
UNIVERSIDADE DE SÃO PAULO
ESCOLA DE ENGENHARIA DE SÃO CARLOS

RODRIGO NEVES DOS SANTOS

Reconhecimento de gestos de mão humana em imagens de vídeo

São Carlos
2011

RODRIGO NEVES DOS SANTOS

RECONHECIMENTO DE GESTOS DE
MÃO HUMANA EM IMAGENS DE

VÍDEO

Trabalho de Conclusão de Curso apresentado

 à Escola de Engenharia de São Carlos, da
Universidade de São Paulo

Curso de Engenharia Elétrica com ênfase

em Eletrônica

ORIENTADOR: Professor Doutor Adilson Gonzaga

São Carlos
2011

AUTORIZO A REPRODUÇÃO E DIVULGAÇÃO TOTAL OU PARCIAL DESTE TRABALHO,
POR QUALQUER MEIO CONVENCIONAL OU ELETRÔNICO, PARA FINS DE ESTUDO E
PESQUISA, DESDE QUE CITADA A FONTE.

Ficha catalográfica preparada pela Seção de Tratamento
da Informação do Serviço de Biblioteca – EESC/USP

 Santos, Rodrigo Neves dos.
S237r Reconhecimento de gestos de mão humana em imagens de

vídeo. / Rodrigo Neves dos Santos ; orientador Adilson
Gonzaga –- São Carlos, 2011.

 Monografia (Graduação em Engenharia Eétrica com

Ênfase em Eletrônica) -- Escola de Engenharia de São
Carlos da Universidade de São Paulo, 2011.

 1. Visão computacional. 2. Gestos de mão. 3. Rede

neural. I. Titulo.

Dedico este trabalho aos meus pais que me apoiaram

em todos os momentos de minha graduação.

Agradecimentos

Agradeço aos meus pais pela educação, amor, apoio e por serem minha fonte

de inspiração. As minhas irmãs e a todos de minha família por estarem sempre ao

meu lado em qualquer etapa da minha vida.

Aos meus colegas de Universidade, em especial aos meus amigos Biondo,

Michel, Nishizawa e Samir. A todos que estiveram comigo na Espanha, durante meu

intercambio em Vigo, em especial aos amigos e companheiros da Urzaiz1 e à Susan

pelo apoio e carinho.

A todos os professores da Universidade de São Paulo que contribuíram e se

importaram com a minha formação. Ao Professor Dr. Adilson Gonzaga pela orientação

e atenção neste trabalho e durante a graduação.

E a todos que contribuíram de alguma forma para a conclusão deste trabalho.

“A curiosidade é mais importante do que o conhecimento.”

Albert Einstein

Resumo

Este trabalho propõe um sistema de reconhecimento de gestos de uma mão

humana em imagens de vídeo. Para que o sistema possa reconhecer os gestos são

cumpridas as seguintes etapas: captura da imagem, processamento, extração de

características e reconhecimento. A câmera ligada ao computador captura imagens da

mão humana sem o auxílio de luvas ou datagloves que facilitem a extração das

características. A imagem capturada é processada para que possa ser extraído um

vetor de características a fim de modelar a postura da mão humana em um

determinado instante de tempo. Este vetor de características é então utilizado em uma

Rede Neural Artificial (RNA) treinada a fim de reconhecer o gesto executado. Todo o

sistema é desenvolvido utilizando a linguagem de programação C, juntamente com a

biblioteca OpenCV (Open Source Computer Vision Library), desenvolvida pela Intel

para aplicativos na área de Visão Computacional. Os resultados mostram em que

condições o algoritmo apresenta o melhor desempenho e que é possível utilizá-lo na

aplicação de um sistema interação homem-computador.

Palavras-Chave: visão computacional, gestos de mão, rede neural.

Abstract

This paper develops a system for recognizing gestures of a human hand in

video images. The following steps are fulfilled for the system can recognize gestures:

image capture, processing, feature extraction and recognition. The camera connected

to the computer capture images of the human hand without the aid of gloves or

dataglove that facilitate the extraction of features. The captured image is processed, so

that it can be extracted from an array of features to model the posture of the human

hand in a given time. This feature vector is then used in an Artificial Neural Network

(ANN) trained to recognize the gesture executed. The whole system is developed using

the C programming language, along with a library OpenCV (Open Source Computer

Vision Library), developed by Intel for applications in Computer Vision. The results are

show under what conditions the algorithm performs best and that you can use it in the

application of a human-computer interaction system.

Key Words: computer vision, hand gesture, neural network.

Índice de Figuras

Figura 1 – Cubo de cores RGB ... 26
Figura 2 – Exemplo de Subtração de Imagens ... 29
Figura 3 – Exemplo de Histograma e sua Imagem.. 29
Figura 4 – Histograma com Vale Assinalado... 30
Figura 5 – Exemplo de Limiarização através do Método do Vale 30
Figura 6 – Exemplo de Erosão Binária .. 32
Figura 7 – Exemplo de Dilatação Binária .. 32
Figura 8 – Exemplo de Abertura ... 33
Figura 9 – Exemplo de Fechamento ... 34
Figura 10 – Aplicação de Filtro Morfológico. Fonte: (GONZAGA, IRIS SEL, 2000). 34
Figura 11 – Representação do Perceptron. Fonte: (BARROS, 2009).......................... 35
Figura 12 – Representação de uma Rede Neural MLP. Fonte: (FERRAMOLA, 2002) 36
Figura 13 – Diagrama de blocos do projeto .. 39
Figura 14 – Código responsável pela Inicialização da Câmera. 41
Figura 15 – Exemplo de Quadro Capturado .. 42
Figura 16 – Etapas para o Processamento de Imagens .. 42
Figura 17 – Código responsável pela conversão para RGB normalizado 43
Figura 18 – Exemplo de Conversão para o RGB normalizado 43
Figura 19 – Exemplo do Canal r normalizado ... 44
Figura 20 – Exemplo de Subtração de Fundo ... 44
Figura 21 – Código responsável pelo Cálculo do Histograma 45
Figura 22 – Exemplo de Histograma para a Imagem da figura 15 45
Figura 23 – Exemplo de Binarização da Imagem da figura 20 46
Figura 24 – Código responsável pelos Filtros Morfológicos .. 46
Figura 25 – Exemplo de Aplicação de Filtro Morfológico ... 47
Figura 26 – Código responsável pelo Pós-Processamento da Imagem 47
Figura 27 – Exemplo de Remoção de Punho .. 48
Figura 28 – Código responsável por Encontrar os Limites da Imagem........................ 48
Figura 29 – Código responsável por Extrair as Características 49
Figura 30 – Exemplo de Divisão de Imagem para Extração de Características 49
Figura 31 – Exemplo de Segmentação Manual (a) e pelo Algoritmo proposto (b) 52
Figura 32 – Imagens do Cenário 1A com Iluminação Ambiente e Fundo Branco 55
Figura 33 – Imagens do Cenário 1B com Iluminação Fluorescente e Fundo Branco .. 56
Figura 34 – Imagens do Cenário 1C com Iluminação Ambiente e Fundo Preto 56
Figura 35 – Imagens do Cenário 1D com Iluminação Fluorescente e Fundo Preto 57

Índice de Tabelas

Tabela 1 – Exemplo de representação cores no espaço RGB 27
Tabela 2 – Características da câmera web utilizada ... 40
Tabela 3 – Características do computador utilizado .. 40
Tabela 4 – Softwares e Biblioteca Utilizados... 40
Tabela 5 – Parâmetros da Rede Neural utilizada .. 50
Tabela 6 – Cenários para Análise da Iluminação e Cor do Fundo 51
Tabela 7 – Distâncias Avaliadas entre a Mão Humana e a Câmera Web 53
Tabela 8 – Resultados para a Análise da Iluminação e Cor de Fundo 57
Tabela 9 – Resultados para a Distância entre a Mão e a Câmera 58
Tabela 10 – Parâmetros da Análise de Reconhecimento .. 59
Tabela B-1 – Classes de Gestos para a Análise da Distância entre a Mão e a
Câmera11 ... 83
Tabela C-1 – Classes de Gestos para a Análise do Reconhecimento12 84
Tabela D-1 – Tabela de Contingências para Análise do Reconhecimento 13 87

Sumário

Agradecimentos .. 9
Resumo .. 13
Abstract .. 15
Índice de Figuras .. 17
Índice de Tabelas ... 19
Sumário .. 21
Capítulo 1 – Introdução .. 23

1.1 Apresentação ... 23
1.2 Objetivos... 23
1.3 Organização da Monografia .. 24

Capítulo 2 – Revisão de Literatura ... 25
2.1 Biblioteca OpenCV ... 25
2.2 Espaço de Cores .. 26

2.2.1 Espaço de cores RGB ... 26
2.2.2 RGB normalizado .. 27

2.3 Segmentação de Imagens .. 28
2.3.1 Subtração de Imagens de Fundo ... 28
2.3.2 Histograma .. 29
2.3.3 Limiarização .. 29

2.4 Morfologia matemática.. 31
2.4.1 Erosão binária ... 31
2.4.2 Dilatação binária .. 32
2.4.3 Abertura ... 33
2.4.4 Fechamento... 33
2.4.5 Filtro morfológico – Abertura e Fechamento .. 34

2.5 Redes Neurais .. 35
2.5.1 Perceptron Multicamadas (MLP) .. 36

2.6 Gestos .. 37
2.7 Considerações Finais ... 37

Capítulo 3 – Materiais e Métodos ... 39
3.1 Materiais ... 40
3.2 Sistema Proposto ... 41

3.2.1 Captura de Imagens .. 41
3.2.2 Processamento de Imagens .. 42
3.2.3 Pós Processamento de Imagens ... 46
3.2.4 Extração de características .. 48
3.2.5 Treinamento da Rede Neural ... 50
3.2.6 Reconhecimento .. 50

3.3 Análises .. 51
3.3.1 Iluminação e Cor de Fundo .. 51
3.3.2 Distância entre Mão e Câmera .. 52
3.3.3 Reconhecimento .. 53

Capítulo 4 – Resultados e Conclusões ... 55
4.1 Resultados .. 55

4.1.1 Iluminação e Cor de Fundo .. 55
4.1.2 Distância entre Mão Humana e Câmera .. 58
4.1.3 Reconhecimento .. 59

4.2 Conclusões ... 60
4.3 Trabalhos Futuros ... 61

Referências Bibliográficas... 63
APÊNDICE A – Códigos do Algoritmo Utilizado .. 65

A.1 Algoritmo para Análise da Iluminação e Cor de Fundo 65
A.2 Algoritmo de para Cálculo dos Parâmetros ... 70
A.3 Algoritmo de Captura de Quadros e Segmentação ... 72
A.4 Algoritmo de Extração de Características e Geração de Resultados 76

APÊNDICE B – Classes de Gestos para a Análise da Distância................................. 83
APÊNDICE C – Classes de Gestos para a Análise do Reconhecimento 84
APÊNDICE D – Tabela de Contingências para Análise do Reconhecimento 87

23

Capítulo 1 – Introdução

1.1 Apresentação

Com o crescente aumento da influência dos computadores na sociedade, a

Interação Humano-Computador (IHC) vem ganhando uma grande importância em

nossa vida diária. A IHC tem se expandido rapidamente e de forma constante durante

as últimas três décadas, atraindo profissionais de muitas outras disciplinas e

incorporando diversos conceitos e abordagens (CARROL, 2009).

Dos esforços dedicados aos estudos desta área, surgiram diferentes métodos

de IHC, como o reconhecimento de voz, dispositivos tácteis, reconhecimentos de

faces, entre outros. Entretanto, apenas nos últimos anos é que tem aumentado o

interesse em novas técnicas de IHC, como o estudo de movimento de mãos e braços.

Os gestos humanos são um meio de interação não verbal entre as pessoas, e

vão desde ação simples para apontar e mover objetos até movimentos mais

complexos que expressam os nossos sentidos e nos permitem nos comunicar

(PAVLOVIC, 1997).

Como forma de comunicação entre usuário e máquina, a utilização de

movimentos da mão como forma de interação com o computador é muito intuitiva e dá

ao sistema uma grande usabilidade. Desta forma, diversos tipos de algoritmo para o

reconhecimento de gestos de mão humana vêm sido estudados de forma a tornar esta

interação mais simples e independente de dispositivos de auxilio, como luvas ou

sensores de captura de movimento.

Assim, algoritmos de identificação de movimentos da mão humana, a partir de

câmeras de captura de vídeo de baixo custo, são um grande desafio para a área de

visão computacional. Este tipo de algoritmo pode ser aplicado em equipamentos que

operam à distância e em tempo real, evitando o contato humano em locais inseguros e

perigosos (GONZAGA, 2011).

1.2 Objetivos

Este trabalho tem por objetivo principal o desenvolvimento de um sistema de

reconhecimento de gestos dinâmicos de mão humana situada à frente de uma

webcam. Serão estudadas as melhores condições de ambiente para que o sistema

seja preciso e eficiente, obtendo as melhores porcentagens no reconhecimento de

gestos, para mãos de diferentes pessoas.

24

O projeto aborda todas as etapas de um problema de visão computacional,

com a captura da imagem de vídeo, segmentação, extração de características,

reconhecimentos de padrões treinados e interpretação dos resultados obtidos.

As imagens de vídeo devem ser obtidas através de câmeras de captura de

vídeo de baixo custo, sendo analisadas as melhores condições de iluminação do

ambiente e a distância entre a mão humana e a câmera que tornam o sistema mais

eficiente.

A segmentação da imagem é direta, sem o auxilio de luvas ou dispositivos que

facilitem a identificação da mão humana. Esta etapa foca na identificação dos

melhores métodos de visão computacional que permitam a segmentação total da mão

humana em um fundo simples e homogêneo.

As características da imagem são extraídas em quadros capturados em

intervalos regulares para que a variação do posicionamento da mão seja reconhecida.

O intervalo de tempo de captura dos quadros será analisado para que o sistema tenha

o melhor desempenho.

1.3 Organização da Monografia

A monografia se estrutura de acordo com a segmentação em capítulos

proposta a seguir:

Capítulo 1: Introdução – Apresenta o tema da monografia de modo a fornecer

uma idéia total do trabalho.

Capítulo 2: Revisão de Literatura – Tem como objetivo apresentar os conceitos

de visão computacional utilizados na segmentação de imagens de vídeo e extração de

características; e a rede neural aplicada para o reconhecimento de gestos de mão

humana.

Capítulo 3: Materiais e Métodos – Este capítulo trata a metodologia usada

neste trabalho, bem como o material usado para que os objetivos propostos fossem

alcançados.

Capítulo 4: Resultados e Conclusões – Este capítulo apresenta os resultados

obtidos com a aplicação da metodologia e a análise destes resultados. Apresenta

também as conclusões do estudo e suas possíveis aplicações futuras.

25

Capítulo 2 – Revisão de Literatura

2.1 Biblioteca OpenCV

OpenCV (Open Source Computer Vision) é uma biblioteca de código aberto

para o desenvolvimento de aplicações na área de visão computacional. Originalmente

criada pela Intel, em 2000, esta biblioteca é escrita nas linguagens de programação C

e C++, sendo compatível nos sistemas operacionais Linux, Windows e Mac OS X.

A biblioteca OpenCV foi projetada com um forte foco em aplicações em tempo

real, podendo tirar vantagens de processadores multicamadas. A biblioteca está

disponível com o código fonte e os executáveis otimizados para os processadores

Intel. Porém, um programa OpenCV ao ser executado, identifica automaticamente o

tipo de processador que esta sendo usado e aciona a DLL (Dynamic Link Library)

otimizada para este, permite que seus algoritmos sejam utilizados em diferentes

sistemas de processamento de imagens de vídeo.

A OpenCV tem como objetivo fornecer uma infraestrutura simples que permita

a construção de aplicações sofisticadas de visão computacional rapidamente, sendo

totalmente livre para o uso acadêmico e comercial. A biblioteca OpenCV contém mais

de 500 funções que contemplam diversas áreas da visão computacional, como:

aprendizagem de máquina, processamento de imagens, entrada e saída de imagens e

dispositivos de vídeo, entre outras (BRADSKI, 2008).

Sua utilização é constante em aplicações que envolvem a interação humano-

computador em tempo real, devido às facilidades que a biblioteca fornece. Sistemas

para o reconhecimento de gestos podem ser criados com o uso de funções da

OpenCV em todas as etapas do projeto, como descrito a seguir:

 Na captura das imagens de vídeo, com funções que manipulam a

entrada de vídeos de câmeras web;

 No processamento de imagens, com funções que permitem a

segmentação de imagens;

 No pós-processamentos das imagens, na criação de filtros morfológicos

que melhoram as características das imagens.

 Na aprendizagem de máquinas, com funções que permitem o

treinamento de diversos tipos de redes neurais;

 No reconhecimento de padrões, utilizando funções que permitem o

desenvolvimento de diversas aplicações.

26

2.2 Espaço de Cores

2.2.1 Espaço de cores RGB
O modelo RGB (Red, Green, Blue) é um sistema de cores aditivo formado

pelas cores vermelho, verde e azul. Estas três cores primárias são combinadas de

modo a formar as demais cores.

Cada cor no modelo de cores RGB é representada pela quantidade de

vermelho, verde e azul, sendo que cada uma varia desde um valor mínimo

(completamente escura) até um valor máximo (completamente intenso). O branco é

representado por todas as cores primárias em seu valor máximo e o preto por todas

em seu valor mínimo.

Um espaço de cor RGB é qualquer espaço de cor aditivo baseado no modelo

de cor RGB. A representação mais utilizada para um espaço de cores RGB é a que

associa um byte (8 bits) para cada uma das cores primárias, permitindo que seus

valores variem de 0 a 255. Sendo assim podemos associar cada cor do espaço RGB a

um ponto de um sistema de coordenadas de três eixos: R (vermelho), G (verde) e B

(azul), com valores que variam de 0 a 255.

A figura 1 apresenta esta representação em forma de cubo de cores.

Figura 1 – Cubo de cores RGB

Assim, no espaço de cores RGB cada pixel é associado a três bytes que

representam as intensidades de vermelho, verde e azul. Alguns exemplos de

representações de cores no RGB podem ser vistos na tabela 1.

27

Tabela 1 – Exemplo de representação de cores no espaço RGB

Cores R G B
Branco 255 255 255
Preto 0 0 0
Verde 0 255 0

Vermelho 255 0 0
Azul 0 0 255

Amarelo 255 255 0

A principal desvantagem do espaço RGB é a de que ele não é adequado para

a representação de sistema baseados na percepção visual humana. Isto implica que

cores próximas na percepção visual não representam cores no sistema RGB. Esta

característica prejudica a segmentação de uma região de cores de interesse neste

sistema (RIBEIRO H. L., 2006).

2.2.2 RGB normalizado
As componentes do espaço RGB normalizado são obtidas a partir do modelo

de cores primárias RGB. A conversão entre estes dois modelos se dá através das

equações (1), (2) e (3); que calculam os valores de r (vermelho normalizado), g (verde

normalizado) e b (azul normalizado), respectivamente.

ݎ =
ܴ

ܴ + ܩ + ܤ
																(1)

݃ =
ܩ

ܴ + ܩ + ܤ
																(2)

ܾ =
ܤ

ܴ + ܩ + ܤ
																(3)

Sabendo que a soma das três componentes deste espaço de cores é sempre

conhecida (r+g+b=1), pode-se diminuir a dimensão espacial omitindo o terceiro

componente b. As demais componentes são chamadas de cores puras visto que a

dependência do brilho é diminuída em relação ao espaço RGB.

Uma propriedade importante deste espaço de cores é que o RGB normalizado

é invariante às mudanças de orientação das fontes de luz na superfície, quando

ignoramos a luz do ambiente em superfícies opacas. Aliado a simplicidade na

transformação desde o espaço RGB, o RGB normalizado vem ganhando popularidade

entre os pesquisadores (FIBIGER, 2004).

28

2.3 Segmentação de Imagens

A segmentação na área de visão computacional é o processo responsável por

dividir uma imagem em grupos ou objetos. Seu objetivo é simplificar a representação

para outra mais significativa e de mais fácil análise.

Para os seres humanos a tarefa de reconhecer objetos em uma imagem é

trivial, independente do conhecimento prévio da cena visto que somos capazes de

reconhecer as características similares que definem um objeto. Já para o

processamento de imagens, o grande desafio é a extração rápida de características

através da segmentação de imagens para a realização da análise (SALDANHA, 2009).

A segmentação de imagens é o passo inicial na área de processamento de

imagens e deve parar quando o objeto de interesse da aplicação esteja isolado

(GONZALES, 2003).

Os algoritmos para a segmentação de imagens normalmente utilizam

características associadas aos níveis de cinza da imagem. As principais

características são a descontinuidade, que consiste na divisão baseada na mudança

brusca dos tons de cinza, como na detecção de pontos isolados, linhas e bordas; e a

baseada em similaridades, baseada na separação de regiões que possuem tons de

cinza com as mesmas características, como na limiarização (RIBEIRO J. M., 2007).

2.3.1 Subtração de Imagens de Fundo
A subtração de fundo tem como objetivo isolar objetos ou partes de um objeto

em uma imagem. Atualmente existem diversas técnicas destinadas a este objetivo,

algumas com resultados simples, outras com resultados mais robustos (SOUZA,

2009).

Um dos algoritmos mais simples que existem é o de subtração de quadros,

baseando-se na diferença de imagem entre dois instantes de tempo diferentes. Cada

pixel da imagem resultante é formado pela subtração do pixel corresponde no instante

anterior pelo pixel no instante atual.

Em um cenário de fundo simples, é possível utilizar a subtração de fundo como

parte da segmentação de imagens. Um exemplo desta técnica pode ser observado na

figura 2.

29

 (a) Imagem (b) Fundo (c) Resultado da Subtração

Figura 2 – Exemplo de Subtração de Imagens

A figura 2 mostra como é possível utilizar a subtração de imagens para

segmentar um objeto em um cenário de fundo simples, em imagens em escala de

cinza. O cenário de fundo é excluído da imagem, com os pixels desta região

assumindo valores próximos a zero (cor preta).

2.3.2 Histograma
O histograma de uma imagem em tons de cinza é uma função H(k) que produz

o número de ocorrências de cada nível de cinza k na imagem. Um exemplo de

imagem e seu histograma podem ser observados na figura 3.

 (a) Histograma (b) Imagem

Figura 3 – Exemplo de Histograma e sua Imagem

2.3.3 Limiarização
Uma das formas mais simples de segmentar uma imagem digital é através da

limiarização. A idéia desta segmentação é a que um objeto pode ser definido por uma

região formada por pixels que tenham em comum uma faixa de intensidades.

Assim é possível separar esta região das demais pela análise do histograma da

imagem. Nessa situação o histograma apresenta um vale separando dois picos que

30

podem representar regiões distintas, como por exemplo, um fundo e um objeto

(SALDANHA, 2009).

A segmentação através do histograma é uma técnica simples que pode ser

usada quando o objeto apresenta uma quantidade de pixels com tonalidades de cinza

similares e que contrastam com as demais áreas da imagem. A figura 4 apresenta um

histograma para a figura 2.c, e nele é possível observar que há uma separação entre

os pixels que representam o fundo (cor preta) e os que representam a mão.

Figura 4 – Histograma com Vale Assinalado

A maior dificuldade da limiarização é na definição do valor que será o limite

para a separação dos pixels. Uma das formas de definir este limite é através do

método do vale, que busca este valor entre duas regiões de pico.

Após a fixação do valor limite, é possível limiarizar a imagem fazendo com que

cada pixel assuma a intensidade máxima (branco) quando sua intensidade está acima

deste limiar e que assuma o valor mínimo (preto) quando sua intensidade está abaixo

deste limiar. A figura 5 traz a imagem resultante para a limiarização da figura 2.c

através do método do vale.

Figura 5 – Exemplo de Limiarização através do Método do Vale

31

2.4 Morfologia matemática

A morfologia matemática é baseada na teoria dos conjuntos, e é uma

ferramenta para extração de componentes de imagens que sejam uteis na descrição

da forma de uma região. Atualmente pode-se encontrar aplicações dos processos

morfológicos na filtragem, segmentação, restauração, detecção de bordas, aumento

de contraste, entre outros.

A análise morfológica permite extrair componentes da imagem que são uteis na

representação e descrição da forma das regiões, como fronteiras e esqueletos.

Também permite obter características importantes dos objetos na imagem como a

forma e o tamanho.

As transformações morfológicas operam sobre conjuntos, mediante a utilização

de outro conjunto de forma conhecida, denominado de elemento estruturante. O

tamanho e a formato do elemento estruturante são escolhidos de acordo com a forma

que se deseja obter.

As classes básicas de operadores da morfologia matemática são a erosão e a

dilatação.

2.4.1 Erosão binária
A transformação de erosão binária é resultado de comprovar se o elemento

estruturante B está completamente incluído dentro do conjunto A, sendo que quando

não ocorre, o resultado da erosão é um conjunto vazio. A equação 4 mostra como a

operação de erosão binária pode ser definida.

(4)

A equação 4 indica que a erosão de A por B é o conjunto de todos os pontos x

tal que B, transladado por x, está contido em A (GONZAGA, 2000).

Quando os objetos da cena são menores que o elemento estruturante, eles

desaparecem. Assim, a erosão se supõe como uma operação de degradação da

imagem. A figura 6 mostra o resultado de uma operação de erosão binária.

32

Figura 6 – Exemplo de Erosão Binária

2.4.2 Dilatação binária
 A operação de dilatação binária e erosão binária são duais. As duas

operações são duais, sendo que uma dilatação é o mesmo que uma erosão do

complemento da imagem pelo elemento estruturante refletido.

O resultado da dilatação é o conjunto de elementos tal que pelo menos algum

elemento do conjunto estruturante B pertence ao conjunto A, quando B se move sobre

o conjunto A. A equação 5 mostra como a operação de dilatação binária pode ser

definida.

(5)

A equação 5 indica que a dilatação de A por B é um conjunto de todo os

deslocamentos de x tal que B’ e A sobrepõem-se por pelo menos um elemento não

nulo (GONZAGA, 2000).

Esta operação representa um crescimento progressivo do conjunto A, visto que

quando o elemento estruturante passa sobre o conjunto, este se expandirá. A figura 7

mostra o resultado de uma operação de dilatação binária.

Figura 7 – Exemplo de Dilatação Binária

33

2.4.3 Abertura
A abertura de um conjunto A por um elemento estruturante B é definida como

uma operação de erosão binária seguida de uma operação de dilatação. A equação 6

mostra como a operação de abertura pode ser definida.

 (6)

A abertura geralmente suaviza o contorno de uma imagem, quebra istmos

estreitos e elimina protusões finas. Esta operação tende a abrir pequenos vazios ou

espaços entre objetos próximos numa imagem, também sendo usada para remover

ruídos (somente pontos pretos de ruído).

A figura 8 mostra o resultado de uma operação de abertura.

Figura 8 – Exemplo de Abertura

2.4.4 Fechamento
O fechamento de um conjunto A por um elemento estruturante B é definido

como uma operação de dilatação binária seguida de uma operação de erosão. A

equação 7 mostra como a operação de fechamento é definida.

 (7)

O fechamento tende a suavizar os contornos, fundir partes, eliminar pequenos

buracos e preencher fendas em um contorno. Esta operação tende a preencher ou

fechar os vazios, podendo também remover muitos dos pixels brancos de ruído.

As operações de abertura e fechamento são duais relativamente à

complementação e reflexão dos conjuntos.

A figura 9 mostra o resultado de uma operação de fechamento.

34

Figura 9 – Exemplo de Fechamento

2.4.5 Filtro morfológico – Abertura e Fechamento
Um filtro morfológico composto de uma operação de abertura seguida de uma

operação de fechamento pode ser utilizado para a remoção de ruídos isolados, numa

operação de pós-processamento de imagens. A figura 10 mostra o resultado da

aplicação deste filtro sobre uma imagem.

Figura 10 – Aplicação de Filtro Morfológico. Fonte: (GONZAGA, IRIS SEL, 2000).

35

2.5 Redes Neurais

As redes neurais são técnicas computacionais que oferecem um modelo

matemático guiado na estrutura neural de organismos inteligentes, adquirindo

conhecimento através da experiência (CARVALHO, 2000).

As redes neurais artificiais são compostas por unidades associadas a pesos,

que são interconectadas através de canais de comunicação. Estas unidades realizam

operações as suas entradas através de seus pesos, e sua saída esta interconectada a

novas unidades de processamento.

O modelo matemático de uma unidade de processamento de uma rede neural

é apresentado na equação 8. A figura 11 traz uma representação desta unidade.

߮(.) = 1ܹ.1ݔ + 2ܹ.2ݔ + ⋯+ 																݌ܹ݌ݔ

ݕ = 1, .)߮	݁ݏ) ≥ ܾ																																														(8)

ݕ = 0, .)߮	݁ݏ) < ܾ

Figura 11 – Representação do Perceptron. Fonte: (BARROS, 2009)

Na equação 8, xi representa as entradas da unidade, Wi os pesos associados a

cada entrada, b o limitador e y a saída da unidade. A saída da unidade assume o valor

1 somente quando a somatória da multiplicação da cada entrada por seu peso

associado assume um valor acima do limitador.

As redes neurais são treinadas de modo que os pesos de cada unidade se

adaptam, a partir de uma regra, aos exemplos utilizados para o treinamento.

Normalmente as redes neurais são separadas em camadas, de modo que as unidades

estejam conectadas às camadas superiores e/ou inferiores.

36

2.5.1 Perceptron Multicamadas (MLP)
As redes neurais MLP (Multi-Layer Perceptron – Percéptron Multicamadas) são

formadas por diversas camadas, sendo que cada uma possui uma função específica.

A camada de saída constrói a resposta a partir de estímulos da camada intermediária,

que por sua vez é a responsável pela extração das características, sendo seus pesos

uma codificação das características apresentadas pela camada de entrada

(CARVALHO, 2000).

A figura 12 traz uma representação de uma rede neural MLP com uma camada

intermediária.

Figura 12 – Representação de uma Rede Neural MLP. Fonte: (FERRAMOLA, 2002)

Uma representação adequada para simular o mapeamento da entrada para a

saída através das unidades intermediárias pode ser obtida se existirem conexões

entre as unidades de entrada e um conjunto suficientemente grande de unidades

intermediárias. A escolha adequada do número de unidades intermediárias que

reproduz a saída com exatidão é o grande desafio das redes neurais MLP.

O treinamento da rede neural MLP é feita através do algoritmo de retro

propagação de erro (backpropagation). Neste algoritmo primeiramente um padrão é

apresentado à camada de entrada da rede e passa por todas as camadas até que a

camada de saída produza um valor.

Este resultado é comparado ao resultado esperado e um erro é calculado. Em

seguida o erro obtido é propagado das camadas de saída até a camada de entrada,

sendo que os pesos de cada camada vão sendo modificados conforme o erro se

propaga. Desta forma os erros vão sendo diminuídos progressivamente.

37

Após o treinamento da rede MLP com o algoritmo backpropagation, ela pode

ser usada para classificar novos dados. Neste caso, os dados são apresentados às

camadas de entrada e são processados pelas camadas intermediárias até que os

resultados sejam apresentados na saída.

2.6 Gestos

No contexto deste trabalho, gestos podem ser definidos como um movimento

de braços e mãos com o objetivo de expressar sentimentos ou permitir a comunicação

entre pessoas. Os gestos de mão possuem duas classificações básicas:

 Gesto estático, ou postura, que é definido por um momento particular da

mão sendo caracterizado em uma imagem;

 Gesto dinâmico, que é definido por um movimento da mão ao longo de

um tempo e caracterizado por um vídeo ou por uma sequencia de

imagens.

Em particular, os gestos dinâmicos da mão podem ser caracterizados por uma

configuração inicial e final da mão e pelos movimentos intermediários que

caracterizam a trajetória do movimento.

Uma possível utilização dos gestos dinâmicos da mão na Interação Homem

Computador é através da visão computacional. Esta abordagem se torna natural por

não exigir que dispositivos mecânicos ou luvas sejam acoplados ao braço para que a

interação seja realizada (RIBEIRO H. L., 2006).

2.7 Considerações Finais

Este capítulo apresentou alguns dos conceitos que serão utilizados para o

desenvolvimento do sistema de reconhecimento de gestos dinâmicos de mão humana

a partir de imagens de vídeo obtidas através de uma câmera web.

A biblioteca OpenCV foi apresentada, mostrando que pode ser utilizada para a

implementação de algoritmos na área de visão computacional. O modelo e os espaços

RGB e RGB normalizado também foram explicados, tendo sido dito que usar o espaço

RGB normalizado é mais adequado para a segmentação de pele humana.

Alguns conceitos de segmentação de imagens foram apresentados, como

subtração de fundo, histograma e limiarização, e estes conceitos podem ser utilizados

no processamento de imagens para separação de área de interesse.

Foi também explicado como filtros morfológicos podem auxiliar na eliminação

de ruídos no pós-processamento de imagens, através dos conceitos de morfologia

38

matemática. Também foi apresentada a rede neural MLP e seu algoritmo de retro

propagação de erro (backpropagation).

Por último a definição de gestos dinâmicos de mão humana foi apresentada,

bem como sua possível utilização na Interação Homem-Computador.

39

Capítulo 3 – Materiais e Métodos

O objetivo deste trabalho é desenvolver um algoritmo para o reconhecimento

de gestos dinâmicos de mão humana que são capturados de imagens de vídeo por

meio de uma webcam, analisando quais condições de ambiente que produzem os

melhores índices de reconhecimento.

A figura 13 traz o diagrama de blocos da proposta de trabalho deste projeto.

Figura 13 – Diagrama de blocos do projeto

Um determinado gesto da mão humana esquerda é executado em frente a uma

webcam, a uma distância e iluminação fixas. As imagens de vídeos que representam

os gestos são adquiridos por meio de uma webcam.

O processamento e pós-processamento das imagens de vídeo são realizados

fazendo uso dos conceitos de visão computacional e implementados com o auxílio da

biblioteca OpenCV, em linguagem de programação C.

A extração de características que são usadas na rede neural, bem como o seu

treinamento e a sua aplicação são também realizadas com o auxilio da biblioteca

OpenCV com as funções relacionadas à aprendizagem de máquina.

A análise de resultados identifica as condições de ambiente, referentes à

distância da mão humana em relação à webcam e as condições de iluminação, que

produzem os melhores resultados quanto ao reconhecimento dos gestos.

Na ultima etapa da análise, é determinado o algoritmo apresenta bons índices

de desempenho quanto ao reconhecimento para diferentes tipos de mão humana, nas

melhores condições de ambiente verificadas.

Assim, este projeto contempla todas as etapas de um sistema de visão

computacional, e os materiais e métodos serão apresentados a seguir.

40

3.1 Materiais

A câmera web utilizada para a aquisição de imagens foi a Genius Look 317. As

características desta câmera podem ser vistas na tabela 2.

Tabela 2 – Características da câmera web utilizada

Marca Genius
Modelo Look 317

Sensor de Imagem VGA CMOS Image Sensor
Interface USB 1.1/1.0

Tipo de Lente Foco manual
Resolução de Imagem 640x480

Resolução de Vídeo 30 quadros/s
Sistemas Operacionais suportados Windows 7, Vista, XP, 2000, Me, 98SE

O computador utilizado neste projeto possui as seguintes características,

apresentadas na tabela 3.

Tabela 3 – Características do computador utilizado

Marca Itautec
Modelo INFOWAY NOTE W7645

Sistema Operacional Windows 7 Professional
Processador Intel Pentium Dual CPU T2330 1.6 GHz

Memória RAM 2 GB
Tipo de Sistema Sistema Operacional 64 bits

Os programas (softwares) utilizados para o desenvolvimento do algoritmo e

para a segmentação manual de imagens bem como a biblioteca que contém as

funções de visão computacional e redes neurais são apresentados na tabela 4.

Tabela 4 – Softwares e Biblioteca Utilizados

Ambiente de Desenvolvimento
Software Microsoft Visual Studio C++ 2010
Versão Express Edition v. 10.0.30319.0

Programa Usado para Segmentação Manual de Imagens
Software Adobe Photoshop CS5 Extended
Versão 12.1 x32

Funções de Visão Computacional e Aprendizagem de Máquina
Biblioteca OpenCV (Open Source Computer Vision Library)

Versão 2.0

41

3.2 Sistema Proposto

O algoritmo foi desenvolvido com o auxilio do software Microsoft Visual Studio

C++, utilizando a linguagem de programação C e a biblioteca OpenCV. O Apêndice A

traz os algoritmos completos, utilizado em cada uma das etapas deste sistema.

A metodologia utilizada para o desenvolvimento do sistema proposto na figura

13 será descrita a seguir.

3.2.1 Captura de Imagens
A webcam é posicionada por meio de um suporte, com suas lentes localizadas

em frente a mão humana que executará os gestos. A distância entre a mão humana e

a câmera é fixa para um grupo de imagens capturadas e sua influência em relação à

taxa de reconhecimento dos gestos será fruto de análise.

A iluminação e a cor do fundo utilizados neste ambiente também são fixas, e

sua influência no processo de segmentação da imagem também será analisada.

A câmera web está conectada ao computador por meio de uma conexão USB.

O trecho do programa responsável pela captura do vídeo da webcam e pela

separação dos quadros que serão analisado são mostrados na figura 14.

CvCapture* capture;
 IplImage* frame = 0;

 capture = cvCaptureFromCAM(0);
 frame = cvQueryFrame(capture);

Figura 14 – Código responsável pela Inicialização da Câmera.

A função cvCaptureFromCAM(0) captura os quadros da câmera web a uma

taxa máxima de 30 quadros por segundo. A função cvQueryFrame(capture) é a

responsável por associar o quadro extraído a variável frame, do tipo imagem.

A câmera web utilizada (Genius Look 317), integrada a este sistema, fornece a

variável frame uma imagem de três canais de oito bits cada, no espaço RGB, de

resolução 640x480 pixels.

A variável frame é capturada a uma taxa de 15 quadros por segundo quando o

programa está sendo executado, porém apenas alguns destes quadros serão

processados e representarão o gesto dinâmico executado. O intervalo de tempo de

captura dos quadros analisados é fixo, e definido de acordo com a velocidade de

processamento do sistema.

42

Um exemplo de frame capturado pode ser visto na figura 15.

Figura 15 – Exemplo de Quadro Capturado

3.2.2 Processamento de Imagens
O objetivo desta etapa é segmentar a mão humana em relação ao fundo da

imagem. Cada quadro capturado no intervalo de tempo definido passa por este

processo de segmentação. As etapas deste processo podem ser observadas na figura

16.

Conversão
RGB normal. Separa r Subtrai Fundo Método do Vale

(Histograma) Limiarização

Figura 16 – Etapas para o Processamento de Imagens

Primeiramente a imagem capturada é transformada do espaço de cores RGB

para o espaço RGB normalizado, visto que é mais adequado para a representação da

pele humana (FIBIGER, 2004). A figura 17 traz o código que trata desta conversão.

43

cvCopy(frame, image, 0);

 // Dados da Imagem
 height = image->height;
 width = image->width;
 step = image->widthStep;
 channels = image->nChannels;
 data = (uchar *)image->imageData;

 //Conversão para rgb normalizado
 for(i=0;i<height;i++) for(j=0;j<width;j++)
 {
 B=data[i*step+j*channels+0];
 G=data[i*step+j*channels+1];
 R=data[i*step+j*channels+2];
 L=B+G+R;

 if(L==0) { b=0; g=0; r=0; }
 else { b=(float)B/L; g=(float)G/L; r=(float)R/L; }

 data[i*step+j*channels+0]=(uchar)255*b;
 data[i*step+j*channels+1]=(uchar)255*g;
 data[i*step+j*channels+2]=(uchar)255*r;
 }

Figura 17 – Código responsável pela conversão para RGB normalizado

A variável frame é copiada para a variável image, que representará a imagem

no espaço RGB normalizado. A altura (height) e largura (height) da imagem, o número

de canais da imagem (channels) e o vetor de representação da imagem (data) são

capturados inicialmente. Em seguida, todos os pixels da imagem são convertidos para

o RGB normalizado, conforme a descrição teórica do item 2.2.2.

Um exemplo desta conversão pode ser visto na figura 18.

Figura 18 – Exemplo de Conversão para o RGB normalizado

44

O terceiro canal da imagem que representa o vermelho normalizado é isolado

através da função cvCvtPixToPlane(imagem, 0, 0, plano3, 0). Um exemplo do canal r

normalizado pode ser observado na figura 17.

Figura 19 – Exemplo do Canal r normalizado

Em seguida o fundo da cena capturado previamente por meio da variável

img_fundo, é subtraído da imagem no espaço RGB normalizado, representada pela

variável plano3, pela função cvAbsDiff(img_fundo,plano3,plano3). A figura 20 traz as

imagens presentes nesta função em um exemplo.

 (a) Imagem (b) Fundo

(c) Subtração de Fundo

Figura 20 – Exemplo de Subtração de Fundo

45

O histograma (hist) desta imagem é calculado e um valor para limiarização (thr)

da imagem é definido utilizando-se o método do vale. O trecho de programa da figura

21 trata destas etapas.

cvCalcHist(&plano3, hist, 0, 0);

 // Encontra o Vale
 float *valor, *valorAnt;
 if(!para)
 {
 thr=0;
 valorAnt=cvGetHistValue_1D(hist,1);
 for(i=2;(i<256)&&(!para);i++)
 {
 valor=cvGetHistValue_1D(hist,i);
 if(*valor < *valorAnt)
 para=true;
 *valorAnt=*valor;
 }
 para=false;
 for(;(i<256)&&(!para);i++)
 {
 valor=cvGetHistValue_1D(hist,i);
 if(*valor > *valorAnt)
 para=true;
 *valorAnt=*valor;
 }
 thr=i;
 }

Figura 21 – Código responsável pelo Cálculo do Histograma

A figura 22 traz o histograma gerado para o exemplo da figura 15 com o limiar

estabelecido pelo método do vale.

Figura 22 – Exemplo de Histograma para a Imagem da figura 20

46

Por ultimo a imagem é binarizada com o valor de limiarização encontrado (thr),

utilizando-se a função cvThreshold(plano3,plano3,thr,255,CV_THRESH_BINARY). A

figura 23 traz a figura 20 binarizada.

Figura 23 – Exemplo de Binarização da Imagem da figura 20

3.2.3 Pós Processamento de Imagens
Após a obtenção da imagem segmentada, são utilizados dois filtros

morfológicos, de abertura e de fechamento, para a remoção de ruídos ainda presentes

na imagem. As funções da figura 24 executam estes filtros sobre a imagem binária

resultante do processamento de imagens.

 //Filtros Morfologicos
 cvMorphologyEx(img_rgb_cinza,img_rgb_cinza,NULL,0,CV_MOP_OPEN,1);
 cvMorphologyEx(img_rgb_cinza,img_rgb_cinza,NULL,0,CV_MOP_CLOSE,1);

Figura 24 – Código responsável pelos Filtros Morfológicos

A figura 25 traz o resultado da imagem após a aplicação dos filtros

morfológicos.

47

Figura 25 – Exemplo de Aplicação de Filtro Morfológico

Outra etapa deste pós-processamento de imagens é a remoção do punho que

executa o gesto dinâmico, que não traz informações significativas quanto à

representação do gesto. O trecho de programa da figura 26 aplica este procedimento.

//Centro da Imagem
 cvMoments(g_gray,&momento,1);
 x=(int)(momento.m10/momento.m00);
 y=(int)(momento.m01/momento.m00);

 //Encontra Raio
 step = imagem->widthStep;
 channels = imagem->nChannels;
 data = (uchar *)imagem->imageData;
 raio=0;
 for(j=x;j>=0;j--)
 if(data[y*step+j*channels]==0)
 { raio=x-j; break; }

 //Imagem sem Punho
 for(i=0;i<(imagem->width);i++) for(j=y+raio;j<(imagem->height);j++)
 {
 data[j*step+i*channels+0]=0;
 data[j*step+i*channels+1]=0;
 data[j*step+i*channels+2]=0;
 }

Figura 26 – Código responsável pelo Pós-Processamento da Imagem

Primeiramente o centro da imagem que representa a mão é localizado através

do momento de inércia dos pixels brancos da imagem binarizada (valor=1). Em

seguida, é calculada a distância euclidiana entre o centro e o seu extremo esquerdo

máximo, mantendo o valor de y que representa o centro constante.

48

Esta distância é usada para definir o extremo inferior da nova imagem. Nesta

nova imagem, os pixels que estão localizados abaixo desta distância em relação ao

centro da imagem são definidos com valor zero. A figura 27 traz o resultado da

imagem após a remoção do punho.

Figura 27 – Exemplo de Remoção de Punho

3.2.4 Extração de características
Primeiramente se buscam os limites que definem a nova imagem, sendo os

extremos definidos pelos pontos que tem pixel branco na escala de cinza (valor=255).

O trecho do código da figura 28 busca estes extremos.

 int imin=imagem->width, imax=0, jmin=imagem->height, jmax=0;
 step = g_gray->widthStep;
 data = (uchar *)g_gray->imageData;
 for(i=0;i<(g_gray->width);i++)
 for(j=0;j<(g_gray->height);j++)
 if(data[j*step+i]==255)
 {
 if(i<imin) imin=i;
 if(j<jmin) jmin=j;
 if(i>imax) imax=i;
 if(j>jmax) jmax=j;
 }

Figura 28 – Código responsável por Encontrar os Limites da Imagem

49

Em seguida a imagem é dividida em 16 quadrantes de igual área e é calculada

a porcentagem de pixels brancos de cada quadrante. Estes valores representam o

vetor de características de um dos quadros capturados do vídeo.

O trecho de código da figura 29 executa estes dois procedimentos.

 //Calcula N Pixels Branco
 step = imagem->widthStep;
 channels = imagem->nChannels;
 data = (uchar *)imagem->imageData;
 for(i=imin;i<imax;i++) for(j=jmin;j<jmax;j++)
 if(data[j*step+i*channels+0]==255)
 {
 N_PIXELS[0]++;
 iL=(int)(((float)(i-imin)/(imax-imin))*PX_LIN);
 jC=(int)(((float)(j-jmin)/(jmax-jmin))*PX_COL);
 N_PIXELS[1+iL+jC*PX_LIN]++;
 }

 //Vetor de Caracteristicas
 for(i=0;i<N_CARACT;i++)
 Caract[i] =

 (int) ((float)N_PIXELS[i+1]/((imax-imin)*(jmax-jmin)/(N_CARACT))*100);
Figura 29 – Código responsável por Extrair as Características

A imagem da figura 30 traz um exemplo de imagem segmentada e dividida em

16 quadrantes de tamanhos iguais para o cálculo da porcentagem de pixels brancos.

Figura 30 – Exemplo de Divisão de Imagem para Extração de Características

50

Em seguida, os vetores de características que representam cada quadro de um

vídeo são agrupados sequencialmente, de forma que o novo vetor represente as

características do vídeo. A função armazena, encontrada no Apêndice A, agrupa este

vetor de característica em um arquivo de dados.

3.2.5 Treinamento da Rede Neural

Newman et al (1998) propuseram um algoritmo de rede neural MLP para o

reconhecimento de letras. Este algoritmo está preparado para o treinamento e o

reconhecimento de uma rede neural a partir de um vetor de características (NEWMAN,

1998).

Um algoritmo com parâmetros similares será utilizado para o treinamento da

rede neural MLP a partir do vetor de característica que define cada imagem de cada

vídeo que representa um gesto de mão humana. O código do programa desenvolvido

pode ser encontrado no Apêndice A.

Os parâmetros e critérios que definem a rede neural utilizada são mostrados na

tabela 5.

Tabela 5 – Parâmetros da Rede Neural utilizada

Característica Valor Associado
Rede Neural MLP – Perceptron Multicamadas
Algoritmo Retro propagação (Backpropagation)

Número de Camadas 4
Neurônios por Camada (16*Nº de Quadros) / 100 / 100 / (Nº de Classes)

Critério para Treino Máximo de 300 iterações com erro 0,01

Como amostras para o treinamento desta rede neural são utilizadas os vetores

de características que representam um gesto associado à classe que o representa. O

número de classes e a quantidade de amostras para cada classe durante o

treinamento da rede neural MLP variam de acordo com a análise realizada no item 3.3

deste trabalho.

3.2.6 Reconhecimento
As funções desenvolvidas para o reconhecimento da rede neural foram

similares às utilizadas por Newman et al (1998). Elas podem ser encontradas no

código do programa, no Apêndice A.

A partir de um vetor de dados de entrada e da rede neural treinada, o programa

fornece como resultado um indicador que representa a probabilidade de pertencer a

cada uma das classes (NEWMAN, 1998).

51

A interpretação destes resultados será realizada para cada análise no capítulo

4 deste trabalho.

3.3 Análises

As seguintes análises e critérios serão utilizados para atingir os objetivos deste

trabalho.

3.3.1 Iluminação e Cor de Fundo
Primeiramente serão avaliadas as condições de ambiente da captura de

imagens, como o tipo de iluminação e a cor do cenário de fundo utilizado. A tabela 6

traz os cenários que serão analisados.

Tabela 6 – Cenários para Análise da Iluminação e Cor do Fundo

Cenário Tipo de Iluminação Cor de Fundo
1A Ambiente Branco
1B Fluorescente Superior Branco
1C Ambiente Preto
1D Fluorescente Superior Preto

O fundo utilizado para captura de imagens é sempre simples e as cores variam

entre branco e preto. As iluminações são a ambiente, a luz natural do dia, e a obtida

por uma lâmpada incandescente localizada superiormente à cena.

Para cada cenário são capturadas 50 imagens, a uma distância entre a câmera

web e mão humana tal que se posicione entre o limite superior e inferior da imagem.

Essas imagens são submetidas a uma segmentação manual através do programa

Adobe Photoshop, e ao algoritmo de processamento e pós-processamento de

imagens deste trabalho.

Como classificador para este sistema foi criada uma tabela de contingências.

Foi definida como imagem padrão a obtida através da segmentação manual e a

imagem a ser analisada a obtida por meio da segmentação pelo algoritmo proposto. A

figura 31 traz um exemplo destas imagens.

52

 (a) (b)

Figura 31 – Exemplo de Segmentação Manual (a) e pelo Algoritmo proposto (b)

Para cada imagem são calculados os seguintes índices:

 VP (Verdadeiro Positivo) – O pixel é branco na imagem padrão e na

analisada;

 VN (Verdadeiro Negativo) – O pixel é preto na imagem padrão e na

analisada;

 FP (Falso Positivo) – O pixel é branco na imagem analisada e preto na

padrão;

 FN (Falso Negativo) – O pixel é preto na imagem analisada e branco na

padrão.

Como métricas para esta análise são usadas:

 Sensibilidade – ܴܶܲ = ௏௉
௏௉ାிே

 Acurácia – ܣ = ௏௉ା௏ே
௏௉ା௏ேାி௉ାிே

 Precisão – P= ௏௉
௏௉ାி௉

Em cada cenário é calculada a média destes parâmetros para todas as

imagens capturadas. O melhor cenário será aquele que apresentar os maiores valores

para cada parâmetro.

Este cenário é utilizado em todas as análises seguintes.

3.3.2 Distância entre Mão e Câmera
Nesta etapa foi analisada a distância entre a mão humana e câmera web que

captura as imagens e produz os melhores resultados no reconhecimento de gestos. As

distâncias analisadas se encontram na tabela 7.

53

Tabela 7 – Distâncias Avaliadas entre a Mão Humana e a Câmera Web

Cenário Distancia
2A 35 cm
2B 45 cm
2C 50 cm
2D 55 cm
2E 60 cm
2F 70 cm
2G 80 cm
2H 85 cm
2I 90 cm
2J 100 cm
2K 110 cm

Para cada cenário são capturadas 5 classes de gestos dinâmicos de mão

humana, sendo que em cada classe são capturadas 40 amostras. As classes de

gestos podem ser visualizadas no Apêndice B.

Em seguida, cada grupo de vídeos capturado é submetido ao algoritmo de

reconhecimento de gestos proposto neste trabalho, sendo que metade das imagens é

utilizada para treinar a rede neural e a outra metade é submetida à rede treinada.

A porcentagem de acerto no reconhecimento de gestos para cada cenário é

calculada e também a probabilidade média que o algoritmo encontrou para a classe

correta.

 A melhor distância será a que apresentar melhores resultados e será utilizada

nas etapas de análise seguintes.

3.3.3 Reconhecimento
Nesta etapa, pretende se verificar se o algoritmo apresenta bons índices de

desempenho quanto ao reconhecimento para diferentes tipos de mão humana, nas

melhores condições de ambiente.

São analisadas 25 classes de gestos, sendo capturadas 50 amostras de cada

classe executadas por 5 mãos humanas distintas. As 25 classes utilizadas podem ser

vistas no Apêndice C deste trabalho.

Os vídeos capturados são submetidos ao algoritmo de reconhecimento de

gestos, sendo metade utilizada para treinar a rede neural e a outra metade submetida

à rede treinada.

54

Calcula-se, então, a porcentagem de acerto do reconhecimento de gestos, a

probabilidade média que o algoritmo estipulou para a classe correta e a matriz de

confusão para este sistema. Na matriz de contingência estará disponível o número de

classes caracterizadas como cada classe e os seguintes parâmetros:

 Falsa Aceitação - ܴܲܨ = ௏௉
௏௉ା்ே

;

 Falsa Rejeição - ܴܰܨ = ௏ே
௏ேା்௉

Todos os resultados obtidos serão analisados no capítulo 4 deste trabalho.

55

Capítulo 4 – Resultados e Conclusões

Este capítulo apresenta os resultados encontrados para as análises descritas

no capítulo 3 e as conclusões dos resultados obtidos.

4.1 Resultados

Os resultados apresentados referem-se à análise das melhores condições de

iluminação e a cor de fundo do cenário; da distância entre a mão humana e a câmera

web; e a análise do algoritmo proposto nas melhores condições encontradas.

4.1.1 Iluminação e Cor de Fundo
As figuras 32, 33, 34 e 35 trazem dois exemplos de quadros que foram

segmentados manualmente e usando o algoritmo proposto, para cada um dos

cenários analisados quanto à iluminação do ambiente e a cor do cenário de fundo

utilizado.

A figura 32 traz os resultados obtidos para dois quadros capturados com a

iluminação ambiente e com o cenário de fundo branco.

 (a) Frame (b) Padrão (c) Segmentação pelo Algoritmo

 (d) Frame (e) Padrão (f) Segmentação pelo Algoritmo

Figura 32 – Imagens do Cenário 1A com Iluminação Ambiente e Fundo Branco

56

A figura 33 traz os resultados obtidos para dois quadros capturados com a

iluminação fluorescente superior e com o cenário de fundo branco.

 (a) Frame (b) Padrão (c) Segmentação pelo Algoritmo

 (d) Frame (e) Padrão (f) Segmentação pelo Algoritmo

Figura 33 – Imagens do Cenário 1B com Iluminação Fluorescente e Fundo Branco

A figura 34 traz os resultados obtidos para dois quadros capturados com a

iluminação ambiente e com o cenário de fundo preto.

 (a) Frame (b) Padrão (c) Segmentação pelo Algoritmo

 (d) Frame (e) Padrão (f) Segmentação pelo Algoritmo

Figura 34 – Imagens do Cenário 1C com Iluminação Ambiente e Fundo Preto

57

A figura 35 traz os resultados obtidos para dois quadros capturados com a

iluminação fluorescente superior e com o cenário de fundo preto.

 (a) Frame (b) Padrão (c) Segmentação pelo Algoritmo

(d) Frame (e) Padrão (f) Segmentação pelo Algoritmo

Figura 35 – Imagens do Cenário 1D com Iluminação Fluorescente e Fundo Preto

A comparação visual entre as imagens capturadas permite concluir que a

segmentação com o cenário de fundo branco apresenta os melhores resultados.

A segmentação pelo algoritmo proposto para os cenários 1A e 1B são as mais

similares à segmentação padrão e são as que possuem a menor quantidade de ruído.

A análise visual destes dois cenários não permite encontrar grandes diferenças

para a segmentação da imagem com a variação da iluminação no cenário de fundo

branco. Os quadros segmentados com a iluminação ambiente e com a iluminação

fluorescente superior apresentam resultados similares.

A tabela 8 mostra os resultados quantitativos das análises dos quatro cenários

e a sensibilidade, a acurácia e a precisão médias para o grupo de imagens capturado.

Tabela 8 – Resultados para a Análise da Iluminação e Cor de Fundo

Cenário Iluminação Fundo TPR A P
1A Ambiente Branco 95.280% 98.507% 99.849%
1B Fluorescente Superior Branco 95.340% 98.534% 99.933%
1C Ambiente Preto 57.992% 91.914% 99.987%
1D Fluorescente Superior Preto 59.549% 86.773% 96.150%

58

Os cenários com os melhores resultados foram os de fundo simples de cor

branca. Assim como a análise visual permitiu inferir, a variação das condições de

iluminação para este cenário não alterou de forma significativa os parâmetros de

desempenho da segmentação analisados, sendo que a iluminação fluorescente

superior apresentou resultados levemente superiores para os três parâmetros

avaliados.

A sensibilidade e a acurácia apresentaram alterações significativas quando a

cor do cenário de fundo foi alterada de branco para preto, podendo caracterizar um

método de segmentação que não é robusto à variação das condições do cenário de

fundo.

Assim, foi escolhido o cenário 1B com o fundo de cor branco e com a

iluminação fluorescente superior para a realização das demais etapas deste trabalho,

visto que foi o cenário que apresentou os melhores resultados na análise visual e para

os três parâmetros calculados: sensibilidade, acurácia e precisão.

4.1.2 Distância entre Mão Humana e Câmera
A tabela 9 apresenta a avaliação quantitativa da influencia da distância entre a

mão humana e a câmera web na porcentagem de reconhecimento de gestos

dinâmicos e na porcentagem média definida para a classe correta no grupo de gestos

em cada cenário.

Tabela 9 – Resultados para a Distância entre a Mão e a Câmera

Cenário Distância
% de Reconhecimento % Média para a Classe

Correta Treinamento Testes
2A 35 cm 100 % 96 % 87,523 %
2B 45 cm 100 % 96 % 88,236 %
2C 50 cm 100 % 95 % 87,531 %
2D 55 cm 100 % 96 % 87,250 %
2E 60 cm 100 % 95 % 86,762 %
2F 70 cm 100 % 95 % 86,120 %
2G 80 cm 100 % 94 % 85,341 %
2H 85 cm 100 % 89 % 79,128 %
2I 90 cm 100 % 73 % 64,523 %
2J 100 cm 100 % 63 % 54,871 %
2K 110 cm 100 % 54 % 47,234 %

59

Os resultados obtidos permitem inferir que para valores de distâncias entre 35

cm e 80 cm o algoritmo proposto apresenta valores satisfatórios para a porcentagem

de reconhecimento e para a porcentagem média de a classe reconhecida ser a classe

correta.

É possível observar que a partir de valores de distância acima de 80 cm os

valores dos parâmetros utilizados passam a diminuir de forma significativa com o

aumento da distância entre a câmera web e a mão que executa o gesto.

Uma possível explicação para esta diminuição é que com o aumento da

distância a imagem passa a ser muito pequena e isto impede que a imagem

represente o gesto de uma mão humana, mesmo com o uso de características

proporcionais que são independentes do tamanho da imagem.

Assim se estabelece como valores de distância entre 35 cm e 80 cm como os

valores que apresentam resultados ótimos de reconhecimento.

A distância de 45 cm entre a mão humana e a câmera web utilizada para a

captura de vídeos foi utilizada para a análise da ultima etapa deste trabalho, por

apresentar os melhores resultados.

4.1.3 Reconhecimento
A tabela 10 traz o resultado da execução do algoritmo de reconhecimento de

gestos dinâmicos de mão humana para uma amostra de 25 classes, com 50 imagens

para cada uma das classes. A matriz de confusão para esta análise pode ser

encontrada no Apêndice D.

Tabela 10 – Parâmetros da Análise de Reconhecimento

% de Reconhecimento % Média para a
Classe Correta FNR FPR

Treinamento Testes
100 % 94,72 % 84,634 % 5,28% 0,223%

O valor de 5,12% para a taxa de rejeição média (FNR) indica que poucas

classes de entrada foram classificadas erroneamente. O valor máximo para esta taxa

para uma classe, observado na tabela de contingências, foi de 12%.

O valor de 0,223% para a taxa de aceitação média (FPR) indica a razão de

amostras que foram classificados em uma classe sem pertencer a ela em relação ao

total de elementos que não pertencem a esta classe. O valor máximo para esta taxa

para uma classe, observado na tabela de contingências, foi de 0,518%.

60

Para cada gesto analisado pelo algoritmo proposto ofereceu como resposta a

probabilidade de a amostra de entrada pertencer a cada uma das classes. A

probabilidade média do sistema oferecer a classe correta foi de 84,634%.

O sistema apresentou ainda uma alta precisão (94,72%) no reconhecimento de

gestos visto que o grupo total de amostras utilizado para o reconhecimento é de 625

gestos dinâmicos de mão humana.

4.2 Conclusões

A análise das condições de iluminação e cor do cenário de fundo permitiu

concluir que o método de segmentação de imagens desenvolvido apresenta melhores

resultados com a cor de cenário de fundo simples branco. A variação da iluminação de

ambiente para fluorescente superior com o cenário simples branco não alterou de

forma significativa o bom desempenho da segmentação, sendo que a iluminação

fluorescente superior propiciou resultados levemente melhores.

A variação do cenário para a cor de fundo preta influenciou negativamente no

desempenho da segmentação, indicando um método que não é robusto a variação da

cor do cenário de fundo simples utilizado.

Em relação à variação da distância entre a câmera web utilizada para a captura

de imagens e a mão humana que executa os gestos, o algoritmo mostrou se eficiente

no reconhecimento dos gestos para valores entre 35 cm e 80 cm. Este desempenho

se explica pela escolha de características proporcionais ao tamanho da mão humana

com o corte do punho, que independem do tamanho da imagem.

 A distância de 45 cm para um cenário de fundo simples com a cor branca e

iluminação florescente superior foram as condições de ambiente para o sistema que

resultaram em melhores porcentagens no reconhecimento de gestos.

Nestas condições o sistema foi analisado para um conjunto de 25 classes de

gestos dinâmicos distintos de mão humana, sendo que foram capturadas 50 amostras

de 5 mãos humanas diferentes. O sistema mostrou se preciso e eficiente para este

grupo fechado de classes, com alta porcentagem de reconhecimento de gestos e alta

probabilidade média associada à classe de resposta correta.

Assim, em condições de ambiente limitadas, o sistema proposto mostrou-se

apto a ser utilizado em aplicações de Interação Humano-Computador (IHC).

61

4.3 Trabalhos Futuros

O método de segmentação utilizado não se mostrou robusto com a variação

das condições do cenário de fundo. Assim, podem ser estudados e utilizados em

projetos futuros outros métodos que respondam melhor não só a variação da cor como

a presença de objetos dinâmicos no cenário de captura dos gestos. Algoritmos de

segmentação que utilizam redes neurais são exemplos de métodos que respondem

melhor a estas condições.

O número de classes utilizadas deve ser aumentado para garantir uma análise

estatística mais eficiente.

O desenvolvimento de aplicações que utilizem este algoritmo também pode ser

objeto de trabalhos futuros. Programas que utilizam o reconhecimento de gestos de

mão humana para o acionamento de aplicativos em um computador são exemplos de

aplicações. Neste cenário a mão humana, executando um gesto dinâmico previamente

estabelecido, seria uma interface de entrada para programas executados em um

computador, sem o auxilio do teclado ou do mouse para tal função.

63

Referências Bibliográficas1

BARROS, R. S. Trabalho de Pesquisa Acadêmica - Redes Neurais (I. A.), 2009.
Disponível em: <http://rbarrosx.blogspot.com/2009/01/trabalho-de-pesquisa-acadmica-
redes.html>. Acesso em: 14 de setembro de 2011.

BRADSKI, G.; KABLER, A. Learning OpenCV: Computer Vision with OpenCV
Library. O’Reilly Media.[s.n.] Sebastopol, CA - EUA, 2008.

CARROL, J. M. Human Computer Interaction (HCI), 2009. Disponível em:
<http://www.interactiondesign.org/encyclopedia/human_computer_interaction_hci.html
>. Acesso em 24 de agosto de 2011.

CARVALHO, A. P. L. F. Redes Neurais Artificiais, 2000. Disponível em:
<http://www.icmc.usp.br/~andre/research/neural/index.htm#intro>. Acesso em 27 de
agosto de 2011.

FERRAMOLA, M. L. Introdução a Redes Neurais, 2002. Disponível em:
<http://www.cin.ufpe.br/~if114/Monografias/Redes%20Neurais/Com%20Pesos/introdu
cao.htm>. Acesso em 12 de setembro de 2011

FIBIGER, R. S. Estudo Comparativo de Técnicas de Visão Computacional para
Detecção de Pele Humana, 68p. Campo Grande: UCDB, 2004.

GONZAGA, A. Material Didatico - Disciplina SEL5886, 2000. Disponível em:
<http://iris.sel.eesc.usp.br/sel886/index_arquivos/Page750.htm>. Acesso em 12 de
setembro de 2011.

GONZAGA, A. Kanguera: Olho Local Mão Distante, 2011. Disponível em:
<http://iris.sel.eesc.usp.br/weblab/default.html>. Acesso em 1 de Setembro de 2011

GONZALES, R. C.; WOODS, R. E.; EDDINS, S. E. Digital Image Processing using
MATLAB, 624 p. New York: Pretince Hall, 2003.

NEWMAN, D. J.; HETTICH, S.; BLAKE, C. L.; MERZ, C. J. UCI Repository of
machine learning databases, 1998. Disponível em:<http://www.ics.uci.edu/~mlearn/M
LRepository.html>. Acesso em 10 de setembro de 2011.

PAVLOVIC, V. I.; SHARMA, R.; HUAN, T. S. Visual Interpretation of Hand
Gestures for Human-Computer Interaction. IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol 19, no 7, 1997.

RIBEIRO, H. L. 2006. 144p. Reconhecimento de gestos utilizando segmentação de
imagens dinâmicas de mãos baseada no modelo de misturas Gaussianas e na cor da
pele. Dissertação (Mestrado) - Escola de Engenharia de São Carlos, São Carlos, SP,
Brasil.

1 De acordo com a Associação Brasileira de Normas Técnicas. NBR 6023.

64

RIBEIRO, J. M. 2007. 101p. Segmentação da pele humana em imagens coloridas
baseada em valores das médias da vizinhança em subimagens. Dissertação
(Mestrado) - Escola de Engenharia de São Carlos, São Carlos, SP, Brasil.

SALDANHA, M. F. S.; FREITAS, C. C. Segmentação de Imagens Digitais: Uma
Revisão, In: XI Workshop do Curso de Computação Aplicada. LIT/INPE, 2009.

SOUZA, G. S. Visão Computacional - INF2604 / Prof. Marcelo Gattass, 2009.,
Disponível em: <http://www.tecgraf.puc-rio.br/~mgattass/ra/trb09/Guilherme/Visao
Computacional%20-%20Trabalho%202.htm> Acesso em 26 de agosto de 2011.

65

APÊNDICE A – Códigos do Algoritmo Utilizado

A.1 Algoritmo para Análise da Iluminação e Cor de Fundo

// BIBLIOTECAS
#include <math.h>
#include <cv.h>
#include <highgui.h>
#include <ml.h>
#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>
#include <string.h>

// DEFINICOES
// Define o Numero de Imagens a Capturar
#define N_IMAGENS 50

// Define Cenário
#define CENA 3

int Captura=1, i, j, k;
char NomeImg[50];
bool para=true;

int hcc=1;

int c;
int thr=5, armazenou=0, salva=0;

IplImage *image = 0, *img_rgb_cinza=0, *img_fundo=0, *img_hist=0;

void Histograma (IplImage * imagem, IplImage * hist_img);

void callback (IplImage* frame)
{
 int step,height,width,channels;
 unsigned char *data;
 int R, G, B, L;
 float r, g, b;

 if((char) c == 's')
 salva=1;

 cvCopy(frame, image, 0);

 cvNamedWindow("Video", 1);
 cvShowImage("Video", frame);

 // Dados da Imagem
 height = image->height;
 width = image->width;
 step = image->widthStep;
 channels = image->nChannels;
 data = (uchar *)image->imageData;

 //Identica a Faixa e Zera o Resto
 for(i=0;i<height;i++) for(j=0;j<width;j++)
 {

66

 B=data[i*step+j*channels+0];
 G=data[i*step+j*channels+1];
 R=data[i*step+j*channels+2];
 L=B+G+R;

 if(L==0) { b=0; g=0; r=0; }
 else { b=(float)B/L; g=(float)G/L; r=(float)R/L; }

 data[i*step+j*channels+0]=(uchar)255*b;
 data[i*step+j*channels+1]=(uchar)255*g;
 data[i*step+j*channels+2]=(uchar)255*r;
 }

 cvNamedWindow("bin", 1);
 Histograma(image,img_hist);

 if(salva==1)
 {
 if(Captura > N_IMAGENS)
 salva=0;
 else
 {
 sprintf(NomeImg,"./Imagem/%d/Img%d -
Padrao.bmp",CENA,Captura);
 cvSaveImage(NomeImg,img_rgb_cinza);
 }
 }

 cvMorphologyEx(img_rgb_cinza,img_rgb_cinza,NULL,0,CV_MOP_OPEN,1);
 cvMorphologyEx(img_rgb_cinza,img_rgb_cinza,NULL,0,CV_MOP_CLOSE,1);

 cvShowImage("bin",img_rgb_cinza);

 if(salva==1)
 {
 if(Captura > N_IMAGENS)
 salva=0;
 else
 {
 printf("\n Capturando a Imagem na Cena %d - Img %d",CENA,
Captura);

 sprintf(NomeImg,"./Imagem/%d/Img%d -
Frame.bmp",CENA,Captura);
 cvSaveImage(NomeImg,frame);

 sprintf(NomeImg,"./Imagem/%d/Img%d -
Binaria.bmp",CENA,Captura);
 cvSaveImage(NomeImg,img_rgb_cinza);

 Captura++;

 salva=0;
 }
 }

 c=cvWaitKey(10);
}

void Histograma (IplImage * imagem, IplImage * hist_img)

67

{
 IplImage* plano3 = cvCreateImage(cvGetSize(imagem), 8, 1);
 int hist_size = 256, bin_w, i;
 float max_value=0;

 cvCvtPixToPlane(imagem, 0, 0, plano3, 0);

 plano3->origin = imagem->origin;

 if((char) c == 'f')
 {
 cvCopy(plano3, img_fundo, 0);
 //capt_max=5;
 }
 if((char) c == 'z')
 img_fundo=0;
 if(((char) c == '=') && thr<255)
 thr++;
 if(((char) c == '-') && thr>0)
 thr--;
 if((char) c == 't')
 para=false;

 if(img_fundo!=0)
 {
 cvAbsDiff(img_fundo,plano3,plano3);
 }

CvHistogram* hist;
 {
 float _ranges[] = { 0, 255 };
 float* ranges[] = { _ranges};
 hist = cvCreateHist(1,&hist_size,CV_HIST_ARRAY,ranges,1);
 }

 cvCalcHist(&plano3, hist, 0, 0);

 cvZero(hist_img);
 cvGetMinMaxHistValue(hist, 0, &max_value, 0, 0);
 cvScale(hist->bins, hist->bins, ((double)hist_img->height)/max_value, 0);
 cvSet(hist_img, cvScalarAll(255), 0);

 bin_w = cvRound((double)hist_img->width/hist_size);
 for(i = 0; i < hist_size; i++)
 cvRectangle(hist_img, cvPoint(i*bin_w, hist_img->height),
 cvPoint((i+1)*bin_w,hist_img->height -
cvRound(cvGetReal1D(hist->bins,i))),
 cvScalarAll(0), -1, 8, 0);

 // Encontra o Vale
 float *valor, *valorAnt;
 if(!para)
 {
 thr=0;
 valorAnt=cvGetHistValue_1D(hist,1);
 for(i=2;(i<256)&&(!para);i++)
 {
 valor=cvGetHistValue_1D(hist,i);

68

 if(*valor < *valorAnt)
 para=true;
 *valorAnt=*valor;
 }
 para=false;
 for(;(i<256)&&(!para);i++)
 {
 valor=cvGetHistValue_1D(hist,i);
 if(*valor > *valorAnt)
 para=true;
 *valorAnt=*valor;
 }
 thr=i;
 }

 cvRectangle(hist_img,cvPoint(thr,0),cvPoint(thr,hist_img-
>height),cvScalarAll(0),-1,8,0);

 cvNamedWindow("hist", 1);
 cvShowImage("hist",hist_img);

 if(img_fundo!=0)
 {
 cvThreshold(plano3,plano3,thr,255,CV_THRESH_BINARY);
 }

 cvCopy(plano3,img_rgb_cinza);

 cvReleaseImage(&plano3);
 cvReleaseHist(&hist);
}

int main(int argc, char** argv)
{

 CvCapture* capture;
 IplImage* frame = 0;
 capture = cvCaptureFromCAM(0);
 frame = cvQueryFrame(capture);

 if(!frame)
 exit(0);

 if(!image)
 {
 image = cvCreateImage(cvGetSize(frame), 8, 3);
 image->origin = frame->origin;
 img_fundo = cvCreateImage(cvGetSize(frame), 8, 1);
 img_fundo->origin = frame->origin;
 img_rgb_cinza = cvCreateImage(cvGetSize(frame), 8, 1);
 img_rgb_cinza->origin = frame->origin;
 img_hist = cvCreateImage(cvSize(256,256), 8, 1);
 }

 cvCopy(frame, image, 0);

 while(1)
 {
 frame = cvQueryFrame(capture);
 callback(frame);
 }

69

 // Fecha as Janelas Criadas
 cvDestroyWindow("Video");
 cvDestroyWindow("rgb");
 cvReleaseImage(&image);
 return 0;
}

70

A.2 Algoritmo de para Cálculo dos Parâmetros

// BILIOTECAS
#include <math.h>
#include <cv.h>
#include <highgui.h>
#include <ml.h>
#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>
#include <string.h>

// DEFINICOES
// Define o Numero de Imagens a Capturar
#define N_IMAGENS 2

// Define Cenário
#define N_CENAS 4
#define ARQUIVO_DATA "./analise.data"

int main(int argc, char** argv)
{
 // Variáveis
 char NomeImg[50];
 int Img=1, Cena=1, i, j;

 int heightP, widthP, stepP;
 unsigned char *dataP;

 int heightA, widthA, stepA;
 unsigned char *dataA;

 IplImage* imageA;
 IplImage* imageP;

 int TP, FP, TN, FN;

 FILE *fp;

 //Arquivo de dados
 fp=fopen(ARQUIVO_DATA,"w");

 //dados
 fprintf(fp,"CENA IMG TP FP TN FN \n");

 for(;Cena<=N_CENAS;Cena++)
 for(Img=1;Img<=N_IMAGENS;Img++)
 {
 // Carrega a Imagem a Padrão
 sprintf(NomeImg,"./Imagem/%d/Img%d - Padrao.bmp",Cena,Img);
 imageP = cvLoadImage(NomeImg,CV_LOAD_IMAGE_GRAYSCALE);

 // Carrega a Imagem a ser Analisada
 sprintf(NomeImg,"./Imagem/%d/Img%d - Binaria.bmp",Cena,Img);
 imageA = cvLoadImage(NomeImg,CV_LOAD_IMAGE_GRAYSCALE);

 // Dados da Imagem Padrão
 heightP = imageP->height;
 widthP = imageP->width;
 stepP = imageP->widthStep;
 dataP = (uchar *)imageP->imageData;

71

 // Dados da Imagem a ser Analisada
 heightA = imageA->height;
 widthA = imageA->width;
 stepA = imageA->widthStep;
 dataA = (uchar *)imageA->imageData;

 //Variáveis de Análise
 TP=0; FP=0;
 TN=0; FN=0;

 //Calcula TP, FP, TN e FN
 for(i=0;i<heightP;i++) for(j=0;j<widthP;j++)
 {
 if(dataA[i*stepA+j]>125) //Amostra Positiva
 {
 if(dataP[i*stepP+j]>125) // Padrão Positivo
 TP++;
 else // Padrão Negativo
 FP++;
 }
 else // Amostra Negativa
 {
 if(dataP[i*stepP+j]>125) // Padrão Positivo
 FN++;
 else // Padrão Negativo
 TN++;
 }

 }

 //Salva dados
 fprintf(fp,"%d %d %d %d %d %d \n",Cena,Img,TP,FP,TN,FN);

 }

 fclose(fp);

 return 0;
}

72

A.3 Algoritmo de Captura de Quadros e Segmentação

// BIBLIOTECAS
#include <math.h>
#include <cv.h>
#include <highgui.h>
#include <ml.h>
#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>
#include <string.h>

// DEFINICOES
// Define o Numero de Classes e de Capturas em cada Classe
#define N_CAPTURAS 40
#define N_CLASSES 5
#define N_CAP_TEMPO 5
#define WAIT 1

// VARIÁVEIS
int Classe=1, Captura=1,i, j, k, tempo=0,wt=0;
char NomeImg[50];
bool para=true;

int hcc=1;

int c;
int thr=5, capt_max=0, treinou=0, armazenou=0, salva=0;
IplImage *image = 0, *img_rgb_cinza=0, *img_fundo=0, *img_hist=0;

void Histograma (IplImage * imagem, IplImage * hist_img);

void callback (IplImage* frame)
{
 int step,height,width,channels;
 unsigned char *data;
 int R, G, B, L;
 float r, g, b;

 if((char) c == 's')
 salva=1;

 cvCopy(frame, image, 0);

 cvNamedWindow("Video", 1);
 cvShowImage("Video", frame);

 // Dados da Imagem
 height = image->height;
 width = image->width;
 step = image->widthStep;
 channels = image->nChannels;
 data = (uchar *)image->imageData;

 //Conversão para rgb normalizado
 for(i=0;i<height;i++) for(j=0;j<width;j++)
 {
 B=data[i*step+j*channels+0];
 G=data[i*step+j*channels+1];
 R=data[i*step+j*channels+2];
 L=B+G+R;

73

 if(L==0) { b=0; g=0; r=0; }
 else { b=(float)B/L; g=(float)G/L; r=(float)R/L; }

 data[i*step+j*channels+0]=(uchar)255*b;
 data[i*step+j*channels+1]=(uchar)255*g;
 data[i*step+j*channels+2]=(uchar)255*r;
 }

 cvNamedWindow("bin", 1);
 Histograma(image,img_hist);

 //Filtros Morfologicos
 cvMorphologyEx(img_rgb_cinza,img_rgb_cinza,NULL,0,CV_MOP_OPEN,1);
 cvMorphologyEx(img_rgb_cinza,img_rgb_cinza,NULL,0,CV_MOP_CLOSE,1);

 cvShowImage("bin",img_rgb_cinza);

 if((salva==1) && ((tempo % WAIT) == 0))
 {
 if((Classe >= N_CLASSES) && (Captura > N_CAPTURAS))
 salva=0;
 else
 {
 printf("\n Capturando Classe %d, Imagem %d, Tempo
%d",Classe,Captura,tempo/WAIT+1);

 sprintf(NomeImg,"./Imagem/C%d_I%d_T%d.bmp",Classe,Captura,tempo/WAIT+1);
 cvSaveImage(NomeImg,img_rgb_cinza);

 tempo++;

 if((tempo/WAIT+1) > N_CAP_TEMPO)
 {
 Captura++;
 tempo=0;
 salva=0;

 if(Captura > N_CAPTURAS)
 {
 Classe++;
 Captura=1;
 }
 }

 }

 }
 else if (salva == 1)
 tempo++;

 c=cvWaitKey(10);

}

void Histograma (IplImage * imagem, IplImage * hist_img)
{
 IplImage* plano3 = cvCreateImage(cvGetSize(imagem), 8, 1);
 int hist_size = 256, bin_w, i;
 float max_value=0;

74

 cvCvtPixToPlane(imagem, 0, 0, plano3, 0);

 plano3->origin = imagem->origin;

 if((char) c == 'f')
 {
 cvCopy(plano3, img_fundo, 0);
 //capt_max=5;
 }
 if((char) c == 'z')
 img_fundo=0;
 if(((char) c == '=') && thr<255)
 thr++;
 if(((char) c == '-') && thr>0)
 thr--;
 if((char) c == 't')
 para=false;

 if(img_fundo!=0)
 {
 cvAbsDiff(img_fundo,plano3,plano3);
 }

 CvHistogram* hist;
 {
 float _ranges[] = { 0, 255 };
 float* ranges[] = { _ranges};
 hist = cvCreateHist(1,&hist_size,CV_HIST_ARRAY,ranges,1);
 }

 cvCalcHist(&plano3, hist, 0, 0);

 cvZero(hist_img);
 cvGetMinMaxHistValue(hist, 0, &max_value, 0, 0);
 cvScale(hist->bins, hist->bins, ((double)hist_img->height)/max_value, 0);
 cvSet(hist_img, cvScalarAll(255), 0);

 bin_w = cvRound((double)hist_img->width/hist_size);
 for(i = 0; i < hist_size; i++)
 cvRectangle(hist_img, cvPoint(i*bin_w, hist_img->height),
 cvPoint((i+1)*bin_w,hist_img->height -
cvRound(cvGetReal1D(hist->bins,i))),
 cvScalarAll(0), -1, 8, 0);

 // Encontra o Vale
 float *valor, *valorAnt;
 if(!para)
 {
 thr=0;
 valorAnt=cvGetHistValue_1D(hist,1);
 for(i=2;(i<256)&&(!para);i++)
 {
 valor=cvGetHistValue_1D(hist,i);
 if(*valor < *valorAnt)
 para=true;
 *valorAnt=*valor;
 }
 para=false;

75

 for(;(i<256)&&(!para);i++)
 {
 valor=cvGetHistValue_1D(hist,i);
 if(*valor > *valorAnt)
 para=true;
 *valorAnt=*valor;
 }
 thr=i;
 }

 cvRectangle(hist_img,cvPoint(thr,0),cvPoint(thr,hist_img-
>height),cvScalarAll(0),-1,8,0);

 if(img_fundo!=0)
 {
 cvThreshold(plano3,plano3,thr,255,CV_THRESH_BINARY);
 }

 cvCopy(plano3,img_rgb_cinza);
 cvReleaseImage(&plano3);
 cvReleaseHist(&hist);
}

int main(int argc, char** argv)
{

 CvCapture* capture;
 IplImage* frame = 0;
 capture = cvCaptureFromCAM(0);
 frame = cvQueryFrame(capture);

 if(!frame)
 exit(0);

 if(!image)
 {
 image = cvCreateImage(cvGetSize(frame), 8, 3);
 image->origin = frame->origin;
 img_fundo = cvCreateImage(cvGetSize(frame), 8, 1);
 img_fundo->origin = frame->origin;
 img_rgb_cinza = cvCreateImage(cvGetSize(frame), 8, 1);
 img_rgb_cinza->origin = frame->origin;
 img_hist = cvCreateImage(cvSize(256,256), 8, 1);
 }

 cvCopy(frame, image, 0);

 while(1)
 {
 frame = cvQueryFrame(capture);
 callback(frame);
 }

 // Fecha as Janelas Criadas
 cvDestroyWindow("Video");
 cvDestroyWindow("rgb");
 cvReleaseImage(&image);
 return 0;
}

76

A.4 Algoritmo de Extração de Características e Geração de
Resultados

// BIBLIOTECAS
#include <math.h>
#include <cv.h>
#include <highgui.h>
#include <ml.h>
#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>
#include <string.h>

// DEFINICOES
// Define o Numero de Classes e de Capturas em cada Classe
#define N_CAPTURAS 40
#define N_CLASSES 5
#define N_CARACT 16
#define N_CAP_TEMPO 5

#define PX_LIN 4
#define PX_COL 4

#define PORCENTAGEM_TREINAM 75

#define XML "./sinais.xml"
#define ARQUIVO_DATA "./sinais.data"
#define ESTATISTICA_DATA "./estatistica.data"

// VARIAVEIS
int Classe=1, Captura=1, Tempo=1;
char NomeImg[50];
CvMemStorage* g_storage = NULL;

int Aleatorio[N_CLASSES*(N_CAPTURAS*PORCENTAGEM_TREINAM/100)];
int Dados[N_CLASSES][N_CAPTURAS][N_CARACT*N_CAP_TEMPO];
int Caract[N_CARACT];
int i, j, k;
int c;
int thr=5, capt_max=0, treinou=0, armazenou=0, salva=0;

IplImage *image = 0, *img_rgb_cinza=0, *img_fundo=0, *img_hist=0;

static int
read_num_class_data(const char* filename, int var_count,
 CvMat** data, CvMat** responses)
{
 const int M = 1024;
 FILE* f = fopen(filename, "rt");
 CvMemStorage* storage;
 CvSeq* seq;
 char buf[M+2];
 float* el_ptr;
 CvSeqReader reader;
 int i, j;

 if(!f)
 return 0;

 el_ptr = new float[var_count+1];
 storage = cvCreateMemStorage();

77

 seq = cvCreateSeq(0, sizeof(*seq), (var_count+1)*sizeof(float), storage);

 for(;;)
 {
 char* ptr;
 if(!fgets(buf, M, f) || !strchr(buf, ','))
 break;
 el_ptr[0] = buf[0];
 ptr = buf+2;
 for(i = 1; i <= var_count; i++)
 {
 int n = 0;
 sscanf(ptr, "%f%n", el_ptr + i, &n);
 ptr += n + 1;
 }
 if(i <= var_count)
 break;
 cvSeqPush(seq, el_ptr);
 }
 fclose(f);

 *data = cvCreateMat(seq->total, var_count, CV_32F);
 *responses = cvCreateMat(seq->total, 1, CV_32F);

 cvStartReadSeq(seq, &reader);

 for(i = 0; i < seq->total; i++)
 {
 const float* sdata = (float*)reader.ptr + 1;
 float* ddata = data[0]->data.fl + var_count*i;
 float* dr = responses[0]->data.fl + i;

 for(j = 0; j < var_count; j++)
 ddata[j] = sdata[j];
 *dr = sdata[-1];
 CV_NEXT_SEQ_ELEM(seq->elem_size, reader);
 }

 cvReleaseMemStorage(&storage);
 delete el_ptr;
 return 1;
}

void armazena(void)
{
 FILE *fp;
 float sort;

 printf("\n Armazenando. Aguarde....");

 // Inicializa os Enderecos
 for(i=0;i<(N_CLASSES*(N_CAPTURAS*PORCENTAGEM_TREINAM/100));i++)
 Aleatorio[i]=i;

 // Embaralha
 for(i=0;i<(N_CLASSES*(N_CAPTURAS*PORCENTAGEM_TREINAM/100));i++)
 {
 // Sorteia e muda pra inteiro
 sort=((rand()%(N_CLASSES*(N_CAPTURAS*PORCENTAGEM_TREINAM/100))));
 j=(int)sort;

 //Troca posicoes

78

 k=Aleatorio[j];
 Aleatorio[j]=Aleatorio[i];
 Aleatorio[i]=k;
 }

 //Armazena todos os Dados no .data
 fp=fopen(ARQUIVO_DATA,"w");
 for(i=0;i<(N_CLASSES*(N_CAPTURAS*PORCENTAGEM_TREINAM/100));i++)
 {

 fprintf(fp,"%c",Aleatorio[i]/(N_CAPTURAS*PORCENTAGEM_TREINAM/100)+'A');
 //fprintf(fp,"%c",i/N_CAPTURAS+'A');
 for(j=0;j<N_CARACT*N_CAP_TEMPO;j++)

 fprintf(fp,",%d",Dados[Aleatorio[i]/(N_CAPTURAS*PORCENTAGEM_TREINAM/100)][
Aleatorio[i]%(N_CAPTURAS*PORCENTAGEM_TREINAM/100)][j]);
 //fprintf(fp,",%d",Dados[i/N_CAPTURAS][i%N_CAPTURAS][j]);
 fprintf(fp,"\n");
 }
 for(i=0;i<N_CLASSES;i++)
for(j=(N_CAPTURAS*PORCENTAGEM_TREINAM/100);j<N_CAPTURAS;j++)
 {
 fprintf(fp,"%c",i+'A');
 for(k=0;k<(N_CARACT*N_CAP_TEMPO);k++)
 fprintf(fp,",%d",Dados[i][j][k]);
 fprintf(fp,"\n");
 }
 fclose(fp);

 printf("\n Armazenou!!!");
 armazenou=1;
}

void Treina(void)
{
 char v_filename_to_save[] = XML;
 char* filename_to_save = v_filename_to_save;
 char v_data_filename[] = ARQUIVO_DATA;
 char* data_filename = v_data_filename;
 FILE *fp;

 const int class_count = N_CLASSES;
 CvMat* data = 0;
 CvMat train_data;
 CvMat* responses = 0;
 CvMat* mlp_response = 0;

 armazena();

 int ok = read_num_class_data(data_filename, N_CARACT*N_CAP_TEMPO, &data,
&responses);
 int nsamples_all = 0, ntrain_samples = 0;
 int i, j;
 double train_hr = 0, test_hr = 0;
 CvANN_MLP mlp;

 if(!ok)
 {
 printf("Could not read the database %s\n", data_filename);
 }

 printf("The database %s is loaded.\n", data_filename);

79

 nsamples_all = data->rows;
 ntrain_samples = (int)(nsamples_all*PORCENTAGEM_TREINAM/100);

 CvMat* new_responses = cvCreateMat(ntrain_samples, class_count, CV_32F);

 printf("Unrolling the responses...\n");
 for(i = 0; i < ntrain_samples; i++)
 {
 int cls_label = cvRound(responses->data.fl[i]) - 'A';
 float* bit_vec = (float*)(new_responses->data.ptr + i*new_responses-
>step);
 for(j = 0; j < class_count; j++)
 bit_vec[j] = 0.f;
 bit_vec[cls_label] = 1.f;
 }
 cvGetRows(data, &train_data, 0, ntrain_samples);

 int layer_sz[] = { data->cols, 100, 100, class_count };
 CvMat layer_sizes =
 cvMat(1, (int)(sizeof(layer_sz)/sizeof(layer_sz[0])), CV_32S, layer_sz
);
 mlp.create(&layer_sizes);
 printf("Training the classifier (may take a few minutes)...");
 mlp.train(&train_data, new_responses, 0, 0,
 CvANN_MLP_TrainParams(cvTermCriteria(CV_TERMCRIT_ITER,300,0.01),
 CvANN_MLP_TrainParams::RPROP,0.01));
 cvReleaseMat(&new_responses);
 printf("\n");

 mlp_response = cvCreateMat(1, class_count, CV_32F);

 fp=fopen(ESTATISTICA_DATA,"w");
 for(i = 0; i < nsamples_all; i++)
 {
 int best_class;
 CvMat sample;
 cvGetRow(data, &sample, i);
 CvPoint max_loc = {0,0};
 mlp.predict(&sample, mlp_response);
 double minV, maxV;
 cvMinMaxLoc(mlp_response, &minV, &maxV, 0, &max_loc, 0);
 best_class = max_loc.x + 'A';

 fprintf(fp,"%c",(int)responses->data.fl[i]);
 for(k=0;k<N_CLASSES;k++)
 fprintf(fp,",%f",(mlp_response->data.fl[k]-
(float)minV)/(float)(maxV-minV));
 fprintf(fp,"\n");

 int r = fabs((double)best_class - responses->data.fl[i]) <
FLT_EPSILON ? 1 : 0;

 if(i < ntrain_samples)
 train_hr += r;
 else
 test_hr += r;
 }
 fclose(fp);

 test_hr /= (double)(nsamples_all-ntrain_samples);
 train_hr /= (double)ntrain_samples;

80

 printf("Recognition rate: train = %.1f%%, test =
%.1f%%\n",train_hr*100,test_hr*100);

 mlp.save(filename_to_save);

 cvReleaseMat(&mlp_response);
 cvReleaseMat(&data);
 cvReleaseMat(&responses);

 printf("\n\n Treinou!!!");
}

void caract(void)
{
 int N_PIXELS[N_CARACT+1],iL,jC, DIST;

 for(i=0;i<=N_CARACT;i++)
 N_PIXELS[i]=0;

 IplImage *imagem = NULL, *g_gray = NULL, *gray=NULL;
 CvMoments momento;
 CvSeq* contorno = NULL, *circulos=NULL,*dedos=NULL;
 CvSeq *maior = NULL, *next = NULL;

 int x=0,y=0,step,channels,raio=0,j,i;
 unsigned char *data;

 //Carrega Imagem
 sprintf(NomeImg,"./Imagem/C%d_I%d_T%d.bmp",Classe,Captura,Tempo);
 imagem=cvLoadImage(NomeImg,1);

 g_gray = cvCreateImage(cvGetSize(imagem), 8, 1);
 gray = cvCreateImage(cvGetSize(imagem), 8, 1);
 cvCvtColor(imagem, g_gray, CV_BGR2GRAY);
 cvThreshold(g_gray, g_gray, 100, 255, CV_THRESH_BINARY);

 //Centro da Imagem
 cvMoments(g_gray,&momento,1);
 x=(int)(momento.m10/momento.m00);
 y=(int)(momento.m01/momento.m00);

 //Encontra Raio
 step = imagem->widthStep;
 channels = imagem->nChannels;
 data = (uchar *)imagem->imageData;
 raio=0;
 for(j=x;j>=0;j--)
 if(data[y*step+j*channels]==0)
 { raio=x-j; break; }

 //Imagem sem Punho
 for(i=0;i<(imagem->width);i++) for(j=y+raio;j<(imagem->height);j++)
 {
 data[j*step+i*channels+0]=0;
 data[j*step+i*channels+1]=0;
 data[j*step+i*channels+2]=0;
 }

 //Contorno Certo
 cvCvtColor(imagem, g_gray, CV_BGR2GRAY);
 cvThreshold(g_gray, g_gray, 100, 255, CV_THRESH_BINARY);
 cvFindContours(g_gray, g_storage, &contorno);

81

 next=contorno->h_next;
 maior=contorno;
 while(next)
 {
 if(next->total > maior->total)
 maior=next;
 next=next->h_next;
 }
 contorno=maior;
 contorno->h_next=NULL;
 contorno->h_prev=NULL;
 contorno->v_next=NULL;
 contorno->v_prev=NULL;

 cvZero(g_gray);
 if(contorno)

 cvDrawContours(g_gray,contorno,cvScalarAll(255),cvScalarAll(255),100);

 int imin=imagem->width, imax=0, jmin=imagem->height, jmax=0;
 step = g_gray->widthStep;
 data = (uchar *)g_gray->imageData;
 for(i=0;i<(g_gray->width);i++)
 for(j=0;j<(g_gray->height);j++)
 if(data[j*step+i]==255)
 {
 if(i<imin) imin=i;
 if(j<jmin) jmin=j;
 if(i>imax) imax=i;
 if(j>jmax) jmax=j;
 }

 //Calcula N Pixels Branco
 step = imagem->widthStep;
 channels = imagem->nChannels;
 data = (uchar *)imagem->imageData;
 for(i=imin;i<imax;i++) for(j=jmin;j<jmax;j++)
 if(data[j*step+i*channels+0]==255)
 {
 N_PIXELS[0]++;
 iL=(int)(((float)(i-imin)/(imax-imin))*PX_LIN);
 jC=(int)(((float)(j-jmin)/(jmax-jmin))*PX_COL);
 N_PIXELS[1+iL+jC*PX_LIN]++;
 }

 //Caracteristicas
 for(i=0;i<N_CARACT;i++)
 Caract[i] = (int) ((float)N_PIXELS[i+1]/((imax-imin)*(jmax-
jmin)/(N_CARACT))*100);

}

void Extrai(void)
{
 //Caracteristicas
 caract();

 // Preenche
 for(k=0;k<N_CARACT;k++)
 Dados[Classe-1][Captura-1][(Tempo-1)*N_CARACT+k]=Caract[k];

82

}

int main(int argc, char** argv)
{
 g_storage = cvCreateMemStorage(0);

 //Dados 0
 for(i=0;i<N_CLASSES;i++) for(j=0;j<N_CAPTURAS;j++)
for(k=0;k<N_CARACT*N_CAP_TEMPO;k++)
 Dados[i][j][k]=0;

 //PROCESSOS
 for(Classe=1;Classe<=N_CLASSES;Classe++)
 {
 printf("\n Captura da Classe %d. Aguarde....", Classe);
 for(Captura=1;Captura<=N_CAPTURAS;Captura++)
 for(Tempo=1;Tempo<=N_CAP_TEMPO;Tempo++)
 {
 Extrai();
 //cvWaitKey();
 }
 }

 Treina();

 c=cvWaitKey();

 return 0;
}

83

APÊNDICE B – Classes de Gestos para a Análise da

Distância

A tabela B-1 traz as 5 classes utilizadas para a análise da distância entre a

mão humana e a câmera.

Tabela B-1 – Classes de Gestos para a Análise da Distância entre a Mão e a Câmera11

Classe Quadro 1 Quadro 2 Quadro 3 Quadro 4 Quadro 5

1

2

3

4

5

84

APÊNDICE C – Classes de Gestos para a Análise do

Reconhecimento

A tabela C-1 traz as 25 classes utilizadas para a análise da distância entre a

mão humana e a câmera.

Tabela C-1 – Classes de Gestos para a Análise do Reconhecimento12

Classe Quadro 1 Quadro 2 Quadro 3 Quadro 4 Quadro 5

1

2

3

4

5

6

7

8

85

Tabela C-1 – Classes de Gestos para a Análise do Reconhecimento

Classe Quadro 1 Quadro 2 Quadro 3 Quadro 4 Quadro 5

9

10

11

12

13

14

15

16

17

18

86

Tabela C-1 – Classes de Gestos para a Análise do Reconhecimento

Classe Quadro 1 Quadro 2 Quadro 3 Quadro 4 Quadro 5

19

20

21

22

23

24

25

87

APÊNDICE D – Tabela de Contingências para Análise do
Reconhecimento

A tabela D-1 traz as tabela de contingências para a análise de reconhecimento

do capítulo 4. A tabela traz a precisão (94,72%) da análise, a falsa aceitação (FPR) e a

falsa rejeição (FNR) para cada classe analisada.

Tabela D-1 – Tabela de Contingências para Análise do Reconhecimento 13

SAÍDAS

Ent A B C D E F G H I
A 24 - - - - - - - -
B - 25 - - - - - - -
C - - 24 - - - - - -
D - - - 24 - - - - -
E - - - - 25 - - - -
F - - 1 - - 22 - - -
G - - - - - - 23 - -
H - - - - - - - 25 -
I - 1 - - - - - - 22
J - - - - - - - - 1
K - - - - - - - - -
L - - - - - - - - -
M - - - - - - - - -
N - - - - - - - - -
O - - - - - - - - -
P - - - - - - - - -
Q - - - - - 1 - 1 -
R - - - - - - - - -
S - - - - 1 - - - -
T - - - - - - - - 1
U - - - - - - - - -
V - - - - - - - - -
W - - - - - - - 1 -
X - - - - - - - - -
Y - - - - - - - - -

FPR 0% 0.166% 0.166% 0% 0.166% 0.166% 0% 0.332% 0.332%

88

Tabela 13 – Tabela de Contingências para Análise do Reconhecimento

SAÍDAS

Ent J K L M N O P Q R
A - - - - - - - - -
B - - - - - - - - -
C - - - - - - - - -
D - - - - - - - - -
E - - - - - - - - -
F - - - - - - - 2 -
G - 1 - - - 1 - - -
H - - - - - - - - -
I 1 - - 1 - - - - -
J 24 - - - - - - - -
K - 23 - - - - 1 - -
L - - 24 - - - - 1 -

M - - - 25 - - - - -
N - - - 1 23 - - - -
O - - - - - 24 - - -
P - - - - - - 25 - -
Q - - - - - - - 23 -
R - 1 - - 1 - - - 23
S - - - - - - - - -
T - 1 - - - - - - -
U - - - - - - 1 - -
V - - - - 1 - - - -
W - - - - - - - - -
X - - - - - - - - -
Y - - - - - - 100% - -

FPR 0.166% 0.518% 0% 0.332% 0.332% 0.166% 0.518% 0.518% 0%

89

Tabela 13 – Tabela de Contingências para Análise do Reconhecimento

SAÍDAS

 Ent S T U V W X Y FNR
A - - - 1 - - - 4%
B - - - - - - - 0%
C - - - 1 - - - 4%
D 1 - - - - - - 4%
E - - - - - - - 0%
F - - - - - - - 12%
G - - - - - - - 8%
H - - - - - - - 0%
I - - - - - - - 8%
J - - - - - - - 4%
K 1 - - - - - - 8%
L - - - - - - - 4%
M - - - - - - - 0%
N - - 1 - - - - 8%
O - 1 - - - - - 4%
P - - - - - - - 0%
Q - - - - - - - 8%
R - - - - - - - 8%
S 24 - - - - - - 4%
T - 23 - - - - - 8%
U - - 23 - 1 - - 8%
V - - - 24 - - - 4%
W 1 - - - 22 1 - 12%
X - - - - - 25 - 0%
Y - - - - - 1 23 8%

FPR 0.518% 0.166% 0.166% 0.332% 0.166% 0.332% 0% 94.72%

