BARBARA MINITTI

Técnica de Aplicagao da Arquitetura Hexagonal para

Aplicacao de Gestao de Pagamentos

Sao Paulo
2024



BARBARA MINITTI

Técnica de Aplicagao da Arquitetura Hexagonal para

Aplicacao de Gestao de Pagamentos

Versao Original

Monografia apresentada ao PECE — Programa
de Educagao Continuada em Engenharia da
Escola Politécnica da Universidade de Séao
Paulo como parte dos requisitos para a
conclusao do curso de MBA em Engenharia de

Software.

Area de Concentragdo: Engenharia de Software

Orientador: Prof. Alipio Ferro

Sao Paulo
2024



DEDICATORIA

Dedico este trabalho a Deus e aos Orixas,
os alicerces que sustentam a minha vida.
Em especial ao Caboclo Vigia das Matas,
meu mentor espiritual que me orienta, me
direciona e me ajuda nessa longa jornada

que é a vida.



AGRADECIMENTOS

A Universidade de S3o Paulo — USP que permitiu a existéncia desse MBA.

A Escola Politécnica da Universidade de S&o Paulo — EPUSP que forneceu a
oportunidade e grandes professores compartiihando todo seu conhecimento e

experiéncia.

Ao PECE - Programa de Educagao Continuada em Engenharia que possibilitou meu

aprimoramento na area de Engenharia de Software.

Ao meu orientador Prof. Alipio Ferro por todo o conhecimento passado com grande
clareza e objetividade, por toda paciéncia e parceria, juntamente com o apoio, e

direcionamento na organizagao do trabalho.

Ao meu Prof. Dr. Jorge Luis Risco Becerra pelas aulas de Arquitetura de Software e apoio

no desenvolvimento final do trabalho.

Aos meus pais por me incentivar e mostrar o valor dos estudos na vida de uma pessoa,

bem como todo suporte em toda em minha jornada académica.



RESUMO

MINITTI, B. Técnica de Aplicagcao da Arquitetura Hexagonal para Aplicacao de
Gestao de Pagamentos. 2024. 59 p. Monografia (MBA Engenharia de Software).
Programa de Educagcdo Continuada em Engenharia da Escola Politécnica da

Universidade de Sao Paulo. Sao Paulo. 2024.

Esta monografia investiga a aplicagcao da Arquitetura Hexagonal, ou Arquitetura de Portas
e Adaptadores, como solugdo para mitigar desafios relacionados a manutenibilidade e
testabilidade em sistemas de software complexos. Utilizando uma Aplicacdo de Gestao de
Pagamentos como estudo de caso, o trabalho apresenta uma técnica para aplicabilidade
da Arquitetura Hexagonal, fundamentada nas diretrizes da norma ISO/IEC/IEEE 42010,
em Analise de Correspondéncias entre duas arquiteturas, esta inspirada na Analise de
Gaps do framework TOGAF e Modelagem C4.

A técnica inclui etapas como: Entendimento da Arquitetura Atual através Diagrama de
Contexto do Modelo C4, Diagrama da Arquitetura Atual, identificagcdo de stakeholders e

levantamento de preocupacgdes arquiteturais.

A Analise de Correspondéncias entre Arquitetura Atual e Arquitetura Alvo mostra as

necessidades e capacidades entre ambas arquiteturas.

Com os artefatos citados produzidos a Arquitetura Hexagonal € aplicada na Aplicacao de
Gestdo de Pagamentos através de Diagrama de Componentes do Modelo C4, Diagrama

de Sequéncia da UML e Proposta de Implementagcao da Arquitetura Alvo.

Essas etapas sao integradas gerando um processo de Técnica para Aplicabilidade da
Arquitetura Hexagonal ilustrado por um diagrama BPMN, garantindo uma abordagem

estruturada e replicavel.

A aplicacdo pratica da Arquitetura Hexagonal evidenciou vantagens significativas,
incluindo maior desacoplamento entre o nucleo da aplicagdo e suas dependéncias
externas, facilitando alteracdes tecnoldgicas e promovendo uma testabilidade robusta por

meio de testes isolados no nucleo. Os beneficios também incluiram a reducéo de débitos



técnicos, maior eficiéncia no desenvolvimento e manutencdo, e uma organizagdo modular

que suporta evolugao continua.

Embora a complexidade inicial e a curva de aprendizado sejam desafios a serem
considerados, a técnica demonstrou eficacia em fundamentar a aplicabilidade da
Arquitetura Hexagonal com base em critérios técnicos e alinhados as necessidades do
projeto. Assim, o trabalho conclui que a Arquitetura Hexagonal, quando aplicada com um
processo estruturado como o proposto, € uma alternativa viavel e robusta para sistemas

que exigem alta flexibilidade, escalabilidade e qualidade.

Palavras-chaves: arquitetura hexagonal, porta e adaptadores, testabilidade,

manutenibilidade.



ABSTRACT

MINITTI, B. Technique for Applying the Hexagonal Architecture to Payment
Management Applications. 2024. 59 p. Monograph (MBA in Software Engineering).
Continuing Education Program in Engineering at the Polytechnic School of the University
of Sdo Paulo. Sao Paulo. 2024.

This monograph investigates the application of the Hexagonal Architecture, or Port and
Adapter Architecture, as a solution to mitigate challenges related to maintainability and
testability in complex software systems. Using a Payment Management Application as a
case study, the work presents a technique for the applicability of the Hexagonal
Architecture, based on the guidelines of the ISO/IEC/IEEE 42010 standard, in
Correspondence Analysis between two architectures, inspired by the Gap Analysis of the
TOGAF framework and C4 Modeling.

The technique includes steps such as: Understanding the Current Architecture through the
Context Diagram of the C4 Model, Current Architecture Diagram, identification of

stakeholders and survey of architectural concerns.

The Correspondence Analysis between Current Architecture and Target Architecture

shows the needs and capabilities between both architectures.

With the aforementioned artifacts produced, the Hexagonal Architecture is applied to the
Payment Management Application through the C4 Model Component Diagram, UML

Sequence Diagram and Target Architecture Implementation Proposal.

These steps are integrated, generating a Hexagonal Architecture Applicability Technique

process illustrated by a BPMN diagram, ensuring a structured and replicable approach.

The practical application of the Hexagonal Architecture demonstrated significant
advantages, including greater decoupling between the core of the application and its
external dependencies, facilitating technological changes and promoting robust testability
through isolated tests in the core. The benefits also included the reduction of technical
debt, greater efficiency in development and maintenance, and a modular organization that

supports continuous evolution.



Although the initial complexity and learning curve are challenges to be considered, the
technique demonstrated effectiveness in substantiating the applicability of the Hexagonal
Architecture based on technical criteria and aligned with the project needs. Thus, the work
concludes that the Hexagonal Architecture, when applied with a structured process like the
one proposed, is a viable and robust alternative for systems that require high flexibility,

scalability and quality.

Keywords: hexagonal architecture, port and adapters, testability, maintainability.



LISTA DE ILUSTRAGOES

Figura 1 - Exemplo Complexo de Arquitetura Hexagonal
Figura 2 - Configurador introduz atores

Figura 3 - Portas e Adaptadores, especificado apenas com duas camadas “dentro” e

“fora”

Figura 4 - Arquitetura Limpa

Figura 5 - Arquitetura “Cebola”

Figura 6 - Processo de Técnica de Aplicagao da Arquitetura Hexagonal

Figura 7 - Diagrama de Contexto Aplicacao Gestdo de Pagamentos

Figura 8 - Diagrama em Camadas Aplicagdo Gestao de Pagamentos Arquitetura Atual
Figura 9 - Diagrama de Componentes Aplicagcdo Gestao de Pagamentos Arquitetura Atual
Figura 10 - Caso de Uso ldentificacdo de Stakeholders

Figura 11 - Diagrama de Componentes Aplicagdo Gestdo de Pagamentos com Arquitetura

Hexagonal Aplicada

Figura 12 - Diagrama de Sequéncia UML da Aplicagado Gestao de Pagamentos com

Arquitetura Hexagonal Aplicada

Figura 13 - Diagrama de Visao Tecnoldgica da Aplicacao Gestdo de Pagamentos - [API

Boletos]



LISTA DE TABELAS

Tabela 1 - Atividade Entender a Arquitetura Atual
Tabela 2 - Atividade Identificar Stakeholders da Arquitetura Atual

Tabela 3 - Atividade Levantar e Comparar Elementos Arquiteturais da Arquitetura Atual vs

Arquitetura Hexagonal (Arquitetura Referéncia)

Tabela 4 - Tabela Comparativa Elementos Arquiteturais Arquitetura Atual vs Arquitetura

Hexagonal (Arquitetura Referéncia)

Tabela 5 - Realizar Analise de Correspondéncias entre Arquitetura Atual vs Arquitetura

Alvo
Tabela 6 - Matriz de Correspondéncia entre Arquitetura Atual vs Arquitetura Alvo

Tabela 7 - Aplicar a Arquitetura Hexagonal através de Diagrama de Componentes com
Modelo C4

Tabela 8 - Verificar o Uso da Arquitetura Hexagonal a partir de Diagrama de Sequéncia da
UML

Tabela 9 - Proposta de Implementacgao da Arquitetura Hexagonal da Aplicagao Gestao de

Pagamentos



LISTA DE ABREVIATURAS

API - Application Programming Interface

BDD - Behavior Driven Design

BPMN - Business Process Model and Notation
DDD - Domain Driven Design

ECS - Elastic Container Service

HYPE - Moda

RFN - Requisitos Nao Funcionais

TDD - Test Driven Design



SUMARIO

1. INTRODUGAO..........ceiiuiireiriesessessessesssessessessesssssssssssssessssssssssssssssessessssssssssssessssssssnsens 13
PR 1Y o 11 7= T Y= P 13
LI O o) =1 11 o T PSP SROPRPPI 14
1.3 JUSHICALIVAS. ...ttt e e e et e e e e e e e e e e eas 15
I Y= o Te [ Jo [T =TT [V LT S 16
1.5 Estrutura do Trabalno...........oooiiiiii e 16
2. REVISAO BIBLIOGRAFICA.........coooieeeietcirrcieesssses e ssssesss s sessssssssssssssssasssssssssssasans 17
2.1 Fatores Motivacionais do Conceito da Arquitetura de Software Hexagonal................ccccuvveee... 17
2.2 Definicao Arquitetura HeXagonal............coii i 18
2.3 Elementos do Padr&o Arquitetura Hexagonal...............oooiiiiiiiiiiiiece e 19
2.3.1 APlICACA0 OU SISTEMIA.......uuuiiiiiiiiiiiiiiiiiiit it e e e e e e e e e e e e e et e eeeeeeaaaaaaaaaaaaaaaaaaaaaaaaaaens 19
2.3.2 POItAS. .ttt e et et e e e et e e e e e e e e e e e e e e 20
2.3.3 Atores Externos de Condugao e Atores ACIONAdOS..........ccoevviiiiiiiiiiiiiiiiiieeieeeeeeeeeeeeeeeeee e, 20
2.3.4 Adaptadores para PoOras. .......ooooiiiiiii ettt eeaeeees 21
2.3.5 Configurador (o quinto elemento NA0 oficial)...........ccccuuvuiiiiiiiiiiiiiiiiiieeeeeeeeeeeeee e 22
2.4 Requisitos e Recomendagdes dO Padrao...........ooooeieiiiiiiii e 23
RSN alo]r-We (o} =t-Toto] oo e (oI m - To [ = To TP 25
2.6 Abordagem de Teste dO Padr@0..........coooiiiiiiiiiiiiiee e 25

2.7 Comparacao Arquitetura Hexagonal vs Demais Arquiteturas e DDD (Domain Driven Design) 26

2.8 Trade-Offs Arquitetura Hexagonal...............co s 29
2.9 Consideragdes do CapitUulo..........ooooiii i 30
3. DESENVOLVIMENTO.......coo i eiiieieiimecssss s s s s s s s s s s s ss s s mmsss s s ssss s s s s s e s e s s s e nnnnnnnnsssssnnnnnns 31
3.1 Procedimento da Técnica para Aplicabilidade da Arquitetura Hexagonal.............cccccooeiveenenees 31
3.2 Entender a Arquitetura AtUAL. ... e 33

3.2.1 Identificacdo do Contexto da Aplicacdo Gestao de Pagamentos.............eeeeeeeevveeeieeeeeeeeeeeenn. 33



3.2.2 Identificagdo da Arquitetura da Aplicagao Gestdo de Pagamentos.................cccccl. 35

3.2.3 Identificagao Interagdo dos Componentes da Aplicagdo Gestdo de Pagamentos................. 36
3.3 Identificar Stakeholders da Arquitetura AtUAL..............oeeiiiii i 37
3.4 Levantar e Comparar Elementos Arquiteturais da Arquitetura Atual vs Arquitetura Hexagonal

(Arquitetura REFEIENCIA)........ccoi i i e it b e s s b s st s essseessnesseeeeneeees 40
3.5 Realizar Analise de Correspondéncias entre Arquitetura Atual vs Arquitetura Alvo.................. 44
3.6 Aplicar a Arquitetura Hexagonal através de Diagrama de Componentes com Modelo C4....... 45
3.7 Verificar o Uso da Arquitetura Hexagonal a partir de Diagrama de Sequéncia da UML........... 48
3.8 Proposta de Implantacao da Arquitetura Hexagonal da Aplicacdo Gestao de Pagamentos.....50
3.9 Consideragdes do Capitulo...........coooeii i 52
4. ANALISE DE RESULTADOS.......ccoiiiueiirceeacessesssessssesssssssssssssssssssssssssssssssssssssassseans 53
4.1 Avaliacao dos ODbjetiVOS PropOStOS..........uuuuuuiuiiiiiiiiiiiiiiiieeeieeeeeee ettt ee e et e e e e e e e e e e e e aaaaaaaaaaaaaaaaaaaens 53
4.2 Melhorias [dentifiCadas. ..........coouiiiiiiiii e 53
4.3 Comparativo Arquitetdnico Arquitetura Atual vs Arquitetura AIVO.............ooooviiiiieiiiiniiiieee, 54
4.4 Comparagao com a Literatura...........coooiiiiiiiiiiic e —a— e 54
4.5 BenefiCios € LImMItagOes. .......ooo i it eeaa e 54
4.6 Consideragdes do CapitulO........c.ccoiiiiiiiiiiiiiiii e, 55
5. CONSIDERAGOES FINAIS........ccceeeeeererereressessessssessessessesssssssessesssssssssssssssssssssssssssens 55
ST @7 ] o Tol [0 1T = SRR PP PP PPPPPPN 55
5.2 ContribUIGAO ACAEMICA. .......coi i ittt seseeseeeeeeeeeas 56
5.2 TrabalNOs FULUIOS. .......ooiiiiiii et e e e e e e e e e e e e e e e 57

REFERENGCIAS. ......eeeeeeeeeeteeeeeseeteseetesseessssessssssnsssssesssssssessssesssessssessnsssssessnessssessnessssessnsssnns 58



13

1. INTRODUGCAO

Este capitulo apresenta as motivagdes, objetivo, as justificativas, método de

pesquisa e a estrutura do trabalho.

1.1 Motivagoes

Construir softwares robustos tem sido o principal foco da area de engenharia de

software ao longo dos anos.

A robustez de um software esta ligada a diversos fatores como saber lidar com os
erros e falhas de modo que o software nao trave ou tenha algum comportamento
indesejado, saber lidar com as entradas para garantir que dados invalidos ou
maliciosos comprometam o funcionamento do sistema, a resiliéncia que esta ligada
a capacidade do software se recupera rapidamente de falhas e continuar operando
num nivel mesmo que reduzido de funcionalidades, escalabilidade garantido que
mesmo sob carga ou condigcbes variaveis ele se mantenha estavel e a
manutenibilidade que através de um design e uma arquitetura permita a facilidade

de atualizacéo.

Para um desenvolvimento consistente de software levando em consideragao todos
esses Requisitos Nao Funcionais citados devemos nos preocupar com a qualidade

do sistema ligado diretamente com testabilidade.

No ponto de vista de testes é preciso garantir a efetividade das manutengdes em

cbdigos e componentes.

No ponto de vista de manutenc&o é preciso uma estratégia para otimizar o tempo de
disponibilizagado de codigos e componentes e evitar a repeticdo de erros e simplificar

as correcgoes.

Essa monografia apresenta a aplicabilidade de uma arquitetura para facilitar o
desenvolvimento de software considerando o0s requisitos n&o funcionais

denominados de, manutenibilidade e testabilidade de softwares.



14

Para solucdo desses dois RNFs podemos contar com os processos de Arquitetura
de Software para definir a estrutura para um sistema em alto nivel, incluindo os

componentes principais, a relagado entre eles e como eles interagem.

A Arquitetura de Software envolve decisdes estratégicas que afetam diretamente a
organizacao, escalabilidade, desempenho e a manutencéo do sistema. Ela funciona
como um “norte” para guiar o desenvolvimento e evolugdo do sistema ao longo do

tempo.

Porém, essa area € ampla e conta com varios designes para desenvolvimento de
sistemas, como Arquitetura de Microservicos, Arquitetura em Camadas, Arquitetura
Hexagonal e Arquitetura Limpa, tornando a decisdo de qual arquitetura utilizar um

processo de dificil escolha.

No contexto deste trabalho a Arquitetura Hexagonal € o design escolhido para ser
analisado quanto a sua aplicabilidade para desenvolvimento de software e nao
simplesmente basear a escolha de uma determinada arquitetura por ela estar em

alta no mercado ou na *hype”.

Em desenvolvimento de software, a habilidade mais importante ndo é a capacidade
de escrever codigo, mas a capacidade de fazer as escolhas certas. (FOWLER,;
MARTIN, 2002)

O principal objetivo da Arquitetura Hexagonal é resolver problemas de acoplamento
entre cdédigo de aplicacdo e os detalhes de infraestrutura, como banco de dados,
interfaces de usuarios e servicos externos. A proposta dessa arquitetura é isolar o
coédigo de negécio das dependéncias externas, permitindo maior flexibilidade e

facilidade de mudanca ao longo do tempo.

1.2 Objetivo

O objetivo desta monografia é analisar a aplicabilidade da Arquitetura Hexagonal
para o desenvolvimento de sistemas e propor uma técnica para que arquiteturas

escolhidas sejam validadas antes mesmo do inicio do desenvolvimento.



15

Para o estudo sera usado como referéncia uma Aplicacdo de Gestdo de
Pagamentos, destacando-se as vantagens, desafios e melhores praticas no contexto

de desenvolvimento de software.

1.3 Justificativas

O uso indiscriminado de arquiteturas de software no processo de desenvolvimento
de sistemas é crescente, muitas vezes a escolha de um design para a construgéo de
um sistema é feito pelo simples motivo da arquitetura estar em alta no mercado ou
para atrair talentos, pois os desenvolvedores terdo oportunidades de trabalhar com
tecnologia de ponta. Diante desses fatores, nem sempre a arquitetura ideal é
escolhida para o desenvolvimento de um sistema tornando-o complexo e

aumentando os problemas ao longo dos anos.

A escolha por uma arquitetura de software € uma decisdo muito critica para se

basear apenas nos fatores justificados no paragrafo anterior.

Majumder e Zoitl (2023), propuseram no artigo A Domain-Driven Design Oriented
OPC UA Server Development Methodology for CPPS a abordagem de separagao de
camadas do DDD para o desenvolvimento de um servidor OPC UA para CPPS,
nesse contexto a Arquitetura Hexagonal pode ser eficiente considerando que os
componentes de software podem ser desenvolvidos independente de qualquer

tecnologia especifica e abrangem um grande numero de casos de uso.

Jackson e Coutinho (2023), realizaram um estudo de caso no artigo Restructuring
the Software Architecture: A Case Study of the CoolBiz Core Banking Platform e
concluiram a importancia de adotar abordagens holisticas ao discutir a arquitetura
de software, além de questdes puramente técnicas e incluindo fatores como atragao
e retencao de talentos. Alegando que esse aspecto é crucial na academia, devido ao

impacto no treinamento profissional e no avango da disciplina.

O estudo dessa monografia propde demonstrar através da Arquitetura Hexagonal
que a escolha por uma arquitetura pode ser uma utopia para o desenvolvimento de
software se escolhida aleatoriamente tornando-o mais complexo e com maiores

problemas do que aqueles que a arquitetura propde-se a resolver.


https://aisel.aisnet.org/cgi/viewcontent.cgi?article=1023&context=capsi2023
https://aisel.aisnet.org/cgi/viewcontent.cgi?article=1023&context=capsi2023

16

1.4 Método de Pesquisa

O método de pesquisa adotado para essa monografia é o Exploratorio.

Inicia-se através de pesquisas em artigos e bibliografias relevantes na literatura
sobre a Arquitetura Hexagonal também conhecida por Arquitetura de Portas e
Adaptadores idealizada por Alistair Cockburn em meados dos anos 90 sendo
postado o primeiro artigo na WikiWikiWeb onde os artigos tinham como principal

tema assuntos relacionados a Engenharia de Software.

Serdo analisados os trade-offs de Arquitetura Hexagonal visando encontrar o

cenario adequado para o uso dessa arquitetura em especifico.

A técnica utilizada para analise de aplicabilidade sera baseada nas diretrizes do
Metamodelo de Arquitetura ISO/IEC/IEEE 42010 para levantamento dos elementos
arquiteturais da Arquitetura Atual e Arquitetura Hexagonal (Arquitetura Referéncia) e
através desse levantamento e com base na literatura da Arquitetura Hexagonal
identificar se de fato ela resolve os problemas de manutenibilidade e testabilidade
que essa monografia propde-se a resolver. Sera utilizado uma Analise de
Correspondéncias para comparar e identificar as correspondéncias entre ambas

arquiteturas.

Ao final, esse estudo podera ser um guia de referéncia para ajudar na analise de
aplicabilidade de outras arquiteturas mais adequadas para o desenvolvimento de

software.

1.5 Estrutura do Trabalho

O Capitulo 1 INTRODUCAO apresenta as motivagdes, o objetivo, as justificativas,

meétodo de pesquisa e a estrutura do trabalho.

O Capitulo 2 REVISAO BIBLIOGRAFICA revisa as motivacdes do conceito da

Arquitetura Hexagonal e identifica a aplicabilidade em desenvolvimento de sistemas.



17

O Capitulo 3 DESENVOLVIMENTO apresenta o contexto e estudo de onde a
Arquitetura Hexagonal podera ser aplicada com eficacia na area de Engenharia de

Software através de uma Aplicacdo de Gestao de Pagamentos com um case pratico.

O Capitulo 4 ANALISE DE RESULTADOS compreende os trade-offs no contexto de

desenvolvimento para Aplicagado de Gestdo de Pagamentos.

O Capitulo 5 CONSIDERACOES FINAIS conclui a aplicabilidade da Arquitetura
Hexagonal no ambito do desenvolvimento da Aplicacao de Gestdao de Pagamentos,
contribuindo e definindo uma técnica para a aplicabilidade de uma arquitetura de

software na engenharia de sistemas.

2. REVISAO BIBLIOGRAFICA
2.1 Fatores Motivacionais do Conceito da Arquitetura de Software Hexagonal

Idealizada por Alistair Cockburn em 1988 teve o primeiro estimulo para a idealizagao

da arquitetura.

Alistair implementou Model-View-Controller no seu protétipo Smalltalk, mas o seu
programador C ndo implementou e quando surgiu a necessidade de mudar as fontes
de entradas do programa C o programa precisou ser reescrito. (COCKBURN,
ALISTAIR, 2024)

Em 1994 outra “dor”, projetistas de infraestrutura precisavam alterar um projeto de
preco e tempo fixo envolvendo um mapeador de objetos relacionais para otimizar o
desempenho. A modificagdo necessaria era alterar o design da aplicagdo para
banco de dados SQL.

Para realizar a modificagdo, os programadores precisaram desligar a aplicagéo por
varias semanas para reescrever o seu mapeador e fazer a substituicdo de um banco
de dados de teste na memodria para o banco de dados SQL. (COCKBURN,
ALISTAIR, 2024)

Nos anos 2000 o problema de acoplamento excessivo de arquiteturas monoliticas

era latente, Alistair Cockburn propds entdo o conceito da Arquitetura Hexagonal



18

conhecida também como Arquitetura de Portas e Adaptadores que tinha como

principal objetivo isolar o cdédigo de negdcio das dependéncias externas.

A principal ideia era separar o nucleo da aplicagdo (dominio) através de portas
(interfaces) e adaptadores do mundo externo (interfaces de usuarios, banco de

dados, servico de terceiros, etc).

Dessa maneira o nucleo do negdcio mantinha-se “protegido” das alteragbes externas

que tendem a evoluir mais rapidamente.

Os desafios para decisao de uma arquitetura coesa sempre existiram independente

da epoca e tecnologia.

2.2 Definigao Arquitetura Hexagonal

Alistair Cockburn usou a figura geométrica do hexagono para representar que o

sistema deveria ser acessivel e testavel a partir de qualquer lado.

A figura geométrica do hexagono e o numero seis ndo tem nenhum significado
particular, € apenas uma figura que permite que as pessoas ao desenhar uma

arquitetura tenham mais espaco para incluir portas e adaptadores.

Na pratica pode existir trés, cinco ou mais portas e ndo necessariamente seis como
0 hexagono nos induz a pensar, por esse motivo Alistair em 2005 no artigo The
Pattern: Ports and Adapters (“Object Structural”) explica o motivo pelo qual Portas e

Adaptadores é o nome mais adequado para o padrao.

“O termo “porta e adaptadores” pega os "propdésitos” das partes do desenho. Uma
porta identifica uma conversagdo proposital. Normalmente, havera varios
adaptadores para qualquer porta, para varias tecnologias que podem se conectar a
essa porta. Normalmente, eles podem incluir uma secretaria eletrbnica, uma voz
humana, um telefone touch-tone, uma interface grafica humana, um test harness,
um driver de lote, uma interface http, uma interface direta de programa para
programa, um banco de dados simulado (na memdria), um banco de dados real
(talvez bancos de dados diferentes para desenvolvimento, teste e uso real).”
Cockburn (2005).



19

Figura 1 - Exemplo Complexo de Arquitetura Hexagonal

Fonte: (Cockburn, 2005)

2.3 Elementos do Padrao Arquitetura Hexagonal

O padrao possui quatro elementos basicos e um quinto considerado nao oficial,

porém necessario.
Os quatro elementos considerados oficiais sao:

Aplicagao ou Sistema;
Portas;

Atores externos de condugéo e atores acionados;

B Dnh

Adaptadores para Portas.

O quinto elemento n&o oficial citado € o Configurador que sera explicado no topico
2.3.5.

2.3.1 Aplicagao ou Sistema

Aplicagdo ou Sistema, conhecido também como nucleo ou dominio contém toda a
l6gica de negodcios, independente de qualquer tecnologia externa. Consideramos
como tecnologia externa um elemento fisico, como um banco de dados, um usuario

humano ou um link de rede.



20

Podemos ainda definir como tecnologia externa situagdées em que o “mundo exterior”
€ delimitado por uma fronteira social, ou seja, onde termina o0 escopo de uma equipe
numa determinada parte da aplicacdo. Nesse caso pode ser criado limites técnicos

através de interfaces e testes para proteger esse limite.

Através dessa interface é possivel garantir que a aplicagao seja chamada de acordo
com o “contrato” estabelecido. Essa caracteristica a torna um componente poderoso,

possibilitando que ela possa ser conectada a qualquer outra aplicagao.

Existe situagdes em que a aplicacdo nao tem a necessidade de ser usada num
contexto diferente, mas Alistair Cockburn afirma no livro Hexagonal Architecture
Explained que através desse conceito € possivel proteger a aplicagdo contra

vazamento de légica de negdcios, alterar tecnologias externas e garantir testes.

2.3.2 Portas

As Portas definem o limite da aplicagdo. Cada interacéo entre a aplicagao e o mundo
exterior acontece através de uma interface de porta estabelecida pela propria
aplicagao. Portanto a porta demarca o que esta dentro da aplicagcdo e o que esta

externa a ela.
Essa caracteristica de Portas atribui o “poder” ao padrao.
Usualmente existem trés tipos de Portas gerais acionadas:

- Portas para obter informacgdes de um repositoério;
- Portas para notificar alguém;

- Portas para controlar algum dispositivo.

2.3.3 Atores Externos de Conducao e Atores Acionados
Os Atores externos podem ser definidos em atores primarios e secundarios.

Ator primario é qualquer entidade humana ou eletrénica que coloca a aplicagdo em
acao. Ele solicita um servico da aplicagdo iniciando um conjunto complexo de

interacdes de ida e volta.



21

A aplicagdo nao precisa conhecer o ator primario, o objeto de chamada precisa

saber a funcdo na aplicagao para acionar o servico necessario

Ator secundario é qualquer entidade humana ou eletrdonica que a aplicagao entra em

acao, solicitando um servigo.

Esse conceito representa a ideia de Portas, pois os atores primarios tornam-se
condutores e atores secundarios tornam-se atores acionados que interagem com as

portas primarias ou secundarias.

Para definir a quantidade de Portas numa aplicagdo podemos usar a técnica de

casos de uso.

Um ator interage com um sistema, isso corresponde a uma porta ou uma interface

que perguntamos a qual ator ela serve.

Durante a construcdo do sistema a arquitetura inicial pode mudar, porém essa
técnica funciona como um bom ponto de partida.

2.3.4 Adaptadores para Portas

Existe a possibilidade de um ator usar diretamente a interface fornecida ou

necessaria, nesses casos nao é necessario nenhum adaptador.
Para explicar esse “comportamento”, podemos usar casos de testes como exemplo.

Ao desenvolver uma aplicacédo casos de testes sdo escritos para validagdes. Essas
validacbes parte de uma interagcdo com a aplicagdo, ou seja, pode-se codificar a

interface fornecida pela aplicagao diretamente nos casos de testes.

E possivel criar duas aplicagdes para trabalharem em conjunto desde o inicio. Uma
aplicacao de portas e adaptadores independentes e uma para interfaces que devera

ser desenvolvida de modo que elas correspondam.

Em casos como esses ndo é necessario a criagcdo de adaptadores, pois os atores

externos ja atendem as interfaces fornecidas e necessarias.



22

Em situacdes em que o ator externo ndo corresponde a interface da aplicagao, é
necessario escrever coédigo para transformar a interface de um ator na do outro.

Esse codigo € um adaptador.

Geralmente adaptadores sao necessarios para qualquer tecnologia do mundo real,
exemplo, internet, banco de dados, feed em tempo real, ou até mesmo um ser

humano como ja mencionado.

Existem adaptadores fora da aplicagdo, mas quem decide e organiza os
adaptadores que s&o internos ou externos a aplicagdo sdo os engenheiros de
sistemas. A Arquitetura de Portas e Adaptadores nao estabelece uma regra de como
se deve organizar a aplicagao, ela indica que ha um “mundo” interior e exterior, o

limite entre os dois é definido pelas portas fornecidas e necessarias.

Diante desses fatores surgem muitas duvidas de como organizar os adaptadores de

uma aplicagéo.

Uma estrutura mal organizada pode inviabilizar o uso da Arquitetura de Portas e

Adaptadores.

2.3.5 Configurador (o quinto elemento nao oficial)

E o elemento que o padréo n&o estabelece como necessario, porém “alguma coisa”
precisa conectar todas as pecgas. Alguém precisa direcionar como a aplicagao
precisa ser acessada e direcionar a aplicacdo a quais atores devem ser utilizados.

Essa fungao é de responsabilidade do Configurador.

Para executar essa fungdo o Configurador precisa conhecer todos os elementos.
Atores de Condugédo ou seus Adaptadores e os Atores de Acionamento ou seus

Adaptadores.

O padrao nao especifica a forma como Configurador deve ser desenvolvido, ha

varias maneiras de desenvolvé-lo e tudo depende da situagao.
Independente da organizagao, algumas agdes devem ocorrer:

- Instanciar cada interagente acionado. (um ator acionado ou um ator que nao

precisa de adaptador);



23

- Instanciar a aplicagao;

- Enviar para aplicagao os interagentes acionados;

- Instanciar cada interagente de conducgao (ator ou adaptador) e enviar para a

aplicagao para ser utilizado.

Existem trés maneiras para a aplicagao “conhecer” o ator acionado.
Umas delas é enviado ao construtor da aplicagdo o ator acionado, uma outra
maneira é a aplicagao disponibilizar uma interface com uma funcéo que define o ator
acionado, entdo um ator condutor chama essa funcao para definir o ator acionado a
qualgquer momento.
Por fim, a aplicagdo pode usar um localizador de servigo e perguntar ao localizador
qual ator acionado usar.
Para os dois primeiros casos citados, podemos utilizar uma estrutura de injecéo de

dependéncia, como por exemplo, o Spring.

Figura 2 - Configurador introduz atores

PAVER
AT METOR,

DEPENDENLCY
CONFIGURATOR

i'ﬂn Lkds ® @B ok &‘iﬂwm;}

they  the ordur T conRiemATeR
warst  (ngheedidi, P n\-vh_

Fonte: Cockburn, Alistair; Garrido de Paz, Juan Manuel. Hexagonal Architecture Explained

(p- 31). Humans and Technology Inc. Edicao do Kindle

2.4 Requisitos e Recomendagoées do Padrao

Para utilizar um padrao € necessario saber quais sdo os requisitos para aplicar o

padrao desejado.



24

Seguir o que o padrédo recomenda e saber o que esta fora do seu escopo pode ser

muito util ao longo do desenvolvimento da aplicagao, pode contribuir diretamente na

complexidade do desenvolvimento.

Requisitos do padréo:

Definir uma interface para todas interacoes externas;

Definir portas de condugdo para as interfaces fornecidas e portas de
conducgéo para as interfaces acionadas;

Permitir que atores acionados sejam configurados em tempo de execugéo;
Nao ter dependéncia entre o cddigo-fonte e seus atores primarios e
secundarios;

Atores externos podem interagir somente com portas definidas, eles nao tem
permissao para interagir com o interior do hexagono;

As portas e interfaces usam termos para expressar apenas as necessidades

de negocios e devem ser neutras a tecnologias;

Recomendacgdes do padrao:

O padrao nao determina como deve ser a nomenclatura das portas, porém
sugere que seja “para fazer algo”, pois ajuda a comunicar, porque as
interfaces s&o agrupadas;

O padrdo nao define a granularidade das portas ou quantas interfaces de
funcdo sdo agrupadas numa porta. O recomendavel é ter menos a mais,
iniciando com uma porta por ator primario e uma para o secundario, pois
corresponde as intengdes de conversas.

Nao diz nada referente como organizar o seu codigo, porém recomenda boas
praticas para facilitar a interpretacdo das pessoas e a manutencdo da
arquitetura.

o Criar dois diretdrios de portas, um para as portas de conducgao e outro
para as portas acionadas. Colocar os diretérios no diretério da
aplicacéao, pois eles pertencem a aplicacao.

o Criar dois diretérios de adaptadores, um para adaptadores de
condugdao e outro para adaptadores acionados. Coloque-os em

diretdrios diferentes da aplicagao.



25

- O padrdo ndo menciona nada como organizar e proteger os adaptadores e
nem cita se eles devem interagir ou ndo. Com exce¢ao dos casos de teste, o0s
adaptadores de condugao nao interagem diretamente com os adaptadores

acionados.

- Nao exclui a possibilidade de ter um subsistema de Portas e Adaptadores
dentro de algum sistema maior de Portas e Adaptadores. Considerando
Portas e Adaptadores como um componente, isso implica que o componente
de Portas e Adaptadores sera configuravel para diferentes atores secundarios
e sera testado isoladamente do restante do sistema maior de Portas e
Adaptadores. E improvavel, porém ndo impossivel e por esse motivo & dito

que o padrao nao aninha.

2.5 Fora do Escopo do Padrao

O padrao nao cita como deve ser a estrutura da aplicagao internamente, por isso
pode ser adotado a estrutura que melhor convém, como por exemplo, Domain
Driven Design (DDD), Grande Bola de Lama ou até mesmo separar a fungédo do

modelo.

O padréo nao recomenda e nem restringe a reestruturagao interna da aplicagao,

essa caracteristica o torna diferente das demais arquiteturas.

2.6 Abordagem de Teste do Padrao

Um dos principais beneficios oferecidos pelo padrao é a flexibilidade em relagao aos

testes.

A caracteristica simétrica do padrao permite que os testes sejam desenvolvidos ao
longo do desenvolvimento do software, ndo sendo necessario aguardar a finalizagéo

do software para desenvolvimento dos testes.

A simetria do padrao refere-se ao fato de que a arquitetura nao faz distingdo entre os
lados de entrada (como interfaces de usuario e APIs) e os de saida (como bancos
de dados e servigos externos). Ambos os tipos de interagbes — seja para receber
dados ou para enviar e armazenar — sdo tratados da mesma maneira por meio das

portas e adaptadores.



26

Essa abordagem simétrica permite que qualquer comunicagdo com o dominio seja
realizada através de portas, independentemente da diregdo, promovendo um
desacoplamento total entre a logica de negdcio e as dependéncias externas. Isso
contribui para a flexibilidade e facilidade de teste, pois os adaptadores podem ser

substituidos ou modificados sem afetar o nucleo da aplicagao.

Diante desse cenario os diferentes componentes do sistema podem ser testados
isoladamente durante o desenvolvimento e futuramente o tradicional teste integrado
pode e deve ser realizado, porém com varios bugs ja mitigados pelos testes

unitarios.

Em suma, a légica de negdcios pode ser testada em memoéria separadamente dos

componentes de banco de dados e APIs.

Todos esses pontos faz-se concluir que o padrdo facilita o uso de metodologias
direcionadas a testes como TDD (Test Driven Development) e BDD (Behavior Driven
Development), entretanto, vale ressaltar que o uso dessas metodologias nao sao
obrigatérias, pode-se concluir o desenvolvimento do software e posteriormente

testa-lo como o costume do time de engenheiros.

Do ponto de vista de testes o que fica claro € que o padrdo é uma arquitetura bem
direcionada a testes unitarios e por consequéncias a viabilidade de testes

automatizados.

2.7 Comparagao Arquitetura Hexagonal vs Demais Arquiteturas e DDD (Domain

Driven Design)

No livro Hexagonal Architecture Explained Alistair CockBurn faz uma breve
comparagao entre Arquitetura em Camadas, Arquitetura Limpa e Arquitetura

“Cebola” para elucidar a Portas e Adaptadores.

Portas e Adaptadores tem apenas duas camadas, dentro da aplicagado (dominio) e
fora da aplicagdo (qualquer coisa). O requisito principal € que vocé organize os

atores externos para se conectar em portas especificas.

Arquitetura em Camadas requer que o codigo seja separado por preocupagdes e 0s

organize em niveis, de modo que o nivel superior chame ou dependa dos niveis



27

inferiores. Preocupacdes abstratas sao colocadas no nivel superior da arquitetura e
os itens de infraestrutura sdo colocados na parte inferior da aplicagdo. Os
componentes das camadas superiores dependem das camadas inferiores, porém o

inverso nao € uma verdade.

A Arquitetura em Camadas coloca a aplicagdo abaixo da interface do usuario e da

infraestrutura.

A Arquitetura Limpa, “Cebola” e de Portas e Adaptadores sdo semelhantes, o
objetivo delas é promover a independéncia do dominio, inclusive o diagrama dessas
arquiteturas aparecem invertidos em comparagao com os diagramas tradicionais de

arquitetura em camadas.

Figura 3 - Portas e Adaptadores, especificado apenas com duas camadas “dentro” e “fora”

Layers 2+ : Everything Else
(the “Outside”: How you organize everything here is your business)

the configurator
.‘-__ el e— .
T adapher ) -~ e adapter
| > o 2l I‘Iw".\.
[ | \
X K ; /\
i \ & driving ackr x::‘l"'a._‘_\
L | | needing no adepter needing ro sdapler / = |
a arring actor | 7 Y /| = driven actor
needing an adapier \ \ J,-' needing an adapler
I]. / l‘l 1".
1 ' \ f
\ I') \
\ I ]
- e L/ ; flﬂmrn.m:l:-
(Mcke & pot o sl
{a driving port) {oonfgurator actess) (@ driven port) an imerTacs
k has o depth in 2
e degram|

Layer 1: The App

(v “Insida™ How you OMganize éveyThing hane & your Dusiness)

Fonte: Cockburn, Alistair; Garrido de Paz, Juan Manuel. Hexagonal Architecture Explained

(p- 97). Humans and Technology Inc. Edi¢cao do Kindle.

Em suma, a Arquitetura Hexagonal se diferencia da Arquitetura Limpa e Arquitetura

“Cebola” pela forma como se organiza, que séo portas e adaptadores.



28

As arquiteturas Limpa e “Cebola” se organizam de forma concéntricas, as camadas
externas ao dominio dependem da légica de negdcio, que esta no nucleo e nao
conhecem as camadas externas, ambas sao eficientes para desacoplar o dominio
de dependéncias externas, mas a Arquitetura Limpa oferece uma estrutura mais
complexa e detalhada, enquanto a Arquitetura em Cebola foca diretamente na

protecdo do dominio com uma abordagem mais enxuta.

Figura 4 - Arquitetura Limpa

The Clean Architecture

] Enterpeise Business Rules
e ] Application Business Rules
1| intertace Adapters

{_| Frameworks & Drivers

Fonte: Cockburn, Alistair; Garrido de Paz, Juan Manuel. Hexagonal Architecture Explained

(p. 98). Humans and Technology Inc. Edi¢ao do Kindle.

Figura 5 - Arquitetura “Cebola”

Onion Architecture

Fonte: Cockburn, Alistair; Garrido de Paz, Juan Manuel. Hexagonal Architecture Explained

(p- 98). Humans and Technology Inc. Edi¢ado do Kindle.



29

Analisando e comparando todos esses pontos é facil ser induzido ao pensamento de
que Portas e Adaptadores e DDD (Domain Driven Design) sao padroes

arquitetonicos relacionados, no entanto néo séo.

Alistair Cockburn discute no livro Hexagonal Architecture Explained como os dois
padrdes arquitetbnicos se complementam ao buscar a construgdo de sistemas

centrados no dominio desacoplados e flexiveis.

No DDD (Domain Driven Design), o objetivo € refletir no cédigo a linguagem e os
processos da area de dominio, facilitando a colaboracdo com especialistas do

negocio e criando um sistema que evolua com as necessidades de negdcio.

A semelhanca do foco do DDD (Domain Driven Design) com o objetivo da
Arquitetura Hexagonal é proeminente, ambos tém como preocupacéo principal a
protecdo do dominio da aplicagdo, onde a logica de negocio € completamente
isolada das dependéncias externas. Isso permite que o sistema evolua de forma
alinhada com as necessidades do negocio, mantendo alta manutenibilidade e
testabilidade.

2.8 Trade-Offs Arquitetura Hexagonal
Como beneficios da arquitetura podemos dizer que:

1.) A arquitetura aumenta significativamente a testabilidade da aplicagao pelos
seguintes motivos:

a.) A légica de negdcios pode ser testada rapidamente em memoria;

b.) Os diferentes componentes do sistema podem ser testados
separadamente e posteriormente integrados;

c.) Ao alterar um cédigo da aplicagdo por qualquer motivo, seja uma nova
feature, correcdo de bugs, etc. Os testes ja existentes podem ser
usados como teste de regressdo. Isso permite verificar se a alteragao
feita introduz um comportamento ndo desejado na funcionalidade ja
existente, bem como verificar qualquer vazamento de légica entre a
aplicagao e o mundo exterior;

2.) Metodologias como TDD (Test Driven Development) e BDD (Behavior Driven

Development) sao faceis de serem aplicadas nessa arquitetura;



30

3.) Portas e Adaptadores aumenta a manutenibilidade da aplicagéo, fornecendo
uma separagao de preocupacdes e desacoplamento da légica de negdcios, o0
que facilita a localizagéo do cddigo que se deseja modificar;

4.) A manutenibilidade de aplicacdo € um RNF que esta ligado diretamente com
a reducdo de débitos técnicos, pois quanto maior a capacidade de
manutencdo de um sistema, os débitos técnicos tendem a ser menores pela
facilidade de alteragao, logo a Arquitetura Hexagonal € um grande aliado em
reducdo de débitos técnicos;

5.) Portas e Adaptadores facilita a evolugéo e adigado de novas tecnologias;

6.) A l6gica de negdcios pode ser desenvolvida sem necessidade de saber quais

tecnologias serao utilizadas, evitando o atraso de decisdes tecnologias.
Como custos temos:

1.) A estrutura, e processo de desenvolvimento da aplicagdo sdo mais complexos
do que em outras arquiteturas, como por exemplo a arquitetura classica de
trés camadas;

2.) Portas e Adaptadores introduz mais um nivel de indire¢do do lado acionado,
uma vez que os adaptadores devem traduzir as interfaces necessarias em
interfaces especificas das diferentes tecnologias.

3.) Pode haver a necessidade de adicao de mapeadores que mapeiam entidades
do modelo do dominio em entidades do modelo de persisténcia.

4.) Aprender essa arquitetura nao € facil, requer experiéncia e pode ser dificil
para programadores iniciantes;

5.) O inicio de um novo projeto leva mais tempo em relagdo as demais
arquiteturas, portanto Portas e Adaptadores € indicado para projetos de

médio a grande porte.

2.9 Consideragoes do Capitulo

Este capitulo teve como objetivo estudar os conceitos da Arquitetura Hexagonal e

identificar a aplicabilidade em desenvolvimento de sistemas.



31

A introducdo a essa arquitetura se faz necessaria como parte do processo de estudo
para analise de aplicabilidade ou ndo desta arquitetura em desenvolvimento de

sistemas.

Este capitulo servirdA como insumos para o proximo capitulo que focara no

procedimento da técnica para aplicabilidade propriamente dito.

3. DESENVOLVIMENTO
3.1 Procedimento da Técnica para Aplicabilidade da Arquitetura Hexagonal

Neste capitulo sera demonstrado a técnica utilizada para aplicagao da Arquitetura
Hexagonal.

Para elaboracéo da técnica sera apresentado um diagrama de processos do BPMN

ilustrando cada etapa de estudo para aplicabilidade da Arquitetura Hexagonal.

Figura 6 - Processo de Técnica de Aplicagdo da Arquitetura Hexagonal



Processo de Técnica de Aplicagao da Arquitetura Hexagonal

32

Processo de Técnica de Aplicacao da Arquitetura Hexagonal

Mofma
ISONEC/IEEE 42010

Arquitetura Atual

Elementos frguiteturais

le Arquitetura Alvo

Levantar & Comparar
Elemeantos Arguiteturais

Realizar Andlize de

Aplicar a Arquitetura
Hexagonal através de

Verificar uso da

Proposta de
Implementacgo da

Entender a _|Identificar Stakeholders .| da Arquitetura Atual vs Correspondéncias - ; | Arquitstura Hexagonal -
Arquitetura Atual Arquitetura Atual | Arquitetura Hexagonal | entre Arquitetural Atual - Diagrama “| a partir de Diagrama Arqun_eturg Haxagun.gl
; ; Componentes com Pl da Aplicacio de Gesido
(Arquitetura Vs Arguitetura Alvo de Sequencia UML 7
Referéncia) Modelo C4 de Pagamentos

Fonte: Autora




33

As etapas do processo serao explicadas nos proximos tépicos.

3.2 Entender a Arquitetura Atual

Tabela 1 - Atividade Entender a Arquitetura Atual

Entender a Arquitetura Atual

Descricao

Entender a Arquitetura Atual através de
técnicas que identifiquem o contexto,

estrutura e interagdo dos componentes da

aplicagdo em estudo. Entender a
O—' Arguitetura Atual |

Executores

Arquiteto de Software

Entradas

e Aplicacao/Sistema

Tarefas Saidas
1. Identificar o contexto da e Diagrama de Contexto Modelo C4
Aplicacao/Sistema. e Diagrama Arquitetura Atual
2. Identificar Arquitetura da e Diagrama de Componentes
Aplicacao/Sistema Modelo C4

3. Identificar Interagcao dos
Componentes da Aplicacao/Sistema

Como case pratico para o estudo sera utilizado uma Aplicacdao de Gestao de

Pagamentos de uma institui¢cao financeira.

3.2.1 Identificagdo do Contexto da Aplicagdo Gestao de Pagamentos.

A Aplicagcao de Gestdo de Pagamentos consiste em gerir os compromissos através
do aplicativo bancario do cliente exibindo os pagamentos a vencer, vencidos, débitos

automaticos e agendamentos.



34

O sistema tem como caracteristica a integracdo com sistemas do mainframe para
identificar os boletos a vencer e vencidos, os boletos em débito automatico e os
agendados para posterior pagamento, além de consumir APIs corporativas da

instituicdo para identificagéo do cliente e conta corrente.

O sistema do mainframe por sua vez integra com a Nuclea (Sistema Nacional de

Boletos) para identificar boletos emitidos por outras instituigdes no CPF do cliente.

A core do sistema se divide em trés fluxos, Boletos, Débitos Automatico e
Agendamentos sendo o de boletos um dos mais complexos por conta de algumas
regras de status de boletos que sao aplicadas nesse fluxo apdés a consulta no

mainframe.

O fluxo escolhido para utilizar a técnica de aplicagao de Arquitetura Hexagonal, sera

o de Boletos.

Para representar o contexto da aplicagcdo o Diagrama de Contexto do Modelo C4

sera aplicado.

A escolha pelo Modelo C4 para representacao do Diagrama de Contexto e Diagrama
de Componentes da Aplicagdo se da pela facilidade de comunicagdo que essa
técnica de modelagem de arquiteturas oferece, elucidando claramente a
comunicacdo entre os diversos stakeholders envolvidos, desde executivos até
desenvolvedores

Figura 7 - Diagrama de Contexto Aplicacdo Gestdo de Pagamentos

Diagrama de Contexto Aplicagdo Gestao de Pagamentos

Conta Corrente
usa [Software System]

!
| : -
i
Cliente 0 Gestao de Pagamentos : Cadastro Pessoa
[Person] ues [Software System] [Software System]
i
i
. -
Mainframe
[Software System]

Fonte: Autora



35

3.2.2 Identificagado da Arquitetura da Aplicagao Gestao de Pagamentos.

Essa aplicacéo foi desenvolvida em Arquitetura de Camadas, uma caracteristica da
Arquitetura em Camadas é a forte dependéncia da camada superior com a camada
inferior do sistema causando complexidade de manutencgao e teste a cada alteracgéo,
conforme citado no topico 2.7 Comparacdo Arquitetura Hexagonal vs Demais

Arquiteturas e DDD (Domain Driven Design) deste trabalho.

Figura 8 - Diagrama em Camadas Aplicagdo Gestdo de Pagamentos Arquitetura Atual

Diagrama em Camadas Aplicacao Gestao de Pagamentos Arquitetura Atual

Servicos de Integracéo

Camada de Apresentagio Superapp
S\ -
' ™
Fachada
A 4
e —— ~ T
Camada de Negdcio : Controladores
I
' . A
I
! - ~
I
I
I
i
I

L]
I
I
I
: Aplicagdo Gestdo de Pagamentos
L)
L)
L)
L)
L)
L)

\ A
_____ ; __________________________________\______
Mainframe
Sistemas de Integracdo ~ S
-
DB2 { Nuclea
A

Fonte: Autora



36

3.2.3 Identificagcdao Interacido dos Componentes da Aplicacdo Gestao de

Pagamentos

A partir da identificacdo da Arquitetura da Aplicacao é possivel obter uma visao mais
detalhada da interacdo dos componentes através do Diagrama de Componentes do
Modelo C4.

Figura 9 - Diagrama de Componentes Aplicacdo Gestao de Pagamentos Arquitetura Atual

Diagrama de Componente Aplicacdao Gestao de Pagamentos Arquitetura Atual

SuperApp

[Container: Nativo Android + Swiff]
frant mobile

chama
[sync. JSONMHTTP]

BFF Backend
[Container- Java + Spring Boof]
comunicagdo front com backend

S
chama chama
[sync, JSON/HTTR] [sync. JSON/HTTP]
chama
| Isyc JsONHTTR)
y " Y | Débitos Automaticos
Controller Boletos Controller I Controller

o - Pest Comiraliad] [Component: Rest Controller] i et Corialiant
[Component: Rest Contraller] [Component: Rest Controlier] [Software System]

Agendamentos
retorna boletos vencidos e a vencer

retorna agendamentos retorna débitos automaticos

Sistema Macional de Boletos

A

consulta
[synciasync, XML/HTTP]

|
|
|
| Nuclea
|
|
|
|

Y
| Service APls

Mainframe
[Software System]

Service Mainframe consulta
[Compenent Spring Service] J

anent: Spring Service] [sfnciasync, XML

chamaz APls | ‘ comunicagdo com mainframe

processa transacdes e armezena

informacées do cliente e conta
Il — - — — | — & — — — — —_— — 4
| riw dados

[sync, IBM Db2 for /OS]
chama chama -
[sync, JSON/HTTP] [synE, JSOR/HTTR]

APl Conta Corrente

[Software System]

Banco Dados
[Container: DB2]

API| Cadastro Pessoa
[Software System]

retorna informacdes

armazena dados de clientes e contas
de contas comrente

retorna informagdes de clientes

Fonte: Autora

Observando o diagrama em questdo € perceptivel a forte dependéncia dos
componentes de entrada (Controllers) da aplicagdo com os Services. Todas as
entradas Controllers interagem com esses componentes ocasionando uma dificil
manutengao pela complexidade e quantidade de interacbes com aplicagbes

externas e regras de negocio.



37

O teste se torna custoso nesse cenario, pois qualquer alteragéo feita em algum dos
“‘Services” todas as entradas “Controllers” (agendamentos, boletos e débito
automaticos) precisam ser testadas para garantir que nenhuma funcionalidade da

aplicacao foi afetada por conta de alguma alteracéao.

3.3 Identificar Stakeholders da Arquitetura Atual

Tabela 2 - Atividade Identificar Stakeholders da Arquitetura Atual

Identificar Stakeholders da Arquitetura Atual

Descrig¢ao

Identificar os stakeholders da
aplicagao/sistema para apoio no
levantamento de requisitos

Executores |dentificar Stakeholders

Arquiteto de Software Arquitetura Atual —
Entradas

e Aplicacao/Sistema
Tarefas Saidas

1. ldentificar stakeholders da e Diagrama de Caso de Uso UML

aplicagao/sistema.

Para identificacdo dos stakeholders sera utilizada a técnica de Caso de Uso da UML
que permite identificar os atores que interagem com o sistema. Os atores
representam usuarios, sistemas externos ou qualquer entidade que execute acdes
ou receba respostas. Cada ator sera representado por uma figura de “stickman" e

conectado aos casos de uso que ele pode executar, desenhados como elipses.

A clareza visual desse diagrama comunica rapidamente as principais interagdes dos
atores, ajudando na compreensao das funcionalidades e das expectativas dos

stakeholders.



38

Figura 10 - Caso de Uso Identificagdo de Stakeholders

Identificacdo de Stakeholders

_.—-""'_'_F'_H’—F
entende f i
i define Desenha Solucio Coordenador de TI

Arquiteto
entende
. \i

Solucdo
Engenheiro de Confiailidade de Sites

Desenveolvedor

al

2]

testa ‘\\ valida

Analista de Qualidade Gerente Produto

Usuario

(

Fonte: Autora

A identificagcdo dos stakeholders é importante pelo fato deles serem impactados
diretamente com os problemas da aplicagdo, sendo no contexto da Aplicagdo de

Gestado de Pagamentos a manutenibilidade e testabilidade.

Qualquer alteragao ou mudancga de arquitetura € necessario estar alinhado com os
stakeholders, inclusive para levantamento dos requisitos, eles reportam os

problemas referente a Arquitetura Atual.

No contexto da Aplicacdo de Gestdo de Pagamentos os stakeholders identificados
sdo: Arquiteto de Solugdo, Coordenador de TI, Desenvolvedores, Analista de
Qualidade, Engenheiro de Confiabilidade de Sites, Gerente de Produtos e Usuario.

Todos eles desempenham um papel importante na Aplicacdo de Gestdo de
Pagamentos.



39

O Arquiteto de Solucédo é responsavel pela solucido da aplicacdo, ele desenha a
arquitetura que melhor convém as necessidades dos demais stakeholders

envolvidos.

O Coordenador de TI, participa do desenho de arquitetura juntamente com o
Arquiteto de Solugao contribuindo e sugerindo possiveis solu¢gdes de acordo com a
necessidade do time de produtos e do negdcio, ele é responsavel por traduzir a
‘linguagem” de negdcios para a “linguagem” de tecnologia e por orquestrar o time de
desenvolvedores para garantir que o desenho proposto pelo arquiteto seja aplicado

na aplicagao/sistema.

Os Desenvolvedores participam do desenho de solugdo opinando e sugerindo, por
serem responsaveis pela construcdo e tornarem real o desenho de solugdo do

Arquiteto de Softwares.

O Analista de Qualidade verifica a funcionalidade da aplicag&o/sistema, encontram o
maior numero de bugs possiveis antes mesmo que a aplicagdo chegue nas maos do

usuario. Eles sédo responsaveis por garantir a qualidade da aplicagao/sistema.

O Engenheiro de Confiabilidade de Sites monitora o desempenho da aplicagédo no
ambiente produtivo, se antecipando a possiveis falhas que podem acontecer ou
resolvendo falhas e problemas que acontecem com ambiente e aplicagao/sistema

durante o seu funcionamento.

O Gerente de Produtos define os requisitos funcionais da aplicagdo/sistema e
garante que todos os requisitos funcionais foram atendidos na aplicagao/sistema de

acordo com as necessidades do negocio.

O usuario no contexto da Aplicacdo de Gestdo de Pagamentos € o cliente ele se
beneficia da solugao ele usufrui dos requisitos funcionais para resolver problemas ou

facilitar uma acao cotidiana.

A Aplicacdo de Gestdo de Pagamentos no ambito de requisitos funcionais possui o
controle de pagamentos, como boletos a vencer, boletos vencidos, boletos

agendados, tributos agendados e débitos automaticos.



40
3.4 Levantar e Comparar Elementos Arquiteturais da Arquitetura Atual vs
Arquitetura Hexagonal (Arquitetura Referéncia)

Tabela 3 - Atividade Levantar e Comparar Elementos Arquiteturais da Arquitetura Atual vs

Arquitetura Hexagonal (Arquitetura Referéncia)

Levantar e Comparar Elementos Arquiteturais da Arquitetura Atual vs

Arquitetura Hexagonal (Arquitetura Referéncia)

Descricao
Baseado na Norma ISO/IEC/IEEE 42010 \
(Descrigao de Padrao de Arquitetura) listar e
comparar os elementos da Arquitetura Atual Notma
vs Arquitetura Hexagonal (Arquitetura ISONEC/EEE 42010
Referéncia)
Executores Levantar :Cmnparar
Elementos Arquiteturais
da Arquitetura Atual vs
Arquiteto de Software A?queutlu_?aulla:a:zngl )
(Arquitetura
Entradas Referéncia)
e Aplicacao/Sistema
e Norma ISO/IEC/IEEE 42010
Tarefas Saidas
1. Listar e Comparar Elementos e Tabela listando Elementos
Arquiteturais da Arquitetura Atual vs Arquiteturais da Arquitetura Atual,
Arquitetura Hexagonal (Arquitetura Arquitetura Hexagonal
Referéncia) (Referéncia) e Arquitetura Alvo

Focando nos problemas ja identificados da Aplicagédo de Gestdao de Pagamentos é
com base na Descricao de Padrao de Arquitetura da Norma ISO/IEC/IEEE 42010,
sera levantando os Elementos Arquiteturais da Arquitetura Atual e da Arquitetura
Hexagonal (Arquitetura de Referéncia) segundo a literatura de Alistair Cockburn
citada no capitulo 2 desta monografia, um comparativo sera realizado gerando

insumos para Arquitetura Alvo.



41

Tabela 4 - Tabela Comparativa Elementos Arquiteturais Arquitetura Atual vs Arquitetura

Hexagonal (Arquitetura Referéncia)

Tabela Comparativa Elementos Arquiteturais

Arquitetura Atual vs Arquitetura Hexagonal (Arquitetura Referéncia)

Elementos Arquiteturais

Aplicagao Gestao
de Pagamentos

Arquitetura
Hexagonal por
Alistair Cockburn

Aplicagao Gestao
de Pagamentos

SlellsgIE= 2RI (Arquitetura Atual) | (Arquitetura (Arquitetura Alvo)
Referéncia)
- APP
Sistema API Boletos (dominio/nucleo/logica | API Boletos
de negdbcio)
- Arquiteto de - Arquiteto de
Solugao Solugao
- Desenvolvedor - Desenvolvedor
- QA -QA

Stakeholders

- Product Owner

- Coordenador de TI
- SRE

- Usuario

- Product Owner

- Coordenador de TI
- SRE

- Usuario

Preocupacoes
(concerns)

Requisitos Nao
Funcionais

- Manutenabilidade
- Testabilidade

Esta arquitetura é
especialmente util para
construir sistemas
modulares e flexiveis,
facilitando testes e
manutencao.

Requisitos Nao
Funcionais

- Manutenibilidade:
sistema deve ser
desenvolvido de
forma modular, com
cada componente
isolado para facilitar
futuras alteracdes e
atualizacgdes.

- Testabilidade: grau
em que um sistema
ou componente
facilita a criacao,
execugao e
avaliacéo de testes,
permitindo a
verificagdo de seus
comportamentos e a
detecgao de falhas,
de forma precisa e
eficiente.




42

Ponto de Vista de
Organizagdo em
Camadas:

Cada camada tem
responsabilidades

Ponto de Vista de
Conectividade:
aborda como os
adaptadores se

Abordar
modularidade e a

Ponto de Vista I . capacidade de troca
especificas e conectam e interagem
) , de adaptadores sem
interage com outras | com o nucleo da ; .

C impactar nucleo
camadas de aplicacao e as
maneira hierarquica | dependéncias externas
e estruturada.
-Visao Légica:
mostra a
organizagao em
diferentes niveis de
abstracéo,
detalhando a - Visdo Légica: Mostra
estrutura e as A
) ~ a organizagao do e .
interagbes entre as . - Visdo Légica: sera
nucleo, portas, e
camadas, como representada por
.~ ~ adaptadores em um .
Visao apresentacao, di Diagrama de
R " iagrama de camadas
I6gica de negdcio e ara comunicar a Componentes
dados. Cada P Modelo C4
. estrutura modular do
camada possui uma | .
g sistema.

fungao distinta,
interagindo de
forma definida e
controlada com as
camadas
adjacentes
- Camada de - Entidades e Casos de
Apresentacao Uso

Arquitetura - Cemeek dp lugie | - Feliee Hexagonal

9 de Negocios - Adaptadores 9

- Sistemas de - Interfaces Externas e
Integragéo Dependéncias




43

Representado
visualmente em
camadas é uma

Representado
visualmente com um
hexagono central para

representagao ,
0 nucleo, cercado por
detalhada de como
) . adaptadores e
o sistema é .
interfaces que
estruturado e . .
) conectam o sistema as
organizado. A :
dependéncias Diagrama de
Este modelo
. X . externas. Componentes
Modelo de Arquitetura concretiza a visao :
Este modelo ajuda a Modelo C4
de camadas ao . )
visualizar a
detalhar os . N
independéncia do
componentes, .
. nucleo, realgando a
modulos e .
. modularidade e a
interfaces de .
capacidade de trocar
camada, como
~ adaptadores sem
apresentacao, ) .
. . impactar a légica de
l6gica de negocios e
negocio.
e dados.
Na arquitetura em
camadas, as
relagdes
especificam as
interacdes e ~ .
N Separacao clara entre | Garantir que os
dependéncias entre g
O nucleo e os adaptadores
~ as camadas, . . X
Relagoes e adaptadores, evitando | estejam isolados e
At enquanto as 7 ]
Correspondéncias . que o nucleo dependa | sigam contratos
correspondéncias

Regras de Consisténcia

verificam que essas
relagdes sao
consistentes e
atendem aos
requisitos e
preocupagoes dos
stakeholders.

de detalhes de
implementacao
externa.

(interfaces) para
interagir com o
nucleo

Biblioteca de Padroes

- Camada de
Apresentacao

- Camada de Légica
de Negodcios

- Sistemas de
Integracéo

- Entidades e Casos de
Uso

- Portas

- Adaptadores

- Interfaces Externas e
Dependéncias

Hexagonal

Fonte: Autora




44

3.5 Realizar Analise de Correspondéncias entre Arquitetura Atual vs

Arquitetura Alvo

Tabela 5 - Realizar Analise de Correspondéncias entre Arquitetura Atual vs Arquitetura Alvo

Alvo

Realizar Analise de Correspondéncias entre Arquitetura Atual vs Arquitetura

Descricao

Com os Elementos Arquiteturais da
Arquitetura Alvo listados efetuar uma analise
de correspondéncia entre Arquitetura Atual e
Arquitetura Alvo

Executores

Arquiteto de Software

Entradas

e Elementos Arquiteturais Arquitetura
Atual

e Elementos Arquiteturais Arquitetura
Alvo

L

Elementos frguiteturais
Arguitetura Atual B Arquitetura Alvo

Y

Realizar Andlize de
Correspondéncias
enfre Arquitetural Atual
vs Arguitetura Alvo

Tarefas

Saidas

1. Realizar Anélise de
Correspondéncias entre Arquitetura
Atual e Arquitetura Alvo

e Matriz de Correspondéncias da
Arquitetura Atual vs Arquitetura
Alvo

Inspirado na Matriz de Analise de Gaps do TOGAF sera criado uma Matriz de

Correspondéncias entre a Arquitetura Atual e Arquitetura Alvo visando encontrar os

componentes correspondentes, componentes nao correspondentes e que deverao

ser removidos e componentes que necessitam ser desenvolvidos para a Arquitetura

Alvo.



45

Tabela 6 - Matriz de Correspondéncias entre Arquitetura Atual vs Arquitetura Alvo

Matriz de Correspondéncias entre

Arquitetura Atual vs Arquitetura Alvo

arquitetura

alvo |
arduitetura controller nucleo portas adaptadores ijetos
q eliminados
atual
controller corresponde
camada de
e corresponde
negocios
camada de
integracao nao
com corresponde
servigos
~ nao
nao )
. corresponde:
corresponde: os
novo _] as pgrtas adaptadores
deverao ser ~
X deverao ser
desenvolvidas

desenvolvidas

Fonte: Autora

Com a Matriz de Correspondéncias é possivel identificar que os componentes

Portas e Adaptadores deverao ser desenvolvidos para Arquitetura Alvo.

3.6 Aplicar a Arquitetura Hexagonal através de Diagrama de Componentes com

Modelo C4

Tabela 7 - Aplicar a Arquitetura Hexagonal através de Diagrama de Componentes com

Modelo C4



46

Aplicar a Arquitetura Hexagonal através de Diagrama de Componentes com
Modelo C4

Descrig¢ao

Aplicar a Arquitetura Hexagonal através de
Diagrama de Componentes do Modelo C4 na

Aplicacdo Gestao de Pagamentos com os . .

. . Aplicar a Arguitetura
componentes gerados a partir da Analise de Hexagonal atraves de
Correspondéncias. Diagrama —

Componentes com
Executores Modelo C4

Arquiteto de Software

Entradas

e Matriz de Correspondéncias entre
Arquitetura Atual vs Arquitetura Alvo

Tarefas Saidas
1. Aplicar a Arquitetura Hexagonal e Diagrama Componentes Modelo
através de Diagrama de C4 com a Arquitetura Hexagonal
Componentes com Modelo C4 aplicada na Aplicagao de Gestao

de Pagamentos

Figura 11 - Diagrama de Componente Aplicacdo Gestao de Pagamentos com Arquitetura

Hexagonal Aplicada



47

Diagrama de Componente Aplicacao Gestao de Pagamentos - [API Boletos Arquitetura Alvo]

Boleto Controller

[Component: Rest Controlier]

recebe requisicies dos ufilizadores e
encaminha para boleto senvice

instancia

Cadastro Pessoa Port Boleto Service Conta Corrente Port

[Component: Interface] Companent: Spring Service] . [Companent: Interface]
\nstancwa—|—>
interface comunicagio logica de negécio (dominio) de boletos interface comunicacio
API Cadastro Pessoa vencidos e a vencer APl Conta Corrente
implementa —_— \nsténc\a_ — implementa
—

Mainframe Port

[Component: Interface]

Cadastro Pessoa Adapter

[Component: Spring Service]

implementa o servige Cadastro Pessoa interface comunicacdo com mainframe implementa o servigo Conta Corrente

\
4—‘ instincia
\
\
\
\
\
\

|
|
|
|
Conta Corrente Adapter |
|
|
|

| [Companent: Spring Service]

chgma chama
[sync. JSONHTTPS] — — [smc. JSQWHITPS|—  —
| J Y

Mainframe Adapter

[Software System] [Component: Spring Service]

API Cadastro Pessoa

retoma informagdes de clientes implementa o sevigo do mainframe

\
\
\
‘ implementa
\
\
\
\

chama
[sync/asyng, XML/HTTP]

API Conta Corrente

[Software System]
retoma informagdes
de contas comente

\d

Mainframe Nuclea
[Software System] consulta [Software System]
sfnciasync, XML/ 5]
processa transacdes e armezena Sistema Macional de Boletos

informacies do cliente e conta

riw dados
[syng I1BM Db2 for z/05]

Banco Dados
[Container: DB2)

armazenz dades de clientes e
contas

Fonte: Autora

Através do Diagrama de Componentes do Modelo C4 € possivel visualizar as portas
e adaptadores da Arquitetura Hexagonal sendo aplicada na Aplicacéo de Gestao de
Pagamentos trazendo interdependéncia dos componentes isolando o dominio da

aplicagao.

Boleto Service € o nucleo da aplicagao e para cada sistema externo teremos uma

Porta e um Adaptador para conexao.

A Porta expdéem as fungdes dos Adaptadores de forma abstrata e nas funcdes dos

Adaptadores teremos a l6gica de conexao com os sistemas externos.



48

3.7 Verificar o Uso da Arquitetura Hexagonal a partir de Diagrama de Sequéncia

da UML

Tabela 8 - Verificar o Uso da Arquitetura Hexagonal a partir de Diagrama de Sequéncia da

UML

da UML

Verificar o Uso da Arquitetura Hexagonal a partir de Diagrama de Sequéncia

Descricao

Através do Diagrama de Sequéncia da UML
verificar a eficacia da Arquitetura Hexagonal
para mitigar o problema de manutenibilidade
e testabilidade na Aplicacado de Gestao de
Pagamentos

Executores

Arquiteto de Software

Entradas

e Diagrama de Componentes Modelo
C4 com Arquitetura Hexagonal
aplicada na Aplicagao Gestao de
Pagamentos

Verificar uso da

. Arquitetura Hexagonal
a partir de Diagrama
de Sequéncia UML

Tarefas

Saidas

1. Verificar o Uso da Arquitetura
Hexagonal a partir de Diagrama de
Sequéncia da UML

e Diagrama de Sequéncia da UML
da Aplicacao Gestao de
Pagamentos com a Arquitetura
Hexagonal Aplicada

Usando o Diagrama de Sequéncia da UML é possivel verificar a coesdo e a

interdependéncia dos componentes sugeridos pela Arquitetura Hexagonal na

Aplicacao de Gestdo de Pagamentos.

Dessa forma é possivel ter uma visao se de fato a Arquitetura Hexagonal resolve o

problema de manutenibilidade e testabilidade da aplicacao.



client
i

Figura 12 - Diagrama de Sequéncia UML da Aplicagdo Gestéo de Pagamentos com Arquitetura Hexagonal Aplicada

==controller==
‘BoletoController

olicita lista bolefos

b - -

-]

-retomna lista boletos-- --

e

solicita lista boletos—

k- --- retoma lista boletos-----

49

Diagrama de Sequéncia Aplicacdao Gestao de Pagamentos - [API| Boletos Arquitetura Alvo]

<<gervice==
‘BoletoService

=<interface==
.CadasiroPessoaPort

<<gervice=>
.CadastroPessoafAdapter

=<interface=>
:ContaCorrentePort

<<gervice=
:ContaCorrenteAdapter

<<interface==
:MainframePort

<<gervice==
‘MainframeAdapter

R

consulta id pessoa——p|
refomna id pessoa -----

consulta id pessoa—,

---fetona id conta corente - - -

onsulfa id conta comenie—m
ﬂ(—mnsulta id conta corrente—w,
- - fetorna id conta comente - -

define status de boletos

e s T

retorna boletos

g A S Y S

consulta boletos{idPessoa, idContaCorrente)

-

retoma boletos



50

3.8 Proposta de Implantagao da Arquitetura Hexagonal da Aplicagao Gestao de

Pagamentos

Tabela 9 - Proposta de Implementagdo da Arquitetura Hexagonal da Aplicagdo Gestdo de

Pagamentos

Pagamentos

Proposta de Implantagdo da Arquitetura Hexagonal da Aplicagao Gestao de

Descricao

Através de Diagrama de Visao Tecnoldgica
propor um modelo de implementagao da
Aplicacdo Gestao de Pagamentos com
Arquitetura Hexagonal aplicada.

Executores

Arquiteto de Software

Entradas

e Diagrama de Componentes Modelo
C4 com Arquitetura Hexagonal
aplicada na Aplicagao Gestao de

Froposta de
Implementacdo da
1{ Arquitetura Hexagonal
da Aplicacdo de Gestao

de Pagamentos

Arquitetura Hexagonal da Aplicagéao
Gestao de Pagamentos.

Pagamentos
Tarefas Saidas
5 e Diagrama de Visao Tecnoldgica da
1. Proposta de Implantacdo da Aplicacdo Gestdo de Pagamentos

- [API Boletos]

Como proposta para instalagdo da

Aplicagdo Gestdo de Pagamentos

especificamente para API Boletos, conforme abordado no tépico 3.2.71 Identificagéo

do Contexto da Aplicacdo Gestao de Pagamentos, apenas esse fluxo seria utilizado

como case pratico para aplicagcdo da Arquitetura Hexagonal, sera utilizado

infraestrutura AWS Cloud.

A sugestédo é a API| Boleto ser instalada em AWS ECS (Elastic Container Service).

A indicacdo do ECS simplifica a implantacdo de aplicagdes conteinerizadas,

reduzindo a complexidade operacional.



51

Figura 12 - Diagrama de Visdo Tecnolbgica da Aplicagdo Gestao de Pagamentos - [API Boletos]

Proposta de Implementagao da Arquitetura Hexagonal da Aplicagcido de Gestao de Pagamentos - [API| Boletos Arquitetura Alvo]

Avaiatitty Zone -
o OB — \\

co _ .

| 4 \ |

| i [g | I

: ! I !

Load Balance | ECS APl 1

AP Gatenay .
! Cadaskro Pessoa Cadastio Pessoa i Cadasiro Passoa | |
R i ! | |
p . !

Vi - Avallability Zone . " | | | 1

i 3 : | m | I

I

) [ /ﬁb \ | i i !

_______________________ Secutty GroLp— — — — — | Load Bal !

’ y Group— ~ <1 Gateey Losdalancs " ECSAPI Conta Carente | 1

! | Conta Carrente . — Auto Scalling Groups + = )

\ /
N Y,

SR

ECS AP Baleios

B

\
i
i
i
i
i

5 Load Batancs ECS BFF AP Gateway Eolsto
Rostess AP Galeway Boistos

" . — Aule Scaling Group- - — - <

B % o oc £

@
Customer
Hucles
—

oataway

Mainframe




52

3.9 Consideragoes do Capitulo

Este capitulo teve como objetivo principal avaliar a aplicabilidade da Arquitetura
Hexagonal na mitigagdo de problemas relacionados a manutenibilidade e

testabilidade na Aplicagao de Gestao de Pagamentos.

A manutenibilidade, entendida como a capacidade de modificar e aprimorar sistemas
ao longo de seu ciclo de vida, € um dos desafios recorrentes em sistemas
complexos. Igualmente importante, a testabilidade, que se refere a facilidade de
verificar e validar funcionalidades de um sistema, representa um aspecto critico para

garantir qualidade e confiabilidade.

A Arquitetura Hexagonal, também conhecida como Arquitetura de Portas e
Adaptadores, propdée um modelo que visa desacoplar o nucleo da aplicagao de suas
dependéncias externas, como bancos de dados, frameworks e APIls. Essa
separagdo promove uma organizacdo modular, permitindo que alteragcbes em

componentes externos nao afetem diretamente a Iégica central da aplicagéo.

No contexto da Aplicagdo de Gestdo de Pagamentos a Arquitetura Hexagonal
oferece mecanismos para encapsular essas integragdes, reduzindo impactos em

caso de mudangas e aumentando a flexibilidade do sistema.

Por meio de técnicas consagradas da Arquitetura de Software, como identificacao de
padrées, aplicacdo de principios de design e anadlise de requisitos, € possivel
fundamentar a escolha de uma arquitetura que atenda as demandas especificas do
dominio. Nesse processo, o uso de argumentos solidos, baseados em boas praticas

e estudos de caso, contribui para decisdes técnicas mais assertivas.

Em suma, a aplicagdo dos conceitos da Arquitetura Hexagonal pode ndo apenas
solucionar problemas especificos de manutenibilidade e testabilidade, mas também
estabelecer uma base robusta para o desenvolvimento continuo, favorecendo a

evolucdo do sistema e a adaptacdo as mudancas de mercado.



53

4. ANALISE DE RESULTADOS

A analise de resultados deste trabalho tem como foco avaliar a aplicabilidade da
Arquitetura Hexagonal na Aplicacdo de Gestao de Pagamentos, conforme proposto
nos objetivos da monografia. Este capitulo examina os resultados obtidos e objetivos
apresentados, relacionando-os com a literatura revisada e discutindo os desafios e

beneficios identificados ao longo do estudo.

4.1 Avaliagao dos Objetivos Propostos

O principal objetivo deste trabalho foi propor e avaliar um método para a
aplicabilidade de uma arquitetura de software que mitigue problemas relacionados a
manutenibilidade e estabilidade. Especificamente, o estudo focou na aplicagdo da

Arquitetura Hexagonal em uma aplicacao real de Gestao de Pagamentos.

Os objetivos foram amplamente atingidos, com a validagdo dos beneficios do
modelo proposto no ambito de desacoplamento, organizagcdo modular e flexibilidade
do sistema. Além disso, uma técnica de aplicabilidade de arquiteturas baseado em
diretrizes da norma ISO/IEC/IEEE 42010 e em Analise de Correspondéncias
inspirado na analise de Gaps TOGAF mostrou-se eficaz, permitindo uma transicéo

estruturada entre a Arquitetura Atual e a Arquitetura Alvo.

4.2 Melhorias Identificadas

Os principais beneficios observados com a aplicagdo da Arquitetura Hexagonal
foram a flexibilidade na testabilidade, organizacdo do sistema em portas e
adaptadores que permite que testes unitarios sejam realizados no nucleo da
aplicacdo, sem dependéncias externas, reduzindo o tempo de execucédo de testes e

aumentando a confiabilidade dos resultados.

Melhora na manutenibilidade, a separagcdo de responsabilidades e o
desacoplamento entre o nucleo da aplicagao e os componentes externos facilitam as

atualizagdes e corregdes, reduzindo o risco de introdugao de novos erros.



54

4.3 Comparativo Arquitetura Atual vs Arquitetura Alvo

A Matriz de Correspondéncias inspirada na Analise de Gaps TOGAF revelou que
objetos ndo correspondentes como componentes com fung¢des duplicadas ou

excessivamente acoplados foram substituidos por adaptadores especificos.

Objetos foram criados para as portas e adaptadores para mediar a interagao entre o

nucleo da aplicagao e as dependéncias externas.

Elementos como controladores foram preservados, mas com ajustes para se alinhar

a nova arquitetura.

A transigcado para a Arquitetura Alvo demonstrou ser viavel e vantajosa, com uma

organizagdo mais robusta para suportar evolugdes futuras.

4.4 Comparacao com a Literatura

A revisao bibliografica indicou que a Arquitetura Hexagonal se diferencia das
Arquiteturas em Camadas e Limpa pelo uso de Portas e Adaptadores, que
promovem um desacoplamento total. Os resultados obtidos corroboram os estudos
de Alistair Cockburn, que destacam a flexibilidade e a testabilidade como os

principais beneficios da abordagem.

Por outro lado, os trade-offs identificados na literatura, como maior complexidade
inicial e curva de aprendizado, também foram observados durante o estudo. Estes

desafios podem ser mitigados por meio de treinamentos e documentacédo adequada.

4.5 Beneficios e Limitagoes

Como beneficios destaca-se a possivel reducdo de débitos técnicos, a
manutenibilidade aumentada pode resultar em menos custos associados a

corregdes e melhorias futuras.

A Testabilidade aprimorada pode facilitar significativamente a utilizacdo de TDD

(Test Driven Development) e BDD (Behavior Driven Development).



95

A arquitetura resultante promoveu maior clareza na separagao de responsabilidades

com a organizagao modular.

Como limitagdes deve ser levado em consideragcao a complexidade inicial, o tempo e
esforco necessarios para implementar a Arquitetura Hexagonal que podem ser

superiores aos de outras arquiteturas.

Desenvolvedores menos experientes podem enfrentar dificuldades em compreender

e aplicar o modelo pelo tempo da curva de aprendizado.

4.6 Consideragoes do Capitulo

Os resultados obtidos reforgam a validade da Arquitetura Hexagonal para sistemas
que exigem alta manutenibilidade e testabilidade. No caso da Aplicacdo de Gestao
de Pagamentos, a aplicagdo dos conceitos de portas e adaptadores ndo apenas
mitiga problemas existentes, mas também criou uma base sélida para evolugao

futura.

Espera-se que a técnica desenvolvida neste trabalho sirva como referéncia para
outros sistemas que necessitam de um processo estruturado para aplicar uma
arquitetura, contribuindo para a expansdao e melhoria das praticas na area de

engenharia de software.

5. CONSIDERAGOES FINAIS

Este capitulo apresenta as conclusdes, contribuigbes do trabalho e algumas

possibilidades de trabalhos futuros

5.1 Conclusoes

A presente monografia demonstrou a relevancia da aplicagcdo da Arquitetura
Hexagonal no desenvolvimento de sistemas complexos, com foco especifico na
Aplicagdo de Gestdo de Pagamentos. Os resultados apresentados evidenciam que,

ao isolar o nucleo da aplicagdo das dependéncias externas por meio de portas e



56

adaptadores, a arquitetura promove maior flexibilidade, escalabilidade e
testabilidade. Esses fatores sao determinantes para reduzir custos com manutencéo,
minimizar débitos técnicos e garantir que o sistema se mantenha adaptavel as

mudancgas ao longo do tempo.

Além da técnica aplicada ao caso pratico, o trabalho propés um modelo sistematico
para a possivel aplicacdo de arquiteturas de software. Esse modelo combina
diretrizes estabelecidas na norma ISO/IEC/IEEE 42010, Analise de
Correspondéncias inspirado na Analise de Gaps do framework TOGAF e o uso de
diagramas do Modelo C4. Tal abordagem oferece um roteiro claro e replicavel que
pode ser utilizado em outros contextos da engenharia de sistemas. Ele ndo apenas
facilita a escolha de uma arquitetura adequada as necessidades especificas do
projeto, mas também fundamenta essa decisdo com base em critérios objetivos e

alinhados as melhores praticas da area.

5.2 Contribuicao Académica

Como contribuicdo académica e pratica, este trabalho apresenta a Arquitetura
Hexagonal como wuma alternativa eficiente as arquiteturas tradicionais,
destacando-se especialmente em sistemas que demandam alta manutenibilidade e
testabilidade. Por meio de sua abordagem baseada no desacoplamento entre o
nucleo da aplicagdo e as dependéncias externas, a arquitetura proporciona uma
organizagcdo modular e flexivel, facilitando a evolugdo continua dos sistemas,

mesmo em ambientes dindmicos e de alta complexidade.

Os beneficios observados incluem a possibilidade de reduzir débitos técnicos,
simplificar o processo de manutencdo e melhorar a qualidade geral do sistema por
meio da separacao clara de responsabilidades. Além disso, a estrutura de portas e
adaptadores torna a testabilidade um elemento central, permitindo que metodologias
como TDD (Test Driven Development) e BDD (Behavior Driven Development) sejam
aplicadas com maior eficiéncia. Essas vantagens sao particularmente relevantes em
sistemas criticos, como a Aplicagdo de Gestdo de Pagamentos explorada neste

estudo.



57

Entretanto, apesar dos beneficios significativos, a adogao da Arquitetura Hexagonal
apresenta desafios que precisam ser considerados. A implementacao inicial pode
demandar mais tempo e recursos, em comparagdo com arquiteturas tradicionais,
devido a necessidade de estruturar portas, adaptadores e configurar um nucleo
desacoplado. Além disso, a curva de aprendizado associada ao modelo € um fator
relevante, principalmente para desenvolvedores menos experientes ou equipes

acostumadas a paradigmas mais simples, como arquiteturas em camadas.

Esses desafios, no entanto, podem ser mitigados com a oferta de treinamentos
especificos e o uso de boas praticas de engenharia, como documentagéo clara e
frameworks que suportem o padrdao arquitetural. Com isso, espera-se que a
Arquitetura Hexagonal ndo apenas resolva problemas técnicos e organizacionais,
mas também contribua para o avang¢o do desenvolvimento de sistemas robustos e

preparados para mudancgas futuras.

5.2 Trabalhos Futuros

Para trabalhos futuros, recomenda-se a aplicacdo da técnica desenvolvida em
outros dominios e contextos de sistemas, a fim de validar sua generalidaOde e
eficiéncia. Adicionalmente, seria interessante explorar a integragdo da Arquitetura
Hexagonal com praticas emergentes, como arquiteturas orientadas a eventos e
sistemas baseados em inteligéncia artificial, analisando os beneficios e limitacbes
em cenarios contemporaneos. Por fim, estudos complementares poderiam investigar
estratégias para minimizar os custos iniciais de adogao, tornando essa arquitetura

ainda mais acessivel e viavel para projetos de pequeno e médio porte.

Assim, espera-se que as contribui¢des deste trabalho sirvam como base soélida para
decisbes arquitetbnicas mais assertivas e embasem novas investigagées no campo
da engenharia de software, ampliando o entendimento sobre as potencialidades e

aplicagdes da Arquitetura Hexagonal.



58

REFERENCIAS

COCKBURN, Alistair;, GARRIDO DE PAZ, Juan Manuel. Hexagonal Architecture
Explained. Humans and Technology Incorporated, 2024. Edicdo Kindle

FOWLER, Martin; RICE David; FOEMMEL, Matthew; HIEATT, Edward; MEE, Robert;
STAFFORD, Randy. Patterns of Enterprise Application Architecture.
Addison-Wesley Professional, 2002.

MAJUMDER Mainak; ZOITL Alois A Domain-Driven Design Oriented OPC UA
Server Development Methodology for CPPS. In 2023 IEEE 28th International
Conference on Emerging Technologies and Factory Automation (ETFA), April, 2023.
Proceedings [...]. DOIl: 10.1109/ETFA54631.2023.10275496. Disponivel em:
https://ieeexplore.ieee.org/abstract/document/102754967?casa_token=6EbLE4d4NC
QAAAAA:DBkKeavG0O CYel T2eSBDsr3IhcYL2LL9QANTL2YhxDEFg8W34dD60OBA
xhopns-EDFOIiZPj. Acesso em: 15 set. 2024.

JUNIOR Jackson; COUTINHO Pedro Restructuring the Software Architecture: A
Case Study of the CoolBiz Core Banking Platform. In 2023, CAPSI 2023.
Proceedings [...]. Disponivel em: https://aisel.aisnet.org/capsi2023/3/. Acesso em:
15 set. 2024.

FILHO, Nagib S. Comparagcdao entre Portas na Arquitetura Hexagonal e
Interfaces na Arquitetura Limpa: Uma Analise Conceitual e Pratica.
LEADERS.TEC.BR, vol 1, 26 aug 2024. Disponivel em:

https://leaders.tec.br/artigo/comparacao-entre-portas-na-arquitetura-hexagonal-e-inte

rfaces-na-arquitetura-limpa-uma-analise-conceitual-e-pratica. Acesso em: 14 set.
2024.

JEMUOVIC, Valentina Hexagonal Architecture - Ports and Adapters. Optivem
Journal, 30 mar 2023. Disponivel em:
https://journal.optivem.com/p/hexagonal-architecture-ports-and-adapters. Acesso 14
set. 2024.

IEEE/ISO/IEC  International Standard for Software, systems and
enterprise--Architecture description, In ISO/IEC/IEEE 42010:2022(E) , vol., no.,
pp.1-74, 7 Nov. 2022, Proceedings [...]- DOI: 10.1109/IEEESTD.2022.9938446.


https://ieeexplore.ieee.org/abstract/document/10275496?casa_token=6EbLE4d4NCQAAAAA:DBkKeavG0_CYeI_T2eSBDsr3IhcYL2LL9QAhTL2YhxDEFg8W34dD6OBAxhopns-EDFOiiZPj
https://ieeexplore.ieee.org/abstract/document/10275496?casa_token=6EbLE4d4NCQAAAAA:DBkKeavG0_CYeI_T2eSBDsr3IhcYL2LL9QAhTL2YhxDEFg8W34dD6OBAxhopns-EDFOiiZPj
https://ieeexplore.ieee.org/abstract/document/10275496?casa_token=6EbLE4d4NCQAAAAA:DBkKeavG0_CYeI_T2eSBDsr3IhcYL2LL9QAhTL2YhxDEFg8W34dD6OBAxhopns-EDFOiiZPj
https://aisel.aisnet.org/cgi/viewcontent.cgi?article=1023&context=capsi2023
https://aisel.aisnet.org/cgi/viewcontent.cgi?article=1023&context=capsi2023
https://aisel.aisnet.org/capsi2023/3/
https://leaders.tec.br/artigo/comparacao-entre-portas-na-arquitetura-hexagonal-e-interfaces-na-arquitetura-limpa-uma-analise-conceitual-e-pratica
https://leaders.tec.br/artigo/comparacao-entre-portas-na-arquitetura-hexagonal-e-interfaces-na-arquitetura-limpa-uma-analise-conceitual-e-pratica
https://journal.optivem.com/
https://journal.optivem.com/
https://journal.optivem.com/p/hexagonal-architecture-ports-and-adapters

59

Disponivel em: https://ieeexplore.ieee.org/document/9938446. Acesso em 29 out.
2024.

Padrao de Arquitetura Hexagonal, Disponivel em:

https://docs.aws.amazon.com/pt_br/prescriptive-quidance/latest/cloud-design-pattern
s/hexagonal-architecture.ntml Acesso em 15 set. 2024

Model and Meta Model Matters, Disponivel em:

http://www.iso-architecture.org/ieee-1471/meta/. Acesso em 29 out. 2024

The TOGAF® Standard, Version 9.2 > Part lll: ADM Guidelines & Techniques >
Gap Analysis, Disponivel em:

https://pubs.opengroup.org/architecture/togaf9-doc/arch/chap23.html. Acesso em 29
out. 2024.

C4 Model, Disponivel em: https://c4model.com/. Acesso em 24 out. 2024

AWS Fargate para Amazon ECS, Disponivel em
https://docs.aws.amazon.com/pt br/AmazonECS/latest/developerguide/AWS Fargat
e.html. Acesso em 15 nov. 2024



https://ieeexplore.ieee.org/document/9938446
https://docs.aws.amazon.com/pt_br/prescriptive-guidance/latest/cloud-design-patterns/hexagonal-architecture.html
https://docs.aws.amazon.com/pt_br/prescriptive-guidance/latest/cloud-design-patterns/hexagonal-architecture.html
http://www.iso-architecture.org/ieee-1471/meta/
https://pubs.opengroup.org/architecture/togaf9-doc/arch/toc-pt3.html
https://pubs.opengroup.org/architecture/togaf9-doc/arch/chap23.html
https://c4model.com/
https://docs.aws.amazon.com/pt_br/AmazonECS/latest/developerguide/AWS_Fargate.html
https://docs.aws.amazon.com/pt_br/AmazonECS/latest/developerguide/AWS_Fargate.html

	1. INTRODUÇÃO 
	1.1  Motivações 
	1.2  Objetivo 
	1.3 Justificativas  
	 
	1.4 Método de Pesquisa 
	1.5 Estrutura do Trabalho 
	2. REVISÃO BIBLIOGRÁFICA 
	2.1 Fatores Motivacionais do Conceito da Arquitetura de Software Hexagonal  
	2.2 Definição Arquitetura Hexagonal 
	2.3 Elementos do Padrão Arquitetura Hexagonal 
	2.3.1 Aplicação ou Sistema 
	2.3.2 Portas 
	2.3.3 Atores Externos de Condução e Atores Acionados 
	2.3.4 Adaptadores para Portas     
	2.3.5 Configurador (o quinto elemento não oficial)  
	 
	2.4 Requisitos e Recomendações do Padrão 
	2.5 Fora do Escopo do Padrão 
	2.6 Abordagem de Teste do Padrão 
	2.7 Comparação Arquitetura Hexagonal vs Demais Arquiteturas e DDD (Domain Driven Design) 
	2.8 Trade-Offs Arquitetura Hexagonal 
	2.9 Considerações do Capítulo 
	3. DESENVOLVIMENTO​ 
	3.1 Procedimento da Técnica para Aplicabilidade da Arquitetura Hexagonal 
	 
	3.2 Entender a Arquitetura Atual 
	3.2.1 Identificação do Contexto da Aplicação Gestão de Pagamentos. 
	3.2.2 Identificação da Arquitetura da Aplicação Gestão de Pagamentos. 
	 
	3.2.3 Identificação Interação dos Componentes da Aplicação Gestão de Pagamentos 
	3.3 Identificar Stakeholders da Arquitetura Atual 
	3.4 Levantar e Comparar Elementos Arquiteturais da Arquitetura Atual vs Arquitetura Hexagonal (Arquitetura Referência) 
	Levantar e Comparar Elementos Arquiteturais da Arquitetura Atual vs Arquitetura Hexagonal (Arquitetura Referência) 
	3.5 Realizar Análise de Correspondências entre Arquitetura Atual vs Arquitetura Alvo 
	Realizar Análise de Correspondências entre Arquitetura Atual vs Arquitetura Alvo 
	 
	3.6 Aplicar a Arquitetura Hexagonal através de Diagrama de Componentes com Modelo C4 
	Aplicar a Arquitetura Hexagonal através de Diagrama de Componentes com Modelo C4 
	3.7 Verificar o Uso da Arquitetura Hexagonal a partir de Diagrama de Sequência da UML 
	Verificar o Uso da Arquitetura Hexagonal a partir de Diagrama de Sequência da UML 
	1.​Verificar o Uso da Arquitetura Hexagonal a partir de Diagrama de Sequência da UML 
	3.8 Proposta de Implantação da Arquitetura Hexagonal da Aplicação Gestão de Pagamentos  
	Proposta de Implantação da Arquitetura Hexagonal da Aplicação Gestão de Pagamentos 
	1.​Proposta de Implantação da Arquitetura Hexagonal da Aplicação Gestão de Pagamentos. 
	3.9 Considerações do Capítulo 
	4. ANÁLISE DE RESULTADOS 
	4.1 Avaliação dos Objetivos Propostos 
	  
	4.2 Melhorias Identificadas 
	4.3 Comparativo Arquitetura Atual vs Arquitetura Alvo  
	 
	4.4 Comparação com a Literatura 
	4.5 Benefícios e Limitações 
	4.6 Considerações do Capítulo 
	5. CONSIDERAÇÕES FINAIS 
	5.1 Conclusões 
	5.2 Contribuição Acadêmica 
	5.2 Trabalhos Futuros 
	 
	REFERÊNCIAS 
	Padrão de Arquitetura Hexagonal, Disponível em:  
	https://docs.aws.amazon.com/pt_br/prescriptive-guidance/latest/cloud-design-patterns/hexagonal-architecture.html Acesso em 15 set. 2024 
	Model and Meta Model Matters, Disponível em: 
	http://www.iso-architecture.org/ieee-1471/meta/. Acesso em 29 out. 2024 
	The TOGAF® Standard, Version 9.2 > Part III: ADM Guidelines & Techniques > Gap Analysis, Disponível em: https://pubs.opengroup.org/architecture/togaf9-doc/arch/chap23.html. Acesso em 29 out. 2024. 


