a compilagiio e execucdo de um arquivo que faz uso do MPI. E
necessdrio o uso de scripts para a compilacdo e execucdo no MPI, respectivamente o mpicc e
o mpiexec (ou mpirun neste ultimo). Tais scripts encapsulam detalhes de compilacao pelo gcc
[11] e de execugdo dos processos em potencialmente diferentes hosts. Os hosts que participardo
da execugdo podem ser listados por meio de um hostfile no mpiexec. Um hostfile é simplesmente
um arquivo que, em cada linha, contém um endereco (ou um nome que possa ser resolvido) de
um host.

Trecho 4: Exemplo de compilagado e execucdo de um arquivo que faz uso do MPI

mpicc main.c -o main;
mpiexec -n 4 --hostfile ./hostfile main

A criagdo de programas no contexto da programacao paralela requer conhecimentos ndo ape-
nas de programacao em si, mas também de vérios detalhes da infraestrutura basica, envolvendo
hardware e software. Considerando o ensino, essas aulas utilizam laboratérios compartilhados
com outras disciplinas, o que exige bastante flexibilidade destes para otimizar o uso dos recursos
disponiveis aos alunos na instituicdo de ensino. Nesse cendrio, a virtualizacao € uma poderosa
ferramenta capaz de proporcionar flexibilidade na criacdo de hosts virtuais, sem a necessidade

12

de obten¢do de hardware adicional. A virtualizacdo também favorece em muito a configuracdo
dos sistemas que utilizardo a plataforma compartilhada, pois isola caracteristicas especificas dos
sistemas que serdo utilizados.

A alta complexidade na criacdo e manuten¢do de um cluster composto por diversas maquinas
fisicas, além da dificuldade de se reutilizar o hardware para propésitos de disciplinas de outras
dreas, bem como a alta dificuldade de se configurar toda essa arquitetura, sdo problemas que
podem ser resolvidos ou atenuados por meio da virtualizagao.

2.2 Virtualizacao

A virtualizacao € o processo de se abstrair, por meio de software, componentes de hardware
e sistema operacional. Caso o hardware hospedeiro possua suporte, pode-se virtualizar até
mesmo um sistema operacional diferente do contido na maquina hospedeira, como se fosse, de
fato, uma maquina fisica diferente.

Dessa forma pode-se, por exemplo, possuindo uma tnica maquina, criar diversas maquinas
virtuais independentes, como se fossem, de fato, mdquinas fisicas diferentes. Esse processo
ajuda a reduzir gastos monetarios em compras de novas maquinas, e permite boa flexibilizagao,
visto que, a qualquer momento, pode-se alterar as configuragdes das maquinas virtualizadas,
bem como acrescentar ou diminuir o nimero de maquinas, sem ser necessario fazer alteracoes
no hardware utilizado.

A virtualizacdo pode impactar no desempenho das aplicagdes executadas, pois insere uma
camada extra de software entre as tais aplicagdes e o hardware que de fato as executard. No
contexto de programacao paralela, a melhoria do desempenho € um fator essencial e motivador
para da mesma. Dentre os pontos criticos de desempenho em sistemas virtualizados pode-se
destacar, por exemplo, sistemas de arquivos remotos ou locais, como, por exemplo, o uso do
NFS [15].

O NFS, ou Network File System, ¢ um sistema para compartilhamento de arquivos e diretdrios
através da rede. Essa tecnologia permite que um diretério exposto seja montado na mesma
madquina fisica local, ou em uma mdquina fisica remota. Dentre suas peculiaridades, pode-se
destacar que o NF'S possui dois modos de operagdo: sincrono e assincrono. No modo sincrono,
ha persisténcia dos dados em disco a cada alteracao, ou seja, as alteracdoes sdo imediatamente
gravadas em disco. J4 no modo assincrono, os dados podem permanecer em memoria durante
algum tempo antes de serem gravados em disco. O modo assincrono oferece melhor desempenho
jé que ndo precisa esperar o disco gravar as alteracdes; mas em caso de queda de energia por
exemplo, hd maior risco de perda de dados, ja que dados que estavam apenas em memoria serao
perdidos no desligamento [16].

A virtualizacdo ndo se faz presente apenas por meio de méaquinas virtuais. Um outro re-
curso cada vez mais utilizado sdo os contéineres. Diferentemente de uma maquina virtual, um
contéiner € uma abstracdo de software, utilizada para replicar um determinado ambiente em
qualquer méaquina capaz de executar tal tecnologia. E possivel abstrair o sistema operacional
em um ambiente controlado, sem ser necessdrio abstrair o hardware como ocorre em maquinas
virtuais. Esse ambiente pode, teoricamente, ser replicado por qualquer méaquina capaz de in-
terpretar tal tecnologia, de forma que a configuracdo e o ambiente da maquina hospedeira, ndo
interferem no ambiente criado pelo contéiner. Dessa forma, consegue-se eliminar interferéncias
causadas por configuragdes especificas da maquina do usudrio e, assim, replicar a mesma execu-
cdo em mdquinas fisicas diferentes com sistemas operacionais e configuragdes diferentes. Essa
caracteristica € altamente utilizada pela industria, tendo em vista que, por meio de contéineres,
um desenvolvedor pode garantir que o mesmo ambiente que foi utilizado durante o desenvol-

13

vimento em sua maquina local pode ser replicado em um servidor remoto, eliminando assim,
possiveis erros que poderiam ser causados por conta de se executar a aplicacio em ambiente
com caracteristicas e configuragdes diferentes [17].

A utilizacdo de contéineres corrobora com algumas das boas praticas descritas nos 12 Fatores
[18], que sdo um manifesto com 12 metodologias para serem seguidas no desenvolvimento de
uma aplicacdo web. Dentre as boas préticas, pode-se destacar o décimo item da lista: "Paridade
entre desenvolvimento e producao"[[19]. O uso de conté€ineres possibilita a criacdo de ambientes
de desenvolvimento e producao muito semelhantes.

A implementacdo de contéineres mais utilizada € a oferecida pelo Docker [20]. Docker é
um software capaz de criar e gerenciar contéineres em uma mdquina hospedeira. Por meio de
um Dockerfile, o usudrio pode especificar detalhadamente o ambiente que serd construido em
seu contéiner, desde o sistema operacional que serd utilizado, até as aplicacdes e dependéncias
que estardo instaladas, bem como até mesmo configuracdes de usudrio e arquivos contidos no
contéiner. Além disso, € possivel utilizar imagens de cont€iner publicas disponibilizadas em
um Docker registry, e até mesmo compor novas imagens de contéiner utilizando imagens ja
existentes. O Trecho [5] contém um exemplo basico da utilizacdo de Docker para executar um
contéiner contendo Nginx, um popular servidor web, e mapeando a porta 80 do contéiner para
a porta 80 do host e, assim, conseguir expor externamente um servi¢o contido no contéiner.

Trecho 5: Exemplo bésico de utilizacao do Docker

docker run -p 80:80 nginx

Observando o exemplo contido no Trecho [5 pode-se notar a simplicidade do processo. Por
meio do Docker, ndo € necessdrio instalar as dependéncias exigidas pelo Nginx, tampouco gastar
esforco em configuracdes do servidor. Com um tnico comando, pode-se utilizar um servidor
web e expor seus servigcos externamente.

Devido a sua alta flexibilidade, cont€ineres sdo utilizados largamente em aplicacdes portadas
para a cloud. Provedores como a AWS (Amazon Web Services) [21]] e a Google Cloud [22]]
por exemplo, oferecem diversos servigos para a utilizagdo de contéineres, como registros e
orquestradores.

No contexto do ensino de programacao paralela, cont€ineres se fazem promissores devido
a sua alta flexibilidade, além de seu baixo custo de criagdo de manuten¢do quando comparado,
por exemplo, a utilizagdo de um cluster composto por diversas mdquinas fisicas. Um ambiente
mais flexivel e de menor custo, pode contribuir para a disseminagao do ensino de programacgao
paralela.

14

3 Desenvolvimento do trabalho

3.1 Consideracoes Iniciais

Este capitulo tem a finalidade de descrever o trabalho desenvolvido. Discorre-se a respeito
dos objetivos especificos propostos no projeto, bem como sobre atividades que foram desen-
volvidas. Sao apresentados detalhes de implementacio e decisOes técnicas feitas ao longo do
desenvolvimento. O capitulo também apresenta os experimentos comparando as tecnologias
NFS e Docker Volumes, no que diz respeito ao compartilhamento de arquivos e diretérios en-
tre contéineres. Ao final do capitulo, sdao apresentados os resultados obtidos com o trabalho
desenvolvido.

3.2 Projeto

O projeto desenvolvido neste trabalho é um sistema para ajudar a disseminar o ensino da
programacao paralela, diminuindo os custos de criagdo e manutencao, diminuindo a dificuldade
de configuracdo, e diminuindo o tempo necessdrio para sua utilizacao.

O sistema tem como objetivo permitir a execucdo de cédigos que fazem uso das ferramentas
OpenMP e MPI de forma remota, em uma arquitetura que contém diversos hosts para participar
do processo de execugdo.

Dessa forma, o sistema foi dividido em back-end e front-end. O back-end € o componente
do sistema que deverd ser executado pela miquina utilizada pelo professor, e serd responsdvel
por receber os cédigos enviados pelos alunos, executd-los de acordo com os parametros de
execucdo recebidos, e devolver uma resposta para o aluno que enviou o cédigo. O back-end
foi projetado para ser flexivel, de forma que seja simples mudar as configuracdes do sistema,
podendo, por exemplo, adicionar ou remover hosts virtuais de forma simples, sem ser necessdrio
possuir conhecimentos avancados para isso. O back-end contém também, um servico que expde
uma API para realizar o recebimento e execucio dos cédigos enviados pelos alunos.

O front-end é o componente que devera ser executado na(s) maquina(s) utilizada(s) pelo(s)
aluno(s). O front-end contém uma aplicacio capaz de receber um arquivo desenvolvido em C
e que utilize as ferramentas citadas anteriormente, e envid-lo para execucao remota no back-
end. A aplicacdo também € capaz de receber pardmetros de execu¢do como o nimero de hosts
envolvidos na execugdo e o nimero de processos que serdo utilizados e informa-los ao back-end
via requisicao HTTP.

Como desempenho € um fator importante em programacao paralela, e o compartilhamento
de diretdrios e arquivos € um ponto critico, o projeto também envolve o estudo e comparagdo
do compartilhamento de diretdrios e arquivos entre as tecnologias NFS [15] e Docker Volumes
[23]. Tem-se como objetivo compara-las sob os pontos de vista de desempenho e complexidade
de configuracao.

A arquitetura geral do sistema € apresentada na Figura[l] Pode-se observar que a arquitetura
permite que diversos alunos utilizem o sistema simultaneamente.

15

Host
Back-end master container
Back-end slave container

2

Go Back-end service MPI Compiler SSH Service
Docker volume

User User User
Front-end container Front-end container Front-end container

&y B £y B £ B

Go Front-end client € Code Go Front-end client € Code Go Front-end client C Code

Figura 1: Representacdo da arquitetura do trabalho.

3.3 Descricao das atividades realizadas

Para a construcdo do projeto, inicialmente foi realizado um estudo a respeito das depen-
déncias necessdrias para a criacdo de um ambiente com suporte a execucdo de cédigos que
facam uso das ferramentas OpenMP e MPI. O resultado desse estudo foi aplicado na criacao das
imagens Docker que descrevem os contéineres que compdem o sistema.

Idealizou-se a arquitetura ilustrada na Figura[I] A arquitetura foi proposta visando praticidade
e, principalmente, flexibilidade. Foi projetada de maneira a suportar o uso simultaneo de diversos
alunos, tanto para execugdes locais nos proprios contéineres de front-end quanto remotamente
utilizando os contéineres que compdem o back-end. Além disso, pode-se facilmente alterar a
quantidade de contéineres escravos, podendo acrescentar ou diminuir o nimero de contéineres,
permitindo, por exemplo, que os alunos utilizem um nimero maior de sosts nas execugdes dos
codigos enviados.

Também foi realizada uma avaliacdo comparativa entre as tecnologias NF'S e Docker Volumes
no que diz respeito ao compartilhamento de volumes entre contéineres dentro de um mesmo
host fisico. A comparagdo levou em conta aspectos relativos a complexidade de configuragao
e utilizagdo, porém, o fator mais profundamente avaliado foi o desempenho. Foram realizados
testes de benchmark entre as tecnologias, incluindo dois modos diferentes de operacao do NFS,
e com isso mensurou-se o desempenho de ambas as tecnologias em diferentes cendrios. Os
resultados serdo apresentados nas proximas secoes.

3.3.1 Detalhes do Sistema Desenvolvido

Inicialmente, foi construida uma imagem de contéiner com suporte a execugdo dos cddigos
que fazem uso das ferramentas OpenMP e MPI. Como sistema operacional base, foi escolhido o
sistema Debian, em sua versao 8. Utilizou-se uma imagem com uma versao mais enxuta desse
sistema operacional, denominada debian:8-slim, que estd disponivel publicamente no Docker
Hub [24].

Ap6s a escolha daimagem base do conté€iner dos hosts do back-end, foi necessario determinar
as dependéncias necessdrias para a execucdo dos cddigos. O Dockerfile descreve a instalagdao dos
pacotes de cliente e servidor SSH [14], bem como a instalagao das dependéncias especificas do

16

MPI que, nas distribuicdes baseadas em Debian, levam o nome de openmpi-bin e mpi-default-
dev.

Como o contéiner fard uso de SSH, foram gerados de antemao arquivos para a configuracao
do servico SSH. Gerou-se um par de chaves RSA, uma chave publica e uma chave privada,
para realizar a autenticacdo via SSH e assim habilitar o acesso remoto entre os contéineres que
compdem o back-end sem a necessidade de uma senha. Para o MPI poder utilizar multiplos
hosts nas execucoes, € necessario que o host que iniciou a execug¢do do programa tenha acesso
remoto irrestrito aos demais hosts que irdo participar da execugdo. O Trecho [0] ilustra um
exemplo de geracdo de um par de chaves RSA. Ao longo da execucdo do comando, pode-se
informar o caminho para a geracdo das chaves publica e privada.

Trecho 6: Exemplo de geragdo de um par de chaves RSA

ssh-keygen -t rsa -b 4096 -C "user@mail.com"

Além do par de chaves publica e privada, o servico SSH permite a criagao de um arquivo
denominado authorized_keys. Nesse arquivo, escreve-se a chave publica de todos os hosts
autorizados a acessar o host via SSH. Esse arquivo € o que garante que um contéiner possa ter
seu acesso autorizado a um outro contéiner, algo que € vital para a execucdo dos cédigos que
fazem uso do MPI.

Adicionalmente, também € utilizado um arquivo denominado known_hosts. O cliente SSH
do host utiliza esse arquivo para identificar todos os hosts ja conhecidos e que, portanto, podem
ser acessados sem que seja necessdria uma confirmacao por parte do usudrio. Como o back-
end foi projetado para funcionar sem que seja necessdria autorizacdo do usudrio para que os
contéineres possam se acessar via SSH, a presenca desse arquivo € fundamental.

Para que todos esses arquivos relativos ao SSH possam ser utilizados, o servico de SSH
impde que eles tenham acesso restrito a certos niveis. No caso, o diretério que contém esses
arquivos (por padrio, dentro da home do usudrio € criado um diretério denominado .ssh) deve
ser permissionado no modo 700. Esse modo permite que o dono do diretério tenha total controle
sobre ele, enquanto que os demais usudrios ndo possuem nenhuma permissao sobre o mesmo.
No caso dos arquivos contidos no diretdrio, € necessario que os mesmos sejam permissionados
no modo 600. Esse modo permite que o dono dos arquivos possa 1é-los e escrever neles,
enquanto que os demais usudrios ndo possuem autoriza¢do para nenhuma acdo sobre eles. O
Trecho [/|ilustra um exemplo de comando usado para alterar as permissdes sobre um diretério
ou arquivo.

Trecho 7: Exemplo de comando para alterar as permissdes de um arquivo
chmod 600 .ssh/authorized_keys

ApO6s a preparacao de todas as chaves de acesso e arquivos de configuracdo, € necessario
iniciar o servigco de SSH para que o host possa ser acessado remotamente. O Trecho [§ilustra o
comando utilizado para iniciar o servidor SSH em distribui¢cdes Linux baseadas em Debian.

Trecho 8: Comando utilizado para iniciar o servidor SSH

service ssh start

A imagem base, que foi utilizada no inicio deste trabalho para compor as demais imagens
que serdo apresentadas, estd contida no Trecho

Ap6s a construcdo de uma imagem base de contéiner capaz de executar codigos OpenMP e
MPI, e capaz de acessar e ser acessada remotamente por outros hosts, foi projetado um servico

17

que expoe uma API para o recebimento de c6digo. Esse servigo tem como funcdo expor uma
rota HTTP para o recebimento de cédigo e parametros de execu¢do. Em seguida, o servigo
coordena a execugdo desse cédigo utilizando o nimero de hosts e processos informados nos
parametros de execugdo, e, por fim, retorna a resposta obtida ao remetente.

Esse servigo foi desenvolvido na linguagem Go [25]], conhecida por ser uma linguagem de
alto desempenho.

O servico expde uma rota HTTP no endpoint /job. Nessa rota, ele escuta requisicoes HTTP
com o verbo POST, e espera como parametros o arquivo C informado em um parametro file,
o numero de hosts utilizados na execu¢do do c6digo informado em um parametro hosts, € o
numero de processos que serdo utilizados na execugao informado pelo pardmetro processes. O
Trecho[9]ilustra um exemplo de script que pode ser utilizado para enviar uma requisi¢do com os
parametros citados usando a ferramenta curl, comumente presente em distribui¢cdes Linux.

Trecho 9: Exemplo de script que pode ser usado para enviar um cédigo para execucao.

curl -X POST \
http://localhost:8000/job \
-F hosts=5 \

-F processes=10 \

-F file=@/path/to/file.c

ApO6s recebidos os parametros, o servigo ird preparar a execucdo do cédigo recebido. A
primeira etapa € a geracdo de um arquivo hostfile, contendo uma lista dos hosts que participarao
da execugdo. O servico contém um pequeno arquivo de configuragdo que lista todos os hosts
conhecidos. Ao receber o valor n no parametro hosts pela requisicio HTTP, sdo escritos no
arquivo hostfile os n primeiros hosts lidos do arquivo de configuragdo, limitado até o niimero
maximo de hosts conhecidos.

ApO6s preparado o arquivo com a lista de hosts, o servigo realiza a compilagdo do cédigo
recebido. O cddigo € compilado utilizando o mpicc [26]], programa responsédvel por compilar
codigos que fazem uso do MPI. Dentre as flags de compilacdo, é informada também a flag que
habilita o uso da biblioteca do OpenMP. Dessa forma, € possivel utilizar ambas as ferramentas e
manter sempre o mesmo comando para compila¢do do cédigo. O Trecho [10]ilustra o comando
utilizado para compilar cédigos que podem fazer uso tanto do OpenMP quanto do MPI.

Trecho 10: Comando usado para compilar os cédigos recebidos.

mpicc -fopenmp main.c -o main

Ap6s a compilagdo do codigo recebido, € realizada a execugdo com os pardmetros infor-
mados. O cédigo € executando utilizando o mpiexec [27], programa responsdvel por executar
codigos que facam uso do MPI. Dentre as flags de execucdo, sdo informados o nimero de
processos participantes, bem como o caminho para o hostfile gerado anteriormente. O Trecho
ilustra o comando utilizado para executar os codigos recebidos, informando os parametros
de execucdo.

Trecho 11: Comando usado para executar os codigos recebidos.

mpiexec -n 4 --hostfile ./hostfile main

Ao final da execucao, a resposta € devolvida ao usudrio como resposta da prépria requisicao
HTTP.
Ap6s a construcao do servigo responsdvel pelo recebimento e execucao dos cédigos recebi-

18

dos, adaptou-se o Dockerfile apresentado no Trecho [16] para realizar também a compila¢do do
servico e inclui-lo no contéiner final. Para tal, utilizou-se um processo conhecido como multi-
stage build [28]]. Nesse processo, utilizou-se no inicio do Dockerfile uma outra imagem base,
que contém o ferramental necessario para compilar o servico. Compila-se, entdo, a aplicacdo
em uma primeira imagem, e porta-se o bindrio obtido para a segunda imagem, que ird compor o
contéiner final que serd utilizado. O Dockerfile final da imagem utilizada pelo cont€iner mestre
do back-end encontra-se no Trecho [171

3.3.2 Avaliacao de Desempenho do NFS e Docker Volumes

Como pode ser observado na Figura[I] que ilustra a arquitetura geral do sistema, o back-end é
composto por um contéiner mestre, que contém o servico de recebimento e execucdo de cédigo,
e vdarios contéineres escravos que auxiliam na execu¢do dos cdodigos recebidos. Todos esses
contéineres precisam ter acesso a um mesmo diretério no qual sdo compartilhados os bindrios
gerados apds a compilagdo dos cédigos. Tradicionalmente, implementacdOes de clusters para
a execugdo de codigo MPI comumente utilizam o NFS [29] para realizar o compartilhamento
de diretérios. Por outro lado, quando se deseja compartilhar um mesmo volume entre dife-
rentes contéineres, ¢ comum a utilizacdo de Docker Volumes. Entao, foi realizado um estudo
comparativo entre NFS e Docker Volumes, levando-se em conta desempenho e dificuldade de
configuragdo.

Inicialmente, comparou-se a dificuldade de configuragdo de ambas as tecnologias. No caso
do NFS, para que os cont€ineres possam montar um diretério externo, ou até mesmo permitir que
um diretdrio deles seja acessado por outro host, € necessario que a maquina hospedeira esteja
executando um servico do NF'S. Considerando o contexto de contéineres, em que deseja-se criar
ambientes que possam ser facilmente replicdveis em outras mdquinas, o fato de ser necessario
que a maquina hospedeira esteja executando um servigo especifico € uma grande desvantagem.
Além disso, os contéineres que fardao uso do NF'S precisam conter as dependéncias necessdrias
para tal. O Trecho [I2] mostra exemplos de comandos que podem ser utilizados para iniciar um
servidor NF'S, e um comando que pode ser utilizado para montar um volume remoto pelo NFS.

Trecho 12: Exemplos de comandos utilizados para iniciar um servidor NF'S, e para montar um
volume externo.

sudo systemctl start nfs-server.service;
sudo mount -v -t nfs 172.17.0.2:/ /mnt/nfs;

Por outro lado, a utilizacdo de Docker volumes em contéineres tem uma configuracao muito
mais simples. Diferentemente do NFS, ndo € necessario que a miquina hospedeira execute um
servico a parte, tampouco € necessdrio instalar dependéncias especificas no contéiner. Iniciando
um conté€iner pela linha de comando do Docker, basta informar uma flag adicional, contendo o
caminho do diretério da maquina hospedeira, e o caminho no qual o diretdrio serd mapeado para
dentro do contéiner. O Trecho [[3]ilustra um exemplo de comando que pode ser utilizado para
iniciar um conté€iner, mapeando um volume da maquina hospedeira para dentro do contéiner.

Trecho 13: Exemplo de comando utilizado para iniciar um conté€iner, mapeando um volume.

docker run -v /host/path:/container/path image_name

Em seguida, elaborou-se um experimento para comparar o desempenho entre NFS e Docker
Volumes. Foi utilizada uma méquina virtual com o sistema operacional Ubuntu Server 18.04.3
LTS. Para diminuir os efeitos de caching e aumentar a taxa de acessos a disco, foram provisionado

19

10

apenas 512MB de memoéria RAM para a méquina virtual [30]. A mdquina hospedeira do
experimento possui um processador Intel Core i7 -3537U, 8GB de memoéria RAM, um disco
rigido HDD, e um SSD [30].

A ferramenta de benchmarking utilizada foi o SysBench [31]. Escolheu-se essa ferramenta
com base em um levantamento de trabalhos relacionados, no qual notou-se que o Sysbench foi
a ferramenta mais utilizada por estes [30]. A Tabela[l] apresenta o levantamento obtido.

O experimento consiste em contéineres realizarem operacdes de escrita e leitura em um vo-
lume compartilhado. Ao todo, para compor os experimentos, foram realizadas 3100 medicoes,
comparando a performance entre os Docker Volumes, NFS no modo sincrono € NFS no modo
assincrono [30]. Cada execugdo do experimento utilizou um payload de 2GB e foi realizada
durante 60 segundos [30]. Ao longo do experimento, foram avaliadas as performances em
operacoes de escrita e leitura. Também avaliou-se o impacto da concorréncia sobre a perfor-
mance das operagdes, realizando o experimento tanto com um unico contéiner quanto com 10
contéineres acessando simultaneamente o volume compartilhado [30].

Ap0s o estudo sobre qual seria a tecnologia de compartilhamento de diretérios a ser utilizada,
escolheu-se a utilizacdo dos Docker Volumes neste trabalho. Para facilitar a configuracao de
toda arquitetura, utilizou-se o Docker Compose [32] para instanciar simultaneamente todos
os contéineres do back-end, e desinstancid-los quando desejado. O arquivo de descricao do
Docker Compose é um arquivo no formato YAML, caracteristico por ser bem legivel e de facil
edi¢do. Além disso, € possivel informar neste arquivo de descri¢do os Docker Volumes que
serdo utilizados, facilitando ainda mais a configuragdo do ambiente. O arquivo de descri¢do do
Docker Compose utilizado neste trabalho encontra-se descrito no Trecho[I8]

Realizada a construc¢do do back-end, foi projetada uma aplicacdo capaz de enviar codigos
para execugdo remota, além de ser capaz de especificar alguns parametros de execucdo. Essa
aplicacao serd um servico que ficard contido no cont€iner do front-end que serd utilizado pelo
aluno.

A aplicacdo também foi desenvolvida na linguagem Go [23]], e sua utilizacao se dd pela linha
de comando. E possivel informar alguns pardmetros por flags no momento da execucio. Essas
flags serdo enviadas como parametros na requisicio HTTP para o back-end, e determinardo a
quantidade de hosts e processos participantes da execucdo. A aplicacao foi chamada de rmtexec
(abreviagdo para remote execution). O Trecho[I4]contém as intrugdes fornecidas pelo aplicagio,
bem como um exemplo de uso.

Trecho 14: Instrucdes e exemplo de utilizagdao do rmtexec.

$ rmtexec -h
Usage of rmtexec:
-file string
Arquivo .c para execucao. Exemplo: --file main.c
-hosts int
Numero de hosts que sero usados na execucao. Exemplo:
--hosts 3 (default 1)
-processes int
Numero de processos que sero usados na execucao. Exemplo:
--processes 4 (default 1)

$ rmtexec --file main.c --hosts 2 --processes 4

Os parametros hosts e processes, caso nao sejam informados, foram projetados para terem
como padrdo o valor 1. O tnico parametro obrigatério € o file, que especifica o caminho do

20

arquivo que serd executado remotamente. Quando executada, entdo, a aplicagdo envia uma
requisicdo HTTP com o método POST utilizando um content-type do tipo multipart/form-data.
Cada um dos atributos, entdo, é enviado como um campo de um form-data na requisicao. Ao
final da execucgdo, a resposta da requisi¢do € a resposta produzida pelo cédigo enviado. Essa
resposta serd exibida de volta para o aluno. No caso de erros de compilagdo ou execugdo, €
retornado um erro para o usudrio.

A tnica configuragdo necessdria para o rmtexec € a rota que serd utilizada para reali-
zar a execucdo remota. Essa configuracdo serd obtida ao carregar o arquivo localizado em
/etc/rmtexec/config.yaml. O diretério /etc é comumente utilizado em ambientes Linux para o
armazenamento de arquivos de configuragdo das aplicagdes do sistema. O Trecho [I5] contém
um exemplo de arquivo de configuracdo da aplicagcdo rmtexec.

Trecho 15: Exemplo de configuracao do rmtexec.
remote: http://172.17.0.1:8000/job

Finalizada a construcdo da aplicacao rmtexec, foi projetada a imagem que descreve o con-
téiner do front-end, que serd utilizado pelos alunos para enviarem seus codigos para execugao
remota. Esse contéiner por si s6 deve ser capaz de permitir execu¢des simples dentro de si (no
caso, com um unico host), além de ser capaz de compilar e portar o rmtexec para si. Novamente
foi utilizada a técnica de multi-stage build 28] para gerar um contéiner construido em dois
estdgios. No primeiro estdgio, € compilada a aplicacdo rmtexec. No segundo estigio, que tem
como base a mesma imagem do Debian utilizada no back-end, sao instaladas as dependéncias
relativas ao MPI. Além disso, o bindrio gerado no primeiro estdgio € copiado para o contéiner
final, e alocado em um local contido no PATH do usuario. O PATH, em sistemas Linux, € o
conjunto de diretdrios nos quais o sistema ird procurar um bindrio para execugao.

Como um dos objetivos deste projeto € que ele seja de simples configuracio, também foi
preparado um Makefile que abstrai os processos de construgdo e execucdo do contéiner. Na
primeira execucdo, pode-se construir o contéiner do front-end a partir de um simples make
build. Em seguida, pode-se executar o cont€iner com um simples make run, e pode-se acessa-lo
com um make enter. Dentro do cont€iner, a aplicacdo rmtexec estard disponivel para utilizacao,
e, portanto, o aluno ja poderd enviar seus codigos para execuc¢ao remota.

3.4 Resultados obtidos

O sistema proposto e desenvolvido neste trabalho tem como principal objetivo, ajudar a popu-
larizar e disseminar a pratica do ensino de programacao paralela. Dessa forma, desenvolveu-se
uma arquitetura de um sistema simplificado para alunos e professores submeterem e executarem
aplicagoes paralelas MPI e OpenMP. A arquitetura foi projetada para trazer flexibilidade de uso,
facil utilizacdo e, principalmente, baixo custo de implementacdo e manutencao. Em situacoes
tradicionais, a constru¢cdo de um cluster de diversas maquinas com suporte para a execucao de
codigos com MPI e OpenMP é uma tarefa custosa e complexa. Por outro lado, a instancia-
cdo de um cluster com suporte a execucdo de codigo com as ferramentas citadas formado por
contéineres em uma Unica mdquina pode ser feito com um unico comando. Tendo acesso ao
codigo do sistema, um simples comando de docker-compose up € suficiente para instanciar um
cluster de contéineres e ja disponibilizd-lo para o uso. Além disso, desde que a maquina hospe-
deira tenha as dependéncias relativas ao Docker e ao Docker-compose, a arquitetura funcionara
de maneira independente do sistema operacional da maquina hospedeira, aumentando assim,
sua replicabilidade em diferentes mdquinas com diferentes configuragdes. A Imagem [2|ilustra

21

ambos back-end e front-end em funcionamento, respectivamente dos lados esquerdo e direito.

Figura 2: Exemplifica¢do do back-end e front-end em funcionamento.

Além disso, foi desenvolvida também uma API de cédigo aberto capaz de receber cddigos
enviados pelos alunos, gerenciar sua execucao e devolver a resposta obtida na prépria requisicao.
A API € exposta por um servigo executado sobre uma plataforma virtualizada, construida para
ser capaz de executar codigos que fazem uso do MPI, de uma maneira muito mais simples do
que pelas préticas convencionais.

Também desenvolveu-se um estudo a respeito da utilizacdo dos sistemas NFS e Docker
Volumes para o compartilhamento de diretérios e arquivos entre contéineres. Avaliou-se os
passos necessdarios para sua utiliza¢do, porém, o principal resultado deu-se na comparagao de
desempenho [30].

Na Figura[3]sdo apresentados os resultados das execugdes do experimento comparativo entre
NFS e Docker Volumes para operacdes de leitura e escrita em um cendrio sem concorréncia, ou
seja, com um Unico contéiner tendo acesso ao volume compartilhado. Pode-se observar que,
nesse experimento, o0 NFS em modo assincrono foi responsavel pelos melhores resultados [30]],
tanto em operacdes de leitura, quanto em operagdes de escrita, mesmo em hardwares diferentes
como, no caso, um disco HDD e um disco SSD. O Docker Volume, por sua vez, apresentou
resultados levemente melhores do que os obtidos pelo NF'S em modo sincrono. Dessa forma,
caso nao seja possivel arcar com os riscos de confiabilidade oferecidos pelo NFS assincrono, o
Docker Volume seria uma melhor op¢ao do ponto de vista de desempenho [30]].

Operagdes de Leitura e Escrita Operacgoes de Leitura e Escrita
1.500,00]

300,00

-

1.000,00
200,00

-
H

Media
Media

i

[1.228,23]

238,94

500,00

100,00

187,47| [184,44]

77033 [12127

12407] [12295

0,00 T T I
ASync Docker Sync

(a) Disco HDD (b) Disco SSD

0,00 1 I T
ASync Docker Sync

ASync_ Docker_ Sync_ ASync_ Docker_ Sync_

Figura 3: Quantidade de operacdes de leitura e escrita sem concorréncia.

Em um cendrio com 10 contéineres acessando concorrente o volume compartilhado, mais
uma vez o NF'S no modo assincrono foi responsavel pelos melhores resultados, apesar de uma

22

alta variacdo nos resultados das execucdes. Nesse cendrio, o NF'S em modo sincrono também
performou de maneira melhor do que os Docker Volumes. A Figura[d] apresenta os resultados
obtidos nesta etapa do experimento [30].

Operacgoes de Leitura e Escrita Operagées de Leitura e Escrita
80,00 200,00
60,00 150,00 I
] i) T
bl b=l
-0 Rt
= 40,00 T = 100,00 l T
972 J_ T [132,76 J_
20,00 1 50,00 104,36
34,17 7826
23,37
0,00 T T T 0,00 T T T
ASync Syihwas dJwcker- 2 ASync_ Sync_ Docker_ ASync Sync Docker ASync_ Sync_ Docker_
(a) Disco HDD (b) Disco SSD

Figura 4: Quantidade de operagdes de leitura e escrita com 10 contéineres concorrentes.

Observou-se, portanto, que, se tratando de performance, o NF'S em modo assincrono pro-
porciona os melhores resultados, porém, vale ressaltar que esse ganho de performance se dd em
detrimento de confiabilidade, tendo em vista que o NFS nesse modo ndo persiste imediatamente
as alteracdes em disco, mantendo-as temporariamente apenas em memoria. Também € impor-
tante observar que um outro fator importante que deve ser levando em considera¢do no momento
de escolher uma das tecnologias para o compartilhamento de volumes € a complexidade de con-
figuracdo. Conforme discorrido na se¢@o anterior, a configuragdo inicial para o uso do NFS é
mais complexa do que a configuragao inicial necessario para o uso de Docker Volumes, em um
cendrio no qual os hosts sdo contéineres.

Os resultados da anélise de desempenho do NFS e Docker Volumes no compartilhamento de
volumes em contéineres, em uma mesma mdquina fisica, foram sintetizados em artigo, publicado
no Simpdsio de Sistemas Computacionais de Alto Desempenho (WSCAD 2019), ocorrido em
Campo Grande/MS em outubro de 2019 [30].

3.5 Dificuldades e limitacoes

A maior dificuldade encontrada nas etapas iniciais do projeto foi com relacdo a utilizacao
do MPI em um sistema formado por contéineres. H4 escassa documentacao disponivel publi-
camente sobre o assunto. A maioria das implementacdes de arquiteturas para a utilizacao do
MPI utiliza o NF'S como sistema de compartilhamento de volumes e arquivos, enquanto que, se
tratando de contéineres, o uso de Docker Volumes para o compartilhamento desses diretorios
€ uma pratica mais comum. Como ha pouca informacao disponivel a respeito do uso de NF'S
em contéineres ao invés do uso de Docker Volumes, foi realizado um estudo comparativo entre
as tecnologias para auxiliar na escolha de qual ferramenta seria utilizada pelo sistema para
compartilhar os volumes entre os contéineres que compdem o back-end.

Outra grande dificuldade foi a construgao dos contéineres que compdem o back-end, de forma
que o contéiner mestre tenha acesso irrestrito aos contéineres escravos via SSH. As configuragoes
necessdarias para habilitar acesso remoto via SSH por meio de chaves publicas e privadas sem

23

que seja necessdria uma confirmagdo por parte do usudrio sdo razoavelmente complexas, e, em
muitos casos, falham silenciosamente em caso de erro, sem informar o problema ocorrido.

Uma das limitagOes do sistema proposto € que, sem o uso de um orquestrador, Volumes
Docker s6 podem ser montados em contéineres na mesma mdaquina fisica, e ndo através da
rede como € o caso do NFS. Para possibilitar o uso de um mesmo volume Docker através da
rede em contéineres que estejam em mdaquinas fisicas diferentes, € necessario o uso de algum
orquestrador de contéineres, como Kubernetes [33]] ou Docker Swarm [34]].

3.6 Consideracoes finais

Este capitulo apresentou detalhes sobre o desenvolvimento do projeto e os resultados ob-
tidos. Foram apresentadas as motivagdes e objetivos do projeto, a arquitetura e detalhes de
implementagdo e funcionamento das diferentes partes do sistema proposto, bem como os re-
sultados obtidos com a implementacdo. Além disso, discorreu-se sobre o estudo comparativo
realizado sobre as tecnologias NFS e Docker Volumes, dissertando a respeito de desempenho e
complexidade de configuracdo.

24

4 Conclusao

4.1 Contribuicoes

O trabalho desenvolvido apresenta uma solucao de baixo custo de implementacao, baixo custo
de manutencdo, e baixa complexidade de configuracao para a pratica do ensino de programacao
paralela com o uso das ferramentas OpenMP e MPI. Por conta dessas caracteristicas, essa
solugdo contribui para a disseminacao do ensino de programagdo paralela, uma vez que recursos
financeiros podem acabar deixando de ser um obstdculo.

A arquitetura desenvolvida € de simples utilizacdio. Com um Unico comando, pode-se
instanciar um cluster de contéineres para atuarem como hosts na execugao de cédigos paralelos,
além de um servi¢o que expde uma API para o recebimento de c6digos externos, juntamente de
parametros de execucdo. Todo o sistema desenvolvido € open-source e encontra-se disponivel
em repositorios publicos [35] [36], contribuindo assim, para disseminar o ensino pratico de
programacao paralela.

4.2 Relacionamento entre o Curso e o Projeto

O projeto desenvolvido se relaciona com diversas disciplinas apresentadas ao longo do curso.
O desenvolvimento desse projeto necessitou do conhecimento adquirido em diversas disciplinas
do curso, como, por exemplo, Algoritmos e Estruturas de Dados, Redes de Computadores,
Sistemas Operacionais, entre outras, podendo destacar, claro, Programacdo Concorrente, que
caracteriza o nucleo deste trabalho.

Além de se relacionar diretamente com as disciplinas vistas ao longo do curso, o projeto uti-
lizou diversas tecnologias e padrdes presentes atualmente na industria. As tecnologias utilizadas
na construcao do sistema realizado neste projeto sdo, em grande parte, largamente utilizadas no
mercado. Por exemplo, é comum encontrar na industria a utilizacdo de Docker para a criagao
de cont€ineres, a utilizacdo de Go para a criac@o de aplicagdes, entre outros. Portanto, o projeto
relaciona-se bem com o curso por utilizar os conhecimentos apresentados em diversas disciplinas
ministradas ao longo da formagdo, além de relacionar-se bem com a area de desenvolvimento
por utilizar tecnologias presentes no mercado atualmente.

4.3 Consideracoes sobre o Curso de Graduacao

O curso de Engenharia de Computagdo tem como escopo o ensino de disciplinas relacionadas
tanto ao universo da computagdo, quanto ao universo da engenharia.

Tratando-se do escopo do ensino de computagao, destaco os pontos que, em minha opiniao,
840 positivos:

* O curso fornece uma boa base a respeito de logica e algoritmos. O aluno € capaz
de compreender os fundamentos ao longo do curso, e, caso possua interesse, tem total
capacidade de aprender por si topicos mais complexos no assunto.

* A dificuldade e exigéncia das disciplinas de computacdo evolui bem ao longo do curso.
Em minha opinido, os pontos negativos que destaco sdo:

* A escolha da linguagem inicial apresentada no curso, no caso, a linguagem C, ¢ um ponto
negativo. Acredito que, nas primeiras matérias de computagdo no curso, um dos objetivos

25

deve ser conseguir atrair o interesse dos alunos na drea, e motiva-los a aprender mais sobre
o0 assunto por conta prépria. Nesse cendrio, ndo considero a linguagem C uma boa escolha
para isso, visto que € uma linguagem razoavelmente de baixo nivel, na qual é necessdria
muita complexidade e implementacdo para a realizacdo de tarefas ainda simples. Em
contraste a isso, uma linguagem de mais alto nivel como, por exemplo, Python, poderia
acabar motivando melhor os alunos do curso, visto que € possivel realizar tarefas mais
complexas com menos esfor¢co e menos dificuldade, fazendo com que os alunos vejam
melhor os poderes que a computacgdo traz para aqueles que a utilizam.

* Um outro ponto que considero negativo é a omissdo de alguns temas importantes no
curriculo. Temas como desenvolvimento web, clean code, e até mesmo conteinerizacao
nao sdo devidamente apresentados aos alunos em disciplinas obrigatérias. Considero
esses temas de extrema relevancia, visto que grande parte dos alunos egressos acabando
tendo contato direto com esses assuntos no mercado.

4.4 Trabalhos futuros

Existem diversas etapas que poderiam compor trabalhos futuros realizados sobre os resul-
tados deste trabalho. Poderia-se, por exemplo, realizar a validacdao do sistema proposto com
alunos em sala de aula, podendo dessa forma, obter feedbacks a respeito do uso, e com isso
propor melhorias para serem acrescentas ao sistema proposto. Um outro trabalho que poderia
ser realizado € a portabilidade do sistema proposto para a cloud, fazendo com que ndo seja mais
necessdrio que o professor execute o back-end em sua maquina, e, dessa forma, seria necessario
apenas que os alunos configurassem seus contéineres locais para enviarem os cédigos para o
endereco disponibilizado na cloud. Nesse mesmo trabalho, poderia-se utilizar um orquestrador
de contéineres, como Kubernetes, para gerenciar os contéineres que compdem o back-end e,
dessa forma, seria possivel inclusive utilizar mais de um host fisico para instanciar os contéine-
res do back-end e ainda assim utilizar o mesmo volume em todos os contéineres instanciados,
independentemente de em qual mdaquina fisica eles se encontram. Um exemplo de arquitetura
de sistema que faz o uso do Kubernetes é mostrado na Figura[5| Um outro trabalho possivel,
seria a constru¢cdo de um sistema para o cadastro de professores e alunos, de forma a executar
um Saas (Software as a Service) sobre o projeto proposto.

26

Host

Pod

Back-end slave container

Kubernetes

Host

72

SSH Service

Pod
Back-end master container

2 B

Go Back-end service MPI Compiler

Pod

Back-end slave container

72

SSH Service

Docker volume

Pod
Back-end slave container

72

SSH Service

User
Front-end container

Go Front-end client C Code

User
Front-end container

Go Front-end client C Code

User
Front-end container

B

Go Front-end client C Code

Figura 5: Exemplo de arquitetura utilizando o orquestrador Kubernetes.

27

Referéncias

[1] Moore’slaw - Disponivel em: <https://www.kth.se/social/upload/507d1d3af276540519000002/Moore
>Acesso em Out. 2019.

[2] PTHREADS - Linux Programmer’s Manual - Disponivel em: <http://man7.org/linux/man-
pages/man7/pthreads.7.html >Acesso em Out. 2019.

[3] The OpenMP API specification for parallel programming - Disponivel em:
<https://www.openmp.org>Acesso em Mai. 2019.

[4] Open MPI: Open Source High Performance Computing - Disponivel em:
<https://www.open-mpi.org>Acesso em Mai. 2019.

[5] CUDA Toolkit Documentation - Disponivel em: <https://docs.nvidia.com/cuda/ >Acesso
em Out. 2019.

[6] Michael Quinn. Parallel Programming. McGraw-Hill Science/Engineering/Math, 2003.
[7] A.S TANENBAUM. Sistemas Operacionais Modernos. Pearson, 2010.

[8] ExclusdaoMutua (mutex) - Disponivel em: <https://edisciplinas.usp.br/pluginfile.php/3061851/mod,es
Mutex —v27.pdf > AcessoemQOut.2019.

[9] Computer Architecture | Flynn’s taxonomy - Disponivel em:
<https://www.geeksforgeeks.org/computer-architecture-flynns-taxonomy/ >Acesso
em Out. 2019.

[10] Posix Standard - Disponivel em: <https://linuxhint.com/posix-standard/ >Acesso em Out.
2019.

[11] GCC, the GNU Compiler Collection - Disponivel em: <https://gcc.gnu.org/ >Acesso em
Out. 2019.

[12] MPICH | High-Performance Portable MPI - Disponivel em: <https://www.mpich.org/
>Acesso em Mai. 2019.

[13] LAM / MPI Parallel Computing - Disponivel em:
<http://www.dcs.ed.ac.uk/home/trollius/www.osc.edu/lam.html >Acesso em Mai.
2019.

[14] ssh - Linux man page - Disponivel em: <https://linux.die.net/man/1/ssh >Acesso em Out.
2019.

[15] NFS - Network File System - Disponivel em: <http://web.mit.edu/rhel-doc/3/rhel-sag-
ptpr —3/ch —nfs.html > AcessoemOut.2019.

[16] nfs - Linux man page - Disponivel em: <https://linux.die.net/man/5/nfs >Acesso em Out.
2019.

[17] Docker and Reproducibility - Disponivel em: <https://reproducible-analysis-
workshop.readthedocs.io/en/latest/8.Intro-Docker.html >Acesso em Out. 2019.

28

[18] The Twelve Factor App - Disponivel em: <https://12factor.net/ptyr />
AcessoemQOut.2019.

[19] Dev/prod parity - Disponivel em: <https://12factor.net/dev-prod-parity >Acesso em Out.
2019.

[20] Enterprise Container Platform for High-Velocity Innovation - Disponivel em:
<https://www.docker.com/>Acesso em Mai. 2019.

[21] Amazon Web Services (AWS) - Disponivel em: <https://aws.amazon.com/ >Acesso em
Out. 2019.

[22] Google Cloud: Cloud Computing Services - Disponivel em: <https://cloud.google.com/
>Acesso em Out. 2019.

[23] Use volumes | Docker Documentation - Disponivel em:
<https://docs.docker.com/storage/volumes/>Acesso em Mai. 2019.

[24] Debian - Docker Hub - Disponivel em: <https://hub.docker.com/,debian >
AcessoemQOut.2019.

[25] The Go Programming Language - Disponivel em: <https://golang.org/>Acesso em Out.
2019.

[26] Compiles and links MPI programs written in C - Disponivel em:
<https://www.mpich.org/static/docs/v3.1.x/www 1/mpicc.html >Acesso em Out. 2019.

[27] mpiexec - Disponivel em: <https://www.mpich.org/static/docs/v3.1/www1/mpiexec.html
>Acesso em Out. 2019.

[28] Use multi-stage builds - Disponivel em: <https://docs.docker.com/develop/develop-
images/multistage-build/ > Acesso em Out. 2019.

[29] Running an MPI Cluster within a LAN - Disponivel em:
<https://mpitutorial.com/tutorials/running-an-mpi-cluster-within-a-lan/ >Acesso em
Out. 2019.

[30] N.G.; P.S.L. SOUZA M.A.T. Schaefer; N.G. Bachiega and S.M.S. Bruschi. Avaliacao
do docker volume e do nfs no compartilhamento de sistemas de arquivos em contéineres.
In Simpdsio de Sistemas Computacionais de Alto Desempenho (WSCAD2019), volume 1,
pages 1-8, October 2019.

[31] Sysbench - Scriptable database and system performance benchmark - Disponivel em:
<https://github.com/akopytov/sysbench >Acesso em Out. 2019.

[32] Overview of Docker Compose - Disponivel em: <https://docs.docker.com/compose/
>Acesso em Out. 2019.

[33] Orquestracio de cont€iner pronto para producdo - Disponivel em:
<https://kubernetes.io/pt/ >Acesso em Out. 2019.

[34] Swarm mode overview - Disponivel em: <https://docs.docker.com/engine/swarm/ >Acesso
em Out. 2019.

29

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

HPC Frontend with MPI support - Disponivel em:
<https://github.com/MarcoSchaefer/hpc-frontend >Acesso em Out. 2019.

HPC Backend with MPI support - Disponivel em:
<https://github.com/MarcoSchaefer/hpc-backend >Acesso em Out. 2019.

N. G. Bachiega, P. S. L. Souza, S. M. Bruschi, and S. d. R. S. de Souza. Container-based
performance evaluation: A survey and challenges. In 2018 IEEE International Conference
on Cloud Engineering (IC2E), pages 398-403, April 2018.

J. Che, C. Shi, Y. Yu, and W. Lin. A synthetical performance evaluation of openvz, xen
and kvm. In 2010 IEEE Asia-Pacific Services Computing Conference, pages 587-594, Dec
2010.

M. G. Xavier, M. V. Neves, F. D. Rossi, T. C. Ferreto, T. Lange, and C. A. F. De Rose.
Performance evaluation of container-based virtualization for high performance computing

environments. In 2013 21st Euromicro International Conference on Parallel, Distributed,
and Network-Based Processing, pages 233-240, Feb 2013.

Anish Babu, Hareesh M. J., John Paul Martin, Sijo Cherian, and Yedhu Sastri. System per-
formance evaluation of para virtualization, container virtualization, and full virtualization
using xen, openvz, and xenserver. In 2014 Fourth International Conference on Advances
in Computing and Communications, pages 247-250, Aug 2014.

W. Felter, A. Ferreira, R. Rajamony, and J. Rubio. An updated performance comparison
of virtual machines and linux containers. In 2015 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS), pages 171-172, March 2015.

C. Ruiz, E. Jeanvoine, and L. Nussbaum. Performance evaluation of containers for hpc. In
In: Hunold S. et al. (eds) Euro-Par 2015: Parallel Processing Workshops. Euro-Par 2015,
pages 813-824, December 2015.

T. Adufu, J. Choi, and Y. Kim. Is container-based technology a winner for high performance
scientific applications? In 2015 17th Asia-Pacific Network Operations and Management
Symposium (APNOMS), pages 507-510, Aug 2015.

M. Amaral, J. Polo, D. Carrera, I. Mohomed, M. Unuvar, and M. Steinder. Performance
evaluation of microservices architectures using containers. In 2015 IEEFE 14th International
Symposium on Network Computing and Applications, pages 27-34, Sept 2015.

D. Beserra, E. D. Moreno, P. T. Endo, J. Barreto, D. Sadok, and S. Fernandes. Performance
analysis of 1xc for hpc environments. In 2015 Ninth International Conference on Complex,
Intelligent, and Software Intensive Systems, pages 358-363, July 2015.

A. M. Joy. Performance comparison between linux containers and virtual machines. In
2015 International Conference on Advances in Computer Engineering and Applications,
pages 342-346, March 2015.

R. Morabito, J. Kjidllman, and M. Komu. Hypervisors vs. lightweight virtualization: A
performance comparison. In 2015 IEEE International Conference on Cloud Engineering,
pages 386-393, March 2015.

30

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

M. G. Xavier, I. C. D. Oliveira, F. D. Rossi, R. D. D. Passos, K. J. Matteussi, and C. A. F. D.
Rose. A performance isolation analysis of disk-intensive workloads on container-based
clouds. In 2015 23rd Euromicro International Conference on Parallel, Distributed, and
Network-Based Processing, pages 253-260, March 2015.

M. T. Chung, N. Quang-Hung, M. T. Nguyen, and N. Thoai. Using docker in high
performance computing applications. In 2016 IEEE Sixth International Conference on
Communications and Electronics (ICCE), pages 52-57, July 2016.

A. Jaikar, S.A.R. Shah, S. Bae, and S.Y. Noh. Performance evaluation of scientific work-
flow on openstack and openvz. Social-Informatics and Telecommunications Engineering,

LNICST, 167:126-135, 2016.

B. Ruan, H. Huang, D. Wu, and H. Jin. A performance study of containers in cloud envi-
ronment. In: Wang G., Han Y., Martinez Pérez G. (eds) Advances in Services Computing.
APSCC 2016., 10065:343-356, 2016.

S. Herbein, A. Dusia, A. Landwehr, S. McDaniel, J. Monsalve, Y. Yang, S.R. Seelam,
and M. Taufer. Resource management for running hpc applications in container clouds.
Lecture Notes in Computer Science, 9697:261-278, 2016.

R. K. Barik, R. K. Lenka, K. R. Rao, and D. Ghose. Performance analysis of virtual machi-
nes and containers in cloud computing. In 2016 International Conference on Computing,
Communication and Automation (ICCCA), pages 1204—1210, April 2016.

R. S. V. Eiras, R. S. Couto, and M. G. Rubinstein. Performance evaluation of a virtualized
http proxy in kvm and docker. In 2016 7th International Conference on the Network of the
Future (NOF), pages 1-5, Nov 2016.

Z. Kozhirbayev and R.O. Sinnott. A performance comparison of container-based techno-
logies for the cloud. Future Generation Computer Systems, 68:175-182, 2017.

Z. Li, M. Kihl, Q. Lu, and J. A. Andersson. Performance overhead comparison between
hypervisor and container based virtualization. In 2017 IEEE 315t International Conference
on Advanced Information Networking and Applications (AINA), pages 955-962, March
2017.

I. Mavridis and H. Karatza. Performance and overhead study of containers running on
top of virtual machines. In 2017 IEEE 19th Conference on Business Informatics (CBI),
volume 02, pages 32-38, July 2017.

A. Lingayat, R. R. Badre, and A. Kumar Gupta. Performance evaluation for deploying
docker containers on baremetal and virtual machine. In 2018 3rd International Conference
on Communication and Electronics Systems (ICCES), pages 1019-1023, Oct 2018.

H. Zeng, B. Wang, W. Deng, and W. Zhang. Measurement and evaluation for docker
container networking. In 2017 International Conference on Cyber-Enabled Distributed
Computing and Knowledge Discovery (CyberC), pages 105-108, Oct 2017.

N. Mizusawa, J. Kon, Y. Seki, J. Tao, and S. Yamaguchi. Performance improvement of file
operations on overlayfs for containers. In 2018 IEEE International Conference on Smart
Computing (SMARTCOMP), pages 297-302, June 2018.

31

A

Dockerfile base

Trecho 16: Dockerfile utilizado como base para a execucdo dos codigos

FROM debian:8-slim

RUN apt-get update

RUN apt-get install -y openssh-client
RUN apt-get install -y openssh-server

RUN apt-get install -y openmpi-bin

RUN apt-get install -y mpi-default-dev

RUN mkdir root/.ssh
RUN chmod 700 /root/.ssh

COPY ./ssh_keys/id_rsa.pub /root/.ssh/authorized_keys
COPY ./ssh_keys/id_rsa.pub /root/.ssh/id_rsa.pub

COPY ./ssh_keys/id_rsa /root/.ssh/id_rsa

COPY ./ssh_keys/known_hosts /root/.ssh/known_hosts

RUN chmod 600 /root/.ssh/*

RUN apt-get install -y make

COPY ./ssh_keys/ssh_host_ecdsa_key /etc/ssh/ssh_host_rsa_key
COPY ./ssh_keys/ssh_host_ecdsa_key.pub /etc/ssh/ssh_host_rsa_key.pub
RUN chmod 600 /etc/ssh/ssh_host_rsa_key

RUN apt-get install -y sudo

CMD service ssh start & tail -f /dev/null

32

B
Dockerfile do contéiner mestre do back-end

Trecho 17: Dockerfile utilizado pelo cont€iner mestre do back-end

FROM golang:1.12.7-stretch as builder

COPY ./ /api
WORKDIR /api

RUN go get -d
RUN go build -o main

FROM debian:8-slim

RUN apt-get update

RUN apt-get install -y openssh-client
RUN apt-get install -y openssh-server

RUN apt-get install -y openmpi-bin

RUN apt-get install -y mpi-default-dev

RUN mkdir root/.ssh
RUN chmod 700 /root/.ssh

COPY ./ssh_keys/id_rsa.pub /root/.ssh/authorized_keys
COPY ./ssh_keys/id_rsa.pub /root/.ssh/id_rsa.pub

COPY ./ssh_keys/id_rsa /root/.ssh/id_rsa

COPY ./ssh_keys/known_hosts /root/.ssh/known_hosts

RUN chmod 600 /root/.ssh/*

RUN apt-get install -y make

COPY ./ssh_keys/ssh_host_ecdsa_key /etc/ssh/ssh_host_rsa_key
COPY ./ssh_keys/ssh_host_ecdsa_key.pub /etc/ssh/ssh_host_rsa_key.pub
RUN chmod 600 /etc/ssh/ssh_host_rsa_key

RUN apt-get install -y sudo

COPY --from=builder /api/main /api/main
COPY --from=builder /api/config /api/config

WORKDIR /api

CMD service ssh start & & ./main && tail -f /dev/null

33

C
Docker-compose do back-end.

Trecho 18: Arquivo docker-compose.yaml, responsével por instanciar todo o back-end.

FROM golang:1.12.7-stretch as builder

COPY ./ /api
WORKDIR /api

RUN go get -d
RUN go build -o main

FROM debian:8-slim

RUN apt-get update

RUN apt-get install -y openssh-client
RUN apt-get install -y openssh-server

RUN apt-get install -y openmpi-bin

RUN apt-get install -y mpi-default-dev

RUN mkdir root/.ssh
RUN chmod 700 /root/.ssh

COPY ./ssh_keys/id_rsa.pub /root/.ssh/authorized_keys
COPY ./ssh_keys/id_rsa.pub /root/.ssh/id_rsa.pub

COPY ./ssh_keys/id_rsa /root/.ssh/id_rsa

COPY ./ssh_keys/known_hosts /root/.ssh/known_hosts

RUN chmod 600 /root/.ssh/*

RUN apt-get install -y make

COPY ./ssh_keys/ssh_host_ecdsa_key /etc/ssh/ssh_host_rsa_key
COPY ./ssh_keys/ssh_host_ecdsa_key.pub /etc/ssh/ssh_host_rsa_key.pub
RUN chmod 600 /etc/ssh/ssh_host_rsa_key

RUN apt-get install -y sudo

COPY --from=builder /api/main /api/main
COPY --from=builder /api/config /api/config

WORKDIR /api

CMD service ssh start & & ./main && tail -f /dev/null

34

D Trabalhos de benchmarking relacionados

A Tabela|I|apresenta as ferramentas de benchmarking utilizadas por trabalhos relacionados.
Os resultados foram adaptados de [37]].

Tabela 1: Trabalhos Relacionados

2[4]*Artigo 2[4]*Carga de Trabalho Recursos
P M R D CV O
[38] SPECCPU, LINPACK, RAMS- X X X X [t]

PEED, LMbench, I0zone, Bon-
nie++, NetlO, WebBench, Sys-

Bench e SPECJBB
[39] LINPACK, STREAM, I0-zone, X X X X
NetPIPE, NPB e IBS
[40] UnixBench X
[41] PXZ, LINPACK, STREAM, nuttcp, X X X X X
netperf, FIO, Redis e SysBench
[42] NPB e TAU X X
[43] autodock3 X
[44] CPU-intensive, Sysbench e netperf X X X X
[45] HPL e NetPIPE X X X
[46] JMeter X
[47] Y-cruncher, NBENCH, Geekbench, X X X X
noploop, Linpack, Bonnie++, Sys-
bench, I0zone, STREAM e netperf
[48] Swingbench e Sysbench X X X
[49] HPL e Graph500 X X
[50] HTCondor X X X
[51] SPEC CPU 2006, STREAM, FIO, X X X X
netperf e HiBench
[52] LINPACK X X X
53] AIO Stress, Ram-speed, 10zone, X X X X
Tbench, iperf, RuBBoS, Apache-
Bench, Blake2, 7-zip e OpenSSL
benchmark
[45] fs test X X
[54] ApacheBench e Stress Tool X X
[155] Y-cruncher, LINPACK, Geekbench, X X X X
Bonnie++, Sysbench, STREAM,
netperf e iperf
[156] Iperf, HardInfo, Bonnie++ e X X X X
STREAM
1571 LINPACK, STREAM, I0-zone ¢ X X X X
netperf
[158] Ferramentas do Docker e Linux X X X
[59] Ferramentas do Docker e Linux X
[[60] Ferramentas do Docker e Linux X [b]

35

	Introdução
	Contextualização e motivação
	Objetivos
	Organização do trabalho

	Revisão bibliográfica
	Programação Paralela
	Virtualização

	Desenvolvimento do trabalho
	Considerações Iniciais
	Projeto
	Descrição das atividades realizadas
	Detalhes do Sistema Desenvolvido
	Avaliação de Desempenho do NFS e Docker Volumes

	Resultados obtidos
	Dificuldades e limitações
	Considerações finais

	Conclusão
	Contribuições
	Relacionamento entre o Curso e o Projeto
	Considerações sobre o Curso de Graduação
	Trabalhos futuros

	Dockerfile base
	Dockerfile do contêiner mestre do back-end
	Docker-compose do back-end.
	Trabalhos de benchmarking relacionados

