
Alessandre Rodrigues Geraldo

REDE CAN PARA ACIONAMENTO E

CONTROLE DA PLATAFORMA

AUTÔNOMA PARA COLETA DE

DADOS HIDROLÓGICOS

Trabalho de Conclusão de Curso
apresentado à Escola de Engenharia de

 São Carlos, da Universidade de São Paulo

Curso de Engenharia Elétrica com
 ênfase em Eletrônica

ORIENTADOR: Prof. Dr. Valentin Obac Roda

São Carlos
2008

Resumo

O fornecimento de água de qualidade às cidades é necessário para que se garanta a

saúde das pessoas. E para isso, o monitoramento das variáveis físico-químico da água é

fundamental. Os trabalhos de coleta de amostras por técnicos que se deslocam até rios e

reservatórios podem ser prejudiciais as suas saúdes devido às adversidades climáticas ou devido

à poluição das águas. Uma busca para solução desse problema vem sendo feita pelo Laboratório

de Instrumentação Virtual e Microprocessada do Departamento de Engenharia

Elétrica/EESC/USP, no desenvolvimento de uma plataforma autônoma para coleta e análise de

amostras de água. O presente trabalho tem por finalidade o estudo, a compreensão e a aplicação

da rede CAN de comunicação aplicado em um sistema de controle da plataforma autônoma.

Foram desenvolvidas unidades de controle microcontroladas distribuídas para utilização na

embarcação, sendo que cada uma será responsável pelo acionamento de atuadores e leitura de

sensores. Um computador embarcado será utilizado como comando principal do sistema e como

interface entre a embarcação e a comunicação com a estação base.

Palavras chave: Microcontroladores, Instrumentação, Veículos autônomos, Redes de

instrumentação, Rede CAN

Abstract

The providing of quality water to cities is necessary to ensure the health of people. And

consequently, the monitoring of physical and chemical variables of water is crucial.

The work of collection of samples by technicians moving up rivers and reservoirs may be

harmful to their health due to climatic adversities or due to water pollution.

A search for solution of this problem is being made by the Laboratory of Virtual

Instrumentation and Microprocessors, Department of Electrical Engineering / EESC / USP, in

developing an autonomous platform for collection and analysis of water samples.

This paper aims at the study, understanding and application of the CAN network of

communication applied to a system of autonomous control of the platform. Have been

developed to control microcontroller units distributed for use on the boat, each of which will be

responsible for driving actuators and reading sensors. A computer board will be used as the

main control system and as an interface between the boat and communication with the base

station.

Keywords: Microcontrollers, instrumentation, autonomous vehicles, instrumentation networks,

CAN Network

Dedicatória

Aos meus pais Marco Antonio e Isabel pelo incentivo e apoio em meus estudos.

Agradecimentos

Ao Professor Dr. Valentin Obac Roda pela oportunidade da realização deste trabalho.

À amiga Mônica Maria Ramos Germano Travieso pelas dicas de programação e pelos
conselhos para a vida.

Lista de abreviaturas e siglas

A/D Analog to Digital Converter

AMP Arbitration on Message Priority

CAN Controller Area Network

CC Corrente Contínua

CRC Cyclic Redundancy Check

CSMA/CD Carrier Sense Multiple Access/ Collision Detection

DIP Dual in Line Package

EOF End of File

GPS Global Positioning System

I2C Inter Integrated Circuit

ISO International Organization for Standardization

ISP In System Program

JTAG Joint Test Action Group

kbps Kilobits per second

Mbps Megabits per second

PC Personal Computer

PWM Pulse Width Modulation

RF Radiofrequency

RISC Reduced Instruction Set Computer

RX Receive

SAE Society of Automobile Engineers

SPI Serial Peripheral Interface

TX Transmit

U.C. Unidade de Controle

UART Universal Asynchronous Receiver Transmitter

USART

Universal Synchronous and Asynchronous Receiver Transmitter

Sumário

1. Introdução... 2
2. Por que rede CAN?... 3

2.1. CAN - Definição... 5
2.2. Camada Física .. 5

2.2.1. Níveis de Tensão .. 6
2.2.2. Taxa de transmissão.. 6
2.2.3. Máximo comprimento do barramento .. 7
2.2.4. O Cabeamento .. 7
2.2.5. Terminações.. 8

2.3. Camada de Enlace .. 8
2.4. Comunicação na rede CAN .. 8
2.5. As mensagens CAN.. 9
2.6. Tipos de Mensagens ... 11
2.7. Bit Stuffing .. 12
2.8. Detecção de Erros... 12
2.9. Confinamento de Falhas ... 12

3. Circuitos Ponte H ... 13
3.1. O circuito integrado VNH3SP30.. 14
3.2. Princípio de operação ... 15
3.3. Circuito de teste .. 17

4. Microcontroladores com Interface CAN .. 18
4.1 LPC2129... 19
4.2 PIC18F4580.. 20
4.3 AT90CAN128 .. 21

5. Escolha do microcontrolador a ser utilizado .. 22
6. A arquitetura do AT90CAN128 ... 24
7. Características de programação do microcontrolador AVR................................... 26
8. Construção da placa de controle CAN ... 28
9. Configuração do sistema de teste ... 32
10. Programação dos microcontroladores .. 33

10.1 Operação do Controlador CAN no AT90CAN128/64 35
10.2 Configuração e inicialização do controlador CAN... 36
10.3 Filtragem de mensagens CAN.. 39
10.4 Mensagens CAN utilizadas .. 41
10.5 Comunicação serial no AT90CAN128/64.. 41
10.6 Conversor A/D.. 42
10.7 Gerador de sinais PWM.. 42

11. Testes do sistema.. 43
12. Conclusões.. 47
13. Anexos.. 48

13.1 Programa da U.C. 1 .. 48
13.2 Programa da U.C. 2 .. 54

14. Referências bibliográficas .. 58

2

1. Introdução

A qualidade das águas é um tema de muita importância nos dias de hoje. Principalmente

das águas provenientes de rios e represas responsáveis pelo abastecimento de cidades, onde

impactos causados pela poluição podem afetar não só a saúde de pessoas como também causar

grandes prejuízos econômicos.

Somado ao problema da escassez, torna–se obrigatório a tomada de medidas para que

haja um uso sustentável da água. E uma análise química e física da água é fundamental para

monitorar sua qualidade.

Antes de ser captada, a água pode ser analisada ainda na represa ou rio, onde técnicos se

dirigem através de barcos para que façam a coleta das amostras.

Esse tipo de coleta, ainda que tenha bons resultados, oferecem riscos às pessoas

envolvidas, tanto por estar expostas às adversidades climáticas (sol, tempestades) como também

no risco de possíveis contaminações devido à poluição das águas.

Na busca de um meio mais seguro e prático para realização da coleta e análise da água,

vários trabalhos no laboratório de Instrumentação Virtual e Microprocessada do Departamento

de Engenharia Elétrica/EESC/USP vêm sendo desenvolvidos para o desenvolvimento de uma

plataforma autônoma para que faça a coleta e análise de amostras de água em reservatórios.

Essa plataforma consiste em um barco de motor de popa, onde foi aplicado um sistema

de controle microcontrolado, atuando em motores elétricos para movimentação do volante e do

controle de velocidade do barco.

Com o uso de GPS e Bússola eletrônica instalados, o barco pode ser posicionado com

precisão, e os dados de controle da plataforma são enviados por uma estação base através de um

enlace por RF.

O presente trabalho tem como finalidade a implantação de uma rede de comunicação

CAN para controle dos motores e para futura leitura dos instrumentos de posicionamento. Essa

rede de comunicação permite tornar o sistema da plataforma flexível a expansões e é um meio

mais robusto para seu controle.

Para o controle dos motores, serão utilizados módulos de ponte H semicondutores,

permitido através de sinal PWM um controle também da velocidade de giro dos motores.

3

2. Por que rede CAN?

Atualmente, várias aplicações móveis, como carros, aviões, tratores utilizam a

eletrônica embarcada em seus sistemas.

Entende-se por eletrônica embarcada, toda aplicação móvel em que possa ser usada a

eletrônica como responsável por algumas tarefas do sistema. Por exemplo, em um automóvel

pode-se citar o sistema de alarme, ignição eletrônica, injeção de combustível, painel de

instrumentos, controle dos freios, monitoramento de temperatura, etc., todos comandados

eletronicamente. [1]

Ao se projetar um sistema de eletrônica embarcada, pode-se optar por concentrar todo

controle do sistema em um só local (unidade de controle), aonde chegam todos os sinais de

sensores, chaves de comandos, e do mesmo lugar onde partem cabos que irão ser ligados a

atuadores do sistema. Isso caracteriza um sistema de arquitetura centralizada como indicado na

figura 1. [1]

A princípio, para pequenos sistemas, pode ser mais vantajoso tal arquitetura, mas em

um sistema relativamente maior, a arquitetura centralizada apresenta algumas deficiências

citadas a seguir:

Primeiramente, o uso de longos cabos desde um sensor ou atuador até a unidade de

controle, podem funcionar como antenas captando sinais de fontes externas, causando erros nas

leituras desses sinais recebidos.

Em segundo lugar, pode–se citar a dificuldade de expansão deste sistema, sendo que

muitas vezes necessite a construção de um circuito superdimensionado para suprir futuras

modificações, encarecendo seu valor.

Outra dificuldade dessa arquitetura é a maior complexidade dos circuitos da unidade de

controle, e da maior complexidade de programação de um microcontrolador responsável por

todo o sistema. Numa futura expansão do sistema, mais linhas de código seriam necessárias e

um microcontrolador superdimensionado seria necessário.

4

Figura 1 - Exemplo de um sistema de arquitetura centralizada

Outra topologia possível seria a arquitetura distribuída indicada na figura 2. Nessa

configuração, cada unidade de controle (U.C.) está localizada próxima aos seus sinais de entrada

(sensores) e saída (atuadores). Isso reduz o comprimento de cabos para sinais utilizados,

diminuindo assim o efeito de interferências. [1]

Sendo cada unidade de controle responsável agora por um pequeno número de sensores

e atuadores, uma menor carga de processamento é exigida dos microcontroladores e também, os

programas de cada unidade de controle são menos complexos, pois são responsáveis pelo

comando de parte do sistema.

Figura 2 - Exemplo de um sistema de arquitetura distribuída

U. C. 1

U.C. 2 U.C. 3 U.C. 4

Sensores /
Atuadores

Sensores /
Atuadores

Sensores /
Atuadores

Barramento Serial

5

Outra vantagem dessa topologia é sua capacidade de expansão, bastando interligar à

rede do sistema novas unidades de controle que por sua vez se conectará a outros sensores e

atuadores.

Porém, para que haja o correto funcionamento desse sistema, é necessário um meio de

comunicação rápido e confiável que interligue todas as unidades de controle, para que o sistema

opere de forma robusta.

Buscando obter uma proteção contra interferências e ao mesmo tempo um meio simples

de interconexão, a comunicação entre as unidades deve ser na forma serial, e o cabo utilizado é

um par trançado de fios, eficiente na minimização de interferências eletromagnéticas.

Além das características citadas, a comunicação serial deve atender aos seguintes

requisitos:

a) Alta taxa de transmissão de dados entre as unidades;

b) Facilidade de expansão, bastando conectar um novo circuito ao barramento de

comunicação;

c) Baixo índice de erros dos dados transmitidos/recebidos;

d) Robustez do sistema a falhas que venham ocorrer em algumas das unidades de controle,

na qual não deve afetar o funcionamento de todo o sistema;

Na busca destas características, um barramento de comunicação serial foi desenvolvido

pela BOSCH nos anos 80, o CAN (Controller Area Network), que teve propósito original,

atender as especificações de sistemas de eletrônica embarcada em automóveis. [2]

2.1. CAN - Definição

CAN (Controller Area Network) é um sistema de comunicação serial, especialmente

desenvolvido para interligação de dispositivos "inteligentes" bem como sensores e atuadores em

um sistema ou subsistema. [3]

É um protocolo de comunicação serial síncrono, com característica multimestre, i.e.,

qualquer unidade da rede pode ora ser mestre, comandando a rede, ou escrava, respondendo a

comandos de outra unidade.

O protocolo CAN tem sua estrutura dividida em duas partes principais assim

denominadas: camada física e camada de enlace, que são discutidas a seguir.

2.2. Camada Física

A Camada Física define o modo de transmissão dos sinais entre diferentes unidades a

respeito das propriedades elétricas. [4]

Existem formas diferentes de se interconectar unidades em uma rede CAN, a saber: [5]

6

a) O tipo mais usado é definido pela norma ISO 11898-2, que consiste no uso de um par

de fios trançados, onde o sinal é transmitido de forma diferencial, atenuando os efeitos

de interferências eletromagnéticas. Este padrão é conhecido também como CAN de alta

velocidade;

b) Outra norma, a ISO 11898-3, define outro esquema também utilizando de um par de

fios balanceados, porém a uma taxa de comunicação menor. Essa topologia tem a

vantagem de ser mais segura à falhas, pois pode funcionar mesmo se um dos fios for

aberto ou curto-circuitado à alimentação (+V ou –V);

c) Outro padrão (SAE J2411) define a comunicação não diferencial (um fio comum mais o

de dados);

Para o trabalho, optou-se pelo uso da transmissão por dois fios em alta velocidade.

2.2.1. Níveis de Tensão

No caso da transmissão por dois fios, estes são identificados como CAN_H e CAN_L.

O nível de tensão entre essas linhas determina o estado lógico do barramento.

Em CAN, diferente dos bits “1” e bit “0” normalmente utilizados em aplicações lógicas,

é utilizado as denominações de bit recessivos e bit dominantes.

Um bit recessivo se obtém quando a diferença de tensão entre CAN_H e CAN_L é de

zero volt, isto é obtido quando os dois fios do barramento estão a um nível de 2,5V. Já o bit

dominante, é estabelecido quando há uma diferença de 2 volts entre esses terminais, sendo

CAN_H em 3,5V e CAN_L em 1,5V (figura 3). [6]

Dominante

Recessivo

3,5V

1,5V

2,5V

(CAN_H)

(CAN_L)

Figura 3 - Níveis de tensão no Barramento CAN

2.2.2. Taxa de transmissão

 Para CAN de alta velocidade, a norma define em 1Mbit/s a máxima taxa de transmissão.

Já para CAN de baixa velocidade a máxima taxa é de 125kbit/s, e para CAN de um fio a taxa é

em torno de 50kbit/s. [1]

7

2.2.3. Máximo comprimento do barramento

 Para taxa máxima de 1Mbps, é admitido um comprimento máximo do cabo de até 40

metros. Este comprimento máximo é obtido levando em consideração o tempo de amostragem

de um bit na rede, sendo que um bit enviado deve percorrer toda a rede e então retornar ao ponto

de origem para só então ser amostrado. [5]

 Conclui-se que a velocidade de um sinal pelo cabo é um limitante para seu

comprimento.

 Abaixo estão outros máximos comprimentos por taxa de transmissão:

• 100 metros em 500 kbps;

• 200 metros em 250 kbps;

• 500 metros em 125 kbps;

• 6 km em 10 kbps;

O gráfico abaixo (figura 4) ilustra o comprimento do cabo por taxa de transmissão:

Figura 4 - Comprimento do cabo x taxa de transmissão [6]

2.2.4. O Cabeamento

A norma ISO 11898 determina que a impedância do cabo do barramento CAN deve ser

de 120 ohms, porém impedâncias entre 108 e 132 ohms são permitidas. Esse cabo é constituído

de um par de fios trançados que também podem ser blindados. [5]

8

2.2.5. Terminações

 Para não haver reflexões de sinal nas extremidades do barramento CAN, e garantir os

níveis de tensão adequados, são utilizados resistores de 120 ohms nas extremidades do

barramento.

2.3. Camada de Enlace

Na camada de Enlace, o protocolo CAN se divide em duas subcamadas: Camada de

objeto e Camada de transferência. [4]

O escopo da Camada de objeto é:

• Encontrar quais mensagens serão transmitidas;

• Decidir quais mensagens recebidas pela camada de transferência serão de fato usadas;

• Prover uma interface à camada de aplicação;

Já o escopo da Camada de transferência constitui o protocolo de transferência, o que

envolve:

• Controle de pacotes de dados;

• Realizar arbitração;

• Checagem de erro;

• Sinalização de erro;

• Confinamento de Falhas;

2.4. Comunicação na rede CAN

O protocolo CAN utiliza o conceito de comunicação chamado CSMA/CD and AMP. [6]

Nesse conceito de comunicação, quando uma unidade da rede quer transmitir seus dados,

primeiramente ela verifica se o barramento esta livre para ser utilizado, e isso é checado

analisando os níveis de tensão da rede.

Caso esteja livre, e ao mesmo momento, duas ou mais unidades tentam transmitir seus

dados, entra em atuação o sistema de arbitração não destrutiva que fará com que a mensagem de

maior prioridade seja a transmitida. Isso é explicado a seguir.

Como já mencionado, a comunicação na rede CAN é feita de forma serial, com os bits

denominados recessivos e dominantes. Os nomes sugestivos, recessivo e dominante estão

diretamente ligados ao modo de arbitração não destrutiva da rede CAN.

Quando duas ou mais unidades enviam um bit ao barramento CAN, todas as unidades

checam se este bit está na rede de fato. Aquela unidade que enviou um bit dominante no

barramento irá se sobrepor a todas as outras que enviarem um bit recessivo, fazendo-as pararem

9

de se comunicar na rede. Com isso, aquela unidade que enviou mais bits dominantes, terá sua

transmissão concluída sem a interferência de outros que estavam querendo também se

comunicar. Dessa maneira, há como dar mais prioridade a uma mensagem que a outra.

A figura 5 exemplifica a arbitração não destrutiva CAN para o caso de três unidades

transmitindo ao mesmo tempo na rede:

Os níveis baixos representam os níveis dominantes na comunicação:

Figura 5 - Exemplo da arbitração por prioridades de mensagens na rede CAN [6]

Nesse exemplo, a unidade 1 vence a arbitração, portanto sua informação é a que será

transmitida na rede CAN.

 A comunicação na rede CAN é feita de forma síncrona, sendo que o sincronismo de

todas as unidades da rede é estabelecido no início de cada mensagem enviada à rede. Ocorre

novamente uma sincronização em todas as transições de bits recessivos para dominantes.

A rede CAN utiliza-se da transmissão de dados “multicast”, i.e., toda mensagem

enviada na rede é “ouvida” por todos dispositivos interligados à rede. Portanto, não há como

enviar uma mensagem de uma específica unidade para outra em particular. Fica, portanto, como

tarefa de cada unidade, filtrar aquelas mensagens que são de fato úteis a ela.[5]

2.5. As mensagens CAN

As informações sobre mensagens CAN e seus tipos foram obtidos nos materiais da

especificação CAN [4]

Entende-se por mensagem, um conjunto de dados enviados/recebidos entre unidades em

uma rede CAN. Atualmente existem duas versões de mensagens CAN que podem ser utilizadas.

A versão 2.0A e 2.0B, as quais são mostradas na figura 6: [4], [6]

10

Figura 6 - Formatos de mensagens CAN nas versões 2.0A e 2.0B

Na versão 2.0A são utilizados 11 bits identificadores da mensagem, i.e., podem ser

transmitidas 211 tipos mensagens diferentes na rede. Já na versão 2.0B, 29 bits são usados para

identificação das mensagens, expandindo agora para 229 mensagens possíveis na rede.

O bit IDE é utilizado para identificar entre quais versões a mensagem está sendo

enviada, sendo dominante para versão 2.0A.

No caso da mensagem CAN 2.0B o bit RTR (Remote transmission Request) muda de

posição deixando em seu lugar um bit recessivo SRR (Substitute Remote Request). Os bits

RB0/RB1 são bits reservados, sem função na mensagem. O campo DLC (data length code)

indica o numero de bytes que serão transmitidos no campo DADOS.

A segunda parte da mensagem é comum em ambas as versões (figura 7).

Figura 7 - Parte final da mensagem CAN

No campo CRC estão 15 bits gerados pelo transmissor e que são recalculados no

receptor para verificação de algum possível erro dos bits até então enviados. Entre os bits

delimitadores (del) está o bit ACK que é recessivo pra o transmissor da mensagem e dominante

no receptor, caso o receptor reconheça como válida a mensagem. Essa informação é então

verificada pelo transmissor.

A mensagem é então finalizada no campo EOF (End of File) com 7 bits recessivos

seguidos de 3 bits recessivos IFS (Interframe space) usado como um separador para a próxima

mensagem que possa ser enviada.

As mensagens enviadas em uma rede CAN não possuem em seu corpo nenhum

endereço indicando para quem interessa a mensagem, fica como tarefa da unidade receptora

reconhecer a mensagem pela informação por ela carregada.

11

2.6. Tipos de Mensagens

Podemos dividir as mensagens CAN em 4 categorias de pacotes de dados:

1. Data Frame: esta mensagem leva informação no campo dados do transmissor para os

receptores: caracterizada pelo bit RTR=0;

2. Remote Frame: Esta mensagem é feita pelo transmissor quando o mesmo requisita

dados (Data Frame) de outra unidade na rede. Caracterizada com bit RTR=1 e o campo

DADOS não existe.

3. Error Frame – mensagem de erro – Caso uma unidade da rede detecte a falha durante a

transmissão de uma mensagem, um pacote de erro é então gerado por este, informando

ao transmissor a necessidade de retransmitir a informação (figura 8).

Figura 8 - Mensagem de erro

 Os 6 primeiros bits dominantes (Error Flag) são enviados pela unidade que detectou o

erro, fugindo da regra do bit-stuffing e disparando mensagens de erro de outros nós da rede. Por

isso os próximos 6 bits são reservados para que outras unidades enviem suas mensagens de erro.

O campo Error delimiter é formados de bits recessivos, que quando são detectados pelo seu

transmissor, indica que a rede está pronta para o envio de uma mensagem.

4. Overload Frame – Essa mensagem é enviado por uma unidade na rede que esteja com

sobrecarga de armazenamento de dados (figura 9). Assim, esse pacote de dados faz com

que os transmissores aguardem até o envio de outras mensagens. Podem ser enviados

até dois overload frame consecutivos

Figura 9 - Mensagem de overload

12

 O overload flag foge da regra de intermissão (dentro do interframe), fazendo com que

todas as unidades também gerem a mesma sinalização de overload. A faixa overload delimiter é

igual à faixa error delimiter do error frame

2.7. Bit Stuffing

Além do CRC e ACK no corpo da mensagem, outro item que se soma à segurança na

transmissão de dados via CAN é o bit stuffing, realizado da seguinte forma:

Quando se transmite uma seqüência de 5 bits repetidos, o próximo deve ser um bit de

valor complementar, indicando que a rede está em operação normal [4]. No receptor, este bit é

então retirado para remontar a mensagem. Por essa característica, o tamanho de uma mensagem

CAN varia de um pacote pra outro pacote.

O bit stuffing somente ocorre em uma parte da mensagem CAN situado desde o início

da transmissão (SOF - Start of Frame) até o final do campo CRC.

2.8. Detecção de Erros

O que leva o protocolo CAN ser altamente confiável é seu numero de mecanismos de

detecção de erros que atuam simultaneamente em uma transmissão:

a) Erro de Bit: esta checagem é feita fora do campo de arbitração e do campo de

reconhecimento (ACK), onde cada bit enviado a rede é checado pelo seu transmissor.

b) Erro de Bit-stuff: caso não seja detectado o bit-stuff no campo adequado.

c) Erro de CRC: caso o receptor calcule como errado os bits CRC gerados pelo

transmissor.

d) Erro de Forma: este erro é gerado quando em campos de formato fixo, como EOF,

Interframe Space, delimitadores do ACK ou delimitadores do CRC possuírem bits

dominantes causando violação de forma.

e) Erro de ACK: quando o sinal dominante de ACK do receptor não chega ao transmissor.

2.9. Confinamento de Falhas

Juntamente com a detecção de erros, outro recurso que garante a confiabilidade da rede

é o confinamento de falhas. Pode ocorrer que certas unidades da rede não estejam operando de

forma correta. Por esse motivo as unidades podem estar em 3 estados possíveis, de acordo com

a contagem de dois registradores internos aos controladores CAN de cada unidade, sendo um

para contagem de erros de transmissão (TEC - Transmit Error Counter) e outro para contagem

de erros de recepção (REC - Receive Error Counter). Um erro em ambos os casos faz o

contador correspondente aumentar sua contagem em oito. Já um acerto, diminui em contador

correspondente em uma unidade. [6]

13

De acordo com os valores desses contadores, as unidades numa rede CAN podem estar

em três possíveis estados:

a) “Error Active” – Unidades operando neste estado estão operando em seu estado normal,

onde podem atuar ativamente na rede, inclusive podendo enviar pacote de erro com o

conjunto de bits “error flag” dominantes, informando à rede a ocorrência de falhas. Os

contadores TEC e REC dessas unidades estão abaixo de 128;

b) “Error Passive” – Caso um dos contadores TEC ou REC tenham valores maior ou igual

a 128, a unidade em questão pode ainda enviar e receber dados, porém somente pode

enviar pacotes de erro com os bits “error flag” recessivos, que só serão atendidos se

esta for a única unidade transmitindo num momento.

c) “Bus Off” – Caso o contador TEC exceda 255, a unidade em questão não pode mais

transmitir ou receber dados da rede. Uma unidade neste estado só poderá voltar a

comunicar caso o sistema seja reiniciado.

3. Circuitos Ponte H

Uma das metas do trabalho é a utilização de um controle com pontes H semicondutoras

para o acionamento de cada um dos motores utilizados na embarcação, sendo um para o

controle de direção e outro para o controle do sentido e aceleração do motor do barco (figura

10).

Devido à característica distribuída do sistema, cada atuador será instalado próximo ao

motor. Isso permite com que a alimentação dos módulos seja feita de forma simplificada como

um barramento distribuindo a alimentação a todos os módulos, facilitando nas possíveis

expansões (figura 11).

Motor do controle da
aceleração/câmbio

Motor do
controle da
direção

Figura 10 - Detalhe dos comandos do barco

14

Figura 11 - Alimentação dos controles em um único barramento

O circuito atuador permite fazer girar um motor em ambos os sentidos de rotação

através de um comando eletrônico.

 Por ser constituídas de circuitos semicondutores que suportam trabalhar em regime de

freqüência de vários kilohertz, pode-se controlar a velocidade de cada motor via modulação de

largura de pulso (PWM). Este sinal PWM pode ser gerado pelo microcontrolador.

3.1. O circuito integrado VNH3SP30

 Em busca de ocupar menor espaço para o circuito, optou-se no uso de um circuito ponte

H integrado, onde em um único componente se tem a parte de controle e de potência.

Este componente (figura 12 e figura 13), poder ser operado com tensão máxima de 40 V

e suportar correntes de até 30 A. Possui internamente circuito de proteção contra

sobretemperatura, sobretensão, subtensão. Pode operar em modulação de largura de pulso com

freqüências de até 10kHz. [7]

Figura 12 - Diagrama em blocos do integrado VNH3SP30 [7]

15

Figura 13 - Encapsulamento do integrado VNH3SP30 [7]

3.2. Princípio de operação

Este circuito tem seu estágio de entrada que opera com níveis de tensão de 5 volts,

portando facilitando o interfaceamento com o microcontrolador.

 Na figura 14 está um circuito proposto pela ST para operação do componente:

Figura 14 - Circuito proposto pelo fabricante ST [7]

 O motor é ligado aos terminais OUTA e OUTB. Os pinos DiagA/ENA e DiagB/ENB atuam

como entrada de habilitação e são mantidos em nível lógico 1 para ativar os dois braços da

ponte H. O controle de direção do motor é feito através dos pinos INA e INB, sendo que para

cada combinação, um par de transistores entrará em saturação, permitindo a passagem de

corrente por eles obedecendo a ordem indicada a seguir (tabela 1):

16

Tabela 1 - Estados de operação do integrado VNH3SP30.

INA INB Transistores ativos OUTA OUTB Estado do Motor

1 1 HSA, HSB VCC VCC Parado em VCC

1 0 HSA, LSB VCC GND Girando sentido Horário1

0 1 HSB, LSA GND VCC Girando sentido anti-horário1

0 0 LSA, LSB GND GND Parado em GND

 O transistor MOSFET canal N na parte de baixo do circuito, é usado como proteção de

inversão de polaridade da bateria, fazendo com que não circule corrente reversa pelo circuito.

 O resistor de 10K é uma sugestão opcional para detecção pelo microcontrolador de

carga aberta.

 Em caso de falhas, como curto circuito da carga para VCC ou GND, um circuito de

proteção interna atua, e essa falha pode ser monitorada através dos pinos DiagA/ENA e

DiagB/ENB atuando agora como saída (Diag – diagnostic), sendo que um ou outro irá ter nível

lógico 0.

 O circuito possibilita comandar o motor para girar em ambas as direções ou mantê-lo

parado quando não há diferença de potencial entre seus terminais.

 Ficará a cargo do microcontrolador, gerar sinais PWM para o controle de

velocidade/potência do motor. Esses sinais são ondas retangulares de freqüência constante,

porém variam a proporção de nível alto e baixo, chamado ciclo de trabalho. Em 0% deste ciclo,

a tensão no motor é de zero volt. Já em 100% de ciclo de trabalho, o nível de tensão no motor é

o máximo possível e constante.

1 O motor somente irá girar caso o pino PWM estiver em nível lógico 1. Em nível 0, este pino faz com

que os transistores LSA e LSB fiquem no estado de corte, não conduzindo corrente.

17

 Na figura 15 é mostrada em forma de gráfico, exemplos de sinais PWM com ciclos de

trabalho diferentes:

Figura 15 - Formas de onda PWM

Com freqüência apropriada, esses sinais serão vistos pelo motor, devido sua indutância

característica, como um nível médio de tensão DC proporcional ao ciclo de trabalho do sinal

PWM, sendo que serão filtradas componentes de freqüência maior ou igual à fundamental.

3.3. Circuito de teste

Um circuito foi montado para o teste do componente VNH3SP30 (figura 16), ligado a

um motor DC. Este circuito é semelhante ao proposto pelo fabricante (figura 14).

Figura 16 - Diagrama do acionador do motor de corrente contínua

18

Aplicando-se um sinal PWM e com as combinações de comandos da tabela 1 foi

verificado o funcionamento do motor para ambos os sentidos de rotação e controlando sua

velocidade.

4. Microcontroladores com Interface CAN

Para interface de cada conjunto de sensores e atuadores à rede CAN, são utilizadas as

unidades de controle (U.C.).

Cada U.C. consiste em três componentes principais: um microcontrolador, um

controlador CAN e um transceptor CAN (figura 17).

 CAN_H

 CAN_L

Figura 17 - Detalhe de uma unidade de controle

O transceptor tem a função de combinar os sinais de transmissão e recepção do

controlador CAN e adaptá-los aos níveis de tensão diferencial necessários na comunicação do

barramento CAN.

Devido a complexidade da realização em software de um protocolo CAN, além do custo

de processamento que esse protocolo exigiria do microcontrolador, foram desenvolvidos os

controladores CAN, que são circuitos integrados dedicados à processar, decodificar, filtrar,

receber e transmitir mensagens no protocolo CAN.

Esse controlador normalmente utiliza-se de um barramento serial síncrono (SPI) para se

comunicar com o microcontrolador. Para tanto deve ser feita toda programação no

microcontrolador para se ter acesso a esse componente.

Outra opção, mais vantajosa atualmente, é a utilização dos microcontroladores que já

possuam esse controlador CAN incorporado, tornando mais simples sua programação.

Procurou-se dentre os microcontroladores disponíveis atualmente, aquele que melhor cumpre

com as tarefas requeridas no projeto, aliado ao preço, à disponibilidade de ferramentas de

desenvolvimento como softwares de programação, interfaces para gravação e testes.

 RX
 SPI

 TX

Unidade de Controle

Transceptor

CAN

Microcon-

trolador

Controlador

CAN

Barramento CAN

Sensores /
Atuadores

19

Foram examinadas três plataformas diferentes de microcontroladores com interface

CAN incorporado: O LPC2129 da NXP, o PIC18F4580 da Microchip e o AT90CAN128 da

Atmel. A seguir, são listadas as características principais de cada um desses microcontroladores.

4.1 LPC2129

Este é um microcontrolador com plataforma ARM7 de 32 bits produzido pela NXP.

Construído em um encapsulamento SOT314-2 de 64 contatos. Este dispositivo conta com duas

interfaces CAN 2.0B, possui memória de programa de 256 kbytes, conversor A/D de 10 bits, 2

portas seriais UART, 1 porta serial I2C, e duas seriais síncronas SPI. Além disso, possui dois

temporizadores de 32bits, com recurso para utilizar até seis saídas PWM. Pode ser programado

no circuito. [8]

O fabricante Keil possui uma placa de desenvolvimento (figura 18) para este

microcontrolador, onde se encontra montado junto com componentes de interfaceamento CAN e

serial, e conectores que dão acesso a essas portas, leds indicadores, um potenciômetro para o

acesso do conversor A/D e uma Interface JTAG especial para simulação e programação do o

microcontrolador no circuito.

Figura 18 - Plataforma de desenvolvimento para o Microcontrolador LPC2129

Junto à placa, acompanha software de avaliação desenvolvido pela própria Keil para

programação em linguagem C, com limite de tamanho dos programas de até 16 kbytes. Este kit

foi cotado em 109 dólares. 2

2 Valor obtido no site www.lpctools.com. Acesso em outubro/2008.

20

4.2 PIC18F4580

Este microcontrolador de 8 bits produzido pela Microchip pode ser encontrado em

encapsulamento DIP de 44 pinos. Conta com uma interface CAN 2.0B, 32 kbytes de memória

de programa, conversor A/D de 10 bits, possui porta de comunicação serial USART, além de

comunicação serial síncrona SPI e I2C. Possui 3 temporizadores de 16 bits e pode ser utilizado

até 4 saídas PWM. Conta também com recurso de programação em circuito. [9]

Para esse microcontrolador, foi encontrada uma placa de desenvolvimento do fabricante

CCS (figura 19), composta de além deste, mais três unidades de controle, sendo uma com o

PIC16F876A que utiliza de um controlador CAN externo MCP2515, mais duas expansões CAN

MCP25050, que são componentes pré-programados de fábrica que respondem a específicas

mensagens CAN. Acompanha compilador para programação em linguagem C, além do

programador em circuito. A Microchip disponibiliza software de programação gratuito somente

para linguagem assembly.

Figura 19 - Plataforma de desenvolvimento para o Microcontrolador PIC

Foi cotado em 549 dólares.3

3 Valor obtido no site www.ccsinfo.com. Acesso em outubro/2008.

21

4.3 AT90CAN128

Fabricado pela Atmel, este é um microcontrolador da linha AVR de tecnologia RISC de

8 bits pode ser obtido em encapsulamento TQFP de 64 pinos. Possui 128 Kbytes de memória de

programa, um controlador CAN configurável entre 2.0A e 2.0B, interface JTAG, duas portas

seriais USART, uma porta serial SPI, uma I2C, dois temporizadores de 16bits, conversor A/D de

10 bits. Permite também programação em circuito. [10]

A plataforma de desenvolvimento é produzida pela própria Atmel (figura 20), possui

conectores para acessar portas seriais, CAN, I2C, conexão para com o programador.

Possui alguns componentes de interface com o usuário, como, cinco teclas, oito LEDS,

sensor de temperatura, sensor de luminosidade, e um alto-falante.

Figura 20 - Placa de desenvolvimento para o microcontrolador AT90CAN128

Acompanha o Kit, dois CDs incluindo documentação, exemplos de códigos de

programas, mais softwares gratuitos para programação em assembly ou linguagem C.

Foi cotado em 119 dólares. 4

4 Valor obtido no site www.digikey.com. Acesso em outubro/2008.

Soquete p/
programador
ISP

Conector
CAN (DB-9)

22

5. Escolha do microcontrolador a ser utilizado

No caso do LPC2129 foram verificadas grandes qualidades em sua capacidade de

processamento, além dos recursos de conversores A/D e saídas PWM. Outro ponto é seu preço

equiparável aos microcontroladores de 8-bits. Um único ponto que dificultaria a realização com

esse componente é na construção de circuito com esse componente, que possui terminais muito

próximos um do outro, dificultando na hora da soldagem.

Já com o PIC18F4580 não temos a dificuldade de soldagem, devido ao seu

encapsulamento ser do tipo DIP. Possui recursos de interfaces semelhantes aos outros micros,

porém o maior custo no uso deste microcontrolador está na compra de softwares de

programação em linguagem C e em dispositivos dedicados para programação do PIC.

Enfim o AT90CAN128 possui recursos equivalentes aos outros dois

microcontroladores, além de possuir encapsulamento conveniente para construção de circuitos

no laboratório, e da disponibilidade de softwares de programação gratuitos tanto para linguagem

assembly quanto em linguagem C. Outra vantagem para o uso deste microcontrolador, é que foi

construído no laboratório um programador ISP para a família AVR de microcontroladores

(figura 21, figura 22), com um circuito que utiliza da porta paralela do computador, não

necessitando componentes dedicados. Este circuito permite a programação do microcontrolador

na própria placa, bastando ligar um cabo desta até a placa de desenvolvimento (figura 20).

Levando em consideração os fatores para a escolha do microcontrolador, ficou decidido no uso

do componente AT90CAN128 da Atmel para ser utilizado no projeto da implantação das

unidades de controle da rede CAN.

23

Figura 21 - Diagrama do circuito do programador ISP para AVR

Figura 22 - Circuito final do programador ISP Para microcontroladores AVR

O software para utilizar o programador é também obtido gratuitamente na internet.5

5 Software incluído no conjunto de programas WinAVR. Disponível em http://winavr.sourceforge.net

24

6. A arquitetura do AT90CAN128

Na figura 23 está o diagrama em blocos do microcontrolador AT90CAN128

Figura 23 - Diagrama em blocos do microcontrolador AT90CAN128 [10]

Já foram mencionados anteriormente os principais recursos deste microcontrolador,

porém pela escolha deste componente, traremos mais detalhes de suas características:

a) Microcontrolador de 8 bits, de alta performance e de baixo consumo: à freqüência de

16MHz, é capaz de realizar 16 milhões de instruções por segundo. Em modo ativo de

operação, com freqüência de clock de 16MHz e alimentado em 5V, consome uma

corrente de 37mA. Pode também operar em 3V de alimentação com freqüência de clock

máxima de 8MHz, onde sua corrente de consumo cai para 10.5mA;

25

b) Possui conjunto reduzido de instruções: utilizando da arquitetura RISC é capaz de

processar 133 instruções distintas;

c) 32 registradores de 8 bits de uso geral além dos registradores dos periféricos internos;

d) Memórias não voláteis para programação e armazenamento de dados: no caso do

AT90CAN128, são 128kbytes de memória de programa e 4kbytes de memória de

dados. Essas duas memórias são reprogramáveis;

e) 4kbytes de memória estática (volátil) para dados;

f) Capacidade de emulação via porta JTAG: por esta porta, pode-se também fazer a

programação em circuito da memória Flash;

g) Capacidade de programação da memória Flash em circuito via portas seriais (UART,

CAN);

h) Controlador CAN 2.0A e 2.0B: o controlador CAN deste microcontrolador pode

receber e processar mensagens tanto no formato 2.0A como também na versão 2.0B;

i) Possui Watchdog configurável: pode ser usado para evitar que o micro entre em laço

infinito;

j) 4 temporizadores/contadores: sendo dois de 8 bits e outros dois de 16 bits: utilizando

com comparadores internos, pode ser usados na geração de sinais modulados em largura

de pulso (PWM);

k) Conversor analógico/digital de 10 bits: pode ser compartilhado para 8 canais distintos;

l) Comparador analógico;

m) Interface serial de 2 fios;

n) 2 portas seriais assíncronas USART;

o) 1 interface serial síncrona SPI;

26

7. Características de programação do microcontrolador AVR

Quando foram desenvolvidos, os microcontroladores AVR tiveram suas características

internas determinadas para melhor eficiência em códigos gerados por compiladores C. [11]

 No caso do microcontrolador AT90CAN128 nota-se grande espaço na memória de

programa (128kbytes), o que é importante, pois códigos gerados por tais compiladores são

maiores que o equivalente gerado através da linguagem assembly.

Outra característica importante para uso da compilação em C é a presença de 32

registradores internos acessíveis diretamente pela Unidade Lógica Aritmética (ULA).

Comparando-se com um microcontrolador 8051, que embora tenha vários registradores,

somente um tem acesso direto pela ULA. Essa característica acelera o processamento de dados

no microcontrolador.

Dentre os softwares para a programação do AVR, será utilizado o AVR Studio (figura

24) juntamente com o compilador C do pacote de aplicativos WinAVR (figura 25 e figura 26).

Esses softwares estão disponíveis gratuitamente pela internet.

Figura 24 - Software de programação AVR Studio

27

Figura 25 - Ambiente de programação do pacote de softwares WinAVR

Figura 26 - Aplicativo para definir diretivas de compilação e programação de

microcontroladores AVR

28

8. Construção da placa de controle CAN

Para fazer o uso da comunicação CAN, foi construído um circuito utilizando-se do

mesmo tipo de microcontrolador utilizado na placa de desenvolvimento da Atmel e dispondo-se

também de conectores para rede CAN, comunicação serial e conectores para acesso as portas do

microcontrolador.

A figura 27 exibe o circuito da unidade de controle CAN, mostrando o microcontrolador

AT90CAN128 (mesmos terminais do AT90CAN64) com fonte de clock gerado a partir do

oscilador externo, estágio regulador de tensão com proteção contra inversão de polaridade.

Neste circuito estão disponíveis também 6 conectores (J1 à J6) que dão acesso às portas do

microcontrolador, um transceptor para porta serial MAX3232 e outro para porta de

comunicação CAN ATA6660.

O conector J10 é utilizado para programação do microcontrolador.

Para correto casamento de impedância da rede CAN, e se esta placa estiver em um

ponto extremo da rede, interligam-se os pinos do conector J7 para que um resistor de 120 seja

ligado a rede.

29

Figura 27 – Diagrama construído para segunda unidade de controle CAN

30

A partir do diagrama da unidade de controle CAN, foi desenvolvido circuito impresso,

cujo layout é mostrado na figura 28 e construído pelo processo de fresagem utilizando uma

placa de dupla face. Imagens da placa montada são apresentadas nas figuras 29 a 31.

Figura 28 - Circuito impresso da unidade de controle CAN

Figura 29 - Aspecto final da placa de controle CAN (face superior)

31

Figura 30 - Aspecto final da placa de controle CAN (face inferior)

Figura 31 - Detalhe da soldagem do microcontrolador

Uma dificuldade encontrada na montagem da placa foi na soldagem do

microcontrolador. Devido seu encapsulamento de dimensões reduzidas, tendo terminais muito

concentrados (16 pinos em cada lado de 9mm), dificultaram a soldagem que foi feita

9mm

32

manualmente. Devido a erro no layout da placa descoberto após a montagem, o conector de

programação ficou com a posição dos pinos invertida, o que obrigou a fazer sua soldagem na

outra face da placa e com a utilização de fios (fios mostrados nas imagens da placa).

9. Configuração do sistema de teste

Para o teste da comunicação CAN, foi construído o sistema com configuração mostrada

na figura 32. Esse sistema é constituído de duas unidades de controle, sendo a primeira (U.C. 1)

o circuito construído indicado na Figura 29 e a segunda unidade (U.C. 2) o kit de

desenvolvimento da Atmel (figura 20) . Esses módulos estão conectados via rede CAN. A U.C.

1 se comunica também através da porta serial com um microcomputador tipo PC e a unidade 2 é

interligada aos sensores referencia de posição e as unidades de controle dos motores DC pelas

pontes H.

A U.C.1 foi programada para operar como uma interface entre um microcomputador

tipo PC ligado através de comunicação serial RS-232 e a U.C. 2, ligada através da rede CAN.

Através de um programa que emula um terminal de dados no microcomputador tipo PC,

são enviados comandos à U.C. 1 que por sua vez os enviam pela rede CAN ao segundo módulo.

Nesse segundo módulo estão conectados dois motores ligados através de pontes H comandadas

com sinais PWM gerados pelo próprio microcontrolador. Para obter uma referencia de

posicionamento desses motores, potenciômetros acoplados a esses operando como divisores de

tensão têm seus sinais enviados ao conversor A/D do microcontrolador.

PC
(TERMINAL)

Unidade de
controle 1

(UC1)

RS232

Unidade de
controle 2

(UC2) CAN

H

M1

H

M2

Figura 32 - Diagrama em blocos do sistema teste CAN

33

10. Programação dos microcontroladores

Para a programação foi utilizado a linguagem C com o compilador do pacote de

programas WinAVR. O software AVRDUDE foi utilizado para gravação dos arquivos binários de

programa nos microcontroladores e para simulações utilizou-se o programa AVR Studio.

A unidade de controle 1 foi programada para receber e enviar dados pela porta serial

ligada a um computador e também enviar e receber dados pela rede CAN para se comunicar

com o restante do sistema. Um fluxograma na figura 33 ilustra seu funcionamento.

Figura 33 - Diagrama em blocos do funcionamento da unidade de controle 1

INÍCIO

Inicialização:
CAN,

SERIAL

Habilita
Interrupção

Global

Interrupção:
Chegada de

caractere pela
serial

Decodificação
do comando

Envio de
mensagens via

CAN

Interrupção:
Chegada de

mensagem CAN

Validação de
mensagem
recebida

Envio de
caracteres iniciais

pela serial
Processamento da

mensagem

Envio de dados
via serial

34

Já o programa da unidade de controle 2 opera de forma a atender os comandos vindos

via CAN do módulo 1 e traduzi-los entre alterar os sinais PWM de controle dos motores ou

efetuar a leitura da posição de cada motor através dos níveis de tensão dos potenciômetros. Um

fluxograma na figura 34 ilustra seu funcionamento.

Figura 34 - Diagrama em blocos do funcionamento da unidade de controle 2

Atualiza
Controle
(PWM)

posições de
direção e

aceleração

INÍCIO

Inicialização:
CAN, PWM,
Conv. A/D

Interrupção:
Chegada de

mensagem CAN

Validação de
mensagem
recebida

Alteração do ajuste
da largura de pulso
(direção/aceleração)

É data
frame?

Processamento da
mensagem

Leitura do estado atual
(conversor A/D)

(direção/aceleração)

Sim

Não - é remote frame

Envio de data frame
com estado atual

(direção/aceleração)

Habilita
Interrupção

Global

35

10.1 Operação do Controlador CAN no AT90CAN128/64

As informações de operação do microcontrolador foram obtidas em sua folha de dados.

[10]

O controlador CAN do microcontrolador AT90CAN128/64 oferece suporte a

mensagens com identificadores tanto de 11bits ou 29bits. Para os programas feitos foram usados

somente com ID de 11bits visto as poucas mensagens necessárias para o funcionamento do

sistema.

Um diagrama em blocos exibindo a estrutura do controlador CAN é mostrado na figura

35.

Figura 35 - Estrutura do controlador CAN no AT90CAN128/64

Nos controladores CAN dos micros AVR é utilizado o conceito de “caixa postal” para

as quais as mensagens CAN que chegam ou irão ser transmitidas são armazenadas. Essa caixa

postal é constituída de 15 objetos de mensagens (MOb). Para cada um desses objetos existem

registradores exclusivos em que além do registrador do dado em si, existe também o registrador

de controle, indicadores de estado, registradores de tempo e controle do filtro de mensagens.

36

O filtro de mensagens é um recurso utilizado para evitar que toda mensagem que chega

ao microcontrolador seja processada, tornando o sistema mais ágil. Cada mensagem pode ter até

8 bytes de dados onde são armazenadas nos registradores (Data buffers).

10.2 Configuração e inicialização do controlador CAN

A seguir são descritos os registradores utilizados para configuração e inicialização do

controlador CAN:

• CANGCON - CAN General Control Register :

Figura 36 - Registrador CANGCON

Este é o registrador de controle geral do controlador CAN (figura 37). Nos programas

realizados, foram utilizados os bits 0 e 1, tendo eles as seguintes funções:

SWRES - Software Reset Request

Escrevendo um valor 1 neste bit faz com que seja parado o controlador CAN.

ENA/STB: Enable / Standby Mode

Um valor 1 nesse bit ativa o controlador CAN, enquanto que um valor 0, deixa-o em

modo de espera;

• CANPAGE - CAN Page MOb Register :

Figura 37 - Registrador CANPAGE

Os bits MOBNB0:3 do registrador CANPAGE (figura 37) são utilizados para seleção

do MOb a ser utilizado e os valores possíveis são de 0 a 14.

Os bits INDX0:2 são usados para seleção de qual espaço dos 8 bytes serão gravados os

dados, sendo 8 posições possíveis.

37

No programa não foi utilizado esse sistema de endereçamento. Com o bit AINC em 0 (o

qual é seu valor inicial após um reset), o índice de dados é incrementado automaticamente

quando uma informação é registrada.

• CANCDMOB - CAN MOb Control and DLC Register:

Figura 38 - Registrador CANCDMOB

Este registrador não é único, i.e, existe um registrador CANCDMOB para cada MOb

disponível no microcontrolador (figura 38). Portanto para acessa-lo, deve-se antes saber de qual

MOb está selecionado no momento através do CANPAGE. E isso vale também para os

registradores CANSTMOB, CANIDT1 até CANIDT4, CANIDM1 até CANIDM4, CANSTML

e CANSTMH.

Verifica-se que esses registradores não possuem um valor conhecido quando o

microcontrolador é ligado, portando é necessário que todos esses registradores sejam

inicializados com dados conhecidos.

Os bits DLC0:3 (Data Length Code) informa quantos bytes serão armazenados para os

dados da mensagem CAN. Valores maiores que 8 (1000b) serão processados como 8.

O bit IDE (Identifier Extension), registra qual tipo de identificador de mensagem o MOb

irá operar, sendo que se for valor 0 o identificador será formado por 11bits, ao passo que se for

1, o MOb irá operar com Identificação de 29bits. No primeiro caso serão possíveis 211 tipos

diferentes de mensagem e no segundo caso 229 tipos diferentes de mensagens.

Para o programa utilizaram-se identificadores de 11bits.

Os Bits CONMOB1:0 (Configuration of Message Object) são usados para configurar os

Mob's a respeito de recepção e transmissão de dados, de acordo com a tabela 2:

Tabela 2 - Configuração dos bits CONMOB1:0

CONMOB1 CONMOB0 Configuração do MOb

0 0 Desabilitado

0 1 Ativado para transmissão

1 0 Ativado para recepção

1 1 Ativado para recepção de frame buffer

38

No programa o MOb0 foi configurado para recepção de dados, enquanto que o MOb1

foi configurado para transmissão.

• CANSTMOB – (CAN MOb Status Register)

Figura 39 - Registrador CANSTMOB

O registrador CANSTMOB indica o estado atual do Mob selecionado (figura 39):

a) DLCW - (Data Length Code Warning) Este bit avisa que uma mensagem recebida não

tem o tamanho indicado no campo DLC;

b) TXOK - (Transmit OK) Este bit indica uma transmissão efetuada corretamente;

c) RXOK - (Receive OK) Este bit indica uma recepção correta de uma mensagem;

d) BERR - (Bit Error) Este bit indica que um bit monitorado não coincidiu com o bit

enviado pelo microcontrolador;

e) SERR (Stuff Error) Este bit indica se houve um erro de bit stuff na comunicação CAN;

f) CERR (CRC Error) Este bit indica se houve um erro CRC na comunicação CAN;

g) FERR (Form Error) Este bit indica se houve um erro de forma na comunicação CAN e

esse erro ocorre em violações de formas nos campos delimitadores do CRC e do ACK e

no EOF da mensagem CAN;

h) AERR (Acknowledgment Error) Indicação de erro do bit ACK em uma comunicação;

• CANIDT1, CANIDT2, CANIDT3 e CANIDT4 (CAN Identifier Tag Registers):

Estes registradores possuem seus campos que dependem do modo dos identificadores

CAN que for escolhido (11 ou 29bits), pelo bit IDE de CANCDMOB (figuras 40 e 41).

Para o caso de identificadores de 11 bits, os registradores possuem essa configuração:

Figura 40 - Registradores CANIDTx para identificadores de 11bits

39

E para o caso de identificadores de 29 bits:

Figura 41 - Registradores CANIDTx para identificadores de 29bits

Sendo que foi utilizado apenas ID de 11 bits a configuração desses registradores tem a

seguinte forma:

ID0 até ID10: onde é registrada a identificação da mensagem (data frame ou remote

frame) a ser enviada.

RTRTAG (Remote Transmission Request Tag): Este bit é usado para distinguir um data frame

(valor 0) de um remote frame (valor 1). Este bit é a atualizado quando é recebida uma nova

mensagem, permitindo saber de qual tipo ela é.

• CANIDM1, CANIDM2, CANIDM3 e CANIDM4 (CAN Identifier Mask Registers):

Para identificadores de 11bits, os registradores têm o seguinte aspecto:

Figura 42 - Registradores CANIDMx para identificadores de 11bits

Esses registradores conjuntamente com CANIDT1:4 formam um filtro de mensagens

CAN que irão ser processadas pelo microcontrolador (figura 42).

10.3 Filtragem de mensagens CAN

A seguir são mostrados alguns exemplos de como operam CANIDT e CANIDM na

filtragem de mensagens. [10]:

a) Para aceitação de somente uma mensagem CAN (id único), os bits CANIDT e

CANIDM terá as seguintes configurações (por ex. ID=0x317):

40

Tabela 3 – exemplo de filtragem para permissão de somente 1 identificador

Bit(x) 10 9 8 7 6 5 4 3 2 1 0

IDMSKx 1 1 1 1 1 1 1 1 1 1 1

IDTx (0x317) 0 1 1 0 0 0 1 0 1 1 1

 Nota-se que todos bits IDMSKx têm valor 1.

b) Para aceitação de uma faixa de identificadores de mensagens CAN (por ex. ID de 0x310

até 0x317):

Tabela 4 - exemplo de filtragem para uma faixa de identificadores

Bit(x) 10 9 8 7 6 5 4 3 2 1 0

IDMSKx 1 1 1 1 1 1 1 1 0 0 0

IDTx (0x317) 0 1 1 0 0 0 1 0 X X X

 X – não importa o valor

c) E para aceitação de qualquer mensagem CAN, basta fazer com que todos os bits

IDMSKx sejam 0.

Para o programa foi filtro foi configurado para aceitar mensagens com identificação na

faixa de 0x120 até 0x12F

• CANMSG (CAN Data Message Register)

Figura 43 - Registrador CANMSG

Esse registrador armazena os dados da mensagem CAN (figura 43). Esse registrador

opera em conjunto com os bits INDX0:2 para indicar qual byte esta sendo acessado e se for

usado o índice automático, basta escrever 8 vezes nesse registrador para ter escrito nos 8 bytes

disponíveis.

No programa feito, utilizou-se de somente 1 byte para os dados.

• CANBT1:3 (CAN Baud Rate Setting)

Através desses registradores se configura a taxa de transferência de dados pelo barramento

CAN. O fabricante fornece através do datasheet uma tabela com valores padrão de velocidade e

as respectivas configuração dos registradores (tabela 5). [10]

41

Tabela 5 - Configurações padrões para diferentes taxas de comunicação utilizando clock

de 8MHz

Nos testes conseguiu-se através dos circuitos fazer comunicação à taxa de 1000kbps

sem erros.

10.4 Mensagens CAN utilizadas

Na tabela 6 estão descritas as mensagens adotadas para o uso no sistema de teste CAN.

Tabela 6 - Mensagens CAN adotadas no programa

Identificador
Data frame / Remote

frame
Função

0x120

Remote frame Solicitar ao módulo 2 a posição atual da direção

0x121 Remote frame Solicitar ao módulo 2 a posição atual da aceleração

0x120 Data frame
Envio pelo módulo 2 da posição atual da direção
(1byte)

0x121 Data frame
Envio pelo módulo 2 da posição atual da
aceleração (1byte)

0x123 Data frame
Envio pelo módulo 1 da posição desejada de
direção (1byte)

0x124 Data frame
Envio pelo módulo 1 da posição desejada de
aceleração (1byte)

10.5 Comunicação serial no AT90CAN128/64

Para o teste do programa, optou-se por gerar os dados de controle através de um

microcomputador tipo PC, emulando um terminal de dados, conectado através da porta serial à

porta serial do microcontrolador CAN (especificar se é sua placa ou a placa de

desenvolvimento).

42

A seguinte configuração foi utilizada no terminal de dados:

• Palavras de 8 bits

• 1 bit de parada

• Sem paridade

• Comunicação assíncrona

• Taxa de 9600bps

O modo de interrupção para porta serial foi ativado, para que o módulo 1 esteja sempre

no aguardo de comandos vindos via programa terminal do computador.

10.6 Conversor A/D

O conversor A/D do AT90CAN128/64 utiliza da técnica da aproximação sucessiva para

realização da conversão. Esse é um modo rápido de conversão, porém, são mais afetados por

ruídos que os modos integrativos de conversão.

São possíveis conversões de até 8 sinais diferentes pelo microcontrolador. Isso é feito,

através de chaves analógicas e através de um processo de multiplexação, converte um canal por

vez, comparando-o com uma tensão interna de referência.

Para obter o posicionamento de cada motor de controle, foram utilizados

potenciômetros acoplados a esses, que enviam um nível de tensão referente à posição atual, do

comando da direção e da aceleração do barco.

Para poder processar esses níveis de tensão, utilizou-se de dois canais do conversor A/D

do microcontrolador.

Embora o conversor seja de 10bits de resolução, foi optado por utilizar apenas os 8 bits

mais significativos da conversão para o processamento, tendo assim 256 níveis binários

distintos referentes a posições possíveis do potenciômetro o que é suficiente para a aplicação, e

ainda faz com que se reduza o efeito de ruídos na conversão, eliminando bits menos

significativos.

10.7 Gerador de sinais PWM

O microcontrolador AT90CAN128/64 possui 3 temporizadores que podem ser

configurados como geradores de sinais PWM, sendo 2 de 8 bits e um de 16 bits. Para o

programa, utilizou-se os dois temporizadores de 8 bits.

Na figura 44 é exibido um diagrama em blocos de um dos temporizadores (Timer0) e

sua operação é semelhante ao segundo temporizador de 8 bits.

43

Figura 44 - Diagrama em blocos do temporizador TIMER-0 do microcontrolador AVR
AT90CAN64/128

Sua configuração é feita a partir dos bits dos Registradores TCCRn, configurados de

acordo com as informações do datasheet para operação "Fast PWM" .

O registrador TCNTn armazena a contagem de tempo e é comparado através do

registrador OCRnx. O resultado desta comparação é enviado ao bloco gerador de forma de onda

que por sua vez envia o sinal ao pino de saída OCnx.

Para o controle dos dois motores, os módulos PWM foram configurados para as

seguintes formas de sinais:

a) Período do pulso em torno de 20ms

b) Ciclo de trabalho do pulso PWM: para o comando PWM utilizado, pulsos de 1ms de

largura fará com que o motor gire para uma direção e pulso de 2ms de largura fará com

que o motor gire para o lado oposto. Pulsos de 1,5ms faz com que o motor fique parado.

Esses sinais são posteriormente convertidos em um circuito a sinais PWM de alta

freqüência e controle de reversão dos motores através do circuito ponte H.

11. Testes do sistema

Para os testes do sistema, os circuitos foram montados em um triciclo adaptado que esta

sendo desenvolvido para simular os controles de direção e aceleração do barco. Esse veículo é

usado para simulação da plataforma, onde os testes são feitos em terra, economizando

em deslocamento até uma represa para testes no barco. O triciclo é controlado por dois

44

motores CC, sendo um usado para tração das rodas traseiras e outro para controle de direção das

rodas (figura 45).

Figura 45 - Triciclo desenvolvido para testes do sistema de comando da embarcação.

Ligado ao eixo de direção, foi instalado um sensor de posição que possui como saída

um nível CC referente ao ângulo de direção da roda frontal (figura 46).

Figura 46 - Detalhe do sensor de posição do controle de direção

Sensor da
direção

45

Na figura 47 é exibido as duas unidades de controle em fase de teste

Figura 47 - Teste das unidades de controle

Na figura 48 são mostrados a unidades de controle, com ligada aos motores e sensores

de posição e outra sendo a interface entre porta serial e rede CAN:

Figura 48 - Teste das unidades de controle no triciclo

Rede CAN
Comunicação
Serial (Para PC)

Controle
PWM

Sinais
sensores
de posição

Comunicação
Serial

Rede CAN

46

Ao ligar o sistema, a U.C. 1 tem suas portas seriais e CAN configuradas e é enviada ao

programa terminal do PC uma mensagem indicando as opções possíveis de operação (figura

49):

Figura 49 - Tela inicial do programa

Ao mesmo tempo, é inicializado na U.C. 2 o controlador CAN , as saídas PWM e o

conversor A/D. Então a direção é posicionada no ponto central e a aceleração modo parado

(central).

Ao pressionar a tecla E no teclado, é enviado um comando ao módulo 1 que por sua

vez envia a requisição ao módulo 2 via CAN para a leitura dos estados atuais dos controles de

direção e aceleração. Esta informação é então retornada ao módulo 1 e então é enviada ao PC e

exibida na tela (figura 50).

Figura 50 - Visualização do Estado atual dos controles

Se for pressionada a tecla D, a informação da direção atual é mostrada e pode ser

modificada pelo usuário (figura 51).

Figura 51 - Ajuste do controle de direção

47

De forma semelhante para no caso de verificar e/ou modificar o valor da aceleração

(figura 52).

Figura 52 - Ajuste do controle de aceleração

Ao aceitar a modificação em ambas as opções, o programa do módulo 1 aguarda 3

números serem digitados para requisição de nova direção ou aceleração. E o programa só aceita

valores de zero(000) até 255, sendo que valores fora dessa faixa serão ignorados.

Pelos testes, foi possível a realização da leitura dos estados, bem como a alteração dos

mesmos.

12. Conclusões

Com o trabalho desenvolvido, pode-se desenvolver um sistema de controle para direção

e aceleração do veículo utilizando-se a rede CAN.

Com a rede CAN, pode-se projetar uma arquitetura distribuída do sistema da

plataforma, tornando-a flexível para futuras modificações e expansões.

Foi verificado um funcionamento esperado para rede CAN, onde dados podem ser tanto

transmitidos como recebidos pelas unidades de controle além do monitoramento do sistema via

aplicativo terminal no microcomputador tipo PC ligado a porta serial.

Os testes iniciais foram realizados com comandos do usuário enviados via porta serial

do microcomputador, sem malha de controle, porém futuramente esse comando passará a ser de

modo autônomo, utilizando-se da lógica fuzzy.

Novos instrumentos poderão ser adicionados à rede CAN, como GPS e bússola

eletrônica, instrumentos que serão necessários para o comando autônomo do veículo.

48

13. Anexos

13.1 Programa da U.C. 1

Referências: [12] [13]

#include <avr/io.h>
#include <avr/interrupt.h>
#include <stdlib.h>

unsigned char aceleracao=0, direcao=0;dir_rx_ok=0; acel_rx_ok=0;

//inicialização da porta CAN
//MOb 0 para receber dados
//Mob 1 para enviar dados

void can_ini(void) {
 unsigned char num_mob, num_dados;
 CANGCON = 0X01; //RESETA CAN

 //zerar todas as caixas de mensagens

 for(num_mob=0;num_mob<15;num_mob++)
 {
 CANPAGE= num_mob<<4; //seleciona o Mob
 CANCDMOB= 0x00; //zera os bits de controle
 CANSTMOB= 0X00; //zera os bits de Indicação de estado
 //zerar os tags de Identificação:
 CANIDT1=0;
 CANIDT2=0;
 CANIDT3=0;
 CANIDT4=0;

 //zerar as mascaras de Identificação:
 CANIDM1=0;
 CANIDM2=0;
 CANIDM3=0;
 CANIDM4=0;

 for(num_dados=0; num_dados<8; num_dados ++)
 CANMSG=0; //limpa os registradores de mensagem de todos Mob's
 }

 //configurar velocidade da rede CAN para 500 kbps com cristal de 8Mhz:

 CANBT1=0x00;
 CANBT2=0X0c;

49

 CANBT3=0X37;

 CANGCON=0X02; //inicia controlador CAN

 //Configuração do mob 0 para recepção de mensagens

 CANPAGE = (0<<4);
 CANSTMOB=0;
 CANCDMOB=0;

 //filtragem de mensagens entre as id's 0x120 e 0x12f:

 CANIDT1=0X24;
 CANIDT2=0X00;

 CANIDM1 =0XFE;
 CANIDM2 &= ~0XE0;
 CANIDM4 = 0;

 // Configuração do mob0

 CANIDT4 &= ~0X04; //zera bit rtr
 CANCDMOB |= 1; //Recepção de 1 bytes
 CANCDMOB |=0X80; //Recepção sem buffer

 //configuração do Mob 1

 CANPAGE=(1<<4);
 CANSTMOB=0X00;
 CANCDMOB=0X00;

 CANIDT1=0X24;
 CANIDT2=0X00;

 CANIDM1 =0XFE;
 CANIDM2 &= ~0XE0;
 CANIDM4 = 0;

 //configura Interrupção de CAN

 CANPAGE = (0<<4);

 CANIE2 |=0X01;
 CANGIE = ((1<<ENRX) | (1<<ENIT));

 }

//função para enviar um remote frame pela CAN
void RF_CAN(unsigned int id){
 CANPAGE=(1<<4);
 CANIDT2=(char)(id<<5);
 CANIDT1=(char)(id>>3);
 CANIDT4|=(1<<RTRTAG); //seta bit RTR

50

 CANSTMOB=0;
 CANCDMOB=0;//ZERO BYTES DE DADOS ENVIADOS
 CANCDMOB |=0X40; //ENVIA MSG
 CANPAGE=(0<<4); //retorna ao modo de recepção
 }

//função para enviar um data frame pela can
void DF_CAN(unsigned int id, unsigned int dado){
 CANPAGE=(1<<4);
 CANIDT2=(char)(id<<5);
 CANIDT1=(char)(id>>3);
 CANIDT4&=(0<<RTRTAG); //zera bit RTR
 CANMSG=(char)(dado);
 CANSTMOB=0;
 CANCDMOB=1;//transmissão de 1 byte de dados
 CANCDMOB |=0X40; //ENVIA MSG
 CANPAGE=(0<<4);//retorna ao modo de recepção
 }

//função que retorna um valor inteiro recebido pela serial
int USART_Rx_num(void) {
char s[3]; //3 caracteres + '\0'
int i,v;
for(i=0;i<3;i++){
 //Aguarda chegada de dado
 while (!(UCSR0A & (1<<RXC0)));
 s[i]=UDR0;
 }
 //Recebe o dado do buffer
v=atoi(s);
if((v>255)|(v<0))
return -1;
return v;
}

//função que retorna um caractere recebido pela serial
char USART_Rx(void) {
//Aguarda chegada de dado
while (!(UCSR0A & (1<<RXC0)));
//Recebe o dado do buffer
return UDR0;
}

//transmissão de 1 caractere via serial
void USART_Tx(char c) {
//Verificar se o buffer da serial está vazio
while (!(UCSR0A & (1<<UDRE0)));
//coloca o dado no buffer e envia
UDR0 = c;
}

51

//transmissão de string pela serial usando a função USART_Tx()

void str_tx(char *saida)
 {
 int i;
 i=0;
 do{
 USART_Tx (saida[i]);
 i++;
 }while(saida[i]!='\0');

 }

void menu0(void){
 str_tx("\n\n\n\rE:Estado D:Direcao A:Aceleracao\n\r");
 }

void acel(void) {
 int valor;
 char s[3],aux;
 RF_CAN(0x121);
 while((acel_rx_ok==0)||((CANGSTA&0X10)==0X10));
 cli();
 str_tx("\n\rAceleracao atual\n\r");
 itoa(aceleracao,s,10);
 str_tx(s);
 str_tx("\n\rDeseja alterar aceleracao? (S,N)\n\r");
 aux=USART_Rx();
 if((aux=='S')||(aux=='s'))
 {str_tx("entre com o novo valor");
 valor=USART_Rx_num();
 if(valor>-1)
 DF_CAN(0x124,valor);
 }
 else if((aux=='N')||(aux=='n'))
 {str_tx("cancelado");

 }
 else
 str_tx("comando invalido");
 }

void le_pos(void){
 //int a,d;
 char s[3];
 RF_CAN(0x120);
 while((dir_rx_ok==0)||((CANGSTA&0X10)==0X10));
 RF_CAN(0x121);
 while((acel_rx_ok==0)||((CANGSTA&0X10)==0X10));
 str_tx("\n\rAceleracao Direcao\n\r");
 itoa(aceleracao,s,10);
 str_tx(s);
 str_tx(" ");
 itoa(direcao,s,10);

52

 str_tx(s);
 sei();
 }

void direc(void) {
 int valor;
 char s[3],aux;
 RF_CAN(0x120);
 while((dir_rx_ok==0)||((CANGSTA&0X10)==0X10));
 cli();
 str_tx("\n\rDirecao atual\n\r");
 itoa(direcao,s,10);
 str_tx(s);
 str_tx("\n\rDeseja alterar direcao? (S,N)\n\r");
 aux=USART_Rx();
 if((aux=='S')||(aux=='s'))
 {str_tx("entre com o novo valor");
 valor=USART_Rx_num();
 if(valor>-1)
 DF_CAN(0x123,valor);
 }
 else if((aux=='N')||(aux=='n'))
 {str_tx("cancelado");

 }
 else
 str_tx("comando invalido");

 }

ISR(USART0_RX_vect)

 {
 cli();
 char comando;
 comando=UDR0; //lê o caracter que chegou à serial

switch(comando){
 case('A'): {sei(); acel();} break;
 case('D'): {sei(); direc();} break;
 case('E'): {sei();le_pos();} break;
 }

 menu0();
 sei();
 }

//rotina da interrupção CAN

ISR(CANIT_vect){
//void canint(void){
 cli();
 unsigned int id;

53

 //alt_led();
 CANPAGE= (0<<4); //seleciona mob0
 if((CANSTMOB & 0X20) == 0X20) //verificaçÃo de msg ok
 {
 id=(((int)(CANIDT2)) >> 5) + (((int)(CANIDT1))<<3);

 switch(id)
 {
 case(0x120): if((CANIDT4 & 0x04) == 0x00)
 {direcao=(int)(CANMSG);
 dir_rx_ok=1;
 } break;
 case(0x121): if((CANIDT4 & 0x04) == 0x00)
 {aceleracao=(int)(CANMSG);
 acel_rx_ok=1;
 }break;
 }

 }
 CANPAGE=(0<<4);
 CANSTMOB=0;
 CANEN2 |=(1<<0);
 CANCDMOB=1; //recebe 1 bytes no max
 CANCDMOB |=0X80; //ativa recepção
 CANPAGE=(1<<4);
 sei();

 }

int main (void){

 //inicialização da CAN
 can_ini();

 //inicialização da porta serial
 //PALAVRAS DE 8 BITS, 1 STOP BIT, S/ PARIDADE, comunicação assíncrona
 UCSR0C =((0<<UMSEL0)|(1<<UCSZ01)|(1<<UCSZ00));

 //Setar baud rate 9600 (sem o double speed) com clock em 8MHz
 UBRR0H=0;
 UBRR0L=51;

 //ATIVAR TRANSMISSÃO, recepção e interrupção via serial
 UCSR0B =((1<<TXEN0)|(1<<RXEN0)|(1<<RXCIE0));

 str_tx("\n\rC O N T R O L E C A N\n\r");
 str_tx("**********************\n\r");

 menu0();
 sei();
 return 0;

54

 }

13.2 Programa da U.C. 2

Referências: [12] [13]

#include <avr/io.h>
#include <avr/interrupt.h>
#include <stdlib.h>

unsigned char direcao=0,dir_rq=128,aceleracao=0,acel_rq=128;

//inicialização do conversor AD
void ad_ini(void) {
ADCSRA = _BV(ADEN) | _BV(ADPS2) | _BV(ADPS1);
ADMUX = _BV(REFS0);
}

//inicialização da CAN
void can_ini(void) {
 unsigned char num_mob, num_dados;
 CANGCON = 0X01; //para controlador CAN

 //zerar todos MOb's

 for(num_mob=0;num_mob<15;num_mob++)
 {
 CANPAGE= num_mob<<4; //seleciona o Mob
 CANCDMOB= 0x00; //zerar os bits de controle
 CANSTMOB= 0X00; //zerar os bits de indicaçÃo de estado
 //zerar os tags de identificaçÃo:
 CANIDT1=0;
 CANIDT2=0;
 CANIDT3=0;
 CANIDT4=0;

 //zerar as mascaras de identificaçÃo:
 CANIDM1=0;
 CANIDM2=0;
 CANIDM3=0;
 CANIDM4=0;

 for(num_dados=0; num_dados<8; num_dados ++)
 CANMSG=0; //limpa os registradores de mensagem de todos Mob's
 }

 //configurar velocidade da rede CAN para 500 kbps com cristal DE 8Mhz:

 CANBT1=0X00;
 CANBT2=0X0c;
 CANBT3=0X37;

55

 CANGCON=0X02; //inicia controlador CAN

 //configuraçÃo do mob 0 para recepçao de mensagens

 CANPAGE = (0<<4);
 CANSTMOB=0;
 CANCDMOB=0;

 //filtragem de mensagens entre as id's 0x120 e 0x12f:

 CANIDT1=0X24;
 CANIDT2=0X00;

 CANIDM1 =0XFE;
 CANIDM2 &= ~0XE0;
 CANIDM4 = 0;

 // configuraçÃo do mob0

 CANIDT4 &= ~0X04; //zera bit rtr
 CANCDMOB |= 1; //recepção de 1 byte
 CANCDMOB |=0X80; //recepção sem buffer

 //configuração do Mob 1

 CANPAGE=(1<<4);
 CANSTMOB=0X00;
 CANCDMOB=0X00;

 CANIDT1=0X24;
 CANIDT2=0X00;

 CANIDM1 =0XFE;
 CANIDM2 &= ~0XE0;
 CANIDM4 = 0;
 CANPAGE = (0<<4);

 //configura interrupçÃo de CAN
 CANIE2 |=0X01;
 CANGIE = ((1<<ENRX) | (1<<ENIT));

 }

//função para enviar um data frame pela can
void DF_CAN(unsigned int id, unsigned int dado){
 CANPAGE=(1<<4);
 CANIDT2=(char)(id<<5);
 CANIDT1=(char)(id>>3);
 CANIDT4&=(0<<RTRTAG); //zera bit RTR
 CANMSG=(char)(dado);
 CANSTMOB=0;

56

 CANCDMOB=1;//transmissão de 1 byte de dados
 CANCDMOB |=0X40; //ENVIA MSG
 CANPAGE=(0<<4);
 }

ISR(CANIT_vect){
 cli();
 unsigned int id;
 //alt_led();
 CANPAGE= (0<<4); //seleciona mob0
 if((CANSTMOB & 0X20) == 0X20) //verificação de msg ok
 {
 id=(((int)(CANIDT2)) >> 5) + (((int)(CANIDT1))<<3);

 switch(id)
 {
 case(0x120): if ((CANIDT4 & 0x04) == 0x04) //verifica que é um
remote frame
 {
 DF_CAN(0x120,direcao); //envia de volta valor da direção atual
 }
 break;
 case(0x121): if ((CANIDT4 & 0x04) == 0x04)
 {
 DF_CAN(0x121,aceleracao); //envia de volta valor aceleração atual
 }
 break;
 case(0x123): if ((CANIDT4 & 0x04) == 0x00) //verificação de data
frame

{dir_rq=CANMSG;}break;
 case(0x124): if ((CANIDT4 & 0x04) == 0x00)

{acel_rq=CANMSG;}break;
 }

 }

 CANPAGE=(0<<4);
 CANSTMOB=0;
 CANEN2 |=(1<<0);
 CANCDMOB=1; //recebe 1 bytes
 CANCDMOB |=0X80; //ativa recepção
 sei();

 }

//função para ler um canal AD
void ad_conv(unsigned char canal, unsigned char *dado){
ADMUX = (1<<REFS0) |(canal & 0x0F)|(1<<ADLAR);
ADCSRA |= (0x01<<ADSC);
while((ADCSRA & (0x40))); //aguarda fim da conversão
*dado = ADCH;//registra bits mais significativos(8BITS)
}

57

void pos_ac(unsigned char pos){
if(pos<(direcao-10))
 {OCR0A=8;
 TCCR0A|=(1<<CS22)|(1<<CS21)|(1<<CS20);
 }
 else if(pos>(direcao+10))
 {OCR0A=14;
 TCCR0A|=(1<<CS22)|(1<<CS21)|(1<<CS20);
 }
 else if((pos>=(direcao-10))&&(pos<=(direcao+10)))
 {OCR0A=11;
 TCCR0A|=(1<<CS22)|(1<<CS21)|(1<<CS20);
 }
}
void pos_dir(unsigned char pos){
 if(pos<(direcao-10))
 {OCR2A=8;
 TCCR2A|=(1<<CS22)|(1<<CS21)|(1<<CS20);
 }
 else if(pos>(direcao+10))
 {OCR2A=14;
 TCCR2A|=(1<<CS22)|(1<<CS21)|(1<<CS20);
 }
 else if((pos>=(direcao-10))&&(pos<=(direcao+10)))
 {OCR2A=11;
 TCCR2A|=(1<<CS22)|(1<<CS21)|(1<<CS20);
 }
 }

int main(void){
 ad_ini();
 can_ini();

 //configuração da saída pwm
 TCCR0A = (1<<WGM00)|(1<<WGM01)|(1<<COM0A1); //Fast PWM, ZERA OC0A
NA COMPARAçÃO com TCNT0
 TCCR2A = (1<<WGM20)|(1<<WGM21)|(1<<COM2A1);//FAST PWM, ZERA OC2A
NA COMPARAçÃO com TCNT2
 DDRB=(1<<PB7)|(1<<PB4); //ativa pinos de saida para sinal PWM

sei();
 while(1){
 ad_conv(1,&aceleracao);
 ad_conv(4,&direcao);

 pos_ac(acel_rq);
 pos_dir(dir_rq);
 }
 return 0;
}

58

14. Referências bibliográficas

[1] GUIMARÃES, Alexandre A. Eletrônica Embarcada em Automóveis - Parte 1. Saber

Eletrônica, n. 363, p. 40-43, Abril 2003.

[2] GUIMARÃES, Alexandre A. Eletrônica Embarcada em Automóveis - Parte 2. Saber

Eletrônica, n. 364, p. 20-24, Maio 2003.

[3] BOSCH, Automotive Semiconductors and Sensors. Disponível em:

http://www.semiconductors.bosch.de/en/20/can/1-about.asp. Acesso em: outubro/2008.

[4] BOSCH, CAN Specification 2.0B. Disponível em

www.semiconductors.bosch.de/pdf/can2spec.pdf. Acesso em: outubro/2008.

[5] KVASER, CAN (Controller Area Network). Disponível em http://www.kvaser.com/.

Acesso em outubro/2008

[6] ATMEL, Microcontrollers for CAN Networking. CD-ROM, Novembro /2006

[7] STMicroelectronics, VNH3SP30 Datasheet. Disponível em

http://www.st.com/stonline/products/literature/ds/12688/vnh3sp30-e.pdf. Acesso em:

outubro/2008

[8] NXP, LPC2129 datasheet. Disponível em

http://www.nxp.com/acrobat/datasheets/LPC2109_2119_2129_5.pdf. Acesso em outubro/2008

[9] MICROCHIP, PIC18F4580 datasheet. Disponível em

http://ww1.microchip.com/downloads/en/DeviceDoc/39637c.pdf. Acesso em outubro/2008

[10] ATMEL, AT90CAN128 datasheet. Disponível em

http://www.atmel.com/dyn/resources/prod_documents/doc7679.pdf. Acesso em outubro/2008

[11] ATMEL, Efficient C Coding for AVR Application Note. Disponível em

http://atmel.com/dyn/resources/prod_documents/doc1497.pdf. Acesso em outubro/2008

[12] AVR-LIBC, Reference Manual. Disponível em

http://download.savannah.gnu.org/releases/avr-libc/. Acesso em outubro/2008

[13] ATMEL, Application notes AVR452 - Sensor-based Control of Three

Phase Brushless DC Motors Using AT90CAN128/64/32. Disponível em

http://www.atmel.com/dyn/resources/prod_documents/doc7616.pdf. Acesso em outubro/2008

