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RESUMO 

FEITOSA, L.F.R. Determinação de um Polinômio para Representação das Perdas Magnéticas 

em Aços Elétricos de Grão Não-Orientado Caracterizados em Várias Frequências no Ensaio 

do Quadro de Epstein   2023.  Monografia (Trabalho de Conclusão de Curso) – Escola de 

Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2023. 

 

Materiais ferromagnéticos, com o passar dos anos, se tornaram um dos produtos mais 

importantes para o avanço tecnológico. No setor residencial, esses materiais são encontrados 

em pacotes de motores elétricos usados nos diversos aparelhos, como compressores e 

ventiladores. Já no setor industrial, motores de máquinas elétricas e geradores são aplicações 

que contêm no seu núcleo este material em específico. Com a evolução da eletrônica de 

potência, os motores têm sido atualizados para uso de ímãs permanentes e acionamento com 

velocidade variável. Isso resulta na alimentação dos motores em diversas frequências elétricas. 

Com isso, os projetos de motores elétricos buscam o uso de ferramentas computacionais para 

explorar o ponto ótimo da relação entre eficiências e custo do produto, desejando uma maior 

proximidade com os resultados práticos. A caracterização das propriedades magnéticas (perdas 

e curva BxH) dos aços elétricos é um fator essencial para melhorar a precisão dessas 

simulações, e ela é feita, na maior parte das empresas, pelo ensaio do quadro de Epstein. 

Geralmente, o levantamento das perdas magnéticas do aço elétrico é feito nas frequências de 

50 e 60 Hz, e isso faz com que os resultados obtidos não demonstrem com precisão as perdas 

em frequências diferentes de excitação. Este trabalho tem como objetivo fazer a caracterização 

dos aços elétricos com diversas frequências de alimentação pelo ensaio de Epstein e determinar 

um polinômio que represente a curva de perdas magnéticas em função da indução magnética 

(B) e frequência elétrica, para melhorar a aproximação das perdas magnéticas de um motor de 

velocidade variável previamente simulado. Por meio da análise do quadro de Epstein e do 

estudo prévio das equações que definem as perdas no aço, utilizando também o método dos 

mínimos quadrados como ferramenta, foi possível aproximar o valor de três diferentes aços 

para fins elétricos, por meio de diferentes polinômios, sendo que um deles tem o menor erro 

quadrático médio.  

 

Palavras-chave: Materiais ferromagnéticos. Perdas magnéticas. Frequência elétrica. 

  



 

 
 

ABSTRACT 

SOBRENOME, N. P. Determination of a Polynomial for Representing Magnetic Losses in 

Non-Oriented Grain Electrical Steels Characterized at Various Frequencies in the Epstein 

Frame Test. 2023. Monograph (Undergraduate Thesis) - School of Engineering at São Carlos, 

University of São Paulo, São Carlos, 2023. 

 

  

Ferromagnetic materials, over the years, have become one of the most crucial components for 

technological advancement. In the residential sector, these materials are commonly found in 

electric motor assemblies across various appliances such as compressors and fans. In the 

industrial sector, electric machine motors and compensating generators are applications that 

contain this specific material in their cores. With the evolution of power electronics, motors 

have been updated to utilize permanent magnets and variable-speed drives. This results in 

powering the motors at various electrical frequencies. As a result, electric motor designs seek 

the use of computational tools to explore the optimal balance between efficiency and product 

cost, aiming for the closest alignment with practical results. Characterizing the magnetic 

properties (losses and BxH curve) of electrical steels is essential to enhance the accuracy of 

these simulations. This is predominantly achieved by most companies through the Epstein 

frame test. Typically, magnetic loss assessments for electrical steel are conducted at frequencies 

of 50 and 60 Hz, limiting the precision of results for frequencies other than the excitation 

frequencies. The objective of this work is to characterize electrical steels using various feeding 

frequencies via the Epstein test and establish a polynomial representing the magnetic loss curve 

based on magnetic induction (B) and electrical frequency. This is done to improve the 

approximation of magnetic losses in a previously simulated variable-speed motor. Through 

Epstein frame analysis and prior study of equations defining steel losses, employing the least 

squares method as a tool, it was possible to approximate the value of three different steels for 

electrical purposes using different polynomials, with one exhibiting the lowest mean square 

error. 

 

Keywords: Ferromagnetic materials. Magnetic losses. Electrical frequency. 
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1 INTRODUÇÃO 
 

 A exigência por dispositivos eletromagnéticos com níveis de eficiência cada vez 

maiores e com dimensões reduzidas tem sido objeto de estudo ao longo dos últimos anos. No 

setor residencial, o consumo do sistema de refrigeração representa cerca de 30% do consumo 

total de energia (FEDRIGO, 2009), sendo o motor elétrico o responsável por uma parcela 

representativa do custo total de consumo e do desempenho do refrigerador. 

A evolução e a introdução da eletrônica de potência para acionamento dos motores 

permitiram melhorar ainda mais os níveis de eficiência obtidos, principalmente pela variação 

da frequência de acionamento permitindo a variação de velocidade dos motores. Normalmente 

é utilizada uma faixa de frequências de acionamento além das fundamentais disponíveis na rede 

(50 Hz e 60 Hz). A estimativa do impacto desse tipo de acionamento no desempenho dos 

motores ainda é objeto de estudo da comunidade científica.  

Para minimizar os custos de um projeto de motor e reduzir o tempo de seu 

desenvolvimento utiliza-se a simulação eletromagnética aplicada nos motores elétricos. Uma 

das parcelas de perda nos motores elétricos é a perda no ferro. Para estimativa desta perda, são 

empregados modelos que descrevem as perdas em função da densidade de fluxo magnético, 

frequências e outras características do material. 

Este trabalho visa estudar/revisar o modelo que descreve as perdas no aço elétrico que 

é utilização na simulação dos motores elétricos como forma de adicionar o efeito da operação 

em frequência estendida nesses dispositivos. 

 

1.1 Justificativa e motivação 

 

A simulação de motores elétricos de ímã permanente, com velocidade variável, 

possibilitou a economia de muitos recursos industriais para a prototipagem de projetos de 

motores que possivelmente não teriam como resultado uma eficiência esperada. Com isso, ainda 

é necessário ser inserido no analisador de potência as características elétricas e mecânicas do 

material que será utilizado nesse motor. Para levantar os dados elétricos, é necessário, no caso 

do aço elétrico, a caracterização das propriedades magnéticas (perdas e curva BxH), as quais 

foram realizadas neste trabalho, pelo ensaio do quadro de Epstein. 

O ensaio Epstein é um dos métodos mais utilizados para caracterização dos materiais 

ferromagnéticos e com grande aplicação na área de desenvolvimento de motores (AKINAGA, 

2019). Apesar de fornecer uma boa representação das perdas no núcleo e da permeabilidade 
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relativa do material (através da curva BxH), para avaliação em frequências além daquelas para 

as quais material foi caracterizado, deve-se avaliar a aderência do modelo matemático 

escolhido. 

Com a crescente demanda por dispositivos de alta eficiência e o aumento da 

competitividade no mercado, ferramentas computacionais mais precisas e eficientes são muito 

atrativas para a rotina de projetos de uma empresa. A elaboração deste trabalho surgiu como 

uma solução para um desafio de engenharia na área de desenvolvimento de motores de 

velocidade variável. Ao simular um motor desse tipo por meio de softwares que empregam 

métodos de elementos finitos, observou-se que as perdas no núcleo ferromagnético não 

correspondiam ao modelo do material obtido pela análise de Epstein a uma frequência de 60 

Hz. 

 

1.2 Objetivos 

 

O presente trabalho tem como objetivo descrever as perdas do núcleo ferromagnético 

utilizando um modelo de aproximação polinomial obtido por ensaios experimentais realizados 

em uma faixa de frequência ampliada, em relação ao que é usado atualmente. Este modelo será 

comparado com outros métodos clássicos da literatura. Por fim, o processo de obtenção dos 

coeficientes do polinômio será aplicado e avaliado em mais dois grupos de aço. 
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2 REFERENCIAL TEÓRICO 
 

 Este capítulo desempenha um papel central na exploração de três áreas fundamentais da 

engenharia elétrica: as equações de Maxwell, o método dos mínimos quadrados para a 

aproximação de curvas e a análise do quadro de Epstein para a avaliação das perdas magnéticas 

em aços direcionados para aplicações. Cada um desses elementos desempenha um papel crucial 

na compreensão e aprimoramento do desempenho de sistemas e dispositivos elétricos. 

Primeiramente, serão abordadas as equações de Maxwell, que são o alicerce da teoria 

eletromagnética. Essas equações, formuladas por James Clerk Maxwell, descrevem como 

campos elétricos e magnéticos interagem e se propagam no espaço, fornecendo as bases teóricas 

para a eletricidade e o magnetismo. Ao revisitar essas equações, será estabelecido uma sólida 

fundação para compreender os fenômenos eletromagnéticos em nosso contexto de pesquisa. 

Em seguida, será abordado a análise do quadro de Epstein, um procedimento 

experimental vital para medir as perdas magnéticas em materiais ferromagnéticos, 

especialmente aços elétricos. Compreender o funcionamento desse ensaio e suas implicações é 

essencial para a investigação de materiais utilizados em aplicações elétricas. 

Por fim, será explorado o método dos mínimos quadrados, uma técnica matemática 

fundamental para a aproximação dos coeficientes de curvas. Essa metodologia desempenha um 

papel crítico em nossa análise, permitindo-nos encontrar uma representação precisa das curvas 

de perdas magnéticas em aços elétricos, facilitando a otimização de sistemas elétricos e 

eletrônicos. 

 

2.1 Equações de Maxwell 

 

As equações eletromagnéticas de Maxwell são um conjunto fundamental de princípios 

que descrevem o comportamento dos campos elétricos e magnéticos no universo. Estas 

equações, formuladas por James Clerk Maxwell no século XIX, são de extrema importância 

para a engenharia elétrica e eletrônica, servindo como pilares centrais para o entendimento e 

desenvolvimento de sistemas e dispositivos eletromagnéticos. Neste capítulo, serão analisadas 

as quatro equações fundamentais de Maxwell na forma diferencial, que descrevem as variações 

locais dos campos elétricos e magnéticos em relação ao espaço e ao tempo.  
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2.1.1 Lei de Gauss para o Campo Elétrico 

 

 A primeira equação, conhecida como a Lei de Gauss para o Campo Elétrico, é expressa 

como: 

𝛻 ⋅ 𝐸⃗ =
𝜌

𝜀0
                                                           (2.1) 

Esta equação descreve como o campo elétrico 𝐸⃗  é influenciado pela distribuição de 

carga elétrica ρ. O primeiro membro da equação 2.1, ∇⋅𝐸⃗ , representa a divergência do campo 

elétrico, que indica como as linhas de campo elétrico se originam ou convergem em um ponto. 

O segundo membro, 
𝜌

𝜀0
  ,representa a densidade de carga elétrica dividida pela permissividade 

do vácuo 𝜀0 , relacionando a carga à distribuição do campo elétrico. (SADIKU, 2004). 

 

2.1.2 Lei de Gauss para o Campo Magnético 

 

É a segunda equação, a Lei de Gauss para o Campo Magnético, é expressa por: 

                                                       𝛻 ⋅ 𝐵⃗ = 0                                                          (2.2) 

Essa equação estabelece que não existem monopolos magnéticos, ou seja, não há fontes 

ou sumidouros de campo magnético isolados. A divergência do campo magnético 𝐵⃗  é sempre 

zero, o que significa que as linhas de campo magnético formam circuitos fechados, não tendo 

início nem fim (SADIKU, 2004). 

2.1.3. Lei de Faraday da Indução Eletromagnética 

 

A terceira equação, a Lei de Faraday da Indução Eletromagnética, é expressa por: 

                                                      𝛻 × 𝐸⃗ = −
𝜕𝐵⃗ 

𝜕𝑡
                                                           (2.3) 

Essa equação descreve como uma variação no campo magnético 𝐵⃗  gera um campo 

elétrico induzido 𝐸⃗ . O lado esquerdo da equação, 𝛻 × 𝐸⃗ , representa o rotacional do campo 

elétrico, que indica a tendência do campo elétrico de formar circuitos fechados em torno de 

regiões de variação do campo magnético. O lado direito da equação, −
𝜕𝐵⃗ 

𝜕𝑡
 , representa a taxa de 
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variação temporal do campo magnético, mostrando como a variação temporal do campo 

magnético gera um campo elétrico induzido (SADIKU, 2004). 

2.1.4 Lei de Ampère-Maxwell 

 

A quarta equação, a Lei de Ampère-Maxwell, é expressa por: 

 

                     𝛻 × 𝐵⃗ = 𝜇0𝐽 + 𝜇0𝜀0
𝜕𝐸⃗ 

𝜕𝜏
                                                (2.4) 

 

Essa equação relaciona o rotacional do campo magnético 𝐵⃗  com a densidade de corrente 

elétrica 𝐽  e a taxa de variação temporal do campo elétrico 𝐸⃗ . A primeira parte do lado direito, 

𝜇0𝐽 , indica como as correntes elétricas são fontes de campo magnético. A segunda parte, 

𝜇0𝜀0
𝜕𝐸⃗ 

𝜕𝜏
 , mostra como a variação temporal do campo elétrico também gera um campo 

magnético (SADIKU, 2004). 

As grandezas presentes nas equações de Maxwell estão interconectadas por meio das 

chamadas relações constitutivas. Essas relações são fundamentais para descrever como as 

grandezas elétricas e magnéticas se influenciam mutuamente, considerando as características 

específicas dos materiais ou meios em que essas grandezas estão presentes. (SADIKU, 2004). 

As relações constitutivas são essencialmente equações que descrevem como as 

propriedades elétricas e magnéticas dos materiais afetam a resposta dos campos elétricos e 

magnéticos. Em outras palavras, elas permitem entender como um material específico modifica 

ou responde aos campos elétricos e magnéticos que atuam sobre ele. 

Por exemplo, a permissividade elétrica (ε) é uma das propriedades dos materiais que 

descreve como um material reage ao campo elétrico. Ela está relacionada com a Lei de Gauss 

para o Campo Elétrico e determina como a densidade de carga elétrica afeta a distribuição do 

campo elétrico em um meio (SADIKU, 2004). 

Da mesma forma, a permeabilidade magnética (μ) é outra propriedade que descreve 

como um material influencia o campo magnético. Ela está relacionada com a Lei de Ampère-

Maxwell e determina como a densidade de corrente elétrica e as mudanças temporais nos 

campos elétricos afetam o campo magnético em um meio (SADIKU, 2004). 
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Essas relações constitutivas são importantes para a modelagem e análise de sistemas 

eletromagnéticos, pois permitem que engenheiros e cientistas considerem as propriedades 

específicas dos materiais em suas aplicações. O presente trabalho focará nas seguintes relações, 

assumindo linearidade, isotropia e homogeneidade do material: 

𝐽 = 𝜎𝐸⃗                                                            (2.5) 

 

𝐵⃗ = 𝜇𝐻⃗⃗                                                           (2.6) 

 

pois essas têm impacto direto no rendimento dos aços para fins elétricos. 

2.2 Análise do quadro de Epstein 

 

A engenharia elétrica é uma área essencial que molda nossa sociedade moderna. Na 

busca incessante por eficiência e otimização em sistemas elétricos e eletrônicos, a compreensão 

e a medição das perdas magnéticas em materiais ferromagnéticos desempenham um papel 

crítico. Esta seção se concentra na análise do Quadro de Epstein, uma técnica instrumental que 

se tornou indispensável para determinar as perdas magnéticas em aços de alta qualidade usados 

em transformadores, motores elétricos e diversos outros dispositivos eletromagnéticos. 

O quadro de Epstein, também conhecido como Medidor de Perdas Magnéticas de 

Epstein, é um dispositivo engenhoso projetado para quantificar e compreender as perdas 

magnéticas em materiais ferromagnéticos, como o aço para fins elétricos. Ele consiste em um 

núcleo laminado contendo várias amostras do material em análise. Duas bobinas independentes 

são enroladas nas amostras, uma para criar um campo magnético alternado e outra para medir 

a tensão induzida conforme ilustrado a Figura 1. 
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Figura 1: Quadro de Epstein 

 

Fonte: (PEREIRA JUNIOR, 2011). 

O princípio de funcionamento do Quadro de Epstein é baseado na análise das diferenças 

entre as tensões aplicadas e as tensões induzidas nas bobinas. Quando uma amostra é submetida 

a um campo magnético alternado, as perdas magnéticas na amostra resultam em uma diferença 

de fase entre a corrente e a tensão induzida. Essa diferença de fase é meticulosamente medida 

e usada para calcular as perdas magnéticas com alta precisão. 

O emprego do Quadro de Epstein é relevante na avaliação de uma ampla variedade de 

produtos laminados planos de aço concebidos para aplicações elétricas. No Brasil, esse 

procedimento é padronizado e regulamentado pela Associação Brasileira de Normas Técnicas, 

conforme estipulado na norma NBR 5161(PRODUTOS LAMINADOS PLANOS DE AÇO 

PARA FINS ELÉTRICOS, 1996). A seguir, será fornecido uma explicação detalhada sobre 

como esse processo funciona, seus componentes essenciais e a importância desse método na 

caracterização precisa de materiais magnéticos. 

O Quadro de Epstein é composto por dois enrolamentos fundamentais: o enrolamento 

primário (N1) e o enrolamento secundário (N2). Ambos os enrolamentos consistem em quatro 

bobinas interligadas em série, conforme mostra a Figura 2.b), uma configuração intrincada, 

porém crucial, para a precisão do teste (SILVA JUNIOR, 2007). 
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Figura 2: Quadro de Epstein. a) vista superior; b) vista lateral com disposição das 

lâminas. 

 

Fonte: Silva Jr. (2007) 

 

O ensaio de perdas magnéticas é conduzido por meio de um sistema de medição 

meticulosamente projetado. Esse sistema compreende um gerador de tensão senoidal (G) e um 

amperímetro de valor eficaz (A) que estão estrategicamente conectados em série ao 

enrolamento primário de acordo com a Figura 3. Essa disposição permite a aplicação controlada 

de um campo magnético alternado nas amostras de aço em teste, o que é essencial para a 

obtenção de resultados precisos. 

Além disso, para uma análise aprofundada e completa, dois voltímetros são empregados 

em conjunto com o enrolamento secundário. Um voltímetro de valor médio (Vm) e um 

voltímetro de valor eficaz (Vef) são conectados em paralelo ao enrolamento secundário. Por 

meio desses instrumentos, é possível analisar com detalhes a distorção da indução magnética e 

compreender como as perdas magnéticas variam em relação à frequência e à amplitude do 

campo magnético aplicado.  

Adicionalmente, para garantir a exatidão das medições, um wattímetro é empregado 

para quantificar as potências ativas resultantes da corrente no enrolamento primário e da tensão 

no enrolamento secundário. Isso é importante, pois permite a eliminação da parcela de potência 

dissipada devido ao efeito Joule no enrolamento primário, garantindo que as medições sejam 

verdadeiramente representativas das perdas magnéticas no material em análise. 
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Figura 3: Esquemático do quadro de Epstein 

 

 

 

Fonte: PRODUTOS LAMINADOS PLANOS DE AÇO PARA FINS 

ELÉTRICOS, 1996. 

 

A corrente ip no primário do transformador de Epstein é a imagem do campo magnético 

H. Como é conhecido o número de espiras N1 e o caminho magnético médio lm, pode-se 

calcular o campo magnético a partir da equação (2.7). O valor do caminho magnético médio é 

estimado com certo grau de incerteza, porém como esse valor é padronizado, este erro é 

sistematicamente cometido por todos os usuários. A integral da tensão do secundário do Epstein 

é a imagem da indução magnética B. Como são conhecidos os valores do número de espiras N2 

e a área S da bobina pode-se calcular a indução a partir da equação (2.8) (SILVA JÚNIOR, 

2007). 

𝐻(𝑡) =
𝑁1

𝑙𝑚
⋅ 𝑖𝑝(𝑡)    [𝐴/𝑚]                                          (2.7) 

𝐵(𝑡) =
1

𝑁2𝑆
∫ 𝑉𝑠(𝑡) ⅆ𝑡     [𝑇]                                        (2.8) 

Conforme NBR 5161 devem ser usadas no mínimo 12 lâminas de aço silício para a 

análise. A montagem da bancada para realizar a análise do quadro de Epstein consiste na 

sobreposição das lâminas, conforme a Figura 2b, que devem ser inseridas duas (uma no 

enrolamento primário e outra no secundário de forma que elas fiquem paralelas) de cada vez, e 

depois alternando para o sentido perpendicular das primeiras duas lâminas, repetidamente, até 

preencher o quadro com o total de lâminas. 
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Atualmente, o teste de Epstein é o principal método de avaliação de perdas em aços 

elétricos. Com a variação da indução magnética e fixação da frequência é possível avaliar se o 

aço terá um comportamento satisfatório após a montagem em motores. (LANDGRAF, 2002) 

 

2.3 Método dos mínimos quadrados para aproximação de uma curva 

 

O Método dos Mínimos Quadrados é uma ferramenta fundamental na análise de dados 

e na modelagem matemática. Ele permite encontrar uma aproximação de coeficientes de um 

polinômio que se ajusta aos dados observados de forma ótima, mesmo quando não há um ajuste 

exato. Isso é particularmente valioso quando se lida com dados ruidosos ou experimentais que 

não podem ser modelados exatamente por uma única equação polinomial. Neste capítulo, será 

apresentado o Método dos Mínimos Quadrados, utilizando uma representação matricial para 

uma compreensão mais aprofundada. (BURDEN, 2003). 

2.3.1 Representação Matricial 

 

Para começar, considere o modelo geral de um polinômio de grau n, onde "𝑎 " 

representa o valor do coeficiente da curva: 

𝑦(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 + ⋯+ 𝑎𝑛𝑥𝑛                                    (2.9) 

 

Agora, para tornar o método mais eficiente e elegante, serão apresentados os dados de 

entrada e saída em forma de matrizes. Suponha um conjunto de N pontos de dados, onde as 

observações de entrada são representadas por um vetor de coluna X e as saídas correspondentes 

são representadas por um vetor de coluna Y: 

 

𝑋 =

[
 
 
 
1 𝑥1 𝑥1

2 ⋯ 𝑥1
𝑛

1 𝑥2 𝑥2
2 ⋯ 𝑥2

𝑛

⋮ ⋮ ⋮ ⋱ ⋮
1 𝑥𝑁 𝑥𝑁

2 ⋯ 𝑥𝑁
𝑛]
 
 
 
,  𝑌 = [

𝑦1

𝑦2

⋮
𝑦𝑁

]   (2.10) 

 

Aqui, a primeira coluna de X é uma coluna de valores unitários para representar o termo 

constante (𝑎0) no modelo do polinômio (BURDEN, 2003). 
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2.3.2 Minimizando a Função de Erro 

 

A chave para o Método dos Mínimos Quadrados é minimizar a função de erro, que é 

definida como a soma dos quadrados das diferenças entre os valores previstos e os valores reais. 

No modelo apresentado, essa função de erro é dada por: 

𝐸(𝑎0, 𝑎1, . . . , 𝑎𝑛) = ∑ (𝑦𝑖 − 𝑎0 − 𝑎1𝑥𝑖 − 𝑎2𝑥𝑖̇
2 − ⋯− 𝑎𝑛𝑥𝑖)

2𝑁

𝑖=1
            (2.11) 

Uma maneira mais concisa de representar (2.11) usando notação matricial: 

𝐸(𝑎) = ‖𝑌 −  𝑋𝑎‖²               (2.12) 

Em que, “a” é um vetor coluna que contém os coeficientes do polinômio que se deseja 

obter. 

2.3.3 Solução do Sistema de Equações Normais 

 

Para encontrar os coeficientes “a” que minimizam E(a), é utilizado o cálculo 

multivariado e álgebra linear. Inicialmente é calculado o gradiente de E(a) em relação a “a” e 

igualando-o a zero: 

𝛻𝐸(𝑎) = −2𝑋𝑇(𝑌 − 𝑋𝑎) = 0                  (2.13) 

Resolvendo esta equação para “a”, é obtido a solução dos mínimos quadrados: 

 

𝑎 = (𝑋𝑇𝑋)−1𝑋𝑇𝑌              (2.14) 

 

Esta é a fórmula que fornece os coeficientes do polinômio que melhor se ajusta aos 

dados, minimizando a soma dos quadrados das diferenças. O termo (𝑋𝑇𝑋)−1 representa a 

matriz inversa do produto entre a matriz de entrada X transposta e X, enquanto 𝑋𝑇𝑌 é o produto 

entre a matriz de entrada X transposta e o vetor de saída Y (BURDEN, 2003). 

É interessante notar que a solução dos mínimos quadrados também pode ser interpretada 

geometricamente. Os coeficientes “a” que minimizam E(a) correspondem aos coeficientes do 

polinômio que define a "melhor" curva (no sentido de mínimos quadrados) que se ajusta aos 
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pontos de dados em um espaço multidimensional. O vetor de resíduos 𝑌 −  𝑋𝑎 perpendicular 

ao espaço de coluna de X, o que significa que ele está no espaço nulo de X. Isso resulta em uma 

interpretação geométrica interessante do método (BURDEN, 2003). 

O Método dos Mínimos Quadrados com matrizes é amplamente utilizado em diversas 

áreas, incluindo ciência, engenharia, estatística e economia. Ele é aplicado para ajustar modelos 

a dados experimentais, realizar análises de regressão, encontrar tendências em séries temporais 

e dentre outras aplicações. A capacidade de trabalhar com dados imperfeitos ou ruidosos torna 

essa técnica valiosa em situações do mundo real. O presente trabalho utilizou do método para 

a aproximação de um polinômio já conhecido na literatura para caracterizar as perdas em aços 

elétricos. 

2.4 Equações que aproximam as Perdas Magnéticas de uma equação dependente da frequência 

de excitação 

 

No campo da engenharia elétrica, compreender e minimizar as perdas de energia é 

fundamental para o projeto eficiente de transformadores, motores elétricos e outros dispositivos 

elétricos. As perdas no núcleo são uma parte significativa dessas perdas totais e têm um impacto 

direto na eficiência energética dos sistemas elétricos. Nesta seção, será apresentado a equação 

de perdas no núcleo eletromagnético proposta por Steinmetz e Bertotti, e os modelos CAL2 e 

VARCO. 

2.4.1 Equação de Steinmetz  

 

Quando uma corrente alternada (CA) flui através do núcleo do material ferromagnético, 

eles experimentam perdas de energia devido à histerese magnética e às correntes parasitas, 

também conhecidas como perdas de Foucault (STEINMETZ, 1892). 

A histerese magnética ocorre porque os materiais ferromagnéticos, como o ferrosilício 

comumente usados em núcleos, têm a capacidade de manter parte do magnetismo mesmo após 

o campo magnético ser revertido. Isso resulta em uma dissipação de energia sob a forma de 

calor toda vez que o campo magnético é alternado. A equação de Steinmetz para perdas de 

histerese é dada por: 

𝑃ℎ = 𝑘ℎ ⋅ 𝑓 ⋅ 𝐵𝑝𝑘
𝑛                     (2.15) 

onde: 
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Ph é a potência perdida devido à histerese (watts). 

kh é uma constante dependente do material. 

f é a frequência da corrente alternada (Hz). 

Bpk é a densidade de fluxo magnético máximo (tesla). 

n é o expoente que representa a + b⋅Bpk e é definido no intervalo de 1,5 a 2,5. 

As perdas de Foucault ocorrem devido à indução de correntes elétricas no núcleo quando 

ele é exposto a um campo magnético variável. Essas correntes circulam no material do núcleo 

e dissipam energia na forma de calor. A equação de Steinmetz para perdas de Foucault é dada 

por: 

𝑃𝑓 = 𝑘𝑓 ⋅ 𝑓² ⋅ 𝐵𝑝𝑘
2                (2.16) 

onde: 

Pf é a potência perdida devido às perdas de Foucault (Watts). 

kf é uma constante dependente do material. 

 Logo, a equação de Steinmetz que define as perdas eletromagnéticas em um material 

ferromagnético é (STEINMETZ, 1892): 

𝑃𝑠 = 𝑃ℎ +  𝑃𝑓 = 𝑘ℎ ⋅ 𝑓 ⋅ 𝐵𝑝𝑘
𝑛 + 𝑘𝑓 ⋅ 𝑓² ⋅ 𝐵𝑝𝑘

2              (2.17) 

 

2.4.2 Equação de Bertotti 

 

As perdas magnéticas de Bertotti podem ser compreendidas em três componentes 

principais: perdas por histerese, perdas clássicas e perdas por excesso. As perdas por histerese, 

de acordo com Bertotti, são caracterizadas pela seguinte equação: 

𝑃ℎ = 𝑘ℎ ⋅ 𝑓 ⋅ 𝐵𝑝𝑘
2               (2.18) 

onde: 

Ph é a potência perdida devido à histerese (Watts). 
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kh é uma constante dependente do material. 

f é a frequência da corrente alternada (Hz). 

Bpk é a densidade de fluxo magnético máximo (Tesla). 

As perdas clássicas são determinadas pela condutividade elétrica e pela espessura da 

amostra e são expressas pela equação (BERTOTTI, 1988): 

𝑃𝑐 =
𝜋2𝜎 ⅆ2

6
(𝐵𝑝𝑘 ∙ 𝑓)

2
               (2.19) 

Pc é a potência perdida devido às perdas clássicas (Watts). 

𝜎 é a condutividade elétrica do material. (S/m) 

d é a espessura da amostra (metros). 

Diferentemente da abordagem de Steinmetz, Bertotti introduz um componente adicional de 

perdas por excesso, que ocorrem quando o material magnético não segue perfeitamente a 

mudança no campo magnético aplicado, resultando em uma dissipação de energia na forma de 

calor durante cada ciclo de magnetização e desmagnetização, e é descrita pela equação: 

𝑃𝑒𝑥 = 𝑘𝑒(𝐵𝑝𝑘 ∙ 𝑓)
3/2

∙ 8,67              (2.20) 

 

Pex é a potência perdida devido às perdas por excesso (Watts). 

ke é uma constante dependente do material. 

A equação de Bertotti para calcular as perdas magnéticas totais no núcleo magnético é dada 

por (BERTOTTI, 1988): 

𝑃𝑠 = 𝑃ℎ +  𝑃𝑐  + 𝑃𝑒𝑥  =  𝑘ℎ ⋅ 𝑓 ⋅ 𝐵𝑝𝑘
2 +

𝜋2𝜎 ⅆ2

6
(𝐵𝑝𝑘 ∙ 𝑓)

2
+ 𝑘𝑒(𝐵𝑝𝑘 . 𝑓)

3/2
∙ 8,67   (2.21) 

 

Essa equação unificada permite estimar e compreender as perdas magnéticas totais em 

um núcleo magnético, considerando as contribuições das perdas de histerese, perdas clássicas 

e perdas por excesso, fornecendo uma visão abrangente das perdas em sistemas elétricos que 

envolvem materiais ferromagnéticos (BERTOTTI, 1988). 
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2.4.3 Equação CAL2 

 

A equação CAL2 representa uma fórmula avançada, desenvolvida com o propósito de 

modelar e calcular as perdas magnéticas em núcleos eletromagnéticos. Ela é uma adaptação do 

modelo de Bertotti, conforme apresentado por Akinaga em seu trabalho de 2019 (AKINAGA, 

2019). Esta abordagem se destaca por sua eficácia na análise das perdas que ocorrem em 

lâminas finas, onde considerações cruciais incluem correntes parasitas e histerese magnética. 

No contexto desse modelo, as perdas no ferro são quantificadas em [W/kg], com um 

coeficiente de perdas estabelecido como igual a 2. Adicionalmente, essa metodologia envolve 

a determinação de dois coeficientes fundamentais, a saber, 𝑘ℎ(B) e 𝑘𝑒(B). Notavelmente, cada 

um desses coeficientes é descrito por meio de um polinômio de terceira ordem conforme as 

equações 2.22 e 2.23. (AKINAGA, 2019) 

𝑘ℎ(𝑓, 𝐵)  =  𝑘ℎ3𝐵
3 + 𝑘ℎ2𝐵

2 + 𝑘ℎ1𝐵
1 + 𝑘ℎ1            (2.22) 

 

𝑘𝑒(𝑓, 𝐵)  =  𝑘𝑒3𝐵
3 + 𝑘𝑒2𝐵

2 + 𝑘𝑒1𝐵
1 + 𝑘𝑒1            (2.23) 

No domínio da frequência, considerando ambos os coeficientes variáveis, o modelo é 

descrito pela equação (2.24) 

𝑃𝐶𝐴𝐿2 = 𝑘ℎ(𝑓, 𝐵)𝑓𝐵2 + 𝑘𝑒(𝑓, 𝐵)𝑓2𝐵2                 (2.24) 

 

2.4.4 Equação VARCO 

 

O modelo de VARCO representa um caso específico do modelo de Bertotti, no qual são 

utilizados coeficientes constantes, nomeadamente kh, ke, ka e n, para calcular as perdas 

magnéticas. Essa estimativa é descrita pela seguinte equação: 

𝑃𝑉𝐴𝑅𝐶𝑂 = 𝑘ℎ ⋅ 𝑓 ⋅ 𝐵𝑝𝑘
𝑛 + 𝑘𝑒 ⋅ 𝑓2 ⋅ 𝐵𝑝𝑘

2 + 𝑘𝑎 ⋅ 𝑓1,5 ⋅ 𝐵𝑝𝑘
1,5

                 (2.25) 

Nesta equação, o primeiro termo está associado às perdas de histerese, o segundo termo diz 

respeito às perdas por correntes parasitas de Foucault, e o último termo corresponde às perdas 

anômalas. 
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3 METODOLOGIA DE ARRANJO EXPERIMENTAL E ANÁLISE 
 

Neste capítulo, será descrita a metodologia utilizada para a realização do arranjo 

experimental com o objetivo de investigar e modelar as perdas magnéticas em aços para fins 

elétricos. O presente estudo busca avaliar a precisão dos modelos de Steinmetz, Bertotti, CAL2 

e VARCO na estimativa das perdas magnéticas em aços processados e recozidos, fornecidos 

por três diferentes fabricantes. Para isso, foi realizado uma série de etapas metodológicas, que 

serão detalhadas a seguir. 

3.1 Revisão da Literatura e Seleção de Modelos 

 

A pesquisa bibliográfica constituiu a etapa inicial deste estudo, visando identificar 

equações previamente estabelecidas para a estimativa das perdas magnéticas em aços elétricos. 

Dentre os modelos identificados, merecem destaque os de Steinmetz, Bertotti, CAL2 e 

VARCO. Importa ressaltar que as equações CAL2 e VARCO são extensões da equação de 

Bertotti. A revisão da literatura serviu como base teórica para a seleção dos modelos a serem 

avaliados experimentalmente. 

3.2 Coleta de Amostras e Preparação 

 

Para a condução do experimento, obteve-se 60 amostras de aço para fins elétricos 

totalmente processados e de grão não-orientado de três fornecedores distintos. Cada ensaio 

realizado utilizou 20 amostras de cada fornecedor, sendo 10 cortados no sentido longitudinal 

da chapa e 10 no transversal. Todas as amostras foram submetidas a recozimento em forno para 

que as características elétricas sejam melhoradas. 

Em seguida, foi preparado o arranjo experimental do Quadro de Epstein, onde foram 

colocadas as amostras transversais paralelamente às longitudinais no quadro. As amostras 

foram inseridas duas a duas, realizando a sobreposição delas conforme a montagem ilustrada 

pela Figura 2b no capítulo anterior. 

Após montado, os dados de massa efetiva e área são colocados no analisador de potência 

e se inicia o teste fixando uma frequência de excitação e variando a indução. 
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3.3 Análise dos Dados Experimentais 

 

 Após a obtenção dos dados experimentais, realizou-se uma minuciosa organização e 

tabulação destes em uma planilha. Para a determinação dos coeficientes presentes nas equações 

de Steinmetz, Bertotti, CAL2 e VARCO, foi aplicado o método dos mínimos quadrados. Este 

método permitiu a obtenção dos parâmetros das equações que melhor se ajustam aos dados 

experimentais. 

 

3.4 Determinação dos Expoentes das Variáveis 

 

Além da determinação dos coeficientes, foi necessário estabelecer os expoentes das 

variáveis presentes em cada equação. Para esta finalidade, recorreu-se à ferramenta "Solve" 

disponível no software Excel, com o objetivo de minimizar o erro quadrático médio. Este 

procedimento foi executado em conformidade com os limites impostos por Burden (BURDEN, 

2003), assegurando a validade dos resultados obtidos. 

 

3.5 Comparação dos Modelos e Avaliação do Ajuste 

 

Por fim, uma análise comparativa dos modelos foi realizada com base nos resultados 

obtidos. Foi avaliada a capacidade de cada modelo em ajustar-se aos dados experimentais de 

perdas magnéticas. Esta avaliação foi embasada em critérios estatísticos e de ajuste de curva, 

permitindo a identificação do modelo que melhor descreve o comportamento observado nas 

amostras de aço para fins elétricos. 
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4 RESULTADOS E DISCUSSÕES 
 

Neste capítulo, serão apresentados os resultados da pesquisa sobre as perdas magnéticas 

em três diferentes tipos de fornecedores de aço para fins elétricos em um espectro de frequência. 

A análise detalhada dessas perdas é crucial para a otimização de equipamentos elétricos e 

eletrônicos, uma vez que as perdas magnéticas podem afetar diretamente a eficiência desses 

dispositivos. 

4.1 Comparação dos Modelos e Avaliação do Ajuste 

 

Para conduzir este estudo, foram avaliados aços de três fornecedores de aço distintos, 

identificados como Fornecedor A, Fornecedor B e Fornecedor C. Cada um desses fornecedores 

forneceu amostras de aço para fins elétricos totalmente processados de grão não orientado, que 

foram submetidas a testes de perdas magnéticas utilizando o quadro de Epstein em uma 

variedade de frequências, abrangendo um amplo espectro. Os resultados desses testes são 

apresentados no anexo A. A Figura 4 mostra o resultado dos testes tabelados do fornecedor A. 

Figura 4: Gráfico dos resultados da Análise de Epstein do Aço do fornecedor A 

Fonte: Autor 
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A análise da Figura 4 revela a influência significativa da frequência na curva de perdas 

magnéticas no núcleo ferromagnético. Essa observação reforça e confirma as informações 

previamente documentadas na literatura, destacando a dependência estrita das perdas 

magnéticas em relação à frequência de excitação do sistema. É evidente que a frequência 

desempenha um papel crucial na caracterização e na compreensão das propriedades magnéticas 

dos materiais, reforçando a importância de considerar esse fator ao projetar sistemas e 

dispositivos elétricos e eletrônicos. Essa descoberta reforça a relevância dos resultados deste 

estudo no contexto mais amplo da engenharia elétrica e da ciência dos materiais. A Figura 5 

mostra as curvas de perdas do fornecedor B. 

Figura 5: Gráfico dos resultados da Análise de Epstein do Aço do fornecedor B 

Fonte: Autor 

Da mesma forma que é observado no gráfico referente ao Fornecedor A, o gráfico 

apresentado na Figura 5 exibe uma tendência semelhante, com suas perdas claramente 

correlacionadas à frequência de excitação do sistema. Para fortalecer ainda mais a 

confiabilidade da análise, foi incluída uma terceira amostra de aço fornecida pelo Fornecedor 

C, cujos resultados estão representados no gráfico da Figura 6. 

 

0,000

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

0,00 0,20 0,40 0,60 0,80 1,00 1,20 1,40 1,60 1,80

P
er

d
as

 [
W

/k
g]

B[T]

Perdas no Núcleo (Aço do Fornecedor B)

20 Hz

30 Hz

40 Hz

50 Hz

60 Hz

70 Hz

80 Hz

100 Hz

120 Hz

130 Hz

140 Hz

150 Hz



 

33 
 

Figura 6: Gráfico dos resultados da Análise de Epstein do Aço do fornecedor C 

Fonte: Autor 

No âmbito deste estudo, é notável que, independentemente do tipo de aço avaliado, as 

perdas magnéticas apresentam uma caracterização distintiva, essencialmente decorrente das 

componentes de histerese e Foucault. É crucial ressaltar que essas componentes de perda 

demonstram uma dependência significativa em relação à frequência de excitação do sistema, 

como previamente abordado por Landgraf (2002). Essa dependência da frequência representa 

um elemento crítico na compreensão e análise das perdas magnéticas nos materiais, uma vez 

que influencia diretamente o desempenho e a eficiência de dispositivos elétricos e eletrônicos 

que operam em diferentes faixas de frequência. Portanto, a consideração atenta a esses fatores 

é de suma importância ao selecionar o material apropriado para aplicações específicas, visando 

a otimização dos dispositivos e sistemas elétricos. 

4.2 Aproximação da curva de perdas no núcleo eletromagnético de diferentes fornecedores de 

aços magnéticos por diferentes equações. 

 

 Conforme discutido e detalhado nos capítulos anteriores deste trabalho, foi empregado 

o método dos mínimos quadrados para obter um conjunto abrangente de equações aplicáveis 

aos três distintos fornecedores de aço. Esse processo resultou na determinação dos coeficientes 

de Steinmetz, Bertotti, Varco e CAL2, os quais desempenham um papel crucial na 

caracterização desses materiais magnéticos. 
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Estas equações representam um conjunto valioso de relações matemáticas que 

descrevem o comportamento das perdas magnéticas em seu aço. Juntamente com essas 

equações, foram fornecidos os coeficientes associados que foram obtidos por meio do método 

dos mínimos quadrados. 

Além disso, é importante considerar o erro quadrático médio (EQM), uma métrica que 

avalia a qualidade do ajuste das equações aos dados experimentais. O EQM é um indicador 

crucial de quão bem as equações representam os comportamentos reais do material. Portanto, 

para uma análise mais completa e informativa, também foram fornecidos os valores do EQM 

correspondentes às equações dos fornecedores. 

Essas informações são fundamentais para o entendimento da relação entre as 

características magnéticas do aço fornecido por esses fabricantes e sua aplicabilidade em 

contextos práticos. Portanto, a seguir, será apresentado de maneira detalhada as equações, os 

coeficientes e os valores de EQM associados aos fornecedores A, B e C, respectivamente.  

 

4.2.1 Equações calculadas para o Fornecedor de aço A 

 

 As equações calculadas foram organizadas juntamente com o gráfico de perdas 

magnéticas de acordo com a equação, e seu respectivo erro quadrático médio (MSE). As linhas 

contínuas expressam os resultados da análise do quadro de Epstein, já as tracejadas representam 

o valor calculado a partir da devida equação.  

 

4.2.1.1 Equação de Steinmetz 

 

 De acordo com a literatura apresentada nos capítulos anteriores desse trabalho, foram 

substituídos os valores dos coeficientes da equação de acordo com o método dos mínimos 

quadrados. Com isso a equação de Steinmetz para o aço do fornecedor A foi: 

𝑃𝑆𝑡𝑒𝑖𝑛𝑚𝑒𝑡𝑧 𝐴 = 0,0176 ⋅ 𝑓 ⋅ 𝐵𝑝𝑘

1,5+0,3814 𝐵𝑝𝑘 +  0,0000086 ⋅ 𝑓2 ⋅ 𝐵𝑝𝑘
2            (4.1) 
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Figura 7: Gráfico dos resultados da Análise de Epstein e Equação de Steinmetz do aço A 

 

Fonte: Autor 

 O erro quadrático médio (MSE, do inglês, mean squared error) da equação de Steinmetz 

para o aço A em relação à análise do quadro de Epstein foi de: MSE = 0,088. 

 

4.2.1.2 Equação de Bertotti 

 

 Já a equação de Bertotti que representa as perdas no aço A é: 

 

𝑃𝐵𝑒𝑟𝑡𝑜𝑡𝑡𝑖 𝐴 =  11,933 ⋅ 𝑓 ⋅ 𝐵𝑝𝑘
2 +

𝜋214,547.(0,0005)2

6
(𝐵𝑝𝑘 . 𝑓)

2
+ 4,88. (𝐵𝑝𝑘 . 𝑓)

3

2. 8,67            (4.2) 

 

  O gráfico dos resultados da equação de Bertotti em relação a análise do quadro de 

Epstein do Aço A está apresentado na Figura 8: 
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 Figura 8: Gráfico dos resultados da Análise de Epstein e Equação de Bertotti do aço A 

 

Fonte: Autor 

O MSE da equação de Bertotti para o aço A em relação à análise do quadro de Epstein 

foi de 0,003586. 

 

4.2.1.3 CAL2 

 

 Os coeficientes da equação CAL2, para o aço A, estão expressos nas equações abaixo: 

 

𝑘ℎ(𝑓, 𝐵)  =  0,00007. 𝐵3 + (−0,00014). 𝐵2 + 0,00009. 𝐵1 + 0,00013             (4.3) 

 

𝑘𝑒(𝑓, 𝐵)  = (−0,01588)𝐵3 + (0,05966)𝐵2 + (−0,07869)𝐵1 + 0,05472          (4.4) 

 

𝑃𝐶𝐴𝐿2 𝐴 = 𝑘ℎ(𝑓, 𝐵)𝑓𝐵2 + 𝑘𝑒(𝑓, 𝐵)𝑓2𝐵2                                 (4.5) 

 

O gráfico dos resultados da equação de CAL2 em relação à análise do quadro de Epstein 

do Aço A está apresentado na Figura 9 : 
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Figura 9: Gráfico dos resultados da Análise de Epstein e Equação CAL2 do aço A 

 

Fonte: Autor 

O erro quadrático médio da equação de CAL2 para o aço A em relação a análise do 

quadro de Epstein foi de 0,001542. 

 

4.2.1.4 VARCO 

 

 A equação VARCO para descrever as perdas do aço do fornecedor A está representada 

pela Equação 4.6: 

 

𝑃𝑉𝐴𝑅𝐶𝑂 𝐴 =  0,005533 ⋅ 𝑓 ⋅ 𝐵𝑝𝑘
3,513 + 0,00007594 ⋅ 𝑓2 ⋅ 𝐵𝑝𝑘

2 + 0,002144 ⋅ 𝑓1,5 ⋅ 𝐵𝑝𝑘
1,5       (4. 6) 

  

O gráfico das perdas magnéticas apresenta uma relação clara entre a indução magnética 

e as frequências elétricas, mostrando como esses fatores afetam diretamente a eficiência do 

material. A Figura 10 representa os resultados obtidos na Equação 4.6 graficamente. 
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Figura 10: Gráfico dos resultados da Análise de Epstein e Equação VARCO do aço A 

 

Fonte: Autor 

O erro quadrático médio da equação VARCO para o aço A em relação a análise do 

quadro de Epstein foi de: MSE = 0,011093. 

 

4.2.2 Equações calculadas para o Fornecedor de aço B 

 

 O aço do fornecedor B, apesar de ser um aço para fins elétricos, totalmente processado 

e de grão não orientado, assim como o aço do fornecedor A, têm características construtivas 

diferentes, como por exemplo a porcentagem de elementos inseridos no material como silício. 

Com isso, as equações do aço B serão apresentadas. 

 

4.2.2.1 Equação de Steinmetz 

 

 A equação de Steinmetz para o aço B é descrita por: 

 

𝑃𝑆𝑡𝑒𝑖𝑛𝑚𝑒𝑡𝑧 𝐵 = 0,0164 ⋅ 𝑓 ⋅ 𝐵𝑝𝑘

1,5+𝐵𝑝𝑘.0,4510
+  0,00000899 ⋅ 𝑓² ⋅ 𝐵𝑝𝑘

2        (4.7) 
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A partir da Equação 4.7, a Figura 11 ilustra os seus resultados no gráfico. É interessante 

observar na Figura 11 que a diferença da equação para os resultados experimentais aumenta 

conforme a frequência é alterada. Por exemplo, em frequências mais elevadas é possível 

visualizar a equação não se sobrepondo ao resultado experimental.  

 

Figura 11: Gráfico dos resultados da Análise de Epstein e Equação de Steinmetz do aço B 

 

Fonte: Autor 

O erro quadrático médio da equação de Steinmetz para o aço B em relação a análise do 

quadro de Epstein foi de:  MSE = 0,007423. 

 

4.2.2.2 Equação de Bertotti 

 

A equação de Bertotti que representa as perdas no aço B é: 

 

𝑃𝐵𝑒𝑟𝑡𝑜𝑡𝑡𝑖 𝐵 =  14,2819 ⋅ 𝑓 ⋅ 𝐵𝑝𝑘
2 +

𝜋2(14,76).(0,0005)2

6
(𝐵𝑝𝑘 . 𝑓)

2
+ 3,695. (𝐵𝑝𝑘 . 𝑓)

3

2. 8,67 (4.8) 
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O gráfico da Figura 12 demonstra os resultados alcançados pela Equação 4.8. Esse 

gráfico, evidencia os resultados das perdas magnéticas do Aço B de acordo com a equação de 

Bertotti. Com isso, fica claro que a equação em algumas frequências tem uma tendência mais 

próxima do resultado experimental, como a curva em 150 Hz.  

 

Figura 12: Gráfico dos resultados da Análise de Epstein e Equação de Bertotti do aço B 

 

Fonte: Autor 

O erro quadrático médio da equação de Bertotti para o aço B em relação a análise do 

quadro de Epstein foi de 0,004074. 

 

4.2.2.3 CAL2 

 

O gráfico dos resultados da equação de CAL2 em relação a análise do quadro de Epstein 

do Aço B está apresentado na Figura 13: 

 

𝑘ℎ(𝑓, 𝐵) =  0,00000465 ⋅ 𝐵3 + (−0,00000964) ⋅ 𝐵2 + 0,000083 ⋅ 𝐵1 + 0,0001221(4.9) 

 

𝑘𝑒(𝑓, 𝐵)  = (−0,008095) ⋅ 𝐵3 + 0,03428 ⋅ 𝐵2 + (−0,0518) ⋅ 𝐵1 + 0,04457          (4.10) 
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𝑃𝐶𝐴𝐿2 𝐵 = 𝑘ℎ(𝑓, 𝐵)𝑓𝐵2 + 𝑘𝑒(𝑓, 𝐵)𝑓2𝐵2           (4.11)  

 

Figura 13: Gráfico dos resultados da Análise de Epstein e Equação CAL2 do aço B 

 

Fonte: Autor 

O MSE da equação de CAL2 para o aço B em relação a análise do quadro de Epstein 

foi de 0,001917. 

 A variação das perdas magnéticas, de acordo com os resultados apresentados na Figura 

13, ao longo das frequências elétricas conforme representado no gráfico fornece informações 

sobre as características magnéticas do aço do fornecedor B e sua aproximação de acordo com 

a equação CAL2. 

 

4.2.2.4 VARCO 

 

A equação VARCO para descrever as perdas do aço do fornecedor B está representada 

na Equação 4.12: 

𝑃𝑉𝐴𝑅𝐶𝑂 𝐵 =  0,0036 ⋅ 𝑓 ⋅ 𝐵𝑝𝑘
4,2704 + 0,00009 ⋅ 𝑓2 ⋅ 𝐵𝑝𝑘

2 + 0,00217 ⋅ 𝑓1,5 ⋅ 𝐵𝑝𝑘
1,5

                 (4.12) 
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 A representação Gráfica da equação 4.12 está na Figura 14. 

 

Figura 14: Gráfico dos resultados da Análise de Epstein e Equação VARCO do aço B 

 

Fonte: Autor 

O MSE da equação de VARCO para o aço B em relação a análise do quadro de Epstein 

foi de 0,011215. 

Observa-se uma tendência clara no gráfico das perdas magnéticas, da Figura 14, 

evidenciando como a mudança na frequência elétrica afeta diretamente a eficácia do material, 

as características magnéticas do material foram bem representadas pela equação VARCO, 

obtendo um baixo erro quadrático médio. 

 

4.2.3 Equações calculadas para o Fornecedor de aço C 

 

 Seguindo o mesmo padrão do aço B, o fornecedor C apresenta características 

semelhantes e construção com porcentagens diferentes dos elementos em sua microestrutura. 

A seguir são apresentadas as equações que descrevem as perdas magnéticas no núcleo do aço 

do fornecedor C. 
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4.2.3.1 Equação de Steinmetz 

 

 A equação de Steinmetz que descreve as perdas magnéticas no núcleo do aço do 

fornecedor C é: 

𝑃𝑆𝑡𝑒𝑖𝑛𝑚𝑒𝑡𝑧 𝐶 = 0,01482 ⋅ 𝑓 ⋅ 𝐵𝑝𝑘

1,5+𝐵𝑝𝑘.0,499
+  0,000009 ⋅ 𝑓² ⋅ 𝐵𝑝𝑘

2                         (4.13) 

 

 Ao observar o comportamento das perdas magnéticas conforme representado no gráfico 

da Figura 15, é possível inferir a influência direta das frequências elétricas na eficiência do aço 

para aplicações elétricas. O gráfico está apresentando as perdas de acordo com a aplicação de 

Steinmetz, obtendo em frequências abaixo de 80 Hz um resultado de quase sobreposição do 

teste de Epstein. 

 

Figura 15: Gráfico dos resultados da Análise de Epstein e Equação de Steinmetz do aço C 

 

Fonte: Autor 

O erro quadrático médio da equação de Steinmetz para o aço C em relação a análise do 

quadro de Epstein foi de: MSE = 0,007171. 
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4.2.3.2 Equação de Bertotti 

 

A equação de Bertotti que representa as perdas no aço C é: 

 

𝑃𝐵𝑒𝑟𝑡𝑜𝑡𝑡𝑖 𝐶 =  12,25279 ⋅ 𝑓 ⋅ 𝐵𝑝𝑘
2 +

𝜋2(17,415)0,00052

6
(𝐵𝑝𝑘. 𝑓)

2
+ 4,441(𝐵𝑝𝑘 . 𝑓)

3/2
. 8,67 (4.14) 

 

 

 A análise detalhada do gráfico das perdas magnéticas de acordo com a equação de 

Bertotti, conforme apresentado na Figura 16, destaca como a equação se aproxima do resultado 

experimental, ocorrendo quase sobreposição completa nas frequências de 130 Hz e 140 Hz.  

 

Figura 16: Gráfico dos resultados da Análise de Epstein e Equação de Bertotti do aço C 

 

Fonte: Autor 

O erro quadrático médio da equação de Bertotti para o aço C em relação a análise do 

quadro de Epstein foi de: MSE = 0,003807. 
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4.2.3.3 CAL2 

 

O gráfico dos resultados da equação de CAL2 em relação a análise do quadro de Epstein 

do Aço C está apresentado na Figura 17. 

 

𝑘ℎ(𝑓, 𝐵)  =  0,000072 ⋅ 𝐵3 + (−0,000182) ⋅ 𝐵2 + 0,000164 ⋅ 𝐵1 + 0,000105            (4.15) 

 

𝑘𝑒(𝑓, 𝐵)  = (−0,11834)𝐵3 + (0,04733) ⋅ 𝐵2 + (−0,064768) ⋅ 𝐵1 + 0,046146           (4.16) 

 

𝑃𝐶𝐴𝐿2 𝐶 = 𝑘ℎ(𝑓, 𝐵)𝑓𝐵2 + 𝑘𝑒(𝑓, 𝐵)𝑓2𝐵2             (4.17) 

 

Os dados no gráfico da Figura 17 das perdas magnéticas fornecem uma compreensão 

dos resultados obtidos pela equação CAL2 do aço do fornecedor C. É notório a sobreposição 

dos resultados calculados e experimentais nas frequências de excitação de 50 Hz, 60 Hz e 140 

Hz. 

 

Figura 17: Gráfico dos resultados da Análise de Epstein e Equação CAL2 do aço C 
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Fonte: Autor 

O erro quadrático médio da equação CAL2 para o aço C em relação a análise do quadro 

de Epstein foi de: MSE = 0,001606. 

 

4.2.3.4 VARCO 

 

A equação VARCO para descrever as perdas do aço do fornecedor C está representada 

abaixo: 

 

𝑃𝑉𝐴𝑅𝐶𝑂 𝐶 =  0,005646 ⋅ 𝑓 ⋅ 𝐵𝑝𝑘
3,513 + 0,000103 ⋅ 𝑓2 ⋅ 𝐵𝑝𝑘

2 + 0,001675 ⋅ 𝑓1,5 ⋅ 𝐵𝑝𝑘
1,5

         (4.18) 

 

 Diferentemente da equação de CAL2, a Figura 18, que ilustra o gráfico das perdas 

magnéticas de acordo com a equação VARCO, mostra que a maioria das curvas tem um 

desalinhamento com o resultado experimental, demonstrando que a aproximação da equação 

para esse aço não foi tão precisa quanto as outras. 

 

Figura 18: Gráfico dos resultados da Análise de Epstein e Equação VARCO do aço C 

 

Fonte: Autor 
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O erro quadrático médio da equação VARCO para o aço C em relação a análise do 

quadro de Epstein foi de: MSE = 0,008796. 

 A análise dos resultados obtidos fornece uma visão esclarecedora sobre a qualidade das 

equações que descrevem as perdas magnéticas para diferentes aços. É notável que a ordem de 

grandeza dos resultados apresentados é coerente e, mais importante, consistentemente próxima 

dos valores obtidos experimentalmente. Isso sugere que as equações que desempenham um 

papel efetivo na representação precisam das perdas magnéticas nos núcleos de aço sob 

investigação. 

Um ponto de destaque é a diminuição do erro quadrático médio em relação aos dados 

experimentais. Esse indicador de ajuste, demonstrado por meio dos cálculos realizados, indica 

que as equações selecionadas estão em consonância com o comportamento real dos materiais, 

revelando um alto grau de precisão na modelagem das perdas magnéticas. 

É notável que, ao analisar os resultados, uma tendência clara se destaca: a equação 

CAL2 provou ser a que melhor se adapta aos dados experimentais em todos os casos 

examinados. Essa conclusão, apoiada pelos valores dos erros quadráticos médios associados a 

cada equação, reforça a eficácia da equação mencionada como uma representação precisa das 

perdas magnéticas nos núcleos de aço.   
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5 CONCLUSÃO 
 

Este trabalho representa uma contribuição significativa para o campo da engenharia 

elétrica, em particular no que diz respeito à caracterização e modelagem das perdas magnéticas 

em materiais ferromagnéticos, com foco em aços para fins elétricos. A importância desse estudo 

reside na capacidade de aprimorar a aproximação das perdas magnéticas em diferentes 

frequências, um fator crítico no design e otimização de máquinas elétricas, como motores e 

transformadores. 

A análise do quadro de Epstein foi essencial para a construção desse estudo, pois por 

meio dele todos os resultados de perdas magnéticas foram coletados e analisados para obtenção 

das equações propostas que foram encontradas na literatura. 

Com o estudo realizado ficou claro que a equação que melhor define as perdas 

magnéticas nos aços para fins elétricos, dos três fornecedores apresentados, é a equação CAL2, 

por apresentar o menor erro quadrático médio em comparação com as outras equações. 

Os resultados alcançados neste estudo são sólidos e validados, uma vez que o erro 

quadrático médio das equações de aproximação se mantém em níveis baixos. Isso indica uma 

consistência notável entre os dados experimentais e as equações de modelagem utilizadas. 

Uma das principais implicações desse estudo é sua utilidade na melhoria da precisão 

dos dados simulados em softwares de modelagem. A capacidade de prever as perdas magnéticas 

em aços para fins elétricos em diferentes frequências é essencial para a engenharia. A precisão 

dessas simulações é crucial para garantir que os protótipos de motores e transformadores 

construídos sejam o mais próximo possível do desempenho esperado em condições reais. 

 

5.1 RECOMENDAÇÃO PARA TRABALHOS FUTUROS 

 

Uma recomendação de trabalho futuro seria realizar esse estudo para aços cortados na 

direção 45º juntamente com o corte transversal e longitudinal. A literatura indica que o resultado 

do Quadro de Epstein na configuração com 25% das lâminas transversais, 25% longitudinais e 

50% cortadas no sentido 45º é o que melhor simula as perdas magnéticas no núcleo de um 

motor elétrico. Esse estudo não foi feito por uma inviabilidade econômica no momento da 

realização desse trabalho, onde grande parte da chapa de aço seria descartada por conta desses 

cortes realizados a 45º. 
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Apêndice A – RESULTADOS DA ANÁLISE DO QUADRO DE 

EPSTEIN  
Nas tabelas a seguir serão apresentados os resultados de todos os estudos realizados 

utilizando o quadro de Epstein, onde “f” é a frequência, Bpk é a Indução máxima registrada em 

Tesla e “W” são as perdas em Watt/kg.  

Tabela 1 – Resultados quadro de Epstein do Aço do fornecedor A.
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Os dados da análise do quadro de Epstein do aço do fornecedor B serão apresentados 

abaixo: 

Tabela 2 – Resultados quadro de Epstein do Aço do fornecedor B.
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Os dados da análise do quadro de Epstein do aço do fornecedor C serão apresentados 

abaixo: 

Tabela 3 – Resultados quadro de Epstein do Aço do fornecedor C.
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