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Resumo

Este trabalho tem como propósito o desenvolvimento de um modelo de perguntas e
respostas, capaz de responder a questões sobre um parágrafo, supondo que a resposta possa
ser recuperada num trecho contínuo do texto. O estado da arte neste tópico é dominado
por redes neurais recorrentes, pois estas são capazes de representar a relação entre as
palavras no contexto de uma pergunta. Esses modelos, porém, são sequenciais, o que os
torna lentos e difíceis de treinar em comparação a redes neurais tradicionais (feedforward)
que são mais simples e paralelizáveis. Estas, no entanto, por terem um tamanho de entrada
pré-definido, não conseguem incorporar a relação entre palavras separadas por distâncias
arbitrárias, o que reduz sua capacidade de interpretar a estrutura semântica e gramatical
do texto. Para solucionar este problema, foram desenvolvidas novas arquiteturas de redes
neurais que incorporam a interação entre as palavras através de um mecanismo de atenção
que inclui a posição de cada palavra como entrada. O modelo aqui desenvolvido, chamado
de FABIR (extrator de informações exclusivamente baseado em atenção), será baseado
exclusivamente nesses novos mecanismos, sem o uso de redes recorrentes, com o propósito
de estudar sua aplicação em perguntas e respostas. FABIR atingiu resultados semelhantes
aos melhores modelos em um banco de dados público, possuindo um menor número de
parâmetros e maior velocidade tanto no processo de treino quanto de inferência.

Palavras-chave: Sistemas de Questões e Respostas. Aprendizado Computacional.
Redes Neurais.





Abstract

This project aims at the development of a machine learning model capable of
answering questions about a given passage, assuming that the answer is contained in a
continuous snippet of the text. The state-of-the-art in question-answering is currently
dominated by recurrent neural networks because they are capable of representing the
relationship between words in the context of a question. These models, however, are
sequential, which makes them slow and difficult to train as opposed to standard neural
networks (feedforward), which are a simpler alternative that increases the amount of
computation that can be parallelized. Nevertheless, feedforward neural networks cannot
model the relationship between words separated by arbitrary distances because their input
size is a pre-defined parameter. That hinders the effective representation of grammatical
and semantic structures of text, which are essential for natural language processing tasks.
To address that limitation, new neural network architectures have been developed that
incorporate the interdependence between words through an attention mechanism that
includes the position of each word as an input. We propose a new question-answering
model that is entirely based on these new mechanisms, which we call Fully Attention-Based
Information Retriever (FABIR). We show that FABIR achieves competitive results in an
open source question-answering dataset while having fewer parameters and being faster at
both learning and inference than rival methods.

Keywords: Question-Answering. Machine Learning. Neural Networks.
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ŷ1, ŷ2 First and last indices of the words that were inferred by the model in P
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1 Introduction

1.1 Objectives
This final year project aims at the development of a machine learning model capable

of answering questions in natural language. In that context, we set three main objectives
as follows:

– Study the application of neural networks and the recent developments in attention
mechanisms (2) to question-answering.

– Derive a system capable of answering a question expressed in natural language by
selecting a snippet from a related piece of text.

– Validate the system on a public question-answering dataset in English (SQuAD (3))
and compare its performance against state-of-the-art models.

1.2 Motivations
We identify two primary motivations for our work. We divide them according to

the practical and theoretical interests associated with our research as follows:

First, a question-answering model is a valuable tool for information retrieval that
can change the way we access and use the data made available to us. The advent of the
Internet allowed people to publish and access information in real-time, generating large
amounts of data that are continually being stored by companies and personal users in
countless databases around the world. These databases indeed hold valuable pieces of
information, but they might be hidden among terabytes of useless data and hence are
virtually inaccessible. Therefore, identifying relevant data given a specific information need
is one of the most desirable functions for end users (4). However, despite the development
of efficient search engines such as Google, these are still in gross limited to keyword
matching, which restricts the precision and type of queries to which they can respond. A
question-answering model is the most user-friendly extension to these systems because it
would allow for queries in natural language, which are both more expressive and easier to
formulate (5).

Second, question-answering is a vibrant research area in natural language under-
standing (6) and represents an important step in the development of Artificial Intelligence
(AI). Understanding natural language is not only a milestone in the conception of a machine
capable of reasoning, but it is also paramount to render that technology useful to us for
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two reasons: (i) knowledge acquisition given that most information available today is
expressed in human language and (ii) human–computer interaction, as language is
our main mean of communication (7, p. 860). We believe that the development of neural
networks and its applications to natural language processing, including the work put
forward in this project, are an significant contribution to the field of AI.

1.3 Scope
Within the broader scope of Machine Learning, our work touches two research

areas in particular: Deep Learning and Natural Language Processing (NLP).

Deep learning is a class of machine learning models that comprise neural networks
with multiple layers (8). It has dominated state-of-the-art research in NLP and hence, our
work is entirely neural network-based in tune with the most recent developments in the
field. Given that neural networks are a rich and complex research area in themselves, we feel
the need for a brief introduction to allow for a deeper understanding of the inner-workings
of our model. We present the main characteristics of different architectures of neural
networks in chapter 3.

Natural Language Processing (NLP) is the field of science that has been developed
to allow computers to perform useful tasks involving human language (9). These include
tasks such as text translation, automatic captioning, spam detection, information extraction
and Question-Answering (QA). The latter is the topic of this project and will be detailed
further on.

1.3.1 Question-Answering (QA)

Question-answering refers to an information retrieval task in which the information
need is expressed as a set of questions or statements in natural language (4). The answer
could be, for instance, merely a word such as “yes” or “no”, an option in a multiple choice
test or even a long sequence of sentences. QA tasks can be split into closed and open
domain systems. The former refers to questions related to a specific knowledge field such
as football, religion and weather forecasting, whereas the latter might include questions
across several areas of knowledge.

Closed domain QA systems are simpler and tend to be more accurate because prior
knowledge about the target domain can be integrated into the model’s design. Indeed if the
domain is restricted enough, one could manually engineer a set of rules that map regular
expressions to a predefined set of answers. An example of that approach is the LUNAR
NLP project in which the questions were exclusively about geological compositions of
the rocks found in the moon (10). That system could answer satisfactorily 78% of the
questions utilizing an exhaustive set of pattern analysis over the domain-specific vocabulary,
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translating natural languages to entries to a database. It is important to highlight that
this was achieved in 1973 and therefore with limited computational power in comparison
to today’s QA systems.

In open-domain QA systems, the scope of the questions encompasses multiple
fields of knowledge, and hence manually designed rules are not feasible for any interesting
information retrieval task. Indeed, to answer questions about different domains the ideal
model needs some level of understanding of natural languages. Neural networks are to this
day the closest we have come to such an “intelligent” model because they are particularly
good at handling raw features which are not individually interpretable, such as words (11).
Our work tackles the challenging task of open domain QA in the constraints imposed by
Stanford’s SQuAD dataset introduced in the following section.

1.3.2 SQuAD Dataset

Neural networks have been successful in tackling a variety of challenging tasks
in NLP such as machine translation (12) or speech recognition. However, deep learning
models usually require large amounts of labeled examples and a data set that would allow
for the training of a QA system over multiple knowledge fields had been lacking. Motivated
by the success of public data sets like ImageNet (13) in promoting the development of
machine learning models, Rajpurkar et al. have published the Stanford Question-Answering
Dataset (SQuAD), a large QA dataset based on Wikipedia articles (3).

The SQuAD Dataset consists of 107,785 question-answer pairs about 536 articles
from Wikipedia, which altogether results in 23,215 paragraphs (3). To get high-quality
articles about a wide range of topics, they were randomly selected from the top 10,000
articles according to the Project Nayuki’s Wikipedia’s internal PageRanks. As these articles
cover different knowledge fields, such as history, natural science, and sports, this QA task
can be considered open domain.

The question-answer pairs follow a well-defined structure. Every question Q is
associated with a passage P = {p1, p2, ..., pn}, where pi represents the ith character of the
respective passage and n its size defined by the number of characters. The answer A must
be a contiguous snippet from the respective passage, i.e., it must be A = {pk, pk+1, ..., pl},
where k ≥ 1 and k ≤ l ≤ n. On the one hand, this gives a large number of possible answers
for each question, which increases the complexity of the problem against multiple choice
questions. On the other hand, it simplifies the problem by reducing the interpretation
requirements of the paragraph. Figure 1 illustrates the SQuAD dataset with one passage
and three questions about the topic meteorology.
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Figure 1 – Example of a paragraph extracted from the SQuAD dataset with three questions
and their respective answers in colors. Image Source: (3)

1.4 Methods

As mentioned before, we follow the recent trends in the machine learning community
and devise a deep learning model for QA. However, differently from previous works we
do not employ Recurrent Neural Networks (RNNs), which are the base of all published
models aimed at the SQuAD dataset (14, 15, 16, 17, 1). Instead, inspired by a recent paper
on machine translation (2), we propose a deep learning QA model that is entirely based
on attention mechanisms. To the best of our knowledge, this is a wholly new approach to
QA and hence constitutes the major contribution of our work. We introduce herein our
Fully Attention Based Information Retriever model, which we have named FABIR.

The development of a machine learning model of the size and complexity of FABIR
requires a series of design choices involving multiple hyperparameters that define the
model’s architecture and training algorithm. Finding the optimal set of these parameters
is not viable due to the large search space and computational cost of running the system.
Therefore, we draw insights from the related work and follow some heuristics common
to the field to guide us in the design of the best performing model. To compare the
performance of each new architecture and also evaluate them against the related work, we
apply a couple of standard metrics in NLP: EM and F1 scores, which are defined in the
appendix. Finally, FABIR has been fully implemented with Tensorflow’s python API (18),
which facilitates the training and validation of our model.
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1.5 Outline
The rest of this document is organized as follows. The following chapter presents

our model from a systems engineering perspective, including functional and requirements
analyses. Subsequently, we introduce the reader to the field of Machine Learning, so that
we can explore more advanced topics in exposing the development of our model further
on. We then cover the related work and compare the state-of-the-art machine learning
models that have addressed the SQuAD dataset. Chapter 5 is entirely dedicated to theory
and architecture of our fully attention-based model. Finally, we present our experimental
results in Chapter 6 and later draw some conclusions and point out interesting directions
for future work in Chapter 7.
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2 System Analysis

In this chapter we analyze the project from a system engineering perspective. We
start with stating the mission and objectives, then we perform a functional analysis and
divide the model in its main building blocks. Finally, we derive the system requirements
that underpin the development of this project.

2.1 Mission Definition
The mission of our system is simple and can be stated as follows:

Mission Statement Given a passage P and a query Q both written in English,
to produce an answer A by selecting a continuous snippet from P .

2.2 High Level Requirements
The mission can be divided into High Level Requirements (HLRs) that should be

satisfied to produce an acceptable system.

HLR 2.1 (Nature of the System) The system should be a parametric supervised ma-
chine learning model capable of learning to perform the task defined in the Mission
Statement in a completely data-driven way.

Rationale: A machine learning model requires little human intervention and is
capable of generalizing to unseen data, as opposed to systems with hard-coded rules, which
are labor intensive and have a limited scope.

HLR 2.2 (Data source) The system should be trained on the examples provided in the
public dataset SQuAD (3).

Rationale: A supervised machine learning model needs a considerable amount of
data to “learn” to predict the target variable given the inputs.

HLR 2.3 (Input Format) The system should process passages P and queries Q in json
format.

Rationale: json is the most popular format for exchanging information in the web
and is also the format in which the SQuAD dataset (3) is provided.

HLR 2.4 (Input Length) The system should process passages P and queries Q of
arbitrary lengths.
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Rationale: A question-answering system is only useful if it can be applied to real
world documents that naturally vary in length.

HLR 2.5 (Output) The system should output indices ŷ1 and ŷ2 that define the position
in P of the first and last word of the answer A, respectively.

Rationale: That is the format in which answers are given in the SQuAD dataset
(3).

HLR 2.6 (Loss) The system should minimize the negative log likelihood over the examples
on the training set of the SQuAD dataset (3).

Rationale: That is equivalent to Maximum Likelihood estimation (ML) in a
frequentist approach or the Maximum a Posteriori Probability (MAP) in a Bayesian
approach (8, p. 131-139).

HLR 2.7 (Single step) The system should process the entire P and Q in a single pass
to output ŷ1 and ŷ2.

Rationale: That renders the system faster and parallelizable for computational
efficiency and scalability.

Observation: That means that Recurrent Neural Networks (RNNs) should not
be used.

HLR 2.8 (Validation) The system should achieve an F1 score of at least 70% on the
development set of the SQuAD dataset (3).

Rationale: Such an F1 score would place the system among other state-of-the-art
machine learning models (19).

2.3 Functional Analysis
Functional analysis consists in defining the key building blocks of the model so that

they can be maintained and updated independently. It also facilitates the understanding
of the model, as it exposes the main functionalities of the system in a clear way. We divide
our model in eleven functions, which are combined in accordance to the modes of operation
defined on the subsequent section.

Function 2.1 (Receive input) This function is the interface that receives a question
and a passage in textual form (.json).

Function 2.2 (Tokenize) This function splits the text into words or characters (tokens).
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Function 2.3 (Embed words) This function converts each word in its corresponding
vectorial representation.

Function 2.4 (Embed characters) This function converts the set of characters of a
word in a vectorial representation.

Observation: Function 2.4 differs from Function 2.3 in that it produces a vector
that is a function of the characters put together, instead of the word as a whole.

Function 2.5 (Run neural network) This function is given by a neural network, which
uses the sequence of words in their vectorial representation (word plus character embedding)
to produce higher level representations of the data.

During training, these representations are gradually updated to facilitate the predic-
tion of the final output.

Function 2.6 (Select Indices) This function selects the indices ŷ1 and ŷ2 that identify
the snippet from the passage that answers the query.

Function 2.7 (Evaluate loss function) This function returns the loss as a function of
the inputs P and Q, the model’s parameters and the true indices provided in the training
data, y1 and y2.

Function 2.8 (Train) This function updates the model’s parameters to minimize the loss
as calculated in Function 2.7.

Function 2.9 (Evaluate Metrics) This function computes the metrics used to evaluate
the performance of the model. In the SQuAD dataset, these are mainly the Exact Match
(EM) and F1 scores as defined in Appendix A.

Function 2.10 (Load Parameters) This function loads the initial values for the pa-
rameters θ. These can be randomly initialized or imported from a pre-trained model.

Function 2.11 (Save Parameters) This function saves the optimized parameters θ.

Observation: Functions 2.10 and 2.11 are important to retrieve the parameters of
a trained model and potentially use them in real world applications.
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2.3.1 Modes of Operation

As any machine learning system, ours should have three distinct modes of operation:
training, testing and inference.

• Training mode: The model’s parameters are updated to minimize the loss function
as shown in Figure 3.

• Testing mode: The model’s parameters are kept fixed and tested against EM and
F1 scores as shown in Figure 5.

• Inference mode: The model’s parameters are kept fixed and used to infer the
answer of a question about a passage as shown in Figure 4.

2.3.2 Functional Diagrams

In this section, we present the functional diagrams for each of the modes of operation.
Figure 2 show the Model block, which is subsequently used in Figures 3, 4 and 5 to represent
each mode of operation.

Receive
Input

Model

Tokenize

Embed
Words

Embed
Char-
acters

Embed Text

Encode
Position

Run
Neural
Network

P , Q

θ

ΩP , ΩQ π̂y1 , π̂y2

Figure 2 – Model diagram
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Figure 3 – Training Mode Diagram
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Figure 4 – Inference Mode Diagram

Model

Load

Select
Indices Metrics
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ŷ1, ŷ2

A

EM , F1

Figure 5 – Testing Mode Diagram

2.4 Requirements Analysis
Requirement analysis is the study and definition of the essential criteria a system

needs to meet to exert its functionality appropriately. The following table exposes the
requirements of our model together with their rationale and their traceability, which is the
set of HLRs that motivate the need for each requirement. The priority feature establishes
the importance of each of those requirements on a scale from 0 to 3, with 0 being absolutely
necessary and 3 secondary.
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Table 1 – Requirements table.

Function Functional Requirements Rationale Trace-
ability

Prio-
rity

Receive
Input

The system should extract
passages and queries from a
json file and convert them
into a python dictionary.

The model is developed on
top of Tensorflow’s python
API.

HLR-
1.2
HLR-
1.3

1

Tokenize The system should split
both the passage and the
query into words and char-
acters.

Text is presented to the
model as a set of words and
characters that are subse-
quently embedded in vecto-
rial representations.

HLR-
1.1
HLR-
1.4

0

Embed
Words

The system should represent
each word in both passage
and query by a one dimen-
sional vector of size WEs.

A machine learning model
needs the input data to be
represented in a numerical
form. On the one hand, a
longer vector is expected
to contain more information
about its respective word,
on the other hand it will
require more memory and
computational power to be
processed.

HLR-
1.1

0

Encode
Position

The system should encode
the position of each word
in both the passage and the
query in a one dimensional
vector of size WEs.

The system needs the po-
sition of each word to ef-
fectively model their inter-
dependence and understand
the sentence structure.

HLR-
1.1

0

The system should be able
to encode the position of
each word in sentences of ar-
bitrary length.

Real world applications con-
tain texts of any length.

HLR-
1.4

1

Run
Neural
Net-
work

The system should im-
plement a sublayer self-
attention(X), which gives a
score to each element of X
given an element of X.

Self-attention is needed to
model the interdependence
of words in the same piece
of text (context).

HLR-
1.1
HLR-
1.7

1
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Function Functional Requirements Rationale Trace-
ability

Prio-
rity

Run Neu-
ral Net-
work

The system should im-
plement a sublayer cross-
attention(X, Y), which gives
a score to each element of X
given an element of Y.

Cross-attention is needed to
model the interdependence
of words in two different
pieces of text, namely pas-
sage P and question Q.

HLR-
1.1
HLR-
1.7

1

The system should im-
plement a sublayer feed-
foward(X) that applies an
affine transformation fol-
lowed by a non-linear func-
tion.

This function allows the
model to represent the
model in another vectorial
space.

HLR-
1.1
HLR-
1.7

1

Each sublayer should be fol-
lowed by a vector-wise nor-
malization function, which
sets the mean and standard
variance across the elements
of each vector to 0 and 1,
respectively.

Layer normalization facili-
tates convergence because it
avoids covariate shifts inside
the model.

HLR-
1.1
HLR-
1.5

2

Each layer should be
composed of three sub-
layers: self-attention(P),
self-attention(Q), and either
cross-attention(P, Q) or
cross-attention(Q, P).

Each layer applies different
attention mechanisms to the
data.

HLR-
1.1
HLR-
1.7

2

The system should be a
neural network composed
of n_pre_layer layers
to infer ŷ1 followed by
n_post_layers to infer ŷ2.

The model is composed of
several layers to gradually
build higher level represen-
tations as the data flows
through the model.

HLR-
1.1
HLR-
1.5

1

Select In-
dices

The system should output a
probability distribution over
the possible values for ŷ1

and §ŷ2.

The probability distribution
is needed to compute the
negative log-likelihood.

HLR-
1.5
HLR-
1.6

1

The system should apply an
argmax over the probability
distribution to produce ŷ1

and ŷ2.

The final output of the sys-
tem that defines answer A
are indices ŷ1 and ŷ2.

HLR-
1.5

1
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Function Functional Requirements Rationale Trace-
ability

Prio-
rity

Evaluate
Loss

The system should calculate
the mean of the negative log-
likelihood over the batch.

The loss function calculated
over each batch is used to
estimate the loss over the
whole data set and update
the model’s parameters.

HLR-
1.6

1

Train
The system should train the
model using training data
batches of size batch_size.

The size of the batches is
an hyperparameter defined
in the configuration file and
is limited by the available
RAM.

config 1

The system should train the
model for n_steps steps.

The number of steps to-
gether with the batch size
define the number of epochs,
in which the model is going
to be trained.

config 2

The model should be
trained by gradient descent
with the optimizer defined
in train_type.

The model’s convergence
rate and final performance
are influenced by the specific
gradient descent algorithm
used to optimize the param-
eters.

config 1

Evaluate
Metrics

The system should compute
EM and F1 scores as defined
in Appendix A.

These metrics are used to
evaluate the performance of
the model.

HLR-
1.8

2
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3 Machine Learning

This chapter aims to introduce the reader to the basic theory of machine learning
that was considered relevant for understanding this work and other state-of-the-art models
in the SQuAD dataset.

First of all, we briefly introduce neural networks theory in section 3.1, as these
models are at the forefront of new developments in machine learning and artificial in-
telligence. More specifically, we focus in Recurrent Neural Networks (RNN) and Long
Short Term Memory (LSTM) because they are the base for most of the state-of-the-art
research in NLP and power most models in the SQuAD leaderboard (19). Additionally, we
also present Convolutional Neural Networks (CNN), which are one of the key-elements
in FABIR implementation, although they are not used in many SQuAD state-of-the-art
models. Subsequently, we present word-level and character-level embeddings in Section
3.3, which are basic tools for developing NLP models. Later on, we introduce the concept
of attention in section 3.2, which is the cornerstone of this project and will be further
exploited in developing the theory behind our fully-attention based model in chapter 5.
Finally, in section 3.4 we present some stochastic optimization tools. These are more
sophisticated gradient descent methods and are key to improve the model’s convergence
rate and performance.

3.1 Neural Networks

In this section we briefly introduce the theory of neural networks. For an excellent
and comprehensive overview of the topic, we refer to (8).

Neural networks are computational models inspired by the human brain. They are
composed of a set of artificial neurons that are connected by directed edges. These edges
are analogous to synapses in the brain and it is by gradually updating them that we can
train a neural network to produce a desirable output.

3.1.1 Feedforward Neural Networks

The standard neural network, which is often referred to as feedforward, maps an
input x to a target value y, with the goal of approximating some function y = f ∗(x).
As any parametric machine learning model, a neural network can have its predictions ŷ
written as function of a set of parameters θ: ŷ = f(x; θ). In order to solve for the value of θ
that best approximates f ∗(x), we can redefine that goal as minimizing some loss function
L(x, y, θ) which is some dissimilarity measure between f(x; θ) and f ∗(x) when evaluated
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on data point x. A common example of loss function is the Mean Squared Error (MSE),
which can be written as follows:

L(x, y, θ) = (y − f(x; θ))2 (3.1)

However, evaluating the model in a single data point is not a good measure of its
performance because we are interested in finding a model that fits the whole data set. We
define then a cost function J(θ), which is an expectation of the loss function over multiple
data points.

J(θ) = 1
m

m∑
i=1

L(Xi, Yi, θ) (3.2)

where m is the number of data points where we evaluate the loss function. In this
introduction, we will follow the convention that the inputs are given in a matrix X with
each example being represented by a row vector Xi. In the machine learning literature,
each element of the vector Xi is usually referred to as a feature. In our notation, we will use
the index j to address these features and hence, Xij represents the feature j of example i.
Also, we refer to a single example as a pair x, y.

Note that the cost in equation 3.2 is written as a function of θ. That is because a
neural network, as any other parametric machine learning model, “learns” to approximate
f ∗(x) by changing its parameters θ. In neural networks, that is usually done by gradually
updating θ in the direction of the gradient of the cost function w.r.t. θ, which is an
optimization method called gradient descent.

θ ← θ − ε∇θJ(θ) (3.3)

where ε ∈ [0, 1] is a hyperparameter known as learning rate.

Neural networks are flexible models and the artificial neurons can be organized in
a variety of ways depending on the specific application. However, most neural nets are
structured in layers, which are sets of neurons that do not share any connections. In that
case, the computation flows sequentially from one layer to the next, from the input x to
the output y. Because this type of network does not include any cycles in its computational
graph, it is called feedforward network. Each layer in a feedforward neural network can
be interpreted as a function in its own and the whole network as composition of these
functions. If f (l) is the function implemented by layer l and we have three layers in the
network, we can write f(x) = f (3)(f (2)(f (1)(x))).

The last thing left to be defined is the operation performed by each of the functions
f (l). Each layer in a neural net consists of an affine transformation followed by a nonlinear
function usually known as an activation function and represented by g herein. The affine
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Figure 6 – Schematic of a neural network. Each layer in the network is represented by a
set of nodes in a different color. Image Source: (11)

transformation is controlled by the learnable parameters θ which are divided into weights
W and bias b. The entire operation defined by a layer in the network can be written as
follows:

h(l) = g(l)(Wx+ b) (3.4)

where h(l) is a vector containing the values of each of the neurons in layer l. The letter
h stands for hidden because the values of the neurons in the inner layers of the network
are not given in the data. The layers in a feedforward network are not constrained to
have the same number of neurons and hence, the weights W can have any shape. More
formally, W ∈ Rnout×nin , where nin and nout are the number of neurons in layers l and
l − 1 respectively.

3.1.2 Recurrent Neural Networks (RNN)

The feedforward neural network framework presented above does not model the
dependence between different inputs explicitly: the computation of the output y is based
on a single example x. In other words, the yi’s are conditionally independent given the
inputs xi’s.

That is an important limitation if one wants to model natural language because
the information contained in a piece of text is not only given by the meaning of each word,
but also by their syntactic and semantic relationship to other words in a sentence (4). To
accommodate such a limitation, one could extend the input vector to include a sliding
window of words and so implicitly model the interdependence between them. However,
that still prevents the neural net from observing the relationship of words separated by
more than the predefined window size allows for (11).

A possible solution is to include a feedback loop such that the hidden state at step
t of the neural network not only depends on the current input x(t), but also on its previous
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hidden state h(t−1).

h(t) = f(h(t−1), x(t); θ) (3.5)

where the superscript t refers to the current processing time step. The intuition behind
this kind of feedback is that h(t−1) will sum up the relevant aspects of all the previous
inputs up to time step t− 1. Neural networks that make use of such recurrent feedback
are called Recurrent Neural Networks or RNNs.

Figure 7 – Schematic of a recurrent neural network unfolded across time steps. The RNN,
which is represented by function h(t) = f

(
h(t−1), x(t)

)
, is unfolded and the dependence on

the previous time step is made explicit by the illustration. Image Source: (8)

Despite the inclusion of the feedback mechanism, a basic RNN could apply the
exact same transformation in each of its layers: an affine transformation controlled by
learnable parameters followed by a nonlinear function. In order to show an example of an
RNN, a simple model is described in (3.6).

h(t) = σ
(
Wh(t−1) + Ux(t) + b

)
(3.6)

where W , U and b are generic matrices that agree with h(t−1) and x(t) dimensions, and σ
is the elementwise non-linear function sigmoid.

Although equation 3.6 takes into account the previous state h(t−1) in every iteration,
it has been observed that the optimization of its parameters can be unstable for large
sequences (20). That happens, because when the gradient computation flows through a
long sequence of time steps, the gradient values tend to either explode or vanish, which
hinders the update of the weights in the RNN (20). In order to attenuate this gradient
issue, alternative RNN cells have been proposed, such as the Long Short-Term Memory
(LSTM) (21) and the Gated Recurrent Unit (GRU) (22). The former is presented in section
3.1.3 to illustrate how it can be used to facilitate the training of RNNs with long sequences.
Regarding the use of these two RNN models in the SQuAD dataset, every model in the
leaderboard with a published paper used at least one of them for encoding questions or
passages, which speaks to their current relevance in the modeling of natural languages for
question-answering tasks.
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Figure 8 illustrates one possible application of RNNs to machine translation from
German to English. The need for a recurrent architecture is clear from the intuition
that one can only translate a sentence after reading all its words. The RNN does so by
processing one word at a time and updating the value of its current hidden state, which is
shown in the figure as the vertical vector. To be clear, h1, h2 and h3 are the same hidden
state layer. In Figure 8, they represent h as if unfolded in time to expose the process that
underlies the computation in an RNN. In that case, both input (red) and output (blue)
are handled by RNNs that process one word at a time.

Figure 8 – Schematic of a recurrent neural network applied to machine transla-
tion from German to English. Image Source: http://cs224d.stanford.edu/lectures/
CS224d-Lecture8.pdf.

3.1.3 Long Short-Term Memory (LSTM)

Long Short-Term Memory or LSTM is one type of RNN, which was introduced by
Hochschreiter et al. (21) and later updated by Gears et al. (23). It has been successfully
used in different NLP tasks, such as machine translation (12) and question answering
(1, 17). It is based on the addition of a channel through which information can be selectively
saved or deleted. This channel would represent somehow the context or the relation of
all words that have already been read, in order to allow the neuron to interpret the next
word properly. An LSTM is fully described by Equation 3.7.

ft = σ(Wf ∗ [ht−1, xt] + bf ) (3.7a)

it = σ(Wi ∗ [ht−1, xt] + bi) (3.7b)

Ct = ft ◦ Ct−1 + it ◦ tanh(WC ∗ [ht−1, xt] + bC) (3.7c)

ot = σ(Wo ∗ [ht−1, xt] + bo) (3.7d)

http://cs224d.stanford.edu/lectures/CS224d-Lecture8.pdf
http://cs224d.stanford.edu/lectures/CS224d-Lecture8.pdf
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ht = ot ◦ tanh(Ct) (3.7e)

where xt is the tth input of the neural network, which for instance can be interpreted
as a word in NLP. Additionally, ht is the hidden state in position t, CT represents the
memory, W s and bs are parameter matrices that must be trained, and [ht−1,xt ] represents
the vertical row-wise concatenation of the previous hidden state and current input.

Variables ft, it, ot are called forget, input and output gates and their value is
between 0 and 1, because of their activation function σ. While, the forget gate fi is used to
define which information the memory C should keep or forget, the input gate it defines how
much information from [ht−1,xt ] should be added in C. These accesses to memory C can
be understood from Equation 3.7c. Finally, output gate ot defines how much information
from memory is relevant for the next hidden state, as shown by Equation 3.7e.

3.1.4 Convolutional Neural Networks

In many applications, it is desirable that the operations applied by the neural
network be translational invariant. For instance, that is the case in image classification,
where moving the object of interest should not change whether it is a dog or a cat.
Convolutional neural networks were developed precisely to address that problem (24). The
idea is that by applying the same operation over all the parts of an image, one can detect
some patterns regardless of the exact position where they appear. That approach gave
rise to architectures known as Convolutional Neural Networks (CNNs) that have been
extremely successful in computer vision (25).

In our case, CNNs are mainly used to model local attention, i.e. the relationship
between words that appear close to each other in a sentence. The intuition is that there are
patterns, such as the interdependence between verb and subject, that are often observed
within distances of only a few words and that can be modeled quite generally. Therefore,
ideally, a convolution could capture such patterns even if a sentence is paraphrased and
the exact position of each word is changed.

The ideas described above already illustrate the mechanism of CNNs, but to
effectively discuss their application to our model, we need a more formal definition. In
order to define a convolution, one must first name three dimensions in the input: height h,
width w and number of channels nchannels. Subsequently, one must define three dimensions
in the convolution kernel: kernel length Hheight, kernel width Hwidth and number of filters
nfilters. While the input I ∈ Rh×w×nchannels is described by a three dimensional tensor, the
kernel is a four dimensional tensor H ∈ RHheight×Hwidth×nchannels×nfilters . Note that nchannels
is defined exclusively by the input, but the kernel size must agree with it. Finally, the
convolution output O ∈ Rh−Hheight+1×w−Hwidth+1×nfilter between the input I and the kernel
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H is defined by (3.1.4).

Oi,j,k = Conv(I,H)
nchannels∑
m=1

< I[i : i+Hlen− 1, j : j+Hwidth− 1,m], H[:, :,m, k] > (3.8)

where < A,B > is Tr(ABT ), ” : ” represents all indices in the respective dimension and
a : b all indices between a and b, which includes a and b.

3.2 Attention
In recent years, attention mechanisms have been used with success in a variety

NLP tasks, such as machine translation (12, 2), natural language inference (26, 27) and
question answering (1). It can be defined as a mechanism that gives a score αi to a vector
xi from a set X = [x1, ..., xn] with respect to a vector c. This score is a function of of both
X and c and is shown in its most general form in (3.9).

si = f(xi, c) (3.9a)

αi = exp(si)∑n
i=1 exp(si)

(3.9b)

where si and αi are scalars and f is a function. Equation (3.9b) is called softmax operation
and guarantees that the sum of all weights αi is equal to 1. A large weight αi means that
the vector xi is somehow strongly related to c.

In (3.9), f essentially defines a score function that measures the relative importance
of xi given the context c. In the literature, two alternatives for f have been proposed:
additive (12) and multiplicative (28) attentions. Both types of attention mechanisms are
presented in (3.10) below.

f(xi, c) =
W3g(W1xi +W2c) (additive)

xTi W1c (multiplicative)
(3.10)

where W1, W2 and W3 are learnable parameters and g is a elementwise nonlinear function.
For small vectors, additive and multiplicative attention mechanisms have been shown to
produce similar results (29). The advantage of multiplicative attention is that it can be
implemented more efficiently using matrix multiplication, which is highly optimized in
modern GPUs. Nevertheless, when the vectors have high dimensionality, the multiplicative
attention might result in large values in the softmax operation in (3.9b), which leads
to small gradients that hamper efficient optimization of the parameters. That can be
addressed by diving f(xi, c) by the square root of the hidden state size (2).

In NLP, attention mechanisms are often used to identify the most relevant words
xi in a text X for a specific task. In order to illustrate and motivate their use, a machine
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translation example is shown, which was the task addressed by the paper that first
introduced attention mechanisms in NLP (12).

When translating a sentence, it is intuitive that one should not translate word by
word because the context and the interaction among words play a major role in defining
its semantics. RNNs solve that limitation by means of their feedback mechanism, which
is supposed to encode all the information regarding the original sentence in a single
context vector c. Typically, that context vector is simply the hidden state of the RNN after
processing all words in a sentence. However, c has a pre-defined number of features, which
is independent of the input sequence size, and hence might not be enough to effectively
represent the original sentence. That is exactly the limitation that attention mechanisms
were designed to tackle.

The model proposed in (12) is based on a encoder-decoder architecture common in
sequence-to-sequence models. The translation is then made in two steps: (i) a RNN-encoder
computes the context vector c of the original text and subsequently (ii) a RNN-decoder
uses that context to output the translated text word by word. However, traditionally the
only input to the decoder was the last hidden state of the encoder and hence the context
c suffered from the limitations outlined above. Bahdanau et al.(12) address that problem
by changing the input to the decoder in such a way that it contains information from all
previous hidden states in the decoder. Their insight is that each word in the translation
does not depend equally on every word in the original text. Therefore, the input to the
decoder must be a weighted average of the encoder hidden states, assuming that each of
them is associated with a single word in the original sentence. That weighted average is
the attention mechanism as defined in (3.9). In practice, for every new word yt output by
the model, the input to the decoder will be given by a new context vector ct, which is
a function of αTX1:t. As shown in (12), using attention increases model performance in
comparison to models without attention, specially for long sentences, in which c is more
likely to fail in representing the whole context.

3.2.1 Self-attention

Despite their theoretical capability, RNNs can only memorize a limited portion of
a passage and the interdependence between distant words is poorly modeled (14). The
mechanism used to mitigate that problem is called self-attention or self-aligning because
it models the relationship between words in the same piece of text. That way, (3.2) can
be used to establish a connection between words in any position of the text, producing a
more effective representation of the context.
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3.2.2 Cross-attention

Cross-attention is conceptually similar to self-attention, but instead models the
dependence between words in two different pieces of text. That is the type of attention
introduced in machine translation (12) which is also fundamental to QA, as it is by means
of that mechanism that the model understands the relationship between a question and
its answer as part of a text. Indeed, most models in the SQuAD ranking use some sort of
cross-attention to determine which words in the question are the most relevant given a word
in the passage. For clarity, we will refer to this sort of cross attention as passage-over-query.
It is also possible to apply cross-attention in the opposite sense, which would be equivalent
to a query-over-passage attention.

3.3 Word and Character Embedding

Embedding is the process of associating a word or a character from a piece of text
to a vector so that it can be processed by a digital computer. In that regard, that process
is analogous to associating colors to a triad of numbers in the RGB format.

The most intuitive way to represent a word or any categorical feature to a machine
learning model is to label it with an arbitrary number. The most common approach for
doing so is called one-hot encoding: each feature is represented by a vector the size of
the vocabulary (number of categories) where all elements are set to zero except for the
position that identifies the pertinent word (category). However, even though that allows
the computer to distinguish the different categories, it fails to capture any relationship
between them. That is especially relevant in NLP because words share meanings and
morphology that could be explored by the model, but are completely ignored in this simple
labeling process.

Word embeddings are an interesting alternative to build effective representations
of words. In (30) and (31), each word is represented by a vector of size d, which is
randomly initialized and trained by a neural network to minimize some cost function. This
process has been proven to generate meaningful word representations with remarkable
properties. Namely, similar words are in general given by embeddings that are close in the
corresponding vectorial space.

That idea has been further extended to process characters (32, 33, 34). The
advantage of a character-level embedding is that it is more robust to misspellings and
can model morphological similarities that often translate into interesting semantic or
grammatical relationships.
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3.4 Training Algorithms

Training is the process of optimizing the parameters θ in the neural network to
minimize its cost function J(θ), which is described in (3.2). Ideally, J would be evaluated
over the whole data set, but that is computationally expensive for most interesting models.
Therefore, a smaller number of examples to which we will refer as batch is used to estimate
J and update the model’s parameters. Given that the batches are selected randomly, this
process is called Stochastic Gradient Descent (SGD) (8, p.150). From the perspective of
SGD, the cost function evaluated in a batch provides a local estimate of the gradient that
can be used to update θ in a direction that minimizes J(θ).

Given that the loss function is not convex in neural networks and that the estimate
of J(θ) is noisy, the learning rate ε in (3.3) needs to be carefully fine-tuned: a high
value could cause the model to diverge, whereas a low one could retard the learning
process. The choice of this learning rate is paramount for the convergence of the model
and several extensions to the vanilla SGD algorithm have been proposed to improve the
overall performance or automatically define the learning rate (35, 36). These methods are
presented in the following sections.

3.4.1 Annealing Learning Rate

The simplest addition to SGD is the introduction of a variable learning rate ε that
is reduced as the model approaches convergence. That helps to avoid large increments in
the region of the local minimum. One possible way to implement an annealing learning
rate is to decay it by a constant factor as in (3.11).

εt = εt−1

1 + ρt
(3.11)

where t is the time step or iteration number and ρ is a decay rate, specifying by how much
the learning rate should be reduced at each step. By hampering large oscillations around
the local minimum, an annealing learning rate has been shown to improve performance
and speed up the training process.

3.4.2 Momentum

One can also speed up training on a per-dimension basis by applying a momentum
algorithm. In that case, the update in (3.3) will no longer be defined exclusively by the
gradient, and we will rewrite it more generally as ∆θ.

θt+1 = θt + ∆θt (3.12)



3.4. Training Algorithms 47

Momentum algorithms update the parameters with the following idea: the op-
timization method should accelerate the progress along dimensions in which gradients
consistently point in the same direction and slow it down in dimensions for which the
sign of the gradient changes regularly. That is done by including the previous ∆θ when
computing the update as follows:

∆θt = ρ∆θt−1 + ε∇θ,t (3.13)

where ρ is again a constant decay rate, but this time it controls the influence of previous
updates. It is easy to see that in (3.13), the learning rate gradually increases if the sign
of the gradient is consistent across multiple steps and is damped otherwise. Momentum
updates help SGD to navigate ravines, i.e., regions where the surface curves are steeper in
a few dimensions, and a single learning rate would lead to slow convergence or divergence
(37).

3.4.3 Adagrad

Adagrad (35) is another gradient descent algorithm that also speeds up training on
a per-dimension basis. In the case of Adagrad, each dimension has an unique learning rate,
which is defined as in (3.14).

∆θt = − ε√∑t
τ=1∇2

θ,τ

∇θ,t (3.14)

Note that, despite the influence of ε as a global learning rate hyperparameter, each
dimension has a different learning rate, which is defined by the inverse of the gradients
magnitude. Therefore, Adagrad attributes a small learning rate to high gradients and
vice-versa, which is an attractive property for deep neural networks where the scale of the
layers may vary by orders of magnitude.

The main advantage of Adagrad is that it, in theory, it eliminates the need to tune
the learning rate manually. Nevertheless, Adagrad is still sensitive to the global learning
rate ε and, due to the continual accumulation of squared gradients, the updates tend to
converge to zero, stopping the training completely.

3.4.4 Adadelta

Adadelta (36) tries to solve Adagrad’s limitations by accumulating the gradients
over a pre-defined window. That prevents the learning rate from converging to zero as the
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denominator in (3.14) no longer grows indefinitely. In practice that is done by replacing
the sum over the gradients by a running average E[∇2

θ]t, which is defined as follows:

E[∇2
θ]t = ρE[∇2

θ]t−1 + (1− ρ)∇2
θ,t (3.15)

where ρ is a hyperparameter that defines the influence of previous updates. The Adadelta
algorithm can then be defined as in (3.16).

∆θt = − ε√
E[∇2

θ]t + c
∇θ,t (3.16)

where c is a constant added for numerical stability.

3.4.5 Adam

Adam (38) is another extension to the Adagrad algorithm that computes an
exponentially decaying average for both past gradients and past squared gradients. We
refer to those as the first moment (mean) and second moment (variance), which are
computed as follows:

mt = β1mt−1 + (1− β1)∇θt

vt = β2vt−1 + (1− β2)∇2
θt

(3.17)

where β1 and β2 are hyperparameters set to values close to 1. However, at t = 0 both β1

and β2 are initialized at zero, and hence mt and vt are biased towards zero, which requires
a bias-correction as presented below.

m̂t = mt

1− βt1
v̂t = vt

1− βt2

(3.18)

The update used in Adam is then derived as in Adagrad and Adadelta and can be
written as follows.

∆θt = − ε√
v̂t + c

m̂t (3.19)

where c is again a constant which is set to a low value to avoid numerical instability.
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4 Related Work

Since the SQuAD dataset has been made public in June 2016, the research commu-
nity has produced ever more accurate models. For reference, the EM and F1 scores for
each of five of the best performing models in the SQuAD leaderboard (19) are shown in
Table 3. Note that even though some of them achieve significantly better performances
when combined with other models (ensemble), only the scores obtained with single models
are presented, so that they can be directly compared to our work.

Table 3 – EM and F1 scores for referenced papers.

Model EM (%) F1 (%)
r-net (14) 76.461 84.265

Interactive Attention over Attention Reader (AoA) (16) 75.821 83.843
Dynamic Coattention Networks (DCN) (15) 75.087 83.081

Reinforced Mnemonic Reader (17) 73.188 81.816
Bidirection Attention Flow (BiDAF) (1) 67.974 77.323

It is worth noting that all models in Table 3 are RNN-based, and hence very
similar conceptually. Our model represents a complete departure from that approach as it
replaces the recurrent processing with an attention mechanism. In the following sections,
we introduce and compare these five models against our own regarding some key design
choices. At the last section, we also present the work introduced in (2), which was the first
to propose a fully attention-based model as the one we put forward in this project.

4.1 Pre-processing

Most NLP systems process information on the word level, hence pieces of text must
be split into words before being fed to the machine learning model. That process is called
tokenization and has been a backbone of NLP since its dawn (39).

Not all models in Table 3 cite which tokenizer they employed to split the passages
and queries into words. Nevertheless, Stanford’s PTB Tokenizer (40) is probably the
most popular open source software package and has been used in (14, 15). In our model,
we gave preference to the NLTK tokenizer (41) because it is python native, and hence
straightforward to integrate into our pipeline.
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4.2 Word Embedding
All models in the SQuAD leaderboard rely on word embeddings as described in

section 3.3. However, the SQuAD dataset is relatively small, which prevents the embeddings
from being learned from scratch. Therefore, the word embeddings are initialized with
Global Vector for Word Representation (GloVe) vectors (31) and kept fixed during training,
whereas only the representations of unknown words are learned via gradient descent with
the rest of the neural network. In theory, all word embeddings could be fine-tuned
the same way, which would allow them to adapt to the specific topics of the SQuAD
dataset, but that has been found to lead to overfitting (15). In that regard, the only
difference between the models in Table 3 is the dimension of these vectors, which is
either 100 (17) or 300 (14, 1) in accordance to the available pre-trained embeddings in
https://nlp.stanford.edu/projects/glove/.

In our model, we also use pre-trained GloVe vectors and following a similar strategy,
we only train the embeddings for unknown words as described in Section 5.1.3.

4.3 Character-level Embedding
The r-net (14), Reinforced Mnemonic Reader (17) and BiDAF models (1) also

use character-level embeddings, which have been found to be robust to grammatical
and orthographic errors (42), while being more effective at representing unknown words
(33, 14).

In (14) and (17) each word is associated to a character-level embedding, which is
encoded via a bidirectional RNN applied to character embeddings similar to those used for
words. The last hidden state of that RNN is then concatenated with the word embedding
to produce the final representation of each word that is fed to the rest of the model. Note,
that in this case there are two different levels of embeddings: (i) the vectorial representation
of each character (input to the RNN) and (ii) the encoding of the set of characters of each
word (output of the RNN). Only the latter is presented to the subsequent layers of the
model, but the whole process is learned by gradient descent.

In (1) the character-level embedding is done similarly, but the encoding is performed
via a Convolutional Neural Network (CNN). The technique is inspired by (34) and consists
in applying a CNN with n filters over the set of m one-dimensional character embeddings
of each word. Naturally, this CNN extracts nm features, but a max-over-time-pooling is
used to extract only the most important features across the m embeddings, producing
a fixed-size representation of n dimensions for each word. The output of that CNN is
concatenated with the respective word embedding and processed by a two-layer Highway
Network (43) to produce the final representation of each word.

Given that one of the critical features of FABIR is the absence of sequential

https://nlp.stanford.edu/projects/glove/
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operations, we chose to create character-level embeddings using CNNs to maintain that
property. The architecture used to extract those embeddings is similar to the one proposed
in (1) and is detailed further in the following chapter.

4.4 Contextual Embedding
An effective representation of words and characters is still not enough to capture

the semantics of a piece of text. Indeed, the relationship between words in the context
of the passage needs to be accounted for as well. All five models in Table 3 tackle this
problem through bidirectional RNNs (12, 1). Differently, from a traditional unidirectional
RNN that can only relate each word to their precedents, the bidirectional RNN captures
the dependence between every word in the passage by processing each sentence in both
directions. Figure 9 depicts a bidirectional RNN similar to what is used by (14, 15, 16, 17, 1).

Figure 9 – Illustration of a bidirectional RNN with an attention mechanism, where xt is a
word in the passage, ht is a hidden state and α is the attention weight. Image Source: (12)

However, the bidirectional RNN still cannot adequately represent the relationship
between distant words. The difficulty in learning such dependencies can be measured by
the length of the paths that forward and backward signals have to traverse in the network
(20). According to Vaswani et al. (2), if n is the distance between a pair of words, in
bidirectional RNNs this path is still of length O(n), whereas in a fully attention-based
model that path is only O(1) long. That is a key difference between our model and previous
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works on the SQuAD dataset as it might translate into a more accurate representation of
long pieces of text.

In all five models cited above, questions and passages are processed individually by
the bidirectional RNNs to produce contextual representations. The relationship between
the two is only modeled in the subsequent layers through different attention mechanisms
that we present in the following section.

4.5 Attention Mechanisms
Attention mechanisms as described in 3.2 are a crucial part of state-of-the-art

question-answering and other applications of neural networks to NLP. All models in Table
3 use some attention mechanism, though with some significant differences that we outline
below.

4.5.1 Cross-attention

Cross-attention is a necessary mechanism to model the relationship between question
and passage, which is essential to produce a pertinent answer. As explained in Section
3.2.2, we divide cross-attention into two different types of mechanisms, according to the
direction in which it is applied.

passage-over-query: Roughly speaking, this type of attention attributes a score
to each word in the question, given a word from the passage. All models in Table 3
implement passage-over-query mechanisms, the main difference being that (14, 17, 1)
use additive attention, whereas (16, 15) use multiplicative attention1.

query-over-passage: This would be the opposite of the mechanism described above,
i.e., it computes a score for each word in the passage, given a word from the question.
That is the way in which query-over-passage is applied in (15, 16), but an alternative
is presented in BiDAF (1) and r-net (14). They compute an attention weight for each
word in the passage with respect to a single vector that represents the context of the
question as a whole. It is also worth noting that the query-over-passage attention
mechanism in r-net (14) uses a sigmoid function instead of softmax, which motivates
its name, “gated attention”.

In all cases, cross-attention is applied directly after encoding passage and question
in an RNN network.

In FABIR, we tested both types of cross-attention, and the results are shown in
Chapter 6. Nevertheless, it seems more natural to employ query-over-passage because
1 See Equation 3.10 in p. 43 for a discussion of different types of attention.
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the required output in SQuAD is a probability distribution over the passage, and hence,
intuitively, the attention over P would be more useful.

4.5.2 Self-attention

As described in section 3.2.1 self-attention mechanisms are essential to facilitate
the modeling of the relationship between distant words. In the related work, only (14)
and (17) use any self-attention mechanism and both apply it on the query-aware context,
which is the output of the cross-attention. That contrasts with our model in which the
self-attention is the first operation in the pipeline.

Another interesting difference is that in (17) the self-attention is represented
by a matrix where the diagonal is set to zero (zero identity), preventing a word from
being aligned with itself. Conversely, in (2) the diagonal concentrates the highest values
(high identity) relating attention to a concept of similarity: the model should associate
similar words having the identity as a reference for maximum. In FABIR, we have only
experimented with self-attention matrices as in (2) because it naturally arises from the
position encoding described in Section 5.2.

4.6 Attention Based Model - Google’s Transformer
Instead of using an RNN to describe the interaction between words in a sentence,

Google (2) suggests a different mechanism that can be implemented with feedforward
neural networks. Their method, which they call the Transformer, is based on the addition
of a unique position encoding vector in every word embedding, followed by an attention
mechanism, which is described in next Section.

4.6.1 Transformer’s Attention Mechanism

The backbone of the Transformer is its attention mechanism. It is computed as a
function of the input matrices U ∈ RUlen×dmodel , K ∈ RKlen×dmodel and V ∈ RVlen×dmodel , as
shown in (4.1). Following the nomenclature introduced in (2), we will refer to U, K and V
as queries, keys and values respectively.

att(U,K, V ) = softmax
(
UKT

)
V (4.1)

where softmax() represents the softmax operation over the rows of UKT and att(U,K, V ) ∈
RUlen×dmodel is a linear combination of V defined by softmax(UKT ). We can still add an
affine transformation in (4.1) to allow the neural network to learn higher level representa-
tions, as shown in (4.2).

att(U,K, V ) = softmax
(
UWUKK

T
)
V WV (4.2)
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where WUK ,WV ∈ Rdmodel×dmodel are weight matrices. Additionally, Google (2) suggests a
multi-head attention, in which the attention in the ith head would be computed by (4.3):

atti(U,K, V ) = softmax
(
U WU,i(K WK,i)T

)
V WV,i (4.3)

where WU,i,WK,i,WV,i ∈ Rdmodel×dhead are weight matrices.

Finally, the multi-head attention is computed by (4.4).

attMultiHead(U,K, V ) = concatenate (att1, ..., attnheads
)WO (4.4)

whereWO ∈ R(nheads∗dhead)×dmodel is a weight matrix. Considering that the product nheads∗dh
is constant, the increase of the number of heads might improve the performance of the
model at little computational cost, given that the number of operations grows at a smaller
rate (2).

4.6.2 Transformer’s Self-Attention Mechanism

Given a passage ΩP = [ωp,1, ωp,2, ..., ωp,n], where ωp,i is a vector which represents the
ith word of the sentence, the sum of P with the position encoder output E = [e1, e2, ..., en]
is described in Equation 4.5.

Pencoded = [ωp,1 + e1, ωp,2 + e2, ..., ωp,n + en] (4.5)

where ei is the ith unique vector output from the positional encoder. Subsequently, this
Pencoded goes through a self-attention mechanism, which is shown in Equation 4.6.

attself (Pencoded) = attMultiHead(Pencoded, Pencoded, Pencoded) (4.6)

where U = Q = V = Pencoded is substituted in (4.4).

This operation outputs a matrix attself(Pencoded) with the same dimensions of
Pencoded, in which the output is a function of all words in the original sentence and their
absolute positions. The influence of the absolute position is guaranteed because of the sum
of the word embedding with the positional encoder vector in (4.5).

Naturally, the self-attention mechanism can be employed on multiple layers in the
architecture, not only on the inputs Pencoded. Indeed, the architecture tested in (2) was
composed of six layers, each one of them with a self-attention operation. In that case, the
self-attention is always calculated for the output of the previous layer, Pl = attself (Pl−1).

It is important to highlight that the self-attention mechanism shows two improve-
ments against the traditional RNN approach. The first one is that all words can interact
with each other in only one iteration, while in RNNs that requires k iterations, where k
is the distance between two words. The second improvement is the possibility of parallel
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computation. While RNNs must perform n sequential steps, where n is the length of the
sentence, the self-attention mechanism performs a similar evaluation in a single step, which
may reduce processing time.

4.6.3 Transformer’s Cross-Attention Mechanism

A similar mechanism can be defined for cross-attention to compute the attention
between two different pieces of text. Given two passages P and Q, the attention from Q
to P is defined in (4.7).

attcross(P,Q) = attMultiHead(P,Q,Q) (4.7)

We refer to this attention as query-over-passage because the output of this operation
is a score for each element in P . Note that this operation is not commutative and hence
we cannot guarantee attcross(P,Q) = attcross(Q,P ).

These self and cross attentions operations are independent of the size of P and Q.
That property makes them especially attractive to real-world NLP applications, which
often involve processing inputs of different lengths.

To the best of our knowledge, these attention mechanisms for encoding sentences
have not yet been used for question-answering models, but only for Machine Translation
in (2). As this new method showed better results than traditional approaches based on
RNNs both in quality of translation and in the required processing time for training, it
motivates its use for other NLP applications, such as question-answering.



56 RELATED WORK

Table
4
–
A
rchitecture

com
parison

ofthe
different

m
odels

in
the

SQ
uA

D
leaderboard.N

Istands
for

“N
o
Inform

ation”.

C
haracteristic

/
M
odel

r-net
D
C
N

A
oA

M
nem

onic
R
eader

B
iD

A
F

FA
B
IR

T
okenizer

Stanford
PTB

Stanford
PTB

N
I

N
I

N
LT

K
Tok-

enizer
N
LT

K
Tok-

enizer
W
ord

E
m
bedding

G
love

300d
G
love

300d
N
I

G
love

100d
G
love

300d
G
love

100d
C
haracter

E
m
bedding

R
N
N
-based

N
one

N
one

R
N
N
-based

C
N
N
-based

C
N
N
-based

A
ttention

A
dditive

M
ultiplicative

M
ultiplicative

A
dditive

A
dditive

M
ultiplicative

Self-attention
H
igh

identity
N
one

N
one

Zero
identity

N
one

H
igh

identity
P
assage-over-query

Softm
ax

Softm
ax

Softm
ax

Softm
ax

Softm
ax

D
esign

Choice
context

words
context

words
context

words
context

words
context

words
at

layer
level

Q
uery-over-passage

Sigm
oid

Softm
ax

Softm
ax

N
one

Softm
ax

Softm
ax

query
context

query
words

query
words

query
context

query
words



57

5 FABIR: Fully Attention-Based Information
Retriever

This chapter introduces the Fully Attention Based Information Retriever model
(FABIR), which has been developed for the QA task proposed in (3). The breakthrough in
FABIR is that it is capable of processing sequences of variable length without resorting to
recurrent models, which currently dominate the state-of-the-art in NLP. Indeed, all models
in the SQuAD leaderboard (19) are RNN-based. That innovation represents a challenge
in itself because being a novel approach, it lacks references or previous works that could
guide our design choices.

FABIR is based on a machine translation model by Google (2). Their idea is to
replace the sequential processing of words in a piece of text by an attention mechanism
capable of representing the interdependence of all words in a matrix form. That allows
us to make predictions in a single step and increase the amount of computation that
can be parallelized both at training and testing times, which is interesting for real-world
applications.

Although machine translation and question answering are both in the NLP domain,
they are still substantially different, which prevents us from applying Google’s model
as-is. Therefore, there is a series of key design choices that need to be made to bring their
idea of a fully attention-based model to the SQuAD ranking. To do so, we follow some
heuristics and try to replicate some of the features found in state-of-the-art QA models
(14, 15, 16, 17, 1).

For a clear presentation of the architecture of our model, we divide it into four
different processes as outlined below.

1. Pre-processing: The raw query and passage texts are split into words (tokenization)
and each of them is associated with an embedding vector.

Pre_Processing : Q,P → ΩQ,ΩP (5.1)

where Q and P are respectively the query and the passage in text format. Similarly,
ΩQ ∈ RQlen×dmodel and ΩP ∈ RPlen×dmodel are the matrix representations of the query
and the passage as a series of embedding vectors. Therefore, the rows in these
matrices should represent somehow the meaning of each word in the text, as shown
in Section 3.3.

2. Position encoding: In this step the position of each word in Q and P is encoded
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in a vector of size dmodel.

Pos_Encoding : Qlen, Plen → EQ, EP (5.2)

where EQ ∈ RQlen×dmodel and EP ∈ RPlen×dmodel are the positional encoding matrices
for the query Q and passage P, respectively.

3. Processing Stage: At this stage, the position encoded embedding vectors go through
a sequence of operations, which can be any combination of the following:

– Self-attention: computes the attention between words from the same piece of
text;

– Cross-attention: computes the attention between words from two different pieces
of text;

– Feedforward: applies a feedforward neural network with a single hidden layer;

– Normalization: normalizes the values of each vector to mean zero and standard
deviation one.

Herein, we will refer to each of these operations as sublayers. The model is also
structured in layers, which are merely a combination of the sublayers defined above.
The processing stage consists of a stack of those layers and it outputs the final
high-level representations of Q and P that will be used to compute the answer in
the following stage. The whole processing stage can be summarized by its input and
output as follows:

Yproc : ΩQ + EQ, ΩP + EP → Qy1 , Py1 , Qy2 , Py2 (5.3)

where Qy1 , Qy2 ∈ RQlen×dmodel and Py1 , Py2 ∈ RPlen×dmodel are the outputs from pro-
cessing layers used to compute y1 and y2. It might also be desirable to calculate
y1 and y2 from the same high-level representations. That is a special case of (5.3),
where Py1 = Py2 and Qy1 = Qy2 .

4. Answer selection: This process uses the output from the processing layers to
compute the start and end positions of the answer in the passage, as shown in (5.4).

Y1_Selector : Qy1 , Py1 → π̂y1 (5.4a)

Y2_Selector : Qy2 , Py2 , (π̂y1)→ π̂y2 (5.4b)

where π̂y1, π̂y2 ∈ RPlen are vectors in the Plen-probability simplex, representing the
probability of each word in the passage being the start and end indices, respectively.
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Note that the use of π̂y1 to compute π̂y2 is optional, as it is only necessary when ŷ1

and ŷ2 are calculated from different layers.

Considering the outputs of the selector, a good model is supposed to output high
probabilities in y1 and y2, as given by the ground truth.

In the following sections we present the architecture of each of these stages of the model
in detail.

5.1 Pre-processing
The pre-processing was split into three steps, which are described in the next

sections.

5.1.1 Tokenization

The raw text is split into words and words into characters. That process, which
is called tokenization, is intricate and a vibrant research area in itself (39). Fortunately,
efficient open source packages are available for this task, and we opted for the nltk API
(41) because it is python native and hence, easy to integrate to the rest of the model. An
alternative to this tokenizer is the Stanford CoreNLP Natural Language Processing toolkit
(40), which has been used by other state-of-the-art models (14, 15).

5.1.2 Word-embedding

After the word tokenization, each word must be associated with a vector that
somehow represents its meaning. That mapping was performed using GloVe word-to-
vector representation “6B” (31), which was developed with Wikipedia articles. That is an
interesting feature given that the SQuAD question-answers pairs were extracted from the
same corpus.

From the 115,308 unique words that were identified by the tokenizer in the whole
SQuAD dataset, 81% had an embedding mapping into GloVe. The other 19% is composed
mostly of misspelled words, rare words, proper nouns, and numbers. To deal with these
unknown words, we created two different categories: “uncommon” and “common” words.
This classification was based exclusively on the number of times that each word appears
in the corpus. Each “common” word was associated with a different random embedding,
which can be trained by backpropagation with the rest of the model. Given that these
words appear repeated times in the corpus, the model can build a representation that
might contribute to the final prediction. Conversely, “uncommon” words data is to sparse
to allow for the training of an effective embedding and all of them were tied to the same
“UNKNOWN” vector.
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For clarity, we will refer to the word embeddings described above as ωw to distinguish
it from the character-level embeddings ωc discussed in the following section.

5.1.3 Character-embedding

Character-embedding produces a vector representation ωc for each word that is
based on its set of characters rather than the context in which it is commonly found.
That representation can be built by RNNs (14, 17), but as we want to avoid sequential
operations in FABIR, convolution (44) was the preferred method to process characters
inside a word.

Given a word with length l, one can represent it by a three dimensional tensor
C = [c1, c2, ..., cl] ∈ Rl×nchar×1, where ci ∈ Rnchar is the word’s ith character and nchar

is the character embedding size. A convolution operation is applied to C with a kernel
H ∈ RHheight×nchar×1×nchar_out , where nchar_out is called character-level embedding size and
represents the number of filters in the kernel. This convolution is described in (5.5)1.

CConv = Conv(C,H) (5.5)

where CConv ∈ Rl−Hheight+1×1×nchar_out is the output and H is a four dimensional weight
tensor to be trained.

Subsequently, CConv goes through a max pooling operator in its rows, which
produces a vector with constant size regardless of the number of characters l in each word.
That operation is often referred to as max-over-time pooling (44). The whole operation
can be generally defined as follows:

ωc = maxrow(Cconv) (5.6)

The whole pipeline described above is depicted in Figure 10, where for instance
the convolution operation is applied over the characters with four filters. Note that to
implement a convolution operation efficiently, we represented all words with the same
length l, which is achieved by adding zeros to the shorter ones (zero-padding).

After the pooling operation, a non-linearity is applied with tanh to squeeze the
results to [−1, 1]. The output is then concatenated with the word-embedding described
in the previous section and is finally passed through a Highway Network with two layers
(1, 43), as described in (5.7).

ω = Highway(Highway([ωw, tanh(ωc)])) (5.7)

where ω is the final word embedding, which will be used in the next processing steps. From
here on, the term word embedding will be used to refer to ω, which is composed by both
1 See p. 42 for the definition of the Conv(,) operator.
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Figure 10 – Schematic of max-over-time pooling operation applied over character em-
beddings of the word "Exoenzyme". To the right is matrix C with the character-level
embeddings of each word. The output of the convolution CConv is showed in the second
step with nchar_out = 4 and finally, the third stage is the result of the max-over-time
pooling. Note that in the picture, only the resulting vectors are presented and the kernel
H is omitted for clarity.

word and character-level embeddings. Note, that ω is the embedding vector of a single
word and when referring to a set of words in a question or passage, Ω will be used.

5.2 Position Encoding

Assuming that a piece of text is represented in a matrix Ω formed by word
embeddings, position encoding consists in summing a vector ei to every word ωi. The
vector ei is supposed to encode the ith of the sequence of words represented in Ω. Note
that ei has the same dimensionality of the word embedding, dmodel.

In (2) two alternatives for this encoder are presented: its values could be simply
trained from a randomly initialized embedding matrix, or they could be generated through
a deterministic combination of sines and cosines of different frequencies, which we named
trigonometric encoder.
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To study the properties of these encoders concerning the multiplicative attention,
we defined the operation in (5.8) to which we will refer as positional attention.

attposi, j = eTi ej (5.8)

We define the positional attention by the dot product because all attentions in
our model are multiplicative2. Note that (5.8) guarantees the commutative property,
independent of the choice of the positional encoder.

Property 5.1 (Commutativity) Positional attentions from the ith to the jth position
and from the jth to the ith position are equal.

atti,j = attj,i ∀i, j ∈ N (5.9)

In the following section, we are going to analyze other properties of the trigonometric
encoder (2) that were considered relevant to the performance of FABIR.

5.2.1 Trigonometric Encoder

Given an embedding vector of even size dmodel, its trigonometric position encoder
is given by:

ei =



sin(i ∗ f1)
cos(i ∗ f1)

...

sin(i ∗ fdmodel/2)
cos(i ∗ fdmodel/2)


(5.10)

where fk are scalars, which define the frequency of each sine and cosine.

In spite of its simplicity, this encoder shows some interesting properties regarding
the dot product that we discuss in this section. Although positional attention does not take
into account the specific word that occupies a given position, it hints at how the model
treats words that are nearby or far apart in a sentence, which helps us to understand the
model’s overall behavior.

The following three properties are consequences of the choice of a trigonometric
encoder.

Property 5.2 (Linear Dependence) The positional encoder vector shows the same
linear dependence on the previous encoder vector, regardless of its position i.

ei+1 = R ∗ ei ∀i ∈ N (5.11)

where R ∈ Rdmodel×dmodel is a square matrix of same dimensionality as ei.
2 See p. 43 for a discussion of the different types of attention mechanism.



5.2. Position Encoding 63

Property 5.3 (Symmetry) The attention between positions separated by the same dis-
tance is the same regardless of orientation.

atti,i+k = atti,i−k ∀i, k ∈ N (5.12)

Property 5.4 (High Identity) The attention of a position with itself is equal to dmodel/2,
which is the greatest possible value.

atti,i = dmodel/2 ≥ atti,j ∀i, j ∈ Z (5.13)

Note that all previous properties are independent of the frequencies fk, which
gives us some freedom in the design of fk. In Google’s work (2), they were defined as
a geometric progression of size dmodel/2 between frequencies 10−4 and 1 with a model
dimension dmodel = 512. As we are using a lower dimension in FABIR, we ran an analysis
to verify its effects.

Figure 11 shows attpos(1, x) for consecutive positions (1st through 400th) for two
different model dimensions dmodel, considering the same frequency interval [1e−4, 1]. The
limit of 400 was chosen, because 99.5% of our passages are shorter than that.

Figure 11 – Positional attention comparison for different model dimensions. Attention
values (y axis) were normalized to allow for a direct comparison.

While for dmodel = 512 the curve is almost monotonic with oscillations of small
amplitude, for dmodel = 100 the attention values oscillate considerably more, which might
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deteriorate the performance of the model. It is important to highlight that this is only
observed in distant positions. Indeed, the curves are almost identical for low values in the
x-axis.

Figure 12 shows the same plot, but considering a frequency interval for dmodel = 100
of [3e−3, 1e−1]. Although oscillations in further positions got considerably smaller, this
other frequency interval had a negative impact on the encoding of the position of words
nearby. For positions close to the reference word, frequencies [1e−4, 1] resulted in a steeper
curve than that observed for frequencies [3e−3, 1e−1]. This smaller variation for lower
frequencies might prevent the model from distinguishing between close words, which could
also undermine performance.

Figure 12 – Positional attention comparison for different frequency boundaries. Attention
values (y axis) were normalized to allow for a direct comparison.

5.3 Processing Stage

For a clear explanation, the processing stage is going to be split into two orga-
nizational levels. The first one is the level of sublayers, which is composed of the basic
operation blocks of self-attention, cross-attention, feedforward and normalization. The
second one is the assembly of these blocks to compose layers, which are stacked one on
top of the other to build the complete processing stage.
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Regarding the sublayers, both self and cross attention operations follow a similar
structure to that introduced in (2) and, therefore, were already covered in Section 4.6. In this
chapter, we present only our additions to this structure, namely the convolutional attention
described in Section 5.3.1. Here we also describe the feedforward and normalization
operations in Sections 5.3.2 and 5.3.3. Finally, we discuss the assembly of these sublayers
to compose a layer in Section 5.3.4 and show how these layers can be combined to build
the complete processing stage in Section 5.3.5.

5.3.1 Convolutional Attention Layers

Self and cross attentions were implemented based on Transformer’s attention
mechanism (2) (see p. 53). However, instead of computing the softmax directly over the
dot product of query U by key K, we added a convolution along the height Ulen and width
Klen of UKT . To keep dimensions constant, we treat each head as a channel and maintain
the number of filters in the convolution equal to the number of heads nheads.

The convolutional attention is described in (5.14)3, where the convolutional kernel
is H ∈ RHheight×Hwidth×nheads×nheads . The input to this convolution is zero-padded to keep
the dimensions constant, so we have UKT ∈ RUlen+Hheight−1×Klen+Hwidth−1×nheads .

(UKT )i = UWU,i(KWK,i)T (5.14a)

(UKT )i,padded = pad((UKT )i) (5.14b)

(UKT )conv = Conv((UKT ), H) (5.14c)

atthead,i = softmax((UKT )conv,i)VWV,i (5.14d)

attconv(U,K, V ) = concatenate(atthead,1, ..., atthead,nheads
)WO (5.14e)

where WU,i,WK,i,WV,i ∈ Rdmodel×dhead and WO ∈ Rdhead∗nheads×dmodel are weight matrices,
H ∈ RHheight×Hwidth×nheads×nheads is the convolution kernel, (UKT )i ∈ RUlen×Klen is the
query-key product in the ith head, (UKT )conv ∈ RUlen×Klen×nheads is the convolution output,
and (UKT )conv,i ∈ RUlen×Klen is its ith channel.

The intuition behind this convolutional attention is that the association between two
words should include their context. The attention mechanism introduced in the Transformer
(2) is one-to-one in the sense that atti,j only considers the relationship between words i
and j. We propose the addition of a convolution operation to extend this relationship to
3 See p. 42 for the definition of the Conv(,) operator.
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many-to-many and better model the context. Indeed, the span of kernel H includes words
around both i and j in the computation of atti,j.

Additionally, in the case of cross-attention, we consider two possible directions for
the softmax in (5.14d): row-wise, in which the values attributed to each word in a question
sum up to one, and column-wise in which the passage values sum up to one.

5.3.2 Feedforward

The feedforward sublayer is simply composed of a neural network with a single
hidden layer. It is applied to each vector xi and, therefore, does not take into account the
relationship between words and positions inside a set X. It is perhaps more illustrative
to say that the feedforward operation processes each word individually. Following the
architecture suggested by Google (2), the feedforward sublayer is implemented in (5.15)
with a two-layers-neural network with ReLU activation in the hidden layer.

xi,out = ReLU (xi W1 + b1)W2 + b2. (5.15)

where W1 ∈ Rdmodel×dhidden , W2 ∈ Rdhidden×dmodel , b1 ∈ R1×dhidden and b2 ∈ R1×dmodel are all
trainable parameters, and dhidden is the dimension of the hidden layer in (5.15).

5.3.3 Normalization

The main goal of layer normalization is to accelerate training as shown in (45, 46).
Like the feedforward operation, normalization is applied to a single vector xi, and hence,
it does not take into account its position or any surrounding words, as in cross or self-
attention sublayers. Layer normalization (46) was preferred over batch normalization (45)
because the former is straightforward to implement in our model, while the latter is not.
That happens because in SQuAD the input is composed of queries and passages, which
are expected to vary in length from sample to sample.

This sublayer normalizes the embedding of each word so that its variance and mean
are reduced to 1 and 0, respectively. Given a set of vectors X with embedding dimension
dmodel, we define the normalization operation as follows:

µi = 1
dmodel

dmodel∑
j=1

Xi,j (5.16a)

vari = 1
dmodel − 1

dmodel∑
j=1

(Xij − µi)2 (5.16b)

X ij =
(
gj
vari

(Xi,j − µi) + bj

)
(5.16c)

X = norm(X) (5.16d)
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where gj and bj are respectively gain and bias for each feature j that should be trained
together with the other parameters of the model.

5.3.4 Sublayers Assembly

The assembly of sublayers to compose layers is discussed in this section. The
designed layer follows the same structure found in (2), which is depicted in Figure 13 and
generally defined in (5.17). For clarity, we will refer to the operation performed by each
layer as L.

attself

Normalization

Feedforward

Normalization

attself

Normalization

attcross

Normalization

Feedforward

Normalization

Qt−1

Qt

P t−1

P t

Figure 13 – Block diagram representation of a FABIR layer LQ→P . Qt−1 and P t−1 represent
the output processed query and passage from previous processing layer t-1, respectively.

Qt, P t = LQ→P
(
Qt−1, P t−1

)
(5.17)

Notice that the processing of query Qt−1 is independent of the passage P t−1 and hence we
denominate the corresponding layer a query-over-passage attention layer, which will be
represented by the symbol LQ→P . A layer with the same structure, but with attention in
the opposite sense will be referred to as a passage-over-query attention layer, which can
be defined by simply interchanging the query and passages inputs. Likewise, the latter is
represented by the symbol LQ←P .

5.3.5 Layers Assembly

Finally, layers LQ→P and LQ←P can be assembled in order to compose the complete
processing stage. Two architectures were considered and they are shown in Figure 14 for a
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three layers configuration. The former model is based on (2) and was named “Repeated
Layers”, because it applies the same layer repeatedly. The latter is called “Switching
Layers” model, because while odd layers are LQ→P , even layers are LQ←P . Note that the
first layer is numbered one and therefore is odd. “Switching Layers” model was designed
based on the fact that state-of-the-art models in SQuAD used attention from passage over
question, in addition to attention from question over passage (1, 16, 15).

b) Switching Layers LQ→P LQ←P LQ→P

[
Q0, P 0] [Q1, P 1] [Q2, P 2] [Q3, P 3]

a) Repeated Layers LQ→P LQ→P LQ→P

[
Q0, P 0] [Q1, P 1] [Q2, P 2] [Q3, P 3]

Figure 14 – Block diagram representation of “Repeated Layers” and “Switching Layers”
models in a three layers configuration. Qt and P t represent the output query and passage
from the tth layer.

In Figure 14, Qt and P t are the outputs of the tth layer. Q0 and P 0 are the sum of
the embeddings Q and P with their respective positional encoders eQ and eP .

5.4 Layer Reduction
This section describes the method that was used in the present work to reduce

the embedding size dimension from dinput to dmodel. The former is the dimension of the
full word embedding ω generated by the concatenation of a GloVe vector (31) and a
character-level embedding 4. The latter is the reduced dimension that will be used in
subsequent layers to process the passage P and the question Q.

In theory, nothing prevents both sizes from being equal, and it would be simpler
to feed the inputs directly to the rest of the model. Nevertheless, for inputs with high
dimensionality, an equally large processing layer size might not be beneficial for the model
as a whole. Increasing the model only to fit the input size might not only be a waste of
computational power and memory, but it might also complicate training, as larger models
are expected to facilitate overfitting. Therefore, the introduction of a layer capable of
reducing the embedding size from dinput to dmodel has proved useful in developing our
question-answering model.

A straightforward method to reduce the input embedding size is to multiply it by
a matrix with the required dimensions, as shown in (5.18).

ωmodel = WReductionωinput (5.18)
4 See Equation (5.7) in p. 60 for details in the processing of embeddings with Highway Networks.
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where ωmodel ∈ R1×dmodel , ωinput ∈ R1×dinput are the embedding vectors, and WReduction ∈
Rdmodel×dinput is a weight matrix, to which we will refer to as “Reduction Matrix” from now
on.

Although matrix reduction is quite simple, it discards information before any
processing, and hence, it might prevent the network from using some relevant data,
which might limit the performance of the model. To incorporate that information before
discarding it, we could add a large processing layer followed by a matrix reduction, but our
experiments have shown that this approach does not yield positive results for our model.
Our interpretation of that behavior is that the position encoding is somehow dissolved in
the matrix reduction process. That would happen because the reduced encoder may not
maintain the properties that were described in section 5.2, such as linear dependence and
symmetry.

A possible solution is to apply the reduction to the embeddings only and to use an
encoding of size dmodel. Therefore, we suggest a decoupled attention, which is described
in Figure 15. There, the self-attention is applied to embedding and encoding separately,
but both are computed with the full embedding Ω ∈ RΩlen×dinput . Note that the defined
attention allows us to use V with a different embedding size than U and K 5.

+
Position
Encoder
dinput

attconv

+

Normalization

attconv

+

Normalization

Position
Encoder
dmodel

Ω

Ω′

VU K U K V

E

Shared WU
and WK

Decoupled
Attention

Figure 15 – Decoupled Attention. In contrast to previous attention mechanisms, this
structure computes the embedding matrix Ω′ ∈ RΩlen×dinput and the encoder matrix
E ∈ RΩlen×dmodel separately.

After applying Decoupled Attention, we add a full processing layer for the embedding
Ω′ with size dinput, which implements cross attention and feedforward. That is equivalent to
a regular LQ→P layer, though in this case the encoding E is left untouched. Note that the
5 See p. 65 for a discussion of attention mechanisms.
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cross attention will not use position encoders, but only the processed embedding Ω′, which
is the output from the Decoupled Attention sublayer. That is not expected to deteriorate
the results because positions in the question Q and the passage P are not correlated.
Finally, a Matrix Reduction is used to reduce the processed Ω′ size and add the encoder
matrix E. Figure 16 describes this whole process, which was named Layer Reduction.

Decoupled
Attention

Feedforward

+

Normalization

Decoupled
Attention

attcross

+

Normalization

Feedforward

+

Normalization

Matrix
Reduction

+

Matrix
Reduction

+

ΩQ

Ω′Q
EQ

Q0

ΩP

Ω′P
EP

P 0

Figure 16 – Reduction Layer. This layer has inputs ΩQ and ΩP with embedding size dinput
and it outputs Q0 and P 0 with embedding dimension dmodel. Both Q0 and P0 are used as
inputs for the subsequent processing layers.

5.5 Answer Selection
Answer selection uses the output of the layers in the processing stage to compute

the start and end indices ŷ1 and ŷ2 of the answer. For this, two decisions must be taken:

– Selection Layers: In order to compute both ŷ1 and ŷ2, a layer output must be chosen,
which might be different for each of them. For instance, one possible configuration is
to calculate ŷ1 using Q2 and P 2, and compute ŷ2 with Q3 and P 3. That means that
y1 and y2 are selected using the second and third layers outputs, respectively.

– Selection Functions: The function that is going to be applied over the selection
layer to compute ŷ1 and ŷ2 also must be chosen. It is important to highlight that they
might be different, but for the sake of simplicity they are considered to be the same
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in our analysis. The selection functions considered in this project are detailed in the
next sections. Additionally, the presented functions compute π̂y1 and π̂y2 , which are
a Plen-probability simplex and represent the probability of each word to be the start
and end index, respectively. Finally, the predicted ŷ1 and ŷ2 must be computed as
function of π̂y1 and π̂y2 by the Indices Selector, which is described in Section 5.5.3.

5.5.1 Linear

This selector was chosen based on (2) and can be considered the simplest alternative
because it applies a softmax directly over the last layer P t, as shown (5.19). It is also the
least computationally expensive selector and hence, might be especially interesting for
applications with limited processing power.

π̂y = softmax(P t v) (5.19)

where π̂y ∈ RPlen is the discrete probability distribution over all indices and v ∈ Rdmodel×1

is a weight vector that must be trained.

5.5.2 n-layer Convolution

This function applies a sequence of n convolutions in the last layer output P t. To
compute the probability distribution π̂y, the last convolution output must be a single row
of Plen, in which softmax can be applied. This selector is described in (5.20)6.

π̂y = softmax(Conv(Conv(...Conv(P t, H1)..., Hn−1), Hn) (5.20)

where Hi ∈ R1×Hwidth,i×dfilter,i−1×dfilter,i are the kernels that are going to be trained, and
dfilter,0 and dfilter,n are defined as dmodel and 1, respectively.

In comparison to the linear selector, this method takes into account words that are
close to each other and hence it is expected to improve inference. That, of course, has the
drawback of a larger processing cost and longer training times. The window size of words
that are considered in the computation of π̂yi is shown in (5.21).

WindowSize =
n∑
i=1

Hwidth,i − 1 (5.21)

where Hwidth,i is the kernel size of the ith convolution. Note that this selector with a single
convolution with kernel size 1 is identical to Linear Selector.

6 See p. 42 for the definition of the Conv(,) operator.
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5.5.3 Indices Selector

This functions outputs ŷ1 and ŷ2 as function of π̂y1 and π̂y2 , which were computed
in previous Sections. The indices are chosen following optimization in (5.22)

maximize
i,j

π̂y1
i ∗ π̂

y2
j

subject to i ≤ j < i+ lanswer,max

(5.22)

where lanswer,max represents the maximum allowed answer length. This superior limit is
imposed, in order to avoid long answers, since short answers are more frequent.

5.6 Training

5.6.1 Loss Function

A differentiable loss function must be defined, in order to use one of the gradient
descent based algorithms for optimizing the model parameters. Following the state-of-the-
art trend (1, 14, 15, 16), we have chosen the negative log likelihood function, which is
shown in (5.23).

J = −
Plen−1∑
i=0

(πy1
i log(π̂y1

i ) + πy2
i log(π̂y2

i )) (5.23)

where πy1
i and πy2

i represent the probability of the ith index to be the start and the end
indices of the answer, respectively. Usually, if there is only one possible answer, πy1

i is set to
1, if i = y1 and 0 otherwise. An alternative is to use label smoothing, in which πy1

y1 = 1− δ
and the δ probability is somehow distributed in the other indices. Label smoothing is
essentially a regularization technique that has been found to help to avoid overfitting (47).

5.6.2 Optimizer

The Adam optimizer7 (38) was the one that produced the best results. The hyper-
parameters for this optimizer were set in accordance to the suggestions made by (2) with
β1 = 0.9 and β2 = 0.98. Also, the learning rate was set to produce a set of initial warm-up
steps during which its value increases in contrast to the typical annealing rates.

learning_rate = d−0.5
modelmin(t−0.5, t warmup_steps−1.5) (5.24)

where t is the current step and warmup_steps is the number of steps during which the
learning rate is increased. In our model, warmup_steps was set to 4000.

7 See p. 46 for a discussion of different gradient descent algorithms.
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5.6.3 Initialization Techniques

Deep learning models are sensitive to the initial values of their set of weights. In
fact, inadequate initialization methods were one of the hindrances to the effective training
of neural network-based models for many decades (8). The solution commonly called
Xavier initialization consists in maintaining the same variance in every layer so that the
information flow can be efficiently propagated (48). It can be shown that this property
can be achieved for the initial steps if the weights of each layer are initialized with the
following variance.

V ar[W i] = 2
ni + ni+1

(5.25)

where ni and ni+1 are the dimensions of the input and output of layer W i. That method
was used in all weights in the model, except in the initialization of trainable word and
character embeddings. In that case, the embedding matrix is too large and applying the
Xavier initialization would result in a very low variance. Therefore, we opted to keep a
constant variance of one in the embeddings, an approach that was also adopted in (1).

5.6.4 Regularization Techniques

Regularization techniques are useful to avoid overfitting. For this purpose, we used
Dropout (49), which randomly substitutes values in different parts of the model by zeros
during training. In FABIR, we used five different dropouts, which are listed below.

• Input Dropout (2): It is applied once to every word embedding Ω and encoder
position vectors E before the first layer L.

• Char-embedding Dropout: This dropout is applied to every character embedding,
before the convolution. Note that after the concatenation of ωc with ωw, the input
dropout is applied once more.

• Sublayer Dropout (2): It is applied directly after every feedforward, self-attention
and cross-attention sublayers. Note that this dropout is applied before summing the
output of the sublayer with its input, and hence, before the normalization sublayers.
Note also that this dropout is not applied after normalization sublayers.

• Attention Dropout (2): In addition to the sublayer dropout, another dropout was
added in attention sublayers directly after the computation of softmax(UKT ) in
every head.

• Selector Dropout: It is applied in the input of every selector layers.

In addition to these dropouts, we defined a Dropout Amplification β for the
Reduction Layer, which increases the dropout in this layer according to the values defined
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for the other layers. This amplification was motivated by the fact that the reduction
layer is larger than processing layers. The computation of the equivalent dropouts in the
Reduction Layer is described in (5.26).

DropoutReductionLayer = DropoutβProcessingLayer (5.26)
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6 Model Validation

In this chapter, we present the experimental procedures used to validate our
model. FABIR was developed using the Tensorflow python API (18) and the code can
be found at https://github.com/AlCorreia/FAB for replicability. The code was tested
with Tensorflow 1.3 and might not run on previous versions. We run all experiments on a
single GPU NVidia Titan X with 12GB of RAM.

In the following sections, we first discuss how the data in SQuAD was used to
test and validate FABIR. Then, we discuss the different FABIR structures that were
presented in chapter 5 and evaluate their influence in light of a series of experimental
results. Finally, we compare FABIR against a state-of-the-art RNN-based model (1) to
assess the advantages and disadvantages of this novel mechanism against RNN models.

6.1 Data splits
Before running the tests, we split the SQuAD dataset into training (80%), develop-

ment (10%) and test (10%) sets, which are described below. That is a standard procedure
in the machine learning literature that helps to validate the model.

Training dataset: This dataset is used exclusively to optimize the parameters of
the model, θ.

Development dataset: This dataset is also used during training, but only to check
the generalization capability of the model and not to update θ, as done with the
training set. EM and F1 scores in this dataset are monitored to avoid overfitting,
i.e., to avoid having a model that can answer correctly only questions on which it
has been trained.

Test dataset: This is the dataset used for testing the final model after the complete
optimization of its parameters. The leaderboard scores in SQuAD are computed
using this dataset, which was not made public to avoid frauds. Therefore, in order
to use it, the QA model must be submitted to the SQuAD team that runs the tests
and computes the scores in this dataset.

6.2 Batch Generation
The SQuAD dataset is composed of question-answer pairs of different lengths, but

to keep the code efficient, we constrain all matrices in the model to have the same length

https://github.com/AlCorreia/FAB
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for a single batch. That is achieved by padding the shortest sentences with zeros so that
all examples in a batch appear equally protracted to the model. However, in that case, the
computational cost of running a batch is always determined by the longest sentence.

Therefore, to speed up training, we divided the question-answer pairs by length so
that only examples of similar size are run together in a batch. That reduces processing
costs as the operations can be applied on considerably smaller matrices. More specifically,
all examples were classified into 30 different groups according to their length and batches
were composed of randomly selected examples within a same group, which was also chosen
at random. That technique did not have any impact on the model’s overall performance
regarding EM and F1, but it did reduce training times by more than 2.5 times.

6.3 FABIR - Model Description

After running multiple tests to fine tune the hyperparameters, we arrived at our best
performing model, which achieved scores of 77.6% and 67.6% in F1 and EM, respectively.
This best model is the one to which we refer as FABIR herein. Its overall structure has
already been introduced in Chapter 5, but its hyperparameters were defined as variables
to favor a more general discussion of the properties of the model. In Table 5, we define
the exact values of each of these hyperparameters that were used to achieve our best
performance.

6.4 FABIR Structures Validation

The relevance of each structure in FABIR was estimated by first building and
training variants of FABIR in a standardized way and subsequently, by evaluating their
EM and F1 scores in the development dataset. That is important to validate our design
choices and weigh the gains in performance against the computational cost contributed
by each part of the model. For the sake of simplicity, we are going to use the model in
Table 5 as a reference and only change it part by part to check its effects. We are not
going to change more than one structural part at a time because the number of possible
combinations would rise quickly.

Table 6 describes all the tests that were run to assess the relevance and the effects
of some of the parameters defined in Table 5. The variants are compared concerning their
performance scores (EM and F1) and their training time, which is shown as TT. All models
were trained for 18 epochs with a batch size of 75 samples in an NVidia Titan X after
being initialized without pre-trained variables, i.e., all variables were randomly initialized.

Note that we achieved our best scores in 54 epochs, though we did not present the
following analysis with that number of epochs because it would take too long to train each
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Table 5 – FABIR Model Description.

Stage Features Description

Pre-Process
Tokenizer nltk

Word-Embedding Glove 6B 100

Char-embedding

Convolution with max pooling
Char embedding size: 8
Convolution output size: 100
Number of highway layers: 2

Position Encoding Type Trigonometric
Frequencies Geometric progression from 0.001

to 1.0.

Process

Embedding Reduction Layer Reduction from layer size
200 to 100

Number of Layers Reduction Layer + 3
Layer Size 100
Layer Type Repeated Layers

Number of Heads 4
Feed forward Hidden Size 200
Cross-attention direction Column-wise (passage direction)
Attention Convolution 1 × 5

Selector
Structure Convolution

Number of Conv. Layers: 2
Kernel Size: 9
Hidden Layer Size: 32

Max. Answer Length 15

Train Algorithm Adam: β1 = 0.9, β2 = 0.98
Learning Rate: 0.5
Warmup Steps: 4000

Dropout

Input: 0.9
Sublayers: 0.9
Attention: 0.9
Selector: 0.8
Char embedding: 0.75
Layer Red. Amplification: 2.0

FABIR variant. However, we expect the variations shown in Table 6 to remain roughly the
same for longer runs because, after 18 epochs, the model is almost fully trained and only
marginal gains are observed. It is also worth noting that these experiments were run only
once and given the stochastic nature of the gradient descent algorithms used to optimize
the models, these values can vary by small percentages from run to run. In the following
sections, we will discuss each one of the design choices and evaluate their contribution in
light of the tests reported in Table 6.
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Table 6 – Experiments description. TT stands for Training Time.

Exp. Name Description F1 (%) EM (%) TT
FABIR No changes in Table 5. 75.6 65.1 2h14m
No Char Embed-
ding

Model without char embedding. 72.9 62.0 1h48m

Matrix Reduc-
tion

Instead of layer reduction, matrix
reduction was used to reduce layer
dimension.

73.5 62.6 1h59m

Swiching Layer A Reduction Layer followed by 3
Switching Layers

74.7 64.1 2h11

2 Layers 2 layers LQ→X , in order to check
if there are more layers than nec-
essary.

75.0 64.1 1h55m

4 layers 4 layers LQ→X , in order to to check
if more layers would increase per-
formance.

75.5 64.7 2h47m

2 Heads Atten-
tion

Number of heads is equal to 2. 73.8 63.2 2h12m

No Convolu-
tional Attention

Model without convolution in at-
tention, in order to check its rele-
vance in the final performance.

73.2 62.6 1h49m

Row-wise soft-
max in cross
attention

The direction of the softmax in
cross-attention layer is applied in
the row-wise direction instead of
column-wise.

73.6 63.2 2h08m

Selector in differ-
ent layers

Selector is applied in penultimate
and last layers for y1 and y2, re-
spectively.

74.3 63.7 2h09m

Selector with
Kernel Size 1

The kernel size of the convolutions
in selectors are reduced to one.

72.8 62.5 2h12m

Linear Selector The selector is substituted by a
simply linear selector.

74.0 62.8 2h10m

6.4.1 Char Embedding

Experiment “No Char Embedding” in Table 6 shows that character embedding
was useful to deal with out-of-vocabulary words. Additionally, since our word embedding,
GloVe 6B-100 (31), does not take into account capital letters, character embedding is
also expected to attach such information to the final word representation, which helps to
explain the improvement of almost 3% in the F1 score.

Nevertheless, that gain in performance comes at a high computational cost. The
addition of character embeddings resulted in an increase of almost 25% in training time
over the model with GloVe embeddings only.
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6.4.2 Layer Reduction

In the experiment “Matrix Reduction”, it is noticeable that “Layer Reduction”
outperformed “Matrix Reduction” by more than 2% in both F1 and EM scores. As described
in Section 5.4, that difference could be explained by the early discard of information when
matrix reduction is applied. It is important to highlight that in the “Matrix Reduction”
experiment, a standard layer LQ→P was added in place of the reduction layer, to have a
fair comparison with the model described in Table 5 regarding the number of parameters.

6.4.3 Layer Type

The use of “Switching Layers” has shown a similar performance to “Repeated Layers”
with a difference of less than 1% in the F1 score. Due to the simplicity of “Repeated
Layers” and its slightly better performance, we kept it in the final FABIR model.

6.4.4 Number of Layers

Experiments “2 Layers” and “4 Layers” have shown that the most appropriate
number of layers is three. The update from two to three layers seems to improve performance,
as the EM score increased by 1%. Regarding the possibility of having more than three
layers, it seems to increase training time and not add significant improvements, as the
computed F1 changed only 0.1%.

6.4.5 Number of Heads

As suggested in (2), the multi-head attention has proven to be a cost-free option to
improve model performance. The reduction of the number of heads decreased the F1 score
by almost 2%, while the computation time remained virtually unchanged. It is important
to highlight that, although the number of operations does not change significantly, we
have observed that the amount of required RAM increases considerably with the number
of heads.

6.4.6 Convolutional Attention

Experiment “No Convolutional Attention” has shown that the convolutional at-
tention is computationally expensive, as it increases the training time by around 25min,
which is comparable to the addition of another layer. Nonetheless, it improved F1 and EM
scores by more than 2%, which speaks to its importance in the FABIR model. Due to the
high computational cost, we think that alternatives that reduce the number of operations,
such as depth-wise convolution (50), might offer considerable speed gains.
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6.4.7 Softmax Direction in Cross Attention

Experiment “Row-wise softmax in cross attention” indicates that the column-wise
direction is the most appropriate for the softmax in cross attention, as it improved by
almost 2% both EM and F1. That goes against the implementation in Vaswani et al. (2),
which applied it row-wisely in a machine translation task. This result could be explained by
trying to understand why the row-wise softmax showed a weaker performance. In practice,
this approach would compute a weighted average of the question words for every passage
word, independently of other passage words. It thus treats every passage word similarly
and, although each one of them is given a different score, they are all associated with a
weighted sum of the question embeddings. Hence, this method fails to model all possible
relationships between the two pieces of texts, e.g., it seems reasonable that not every
word in the passage is related to the question. In contrast, when applied column-wise, the
softmax would attribute greater weights to passage words that are more closely related to
the respective question word, which seems appropriate for the SQuAD task, in which not
all words in a passage are expected to be connected to the words in the question.

From the machine translation point-of-view, the row-wise approach could be ex-
plained by the fact that every word in the translated text is expected to be somehow
represented by a weighted average of words in the original text.

6.4.8 Answer Selector

Experiments “Selector with Kernel Size 1” and “Linear Selector” were run to study
the effect of the Answer Selector kernel size. Both selectors were worse than the convolution
used in the original FABIR. That suggests that, despite the theoretical capabilities of
self-attention mechanisms, convolutions are beneficial to model the relationship between
nearby words in a sentence.

Experiment “Selector in different layers” was run to check the effects of adding a
selector of y1 and y2 in different layers, in contrast to what is done in FABIR, where both
indices are computed from the last layer. The intuition behind that change is that the
information about the selected y1 could be used by an extra layer to produce a better
estimate of y2. Relying on that idea, some of the state-of-the-art models discussed here do
calculate y1 and y2 at different layers (1, 14). However, the experiments have shown that
this approach is counterproductive in FABIR and computing both indices directly from
the last layer, resulted in an F1 score 1% higher.

6.5 FABIR vs BiDAF
As stated in chapter 4, to the best of our knowledge, all models in the SQuAD

ranking are RNN-based and, therefore, their processing speed is constrained by a large
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number of sequential operations. Because FABIR relies on a different type of neural
network, we write this section to compare both architectures: fully attention-based and
RNN-based.

To have a comprehensive comparison, we took a state-of-the-art model (1) developed
in Tensorflow that had its code openly available in the web1. That way, we could run our
experiments with both models in the same piece of hardware to have a fair comparison
between them. Table 7 shows some preliminary results.

Table 7 – Comparison between FABIR and BiDAF (1) models. The BiDAF scores without
parenthesis were achieved after training their model in 18,000 iterations of batch size 60
in our hardware. The values under parenthesis are their official scores in SQuAD ranking
(19).

FABIR BiDAF
F1 (%) 77.6 77.0 (77.3)
EM (%) 67.6 67.3 (68.0)
Training Time 6h30m - 54 epochs 6h30m - 12 Epochs
Training Time/Epoch 7m15s 37m30s
# of Training Variables 1,385,198 2,695,851
Inference Time (full dev) 24s 135s

6.5.1 Training Time and Performance Score (EM and F1)

Regarding EM and F1 scores, FABIR and BiDAF showed similar performances.
While BiDAF is slightly better in EM, FABIR marginally outperformed it concerning the
F1 score. Although both models required similar training times to reach these scores, the
time for training one epoch in FABIR is more than five times shorter, which could be useful
for training this model in a larger dataset. It is hard to point out why FABIR needs many
more epochs to achieve that score, but it is possible that a better set of hyperparameters
or a different optimizer could speed up the learning process. Indeed, FABIR reaches an F1
score of 76% in the first 20 epochs and then takes other 30 to improve less than 2%, which
indicates that the learning curve can be worked on.

6.5.2 Inference Time

With respect to inference time, FABIR was more than five times faster in processing
the 10,570 question-passage pairs in the Development data set. This faster inference together
with the similar F1 and EM scores gives room for using FABIR in large-scale applications,
such as information extraction in large corpora. Indeed, when running applications such as
search tools or user interfaces, the inference time is critical to tackling real-world problems.
1 The code for the BiDAF model (1) is available at https://github.com/allenai/bi-att-flow

https://github.com/allenai/bi-att-flow
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6.5.3 Number of Parameters

Concerning the number of training variables, FABIR has almost 50% less parameters
than BiDAF, which incurs three major advantages:

Training time: A large part of the training time is consumed by the updates of
each parameter via gradient descent. Hence, for a model with half the number of
parameters, the time required for each step is expected to be lower, which was indeed
observed as FABIR was four times faster than BiDAF in that respect.

Memory requirements: A model with fewer parameters requires less memory to
be stored or transferred across platforms. It is interesting to applications that dispose
of low computational power.

Generalization: It is a well-known fact that larger models are more likely to overfit,
an observation which is often associated with the Occam’s razor principle. Even
though that is only an empirical observation, all things being equal, a model with
fewer parameters is more likely to produce positive results on new data.

6.5.4 Question-Type Analysis

Figure 17 shows the F1 scores for BiDAF and FABIR concerning different perfor-
mance measures when varying the characteristics of the question-passage pairs. Plot a)
shows that shorter answers are easier for both models: while they reach more than 75% in
the F1 score for answers that are shorter than four words, for answers longer than ten
words, that score drops to 60.4% and 67.3% for FABIR and BiDAF, respectively. That
could be explained not only by the higher complexity associated with longer answers but
also by the fact that more than 79% of the question-passage pairs in SQuAD have answers
that are shorter than five words. They are less exposed to questions that require long
responses and hence, are not effectively trained to provide long answers.

Plot b) shows that question length seems not to be relevant in the performance of
both models. The F1 scores for both models varied by less than 2.5% in the considered
question length intervals.

Plot c) shows that both models depend strongly on the question type. Both had
their best performance with “when” questions, which could be explained by the higher
predictability of possible answers. They are usually composed of time-related words, such
as months, years, seasons or weekdays, which are easier to distinguish from the rest of
the text. Together with “when” questions, “how long” and “how many” also proved easier
to respond, as they possess the same property of having a smaller universe of possible
answers. In contrast to these, “how” and “why” questions resulted in considerably lower
F1 and EM scores, as they can be answered by any sentence and hence, require a deeper
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understanding of the text. Note that “how” questions do not include “how many”, “how
much” or “how long” questions, which have more predictable answers.

“Other” questions include alternatives, such as “Name a type of...” or “Does it...” or
even typos like “Hoe was ...”. The first type is complicated to add in datasets like SQuAD
because it might have multiple correct answers and require higher levels of abstraction. For
instance, to respond to a question such as “Name an ingredient...”, the model would need
a deep understanding of the semantics of the word “ingredients” to identify “tomatoes” or
“cheese” as possible answers. The second kind of “Other” question usually expects a “yes”
or a “no” as an answer, but in SQuAD this is not possible because the answer must be a
snippet from the passage. Hence, the model is supposed to provide the same or a similar
sentence in the passage as an answer. It could be something in the lines of “Does Ronaldo
play football?”, which could be answered by a snippet like “Ronaldo plays football...”.
Finally, the third type of “Other” question originates from misspellings. In the example
above, the letter “w” was replaced by an “e”. There are other types of “Other” questions,
but we do not list them here for they do not reveal any other interesting characteristics of
the models.

Plot d) shows the performance of FABIR and BiDAF against the passage length.
It is curious that shorter passages showed the worst performance for both models. It is
hard to interpret that result as intuitively, we would expect brief passages to be easier
to interpret. One possibility is that questions related to short paragraphs can be more
complicated because the creators of the dataset had fewer options of simple questions,
such as “when”, “who”, or “how many” and had to resort to more elaborate alternatives.
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7 Final Considerations

7.1 Conclusion
Considering the final results and the properties of FABIR, we can assert that

our model satisfied all the requirements outlined in Chapter 2. In particular, the most
challenging of those, which defined the threshold for an acceptable F1-score (HLR 1.8),
was achieved with success. The F1 and EM scores of 77.6% and 67.6%, respectively, place
FABIR among other state-of-the-art models in the SQuAD leaderboard.

That is a very positive result, given that a fully attention-based model has some
significant advantages over the more traditional RNNs. Indeed, FABIR has achieved similar
performances while requiring fewer sequential operations, having fewer parameters and
being faster both at training and testing times. Those characteristics certainly make
FABIR an appealing alternative to real-world applications, which often dispose of limited
computational power and are under tight time constraints to achieve the desired user
experience. Moreover, in extending the Transformer (2) to QA systems, we have made
some pivotal changes in the design of the architecture of fully attention-based models that
can be considered valuable contributions to the fields of deep learning and NLP.

7.2 Future Work
Fully attention-based models are relatively new, and hence still constitutes a vast

territory for further research. To that extent, we see three main areas where FABIR could
be extended to achieve better performances or tackle other tasks.

7.2.1 New Attention Mechanisms

The performance achieved in the SQuAD dataset was primarily due to the intro-
duction of new attention mechanisms, such as the convolutional-attention, and we believe
that there is still plenty of room to explore new types of such mechanisms.

7.2.2 New QA datasets

Question-answering is a vibrant research domain, and new open-domain data
sets are being developed. Given that state-of-the-art models are getting closer to human
performance in the SQuAD, the research community is moving to more complex and
challenging data sets. TriviaQA (51) is one those that has drawn some attention. It also
assumes that the answer is contained in the passage, but it was designed to require
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reasoning over multiple sentences to infer the answer, which increases the complexity of
the problem considerably. We would like to test our model in this new dataset to evaluate
its performance one more challenging question-answer pairs.

7.2.3 Memory

Even though the performance levels are already impressive, FABIR is still a pattern
recognition model with limited memory capabilities. That hinders practical applications
of the model in two different ways. First, the model cannot model complex relationships
between words that are not explicitly mentioned in the text. Even though word embeddings
are capable of modeling semantic relationships to some extent, they are still limited. For
instance, it might fail when questions bear on common sense knowledge, such as whether
a tortoise could outrun a hare in a race. Second, FABIR cannot represent changes of state
and would not be able to understand a narrative. Therefore, questions about a sequence
of events or current status would be hard to answer.

Solving these two issues would likely require two different mechanisms. On the
one hand, complex relationships would probably need large knowledge databases, such as
NELL (52), and some logic reasoning (53). On the other hand, modeling changes of state
would only be possible via some memory which the model could write and read during
learning and inference times. The development of such models is still an open question, but
some promising results have been shown in (54). That said, addressing these shortcomings
of FABIR would surely extend its capabilities way beyond the SQuAD dataset and its
closed format questions. Despite involving challenge research questions, we would like to
explore extensions to FABIR within those lines.
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A Evaluation Metrics

Many scores can be used to evaluate the performance of the model. Before going
into the details of each type of score, we are going to present some important basic concepts.
Given a sample, in which examples can be either “Positive” (P) or “Negative” (N), there
are four alternatives for a prediction concerning that property, as shown in Table 8.

Table 8 – Classification possibilities for a single property.

Property Value
N P

Classification N True Negative (TN) False Negative (FN)
Value P False Positive (FP) True Positive (TP)

If the property was correctly predicted by the model, it could be either a true
positive or a true negative. In contrast, if it was wrongly classified it could be a false
negative or a false positive. The perfect algorithm would correctly predict every sample
and therefore would make neither false negatives nor false positives.

In SQuAD, true positives and false positives are the characters predicted to be
in the answer of the query. In order to improve an algorithm, the false positives should
be instead classified as negative and therefore as not being part of the answer. A similar
scenario occurs for true negatives and false negatives: the latter should be predicted as
positive to improve the performance of the algorithm.

A.1 Precision

Precision is the ratio between the number of samples predicted as true positive
divided by the number of total samples classified as positive, as shown in Equation A.1.

Pr = TP

TP + FP
(A.1)

Given a query and passage in SQuAD, this score would not take into account parts
of the answer that were considered false negative. Therefore, an algorithm that does not
select a character would get the same score as another algorithm that selects the right
answer.
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A.2 Recall
Recall is the number of true positives divided by the total of positives samples, as

shown in Equation A.2.
Re = TP

TP + FN
(A.2)

In contrast to the precision score, it takes into account the number of false negatives,
but not the false positives. Therefore, it would get the same score if the algorithm selects
the complete passage or the right answer.

A.3 F1
F1-score is the harmonic mean between precision and recall, as shown in Equation

A.3.
F1 = 2

1
Pr

+ 1
Re

= 2 Pr Re

Pr +Re
(A.3)

As explained in Sections A.1 and A.2, precision and recall are not adequate for the
SQuAD question-answering task because a simple algorithm which returns zero characters
or the complete passage would achieve good performances. In contrast, F1-score is stricter
and more closely related to desirable answers. Hence, it was chosen to measure the
performance of the models in the SQuAD ranking.

A.4 Exact Match
Exact Match (EM) is the strictest among the presented scores in this section. It

is 1 if and only if the number of false negatives and positives are both zero and it is 0
otherwise.

EM =

if (FP == 0 and FN == 0) 1

else 0
(A.4)
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