

BÁRBARA MINITTI

Técnica de Aplicação da Arquitetura Hexagonal para

Aplicação de Gestão de Pagamentos

São Paulo
2024

BÁRBARA MINITTI

Técnica de Aplicação da Arquitetura Hexagonal para

Aplicação de Gestão de Pagamentos

Versão Original

Monografia apresentada ao PECE – Programa

de Educação Continuada em Engenharia da

Escola Politécnica da Universidade de São

Paulo como parte dos requisitos para a

conclusão do curso de MBA em Engenharia de

Software.

Área de Concentração: Engenharia de Software

Orientador: Prof. Alípio Ferro

São Paulo
2024

DEDICATÓRIA

Dedico este trabalho a Deus e aos Orixás,

os alicerces que sustentam a minha vida.

Em especial ao Caboclo Vigia das Matas,

meu mentor espiritual que me orienta, me

direciona e me ajuda nessa longa jornada

que é a vida.

AGRADECIMENTOS

À Universidade de São Paulo – USP que permitiu a existência desse MBA.

À Escola Politécnica da Universidade de São Paulo – EPUSP que forneceu a

oportunidade e grandes professores compartilhando todo seu conhecimento e

experiência.

Ao PECE – Programa de Educação Continuada em Engenharia que possibilitou meu

aprimoramento na área de Engenharia de Software.

Ao meu orientador Prof. Alípio Ferro por todo o conhecimento passado com grande

clareza e objetividade, por toda paciência e parceria, juntamente com o apoio, e

direcionamento na organização do trabalho.

Ao meu Prof. Dr. Jorge Luis Risco Becerra pelas aulas de Arquitetura de Software e apoio

no desenvolvimento final do trabalho.

Aos meus pais por me incentivar e mostrar o valor dos estudos na vida de uma pessoa,

bem como todo suporte em toda em minha jornada acadêmica.

RESUMO

MINITTI, B. Técnica de Aplicação da Arquitetura Hexagonal para Aplicação de

Gestão de Pagamentos. 2024. 59 p. Monografia (MBA Engenharia de Software).

Programa de Educação Continuada em Engenharia da Escola Politécnica da

Universidade de São Paulo. São Paulo. 2024.

Esta monografia investiga a aplicação da Arquitetura Hexagonal, ou Arquitetura de Portas

e Adaptadores, como solução para mitigar desafios relacionados à manutenibilidade e

testabilidade em sistemas de software complexos. Utilizando uma Aplicação de Gestão de

Pagamentos como estudo de caso, o trabalho apresenta uma técnica para aplicabilidade

da Arquitetura Hexagonal, fundamentada nas diretrizes da norma ISO/IEC/IEEE 42010,

em Análise de Correspondências entre duas arquiteturas, está inspirada na Análise de

Gaps do framework TOGAF e Modelagem C4.

A técnica inclui etapas como: Entendimento da Arquitetura Atual através Diagrama de

Contexto do Modelo C4, Diagrama da Arquitetura Atual, identificação de stakeholders e

levantamento de preocupações arquiteturais.

A Análise de Correspondências entre Arquitetura Atual e Arquitetura Alvo mostra as

necessidades e capacidades entre ambas arquiteturas.

Com os artefatos citados produzidos a Arquitetura Hexagonal é aplicada na Aplicação de

Gestão de Pagamentos através de Diagrama de Componentes do Modelo C4, Diagrama

de Sequência da UML e Proposta de Implementação da Arquitetura Alvo.

Essas etapas são integradas gerando um processo de Técnica para Aplicabilidade da

Arquitetura Hexagonal ilustrado por um diagrama BPMN, garantindo uma abordagem

estruturada e replicável.

A aplicação prática da Arquitetura Hexagonal evidenciou vantagens significativas,

incluindo maior desacoplamento entre o núcleo da aplicação e suas dependências

externas, facilitando alterações tecnológicas e promovendo uma testabilidade robusta por

meio de testes isolados no núcleo. Os benefícios também incluíram a redução de débitos

técnicos, maior eficiência no desenvolvimento e manutenção, e uma organização modular

que suporta evolução contínua.

Embora a complexidade inicial e a curva de aprendizado sejam desafios a serem

considerados, a técnica demonstrou eficácia em fundamentar a aplicabilidade da

Arquitetura Hexagonal com base em critérios técnicos e alinhados às necessidades do

projeto. Assim, o trabalho conclui que a Arquitetura Hexagonal, quando aplicada com um

processo estruturado como o proposto, é uma alternativa viável e robusta para sistemas

que exigem alta flexibilidade, escalabilidade e qualidade.

Palavras-chaves: arquitetura hexagonal, porta e adaptadores, testabilidade,

manutenibilidade.

ABSTRACT

MINITTI, B. Technique for Applying the Hexagonal Architecture to Payment
Management Applications. 2024. 59 p. Monograph (MBA in Software Engineering).

Continuing Education Program in Engineering at the Polytechnic School of the University

of São Paulo. São Paulo. 2024.

This monograph investigates the application of the Hexagonal Architecture, or Port and

Adapter Architecture, as a solution to mitigate challenges related to maintainability and

testability in complex software systems. Using a Payment Management Application as a

case study, the work presents a technique for the applicability of the Hexagonal

Architecture, based on the guidelines of the ISO/IEC/IEEE 42010 standard, in

Correspondence Analysis between two architectures, inspired by the Gap Analysis of the

TOGAF framework and C4 Modeling.

The technique includes steps such as: Understanding the Current Architecture through the

Context Diagram of the C4 Model, Current Architecture Diagram, identification of

stakeholders and survey of architectural concerns.

The Correspondence Analysis between Current Architecture and Target Architecture

shows the needs and capabilities between both architectures.

With the aforementioned artifacts produced, the Hexagonal Architecture is applied to the

Payment Management Application through the C4 Model Component Diagram, UML

Sequence Diagram and Target Architecture Implementation Proposal.

These steps are integrated, generating a Hexagonal Architecture Applicability Technique

process illustrated by a BPMN diagram, ensuring a structured and replicable approach.

The practical application of the Hexagonal Architecture demonstrated significant

advantages, including greater decoupling between the core of the application and its

external dependencies, facilitating technological changes and promoting robust testability

through isolated tests in the core. The benefits also included the reduction of technical

debt, greater efficiency in development and maintenance, and a modular organization that

supports continuous evolution.

Although the initial complexity and learning curve are challenges to be considered, the

technique demonstrated effectiveness in substantiating the applicability of the Hexagonal

Architecture based on technical criteria and aligned with the project needs. Thus, the work

concludes that the Hexagonal Architecture, when applied with a structured process like the

one proposed, is a viable and robust alternative for systems that require high flexibility,

scalability and quality.

Keywords: hexagonal architecture, port and adapters, testability, maintainability.

LISTA DE ILUSTRAÇÕES

Figura 1 - Exemplo Complexo de Arquitetura Hexagonal

Figura 2 - Configurador introduz atores

Figura 3 - Portas e Adaptadores, especificado apenas com duas camadas “dentro” e

“fora”

Figura 4 - Arquitetura Limpa

Figura 5 - Arquitetura “Cebola”

Figura 6 - Processo de Técnica de Aplicação da Arquitetura Hexagonal

Figura 7 - Diagrama de Contexto Aplicação Gestão de Pagamentos

Figura 8 - Diagrama em Camadas Aplicação Gestão de Pagamentos Arquitetura Atual

Figura 9 - Diagrama de Componentes Aplicação Gestão de Pagamentos Arquitetura Atual

Figura 10 - Caso de Uso Identificação de Stakeholders

Figura 11 - Diagrama de Componentes Aplicação Gestão de Pagamentos com Arquitetura

Hexagonal Aplicada

Figura 12 - Diagrama de Sequência UML da Aplicação Gestão de Pagamentos com

Arquitetura Hexagonal Aplicada

Figura 13 - Diagrama de Visão Tecnológica da Aplicação Gestão de Pagamentos - [API

Boletos]

LISTA DE TABELAS

Tabela 1 - Atividade Entender a Arquitetura Atual

Tabela 2 - Atividade Identificar Stakeholders da Arquitetura Atual

Tabela 3 - Atividade Levantar e Comparar Elementos Arquiteturais da Arquitetura Atual vs

Arquitetura Hexagonal (Arquitetura Referência)

Tabela 4 - Tabela Comparativa Elementos Arquiteturais Arquitetura Atual vs Arquitetura

Hexagonal (Arquitetura Referência)

Tabela 5 - Realizar Análise de Correspondências entre Arquitetura Atual vs Arquitetura

Alvo

Tabela 6 - Matriz de Correspondência entre Arquitetura Atual vs Arquitetura Alvo

Tabela 7 - Aplicar a Arquitetura Hexagonal através de Diagrama de Componentes com

Modelo C4

Tabela 8 - Verificar o Uso da Arquitetura Hexagonal a partir de Diagrama de Sequência da

UML

Tabela 9 - Proposta de Implementação da Arquitetura Hexagonal da Aplicação Gestão de

Pagamentos

LISTA DE ABREVIATURAS

API - Application Programming Interface

BDD - Behavior Driven Design

BPMN - Business Process Model and Notation

DDD - Domain Driven Design

ECS - Elastic Container Service

HYPE - Moda

RFN - Requisitos Não Funcionais

TDD - Test Driven Design

SUMÁRIO

1. INTRODUÇÃO... 13

1.1 Motivações..13

1.2 Objetivo...14

1.3 Justificativas...15

1.4 Método de Pesquisa.. 16

1.5 Estrutura do Trabalho.. 16

2. REVISÃO BIBLIOGRÁFICA.. 17

2.1 Fatores Motivacionais do Conceito da Arquitetura de Software Hexagonal..............................17

2.2 Definição Arquitetura Hexagonal... 18

2.3 Elementos do Padrão Arquitetura Hexagonal..19

2.3.1 Aplicação ou Sistema... 19

2.3.2 Portas..20

2.3.3 Atores Externos de Condução e Atores Acionados..20

2.3.4 Adaptadores para Portas.. 21

2.3.5 Configurador (o quinto elemento não oficial).. 22

2.4 Requisitos e Recomendações do Padrão..23

2.5 Fora do Escopo do Padrão.. 25

2.6 Abordagem de Teste do Padrão.. 25

2.7 Comparação Arquitetura Hexagonal vs Demais Arquiteturas e DDD (Domain Driven Design) 26

2.8 Trade-Offs Arquitetura Hexagonal... 29

2.9 Considerações do Capítulo..30

3. DESENVOLVIMENTO.. 31

3.1 Procedimento da Técnica para Aplicabilidade da Arquitetura Hexagonal................................. 31

3.2 Entender a Arquitetura Atual..33

3.2.1 Identificação do Contexto da Aplicação Gestão de Pagamentos... 33

3.2.2 Identificação da Arquitetura da Aplicação Gestão de Pagamentos..35

3.2.3 Identificação Interação dos Componentes da Aplicação Gestão de Pagamentos................. 36

3.3 Identificar Stakeholders da Arquitetura Atual...37

3.4 Levantar e Comparar Elementos Arquiteturais da Arquitetura Atual vs Arquitetura Hexagonal

(Arquitetura Referência)...40

3.5 Realizar Análise de Correspondências entre Arquitetura Atual vs Arquitetura Alvo..................44

3.6 Aplicar a Arquitetura Hexagonal através de Diagrama de Componentes com Modelo C4....... 45

3.7 Verificar o Uso da Arquitetura Hexagonal a partir de Diagrama de Sequência da UML........... 48

3.8 Proposta de Implantação da Arquitetura Hexagonal da Aplicação Gestão de Pagamentos.....50

3.9 Considerações do Capítulo..52

4. ANÁLISE DE RESULTADOS...53

4.1 Avaliação dos Objetivos Propostos..53

4.2 Melhorias Identificadas.. 53

4.3 Comparativo Arquitetônico Arquitetura Atual vs Arquitetura Alvo..54

4.4 Comparação com a Literatura... 54

4.5 Benefícios e Limitações... 54

4.6 Considerações do Capítulo..55

5. CONSIDERAÇÕES FINAIS... 55

5.1 Conclusões.. 55

5.2 Contribuição Acadêmica.. 56

5.2 Trabalhos Futuros.. 57

REFERÊNCIAS.. 58

13

1. INTRODUÇÃO

Este capítulo apresenta as motivações, objetivo, as justificativas, método de

pesquisa e a estrutura do trabalho.

1.1 Motivações

Construir softwares robustos tem sido o principal foco da área de engenharia de

software ao longo dos anos.

A robustez de um software está ligada a diversos fatores como saber lidar com os

erros e falhas de modo que o software não trave ou tenha algum comportamento

indesejado, saber lidar com as entradas para garantir que dados inválidos ou

maliciosos comprometam o funcionamento do sistema, a resiliência que está ligada

a capacidade do software se recupera rapidamente de falhas e continuar operando

num nível mesmo que reduzido de funcionalidades, escalabilidade garantido que

mesmo sob carga ou condições variáveis ele se mantenha estável e a

manutenibilidade que através de um design e uma arquitetura permita a facilidade

de atualização.

Para um desenvolvimento consistente de software levando em consideração todos

esses Requisitos Não Funcionais citados devemos nos preocupar com a qualidade

do sistema ligado diretamente com testabilidade.

No ponto de vista de testes é preciso garantir a efetividade das manutenções em

códigos e componentes.

No ponto de vista de manutenção é preciso uma estratégia para otimizar o tempo de

disponibilização de códigos e componentes e evitar a repetição de erros e simplificar

as correções.

Essa monografia apresenta a aplicabilidade de uma arquitetura para facilitar o

desenvolvimento de software considerando os requisitos não funcionais

denominados de, manutenibilidade e testabilidade de softwares.

14

Para solução desses dois RNFs podemos contar com os processos de Arquitetura

de Software para definir a estrutura para um sistema em alto nível, incluindo os

componentes principais, a relação entre eles e como eles interagem.

A Arquitetura de Software envolve decisões estratégicas que afetam diretamente a

organização, escalabilidade, desempenho e a manutenção do sistema. Ela funciona

como um “norte” para guiar o desenvolvimento e evolução do sistema ao longo do

tempo.

Porém, essa área é ampla e conta com vários designes para desenvolvimento de

sistemas, como Arquitetura de Microserviços, Arquitetura em Camadas, Arquitetura

Hexagonal e Arquitetura Limpa, tornando a decisão de qual arquitetura utilizar um

processo de difícil escolha.

No contexto deste trabalho a Arquitetura Hexagonal é o design escolhido para ser

analisado quanto a sua aplicabilidade para desenvolvimento de software e não

simplesmente basear a escolha de uma determinada arquitetura por ela estar em

alta no mercado ou na “hype”.

Em desenvolvimento de software, a habilidade mais importante não é a capacidade

de escrever código, mas a capacidade de fazer as escolhas certas. (FOWLER;

MARTIN, 2002)

O principal objetivo da Arquitetura Hexagonal é resolver problemas de acoplamento

entre código de aplicação e os detalhes de infraestrutura, como banco de dados,

interfaces de usuários e serviços externos. A proposta dessa arquitetura é isolar o

código de negócio das dependências externas, permitindo maior flexibilidade e

facilidade de mudança ao longo do tempo.

1.2 Objetivo

O objetivo desta monografia é analisar a aplicabilidade da Arquitetura Hexagonal

para o desenvolvimento de sistemas e propor uma técnica para que arquiteturas

escolhidas sejam validadas antes mesmo do início do desenvolvimento.

15

Para o estudo será usado como referência uma Aplicação de Gestão de

Pagamentos, destacando-se as vantagens, desafios e melhores práticas no contexto

de desenvolvimento de software.

1.3 Justificativas

O uso indiscriminado de arquiteturas de software no processo de desenvolvimento

de sistemas é crescente, muitas vezes a escolha de um design para a construção de

um sistema é feito pelo simples motivo da arquitetura estar em alta no mercado ou

para atrair talentos, pois os desenvolvedores terão oportunidades de trabalhar com

tecnologia de ponta. Diante desses fatores, nem sempre a arquitetura ideal é

escolhida para o desenvolvimento de um sistema tornando-o complexo e

aumentando os problemas ao longo dos anos.

A escolha por uma arquitetura de software é uma decisão muito crítica para se

basear apenas nos fatores justificados no parágrafo anterior.

Majumder e Zoitl (2023), propuseram no artigo A Domain-Driven Design Oriented

OPC UA Server Development Methodology for CPPS a abordagem de separação de

camadas do DDD para o desenvolvimento de um servidor OPC UA para CPPS,

nesse contexto a Arquitetura Hexagonal pode ser eficiente considerando que os

componentes de software podem ser desenvolvidos independente de qualquer

tecnologia específica e abrangem um grande número de casos de uso.

Jackson e Coutinho (2023), realizaram um estudo de caso no artigo Restructuring

the Software Architecture: A Case Study of the CoolBiz Core Banking Platform e

concluíram a importância de adotar abordagens holísticas ao discutir a arquitetura

de software, além de questões puramente técnicas e incluindo fatores como atração

e retenção de talentos. Alegando que esse aspecto é crucial na academia, devido ao

impacto no treinamento profissional e no avanço da disciplina.

O estudo dessa monografia propõe demonstrar através da Arquitetura Hexagonal

que a escolha por uma arquitetura pode ser uma utopia para o desenvolvimento de

software se escolhida aleatoriamente tornando-o mais complexo e com maiores

problemas do que aqueles que a arquitetura propõe-se a resolver.

https://aisel.aisnet.org/cgi/viewcontent.cgi?article=1023&context=capsi2023
https://aisel.aisnet.org/cgi/viewcontent.cgi?article=1023&context=capsi2023

16

1.4 Método de Pesquisa

O método de pesquisa adotado para essa monografia é o Exploratório.

Inicia-se através de pesquisas em artigos e bibliografias relevantes na literatura

sobre a Arquitetura Hexagonal também conhecida por Arquitetura de Portas e

Adaptadores idealizada por Alistair Cockburn em meados dos anos 90 sendo

postado o primeiro artigo na WikiWikiWeb onde os artigos tinham como principal

tema assuntos relacionados a Engenharia de Software.

Serão analisados os trade-offs de Arquitetura Hexagonal visando encontrar o

cenário adequado para o uso dessa arquitetura em específico.

A técnica utilizada para análise de aplicabilidade será baseada nas diretrizes do

Metamodelo de Arquitetura ISO/IEC/IEEE 42010 para levantamento dos elementos

arquiteturais da Arquitetura Atual e Arquitetura Hexagonal (Arquitetura Referência) e

através desse levantamento e com base na literatura da Arquitetura Hexagonal

identificar se de fato ela resolve os problemas de manutenibilidade e testabilidade

que essa monografia propõe-se a resolver. Será utilizado uma Análise de

Correspondências para comparar e identificar as correspondências entre ambas

arquiteturas.​

Ao final, esse estudo poderá ser um guia de referência para ajudar na análise de

aplicabilidade de outras arquiteturas mais adequadas para o desenvolvimento de

software.

1.5 Estrutura do Trabalho

O Capítulo 1 INTRODUÇÃO apresenta as motivações, o objetivo, as justificativas,

método de pesquisa e a estrutura do trabalho.

O Capítulo 2 REVISÃO BIBLIOGRÁFICA revisa as motivações do conceito da

Arquitetura Hexagonal e identifica a aplicabilidade em desenvolvimento de sistemas.

17

O Capítulo 3 DESENVOLVIMENTO apresenta o contexto e estudo de onde a

Arquitetura Hexagonal poderá ser aplicada com eficácia na área de Engenharia de

Software através de uma Aplicação de Gestão de Pagamentos com um case prático.

O Capítulo 4 ANÁLISE DE RESULTADOS compreende os trade-offs no contexto de

desenvolvimento para Aplicação de Gestão de Pagamentos.

O Capítulo 5 CONSIDERAÇÕES FINAIS conclui a aplicabilidade da Arquitetura

Hexagonal no âmbito do desenvolvimento da Aplicação de Gestão de Pagamentos,

contribuindo e definindo uma técnica para a aplicabilidade de uma arquitetura de

software na engenharia de sistemas.

2. REVISÃO BIBLIOGRÁFICA

2.1 Fatores Motivacionais do Conceito da Arquitetura de Software Hexagonal

Idealizada por Alistair Cockburn em 1988 teve o primeiro estímulo para a idealização

da arquitetura.

Alistair implementou Model-View-Controller no seu protótipo Smalltalk, mas o seu

programador C não implementou e quando surgiu a necessidade de mudar as fontes

de entradas do programa C o programa precisou ser reescrito. (COCKBURN,

ALISTAIR, 2024)

Em 1994 outra “dor”, projetistas de infraestrutura precisavam alterar um projeto de

preço e tempo fixo envolvendo um mapeador de objetos relacionais para otimizar o

desempenho. A modificação necessária era alterar o design da aplicação para

banco de dados SQL.

Para realizar a modificação, os programadores precisaram desligar a aplicação por

várias semanas para reescrever o seu mapeador e fazer a substituição de um banco

de dados de teste na memória para o banco de dados SQL. (COCKBURN,

ALISTAIR, 2024)

Nos anos 2000 o problema de acoplamento excessivo de arquiteturas monolíticas

era latente, Alistair Cockburn propôs então o conceito da Arquitetura Hexagonal

18

conhecida também como Arquitetura de Portas e Adaptadores que tinha como

principal objetivo isolar o código de negócio das dependências externas.

A principal ideia era separar o núcleo da aplicação (domínio) através de portas

(interfaces) e adaptadores do mundo externo (interfaces de usuários, banco de

dados, serviço de terceiros, etc).

Dessa maneira o núcleo do negócio mantinha-se “protegido” das alterações externas

que tendem a evoluir mais rapidamente.

Os desafios para decisão de uma arquitetura coesa sempre existiram independente

da epoca e tecnologia.

2.2 Definição Arquitetura Hexagonal

Alistair Cockburn usou a figura geométrica do hexágono para representar que o

sistema deveria ser acessível e testável a partir de qualquer lado.

A figura geométrica do hexágono e o número seis não tem nenhum significado

particular, é apenas uma figura que permite que as pessoas ao desenhar uma

arquitetura tenham mais espaço para incluir portas e adaptadores.

Na prática pode existir três, cinco ou mais portas e não necessariamente seis como

o hexágono nos induz a pensar, por esse motivo Alistair em 2005 no artigo The

Pattern: Ports and Adapters (‘’Object Structural’’) explica o motivo pelo qual Portas e

Adaptadores é o nome mais adequado para o padrão.

“O termo “porta e adaptadores” pega os ''propósitos'' das partes do desenho. Uma

porta identifica uma conversação proposital. Normalmente, haverá vários

adaptadores para qualquer porta, para várias tecnologias que podem se conectar a

essa porta. Normalmente, eles podem incluir uma secretária eletrônica, uma voz

humana, um telefone touch-tone, uma interface gráfica humana, um test harness,

um driver de lote, uma interface http, uma interface direta de programa para

programa, um banco de dados simulado (na memória), um banco de dados real

(talvez bancos de dados diferentes para desenvolvimento, teste e uso real).”

Cockburn (2005).

19

Figura 1 - Exemplo Complexo de Arquitetura Hexagonal

Fonte: (Cockburn, 2005)

2.3 Elementos do Padrão Arquitetura Hexagonal

O padrão possui quatro elementos básicos e um quinto considerado não oficial,

porém necessário.

Os quatro elementos considerados oficiais são:

1.​ Aplicação ou Sistema;

2.​ Portas;

3.​ Atores externos de condução e atores acionados;

4.​ Adaptadores para Portas.

O quinto elemento não oficial citado é o Configurador que será explicado no tópico

2.3.5.

2.3.1 Aplicação ou Sistema

Aplicação ou Sistema, conhecido também como núcleo ou domínio contém toda a

lógica de negócios, independente de qualquer tecnologia externa. Consideramos

como tecnologia externa um elemento físico, como um banco de dados, um usuário

humano ou um link de rede.

20

Podemos ainda definir como tecnologia externa situações em que o “mundo exterior”

é delimitado por uma fronteira social, ou seja, onde termina o escopo de uma equipe

numa determinada parte da aplicação. Nesse caso pode ser criado limites técnicos

através de interfaces e testes para proteger esse limite.

Através dessa interface é possível garantir que a aplicação seja chamada de acordo

com o “contrato” estabelecido. Essa característica a torna um componente poderoso,

possibilitando que ela possa ser conectada a qualquer outra aplicação.

Existe situações em que a aplicação não tem a necessidade de ser usada num

contexto diferente, mas Alistair Cockburn afirma no livro Hexagonal Architecture

Explained que através desse conceito é possível proteger a aplicação contra

vazamento de lógica de negócios, alterar tecnologias externas e garantir testes.

2.3.2 Portas

As Portas definem o limite da aplicação. Cada interação entre a aplicação e o mundo

exterior acontece através de uma interface de porta estabelecida pela própria

aplicação. Portanto a porta demarca o que está dentro da aplicação e o que está

externa a ela.

Essa característica de Portas atribui o “poder” ao padrão.

Usualmente existem três tipos de Portas gerais acionadas:

-​ Portas para obter informações de um repositório;

-​ Portas para notificar alguém;

-​ Portas para controlar algum dispositivo.

2.3.3 Atores Externos de Condução e Atores Acionados

Os Atores externos podem ser definidos em atores primários e secundários.

Ator primário é qualquer entidade humana ou eletrônica que coloca a aplicação em

ação. Ele solicita um serviço da aplicação iniciando um conjunto complexo de

interações de ida e volta.

21

A aplicação não precisa conhecer o ator primário, o objeto de chamada precisa

saber a função na aplicação para acionar o serviço necessário

Ator secundário é qualquer entidade humana ou eletrônica que a aplicação entra em

ação, solicitando um serviço.

Esse conceito representa a ideia de Portas, pois os atores primários tornam-se

condutores e atores secundários tornam-se atores acionados que interagem com as

portas primárias ou secundárias.

Para definir a quantidade de Portas numa aplicação podemos usar a técnica de

casos de uso.

Um ator interage com um sistema, isso corresponde a uma porta ou uma interface

que perguntamos a qual ator ela serve.

Durante a construção do sistema a arquitetura inicial pode mudar, porém essa

técnica funciona como um bom ponto de partida.

2.3.4 Adaptadores para Portas

Existe a possibilidade de um ator usar diretamente a interface fornecida ou

necessária, nesses casos não é necessário nenhum adaptador.

Para explicar esse “comportamento”, podemos usar casos de testes como exemplo.

Ao desenvolver uma aplicação casos de testes são escritos para validações. Essas

validações parte de uma interação com a aplicação, ou seja, pode-se codificar a

interface fornecida pela aplicação diretamente nos casos de testes.

É possível criar duas aplicações para trabalharem em conjunto desde o início. Uma

aplicação de portas e adaptadores independentes e uma para interfaces que deverá

ser desenvolvida de modo que elas correspondam.

Em casos como esses não é necessário a criação de adaptadores, pois os atores

externos já atendem as interfaces fornecidas e necessárias.

22

Em situações em que o ator externo não corresponde à interface da aplicação, é

necessário escrever código para transformar a interface de um ator na do outro.

Esse código é um adaptador.

Geralmente adaptadores são necessários para qualquer tecnologia do mundo real,

exemplo, internet, banco de dados, feed em tempo real, ou até mesmo um ser

humano como já mencionado.

Existem adaptadores fora da aplicação, mas quem decide e organiza os

adaptadores que são internos ou externos a aplicação são os engenheiros de

sistemas. A Arquitetura de Portas e Adaptadores não estabelece uma regra de como

se deve organizar a aplicação, ela indica que há um “mundo” interior e exterior, o

limite entre os dois é definido pelas portas fornecidas e necessárias.

Diante desses fatores surgem muitas dúvidas de como organizar os adaptadores de

uma aplicação.

Uma estrutura mal organizada pode inviabilizar o uso da Arquitetura de Portas e

Adaptadores.

2.3.5 Configurador (o quinto elemento não oficial)

É o elemento que o padrão não estabelece como necessário, porém “alguma coisa”

precisa conectar todas as peças. Alguém precisa direcionar como a aplicação

precisa ser acessada e direcionar a aplicação a quais atores devem ser utilizados.

Essa função é de responsabilidade do Configurador.

Para executar essa função o Configurador precisa conhecer todos os elementos.

Atores de Condução ou seus Adaptadores e os Atores de Acionamento ou seus

Adaptadores.

O padrão não especifica a forma como Configurador deve ser desenvolvido, há

várias maneiras de desenvolvê-lo e tudo depende da situação.

Independente da organização, algumas ações devem ocorrer:

-​ Instanciar cada interagente acionado. (um ator acionado ou um ator que não

precisa de adaptador);

23

-​ Instanciar a aplicação;

-​ Enviar para aplicação os interagentes acionados;

-​ Instanciar cada interagente de condução (ator ou adaptador) e enviar para a

aplicação para ser utilizado.

Existem três maneiras para a aplicação “conhecer” o ator acionado.

Umas delas é enviado ao construtor da aplicação o ator acionado, uma outra

maneira é a aplicação disponibilizar uma interface com uma função que define o ator

acionado, então um ator condutor chama essa função para definir o ator acionado a

qualquer momento.

Por fim, a aplicação pode usar um localizador de serviço e perguntar ao localizador

qual ator acionado usar.

Para os dois primeiros casos citados, podemos utilizar uma estrutura de injeção de

dependência, como por exemplo, o Spring.

Figura 2 - Configurador introduz atores

Fonte: Cockburn, Alistair; Garrido de Paz, Juan Manuel. Hexagonal Architecture Explained

(p. 31). Humans and Technology Inc. Edição do Kindle

2.4 Requisitos e Recomendações do Padrão

Para utilizar um padrão é necessário saber quais são os requisitos para aplicar o

padrão desejado.

24

Seguir o que o padrão recomenda e saber o que está fora do seu escopo pode ser

muito útil ao longo do desenvolvimento da aplicação, pode contribuir diretamente na

complexidade do desenvolvimento.

Requisitos do padrão:

-​ Definir uma interface para todas interações externas;

-​ Definir portas de condução para as interfaces fornecidas e portas de

condução para as interfaces acionadas;

-​ Permitir que atores acionados sejam configurados em tempo de execução;

-​ Não ter dependência entre o código-fonte e seus atores primários e

secundários;

-​ Atores externos podem interagir somente com portas definidas, eles não tem

permissão para interagir com o interior do hexágono;

-​ As portas e interfaces usam termos para expressar apenas as necessidades

de negócios e devem ser neutras a tecnologias;

Recomendações do padrão:

-​ O padrão não determina como deve ser a nomenclatura das portas, porém

sugere que seja “para fazer algo”, pois ajuda a comunicar, porque as

interfaces são agrupadas;

-​ O padrão não define a granularidade das portas ou quantas interfaces de

função são agrupadas numa porta. O recomendável é ter menos a mais,

iniciando com uma porta por ator primário e uma para o secundário, pois

corresponde às intenções de conversas.

-​ Não diz nada referente como organizar o seu código, porém recomenda boas

práticas para facilitar a interpretação das pessoas e a manutenção da

arquitetura.

○​ Criar dois diretórios de portas, um para as portas de condução e outro

para as portas acionadas. Colocar os diretórios no diretório da

aplicação, pois eles pertencem a aplicação.

○​ Criar dois diretórios de adaptadores, um para adaptadores de

condução e outro para adaptadores acionados. Coloque-os em

diretórios diferentes da aplicação.

25

-​ O padrão não menciona nada como organizar e proteger os adaptadores e

nem cita se eles devem interagir ou não. Com exceção dos casos de teste, os

adaptadores de condução não interagem diretamente com os adaptadores

acionados.

-​ Não exclui a possibilidade de ter um subsistema de Portas e Adaptadores

dentro de algum sistema maior de Portas e Adaptadores. Considerando

Portas e Adaptadores como um componente, isso implica que o componente

de Portas e Adaptadores será configurável para diferentes atores secundários

e será testado isoladamente do restante do sistema maior de Portas e

Adaptadores. É improvável, porém não impossível e por esse motivo é dito

que o padrão não aninha.

2.5 Fora do Escopo do Padrão

O padrão não cita como deve ser a estrutura da aplicação internamente, por isso

pode ser adotado a estrutura que melhor convém, como por exemplo, Domain

Driven Design (DDD), Grande Bola de Lama ou até mesmo separar a função do

modelo.

O padrão não recomenda e nem restringe a reestruturação interna da aplicação,

essa característica o torna diferente das demais arquiteturas.

2.6 Abordagem de Teste do Padrão

Um dos principais benefícios oferecidos pelo padrão é a flexibilidade em relação aos

testes.

A característica simétrica do padrão permite que os testes sejam desenvolvidos ao

longo do desenvolvimento do software, não sendo necessário aguardar a finalização

do software para desenvolvimento dos testes.

A simetria do padrão refere-se ao fato de que a arquitetura não faz distinção entre os

lados de entrada (como interfaces de usuário e APIs) e os de saída (como bancos

de dados e serviços externos). Ambos os tipos de interações – seja para receber

dados ou para enviar e armazenar – são tratados da mesma maneira por meio das

portas e adaptadores.

26

Essa abordagem simétrica permite que qualquer comunicação com o domínio seja

realizada através de portas, independentemente da direção, promovendo um

desacoplamento total entre a lógica de negócio e as dependências externas. Isso

contribui para a flexibilidade e facilidade de teste, pois os adaptadores podem ser

substituídos ou modificados sem afetar o núcleo da aplicação.

Diante desse cenário os diferentes componentes do sistema podem ser testados

isoladamente durante o desenvolvimento e futuramente o tradicional teste integrado

pode e deve ser realizado, porém com vários bugs já mitigados pelos testes

unitários.

Em suma, a lógica de negócios pode ser testada em memória separadamente dos

componentes de banco de dados e APIs.

Todos esses pontos faz-se concluir que o padrão facilita o uso de metodologias

direcionadas a testes como TDD (Test Driven Development) e BDD (Behavior Driven

Development), entretanto, vale ressaltar que o uso dessas metodologias não são

obrigatórias, pode-se concluir o desenvolvimento do software e posteriormente

testá-lo como o costume do time de engenheiros.

Do ponto de vista de testes o que fica claro é que o padrão é uma arquitetura bem

direcionada a testes unitários e por consequências a viabilidade de testes

automatizados.

2.7 Comparação Arquitetura Hexagonal vs Demais Arquiteturas e DDD (Domain
Driven Design)

No livro Hexagonal Architecture Explained Alistair CockBurn faz uma breve

comparação entre Arquitetura em Camadas, Arquitetura Limpa e Arquitetura

“Cebola” para elucidar a Portas e Adaptadores.

Portas e Adaptadores tem apenas duas camadas, dentro da aplicação (domínio) e

fora da aplicação (qualquer coisa). O requisito principal é que você organize os

atores externos para se conectar em portas específicas.

Arquitetura em Camadas requer que o código seja separado por preocupações e os

organize em níveis, de modo que o nível superior chame ou dependa dos níveis

27

inferiores. Preocupações abstratas são colocadas no nível superior da arquitetura e

os itens de infraestrutura são colocados na parte inferior da aplicação. Os

componentes das camadas superiores dependem das camadas inferiores, porém o

inverso não é uma verdade.

A Arquitetura em Camadas coloca a aplicação abaixo da interface do usuário e da

infraestrutura.

A Arquitetura Limpa, “Cebola” e de Portas e Adaptadores são semelhantes, o

objetivo delas é promover a independência do domínio, inclusive o diagrama dessas

arquiteturas aparecem invertidos em comparação com os diagramas tradicionais de

arquitetura em camadas.

Figura 3 - Portas e Adaptadores, especificado apenas com duas camadas “dentro” e “fora”

Fonte: Cockburn, Alistair; Garrido de Paz, Juan Manuel. Hexagonal Architecture Explained

(p. 97). Humans and Technology Inc. Edição do Kindle.

Em suma, a Arquitetura Hexagonal se diferencia da Arquitetura Limpa e Arquitetura

“Cebola” pela forma como se organiza, que são portas e adaptadores.

28

As arquiteturas Limpa e “Cebola” se organizam de forma concêntricas, as camadas

externas ao domínio dependem da lógica de negócio, que está no núcleo e não

conhecem as camadas externas, ambas são eficientes para desacoplar o domínio

de dependências externas, mas a Arquitetura Limpa oferece uma estrutura mais

complexa e detalhada, enquanto a Arquitetura em Cebola foca diretamente na

proteção do domínio com uma abordagem mais enxuta.

Figura 4 - Arquitetura Limpa

Fonte: Cockburn, Alistair; Garrido de Paz, Juan Manuel. Hexagonal Architecture Explained

(p. 98). Humans and Technology Inc. Edição do Kindle.

Figura 5 - Arquitetura “Cebola”

Fonte: Cockburn, Alistair; Garrido de Paz, Juan Manuel. Hexagonal Architecture Explained

(p. 98). Humans and Technology Inc. Edição do Kindle.

29

Analisando e comparando todos esses pontos é fácil ser induzido ao pensamento de

que Portas e Adaptadores e DDD (Domain Driven Design) são padrões

arquitetônicos relacionados, no entanto não são.

Alistair Cockburn discute no livro Hexagonal Architecture Explained como os dois

padrões arquitetônicos se complementam ao buscar a construção de sistemas

centrados no domínio desacoplados e flexíveis.

No DDD (Domain Driven Design), o objetivo é refletir no código a linguagem e os

processos da área de domínio, facilitando a colaboração com especialistas do

negócio e criando um sistema que evolua com as necessidades de negócio.

À semelhança do foco do DDD (Domain Driven Design) com o objetivo da

Arquitetura Hexagonal é proeminente, ambos têm como preocupação principal a

proteção do domínio da aplicação, onde a lógica de negócio é completamente

isolada das dependências externas. Isso permite que o sistema evolua de forma

alinhada com as necessidades do negócio, mantendo alta manutenibilidade e

testabilidade.

2.8 Trade-Offs Arquitetura Hexagonal

Como benefícios da arquitetura podemos dizer que:

1.)​A arquitetura aumenta significativamente a testabilidade da aplicação pelos

seguintes motivos:

a.)​A lógica de negócios pode ser testada rapidamente em memória;

b.)​Os diferentes componentes do sistema podem ser testados

separadamente e posteriormente integrados;

c.)​Ao alterar um código da aplicação por qualquer motivo, seja uma nova

feature, correção de bugs, etc. Os testes já existentes podem ser

usados como teste de regressão. Isso permite verificar se a alteração

feita introduz um comportamento não desejado na funcionalidade já

existente, bem como verificar qualquer vazamento de lógica entre a

aplicação e o mundo exterior;

2.)​Metodologias como TDD (Test Driven Development) e BDD (Behavior Driven

Development) são fáceis de serem aplicadas nessa arquitetura;

30

3.)​Portas e Adaptadores aumenta a manutenibilidade da aplicação, fornecendo

uma separação de preocupações e desacoplamento da lógica de negócios, o

que facilita a localização do código que se deseja modificar;

4.)​A manutenibilidade de aplicação é um RNF que está ligado diretamente com

a redução de débitos técnicos, pois quanto maior a capacidade de

manutenção de um sistema, os débitos técnicos tendem a ser menores pela

facilidade de alteração, logo a Arquitetura Hexagonal é um grande aliado em

redução de débitos técnicos;

5.)​Portas e Adaptadores facilita a evolução e adição de novas tecnologias;

6.)​A lógica de negócios pode ser desenvolvida sem necessidade de saber quais

tecnologias serão utilizadas, evitando o atraso de decisões tecnologias.

Como custos temos:

1.)​A estrutura, e processo de desenvolvimento da aplicação são mais complexos

do que em outras arquiteturas, como por exemplo a arquitetura clássica de

três camadas;

2.)​Portas e Adaptadores introduz mais um nível de indireção do lado acionado,

uma vez que os adaptadores devem traduzir as interfaces necessárias em

interfaces específicas das diferentes tecnologias.

3.)​Pode haver a necessidade de adição de mapeadores que mapeiam entidades

do modelo do domínio em entidades do modelo de persistência.

4.)​Aprender essa arquitetura não é fácil, requer experiência e pode ser difícil

para programadores iniciantes;

5.)​O início de um novo projeto leva mais tempo em relação às demais

arquiteturas, portanto Portas e Adaptadores é indicado para projetos de

médio a grande porte.

2.9 Considerações do Capítulo

Este capítulo teve como objetivo estudar os conceitos da Arquitetura Hexagonal e

identificar a aplicabilidade em desenvolvimento de sistemas.

31

A introdução a essa arquitetura se faz necessária como parte do processo de estudo

para análise de aplicabilidade ou não desta arquitetura em desenvolvimento de

sistemas.

Este capítulo servirá como insumos para o próximo capítulo que focará no

procedimento da técnica para aplicabilidade propriamente dito.

3. DESENVOLVIMENTO​

3.1 Procedimento da Técnica para Aplicabilidade da Arquitetura Hexagonal

Neste capítulo será demonstrado a técnica utilizada para aplicação da Arquitetura

Hexagonal.

Para elaboração da técnica será apresentado um diagrama de processos do BPMN

ilustrando cada etapa de estudo para aplicabilidade da Arquitetura Hexagonal.

Figura 6 - Processo de Técnica de Aplicação da Arquitetura Hexagonal

32

Fonte: Autora

33

As etapas do processo serão explicadas nos próximos tópicos.

3.2 Entender a Arquitetura Atual

Tabela 1 - Atividade Entender a Arquitetura Atual

Entender a Arquitetura Atual

Descrição

Entender a Arquitetura Atual através de
técnicas que identifiquem o contexto,
estrutura e interação dos componentes da
aplicação em estudo.

Executores

Arquiteto de Software

Entradas

●​ Aplicação/Sistema

Tarefas Saídas

1.​ Identificar o contexto da​ ​
Aplicação/Sistema.

2.​ Identificar Arquitetura da
Aplicação/Sistema

3.​ Identificar Interação dos
Componentes da Aplicação/Sistema

●​ Diagrama de Contexto Modelo C4
●​ Diagrama Arquitetura Atual
●​ Diagrama de Componentes

Modelo C4

Como case prático para o estudo será utilizado uma Aplicação de Gestão de

Pagamentos de uma instituição financeira.

3.2.1 Identificação do Contexto da Aplicação Gestão de Pagamentos.

A Aplicação de Gestão de Pagamentos consiste em gerir os compromissos através

do aplicativo bancário do cliente exibindo os pagamentos a vencer, vencidos, débitos

automáticos e agendamentos.

34

O sistema tem como característica a integração com sistemas do mainframe para

identificar os boletos a vencer e vencidos, os boletos em débito automático e os

agendados para posterior pagamento, além de consumir APIs corporativas da

instituição para identificação do cliente e conta corrente.

O sistema do mainframe por sua vez integra com a Nuclea (Sistema Nacional de

Boletos) para identificar boletos emitidos por outras instituições no CPF do cliente.

A core do sistema se divide em três fluxos, Boletos, Débitos Automático e

Agendamentos sendo o de boletos um dos mais complexos por conta de algumas

regras de status de boletos que são aplicadas nesse fluxo após a consulta no

mainframe.

O fluxo escolhido para utilizar a técnica de aplicação de Arquitetura Hexagonal, será

o de Boletos.

Para representar o contexto da aplicação o Diagrama de Contexto do Modelo C4

será aplicado.

A escolha pelo Modelo C4 para representação do Diagrama de Contexto e Diagrama

de Componentes da Aplicação se dá pela facilidade de comunicação que essa

técnica de modelagem de arquiteturas oferece, elucidando claramente a

comunicação entre os diversos stakeholders envolvidos, desde executivos até

desenvolvedores

Figura 7 - Diagrama de Contexto Aplicação Gestão de Pagamentos

Fonte: Autora

35

3.2.2 Identificação da Arquitetura da Aplicação Gestão de Pagamentos.

Essa aplicação foi desenvolvida em Arquitetura de Camadas, uma característica da

Arquitetura em Camadas é a forte dependência da camada superior com a camada

inferior do sistema causando complexidade de manutenção e teste a cada alteração,

conforme citado no tópico 2.7 Comparação Arquitetura Hexagonal vs Demais

Arquiteturas e DDD (Domain Driven Design) deste trabalho.

Figura 8 - Diagrama em Camadas Aplicação Gestão de Pagamentos Arquitetura Atual

Fonte: Autora

36

3.2.3 Identificação Interação dos Componentes da Aplicação Gestão de
Pagamentos

A partir da identificação da Arquitetura da Aplicação é possível obter uma visão mais

detalhada da interação dos componentes através do Diagrama de Componentes do

Modelo C4.

Figura 9 - Diagrama de Componentes Aplicação Gestão de Pagamentos Arquitetura Atual

Fonte: Autora

Observando o diagrama em questão é perceptível a forte dependência dos

componentes de entrada (Controllers) da aplicação com os Services. Todas as

entradas Controllers interagem com esses componentes ocasionando uma difícil
manutenção pela complexidade e quantidade de interações com aplicações

externas e regras de negócio.

37

O teste se torna custoso nesse cenário, pois qualquer alteração feita em algum dos

“Services” todas as entradas “Controllers” (agendamentos, boletos e débito

automáticos) precisam ser testadas para garantir que nenhuma funcionalidade da

aplicação foi afetada por conta de alguma alteração.

3.3 Identificar Stakeholders da Arquitetura Atual

Tabela 2 - Atividade Identificar Stakeholders da Arquitetura Atual

Identificar Stakeholders da Arquitetura Atual

Descrição

Identificar os stakeholders da
aplicação/sistema para apoio no
levantamento de requisitos

Executores

Arquiteto de Software

Entradas

●​ Aplicação/Sistema

Tarefas Saídas

1.​ Identificar stakeholders da
aplicação/sistema.​ ​

●​ Diagrama de Caso de Uso UML

Para identificação dos stakeholders será utilizada a técnica de Caso de Uso da UML

que permite identificar os atores que interagem com o sistema. Os atores

representam usuários, sistemas externos ou qualquer entidade que execute ações

ou receba respostas. Cada ator será representado por uma figura de "stickman" e

conectado aos casos de uso que ele pode executar, desenhados como elipses.

A clareza visual desse diagrama comunica rapidamente as principais interações dos

atores, ajudando na compreensão das funcionalidades e das expectativas dos

stakeholders.

38

Figura 10 - Caso de Uso Identificação de Stakeholders

Fonte: Autora

A identificação dos stakeholders é importante pelo fato deles serem impactados

diretamente com os problemas da aplicação, sendo no contexto da Aplicação de

Gestão de Pagamentos a manutenibilidade e testabilidade.

Qualquer alteração ou mudança de arquitetura é necessário estar alinhado com os

stakeholders, inclusive para levantamento dos requisitos, eles reportam os

problemas referente a Arquitetura Atual.

No contexto da Aplicação de Gestão de Pagamentos os stakeholders identificados

são: Arquiteto de Solução, Coordenador de TI, Desenvolvedores, Analista de

Qualidade, Engenheiro de Confiabilidade de Sites, Gerente de Produtos e Usuário.

Todos eles desempenham um papel importante na Aplicação de Gestão de

Pagamentos.

39

O Arquiteto de Solução é responsável pela solução da aplicação, ele desenha a

arquitetura que melhor convém às necessidades dos demais stakeholders

envolvidos.

O Coordenador de TI, participa do desenho de arquitetura juntamente com o

Arquiteto de Solução contribuindo e sugerindo possíveis soluções de acordo com a

necessidade do time de produtos e do negócio, ele é responsável por traduzir a

“linguagem” de negócios para a “linguagem” de tecnologia e por orquestrar o time de

desenvolvedores para garantir que o desenho proposto pelo arquiteto seja aplicado

na aplicação/sistema.

Os Desenvolvedores participam do desenho de solução opinando e sugerindo, por

serem responsáveis pela construção e tornarem real o desenho de solução do

Arquiteto de Softwares.

O Analista de Qualidade verifica a funcionalidade da aplicação/sistema, encontram o

maior número de bugs possíveis antes mesmo que a aplicação chegue nas mãos do

usuário. Eles são responsáveis por garantir a qualidade da aplicação/sistema.

O Engenheiro de Confiabilidade de Sites monitora o desempenho da aplicação no

ambiente produtivo, se antecipando a possíveis falhas que podem acontecer ou

resolvendo falhas e problemas que acontecem com ambiente e aplicação/sistema

durante o seu funcionamento.

O Gerente de Produtos define os requisitos funcionais da aplicação/sistema e

garante que todos os requisitos funcionais foram atendidos na aplicação/sistema de

acordo com as necessidades do negócio.

O usuário no contexto da Aplicação de Gestão de Pagamentos é o cliente ele se

beneficia da solução ele usufrui dos requisitos funcionais para resolver problemas ou

facilitar uma ação cotidiana.

A Aplicação de Gestão de Pagamentos no âmbito de requisitos funcionais possui o

controle de pagamentos, como boletos a vencer, boletos vencidos, boletos

agendados, tributos agendados e débitos automáticos.

40

3.4 Levantar e Comparar Elementos Arquiteturais da Arquitetura Atual vs
Arquitetura Hexagonal (Arquitetura Referência)

Tabela 3 - Atividade Levantar e Comparar Elementos Arquiteturais da Arquitetura Atual vs

Arquitetura Hexagonal (Arquitetura Referência)

Levantar e Comparar Elementos Arquiteturais da Arquitetura Atual vs
Arquitetura Hexagonal (Arquitetura Referência)

Descrição

Baseado na Norma ISO/IEC/IEEE 42010
(Descrição de Padrão de Arquitetura) listar e
comparar os elementos da Arquitetura Atual
vs Arquitetura Hexagonal (Arquitetura
Referência)

Executores

Arquiteto de Software

Entradas

●​ Aplicação/Sistema
●​ Norma ISO/IEC/IEEE 42010

Tarefas Saídas

1.​ Listar e Comparar Elementos
Arquiteturais da Arquitetura Atual vs
Arquitetura Hexagonal (Arquitetura
Referência)

●​ Tabela listando Elementos
Arquiteturais da Arquitetura Atual,
Arquitetura Hexagonal
(Referência) e Arquitetura Alvo

Focando nos problemas já identificados da Aplicação de Gestão de Pagamentos é

com base na Descrição de Padrão de Arquitetura da Norma ISO/IEC/IEEE 42010,

será levantando os Elementos Arquiteturais da Arquitetura Atual e da Arquitetura

Hexagonal (Arquitetura de Referência) segundo a literatura de Alistair Cockburn

citada no capítulo 2 desta monografia, um comparativo será realizado gerando

insumos para Arquitetura Alvo.

41

Tabela 4 - Tabela Comparativa Elementos Arquiteturais Arquitetura Atual vs Arquitetura

Hexagonal (Arquitetura Referência)

Tabela Comparativa Elementos Arquiteturais
Arquitetura Atual vs Arquitetura Hexagonal (Arquitetura Referência)

Elementos Arquiteturais
ISO/IEC/IEEE 42010

Aplicação Gestão
de Pagamentos
(Arquitetura Atual)

Arquitetura
Hexagonal por
Alistair Cockburn
(Arquitetura
Referência)

Aplicação Gestão
de Pagamentos
(Arquitetura Alvo)

Sistema API Boletos
- APP
(domínio/núcleo/lógica
de negócio)

API Boletos

Stakeholders

- Arquiteto de
Solução
- Desenvolvedor
- QA
- Product Owner
- Coordenador de TI
- SRE
- Usuário

-

- Arquiteto de
Solução
- Desenvolvedor
- QA
- Product Owner
- Coordenador de TI
- SRE
- Usuário

Preocupações
(concerns)

Requisitos Não
Funcionais

- Manutenabilidade
- Testabilidade

Esta arquitetura é
especialmente útil para
construir sistemas
modulares e flexíveis,
facilitando testes e
manutenção.

Requisitos Não
Funcionais

- Manutenibilidade:
sistema deve ser
desenvolvido de
forma modular, com
cada componente
isolado para facilitar
futuras alterações e
atualizações.

- Testabilidade: grau
em que um sistema
ou componente
facilita a criação,
execução e
avaliação de testes,
permitindo a
verificação de seus
comportamentos e a
detecção de falhas,
de forma precisa e
eficiente.

42

Ponto de Vista

Ponto de Vista de
Organização em
Camadas:
Cada camada tem
responsabilidades
específicas e
interage com outras
camadas de
maneira hierárquica
e estruturada.

Ponto de Vista de
Conectividade:
aborda como os
adaptadores se
conectam e interagem
com o núcleo da
aplicação e as
dependências externas

Abordar
modularidade e a
capacidade de troca
de adaptadores sem
impactar núcleo

Visão

-Visão Lógica:
mostra a
organização em
diferentes níveis de
abstração,
detalhando a
estrutura e as
interações entre as
camadas, como
apresentação,
lógica de negócio e
dados. Cada
camada possui uma
função distinta,
interagindo de
forma definida e
controlada com as
camadas
adjacentes

- Visão Lógica: Mostra
a organização do
núcleo, portas, e
adaptadores em um
diagrama de camadas
para comunicar a
estrutura modular do
sistema.

- Visão Lógica: será
representada por
Diagrama de
Componentes
Modelo C4

Arquitetura

- Camada de
Apresentação
- Camada de Lógica
de Negócios
- Sistemas de
Integração

- Entidades e Casos de
Uso
- Portas
- Adaptadores
- Interfaces Externas e
Dependências

Hexagonal

43

Modelo de Arquitetura

Representado
visualmente em
camadas é uma
representação
detalhada de como
o sistema é
estruturado e
organizado.
Este modelo
concretiza a visão
de camadas ao
detalhar os
componentes,
módulos e
interfaces de
camada, como
apresentação,
lógica de negócios
e dados.

Representado
visualmente com um
hexágono central para
o núcleo, cercado por
adaptadores e
interfaces que
conectam o sistema às
dependências
externas.
Este modelo ajuda a
visualizar a
independência do
núcleo, realçando a
modularidade e a
capacidade de trocar
adaptadores sem
impactar a lógica de
negócio.

Diagrama de
Componentes
Modelo C4

Relações e
Correspondências
Regras de Consistência

Na arquitetura em
camadas, as
relações
especificam as
interações e
dependências entre
as camadas,
enquanto as
correspondências
verificam que essas
relações são
consistentes e
atendem aos
requisitos e
preocupações dos
stakeholders.

Separação clara entre
o núcleo e os
adaptadores, evitando
que o núcleo dependa
de detalhes de
implementação
externa.

Garantir que os
adaptadores
estejam isolados e
sigam contratos
(interfaces) para
interagir com o
núcleo

Biblioteca de Padrões

- Camada de
Apresentação
- Camada de Lógica
de Negócios
- Sistemas de
Integração

- Entidades e Casos de
Uso
- Portas
- Adaptadores
- Interfaces Externas e
Dependências

Hexagonal

Fonte: Autora

44

3.5 Realizar Análise de Correspondências entre Arquitetura Atual vs
Arquitetura Alvo

Tabela 5 - Realizar Análise de Correspondências entre Arquitetura Atual vs Arquitetura Alvo

Realizar Análise de Correspondências entre Arquitetura Atual vs Arquitetura
Alvo

Descrição

Com os Elementos Arquiteturais da
Arquitetura Alvo listados efetuar uma análise
de correspondência entre Arquitetura Atual e
Arquitetura Alvo

Executores

Arquiteto de Software

Entradas

●​ Elementos Arquiteturais Arquitetura
Atual

●​ Elementos Arquiteturais Arquitetura
Alvo

Tarefas Saídas

1.​ Realizar Análise de
Correspondências entre Arquitetura
Atual e Arquitetura Alvo

●​ Matriz de Correspondências da
Arquitetura Atual vs Arquitetura
Alvo

Inspirado na Matriz de Análise de Gaps do TOGAF será criado uma Matriz de

Correspondências entre a Arquitetura Atual e Arquitetura Alvo visando encontrar os

componentes correspondentes, componentes não correspondentes e que deverão

ser removidos e componentes que necessitam ser desenvolvidos para a Arquitetura

Alvo.

45

Tabela 6 - Matriz de Correspondências entre Arquitetura Atual vs Arquitetura Alvo

 Matriz de Correspondências entre

Arquitetura Atual vs Arquitetura Alvo

arquitetura
alvo ➡️

controller núcleo portas adaptadores objetos
eliminados arquitetura

atual
⬇️

controller corresponde

camada de
negócios corresponde

camada de
integração
com
serviços

 não
corresponde

novo ➡️

não
corresponde:

as portas
deverão ser

desenvolvidas

não
corresponde:

os
adaptadores
deverão ser

desenvolvidas

Fonte: Autora

Com a Matriz de Correspondências é possível identificar que os componentes

Portas e Adaptadores deverão ser desenvolvidos para Arquitetura Alvo.

3.6 Aplicar a Arquitetura Hexagonal através de Diagrama de Componentes com
Modelo C4

Tabela 7 - Aplicar a Arquitetura Hexagonal através de Diagrama de Componentes com

Modelo C4

46

Aplicar a Arquitetura Hexagonal através de Diagrama de Componentes com
Modelo C4

Descrição

Aplicar a Arquitetura Hexagonal através de
Diagrama de Componentes do Modelo C4 na
Aplicação Gestão de Pagamentos com os
componentes gerados a partir da Análise de
Correspondências.

Executores

Arquiteto de Software

Entradas

●​ Matriz de Correspondências entre
Arquitetura Atual vs Arquitetura Alvo

Tarefas Saídas

1.​ Aplicar a Arquitetura Hexagonal​
através de Diagrama de
Componentes com Modelo C4

●​ Diagrama Componentes Modelo
C4 com a Arquitetura Hexagonal
aplicada na Aplicação de Gestão
de Pagamentos

Figura 11 - Diagrama de Componente Aplicação Gestão de Pagamentos com Arquitetura

Hexagonal Aplicada

47

Fonte: Autora

Através do Diagrama de Componentes do Modelo C4 é possível visualizar as portas

e adaptadores da Arquitetura Hexagonal sendo aplicada na Aplicação de Gestão de

Pagamentos trazendo interdependência dos componentes isolando o domínio da

aplicação.

Boleto Service é o núcleo da aplicação e para cada sistema externo teremos uma

Porta e um Adaptador para conexão.

A Porta expõem as funções dos Adaptadores de forma abstrata e nas funções dos

Adaptadores teremos a lógica de conexão com os sistemas externos.

48

3.7 Verificar o Uso da Arquitetura Hexagonal a partir de Diagrama de Sequência
da UML

Tabela 8 - Verificar o Uso da Arquitetura Hexagonal a partir de Diagrama de Sequência da

UML

Verificar o Uso da Arquitetura Hexagonal a partir de Diagrama de Sequência
da UML

Descrição

Através do Diagrama de Sequência da UML
verificar a eficácia da Arquitetura Hexagonal
para mitigar o problema de manutenibilidade
e testabilidade na Aplicação de Gestão de
Pagamentos

Executores

Arquiteto de Software

Entradas

●​ Diagrama de Componentes Modelo
C4 com Arquitetura Hexagonal
aplicada na Aplicação Gestão de
Pagamentos

Tarefas Saídas

1.​ Verificar o Uso da Arquitetura
Hexagonal a partir de Diagrama de
Sequência da UML

●​ Diagrama de Sequência da UML
da Aplicação Gestão de
Pagamentos com a Arquitetura
Hexagonal Aplicada

Usando o Diagrama de Sequência da UML é possível verificar a coesão e a

interdependência dos componentes sugeridos pela Arquitetura Hexagonal na

Aplicação de Gestão de Pagamentos.

Dessa forma é possível ter uma visão se de fato a Arquitetura Hexagonal resolve o

problema de manutenibilidade e testabilidade da aplicação.

49

Figura 12 - Diagrama de Sequência UML da Aplicação Gestão de Pagamentos com Arquitetura Hexagonal Aplicada

50

3.8 Proposta de Implantação da Arquitetura Hexagonal da Aplicação Gestão de
Pagamentos

Tabela 9 - Proposta de Implementação da Arquitetura Hexagonal da Aplicação Gestão de

Pagamentos

Proposta de Implantação da Arquitetura Hexagonal da Aplicação Gestão de
Pagamentos

Descrição

Através de Diagrama de Visão Tecnológica
propor um modelo de implementação da
Aplicação Gestão de Pagamentos com
Arquitetura Hexagonal aplicada.

Executores

Arquiteto de Software

Entradas

●​ Diagrama de Componentes Modelo
C4 com Arquitetura Hexagonal
aplicada na Aplicação Gestão de
Pagamentos

Tarefas Saídas

1.​ Proposta de Implantação da
Arquitetura Hexagonal da Aplicação
Gestão de Pagamentos.

●​ Diagrama de Visão Tecnológica da
Aplicação Gestão de Pagamentos
- [API Boletos]

Como proposta para instalação da Aplicação Gestão de Pagamentos

especificamente para API Boletos, conforme abordado no tópico 3.2.1 Identificação

do Contexto da Aplicação Gestão de Pagamentos, apenas esse fluxo seria utilizado

como case prático para aplicação da Arquitetura Hexagonal, será utilizado

infraestrutura AWS Cloud.

A sugestão é a API Boleto ser instalada em AWS ECS (Elastic Container Service).

A indicação do ECS simplifica a implantação de aplicações conteinerizadas,

reduzindo a complexidade operacional.

51

Figura 12 - Diagrama de Visão Tecnológica da Aplicação Gestão de Pagamentos - [API Boletos]

52

3.9 Considerações do Capítulo

Este capítulo teve como objetivo principal avaliar a aplicabilidade da Arquitetura

Hexagonal na mitigação de problemas relacionados à manutenibilidade e

testabilidade na Aplicação de Gestão de Pagamentos.

A manutenibilidade, entendida como a capacidade de modificar e aprimorar sistemas

ao longo de seu ciclo de vida, é um dos desafios recorrentes em sistemas

complexos. Igualmente importante, a testabilidade, que se refere à facilidade de

verificar e validar funcionalidades de um sistema, representa um aspecto crítico para

garantir qualidade e confiabilidade.

A Arquitetura Hexagonal, também conhecida como Arquitetura de Portas e

Adaptadores, propõe um modelo que visa desacoplar o núcleo da aplicação de suas

dependências externas, como bancos de dados, frameworks e APIs. Essa

separação promove uma organização modular, permitindo que alterações em

componentes externos não afetem diretamente a lógica central da aplicação.

No contexto da Aplicação de Gestão de Pagamentos a Arquitetura Hexagonal

oferece mecanismos para encapsular essas integrações, reduzindo impactos em

caso de mudanças e aumentando a flexibilidade do sistema.

Por meio de técnicas consagradas da Arquitetura de Software, como identificação de

padrões, aplicação de princípios de design e análise de requisitos, é possível

fundamentar a escolha de uma arquitetura que atenda às demandas específicas do

domínio. Nesse processo, o uso de argumentos sólidos, baseados em boas práticas

e estudos de caso, contribui para decisões técnicas mais assertivas.

Em suma, a aplicação dos conceitos da Arquitetura Hexagonal pode não apenas

solucionar problemas específicos de manutenibilidade e testabilidade, mas também

estabelecer uma base robusta para o desenvolvimento contínuo, favorecendo a

evolução do sistema e a adaptação às mudanças de mercado.

53

4. ANÁLISE DE RESULTADOS

A análise de resultados deste trabalho tem como foco avaliar a aplicabilidade da

Arquitetura Hexagonal na Aplicação de Gestão de Pagamentos, conforme proposto

nos objetivos da monografia. Este capítulo examina os resultados obtidos e objetivos

apresentados, relacionando-os com a literatura revisada e discutindo os desafios e

benefícios identificados ao longo do estudo.

4.1 Avaliação dos Objetivos Propostos

O principal objetivo deste trabalho foi propor e avaliar um método para a

aplicabilidade de uma arquitetura de software que mitigue problemas relacionados à

manutenibilidade e estabilidade. Especificamente, o estudo focou na aplicação da

Arquitetura Hexagonal em uma aplicação real de Gestão de Pagamentos.

Os objetivos foram amplamente atingidos, com a validação dos benefícios do

modelo proposto no âmbito de desacoplamento, organização modular e flexibilidade

do sistema. Além disso, uma técnica de aplicabilidade de arquiteturas baseado em

diretrizes da norma ISO/IEC/IEEE 42010 e em Análise de Correspondências

inspirado na análise de Gaps TOGAF mostrou-se eficaz, permitindo uma transição

estruturada entre a Arquitetura Atual e a Arquitetura Alvo.

4.2 Melhorias Identificadas

Os principais benefícios observados com a aplicação da Arquitetura Hexagonal

foram a flexibilidade na testabilidade, organização do sistema em portas e

adaptadores que permite que testes unitários sejam realizados no núcleo da

aplicação, sem dependências externas, reduzindo o tempo de execução de testes e

aumentando a confiabilidade dos resultados.

Melhora na manutenibilidade, a separação de responsabilidades e o

desacoplamento entre o núcleo da aplicação e os componentes externos facilitam as

atualizações e correções, reduzindo o risco de introdução de novos erros.

54

4.3 Comparativo Arquitetura Atual vs Arquitetura Alvo

A Matriz de Correspondências inspirada na Análise de Gaps TOGAF revelou que

objetos não correspondentes como componentes com funções duplicadas ou

excessivamente acoplados foram substituídos por adaptadores específicos.

Objetos foram criados para as portas e adaptadores para mediar a interação entre o

núcleo da aplicação e as dependências externas.

Elementos como controladores foram preservados, mas com ajustes para se alinhar

à nova arquitetura.

A transição para a Arquitetura Alvo demonstrou ser viável e vantajosa, com uma

organização mais robusta para suportar evoluções futuras.

4.4 Comparação com a Literatura

A revisão bibliográfica indicou que a Arquitetura Hexagonal se diferencia das

Arquiteturas em Camadas e Limpa pelo uso de Portas e Adaptadores, que

promovem um desacoplamento total. Os resultados obtidos corroboram os estudos

de Alistair Cockburn, que destacam a flexibilidade e a testabilidade como os

principais benefícios da abordagem.

Por outro lado, os trade-offs identificados na literatura, como maior complexidade

inicial e curva de aprendizado, também foram observados durante o estudo. Estes

desafios podem ser mitigados por meio de treinamentos e documentação adequada.

4.5 Benefícios e Limitações

Como benefícios destaca-se a possível redução de débitos técnicos, a

manutenibilidade aumentada pode resultar em menos custos associados a

correções e melhorias futuras.

A Testabilidade aprimorada pode facilitar significativamente a utilização de TDD

(Test Driven Development) e BDD (Behavior Driven Development).

55

A arquitetura resultante promoveu maior clareza na separação de responsabilidades

com a organização modular.

Como limitações deve ser levado em consideração a complexidade inicial, o tempo e

esforço necessários para implementar a Arquitetura Hexagonal que podem ser

superiores aos de outras arquiteturas.

Desenvolvedores menos experientes podem enfrentar dificuldades em compreender

e aplicar o modelo pelo tempo da curva de aprendizado.

4.6 Considerações do Capítulo

Os resultados obtidos reforçam a validade da Arquitetura Hexagonal para sistemas

que exigem alta manutenibilidade e testabilidade. No caso da Aplicação de Gestão

de Pagamentos, a aplicação dos conceitos de portas e adaptadores não apenas

mitiga problemas existentes, mas também criou uma base sólida para evolução

futura.

Espera-se que a técnica desenvolvida neste trabalho sirva como referência para

outros sistemas que necessitam de um processo estruturado para aplicar uma

arquitetura, contribuindo para a expansão e melhoria das práticas na área de

engenharia de software.

5. CONSIDERAÇÕES FINAIS

Este capítulo apresenta as conclusões, contribuições do trabalho e algumas

possibilidades de trabalhos futuros

5.1 Conclusões

A presente monografia demonstrou a relevância da aplicação da Arquitetura

Hexagonal no desenvolvimento de sistemas complexos, com foco específico na

Aplicação de Gestão de Pagamentos. Os resultados apresentados evidenciam que,

ao isolar o núcleo da aplicação das dependências externas por meio de portas e

56

adaptadores, a arquitetura promove maior flexibilidade, escalabilidade e

testabilidade. Esses fatores são determinantes para reduzir custos com manutenção,

minimizar débitos técnicos e garantir que o sistema se mantenha adaptável às

mudanças ao longo do tempo.

Além da técnica aplicada ao caso prático, o trabalho propôs um modelo sistemático

para a possível aplicação de arquiteturas de software. Esse modelo combina

diretrizes estabelecidas na norma ISO/IEC/IEEE 42010, Análise de

Correspondências inspirado na Análise de Gaps do framework TOGAF e o uso de

diagramas do Modelo C4. Tal abordagem oferece um roteiro claro e replicável que

pode ser utilizado em outros contextos da engenharia de sistemas. Ele não apenas

facilita a escolha de uma arquitetura adequada às necessidades específicas do

projeto, mas também fundamenta essa decisão com base em critérios objetivos e

alinhados às melhores práticas da área.

5.2 Contribuição Acadêmica

Como contribuição acadêmica e prática, este trabalho apresenta a Arquitetura

Hexagonal como uma alternativa eficiente às arquiteturas tradicionais,

destacando-se especialmente em sistemas que demandam alta manutenibilidade e

testabilidade. Por meio de sua abordagem baseada no desacoplamento entre o

núcleo da aplicação e as dependências externas, a arquitetura proporciona uma

organização modular e flexível, facilitando a evolução contínua dos sistemas,

mesmo em ambientes dinâmicos e de alta complexidade.

Os benefícios observados incluem a possibilidade de reduzir débitos técnicos,

simplificar o processo de manutenção e melhorar a qualidade geral do sistema por

meio da separação clara de responsabilidades. Além disso, a estrutura de portas e

adaptadores torna a testabilidade um elemento central, permitindo que metodologias

como TDD (Test Driven Development) e BDD (Behavior Driven Development) sejam

aplicadas com maior eficiência. Essas vantagens são particularmente relevantes em

sistemas críticos, como a Aplicação de Gestão de Pagamentos explorada neste

estudo.

57

Entretanto, apesar dos benefícios significativos, a adoção da Arquitetura Hexagonal

apresenta desafios que precisam ser considerados. A implementação inicial pode

demandar mais tempo e recursos, em comparação com arquiteturas tradicionais,

devido à necessidade de estruturar portas, adaptadores e configurar um núcleo

desacoplado. Além disso, a curva de aprendizado associada ao modelo é um fator

relevante, principalmente para desenvolvedores menos experientes ou equipes

acostumadas a paradigmas mais simples, como arquiteturas em camadas.

Esses desafios, no entanto, podem ser mitigados com a oferta de treinamentos

específicos e o uso de boas práticas de engenharia, como documentação clara e

frameworks que suportem o padrão arquitetural. Com isso, espera-se que a

Arquitetura Hexagonal não apenas resolva problemas técnicos e organizacionais,

mas também contribua para o avanço do desenvolvimento de sistemas robustos e

preparados para mudanças futuras.

5.2 Trabalhos Futuros

Para trabalhos futuros, recomenda-se a aplicação da técnica desenvolvida em

outros domínios e contextos de sistemas, a fim de validar sua generalida0de e

eficiência. Adicionalmente, seria interessante explorar a integração da Arquitetura

Hexagonal com práticas emergentes, como arquiteturas orientadas a eventos e

sistemas baseados em inteligência artificial, analisando os benefícios e limitações

em cenários contemporâneos. Por fim, estudos complementares poderiam investigar

estratégias para minimizar os custos iniciais de adoção, tornando essa arquitetura

ainda mais acessível e viável para projetos de pequeno e médio porte.

Assim, espera-se que as contribuições deste trabalho sirvam como base sólida para

decisões arquitetônicas mais assertivas e embasem novas investigações no campo

da engenharia de software, ampliando o entendimento sobre as potencialidades e

aplicações da Arquitetura Hexagonal.

58

REFERÊNCIAS

COCKBURN, Alistair; GARRIDO DE PAZ, Juan Manuel. Hexagonal Architecture
Explained. Humans and Technology Incorporated, 2024. Edição Kindle

FOWLER, Martin; RICE David; FOEMMEL, Matthew; HIEATT, Edward; MEE, Robert;

STAFFORD, Randy. Patterns of Enterprise Application Architecture.
Addison-Wesley Professional, 2002.

MAJUMDER Mainak; ZOITL Alois A Domain-Driven Design Oriented OPC UA
Server Development Methodology for CPPS. In 2023 IEEE 28th International

Conference on Emerging Technologies and Factory Automation (ETFA), April, 2023.
Proceedings [...]. DOI: 10.1109/ETFA54631.2023.10275496. Disponível em:

https://ieeexplore.ieee.org/abstract/document/10275496?casa_token=6EbLE4d4NC

QAAAAA:DBkKeavG0_CYeI_T2eSBDsr3IhcYL2LL9QAhTL2YhxDEFg8W34dD6OBA

xhopns-EDFOiiZPj. Acesso em: 15 set. 2024.

JÚNIOR Jackson; COUTINHO Pedro Restructuring the Software Architecture: A
Case Study of the CoolBiz Core Banking Platform. In 2023, CAPSI 2023.

Proceedings [...]. Disponível em: https://aisel.aisnet.org/capsi2023/3/. Acesso em:

15 set. 2024.

FILHO, Nagib S. Comparação entre Portas na Arquitetura Hexagonal e
Interfaces na Arquitetura Limpa: Uma Análise Conceitual e Prática.
LEADERS.TEC.BR, vol 1, 26 aug 2024. Disponível em:

https://leaders.tec.br/artigo/comparacao-entre-portas-na-arquitetura-hexagonal-e-inte

rfaces-na-arquitetura-limpa-uma-analise-conceitual-e-pratica. Acesso em: 14 set.

2024.

JEMUOVIC, Valentina Hexagonal Architecture - Ports and Adapters. Optivem

Journal, 30 mar 2023. Disponível em:

https://journal.optivem.com/p/hexagonal-architecture-ports-and-adapters. Acesso 14

set. 2024.

IEEE/ISO/IEC International Standard for Software, systems and
enterprise--Architecture description, In ISO/IEC/IEEE 42010:2022(E) , vol., no.,

pp.1-74, 7 Nov. 2022, Proceedings [...]. DOI: 10.1109/IEEESTD.2022.9938446.

https://ieeexplore.ieee.org/abstract/document/10275496?casa_token=6EbLE4d4NCQAAAAA:DBkKeavG0_CYeI_T2eSBDsr3IhcYL2LL9QAhTL2YhxDEFg8W34dD6OBAxhopns-EDFOiiZPj
https://ieeexplore.ieee.org/abstract/document/10275496?casa_token=6EbLE4d4NCQAAAAA:DBkKeavG0_CYeI_T2eSBDsr3IhcYL2LL9QAhTL2YhxDEFg8W34dD6OBAxhopns-EDFOiiZPj
https://ieeexplore.ieee.org/abstract/document/10275496?casa_token=6EbLE4d4NCQAAAAA:DBkKeavG0_CYeI_T2eSBDsr3IhcYL2LL9QAhTL2YhxDEFg8W34dD6OBAxhopns-EDFOiiZPj
https://aisel.aisnet.org/cgi/viewcontent.cgi?article=1023&context=capsi2023
https://aisel.aisnet.org/cgi/viewcontent.cgi?article=1023&context=capsi2023
https://aisel.aisnet.org/capsi2023/3/
https://leaders.tec.br/artigo/comparacao-entre-portas-na-arquitetura-hexagonal-e-interfaces-na-arquitetura-limpa-uma-analise-conceitual-e-pratica
https://leaders.tec.br/artigo/comparacao-entre-portas-na-arquitetura-hexagonal-e-interfaces-na-arquitetura-limpa-uma-analise-conceitual-e-pratica
https://journal.optivem.com/
https://journal.optivem.com/
https://journal.optivem.com/p/hexagonal-architecture-ports-and-adapters

59

Disponível em: https://ieeexplore.ieee.org/document/9938446. Acesso em 29 out.

2024.

Padrão de Arquitetura Hexagonal, Disponível em:

https://docs.aws.amazon.com/pt_br/prescriptive-guidance/latest/cloud-design-pattern

s/hexagonal-architecture.html Acesso em 15 set. 2024

Model and Meta Model Matters, Disponível em:

http://www.iso-architecture.org/ieee-1471/meta/. Acesso em 29 out. 2024

The TOGAF® Standard, Version 9.2 > Part III: ADM Guidelines & Techniques >
Gap Analysis, Disponível em:

https://pubs.opengroup.org/architecture/togaf9-doc/arch/chap23.html. Acesso em 29

out. 2024.

C4 Model, Disponível em: https://c4model.com/. Acesso em 24 out. 2024

AWS Fargate para Amazon ECS, Disponível em
https://docs.aws.amazon.com/pt_br/AmazonECS/latest/developerguide/AWS_Fargat
e.html. Acesso em 15 nov. 2024

https://ieeexplore.ieee.org/document/9938446
https://docs.aws.amazon.com/pt_br/prescriptive-guidance/latest/cloud-design-patterns/hexagonal-architecture.html
https://docs.aws.amazon.com/pt_br/prescriptive-guidance/latest/cloud-design-patterns/hexagonal-architecture.html
http://www.iso-architecture.org/ieee-1471/meta/
https://pubs.opengroup.org/architecture/togaf9-doc/arch/toc-pt3.html
https://pubs.opengroup.org/architecture/togaf9-doc/arch/chap23.html
https://c4model.com/
https://docs.aws.amazon.com/pt_br/AmazonECS/latest/developerguide/AWS_Fargate.html
https://docs.aws.amazon.com/pt_br/AmazonECS/latest/developerguide/AWS_Fargate.html

	1. INTRODUÇÃO
	1.1 Motivações
	1.2 Objetivo
	1.3 Justificativas
	
	1.4 Método de Pesquisa
	1.5 Estrutura do Trabalho
	2. REVISÃO BIBLIOGRÁFICA
	2.1 Fatores Motivacionais do Conceito da Arquitetura de Software Hexagonal
	2.2 Definição Arquitetura Hexagonal
	2.3 Elementos do Padrão Arquitetura Hexagonal
	2.3.1 Aplicação ou Sistema
	2.3.2 Portas
	2.3.3 Atores Externos de Condução e Atores Acionados
	2.3.4 Adaptadores para Portas
	2.3.5 Configurador (o quinto elemento não oficial)
	
	2.4 Requisitos e Recomendações do Padrão
	2.5 Fora do Escopo do Padrão
	2.6 Abordagem de Teste do Padrão
	2.7 Comparação Arquitetura Hexagonal vs Demais Arquiteturas e DDD (Domain Driven Design)
	2.8 Trade-Offs Arquitetura Hexagonal
	2.9 Considerações do Capítulo
	3. DESENVOLVIMENTO​
	3.1 Procedimento da Técnica para Aplicabilidade da Arquitetura Hexagonal
	
	3.2 Entender a Arquitetura Atual
	3.2.1 Identificação do Contexto da Aplicação Gestão de Pagamentos.
	3.2.2 Identificação da Arquitetura da Aplicação Gestão de Pagamentos.
	
	3.2.3 Identificação Interação dos Componentes da Aplicação Gestão de Pagamentos
	3.3 Identificar Stakeholders da Arquitetura Atual
	3.4 Levantar e Comparar Elementos Arquiteturais da Arquitetura Atual vs Arquitetura Hexagonal (Arquitetura Referência)
	Levantar e Comparar Elementos Arquiteturais da Arquitetura Atual vs Arquitetura Hexagonal (Arquitetura Referência)
	3.5 Realizar Análise de Correspondências entre Arquitetura Atual vs Arquitetura Alvo
	Realizar Análise de Correspondências entre Arquitetura Atual vs Arquitetura Alvo
	
	3.6 Aplicar a Arquitetura Hexagonal através de Diagrama de Componentes com Modelo C4
	Aplicar a Arquitetura Hexagonal através de Diagrama de Componentes com Modelo C4
	3.7 Verificar o Uso da Arquitetura Hexagonal a partir de Diagrama de Sequência da UML
	Verificar o Uso da Arquitetura Hexagonal a partir de Diagrama de Sequência da UML
	1.​Verificar o Uso da Arquitetura Hexagonal a partir de Diagrama de Sequência da UML
	3.8 Proposta de Implantação da Arquitetura Hexagonal da Aplicação Gestão de Pagamentos
	Proposta de Implantação da Arquitetura Hexagonal da Aplicação Gestão de Pagamentos
	1.​Proposta de Implantação da Arquitetura Hexagonal da Aplicação Gestão de Pagamentos.
	3.9 Considerações do Capítulo
	4. ANÁLISE DE RESULTADOS
	4.1 Avaliação dos Objetivos Propostos
	
	4.2 Melhorias Identificadas
	4.3 Comparativo Arquitetura Atual vs Arquitetura Alvo
	
	4.4 Comparação com a Literatura
	4.5 Benefícios e Limitações
	4.6 Considerações do Capítulo
	5. CONSIDERAÇÕES FINAIS
	5.1 Conclusões
	5.2 Contribuição Acadêmica
	5.2 Trabalhos Futuros
	
	REFERÊNCIAS
	Padrão de Arquitetura Hexagonal, Disponível em:
	https://docs.aws.amazon.com/pt_br/prescriptive-guidance/latest/cloud-design-patterns/hexagonal-architecture.html Acesso em 15 set. 2024
	Model and Meta Model Matters, Disponível em:
	http://www.iso-architecture.org/ieee-1471/meta/. Acesso em 29 out. 2024
	The TOGAF® Standard, Version 9.2 > Part III: ADM Guidelines & Techniques > Gap Analysis, Disponível em: https://pubs.opengroup.org/architecture/togaf9-doc/arch/chap23.html. Acesso em 29 out. 2024.

