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Resumo v

RESUMO

Este trabalho consiste na elaboragdo de um modelo de otimizag@io multiperiodo
de carteiras de investimento com custos de transagfo. A escolha da carteira 6tima de
investimento envolve incertezas, caracterizadas pelos pregos dos ativos, que podem ser
modeladas segundo processos estocasticos, transformando o problema num problema de
otimizagdo estocastica. Entretanto, dado o tamanho e a complexidade desses problemas,
utilizam-se algoritmos alternativos na modelagem dessas incertezas, como as técnicas
de geragdio de arvores de cendrios. O processo de geragdo de arvores de cendrios
transforma o problema estocastico num problema deterministico de grandes dimensses,
além de representar de forma clara e concisa a evolugdo dos possiveis caminhos —
cendrios — que uma variével aleatéria pode assumir. Trés técnicas de geragéio de arvores
de cendrios sio apresentadas: simulagdio e clustering, os modelos de otimizagdo e o
modelo hibrido. Para resolver o modelo de otimizag#o, utilizou-se uma carteira de
investimento composta de agdes de empresas brasileiras. Os resultados obtidos com o
modelo e as andlises de sensibilidade séio explicitados e confrontados com os indices

benchmark de mercado,
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Abstract Vi

ABSTRACT

This work proposes a model to solve a multi-period portfolio management
problem over a finite horizon with transaction costs. The choice of the optimal portfolio
inherently involves uncertainties, characterized by financial asset prices, which can be
modeled using stochastic process, transforming the problem into a stochastic
optimization problem. However, given the size as well as the complexity of these
problems, alternatives aigorithms were developed to model these uncertainties, like the
scenario tree approach. The scenario tree approach transforms the stochastic problem
into a large-scale deterministic problem; besides it represents clearly the possible paths
— scenarios — that a random variable can assume. Three techniques are presented for
generating scenario trees: simulation and clustering, optimization and hybrid
simulation/optimization. To solve the optimization problem, a portfolio of Brazilian
company’s shares was utilized. The results obtained with the model and the sensitivity

analyses are explained and compared with market benchmarks.
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Capitulo 1: Introdugéo 1

1
INTRODUCAO

Este trabalho tem como objetivo aplicar os conceitos de pesquisa operacional
adquiridos da engenharia de produgdo na 4rea de otimizag#o de carteiras em finangas.

Os conceitos de pesquisa operacional sgo amplamente utilizados em engenharia
de produgdio para a modelagem de sistemas de estoques, problemas de transporte, teoria
de filas, entre outros. Uma caracteristica comum destes problemas é que eles lidam com
a minimizagdo ou maximizagio de uma fung#o objetivo, expressa na forma de custo,
distdncia percorrida ou tempo de espera. Qu seja, sdo problemas de otimizagdo.
WINSTON (1995) apresenta uma série de exemplos aplicados em situagdes reais sobre
o tema.

Os conceitos de otimizagiio também podem ser aplicados em carteiras de
investimentos. Dada uma carteira de investimento composta por ativos financeiros, um
investidor racional busca a maximizagio do retorno do capital investido na carteira de
acordo com um dado nivel de risco. Dessa forma, um algoritmo de otimizag#o pode ser
construido para a determinagdo dos pesos 6timos dos ativos financeiros que compdem a

carteira 6tima de investimento.

1.1 — Moetivacio

O problema da alocagdo Otima de ativos numa carteira de investimentos —
portfolio — vem se tornando um topico de extremo interesse por académicos e
profissionais que atuam na 4rea de finangas nos dltimos anos. Baseados no célebre
trabalho de MARKOWITZ (1952), os pesquisadores vém desenvolvendo modelos que
buscam aprimorar as técnicas ja comumente conhecidas,

Muitos autores t€m estudado o problema da alocagéio dindmica de carteiras de

investimentos, em que a composi¢do da carteira étima € revisada ao longo de um
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Capitulo 1: Introducio 2

horizonte de investimento'. Em oposigdo ao modelo esttico criado por Markowitz, os
pesquisadores utilizam uma variedade de métodos numéricos como resolugdes de
equagdes diferenciais parciais, simulagdo Monte Carlo, otimizagdo estocastica, para
tentar desenvolver um modelo dindmico de alocagio 6tima de ativos. Entretanto, devido
a complexidade destes modelos e do enorme esforco computacional que eles
demandam, estes modelos acabam nédo sendo utilizados na prética por profissionais da
area financeira, sendo delegados a pesquisadores ¢ académicos da drea em geral.

A abordagem deste presente frabalho busca tentar preencher este espago
existente entre a teoria e a pratica desses modelos multiperiodos de otimizagdo. No
Brasil, as técnicas de alocag8o 6tima de carteiras estdo ainda em estagio inicial de
implementa¢do, sendo, portanto, utilizados apenas os conceitos intitulados por
Markowitz por grande parte dos tomadores de decisfio do mercado financeiro brasileiro
— bancos, fundos de penséo, companhias de seguro, fundos mituos, entre outros.

Dessa forma, sera apresentado um modelo que contemple um algoritmo de
otimizagdo multiperiodo baseado em métodos numéricos que possa ser utilizado na

prética por um fundo de investimento brasileiro.
1.2 — A Empresa

Este trabalho foi realizado num fundo de investimentos financeiros que
administra recursos de terceiros. O fundo foi constituido em 2001, sob a dtica de atuar
baseado na analise dos fundamentos macroeconémicos e, consequentemente, gerar
riqueza para seus cotistas.

Nos dois primeiros anos de existéncia, o fundo administrava apenas o dinheiro
de seus sécios. A partir de 2003, ele passou a captar recursos de clientes externos e vem
crescendo a cada ano de existéncia.

Atualmente, a gestora possui 5 tipos de fundos de investimento que juntos
somam cerca de, aproximadamente, R$ 300 milhdes de reais sob sua gestdo. Com a
abertura recente do novo fundo de agdes da empresa, técnicas sofisticadas de
composigio de carteiras estfio sendo demandadas a cada dia. Isto decorre pelo fato de
que, devido ao perfil do fundo, que busca retornos financeiros acima da média do

mercado, os modelos atuais conhecidos jé nfio se adequam, dado a sua enorme difusdo

' Veja JOLIG (2003) e HIBIKI (2005).
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Capitulo i: Introdugio 3

pelo mercado financeiro do pais, isto &, eles ja sdo conhecidos por grande parte dos
participantes do mercado.
Portanto, o desenvolvimento de um modelo inovador contribui para que a

empresa possa obter um diferencial em relag8o aos seus competidores no mercado.

1.3 — Organizacio do Trabalho

O Capitulo 1 apresenta o tema do trabalho a ser desenvolvido bem como
descreve a empresa na qual o trabalho foi realizado.

O Capitulo 2 descreve alguns conceitos necessdrios & compreensfio deste
trabalho. O capftulo comega com uma introducio a teoria moderna de carteiras
desenvolvida inicialmente por MARKOWITZ (1952). Em seguida, s&o apresentadas as
caracteristicas do mercado de a¢Ges brasileiro, descrevendo seu produto — as agdes —e o
principal indice de agbes do mercado brasileiro o IBOVESPA. Por Gltimo, descreve-se
alguns métodos que tentam explicar a evolugdo dos precos das agdes como 0s processos
estocasticos e a simulagiio Monte Carlo.

O Capitulo 3 analisa os métodos de gerag@io de arvores de cendrios. O objetivo
do capitulo € encontrar na teoria os métodos utilizados na modelagem de pardmetros
aleatérios — pregos das agbes — sob a forma de 4rvores de cenarios. Trés métodos séo
apresentados: a simulagfio e clustering, os modelos de otimizag@o e o modelo hibrido.
Destes trés métodos, um serd escolhido para descrever os pregos das agdes que
compdem a carteira a ser otimizada.

O Capitulo 4 descreve o modelo de programacgéo linear a ser utilizado na
resolugdo do problema de otimizag#o de carteiras de investimento. O capitulo comega
com o detalhamento da técnica de geragdo de arvores de cenarios escolhida — simulagéio
e clustering. Em seguida, o modelo de otimizagdio ¢ descrito de forma minuciosa:
pardmetros, varidveis de decisdo e fungfio objetivo.

O Capitulo 5 apresenta os resultados obtidos na aplicagdo do modelo numa
carteira composta por agdes de empresas brasileiras. O modelo € testado num horizonte
de investimento de um més, em que a carteira de agdes € revisada uma vez por semana.
O capitulo se encerra com a analise de sensibilidade dos resultados encontrados, no qual

dois casos particulares sdo estudados como uma generalizagdo do modelo geral.
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Capitulo 1: Introdugio 4

O Capitulo 6 € o capitulo de fechamento do trabalho. Neste capitulo serfio
analisadas as respostas obtidas no capitulo 5. Ap6s a andlise, serdo apresentadas as
conclusdes € as recomendagdes para trabalhos futuros que podem ser desenvolvidos a
partir do modelo construido neste trabalho.

As referéncias bibliograficas sdo apresentadas ao final do documento.

Os apéndices também fazer parte deste trabalho
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Capitulo 2: Conceitos 5

2
CONCEITOS

Neste capitulo serdo apresentados alguns conceitos relativos 4 4rea de finangas,
necessarios para uma melhor compreensdo do trabalho. As caracteristicas do mercado
de ag0es brasileiro serdo explicitadas, bem como alguns topicos da teoria que descreve a

evolugdo dos precos dos ativos financeiros.
2.1 - Teoria Moderna de Carteiras

A teoria moderna de carteiras — ou teoria de carteiras - foi introduzida em 1952
por Harry Markowitz? (MARKOWITZ, 1952). Antes de seu trabalho ter sido publicado
¢ mudado os rumos da teoria das carteiras em finangas, os investidores concentravam-se
exclusivamente nos riscos e retornos de ativos individuais na construgdo de suas
carteiras de investimento. Logo, os investidores procuravam aqueles ativos que
oferecessem as melhores oportunidades de rentabilidade com minimo risco, para entdo
construirem as suas carteiras.

Markowitz propde que os investidores devem focar seus esforgos na selegéo de
carteiras de investimentos baseados nos riscos-retornos da carteira como um todo, ao
invés de compilarem carteiras de ativos que individualmente possuem riscos-retornos
atrativos. Em outras palavras, os investidores devem focar sua atengfio na selegdo de
carteiras, ndo em ativos individuais, dado que a diversificaggo de carteiras poderia levar
a construgfio de carteiras “mais eficientes” (isto é, dado um nivel de risco, existe uma
carteira que possui um maior nivel de retorno esperado), devido ao efeito da correlagio
entre os ativos.

Se tratarmos os retornos dos ativos de uma carteira como variaveis aleatérias,
podemos atribui-los medidas quantitativas de valores esperados, desvios padrles e

correlagdes dos retornos dos ativos. Baseado nessas informagdes, pode-se calcular o

? Markowitz dividiu o prémio Nobel de economia com William Sharpe e Merton Miller por seu trabalho
sobre a teoria das carteiras trinta anos mais tarde.
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retorno esperado e o risco de qualquer carteira construida com esses ativos, de acordo
com o peso de cada ativo na carteira. Certamente, podemos construir uma carteira étima
com esses ativos, isto é, dado um nivel de risco, encontramos aquela carteira com o
maior retorno possivel, dentre todas aquelas que constituem © nosso universo de
escolha, ou vice-versa.

Esta defini¢io retrata aquilo que Markowitz chamou de “fronteira eficiente”.
Logo, os investidores devem escolher carteiras de investimentos que estejam na
fronteira eficiente, pois elas estariam maximizando as suas utilidades esperadas dos

retornos futuros.

O modelo proposto por Markowitz ¢ baseado nas seguintes expressGes:

N
E= ZX, U, (2.1)
=1
N N
V=3>XX0, (2.2)
i=l =1
N
z X, =1 (2.3)
i=]
X, 20 (2.4

onde:

E ... Retorno esperado da carteira;

V... Varidncia da carteira;

X;... Porcentagem de cada ativo 7 alocada na carteira;

... Retorno esperado de cada ativo 7

ay...Covariéincia entre o par de ativos i e /, se i for diferente dej. Varidncia do

ativo i, caso contrério.

Como exemplo, considere uma carieira composta por 2 ativos com as seguintes

caracteristicas:
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Ativo Retorno Esperado (R) | Volatilidade (g) »
A RA =20% Oa ™ 15%
B Rg =35% op = 20%

Tabela 2.1 — Risco e retorne de uma carteira composta por 2 ativos genéricos

O retorno de uma carteira composta por esses 2 ativos ao longo de um horizonte

de tempo pode ser calculado da seguinte forma*:

R, =xR, +(l-x)R,

onde:
R, s Retorno esperado da carteira;
by | Frag&o alocada no ativo A;
by, e Retorno esperado do ativo A;
l-x ... Fragdo alocada no ativo B;
Ry v, Retomno esperado do ativo B.
J4 o risco da carteira pode ser definido da seguinte forma:
o, = \/xzo;,z +(1-xYa,’ +2x(1-x)p 50,05
onde:
[ R Risco da carteira;
X ocvrirenes Fragfio alocada no ativo A;
o, ... Varidncia do ativo A;

1 - x ....Frag#o alocada no ativo B;

fo 32 ..... Varidncia do ativo B;

P45 - Correlagdio entre os ativos A e B.

(2.5)

2.6)

3 A volatilidade de um ativo pode ser definida como o desvio padrdo do retorno geométrico do ativo.
* Pressupde-se que as distribuigSes dos retornos sobre os ativos individuais so normais.

Otimizago Multiperiodo de Carteiras de Investimento Utilizando a Técnica de Geragio de Arvores de Cendrios



Capitulo 2: Conceitos 8

Para visualizarmos os efeitos da diversificagdo da carteira, ilustramos a seguir o
grafico com a relagdo risco-retorno da carteira com os ativos A e B para diferentes

valores de correlagdo entre os ativos.

L PP RUIVRRRRUISSRSREESE PR
—— CORRELAGAO -1,00
T3 1 S T S
=7 —~ CORRELACAO -0,75
32,5% A 4 S
8 — a— CORRELAGAQ -0,50
= 30,0% 4 Al
A 5 CORRELAGAQ -0,25
g 27,6% s .
@ —— CORRELAGAC 0,00
Q  25,0% -
£ e wm— CORRELAGAO 0,25
o] o7 | ~ i e R .
E 225% | % —— CORRELAGAO 0,50
R T CORRELAGAO 0,75
A7 BY - mommmemmomomemesmeoeomoooeeeoeeeiereeseessissseessRasesassssesoseosoosseisiees co AGAO 1,00
15,0% - _— - : : -

0,0% 25% 60% 7.5% 100% 12,5% 150% 17,8% 20,0% 22,5%
RISCO

Figura 2.1: Relagiio risco-retorne de uma carteira composta por 2 ativos em funciio da

correlacio entre eles

Observamos que quando a correlagiio dos ativos € alta (maior que 0.70), ndo hd
melhora significativa na composigo da carteira, dado que, para uma eventual noticia ou
movimento de mercado, os ativos reagirdo quase que da mesma maneira a estes.
Entretanto, quando a correlagiio dos ativos € baixa (menor do que 0.70), podemos
construir uma carteira com o mesmo nivel de reforno, mas com um risco menor. No
limite, para ativos com correlagiio perfeitamente negativa (igual a —1), podemos
construir uma carteira com risco zero, isto é, o retorno esperado da carteira néo se altera
com qualquer movimento de mercado. Na pratica, porém, ¢ muito dificil de se encontrar
ativos com correlacio perfeitamente negativa.

A fronteira eficiente ¢ definida como a regifio do grafico onde encontramos

“carteiras Otimas”, isto é, para um dado nivel de risco, t€m-se o méximo retorno

possivel e vice-versa. A fronteira eficiente & ilustrada através da linha AB na figura 2.2:
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37,5% -
356,0% -
32,5% 4
30,0%
27,5%
25,0%
22,5%
20,0% -

RETORNO ESPERADO

17,6%
15,0%

2.2 - Acdes

Agdes sdo

T

0,0% 2,5% 5,0% 7,5% 10,0% 12,5% 15,0% 17.6% 20,0% 22,6%

RISCO

Figura 2.2 — Fronteira eficiente de Markowitz

titulos de renda varidvel vendidos a pessoas fisicas e juridicas. Elas

representam a menor fragio do capital social de uma empresa.

As ag¢les podem ser de trés tipos:

ON - Denominadas Ordinarias: sdo as agdes que dio direito a voto
no estatuto da empresa, além de participar dos resuliados da
companhia através do recebimento de dividendos. Os dividendos
pagos as agdes do tipo ON sdo 10% menores dos que os pagos as
acbes do tipo PN caso ndo seja especificado pelo estatuto. As agbes
do tipo ON geralmente possuem menor valor de mercado do que as
do tipo PN e também menor liquidez, uma vez que a maioria dessas
aces estd em poder dos proprietarios que nfo negociam com

freqtiéncia o papel;

PN — Denominadas Preferenciais: sdo as agdes que déo prioridade
na participag&o dos resultados da empresa (dividendos), assim como
no reembolso do capital, mas nfo tem direito a voto. As agdes
preferenciais passam a ter direito a voto quando a empresa deixa de

pagar dividendos minimos por trés anos.
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» PNA, PNB ou PNC: sfio também acdes preferenciais que possuem
caracteristicas  distintas das  preferenciais comuns. Estas
caracteristicas sfo definidas por meio de estatutos. As diferengas
variam de empresa para empresa, portanto, ndo ¢ possivel fazer uma

definigéo geral deste tipo de agéio.

No Brasil, as agles sdo negociadas na Bolsa de Valores de Sdo Paulo

(BOVESPA). Existem, basicamente, dois tipos de mercado:

o Primario - compreende as negociagBes realizadas em ofertas
publicas iniciais (IPOs — Initial Public Offers) onde as empresas

realizam a emiss@o de novas agdes na bolsa de valores.

e Secunddrio — compreende as negociagdes diarias realizadas entre os

agentes com as agdes das empresas ja existentes no mercado.
2.2.1 — indice Bovespa (IBOVESPA)

O Indice Bovespa (IBOVESPA) é o mais importante indicador do desempenho
médio das cotagdes do mercado de agdes brasileiro. Compreende o valor atual de uma
carteira tedrica formada pelos principais papéis negociados na BOVESPA,
representando o desempenho médio das agdes que compdem o indice. A finalidade
basica do IBOVESPA € a de servir como indicador médio (benchmark) do
comportamento do mercado. Para tanto, as agdes que compdem o indice respondem por
mais de 80% do namero de negdcios e do volume financeiro verificados no mercado a

vista.
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PONTOS
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Figura 2.3 — Evoluciio do indice BOVESPA
2.2.2 — Classificag¢iio Setorial das Empresas Listadas na BOVESPA

As empresas negociadas na Bovespa podem ser classificadas de acordo com os

setores ¢ sub-setores econdmicos em que elas atuam. Pode-se visualizar essa
classificagfio a seguir:

o Petroleo e Gds

- Petrdleo e Gas

¢ Materiais Basicos
- Mineracio
- Siderurgia e Metalurgia
- Quimicos
- Madeira e Papel
- Embalagens

- Materiais Diversos

¢ Bens Industriais

- Material de Transporte

Otimizagdo Multiperiodo de Carteiras de Investimento Utilizando a Técnica de Geragdio de Arvores de Cenérios
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- Equipamentos Elétricos

- Méquinas ¢ Equipamentos
- Tecnologia da Informagdo
- Servicos

- Comércio

Construgio e Transporte
- Construgéo ¢ Engenharia

- Transporte

Consumo Nao Ciclico

- Alimentos

- Bebidas

- Fumo

- Produtos de Uso Pessoal e de Limpeza
- Sande

- Comércio

Consumo Ciclico
- Tecidos, Vestuario e Calcados
- Utilidades Domésticas
- Midia
- Hotelaria
- Lazer

- Coméreio

»

Telecomunicac¢des
- Telefonia Fixa

- Telefonia Mavel

Utilidade Piblica
- Energia Elétrica

- Agua e Saneamento

Otimizagéio Multiperiodo de Carteiras de Investimento Utilizando a Técnica de Geraglio de Arvores de Cendrios



Capitulo 2: Conceitos 13

- Gas

¢ Financeiro e Qutros
- Intermedidrios Financeiros
- Securitizadoras de Recebiveis
- Previdéncia e Seguros
- Exploragéo de Imoveis
- Holdings Diversificadas
- Servigos Diversos
- Fundos

- Qutros

2.3 — Processos Estocasticos

Um processo estocdstico {X (H,te T} ¢ uma colegéio de varidveis aleatérias onde
¢ representa, na maioria das vezes, o tempo e X (f) representa o estado do processo no
tempo f. Segundo HULL (1997), pode-se afirmar que um ativo segue um processo
estocdstico quando seu preco varia ao longo do tempo de forma aleatéria, Desta forma,

08 processos estocasticos que explicam a evolugéio dos pregos dos ativos podem ser

classificados de duas formas:

Com relagéo ao fator tempo:

* Discreto: o valor do ativo pode variar apenas em certos pontos fixos no
tempo, ou seja, o conjunto T (¢ € T') é enumeravel;
* Continuo: o valor do ativo pode variar em qualquer ponto no tempo, ou seja,

o conjunto T (f € T') ndo é enumeravel.
Com relag#o &s variaveis do modelo (ativos):

¢ Discreto: o ativo pode assumir apenas determinados valores;

o Continuo: o ativo pode assumir qualquer valor dentro de um certo intervalo.

Otimizagdo Multiperiodo de Carteiras de Investimento Utilizando a Técnica de Geragdo de Arvores de Cenarios
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2.3.1 — Tipos de Processos Estocasticos

2.3.1.1 — Processos de Markov

Um processo de Markov é um particular tipo de um processo estocdstico, onde
apenas o valor atual do ativo € relevante para prever o futuro. O histérico dos pregos
passados e o comportamento passado que levou a formag#o do prego atual do ativo sdo
irrelevantes para o modelo.

Geralmente, pode-se afirmar que os pregos de agles seguem um processo de
Markov. Por exemplo, suponha que o pre¢o da agio Telemar (TNLP4) esteja R$ 37,00
hoje. Se a agdo segue um processo de Markov, npssa projecdo para o prego da agéo no
futuro ndo deve ser afetada pelo prego da agfio ha uma semana atras, ha um més atras ou
hd um ano atrds. A Unica informagio relevante € o fato do prego da agfio ser R$ 37,00
hoje, isto ¢, o prego atual contém toda a informagéo embutida do histérico dos pregos

passados da agéo.

2.3.1.2 — Processos de Wiener

Um processo de Wiener € um particular tipo de um processo estocastico de
Markov. Ele ¢ muito utilizado na Fisica para descrever o movimento de uma particula
que esté sujeita a um grande nimero de pequenos choques moleculares e € muitas vezes
chamado de Movimento Browniano.

O movimento dos pregos de uma agdo S pode ser explicado através de um
processo de Wiener. Segundo JORION (2003), o modelo pressupde que as inovagdes do
prego do ativo nfo sfo autocorrelacionados ¢ que pequenas oscilagdes nos pregos dos

ativos podem ser descritas pela seguinte equago:

dS = uSdt+ocS dz Q.7)
ou
as, =pdt+odz (2.8)

I
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onde dz € uma varidvel aleatéria normalmente distribuida com média zero e varifncia
dt . Essa varidvel condiciona os choques aleatorios sobre o pre¢o e néo depende de
informagdes passadas. A variavel € browniana no sentido de que sua varidncia diminui
com o intervalo de tempo, VAR(dz) = dt, o que exclui, por exemplo, movimentos com
saltos repentinos. O processo também € geométrico porque todos os pardmetros sdo

multiplicados pelo prego atual S,. Os parmetros g, e o, representam o desvio ¢ a

volatilidade instantdnea no momento 7, que podem evoluir com o tempo. Para

simplificar, trabalha-se com parmetros # e o constantes.

Integrando a equagdo (2.7) para um intervalo finito, tem-se, aproximadamente:
AS =S, (At + o, /AL 2.9)

onde &€ ¢ uma varidvel aleatoéria normal padrdio, isto é, uma varidvel aleatéria com
média zero e varidncia um e Ar=A/#n, onde A & o horizonte de investimento e # ©
numero de incrementos (periodos) ao longo deste horizonte.

HULL (1997) apresenta uma figura em que a evolugio do caminho aleatério do

preso de uma agéo qualquer, ao longo do tempo, pode ser ilustrada da seguinte forma:

Processo de Wiener - Movimento Browniano
dS = uSdt + oSdz

PREGO

TEMPO

h 2

Figura 2.4 — Processo de Wiener: Movimento Browniano
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2.4 — Simulag¢do Monte Carlo

No tépico anterior, foi apresentada a equagfo que descreve o movimento de uma
a¢do ao longo do tempo. Na pratica, as carteiras de investimento possuem mais de uma
fonte de risco financeiro (agdes), o que nos obriga a trabalhar com uma distribui¢do
multivariada. Tal fato introduz uma complica¢fo computacional na modelagem do
caminho a ser percorrido pelos pregos dos ativos de uma carteira, haja vista que os
ativos sfo correlacionados ¢ esta correlagdo também evolui com o tempo.

JORION (2003) sugere que uma solugéio para este tipo de problema consiste na
utilizagdo de métodos de simulagfio numérica, como o método de Monte Carlo. Os
métodos de simulagdo Monte Carlo geram pontos independentes pseudo-aleatdrios que
tentam preencher um espago N-dimensionai, onde N ¢ o numero de fatores de risco
(a¢des) que influenciam os pregos de uma carteira.

As simulagGes conseguem tratar adequadamente carteiras que dependem de mais
de uma varidvel porque o tempo de processamento aumenta linearmente com N,
enquanto que ele aumenta geometricamente com N para métodos binomiais ou de
diferengas finitas.

Considere uma carteira composta por N fatores de risco (agdes). No caso dos
ativos nfo serem correlacionados, a solugfio para o problema da evolugiio do prego da

carteira se da de forma direta. Generalizando a equaggo (2.9) para N ativos, temos:

AS

N

S \uat+oe NAr) 2.10)

Ju-1

onde os valores de & so independentes entre os periodos de tempo e entre as séries
j=1...,N. Através da simulagdo Monte Carlo, geram-se nimeros pseudo-aleatdrios
que descrevem o comportamento a ser percorrido pelos ativos independentemente. O
valor da carteira formada pelos N ativos num determinado horizonte de tempo A4 €
dado pelo somatério do valor de cada ativo j no instante de tempo 4.

Entretanto, as varidveis (ativos) sdo em geral correlacionadas. Isto faz com que a
simulagdo s¢ torne computacionalmente mais robusta, haja vista que para um

determinado instante de tempo A,, a carteira possuird uma matriz de variéncia-

covaridncia (2, ).
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Umas das formas de se obter uma simulagio completa, sem nenhuma
simplificagdo com relagio as correlagdes entre os ativos da carteira, consiste na
utilizagdo de uma técnica matematica conhecida como método de decomposicio de
Cholesky’ da matriz varidncia-covariancia dos ativos.

Como exemplo, considere uma carteira composta por 2 ativos 4 ¢ B.

Admitindo-se que os ativos apresentem uma média dos retornos 4, =0 e que Af scja

igual a um, obtemos as seguintes equagdes a partir de (2.10):

AS

R, =" =04, (2.11)
SA,I-]
AS

Ry =3 2= oyey, (2.12)
B,r-1

Entretanto, devido a correlagéo dos ativos que formam a carteira ser diferente de

zero, isto €, p,, # 0, incorporamo-la no modelo através da seguinte operagdio matricial:

R=LXZ (2.13)

ou

I:RAJ:| N |:lu 121:|'|:€A,1 2.14)
RB,t 121 122 EB,!
onde a matriz L transforma as varidveis aleatérias ¢,, e £,, que seguem a distribui¢do

normal padronizada, em variagdes correlacionadas dos fatores de risco R, ¢ R, .

A matriz L pode ser encontrada através da decomposigéo de Cholesky da matriz
varidncia-covariéncia dos ativos. Como a matriz de varidncia-covaridncia é simétrica
(A = A’) e definida positiva (x‘Ax >0Vx # 0), ela pode ser fatoradaem 4=LU = L[,

utilizando a decomposi¢do de Cholesky:

* Veja o Apéndice C
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2
o o e I 0 ! I
A:[ y y Bfusj:[ n J[ X 21]:,:)5' 2.15)
T 40P s Ty Ly Iy 0 Iy

Resolvendo a equagfio acima, temos que:

o, 0

(2.16)
Opfap Ty 1- pA82

Logo, a evolugfio dos retornos dos ativos da carteira pode ser descrita pelas

seguintes equagdes:

Ry =0,48, 2.17)

Ry, =006, +0pq1- pA82 Eg, (2.18)

A decomposi¢do de Cholesky serd utilizada no modelo de construgdo de drvores

de cendrio a ser apresentado no capitulo 4.
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3
METODOS DE GERACAO DE ARVORES
DE CENARIO

Neste capitulo, serdo abordadas as principais técnicas de geragdo de drvores de
cendrios existentes apresentadas por GULPINAR et al. (2001). Essas técnicas sfo
comumente utilizadas no intuito de reduzir de forma significativa o esforgo
computacional exigido na resolugio de problemas de otimizagdo financeira
multiperiodo. Dessas técnicas apresentadas, uma ser escolhida para explicar a evolugio
dos pregos dos ativos, sob a forma de uma 4rvore de cenarios, e servird de base para a

resolugdo do modelo de otimizagfo a ser apresentado no capitulo 4,

3.1 — Introducio

Dada uma determinada carteira de investimento, composta por n ativos com
risco, um gestor deve acessar as informagdes do mercado financeiro como os pregos dos
ativos e custos de transagéio, de forma a determinar a composi¢8io da carteira a cada
instante de tomada de decis@io ao longo de um horizonte de investimento. O objetivo do
gestor € determinar a composicdo Stima da carteira, composta pelos » ativos, a cada
instante ¢, de forma a maximizar a sua riqueza futura em 7T, onder =12,...,7 . Esse
problema é comumente conhecido como um problema de otimizagfio financeira
multiperiodo.

Contudo, dado que os pregos dos ativos variam ao longo do tempo de forma
aleatdria, o problema de tomada de decisdo envolve incertezas. Logo, podemos modelar
¢ssas incertezas, caracterizadas pela evolug@io dos pregos dos ativos, segundo os
processos estocésticos apresentados no capitulo anterior, transformando o problema
num problema de otimizagdo estocastica multiperiodo (HU, 2003).

Entretanto, os problemas de otimizag#io estocastica multiperiodo possuem certas

particularidades, como o célculo de expectativas condicionais de varidveis aleatorias,
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que dificuitam a sua resolugfio. Além disto, o tamanho ¢ a complexidade desses
problemas podem crescer rapidamente com a adi¢io de novas incertezas no modelo.
Dessa forma, exceto para casos extremamente simples, os problemas de programagio
estocastica multiperiodo podem apenas serem formulados, mas n#o resolvidos. Logo,
muitos autores tém se concentrado em criar métodos e algoritmos que exploram ¢
simplificam a resolugo desses problemas. Como exemplo, podemos citar 0s métodos
de geragdio de arvores de cendrios, umas das técnicas mais empregadas na resolugdo
destes tipos de problema atualmente.

O objetivo da geragéio de arvores de cendrios ¢ representar de forma clara e
concisa a evolugdo dos possiveis caminhos que uma varidvel aleatéria pode seguir.
Dado que uma variavel aleatéria pode assumir diferentes valores ap longo do tempo,
segundo uma determinada distribui¢fio de probabilidades, estes métodos buscam tentar
reproduzir esses caminhos através da construgfo de cendrios ou estados da natureza.

O processo de geraclo de cendrios transforma implicitamente o problema
estocdstico num problema deterministico de grandes dimensSes que, naturalmente,
contém um erro originado pelo processo de discretizag8o. Dessa forma, supde-se que o
futuro se reduz a um numero finito de pontos no tempo, com um horizonte temporal de
comprimento fixado. Em cada data futura, toma-se uma aproximagéo da distribuicdo
continua, supondo que apenas possa ocorrer um mimero finito de estados, definidos
como uma realiza¢do dos valores dos elementos aleatdrios considerados.

A figura 3.1 representa de forma ilustrativa 0 modelo de uma 4rvore de cenérios.
O conjunto dos cendrios corresponde ao conjunto das “folhas” € dos “nos” da arvore.
Nela, identificamos claramente todos os elementos que compfem o processo de
discretizagdo da varidvel aleatoria ao longo do tempo através da utilizagdo do modelo de

arvores.
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“Raiz”

“Folhas”

A

"

“Arcos

Figura 3.1 — Modelo de uma drvore de cenarios

A “raiz” da drvore representa o estado inicial, isto ¢, o valor atual da varigvel
aleatéria. Para um dado “galho” da arvore, desde a “raiz” até uma de suas “folhas™,
teriamos um particular cendrio, isto €, uma particular seqiéncia de realizagdes da
varidvel aleatoria. Os “nds” da drvore representam estados possiveis e os “arcos”,
transigSes com probabilidade positiva. O ntmero de arcos que parte de cada né pode
néo ser o mesmo em cada tempo: € razodvel considerar que nos tempos mais proximos
do atual, em que h4 melhor conhecimento da situagio, haja vantagem em haver um
nimero maior de possibilidades do que quando se estd afastando no tempo.
Particularmente, no caso onde ha dois estados no final de cada periodo para cada estado
no inicio deste, temos uma arvore binomial.

Existem diversas técnicas para a gerago de arvores de cendrios. Apresentaremos

aqui, a simulagdo e clustering, os modelos de otimizag#o ¢ 0 modelo hibrido.

3.2 —- Simulacdo e Clustering

Esta técnica de geragfio de arvores de cendrios consiste na simulagdo de um
namero grande de caminhos que uma varidvel aleatéria possa seguir, respeitando as

caracteristicas de sua distribui¢iio de probabilidades (média, variéncia, assimetria e
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curtose). Inimeras técnicas de simulagdo podem ser utilizadas, como por exemplo, a
simulagdo Monte Carlo. A simulagdo Monte Carlo & considerada uma ferramenta
computacional valiosa e flexivel na teoria moderna de finangas: é ficil conseguir um
conjunto de caminhos simulados representando as possiveis realizagdes de uma varidvel
aleatoria, dada uma determinada equag8o estocastica ou um modelo de séries temporais
que represente o processo da sua evolugdo ao longo do tempo. Em seguida, aplica-se
uma técnica de clustering® para obter as ramificagdes desejadas, de forma a construir a
arvore de cendrios.

A obtengdo da arvore de cendrios no método de simulagéio e clustering pode ser
realizada de duas formas: simulagdio em paralelo ou simulagfio seqiiencial.

Detalharemos sucintamente cada uma delas a seguir.

3.2.1 — Simula¢io em Paralelo

Na simulagéo em paralelo, cada um dos cenérios pertencentes a um dado né da
arvore € obtido a partir do valor atual da varidvel aleatoria (raiz). No tempo inicial
t =0, o valor atual da varidvel aleatéria forma a raiz da arvore. Simula-se um nimero
adequado de representagbes do fendmeno a considerar, gerando caminhos que a variavel
aleatoria possa seguir. Através de uma técnica de clustering, determinam-se os
respectivos clusters, cujos centrdides constituem os nés do nivel um (#=1). Esses
clusters sdo entdo divididos em sub-clusters, cujos centréides representam os nés do
nivel dois (¢ = 2) e assim sucessivamente até chegar as folhas da arvore (r =T').

A figura 3.2 ilustra o processo da simulagéio em paralelo. A figura foi adaptada
de GULPINAR et al. (2001). As linhas pontilhadas denotam os caminhos obtidos por
simulagdo. As elipses representam os clusters obtidos em cada instante de tempo ¢ € as
linhas cheias, a drvore de cendrios resultante. Percebe-se que o numero total de
caminhos simulados em todos os n6és num dado nivel da arvore é sempre igual ao
nimero original de caminhos simulados. Esta € a caracteristica da simulagdo em

paralelo: com uma Gnica simulagdo, determina-se a drvore de cenarios resultante.

® Veja o Apéndice D,
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Figura 3.2 - Simulagio em paralelo

3.2.2 — Simulaciio Seqiiencial

Na simulagéio seqiiencial, todos os cendrios de um dado né s#o obtidos a partir
do valor encontrado no centréide do cluster que constitui o nd imediatamente anterior.
Dessa forma, dado que o valor representativo da variavel aleat6ria de um determinado
ndé ndo pode ser encontrado até que o cluster do tempo imediatamente anterior
determine o seu centrdide, os cendrios ndo podem ser gerados fora do horizonte
cronolégico de tempo. Por isso a designacgio seqiiencial da simulag&o. No tempo inicial
t =0, o valor atual da varidvel aleatoria forma a raiz da arvore. A partir desse né inicial
comum, sdo gerados aleatoriamente os caminhos que v&o constituir os clusters de tempo
t =1, formados na primeira iteragfio do algoritmo, € cujos centroides sfo associados
com 0s noés do nivel um; repete-se o processo de simulagéo e clustering para cada né do
nivel um obtendo-se os nés do nivel dois (¢ = 2), e assim sucessivamente até se chegar
as folhas (¢ =T7). Neste caso, ndo ha a necessidade de usar um maior mimerc de
caminhos simulados na raiz do que perto das folhas, sendo que um numero constante de
caminhos pode ser usado em todos os nds.

A figura 3.3 ilustra o processo da simulagfio seqilencial. A figura foi adaptada
de GULPINAR et al. (2001). As linhas pontilhadas denotam os caminhos obtidos por
simulagfo. As elipses representam os clusters obtidos em cada instante de tempo ¢ ¢ as
linhas cheias, a arvore de cendrios resultante. Percebe-se que, diferentemente da
simulagdo em paralelo, para cada ndé encontrado € necessdrio realizar uma nova

simulagéo.
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Figura 3.3 — Simulagéo seqiiencial

3.3 - Modelo de Otimizacéo

Esta técnica de geragdo de drvore de cendrios utiliza modelos de otimizag&o para
a obteng#io dos valores associados aos nés da arvore de cendrios’. A aproximagio da
distribui¢dio continua por uma distribuigdo discreta envolve o seguinte procedimento:
primeiramente, obtém-s¢ por simulagio uma amostra de tamanho adequado para a
distribuicio em estudo. Em seguida, dividem-se os resultados em conjuntos,
selecionando um ponto representativo de cada intervalo e atribuindo uma probabilidade
a cada ponto.

Em geral, utiliza-se uma arvore simétrica na modelagem, isto €, com um mesmo
namero de ramos que emanam de cada no. O algoritmo para obter a drvore através de
um modelo de otimizagio pode ser descrito da seguinte forma: Seja S o conjunto de
todas as propriedades estatisticas e SV, o valor especifico de cada propriedade i,ie S.
Sexe p denotam o vetor prego e o vetor probabilidade, respectivamente, & expresséo
matematica da propriedade estatistica / pode ser definida com uma fun¢fo dessas
varidveis aleatérias f(x, p}. O objetivo é construir xe pde forma que a soma dos

quadrados das diferengas enire as propriedades estatisticas da distribui¢io simulada e as

especificagdes seja minimizadas (HOYLAND et al., 2001). Matematicamente, temos:

7 Veja GULPINAR et. al. (2001) e PFLUG (2001).
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MIN 3 w(f(xp)-SV) 3.1)
P ie§
sa.  ».p =], p=0, (3.2)

onde w, ¢ o peso da propriedade estatistica i.

Geralmente, este problema de otimizagfio n#o-linear nfio é convexo. Logo, a
solugio encontrada pode ser um 6timo local. Entretanto, o simples fato da solugfo
apresentar propriedades similares aquelas da distribui¢fio continua ja € suficiente para
obtermos uma solugéo satisfatéria.

Duas formas de se obter a drvore de cendrios serdo apresentadas. Se a drvores de
cendrios € construida considerando cada no separadamente, teremos uma otimizagdo
segitencial. Neste caso, um problema de otimizag#o de pequena dimens#o é construido e
resolvido para cada n6 da 4rvore. Alternativamente, se considerarmos todos os nos da
arvore e gerarmos a arvore inteira de uma s0 vez, num problema de otimizagZo de

grande dimensfo, teremos uma ofimizagdo global.
3.3.1 — Otimizag¢fo Seqiiencial

Para ilustrarmos o algoritmo da otimizagdo seqilencial, utilizaremos um exemplo
em que se pretende simular, através de uma arvore de cenarios, o comportamento de um
conjunto de »n ativos com risco, num horizonte temporal 7. O conjunto dos cenarios
corresponde ao conjunto das folhas da 4rvore e dos nos no tempo ¢ 21, nivel ¢ da
arvore. Um cendrios € um caminho da raiz até uma folha e o tempo ¢ especifica um nd

particular deste caminho. Assim, e = (s,#) indica um né da arvore ¢ Q,, 0 conjunto dos

nos da drvore no tempo ¢ > 1, nivel ¢ da érvore.

Os momentos centrais ¢ momentos conjuntos das varidveis aleatérias fazem
parte das especificages estatisticas do modelo, sendo os quatro primeiros momentos
centrais: valor esperado, desvio padrdo, assimetria € curtose e as covariéncias, 0s

momentos conjuntos.

Seja [ ={1,2,...,n} o conjunto dos ativos considerados. Sejam M, , para

k=1,2,3,4, os quatro primeiros momentos centrais da distribuigdo do ativo i; C, a
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covaridncia dos ativos i e / (i,/ € Ie i<I); N, o nimero de ramos que emanam de um
né6 no tempo ¢ =1,...,7 1.

O prego x, dos cendrios e as probabilidades p ; das varidveis, com iel e
J=1...,N,, sfo varidveis de decisdio no seguinte problema de otimizag¢#o n#o linear a

ser resolvido em cada né;

n 4
MIN 2wl M)+ Y wle, -C,) (3.3)
ud i=l f=I idel i<i
N,
s.a > p, =1 (3.4)
=l
N,
My =2, %D, iel, (3.5)
j=1
N,
me =%, -m\)p,  ielLk=234, (3.6)
j=1
N,
¢r =3 (x, —m, Jx, —m,)p,, ileli<l, G3.7)
=l
p, 20, j=1..,N,, (3.8)

onde w, =w,/Mj e w, =w, /C; sio pesos nos quais w, parak =1,2,3,4, traduzem a

importincia relativa dos momentos centrais ¢ w), a das covaridncias dos ativos i,/ e /.
Embora néo demonstrado o célculo dos momentos centrais M, e das covaridncias C,,
podemos garantir que os valores s3o diferentes de zero. O resultado é demonstrado em
GULPINAR er al. (2001).

Nesta formulagdo, a primeira restri¢do indica que a soma das probabilidades na
ramificagdo do n6é deve ser igual a um. As outras restrigSes dizem respeito aos
momentos que aparecem na fungfio objetivo. A ultima restricio garante que as
probabilidades sfio ndo-negativas.

O algoritmo de geragfo da arvore pode ser descrito da seguinte forma: na raiz da
arvore considera-se o pre¢o histérico dos » ativos, representados por um vetor

Hy =(P,...,P,). Estes pregos podem ser observados durante um determinado periodo

de tempo: mensal ou semanalmente. Para cada n6 da arvore e Q,,1=1,...,T-1, o
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conjunto H, ¢ atualizado incluindo a sequiéncia de pregos gerados. Dessa forma, na raiz
da drvore, apenas um problema de otimizag8io ¢ construido e resolvido, obtendo-se N,

realizages dos pregos e suas probabilidades. Para cada ramo que sai da raiz,
especificam-se as propriedades estatisticas condicionadas para o periodo f=1,

tomando H, = HyU X,,ee Q,, onde X, denota o vetor formado pelos pregos dos n
ativos em e. Logo, em 7 =1, temos N, problemas de otimizag&o, cujas solugdes ddo os

resultados para ¢=2. O processo continua até o ultimo periodo, gerando sempre
cendrios condicionados pelos resultados anteriores.

A figura 3.4 ilustra o processo da otimizagfo seqiiencial. A figura foi adaptada
de GULPINAR et al. (2001). As linhas cheias representam os problemas de otimizagdo
previamente resolvidos. As linhas tracejadas denotam os problemas de otimizag#o

futuros a serem resolvidos. J4 as linhas em negrito, o problema de otimizacéo atual.

FA )
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Figura 3.4 — Otimizac¢ao seqiiencial
3.3.2 — Otimiza¢ao Global

A abordagem da otimizagdo seqiiencial implica que as propriedades estatisticas
sejam especificadas apenas localmente, em cada né da drvore. Dessa forma, o modelo
ndo permite um controle direto das propriedades estatisticas globais, sobre todos os
perfodos considerados. Logo, podemos dizer que a otimizagio seqiiencial gera arvores
de cenarios subdtimas. Assim, um modelo que gera a arvore de forma global é mais

realistico.

Otimizagio Multiperiodo de Carfeiras de Investimento Utilizando a Técnica de Geraggio de Arvores de Cendrios



Capitulo 3: Métodos de Geragdio de Arvores de Cendrios 28

A principal desvantagem da otimizagfo global é que o tamanho do problema de
otimizagdo cresce em termos do numero de varidveis e restrigdes, do nlimero de ativos,
da estrutura da 4rvore de cendrios em cada estigio ¢ do nimero de momentos centrais
das varidveis.

O modelo de otimizagdo global segue a mesma idéia do modelo seqiiencial.
Entretanto, ao invés da construgdo da arvore ser feita no por no, a arvore inteira & gerada
resolvendo um problema de otimizagio de grande dimensfio. Dada a notagéio
matemadtica apresentada na seqfio anterior, o problema de otimizagdo global pode ser

formulado da seguinte forma:

My S S Pl i) Swu-Cul ] 69

i=0 eell,\ i=l k=1 idel i<t
Nl
s.a > p,. =1 eeQ,,t=0,1...,T-1, (3.10)
1=t
Nr
My, =D XD es ielLeeQ,t=0l..,T-1 (3.11)

=

N,
My =3, —my ) b,y ieLk=234eeQ, t=0L..,T-1  (3.12)

j=l

N,
Cpe = Z(xike _mfleXx!ke _mne)Pw Llel,i<l, (3.13)
=1
ileli<l,eeQ,t=01,..,T-1], (3.14)
P =0, j=L...,N,,eeQ,t=01,...,T -1, (3.15)

A figura 3.5 ilustra o processo da otimizagio global. A figura foi adaptada de
GULPINAR et al. (2001). Percebe-se que neste caso, a arvore inteira € gerada de uma

s6 vez, num Unico problema de grande dimensgo.
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Figura 3.5 — Otimizaciio global

3.4 — Modelo Hibrido

No modelo de otimizagéo, cendrios econdmicos sio gerados de forma a garantir
que as propriedades estatisticas da distribuigo simulada estejam de acordo com as da
distribui¢do em estudo, enquanto que na simulacdo, os centréides dos clusters
representam de algum modo os cendrios,

O modelo hibrido combina as idéias principais dos modelos de simulagdio ¢
otimizagdo Nesta abordagem, os pregos séo obtidos como centrdides dos clusters da
simulagdo e substituidos, como varijveis de decisdo, nos modelos de simulagdo. As
probabilidades sfo entdo determinadas resolvendo o problema de otimizag8o, cujo

tamanho ¢ relativamente menor do que aqueles dos problemas de otimizagéo.

3.5 — Comentarios Finais

As técnicas de geragfio de 4rvores de cendrios constituem um grande avango
computacional, na medida em que elas reduzem drasticamente o tamanho do problema
de descrever o processo da evolugfo dos valores que uma varidvel aleatéria pode
assumir, sem grandes perdas de informagfo do processo. Desta forma, torna-se
computacionalmente viavel a implementagéio de um modelo de otimizag@o multiperiodo
de carteiras. O modelo de otimizagdo a ser implementado serd apresentado no préximo

capitulo.
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4
DEFINICAO DO MODELO

Neste capitulo, descreveremos sucintamente o modelo utilizado na construg¢go
das carteiras de investimento. Tal modelo envolve o uso da simulagfo e clustering para
a gerag8o da arvore de cendrios. Em seguida, aplica-se um modelo de programagio
linear de grande porte para a obtengdo da carteira 6tima de investimento em cada

instante de tempo ¢.

4.1 - Introdugio

Baseado nos métodos de geragio de cendrios apresentados anteriormente,
decidiu-se criar um modelo que fosse relativamente simples e de facil implementagéio,
haja vista que ele deverd ser colocado em prética numa situagfo real num fundo de
investimento. Dessa forma, optou-se pela abordagem utilizada por HU (2003).

O modelo proposto por HU (2003) € baseado na construgdo da é&rvore de
cendrios por simulagdo. Além disto, o modelo utiliza a técnica da simula¢io em
paralelo. Dessa forma, ha apenas a necessidade de se executar uma vez a simulagéo, na
raiz da drvore, economizando tempo e esforgo computacional. Apés a simulag8o, uma
técnica de clustering ¢ aplicada para classificar os caminhos simulados em clusters, de
forma a construir uma 4rvore de cendrios. Dessa forma, limitamos dramaticamente o
nimero de varidveis de decisfio do problema ~ os caminhos simulados s3o substituidos
por clusters que representam as possiveis realizagdes da varidvel aleatéria. Em seguida,
um modelo de otimizagdo baseado em programagéo linear é aplicado de forma a obter a
carteira 0tima de investimento em cada instante de tempo 7.

A seguir, descreveremos sucintamente os principais passos do modelo.
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4.2 — Simulacfo e Clustering

Considere um modelo a ser aplicado num horizonte de investimento 7', onde o
tempo variade =0 a r =T, e decisOes condicionadas sfio tomadas a cada instante de
tempo /. Um conjunto formado por N ativos com risco estd disponivel para a selegéio

da carteira de investimento.

f
Seja P = (P:,,. ..,Pm) ,t=0,....T, o vetor de precos dos ativos com risco.
Claramente, este vetor comporta as varidveis aleatorias de nosso modelo de simulagéo,
As possiveis realizagdes dos pregos dos ativos P, onde £ =0,...,7, sdo descritas

através de J caminhos simulados, obtidos via simulagio Monte Carlo:
JO = {pw p@_  pw} q=1....J,

comegando do estado inicial P, e transcorrendo todo o horizonte de investimento, desde

t=0 até ¢ =7 . No inicio do horizonte de investimento, assume-se que o estado inicial
F, € conhecido com certeza. A cada instante de tempo #, os caminhos que possuem
caracteristicas semelhantes sdo divididos em clusters, e diferentes decisdes podem ser
feitas em cada cluster. O processo € repetido para r =1,...7 -1, até se conseguir uma
arvore de cendrios.

Na formag@o dos clusters, a dissimilaridade entre dois pontos, correspondente
aos vetores de pregos P e P ¢ medida utilizando a distdncia euclidiana, que

corresponde & seguinte expressdo:

! o 2 2
dlst(R(ql),R(‘lz))= {anlpf}m - ple } (4.1)

Claramente, percebe-se que quanto menor a distdncia, mais similares séio os
pontos um com o outro, indicando que eles podem fazer parte do mesmo cluster. Dessa
forma, a 4rvore de cendrios pode ser gerada utilizando um método de agrupamento, a
partir da matriz de dissimilaridades dos pregos dos ativos. Entre os métodos existentes

na literatura, empregou-se o método de WARD, que € amplamente usado em problemas
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de otimizagdo financeira € considerado superior aos outros métodos existentes na
prética. O Apéndice D traz uma descri¢@o detalhada da técnica de clustering.

A figura 4.1 ilustra o processo da construgio da arvore de cendrios através do
método da simulagfo e clustering, com simulag8io em paralelo. Os passos representam a

identificagfo dos clusters e subclusters em cada periodo de tempo ¢.
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Figura 4.1 — Construcfio da arvore de cendrios

4.2.1 — Identificagdo do Centroide do Cluster

Uma vez obtido um conjunto aceitdvel de valores agregados, ou seja, obtido o
cluster, é preciso representa-lo por um tnico valor que tornard o dado assoctado com o
né numa arvore de cendrios. Este valor é comumente chamado de centréide do cluster.
Assim, € preciso fixar a nogdio de centro, sendo as mais utilizadas as seguintes: média,

mediana, centro de gravidade, entre outras. Optou-se pela utilizagdo da média, dado que
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a média representaria num valor Unico o conjunto dos pontos obtidos no cluster.
Entretanto, tal escolha poderia ser viesada, dado que se no conjunto dos pontos obtidos
houvesse a presenca de valores extremos, tanto para cima, quanto para baixo, o valor
representado pela média poderia estar distorcido. Para contornar este eventual problema,
utilizou-se um ndmero relativamente grande de caminhos simulados na simulagéo
Monte Carlo. Consequentemente, o niimero de caminhos passando por cada cluster
seria maior, gerando valores médios menos distorcidos.

Dessa forma, o célculo do vetor dos valores que compdem o centréide do cluster

pode ser obtido através da seguinte expressio:

S
c, =JLZR(‘” i=1,...,N; 4.2)

s g=l

onde:
C, ---Centrdide do cluster do tempo ¢ e do cendrio S, composto por um vetor de
médias dos pregos dos ativos com risco;

P@_Preco do ativo i no caminho g;

J, ...Nimero de caminhos que passam pelo cluster do tempo ¢ e do cenario S.

4.3 — Formula¢io Matematica

A formulagfo matematica envolve o desenvolvimento de um modelo a ser
aplicado numa carteira de investimentos composta por N ativos com risco e um ativo
livre de risco (risk free), num horizonte de investimento 7' . Além disso, ndo ¢ permitido
a alavancagem financeira da carteira. Isto ocorre quando o investidor aloca mais de
100% do patrimbnio da carteira nos ativos com risco. Isto seria possivel se o investidor
tomasse dinheiro emprestado & taxa livre de risco no mercado para a compra dos ativos
com risco.

Embora o modelo de otimizag#o multiperiodo proposto seja baseado no trabalho
de HU (2003), a formulagdo matemética a ser desenvolvida foi adaptada de BARRO et
al. (2004), com algumas modificagdes. Esta formulagéio ¢é simples ¢ mais fécil de ser

implementada computacionalmente do que aquela proposta por HU (2003).
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4.3.1 - Parametros do Modelo

Primeiro, definimos os pardmetros, bem como as notagdes que serdio empregadas

no modelo de simulaggo:

I= {1, . } :conjunto dos ativos que podeim ser escolhidos para formar a carteira;

7,8 = 1,...,8 :probabilidade de ocorréncia do cendrio s;

X (®),iel,t=0,...,T :quantidade do ativo / no tempo ¢ no cendrio s na carteira;

A (t),iel,t=0,...,T—1:quantidade do ativo i comprado no tempo ¢ no cendric s na
carteira;

V. (t),iel,t=0,...,T-1:quantidade do ativo / vendido no tempo f no cendrio s na
carteira;

X s (02 =0,...,T :quantidade de caixa no tempo 7 no cendrio s na carteira;

cta :custo de transagfio expresso como porcentagem do total dos ativos comprados;

ctv :custo de transaglio expresso como porcentagem do total dos ativos vendidos;

d* =(+cta),d” =(-ctv);

r:taxa livre de risco, supostamente constante ao longo do tempo e sobre todos os
cenarios;

P (t),iel,t=0,..,T :prego do ativo / no tempo ¢ no cendrio s;

R (£),t =0,...,T :riqueza no tempo ¢ no cendrio s, dado pelo valor da carteira em ¢;
4.3.2 — Variaveis de Deciséo

Em seguida, definimos as varidveis de decisio para cada estigio da simulagéo:
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¢ Varidveisemi=(

No inicio do horizonte de investimento, assume-se que toda informagio ¢

conhecida com certeza.

- A0)=(4,(0), 4,(0)...., 4, (0))': quantidade do ativo i, i€ /, comprado em
t=0.

- V(O)=(V,(0),V2(O),.‘.,V,,(0))': quantidade do ativo i, ie ], vendido em
t=0.

e Varidveisemi=1,..,7-1

At,5) = (4, () 4,,(),.... 4, (t))' : quantidade do ativo i, i € 7, comprado no

tempo !/ no cendrio 5.

- V(s) =W, V).V (t))': quantidade do ativo i, ie I, vendido no

tempo ¢ no cendrio s.

- X(,5) = (X, ()X, (). X, (t))’ : quantidade do ativo i, i € /, na carteira

no tempo ¢ no cendrio s.

X .15 (£) : quantidade de caixa na carteira no tempo £ no cenério s.

s Variaveisemr=T

- X (T,s)=(X,5(T),X2,(T),...,X (T))’: quantidade do ativo i/ iel, na

ns

carteira no tempo ¢ =71 no cendrio s.

X 4, () quantidade de caixa na carteira no tempo ¢ =7 no cendrio s.
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4.3.3 — Fun¢éio Objetivo

A fungfio objetivo busca a maximizagio da riqueza futura do individuo. O

problema ¢ entdo formulado como um problema de programagdo linear de grande porte

com uma matriz de coeficientes esparsa.

Matematicamente, temos:

MAX iﬁsRs (T)

X(0,5)...X(T.5) =1

S.a.

X+ =X, @)+ 4,(0)-V, (),

Xps + D =(1+ r)[X,,m )~ a”iP,-s ()4,

1+
A, 1)>0,
V,(6)20,

R,()) = X, (1)+ Y X, (OB, ©),

X, (0) = Xiq,
Kpis (0) = X0
X, (=0,

X s (020,

(4.3)

4.4)

(t)+d"2n:f’,-s(t)V,-s(t)], @.5)

(4.6)
@.7n

4.8)

(4.9)
(4.10)
4.11)
4.12)
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X, =X (0 s X o s X s s Ay (D5 A (V3 (s, Vs (1)}
para t=0,..., 7 -1,
X(T,8) ={X, (D) s X o (T X s (T}

para =T,

As restri¢Bes 4.4 e 4.5 sdo, respectivamente, restrigdes de estoque dos ativos e
fluxos de caixas. Conforme mencionado anteriormente, o modelo ndo permite a
alavancagem financeira. A restrigio 4.8 diz respeito 4 riqueza do individuo num instante
de tempo ¢ e num cendrio s dado pela somatdrio do caixa mais o valor a mercado dos
ativos multiplicado pelas respectivas quantidades. As demais restrigdes ilustram a ndo

negatividade das varidveis do modelo.
4.4 — Comentarios Finais

Conforme apresentado neste capitulo, o modelo desenvolvido possui um grande
avango para o mercado financeiro brasileiro, devido ao fato de que a grande maioria dos
gestores de carteiras de investimento utiliza ainda o modelo estitico baseado em
MARKOWITZ (1952). O modelo foi baseado nos trabalhos de HU (2003) ¢ BARRO et
al. (2004) e sua implementagio sera descrifa no proximo capitulo, numa carteira de
investimento composta por agdes. Destaca-se ainda a utilizagdo da técnica de clustering
no modelo, uma ferramenta matemadtica simples e desconhecida para muitos do mercado

financeiro brasileiro, que possui um imenso beneficio na classificagéo de grupos.
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5
RESOLUCAQ, RESULTADOS E ANALISE
DE SENSIBILIDADE

Neste capitulo, serd aplicado o modelo de otimizagio numa carteira de
investimentos composta por agdes. Elaboraremos passo a passo a aplicagéio do modelo
desenvolvido numa situagio real, vivida pelos gestores de carteiras de investimento.
Além disto, apresentaremos os principais resultados obtidos com a andlise de

sensibilidade do problema.

5.1 - Introdugio

Uma vez apresentado o modelo de otimizago de carteiras de investimento,
iniciaremos a parte prética deste trabalho. Em uma primeira etapa, seré feita a analise da
performance da carteira obtida de acordo com o modelo geral, conforme definido por
BARRO et af (2004). Em seguida, serd feita uma analise de sensibilidade com a
introdugio de novas restrigdes no modelo para uma posterior analise do comportamento
da carteira nestas situagfes.

O horizonte de investimento considerado na simulagdio das carteiras foi T = 20
dias ateis (1 més). O horizonte engloba o periodo de 09 de setembro de 2005 a 07 de
outubro de 2005. Além disso, decisdes de mudanga de investimento poderfio ser
tomadas uma vez por semana. Assim, em cada instante de tomada de decisdo
(t=0,t=5,t =10,z =15), encontraremos uma nova composigio da carteira simulada
pelo modelo. Embora o modelo proposto apresente decisdes de tomada de investimento
a cada unidade de tempo ¢, onde ¢=0,2,...,T, decidiu-se pelo rebalanceamento
semanal da carteira. Dessa forma, o modelo se aproxima da realidade vivida pelos
gestores de carteiras, onde as decisdes de investimento tomadas n#o s#o de curto prazo.

Todos os passos do modelo proposto foram simulados utilizando o software

MATLAB versdo 6.1. Dado o nimero de varidveis do problema e o nimero de
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restricGes, os softwares convencionais nfio seriam aptos a resolver este tipo de
problema. O MATLAB possui uma grande vantagem, pois ele trabalha com dados
representados na forma de matrizes. Além disto, o software possui alguns aigoritmos
prontos, como a aplicagdo da técnica de clustering e a resolugio de problemas de
programacio linear, fato este que simplificou consideravelmente a aplicagéio do modelo

em estudo.

5.2 — Definic¢éio das Variaveis de Entrada do Modelo

De acordo com MARKOWITZ (1952), a adequagfo da diversificagdo de uma
carteira ndo depende somente do nimero de ativos que a compde. A razdo para isto
reside no fato de ser mais provavel as empresas de um mesmo ramo de negéeios terem
piores desempenhos ao mesmo tempo, do que empresas de diferentes ramos de
negdcios.

O mesmo raciocinio vale para o risco de uma carteira. A fim de minimizar o
risco de uma carteira, os investidores devem apostar em empresas com caracteristicas
econdmicas néo similares. Geralmente, essas empresas possuem correlagio menor que
as firmas de um mesmo setor econémico.

Baseado nessas informages, o processo de decisfio das variaveis de entrada do

modelo respeitou os seguinies critérios:

1) Buscou-se uma ago que representasse cada setor econdmico das empresas
listadas na BOVESPA, totalizando um total de 9 ag@es.

2) Dentro de cada setor, optou-se pela agfio que apresentasse um expressivo
volume de negociagdo. Pelo fato do modelo matematico ter de rebalancear a
carteira periodicamente, o risco de liquidez® teria de ser minimizado.

3) Buscou-se uma agfio que fizesse parte do indice BOVESPA. Dessa forma, a
carteira poderia ter seu desempenho avaliado de acordo com o indice
benchmark do setor.

4) As agdes podem ser tanto preferenciais (PN) quanto ordinarias (ON).

% O risco de liquidez de um ativo, s vezes chamado de risco de liquidez de mercado/produto, surge
quando uma transagio ndo pode ser efetuada a pregos correntes de mercado em razio do tamanho da
posi¢do, quando comparada aos lotes normalmente transacionados.
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Respeitando os critérios acima, as seguintes agfes foram selecionadas para

fazerem parte do modelo:

NUMERO SETOR ECONOMICO ACAO cODIGO
1 Telecomunicagdes Telemar PN* TNLP4
2 Petréleo e Gas Petrobras PN* PETR4
3 Bens Industriais Embraer PN* EMBR4
4 Materiais Basicos Vale R Doce PNA* VALES
5 Consumo Néo Ciclico Ambev PN* AMBV4
6 Financeiro e Outros Itaubanco PN* ITAU4
7 Utilidade Publica Cemig PN* CMIG4
8 Consumo Ciclice Net PN* NETC4
9 Construgio ¢ Transporte CCR Rodovias ON CCRO3

*Fazem parte do IBOVESPA

Tabela 5.1 — Varidveis de entrada do modelo de otimizacgfo

Para a elaboragdio do modele de otimiza¢fio, foram coletados os pregos de
fechamento diarios das a¢Ges no periodo de 22 de fevereiro de 2005 a 09 de setembro de

2005. A seguir, ilustramos a evolugdo do prego dessas agdes ao longo deste periodo:

« TNLP4

48,00 1------------ et O T B T R T e L OO O
44,00 -
40,00 -
36,00
32,00

PREGO

22-fev-05

8-mar-05
22-mar-05
S-abr-05
19-abr-05
3-mai-05
17-mai-05
31-mai-05
14-jun-05 -
28jun-05 4
12-jul-05 -
26-jui-05
9-ago-05 -
23-ago-05 1
6-set-05

Figura 5.1 — Evoluciio do preco da TNLP4
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PETR4
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AMBV4
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CMIG4
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Figura 3.7 — Evolugiio do pre¢o da CMIG4
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+ NETC4

22-fev-05

8-mar-05
22-mar-05 -
5-abr-05 -
18-abr-05
3-mai-05 -
17-mai-05
31-mai-05
14-jun-05
28-jun-05 -
12-jul-05
26-jul-05
9-ago-05
23-ago-05

6-set-05

Figura 5.8 — Eveluciio do pre¢o da NETC4

« CCRO3

PRECO

50,00 ==

22-fov-05
8-mar-05
22-mar-05 -
5-abr-05 1
19-abr-05 -
3-mai-05
17-mai-05 1
31-mai-05 -
14-jun-05 A
28-jun-05 -
12-jul-05 -
26-jul-05 -
9-ago-05 1

Figura 5.9 ~ Evolugiio do prego da CCRO3

5.3 — Simula¢fio Monte Carlo e Clustering

Uma vez definida as varidveis de entrada do modelo, iniciou-se o algoritmo de
selecio da carteira 6tima. O modelo comega com a simulagfio dos pregos das agdes que

compdem a carteira.
A tabela 5.2 mostra os pregos de fechamento do pregio da BOVESPA do dia 09

de setembro de 2005 das agdes que compdem a carteira a ser estudada:
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CcODIGO PRECO (RS)
TNLP4 34,95
PETR4 34,52
EMBR4 21,29
VALES 74,90
AMBV4 818,95
ITAU4 52,60
CMIG4 88,75
NETC4 0,93
CCRO3 60,00

Tabela 5.2 — Precos de fechamento do pregdo do dia 09/09/2005

Os pregos de fechamento do pregdio do dia 09 de setembro de 2005 serdo
utilizados como os pregos iniciais na simulagio Monte Carlo, ou seja, eles constituirio a
“raiz” da arvore de cendrios a ser obtida.

Para a construgfio da matriz de varidncia-covaridncia dos ativos, utilizaram-se os
dados didrios dos retornos dos pregos dos ativos no periodo de 22 de fevereiro de 2005
até 09 de setembro de 2005. Os retornos foram calculados como sendo os retornos
geométricos’ dos pregos dos ativos num instante de tempo #. A partir das séries de
retornos geoméiricos, as volatilidades e as respectivas covaridncias foram entdo
calculadas utilizando um modelo EWMA'®, numa janela de 20 dias dteis. A figura 5.10

ilustra a matriz de varidncia-covariincia obtida;

THLP4 PETR4 EMBR4 VALES AMBV4 ITAU4 CMIGY NETC4 CCRO3

THLP4 | 0,02631% | 0,01151% | 0,00425% | 0,01070% | 0,00633% | 0,01766% | 0,01841% | 0,03183% | 0,00759%
PETR4 | 0,01151% | 0,02383% | 0,00781% | 0,01392% | 0,00486% | 0,01605% | 0,01120% [ 0,01778% | 0,00752%
ENMBRJ | 0,00425% | 0,00781% | 0,03017% | 0,00612% | 0,00271% | 0,00826% | -0,00259% | 0,00476% | -0,00517%
VALES | 0,01070% | 0,01392% | 0,00612% | 0,02852% | 0,00690% | 0,01602% | 0,01543% | 0,01455% | 0,00554%
AMBV4| 0,00633% | 0,00486% | 0,00271% | 0,00690% | 0,02198% | 0,00778% | 0,00344% | 0,01107% | 0,00208%
ITAU4 | 0,01766% | 0,01605% | 0,00826% | 0,01602% | 0,00778% | 0,03285% | 0,01606% | 0,02624% | 0,01076%
CMIG4 | 0,01841% | 0,01120% | -0,00259% | 0,01543% | 0,00344% | 0,01606% | 0,04243% [ 0,02498% | 0,01095%
NETC4 | 0,03183% | 0,01778% | 0,00476% | 0,01455% | 0,01107% | 0,02624% | 0,02498% | 0,14118% | 0,02060%
[CCRO3| 0,00753% | 0,00752% | -0,00517% | 0,00554% | 0,00208% | 0,01076% | 0,01085% 0,02060% | 0,02752%

Figura 5.10 — Matriz de varidncia-covariincia

? Veja o Apéndice A.
' Veja o Apéndice B.
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Simulacio Monte Carlo

Antes de efetuarmos a simulagiio Monte Carlo da carteira, precisamos aplicar o
método da decomposi¢io de Cholesky na matriz de varifncia-covaridncia dos ativos,
conforme apresentado no item 2.4 do capitulo 2. Aplicando o método, encontramos a

seguinte matriz triangular inferior L :

TNLP4 PETR4 EMBR4 VALES AMBV4 ITAU4 CHMIG4 NETC4 CCRO3J
TNLP4 | 1,62210% | 0,00000% | 0,00000% | 0,00000% | 0,00000% | 0,00000% | 0,00000% | 0,00000% | 0,00000%
PETR4 | 0,70841% | 1,37107% | 0,00000% | 0,00000% | 0,00000% | 0,00000% | 0,00000% | 0,00000% | 0,00000%
EMBR4 | 0,26214% | 0,43396% | 1,66138% | 0,00000% | 0,00000% | 0,00000% | 0,00000% | 0,00000% | 0,00000%
VALES | 0,65980% | 0,67383% | 0,08832% | 1,39827% | 0,00000% | 0,00000% | 0,00000% | 0,00000% | 0,00000%
AMBV4| 0,38050% | 0,15233% | 0,06196% | 0,23187% | 1,40175% | 0,00000% | 0,00000% | 0,00000% | 0,00000%
ITAU4 | 1,08864% | 0,60750% | 0,16659% | 0,32874% | 0,12405% | 1,25693% | 0,00000% | 0,00000% | 0,00000%
CMIGS | 1,13522% | 0,22920% | -0,39487% | 0,48264% |-0,15781%| 0,12544% | 1,57237% | 0,00000% | 0,00000%
NETC4 | 1,96198% | 0,28191% | -0,09698% [-0,01516%| 0,21941% | 0,24752% | 0,11363% | 3,17162% | 0,00000%
CCRO3| 0,46792% | 0,30630% | -0,46498% | 0,05752% |-0,00443% | 0,34951% | 0,15092% | 0,28645% | 1,41155%

Figura 5.11 — Decomposi¢fio de Cholesky da matriz variincia-covariincia

Dessa forma, os retornos dos ativos podem ser obtidos utilizando a seguinte

equacio:
R=LXE (5.1)

onde R € o vetor de retornos dos ativos simulados que queremos encontrar, L € a matriz
triangular inferior resultado da decomposi¢io de Cholesky da matriz variéncia
covaridncia ¢ E € um vetor composto de varidveis aleatérias independentes e

identicamente distribuidas (i.i.d), onde ¢, ¢é um choque aleatorio que apresenta
distribui¢sio normal com média zero e varidncia 1 ( N (0,1)).

A simulagdo Monte Carlo foi entdo realizada utilizando um horizonte de
investimento 7 =20 dias Gteis com J =1000 caminhos simulados''. Dessa forma,
encontramos urn vetor, composto pelos retornos de cada um dos nove ativos, para cada

instante de tempo ¢, onde t=12,...T e para cada caminho simulado ¢, onde
g=12,...,J. A evolugio dos precos dos ativos ¢ entdo calculada com base nos vetores

de retornos geométricos encontrados na simulagdo Monte Carlo, utilizando a seguinte

expressdo:

"' Este foi o niimero méximo de caminhos que o computador conseguiu simular no modelo.
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PP = P * EXP(rD * Ar) (5.2)
t=12,...T qg=12,....J i=12,....N

onde A, =1, neste caso.

Dado que o problema é de grandes dimensdes, nfio é possivel representar
graficamente o vetor dos pregos dos ativos ao longo do horizonte de investimento.
Como exemplo, representamos na figura 5.12 a evolugéio dos possiveis caminhos que a

acdo TNLP4 pode seguir, dado que ela faz parte de uma carteira composta por 9

ag:ﬁes'z.

50 T T T T T

45

40

3B

Pregco da TNLP4

3+

25

Figura 5,12 — Simulagéio Monte Carlo para a a¢éio TNLP4

'2 O leitor mais atento deve perceber que os possiveis caminhos que a TNLP4 pode seguir estdio
condicionados & covaridncia da agio TNLP4 com as oufras agSes que compdem a carteira, dado que a
simulagfo Monte Carlo ¢ aplicada a carteira e nfio a cada agfo separadamente.
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Clustering

A partir dos caminhos simulados, iniciou-se o processo da divisdo dos clusters
para a obtenc¢do dos centréides que constituirdo os nés da 4rvore de cenarios. Em cada
instante de tomada de decisfo ¢ (¢t =0,¢=5,t =10, =15), foi aplicada a técnica de
clustering, obtendo 2 subclusters para cada cluster inicial, ou seja, dois estados da
natureza no final de cada periodo para cada estado no inicio deste. Dessa forma,
obtivemos um modelo binomial da evolugéo dos precos das agdes.

A figura 5.13 traz a drvore de cendrios resultante da agio TNLP4 proveniente da
aplicagfio da técnica de clustering na carteira. Da mesma forma que na simulagdo Monte

Carlo, devido a grande dimensdo do problema, néo é possivel representar graficamente

a arvore de cendrios inteira, com o vetor de pregos das agdes que compdem a carteira

3
ém t
2

3345

em cada né da arvore.

iU
1
12
13
EL 2

16
T o H 10 15 20

Figura 5.13 — Arvore de cendrios: TNLP4

Otimizagiio Multiperiodo de Carteiras de Investimento Utilizando a Técnica de Geragiio de Arvores de Cendrios



Capitulo 5: Resolucio, Resultados ¢ Andlise de Sensibilidade 48

5.4 - Descri¢ao dos Pardmetros do Modelo

Antes de apresentarmos os resultados, precisamos definir alguns parémetros do

modelo que serdio necessarios para a resolugdo do problema de otimizaggo.

Custos de Transacio

Os custos de transagfio de uma operagio de compra ou venda de agdes sdo

expressos na forma de corretagens e emolumentos.

e Corretagem: As corretagens referem-se aos custos cobrados pelas
corretoras de valores na intermediagio dos negocios transacionados entre
os agentes do mercado. O custo ¢ definido como um percentual sobre o
movimento financeiro total (compras mais vendas) das ordens realizadas
em nome do investidor num mesmo pregdo. Este percentual varia de
acordo com a corretora ¢ com o volume de negociagéo, sendo, em alguns
casos, acrescido de um valor fixo. As taxas cobradas variam de acordo
com o tipo de cliente: pessoa fisica ou juridica. Neste problema, utilizou-
se a taxa de corretagem de 0,20%, j4 que ela representa o custo de
corretagem médio das operagdes feitas pelo fundo de investimentos no

qual o modelo ser4 testado.

+« Emolumentos os emolumentos sio cobrados pelas bolsas de valores
através de uma taxa fixa para cada tipo de operagéo ou produto. Este
servigo é cobrado pela instituigéo a corretora, que, por sua vez, repassa
ao investidor, além da taxa de corretagem. Neste problema, utilizou-se a
taxa de emolumentos de 0,025%, ja que ela representa o custo de
emolumento médio das operagGes feitas pelo fundo de investimentos no

qual o modelo sera testado.

Dessa forma, os custos de transagéio representam, em média, 0,225% (0,20% +
0,025%) do valor do negécio realizado. Assim, podemos definir os seguintes valores

para os pardmetros do modelo:
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cta=ctv=0,225%
d* =(1+cta) = (1+0,40%) = 1,225%
d”=(1-ctv) =(1-0,40%) = 0,775%

Taxa livre de Risco

A taxa livre de risco refere-se ao custo do dinheiro no tempo, ou seja, a taxa de
Juros utilizada para remunerar dinheiro em caixa. No Brasil, considera-se a taxa livre de
risco 0 CDI. O CDI ¢ a taxa de juros que rege o mercado financeiro brasileiro, sendo
utilizado como taxa base em todas as operagBes monetarias que envolvem fluxo de
caixa em periodos de tempo distintos. O CDI ¢ uma taxa que acompanha a taxa SELIC
(taxa de referéncia imposta pelo Banco Central na economia), isto &, a diferenca entre as
duas taxas € muito pequena. Como exemplo, no dia 09 de setembro de 2005 o CDI foi
19,69% ao ano (a.a.), enquanto que a taxa SELIC estava em 19,75% a.a.

Na implementag¢dio do modelo, foi utilizada a taxa livre de risco como sendo
igual a 97% do CDI (aproximadamente 19,05% a.a. em 09 de setembro de 2005). Esta
taxa de juros reflete a taxa média das operagSes de aplicagdo de caixa, descontados os
custos operacionais, feitas pelo fundo de investimentos no qual o modelo seré testado.

Assim, podemos definir o seguinte valor para o pardmetro do modelo:
i=19,05%aa.

Dado que o modelo trabalha com taxas semanais, temos que:

r= ((1 +19,05%)%s2 )—1 = 0,34658% ao periodo

Probabilidade de Ocorréncia dos Cenarios

A probabilidade de ocorréncia do cendrio #,,s=1...,5 no tempo T foi

calculada utilizando o ndmero de caminhos simulados que “passam” por cada cluster
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em I . Matematicamente, esta probabilidade pode ser obtida através da seguinte

expressao:

J
= S 5.3
7, =2 (5.3)

onde:

7, . probabilidade de ocorréncia do cenério S;

J, :numero de caminhos que “passam” pelo cluster obtido no cenério S;

J : niimero de caminhos simulados.
Carteira Inicial

A carteira inicial foi definida de forma que cada agfio pudesse representar 1/9 do
valor a mercado da carteira total. Além disto, uma pequena quantidade em caixa foi
introduzida na carteira.

A tabela 5.3 ¢ a figura 5.14 resumem de forma clara as caracteristicas da carteira

inicial em 09 de setembro de 2005.

QUANTIDADE | PRECO (RS) i
CcODIGO (1X(2) (R$) FRACAO
(1) (2)
TNLP4 100 34,95 3.495,00 10,73%
PETR4 100 34,52 3.452,00 10,59%
EMBR4 150 21,29 3.193,50 9,80%
VALES 50 74,90 3.745,00 11,49%
AMBV4 4 818,95 3.275,80 10,05%
ITAU4 60 52,60 3.156,00 9,68%
CMIG4 40 88,75 3.550,00 10,89%
NETC4 4.000 0,93 3.720,00 11,42%
CCRO3 50 60,00 3.000,00 9,21%
CAIXA - 2.000,00 2.000,00 6,14%
TOTAL 32.587,30 100,00%

Tabela 5.3 — Carteira inicial
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6,14%
L mTNLP4 @ PETR4

h 10,59% O EMBR4 OVALES

11,42%
9.80% B AMBV4 @ ITAU4
¥ (]
o CMIGA O NETC4
11,49%
9,68% m CCRO3 W CAIXA

10,05%

Figura 5.14 — Carteira inicial

5.5 — Resultados

O modelo proposto apresentou as seguintes caracteristicas:

o Nilmero de varidveis de decisio: 600

o Niuumero de restri¢des do tipo menor ou igual: 136

« Nimero de restrigdes do tipo ignal a: 300

« Nimero de restri¢des de valores maximos das variaveis de decisdo: 600

+« Nuamero de restri¢des de valores minimos das varidveis de decisido: 600

O algoritmo utilizado para a resolugfio do problema foi o método dos pontos
interiores"”. Este algoritmo ¢ indicado para a resolugo de problemas de programagio
linear de grandes dimensdes.

O modelo de otimizagéo foi simulado em cada instante de tomada de deciséo ¢
(t=0,0=5:=10, =15). Em cada instante de tomada de decisfio 7, os dados dos
pregos das agGes foram atualizados e uma nova matriz de varidncia-covaridncia foi
obtida.

Apresentamos a seguir os resultados obtidos:

3 0 método dos pontos interiores, também conhecido como método de Karmarkar, inicia o algoritmo de
otimizaglio através do centro do sélido definido pelo problema a ser otimizado, ao invés de comegar pela
sua superficie, como faz o algoritmo Simplex. Veja WINSTON (1995).
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£=0—09 de setembro de 2005

A tabela 5.4 traz os resultados obtidos para ¢ = 0. Observamos que neste periodo
o modelo indica a venda de todas as agdes da carteira com excegfo das agdes NETC4 e

CCRO3. O resultado obtido com a venda das agSes é aplicado, junto com o caixa, na

taxa livre de risco.

QUANTIDADE | QUANTIDADE | PRECO (RS)
CcODIGO (1)X(2) (RS) FRACAO
INICIAL FINAL (1) )
TNLP4 100 0 34,95 0 0.00%
PETR4 100 0 34,52 0 0.00%
EMBR4 150 0 21,29 0 0.00%
VALES 50 0 74,90 0 0.00%
AMBV4 4 0 818,95 0 0.00%
ITAU4 60 0 52,60 0 0.00%
CMIG4 40 0 88,75 0 0.00%
NETC4 4.000 4.000 0,93 3.720,00 11,43%
CCRO3 50 50 60,00 3.000,00 9,22%
CAIXA - . 25.813,54 25.813,54 79,34%
TOTAL 32.533,54 100,00%

Tabela 5.4 — Carteiraem =0

A figura 5.15 traz a composigio final da carteira obtida pelo modeloem 1 =0. A

carteira ficou composta apenas por 2 agdes.

11,43%

9.29% m NETC4 = CCRO3

79,34% a CAIXA

Figura 5,15 - Carteiraem =10
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t=5—16 de setembro de 2005

A tabela 5.5 traz os resultados obtidos para ¢ = 5. O modelo permanece com as

mesmas posi¢des obtidas no periodo anterior.

: QUANTIDADE | QUANTIDADE | PRECO (RS) .
CcODIGO (DX(2) (RS) | FRACAO
INICIAL FINAL (1) @
TNLP4 0 0 34,18 0 0.00%
PETR4 0 0 34,75 0 0.00%
EMBR4 0 0 21,00 0 0.00%
VALES 0 0 79,65 0 0.00%
AMBV4 0 0 819,00 0 0.00%
ITAU4 0 0 50,58 0 0.00%
CMIG4 0 0 86,40 0 0.00%
NETC4 4.000 4.000 0,90 3.600,00 11,09%
CCRO3 50 50 58,9 2.945,00 9,08%
CAIXA - - 25.903,01 25.903,01 79,83%
TOTAL 32.448,01 100,00%

Tabela 5.5 - Carteiraem =5

A figura 5.16 traz a composigdo final da carteira obtida pelo modeloem ¢=35. A

carteira permaneceu composta por 2 agdes.

11,09%

9,08%
@ NETC4 B CCRO3

0 CAIXA
79,83%

Figura 5,16 — Carteira em £ =35
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t=10—23 de setembro de 2005

A tabela 5.6 traz os resultados obtidos para 7 =10. O modelo permanece com as

mesmas posi¢des obtidas no periodo anterior.

QUANTIDADE | QUANTIDADE | PRECO (R$) )
CODIGO (1)X(2) (R$) FRACAO
INICIAL FINAL (1) Q@)
TNLP4 0 0 37,05 0 0.00%
PETR4 0 0 35,80 0 0.00%
EMBR4 0 0 21,59 0 0.00%
VALES 0 0 85,45 0 0.00%
AMBV4 0 0 815,65 0 0.00%
ITAU4 0 0 53,60 0 0.00%
CMIG4 0 0 86,60 0 0.00%
NETC4 4,000 4.000 0,88 3.520,00 10,91%
CCRO3 50 50 55,00 2.750,00 8,52%
CAIXA - - 25.992,78 25.992,78 80,57%
TOTAL 32.262,78 100,00%

Tabela 5.6 —~ Carteiraem ¢ = 10

A figura 5.17 traz a composic¢o final da carteira obtida pelo modelo em 7 =10.

A carteira permaneceu composta por 2 agdes.

10,91%

BNETC4 ®mCCRO3

8,62%

O CAIXA

80,57%

Figura 5.17 — Carteiraem = 10
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=15 — 30 de setembro de 2005

A tabela 5.7 traz os resultados obtidos para ¢ = 15. O modelo permanece com as

mesmas posi¢cdes obtidas no periodo anterior.

. QUANTIDADE | QUANTIDADE | PRECO (RS) 5
CODIGO ()X(2) (R$) | FRACAO
INICIAL FINAL (1) @)
TNLP4 0 0 36,75 0 0.00%
PETR4 0 0 35,66 0 0.00%
EMBR4 0 0 21,45 0 0.00%
VALES 0 0 86,85 0 0.00%
AMBV4 0 0 839,00 0 0.00%
ITAU4 0 0 53,25 0 0.00%
CMIG4 0 0 85,00 0 0.00%
NETC4 4.000 4.000 0,98 3.920,00 11,81%
CCRO3 50 50 63,51 3.175,50 9,57%
CAIXA = - 26.082,87 26.082,87 78,61%
TOTAL 33.136,88

Tabela 5.7 — Carteira em =15

A figura 5.18 traz a composigdo final da carteira obtida pelo modelo em 7 =15.

A carteira permaneceu composta por 2 agdes.

11,81%

@ NETC4 CCROZ

9,567%

O CAIXA

78,61%

Figura 5.18 — Carteira em ¢ = 15
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=20 —-07 de outubro de 2005

A tabela 5.8 traz os resultados obtidos para 7=20. Nesta tabela temos as

posic@es finais indicadas pelo modelo ao final do horizonte de investimento.

QUANTIDADE "
CcODIGO = PRECO (R$) (2) | (1)X(2) (RS) | FRAGCAO
TNLP4 0 35,85 0 0.00%
PETR4 0 31,91 0 0.00%
EMBR4 0 21,01 0 0.00%
VALES 0 78,89 0 0.00%
AMBV4 0 828,00 0 0.00%
ITAU4 0 53,70 0 0.00%
CMIG4 0 82,30 0 0.00%
NETC4 4.000 0,96 3.840,00 11,59%
CCRO3 50 62,28 3.114,00 9,40%
CAIXA g 26.173,27 26.173,27 79,01%

TOTAL 33.085,85

Tabela 5.8 — Carteira em f =20

A figura 5.19 traz a composigéo final da carteira em ¢ = 20.

11,59%
ENETC4 B CCRO3Z
9,40%

O CAIXA
79,01%

Figura 5.19 — Carteira em £ = 20
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A figura 5.20 consolida os resultados obtidos. Nela, observamos a evolugéo do
valor da carteira ao longo do horizonte de investimento 7 e nos instantes de tomada de
decisdio . A carteira do modelo apresentou um retorno de 1,81% ao longo do periodo
(Imés).
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Figura 5.20 — Valor da carteira ao longo do horizonte de investimento T

5.6 — Andlise de Sensibilidade

A anélise de sensibilidade estuda como as mudangas nos pardmetros do modelo
em estudo afetam a solugio 6tima encontrada (WINSTON, 1995). Dessa forma, pode-se
analisar como a carteira de investimento se comporta dada uma mudanca no valor dos
parimetros do modelo, como custos de transagio ¢ taxa livre de risco, bem como a
adigdo de novas restrigdes no modelo.

Neste contexto, 2 casos particulares do modelo em estudo foram analisados.
5.6.1 — Limitagdo de Caixa (ASI) "
Analisando a carteira encontrada pelo modelo, percebemos que a quantidade em

caixa representa quase que 80% do valor da carteira ao longo do horizonte de

investimento 7. Isto se deve, entre outros fatores, a elevada taxa de juros'® vigente no

1 Andlise de Sensibilidade 1.
15 O Brasil é o pais que apresenta as maiores taxas de juros reais do munde. Por taxa de juros real,
entende-se a taxa de juros nominal descontada da inflagéio no periodo.
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pais atualmente. Dessa forma, é mais conveniente aplicar o dinheiro em titulos de renda
fixa'® do que em agdes, que sdo ativos mais arriscados.
Para limitarmos a quantidade em caixa da carteira, introduzimos uma nova

restrigio no modelo, definida por:

X, (1) <9500, (5.4)

t=0,5,...T; s=1...,8;

O valor de R$ 9,500 representa aproximadamente 30% do valor da carteira
inicial. Esta porcentagem ¢ usualmente utilizada pela maioria dos fundos de agdes no
Brasil como um valor maximo da participagiio do caixa na composi¢éo da carteira do
fundo.

Resultados

Da mesma forma que no resultado anterior, a carteira encontrada pelo modelo
nfio sofreu modificagio ao longo do horizonte de investimento 7'. Dessa forma, por
simplificagfio, apresentaremos apenas os resultados obtidos para ¢=0, j& que nos

instantes de tempo posteriores, a carteira permaneceu a mesma.

t=0-09 de setembro de 2005

A tabela 5.9 traz os resultados obtidos para 7 = 0. Observamos que o modelo
indica a venda de todas as agbes da carteira com excegfio das agoes CMIG4, NETC4 e
CCRO3. Além disso, o modelo indicon um aumento na quantidade das agSes NETC4 ¢

CCRO3. O caixa resultante ¢ aplicado na taxa livre de risco.

16 Titulos de renda fixa sdo papéis que pagam uma taxa de juros ao longo de um perfodo. Estes papéis tém
seu valor atrelado 4 taxa de juros vigente na economia.
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. QUANTIDADE | QUANTIDADE | PRECO (RS) .
CODIGO (DX(2) (RS) FRACAQ
INICIAL FINAL (1) )
TNLP4 100 0 34,95 0 0.00%
PETR4 100 0 34,52 0 0.00%
EMBR4 150 0 21,29 0 0.00%
VALES 50 0 74,90 0 0.00%
AMBV4 4 0 818,95 0 0.00%
ITAU4 60 0 52,60 0 0.00%
CMIG4 40 40 88,75 3.550,00 10.92%
NETC4 4.000 7.542 0,93 7.014,06 21,59%
CCRO3 50 208 60,00 12.480,00 38,41%
CAIXA . . 9.450,64 9.450,64 29,08%
TOTAL 32.494,70 100,00%

Tabela 5.9 — ASI: Carteiraem (=0

A figura 5.21 traz a composi¢éo final da carteira obtida pelo modeloem 1 =0. A

carteira ficou composta apenas por 3 agdes.

10,92%
@ CMIG4 @ NETC4

29,08%

21,59%

a1 CCRO3 o CAIXA

3841%

Figura 5.21 — ASI: Carteiraem t=90

A figura 5.22 consolida os resultados obtidos. Nela, observamos a evolugdo do
valor da carteira ao longo do horizonte de investimento 7' ¢ nos instantes de tomada de
decisio ¢. A carteira com a limitago de caixa apresentou um retorno de 1,75% ao

longo do perfodo (1més).
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Figura 5.22 — ASIL: Valor da carteira ao longo do horizonte de investimento T
5.6.2 — Quantidade Minima de Acdes na Carteira (ASI) "

Analisando a carteira encontrada pela analise de sensibilidade I (ASI), percebe-
se que a mesma ndo apresentou mudangas significativas com relagdo & carteira
encontrada pelo modelo geral. Observou-se a introducfio da agio CMIG4 na carteira,
devido & incorporagdo da restrigo de limitag@io de caixa.

Nesta andlise, introduziu-se uma nova restricio no modelo. Estudaremos o
comportamento da carteira com pelo menos uma quantidade minima de cada ag#o na
carteira. A quantidade minima foi definida arbitrariamente como sendo metade da
quantidade inicial. Além disso, a restri¢io de limitagio de caixa foi mantida, pois ¢la
aproxima a carteira do modelo de uma situag8o real. Dessa forma, devemos adicionar as

seguintes restrigdes no modelo definido pela anélise de sensibilidade I (ASI):

X,.(6)250, (5.5)
X,, ()2 50, (5.6)
X, (0275 (5.7)
X, ()225, (5.8)
X, ()22, (5.9)

'7 Analise de Sensibilidade I1.
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X (6) 230, (5.10)
X, (1)=20, (5.11)
X (1) 2 2000, (5.12)
X, (1) 225, (5.13)

t=05,...,T;

Resultados

Da mesma forma que no resultado anterior, a carteira encontrada pelo modelo

nfo sofreu modificagfio ao longo do horizonte de investimento 7'. Dessa forma, por

simplifica¢io, apenas os resultados obtidos para ¢ =0 serfo apresentados, j4 que nos

instantes de tempo posteriores, a carteira permaneceu a mesma.

=0 —09 de setembro de 2005

A tabela 5.10 traz os resultados obtidos para ¢ =0. Observamos que o modelo
indicou uma diminui¢do das quantidades das agdes TNLP4, PETR4, EMBR4, VALES,
AMBV4, I[TAU4. A quantidade de CMIG4 permaneceu a mesma. J4 as agSes NETC4 e

CCRO3 tiveram suas quantidades aumentas. O caixa resultante ¢ aplicado na taxa livre

de risco.

CODIGO | QUANTIDADE | QUANTIDADE | PRECO (RS) | (1)X(2) (RS) FRACAO
TNLP4 100 50 34,95 1.747,50 5,37%
PETR4 100 50 34,52 1.726,00 531%
EMBR4 150 75 21,29 1.596,75 4,91%
VALES 50 25 74,90 1.872,50 5,76%
AMBV4 4 2 818,95 1.637,90 5.04%
ITAU4 60 31 52,60 1.630,60 5,01%
CMIG4 40 40 88,75 3.550,00 10.92%
NETC4 4.000 4.636 0,93 4.311,48 13,26%
CCRO3 50 83 60,00 4.980,00 15,31%
CAIXA - o 2.467,19 9.467,19 29,11%

TOTAL 32.494,70 100,00%

Tabela 5.10 — ASII: Carteiraem ¢ =19
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A figura 5.23 traz a composigo final da carteira obtida pelo modeloem ¢ =0,

537% 5.31% ® TNLP4 @ PETR4

[}
2,11% CEMBRé O VALES

504%  WAMBV4 mITAU
501%

mCMIG4 O NETC4
16,31% L

u CCRO3 & CAIXA

13,26%

Figura 5.23 — ASII: Carteira em £=0

A figura 5.24 consolida os resultados obtidos. Nela, observamos a evolugéo do
valor da carteira ao longo do horizonte de investimento T e nos instantes de tomada de

decisfo . A carteira com a limitagdo de caixa e quantidade minima de a¢Ses apresentou

um retorno de 0,76% ao longo do periodo (1més).
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Figura 5.24 ~ ASII: Valor da carteira ao longo do horizonte de investimento 7’

5.7 — Observagdes Gerais

Os resultados obtidos pelo modelo foram satisfatorios, na medida em que eles
refletem aquilo que se esperava de acordo com a teoria de carteiras. Além disso, todas
as solugdes encontradas foram factiveis. A comparagfo dos resultados serd realizada no
proximo capitulo, juntamente com a conclusdo do trabalho e sugestdes de

desenvolvimento de trabalhos futuros.
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6
CONCLUSAQO

Neste capitulo, serfio apresentadas as andlises dos resultados obtidos. As
principais conclusdes serfo explicitadas, bem como as recomendagbes para trabalhos
futuros.

6.1 — Analise dos Resultados

O objetivo deste trabalho foi construir um modelo multiperiodo na determinagio
de carteiras otimas de investimento para ser utilizado no mercado de agBes brasileiro.
Entretanto, um modelo quantitativo s6 ¢ considerado bom se seus resultados forem
satisfatérios, isto &, se os resultados obtidos com o modelo forem melhores que os
resultados obtidos com o indice benchmark do mercado. Caso contrario, um investidor
racional colocaria todos os recursos numa carteira que replicasse o indice benchmark do
mercado.

Dessa forma, os resultados obtidos com o modelo geral e as andlises de
sensibilidades I e 1I foram confrontados com indices benchmark de mercado.

A tabela 6.1 apresenta uma comparagdo das rentabilidades das carteiras
simuladas com o IBOVESPA. Pode-se perceber que no periodo considerado, o
IBOVESPA apresentou uma rentabilidade maior que as carteiras simuladas. Uma das
razBes para esta performance melhor consiste no fato de que, no periodo considerado, a
bolsa brasileira registrou uma alta rentabilidade comparada a periodos recentes. Além
disso, o indice BOVESPA ¢ composto por uma cesta de 34 agles, enquanto que as
carteiras simuladas podiam apresentar no méaximo 9 agles. Dessa forma, a
probabilidade de existirem a¢es que tiveram uma melhor performance que aquelas

selecionadas para a composigio da carteira em estudo € relativamente alta.

Otimizagdo Multiperiodo de Carteiras de Livestimento Utilizando a Técnica de Geraglo de Arvores de Cendrios



Capitulo 6: Conclusgo 64

CODIGO RENTABILIDADE
IBOVESPA 2,24%
' MODELO - 1.81%
ASI 1,75%
ASII 0,76%

Tabela 6.1 — Andlise de Rentabilidades: Simula¢io X IBOVESPA

A figura 6.1 apresenta a evolugdo dos precos das carteiras simuladas contra uma
carteira composta pelas agbes do indice BOVESPA, para um mesmo valor inicial
investido. Percebe-se que as carteiras simuladas apresentaram uma menor volatilidade
que a do IBOVESPA. Este fato pode ser usado como uma explicagio do melhor
desempenho da cesta de agdes do IBOVESPA, haja vista que quanto maior o risco de

um ativo, maior € o seu retorno esperado.
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Figura 6.1 — Evolug¢do do valor das carteiras: Simula¢io X IBOVESPA

A tabela 6.2 apresenta uma comparagio das rentabilidades das carteiras
simuladas com a rentabilidade do CDI. Pode-se perceber que no periodo considerado,
apenas a carteira do modelo da andlise de sensibilidade II apresentou desempenho

inferior ao indice.
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CODIGO RENTABILIDADE
CDI 1,41%
MODELO 1,81%
ASI 1,75%
ASII 0,76%

Tabela 6.2 — Andlise de Rentabilidades: Simulaciio X CDI

A figura 6.2 apresenta a evolugfio dos pregos das carteiras simuladas contra uma

carteira cujo valor acompanha a rentabilidade do CDI, para um mesmo valor inicial

investido. Percebe-se que a volatilidade da carteira do CDI € bem menor que as carteiras

de agdes, haja vista que a carteira dada pelo CDI é composta de titulos de renda fixa que

possui risco inferior &s agdes.
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Figura 6.2 — Evolugfio do valor das carteiras: Simulagfio X CDI

A tabela 6.3 apresenta as rentabilidades, ao longo do horizonte de investimento

T, das agBes consideradas na selegfio das carteiras. Pode-se perceber que as ages que

apresentaram as maiores rentabilidades no periodo foram a VALES, NETC4 ¢ CCRO3.

Nio obstante, as agbes NETC4 ¢ CCRO3 foram as agdes que apresentaram um maior

peso em todas as carteiras simuladas. Entretanto, a agdo VALES ndo foi selecionada

para nenhuma carteira. Pode-se interpretar este fato devido as varidncias e covaridncias

das aces selecionadas. Como o processo de decisdo da carteira 6tima € baseado na

simulagdo de varidncias e covaridncias passadas das agles, muitas vezes o modelo
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demora a incorporar as informagdes mais recentes embutidas nos pregos das agdes,

embora estivéssemos utilizando um modelo EWMA numa janela de 20 dias tteis.

CODIGO | RENTABILIDADE NO PERIODO
TNLP4 2,54 %
PETR4 -7.86 %
EMBR4 -1,32%
VALES 5,19 %
AMBV4 1,10 %
ITAU4 | 2,07%
CMIG4 | 7,55 %
NETC4 3,17%
CCRO3 373 %

Tabela 6.3 — Rentabilidades das acGes ao longo do horizonte de investimento 7

Considerando os resultados obtidos, percebe-se que o modelo emitin resultados
satisfatérios, na medida em que as carteiras simuladas apresentaram rentabilidades

similares aos indices de mercado.

6.2 — Conclusoes

O objetivo deste Trabalho de Formatura foi desenvolver um modelo quantitativo
de otimizagdo multiperiodo de carteiras de investimento. Este modelo foi aplicado em
carteiras de investimento compostas por agdes de empresas brasileiras listadas na
BOVESPA. O tema deste trabalho surgiu da necessidade do fundo de investimento, no
qual este trabalho foi realizado, por novos métodos quantitativos de selegéio de carteiras
de investimento, haja vista que os modelos atuais ji se encontram ultrapassados e
amplamente difundidos entre os participantes do mercado financeiro brasileiro. Dessa
forma, buscou-se desenvolver um modelo inovador que proporcionasse uma vantagem
competitiva para o fundo em questdo.

Conforme ressaltado no inicio deste trabalho, todo o aparato tedrico e prético
desenvolvido neste trabalho poderia ter sido aplicado em problemas de pesquisa
operacional aplicados em engenharia de produgio. Entretanto, optou-se pelo
desenvolvimento de um modelo aplicado area financeira devido as caracteristicas da

empresa na qual foi realizada o estagio.
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Para a elaboragfo deste frabalho, foram estudados alguns modelos de otimizagéo
existentes, listados na literatura especializada. A grande maioria deles segue o
raciocinio iniciado por MARKOWITZ (1952), sem nenhum desenvolvimento adicional
em termos quantitativos. Além disso, deve-se ressaltar que os modelos de Markowitz
sdo modelos estéticos de selegdo de carteiras, isto €, s#o modelos que ndo consideram a
evolugdo que as varidveis aleatérias — representadas pelos pregos dos ativos financeiros
que compdem a carteira — apresentam ao longo do tempo.

Os modelos multiperiodos ainda se encontram em estdgio inicial de
desenvolvimento no mercado financeiro brasileiro. Muito pouco tem sido criado ou
discutido na literatura nacional.

O modelo proposto foi adaptado dos trabalhos desenvolvidos por HU (2003) e
BARRO er al. (2004) para o caso brasileiro. Algumas modificagdes e simplificagGes
foram realizadas, dado que estes trabalhos apresentam um elevado grau de sofisticagfio
e complexidade teorica.

Discutimos também as principais técnicas de geragfio de arvores de cendrios
existentes apresentadas por GULPINAR et al. (2001). Estes métodos sdo muito
importantes, pois eles limitam drasticamente o tamanho de um problema de otimizagdo
financeira multiperiodo, através da discretizagdo das varidveis aleatérias sob a forma de
uma arvore de cenarios. Dessa forma, conseguimos reduzir significativamente o esforgo
computacional utilizado na resolugéio destes problemas. Esta anélise foi necessdria, pois
o modelo de HU (2003) assume que ja existe uma 4rvore de cendrios a ser otimizada,
enquanto que BARRO ef al. (2004) utiliza técnicas avangadas de decomposigéio de
cendrios como o Progressive Hedging Algorithm’®. Ademais, foi possivel escolher
dentre as virias técnicas apresentadas, uma que seria convenientemente aplicavel a
situagfio em estudo.

Os resultados obtidos estavam de acordo com aquilo que se esperava da
realidade. Além disso, foi observado como a solugdo dtima encontrada se comportava
com a adigfio de novas restrig8es no modelo, através das andlises de sensibilidade I e 1L
Os resultados foram apresentados de forma simples e clara através de graficos e tabelas
ilustrativas. Dessa forma, um leitor que ndo possui pleno conhecimento do assunto pode

facilmente analisar e entender o modelo proposto. Isto foi de extrema importancia na

'8 Veja ROCKAFELLAR and WETS (1991).
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hora de conscientizar a instituig@io, na qual o trabalho foi realizado, dos beneficios que

tal modelo poderia proporcionar.

6.3 — Comentarios Finais e Recomendagdes para Trabalhos Futuros

Os resultados obtidos com o modelo quantitativo foram condizentes com o
objetivo inicial do trabalho. Entretanto, o seguinte aspecto vale ser mencionado: o fato

do modelo ndo indicar o rebalanceamento das posicbes ao longo do horizonte de

investimento em todas as carteiras simuladas. Isto é, nas 3 carteiras simuladas, 0 modelo
apenas indica a mudanga das posi¢Ges em ¢ = 0. Uma das razdes para este fato consiste
no curto horizonte de investimento utilizado no trabalho: T = 20dias uteis (1 més).
Desta forma, dado que o comportamento das agdes ndo varia muito neste periodo, 0
modelo acaba indicando as mesmas posi¢des nos rebalanceamentos. O horizonte
utilizado foi escolhido para se adequar s necessidades de um fundo de investimento de
agdes, que realiza decisdes de investimento de curto prazo. Entretanto, o modelo
utilizado parece se adequar melhor a decises de longo prazo, condizentes com um
fundo de administragfio de recursos de um plano de previdéncia complementar'®. Dessa
forma, uma recomendagiio de continuagfio do trabalho seria aplicd-lo para decisdes de
investimento de longo prazo, com rebalanceamentos num periodo suficientemente
grande de tempo (bimestral, semestral, anual) para que se possam evidenciar as
mudancas de posi¢des em cada instante de tomada de deciséo.

Qutras recomendag¢des para o desenvolvimento de trabalhos futuros seriam:

+ Aplicaciio de outros métodos de geraciio de arvores de cendrios: neste
trabalho foi utilizado apenas o método de simulagfio e clustering, com
simula¢fio em paralelo, na construgéo da drvore de cendrios. A utilizagdo
dos outros métodos poderia ser analisada para que se possam comparar
as respostas obtidas com o modelo de otimizagdo, utilizando as vérias
técnicas, bem como avaliar o tempo necessdrio requerido para a
construgio da arvore de cendrios em cada método (eficiéncia

computacional).

'° Veja JOLIG (2003).
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« Incorporacio do risco da carteira na fungiio objetivo: a utilizagfo de
medidas de risco na fungfo objetivo tornaria o problema praticamente
completo, do ponto de vista pratico. HU (2003) incorpora em seu
modelo de otimizag@o a utilizagfio de medidas de risco como o VAR,
CVAR, e minima riqueza esperada (fargef). No presente trabalho,
tentou-se a simulagiio das carteiras de investimento incorporando
medidas de minima riqueza esperada (farget). Entretanto, os resultados
obtidos foram infactiveis, dadas as condigbes dos modelos. J4 a
utilizagdo de medidas de risco como 0 VAR e CVAR na modelagem do
problema adiciona uma compiexidade computacional a mais no modelo

como a otimizacdo de fungdes nfo lineares num ambiente multiperiodo.

» Incorporacdo de funcdes de utilidade na fungio objetivo: a utilizagdo
de fungdes de utilidade na fung#io objetivo do modelo levaria em conta o
perfil de aversdio ao risco caracteristico dos cotistas de um fundo de
investimento no qual o modelo seria implementado. Além disso, a
utilizagdio de fun¢des de utilidade quadraticas possui o beneficio de
minimizar a varidncia da carteira a ser otimizada. LUENBERGER
(1997) apresenta exemplos de tipos de fungdes utilidade que podem ser

utilizados na prética.

« Diversificacdo do nimero/tipos de ativos: o modelo estudado era
composto de 9 agBes de empresas brasileiras. Um niimero maior de
agOes poderia ser utilizado no modelo. Dessa forma, faria mais sentido a
comparagio da carteira otima com o indice benchmark do setor
(IBOVESPA). Além disso, outros tipos de produtos financeiros
poderiam ser utilizados no modelo de otimizagdo como os derivativos:
futuros e opgdes. Para uma descrigdo dos tipos dos produtos financeiros

existentes em finangas, veja HULL (1997).
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APENDICE A
CALCULO DE RETORNOS
FINANCEIROS

Segundo JORION (2003), existem duas formas de se calcular o retorno dos
ativos financeiros. A taxa de retorno discreta ou aritmética pode ser definida como a
razdo entre o ganho de capital do ativo no instante ¢ ¢ o prego do ativo no instante ¢ -1.

Matematicamente, temos:

ro=—t—= (A.1)
onde:
r,: Retorno aritmético do ativo no instante ¢;
P, : Prego do ativo no instante ¢;

P_,: Prego do ativo no instante 7 -1.

Alternativamente, a taxa de retorno geométrica € definida como o logaritmo da

razdo de prego do ativo:

£
R = ln(P—J (A2)

onde:

R, : Retorno geométrico do ativo no instante £
P, : Prego do ativo no instante ¢

P_,: Preco do ativo no instante £ —1.
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No presente trabalho, utilizou-se, em todos os célculos, a taxa de retorno
geométrica. A opglo pela taxa de retorno geoméirica ao invés da taxa de retorno
aritmética se deve basicamente aos seguintes aspectos:

Primeiramente, os retornos geométricos possuem uma maior significdncia
econbmica do que os retornos aritméticos. Por exemplo, se os retornos geométricos
possuirem uma distribuigfo normal de probabilidades (hipétese fundamental assumida
quando o prego dos ativos varia ao longo do tempo de forma aleatéria), a distribuigéo
nunca podera levar a um prego negativo do ativo financeiro. Isto ocorre porque, na
cauda esquerda da distribui¢@o, na medida em que in(P/P_)—>—w, P/P)—>0,

ou £, —»0.

Enquanto isso, na cauda esquerda de uma distribui¢do normal de retornos
aritméticos, temos que 7 =(P-P_ )P, —>-w ¢ alcangado quando
(P/P_)-1<~1, ou P, <0. Dessa forma, a atribuigio da distribuigio normal a
retornos aritméticos poderia levar a resultados que economicamente ndo fariam algum
sentido.

A segunda vantagem do uso de retornos geométricos € a facilidade de se obter

extensGes para periodos multiplos. Como exemplo, o retorno geométrico calculado

entre dois instantes de tempo pode ser decomposto da seguinte forma:

P
R;,Z = ln[—}i—] = ]n(—l—] + ln[il‘J = R, + R,_l (A'3)
P, P P

A decomposigiio dos retornos aritméticos néo € tdo simples assim. Logo, o uso
de retornos geométricos é particularmente conveniente na medida em que o retorno
geométrico de dois instantes de tempo ¢ a soma de cada reforno em cada instante de
tempo.

Por fim, outro aspecto que merece ser comentado € o fato de que, na préatica, as
diferencas entre os dois retornos calculados serem pequenas. O retorno geométrico pode
ser  escrito  utilizando o retorno  aritmético da  seguinte  forma:
R =In(P/P_)=In(l+r). Logo, se r for pequeno, R, poderd ser decomposto

utilizando a expanséo da série de Taylor:
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2 3

rtor
R=r+—+"—+.. A4
' 73 (A.4)
Se r, for pequeno, a equagiio acima pode ser aproximada por:

R =1, (A5)

A figura a seguir ilustra essa aproximag#o. Percebe-se que para retornos muito

pequenos (inferiores a 15%), o erro cometido € pequeno.

100,00% ----------mmmmmmyrero e eeens | — i - N R~ s Ty =1

80,00% el e o e ::“ ST, TH——— '; """""""""" ‘E

' . | A Re=Ln(1+r,)

60,00% ------------o-ee- foomemmeneee , '1

YY1 1/ T —— e ,

20,00% +-----emeoemeeeees R . ri

0,00% e | ? i ?

0,00% 20,00% 40,00% 60,00% 80,00% 100,00%

Figura A.1 — Grifico comparative entre os retornos aritméticos e geométricos

Logo, na pratica, haverd pouca diferenga entre os retornos aritmeéticos e
geométricos, contanto que os retornos encontrados sejam pequenos. Entretanto,
cuidados especiais devem ser tomados a0 se utilizar essa aproximago, principalmente

em mercados com grandes oscilag8es como os de paises emergentes como o Brasil.
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APENDICE B
EWMA (EXPONENTIAL WEIGHTED
MOVING AVERAGE)

O EWMA (Exponential Weighted Moving Average), ou media mével ponderada
com alisamento exponencial é uma técnica, sugerida pela metodologia Riskmetrics do
banco JPMorgan (MORGAN, 1994), utilizada na modelagem da volatilidade de ativos.
A volatilidade dos ativos pode ser definida como o desvio padrdo de seus retornos,

sendo que o desvio padréio é igual & raiz quadrada da varidncia:

(B.1)

A técnica do EWMA sugere que a varifincia dos retornos pode ser calculada da

seguinte forma:

ol =ik, +(1-A), 0<i<l B.2)

onde:
0',2 : Variéincia do retorno em ¢;
A : Fator de decaimento;
o’,: Varidncia do retorno em ¢ —1;

r2,: Retorno ao quadrado do ativo em #-1;

A expressdo B.2 sugere que a varidncia do reforno de um ativo, num dado
instante de tempo, € composta por dois termos. O primeiro termo expressa a

dependéncia temporal da varidncia dos retornos. O segundo, representa a contribuigio
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da observagiio mais recente para a varifincia estimada. Além disso, podemos inferir da
expressdo que quanto maior o fator de decaimento, maior € o peso dado & varifncia mais
recente.

O mesmo principio do célculo da variincia pode ser estendido para a estimagédo
da covaridncia enire dois ativos. Assim, a covarifincia entre dois ativos i e j pode ser

definida por:
ol =0  +{1=A, it 0<A<! (B.3)

onde:

2.

Ot

Covariéncia enfre os retornos i € j em ¢;

A Fator de decaimento;

0‘,.}2._,‘1: Covaridncia entre osretornos i e j em £ —1;

#,,, - Retorno do ativo i em £-1;

7, - Retorno do ativo j em £-1;

A escolha do valor do pardmetro A pode ser arbitrdria. Entretanto, a
metodologia Riskmetrics sugere um procedimento para a escotha de um A 6timo

baseado no erro de predigfio um passo & frente, onde o erro de predigdo um passo a

2 2

frente é definido por &,,,,, =7, — Opy,- O mesmo procedimento poderia ser utilizado

=+
para o A empregado no calculo das covaridncias. Para maiores detalhes desses
procedimentos, veja MORGAN (1994).

Neste trabalho, utilizou-se o valor de 0.97 para todos os célculos de variancias ¢
covaridncias, pois esse ¢ o valor usual utilizado pelos agentes do mercado financeiro
brasileiro na determinagfo dos pardmetros dos diversos ativos.

A vantagem da utilizagio do EWMA consiste no fato dele captar mais
rapidamente as mudancas bruscas de volatilidade que ocorrem com os ativos
financeiros, dado que as observagdes mais recentes recebem um peso maior, sendo de

extrema importancia principalmente em épocas de crises financeiras.
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APENDICE C
METODO DE DECOMPOSICAO DE
CHOLESKY

A Fatoragdo de Cholesky consiste num método de fatoragdo da matriz de
coeficientes de um sistema linear do tipo 4x = 5. Este método € um caso especial da
decomposi¢do LU da matriz de coeficientes 4, onde a matriz A € decomposta como o
produto de duas matrizes L e U, onde L ¢ uma matriz triangular inferior ¢ U, uma

matriz triangular superior, isto é:
A=LU (C.1)

A Fatoragdo de Cholesky se aplica quando a matriz dos coeficientes A €
simétrica (A = A') e definida positiva® (x‘Ax > 0Vx # 0). Neste caso, a matriz 4 pode
ser fatorada em A=LU =LL', onde L (que pode ser interpretada como “raiz

quadrada” de 4) é a matriz triangular inferior com todos os elementos de sua diagonal

positivos.

Matricialmente, pode-se escrever A = LL', como sendo igual a:

ay ap a,, I, 0 0 I, I ul
a4y Uz ey || 1 Ip 0 _ 0 In I
a, (23 Ay Inl In2 Im: 0 0 e Irm

Os elementos I, de L podem ser determinados a partir das seguintes férmulas:

2 Observamos que, em uma matriz definida positiva, todos os autovalores da matriz sdo positivos, isto €,
sfio positivas todas as raizes do polinémio caracteristico det(A - Al ) =0.
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e Parai=j,temos:

2
ay=1,"=1,=ya,

2 2 2
Qp =1, +1 =1y =Aay -1

2 2 2 _ 2 2
ay =10+, + 1 = 1 =qa, -1, - I

Portanto:

o Para = j,temos:

dy
ay =L -1, =1; =

1
dy

ay =1y -1, =1 =
1

-5 1
‘51322(4[31'Izl)“"(ln.‘Izz):“Tsz:‘—‘a32 E,sl 21)
22

Portanto:

-1
I:—(au_ Iikljk] Vf:j+l,...,n; j22

(C2)

(€.3)

(C.4)

(C.5)

(C.6)

€7

(C.8)

(C.9)
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APENCIDE D
CLUSTERING

Clustering ¢ um méiodo de classificag@io para a identificagdo de grupos num
conjunto de dados (JOHNSON etr. al., 1998). Considerada uma das técnicas de
agrupamento mais populares hoje em dia, a técnica de clustering possui aplicagdes
diversas em quase todas as 4reas de conhecimento.

A classificacio em grupos ¢ baseada em similaridades ou distdncias
(dissimilaridades) entre os elementos de um conjunto de dados. Um dos métodos mais
utilizados para o célculo dessas dissimilaridades € a distdncia de Minkowski, em que a

disténcia entre os elementos € calculada através da seguinte expresséo:

d(x, )= [f I, ay,|"’r @)

onde m ¢é um numero inteiro positivo que define o peso dado as diferengas. Em
particular, para m igual a 2, temos a distincia Euclidiana.

A partir da mairiz de distdncias dos elementos de um conjunto de dados, inicia-
se o algoritmo de formacgdo de grupos. Devido a enorme variedade de formas
agrupamentos, algumas técnicas foram criadas para a construgfio de clusters de forma
racional, sem a necessidade de olhar para todas as possiveis configuragdes. Os métodos
hierdrquicos de clustering representam algumas destas técnicas.

Os métodos hierarquicos de clustering podem ser de duas formas: aglomeragdo
ou divisdo.

Os métodos de aglomeragdo comegam com objetos individuais. Dessa forma,
existem tantos clusters quantos objetos. Os objetos mais similares sdo agrupados. A
partir dos clusters iniciais, desenvolve-se o mesmo algoritmo para o agrupamento destes
clusters em clusters maiores, até a formagio de um Unico cluster com todos os objetos,

sempre respeitando a similaridade entre os grupos.
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Os métodos de divisfio trabalham na diregdo oposta. Primeiramente, temos um
nico cluster que € entfio subdividido em pequenos clusters. O processo continua até a
existéncia de tantos clusiers quantos objetos, isto €, até quando cada objeto formar um
lnico cluster.

Analisaremos aqui os métodos de aglomeragfo. Para uma abordagem dos
métodos de divisdo, veja EVERITT (1993). JOHNSON er. al. (1998) apresenta os
seguintes passos para a realizagio do agrupamento de N objetos utilizando os métodos

de aglomeragfio:

1) Comece com N clusters, cada um contendo um unico objeto, e uma matriz
simétrica N x N de distancias (ou similaridades) D = {d,, }.

2) Procure na matriz a distdncia para os pares de clusters mais similares.

Detina a distancia entre os clusters mais similares U ¢ ¥ comod,,, .

3) Agrupe os clusters U e V. O novo cluster formado serd nomeadoUV .
Atualize a matriz de distdncia eliminando as linhas e colunas
correspondentes aos clusters U e ¥ e adicionando as novas distincias
calculadas entre o cluster UV e os clusters restantes.

4) Repita os passos 2 e 3 até a formaglo de um (nico cluster. Em cada
interagdo, identifique os clusters formados bem como as distdncias (ou

similaridades) obtidas.
Existem vérios tipos de métodos de aglomeragfo. Os mais utilizados sfo:
s Single linkage (minima distdncia ou vizinho mais préximo) — clusters sio

formados juntando-se os elementos que possuem maior similaridade, utilizando-se a

menor distdncia entre os elementos (um de cada cluster).

P - ~ \ )- Ca ~ N
; le | i 3 \ Distiincia
\ ] —e 4 ) das
\\ . 2.7 \\ . .5 P I

Figura D.1 - Single Linkage ~ Adaptado de JOHNSON et. al. (1998)
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¢ Complete Linkage (maxima distincia ou vizinho mais distante) - clusters sdio
formados juntando-se os elementos que possuem maior similaridade, utilizando-se a

maior distdncia entre os elementos (um de cada cluster).

Distincig
dis

Figura D.2 — Complete Linkage — Adaptado de JOHNSON ez, al. (1998)

» Average Linkage (distincia média) — trata a distdncia entre dois clusters como a
distancia média entre todos os pares de itens, onde cada membro de um par pertence

a um cluster.

Distiincia
di3t+dia+dis+day+day +das
6

Figura D.3 — Average Linkage — Adaptado de JOHNSON et, al. (1998)

+ Ward Method (método de WARD) - clusters séio formados minimizando a “perda
de informago” de se juntar dois grupos. Em cada passo, clusters, cuja combinagio
resulta no menor aumento da soma de desvios quadrados (calculado com relagéo ao
centrdide do cluster), sio agrupados. Para uma descri¢io mais sucinta do método de

WARD e suas aplicagdes, veja WARD (1963).

Os resultados da aglomeragio em clusters podem ser visualizados na forma de
um grafico chamado dendograma, ou diagrama em 4rvore. A figura D.I ilustra esta
representagdo. O exemplo foi construido utilizando os dados da carteira a ser otimizada.
No eixo X, temos os objetos que representam os caminhos simulados. No eixo Y,

temos a disténcia de WARD que representa o nivel no qual o agrupamento foi realizado.
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Figura D.4 - Dendograma

As divisGes na 4arvore (nds) representam clusters. Dessa forma, para
determinarmos o nimero de clusters que desejamos obter no conjunto de dados,
efetuamos um corte horizontal numa determinada altura (eixo ¥') do dendograma. Cada

conjunto de dados resultantes representaria um cluster.
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APENDICE E
MATLAB — ALGORITMO DE
SIMULACAO MONTE CARLO

%SIMULACAO MONTE CARLO

96*****l*************i*****#*i***i****l******i***i***ti**l*i****#*#*****###*&‘#****#t

function[TNLP4,PETR4,EMBR4,VALES, AMBV4,ITAU4,CMIG4,NETC4,CCRO3,8,T,raiz.cholesky]=
MONTE_CARLO_TE(HISTORICO_DE_PRECOS_TF,MATRIZ DE_COVARIANCIA_TF)

% S...NUIMERO DE CENARIOS

% T...HORIZONTE DE INVESTIMENTO

% raiz..RAIZ DA ARVORE DE CENARIOS

% cholesky...DECOMPOSICAO DE CHOLESKY DA MATRIZ VARIANCIA-COVARIANCIA

% Input Boxes
S=inputdlg('Digite o numero de cendrios {8) descjados:);
T=inputdlg('Digite o horizonte de investimento T {Dias}:");

% Converte o string em double
S=str2double(S);
T=str2double(T);

% Carrega vetor raiz inicial
raiz=HISTORICO_DE_PRECOS_TF(140.:);

H"1****l****i****i*i*t*i*l***t*l***t*##é*é#***#*#*************#%t*****#*#*t#**l*l*l*t

% Decomposicio de Cholesky
cholesky=chol(MATRIZ_DE_COVARIANCIA_TF);
cholesky=cholesky";

%lL.o0p até 0 numero de cendrios desejade
for i=1:8

%Loop até o namero de dias {Horizonte de [nvestimento)
for j=1:T

%Carrega a matriz de nimeros aleatérios 9x1 (9 Agdes)
ALEATORIO=randn(9,1);

%l.oop para calcular a variagio de cada agdo num dia
for k=1:9

Sum=0;

for m=1:9

Otimizagdo Multiperiodo de Carteiras de Investimento Utilizando a Técnica de Geragfio de Arvores de Cenérios



Apéndice E: MATLAB — Algoritmo de Simulagio Monte Carlo

85

Sum=Sum-+(cholesky(k,m)* ALEATORIO(m,1));
end
%Armazena a variaglio da Aglo 1 (Cendrio i, tempo j)

if k==1
TNLP4(i,j)=Sum;
end

%Armazena a variagio da Agiio 2 (Cendrio 1. tempo j)
if k==2

PETRA4(i,j)=Sum;
end

%Armazena a variagdo da A¢do 3 (Cenario 1. tempo j)
ifk==3

EMBR4(i,j)=Sum;
end

%Armazena a variagio da A¢do 4 (Cendrio i. tempo j)
if k==4

VALES(i,j)=Sum;
end

% Armazena a variagdo da Ag¢do 5 (Cendrio i, tempo j)
if k=5

AMBV4(i,j)=Sum;
end

%Armazena a variagiio da Ago 6 (Cendrio i. tempo j)
ifk==6

ITAU4(i,j)=Sum;
end

%Armazena a variagio da Agdo 7 (Cendrio 1. tempo j)
ifk==7

CMIG4(i,jy=Sum;
end

%Armazena a variagio da A¢do 8 (Cendrio i. tempo |)
if k=8

NETC4(i,j)=Sum;
end

% Armazena a variagio da Agdo 9 (Cendrio i. tempo j}
if k==8

CCRO3(i,j)=Sum,;
end

end % end do k

end % end do j
end %o end doi

%Calculo dos pregos dos ativos com base nos retornos calculados anteriormente

2%%L.oop até 0 niimero de cenarios desejado
for i=1:8
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%l.oop até o nimero de dias (horizonte de investimento)
for j=1:T

for k=1:9

itk==1

if j==1
TNLP4(i,j)=raiz(1,k)*exp(TNLP4(i.j));
else
TNLP4(i,j)=TNLP4{i,j-1)*exp(TNLP4(i,)));
end

end

if k==2

if j==1
PETRA(i,j)=raiz{1,k)*exp(PETR4(L,}));
else
PETRA4(i,j)=PETR4(i,j-1)*exp(PETRA(i,j});
end

end

if k==3

ifj==
EMBRA4(i,j)=raiz{ 1, k)*exp(EMBR4(i,j));
else
EMBR4(i,j))=EMBRA4(i,j-1*exp(EMBRA4(i,j));
end

end

itk==

if j==
VALES(, jyraiz{1,k)*exp(VALES(,j));
else
VALES(i,j)=VALES(i,j-1)*exp(VALES(i,j)):
end

end
if k==5
if j==1
AMBVA(ij)=raiz( L k)*exp(AMBV4(i,]))%
ElS:AMBV4(ij)=AMBV4(i,j-1)*exp(AMBV4(i,j));
en

end

if k==6
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if j==1
ITAUA4(,j)=raiz(1,k)*exp(ITAU4(i,j));
else
ITAU4(L,=ITAUA(Lj- 1 *exp(ITAU4)));
end

end
if k==7

if =1

CMIG4(i,jy=raiz(1,k)*exp(CMIG4(i,));
else

CMIGA(1,j )=CMIG4(i,j-1) *exp( CMIG4(i,j));
end

end
ifk==8§
if j==1
NETC4(i,j)=raiz(1,k)¥exp(NETC4{i,j});
clse

NETC4(1,j)=NETC4(i,j-1)*exp(NETC4(i,j));
end

end
if k==
irj=1
CCRO3(i j)=raiz(1,k)*exp{ CCRO3(i.j));
else
CCRO3(i,j)=CCRO3(,j-1Y*exp(CCRO3(i,j))
end
end
end %end k

end %end }
end %cend i
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APENDICE F
MATLAB - ALGORITMO DE
CLUSTERING

% ANALISE DE CLUSTER

O_ro********ﬂl**l!(****i*l*#***tt*tt*#*#*********************i*#lk*i************ﬁ**********

function[Cont,dt, TD,TD_UP,TD_DOWN,C,N_DOWN,N_UP,Arvore,Elipse_UP,Elipse_ DOWN,Y,L]=C
LUSTERING_TF(TNLP4,PETR4,EMBR4,VALES, AMBV4,ITAU4,CMIG4 NETC4,CCRO3,5,T raiz)

% Cont...VETOR DE PROBABILIDADI: DE CENARIOS

% dt..INTERVALO DE TOMADA DE DECISAO

% TD...MATRIZ COM O$ VALORES DE TOMADA DE DECISAO

% TD_UP..MATRIZ COM 08 VALORES DE TOMADA DE DECISAQ (CLUSTERS UP)
% TD DOWN..MATRIZ COM 08 VALORES DE TOMADA DE DECISAQ (CLUSTERS DOWN)
% C...DIVISAQ DOS CLUSTERS

% N_UP..MATRIZ COM O5 VALORES DOS ATIVOS DOS CLUSTERS UP

% N DOWN..MA [RIZ COM OS VALORES DOS ATIVOS DOS CLUSTERS DOWN

% Arvore...ARVORE DE CENARIOS

% ELIPSE_UP..MATRIZ COM OS VALORES DI N_UP SEM ZEROS

% ELIPSE_DOWN..MATRIZ COM OS VALORES DEN DOWN SEM ZEROS

% Y..MATRIZ DE DISTANCIAS - DISTANCIA EUCLIADIANA

% L..LINKAGE (WARD METHOD)

%Input Box
DT=inputdlg('Digite v intervalo DT de tomada de decisao (dias) );

%Converte o string ¢cm double
DT=str2double(DT);
dt=DT;

%Numero de iteragdes
decisoes=T/DT;
decisoes=decisoes-1;

%Carrega a raiz da drvore - 9 ativos
for m=1:9

Arvore(1,m)=raiz(l,m);
end

% Construgiio da Arvore de Cenarios
qﬁ**************t***i*****it*tl***i*#************#****************#*&i***************

for a=1:decisoes
% a=1
96*******1*******t***i***i***i*******t****t***t*#***********ﬁ****l****i*******l******

if a==

% 1-)Carrega a matriz TI) com os pregos das agdes para etetuar o PDIST do vetor prego
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for i=1:8

for k=1:9

%Armazena o prego da Ao | (Cendrio i, tempo DT - temada de decisdo)

if k==1
TD(i,k)=TNLP4(i,DT);
end

YeArmazena o prego da Agio 2 (Cendrio i, tempo DT - tomada de decisdo)
if k==

TD{i,k)=PETR4(i,DT);
end

%Armazena ¢ prego da Agdo 3 (Cendrio i, tempo DT - tomada de decisiio)
if k==

TD(i,k)=EMBR4(i,DT);
end

%Armazena o prego da Agio 4 (Cendrio i, tempo DT - tomada de decisio)
if k==

TD(i,k)=VALES5(i,DT);
end

%Armazena o prego da Ac¢do 5 (Cendrio i, tempo DT - tomada de decisdo)
if k==

TD(i,k)=AMBV4{i,DT),
end

Y%aArmazena o prego da Aglo 6 (Cendrio i, tempo DT - tomada de decisio)
if k==

TD(i,k}=1TAU4(i,DT);
end

“Armazena o preco da A¢do 7 (Cendrio i, tempo DT - tomada de decisdo)
if k==7

TD{1,k)=CMIG4(i,DT);
end

%Armazena o preco da Ag¢lo 8 (Cendrio i, tempo DT - tomada de decisdo)
ifk==8

TD{i,k)=NETC4(i,DT);
end

%Armazena o prego da Agio 9 (Cendrio itempo DT - tomada de decisio)
ifk==9

TD(i,k)=CCRO3(i,DT);
end

end % end do for k=1 até¢ 9

end % end do for i=1 ate S

%2-)PDIST

%3-)Linkage

Y=pdist(TD.'minkowski');

L=LINKAGE(Y,ward"),

%4-)Divisdo dos clusters
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C(:,a)=cluster(L,2);

%3-)Binomial tree
=L
k=1;

for i=1:8 % j+k=8

%Cluster up
i C(i,a)==1

N_UP(i,:=TD(i,:);
Elipse_UP{j,:)=TD{(i,:);
=i

N_DOWN(,:)=zeros(1,9);
end

%Cluster down
if C(i,a)==2

N_DOWN(i,:)=TD(i,:);
Elipse_DOWN(k,:)=TD(i,:);

k=k+1;
N_UP(i,:)=zeros(1,9);
end
end
=L
k=k-1;

Cont{z)=j;
Cont(a+1)=k;

%6-)Cdlculo dos pontos médios
% Cluster up
Sum=zeros(1,9);
for i=1:j
for m=1:9
Sumy{1,m)=Sum(1,m)+ Elipse_ UP(i,m};

end
end

for m=1:9
Arvore(a+1,m)=Sum{},m)/j;

end

% Cluster Down
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Sum=zeros(1,9);
fori=1:k

for m=1:9
Sum(1,m)=Sum(1,m)+ Elipse_ DOWN(i,m);

end
end

for m=1:9
Arvore(at2,m)=Sum(1,myk;

end
end %o end doifa==

% a> 1
ok kR 3R RO FOK o KRR A o A 0K o ko o oo o R KR R Ok R R o

%Aloco a carteira nos clusters anteriores
if a>1

logica =1; % varidvel booleana de divisdo da arvore de cendrios
for b=((2"(a-1)) -1):((2"a)-2) % Para cada b. terei um up ¢ um down
% Para a=2. b=1.2
% Para a=3. b=3.4.5.6
% Para a=4, b=7.8.9.10.11.12,13.14
X=1; % varidvel booleana de divisdo da arvore de cendrios

if logica==1 % se for true. eu sei que é um up (b impar)
c=1;
for i=1:S
if N_UP(i,1,((b+1)/2)>0

for k=1:9
%eArmazena o preco da A¢do | (Cendrio i. tempo DT - tomada de decisio)
if k==
TD UP(c,k)=TNLP4(i,DT);
end
%Armazena o prego da A¢lio 2 (Cendrio i. tempo DT - tomada de decisio)
ifk==2
TD_UP(c,k)=PETR4(i,DT);
end

%Armazena o prego da A¢io 3 (Cendrio i, tempo DT - tomada de decisio)

k==
TD_UP(c,k)=EMBR4(i,DT);
end
%Armazena o prego da Agdo 4 (Cendrio i, tempo DT - tomada de decisdo)
if k==
TD_UP(c,k)=VALE5{i,DT);
end
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Y%A rmazena o prego da Aglio 5 (Cendrio i, tempo DT - tomada de decisio)
if k==

TD_UP{c,k)=AMBV4(i,DT);
end

%Armazena o prego da A¢lio 6 (Cendrio i, tempo DT - tomada de decisdo)
if k==

TD_UP(c,k)=ITAU4{i,DT);
end

%Armazena o prego da Agdo 7 (Cendrio i. tempo DT - tomada de deciso)
ifk==7

TD_UP{c,k)=CMIG4(i,DT);
end

Y%Armazena o prego da Agdo 8 (Cendrio i, tempo DT - tomada de decisdo)
if k==

TD_UP(c,k)=NETCA4(i,DT);
end

%Armazena o prego da Agio 9 {Cendrio i, tempo DT - tomada de deciso)}
if k==

TD_UP{(c,k)=CCRO3(i,DT);
end

end % end do for do k
c=c+l;
end % end do if N_up
end % end do for doi ate §
c=c¢-1;
% 2-)PDIST
Y=pdist(TD_UP(1:¢,:), minkowski');

% 3-)Linkage
L=LINKAGE(Y,'ward').
%4-)Divisido dos clusters
C(1:¢,b+1)=cluster(L,2);

%5-)Binomial tree

=1
k=1;

fori=1:c
%Cluster up
if C(i,b+1)==1

N_UP(i,;,b+1)=TD_UP(,:,1);

Elipse_UP(j,:,b+1)=TD_UP(i,:,1);
=L
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end
%oCluster down
if C(i,b+1)y=
N_DOWN(,.b+1)=TD_UP(i,:,1);
Elipse DOWN(k,:,b+1)=TD_UP{i,:,1);
k=k+1;

end

end % end do fordoiate ¢

=i
k=k-1;

Cont((2*b)+1)=j;
Cont((2*b)+2)=k;
%6-) Cdleulo dos pontos médios
%Custer up
Sum=zeros(1,9,1);
for i=1:j
for m=1:9
Sum(1,m,1)=Sum(1,m,1)+ Elipse UP(i,m,b+1);
end

end

for m=1:9
Arvore((2*b)+2,m,1)=Sum(1,m,1)/j;

end
% Cluster down
Sum=zeros(1,9,1);

fori=1:k

for m=1:9
Sum(1,m,1)=Sum(1,m,1)+ Elipse DOWN(i,m,b+1);

end

end

for m=1:9

Arvore((2*b)t3,m,1)=Sum(1,m,1¥k;
end

logica=0;
X=0;
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end % end do if logica
if logica==0 & X==1% se for false, cu sei que ¢ um down {b par)
c=1;
for i=1:S
it N_DOWN(,1,(b/2))>0
for k=1:9

%Armazena o prego da Agdo 1 (Cendrio i, tempo DT - tomada de decisdo)
ifk==1
TD_DOWN(c.k)=TNLP4(i,DT);
end

%Armazena o preco da A¢ao 2 (Cendrio i, tempo DT - tomada de decisdo)
ifk==2
TD_DOWN(c,k}=PETR4(i,DT);
end

YArmazena o preco da Aglo 3 (Cendrio i, tempo DT - tomada de decisdo)
ifk==3
TD_DOWN(c,k)=EMBR4(i,DT);
end

%Armazena o prego da Aglio 4 (Cendrio i, tempo DT - tomada de deciséio)
if k==
TD_DOWN(c,k)=VALES(i,DT);
end

%Armazena o preco da Agdo 5 (Cenario i, tempo DT - tomada de decisdo)
if k==
TD_DOWN(c,k)=FAMBV4{i,DT);
end

%Armazena o prego da A¢ao 6 (Cendrio i, tempo DT - tomada de decisdo)
ifk==6
TD_DOWN(e,k)=ITAU4(i,DT);
end

%Armazena o preco da A¢do 7 (Cenario i, tempo DT - tomada de decisio)
if k=7
TD_DOWN(c,k)=CMIG4(i,DT);
end

%oArmazena o preco da Agdo 8 (Cendrio i, tempo DT - tomada de decisiio)
ifk==8
TD_DOWN(c,k)=NETC4(i,DT);
end

%Armazena o prego da Agdo 9 (Cendrio i, tempo DT - tomada de decisio)
if k==
TD_DOWN(¢,k)=CCRO3(i,.DT);
end

end % end do for do k
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e=ctl;
end % end do it N_DOWN
end % end do for i ate s
c=c-1;

% 2-)PDIST
Y=pdist{ TD_DOWN(1:c,:},' minkowski");

% 3-)Linkage
L=LINKAGE(Y, ward";

%d4-)Divisdo dos clusters
C(1:¢c,b+1)=ciuster(L,2),

9%5-)Binomial tree

Yt
k=1;

fori=1:c
%Cluster up
if C(i,b+1y==1
N_UP(i,;,b+1)=TD_DOWN(,:,1);
Elipse_UP(j,:,b+1}=TD_DOWN(,:,1);
=+
end
%Cluster down
if C(i,b+1)==
N_DOWN(,:.,b+1)=TD_DOWN(,:, 1)
Elipse_DOWN(k,:,b+1)=TD_DOWN(,:,1);
k=k+1;
end

end % end do fordoiatec

ipind §
k=k-1;

Cont((2*b)+1)=j;
Cont((2*b)+2)=k;

%6-)Cilculo dos pontos médios
% Cluster up
Sum=zeros(1,9,1);

for i=1:j
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for m=1:9
Sum(1,m,1)=Sum(1,m,1)+ Elipse_UP(i,m,b+1};
end
end
for m=1:9
Arvore((2*b)+2,m,1)=Sum(1,m,1)/j;
end

% Cluster down

Sum=zeros(1,9,1);

for i=1:k
for m=1:9
Sum(1,m,1)=Sum(1,m, )+ Elipse DOWN(i,m,b+1);
end
end
for m=1:9

Arvore((2*b)+3,m,1)=Sum(1,m,1)/k;
end

logica=1;
end % end do if logica
end % end do for do b
end % end do if a>1]
DT =DT+dt;
end %end do for das decisoes

Cont=Cont/S;
Cont=Cont";
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