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Resumo 

Este trabalho propõe um sistema de reconhecimento de gestos de uma mão 

humana em imagens de vídeo. Para que o sistema possa reconhecer os gestos são 

cumpridas as seguintes etapas: captura da imagem, processamento, extração de 

características e reconhecimento. A câmera ligada ao computador captura imagens da 

mão humana sem o auxílio de luvas ou datagloves que facilitem a extração das 

características. A imagem capturada é processada para que possa ser extraído um 

vetor de características a fim de modelar a postura da mão humana em um 

determinado instante de tempo. Este vetor de características é então utilizado em uma 

Rede Neural Artificial (RNA) treinada a fim de reconhecer o gesto executado. Todo o 

sistema é desenvolvido utilizando a linguagem de programação C, juntamente com a 

biblioteca OpenCV (Open Source Computer Vision Library), desenvolvida pela Intel 

para aplicativos na área de Visão Computacional. Os resultados mostram em que 

condições o algoritmo apresenta o melhor desempenho e que é possível utilizá-lo na 

aplicação de um sistema interação homem-computador. 

   

Palavras-Chave: visão computacional, gestos de mão, rede neural. 

  



 
 

 



Abstract 

This paper develops a system for recognizing gestures of a human hand in 

video images. The following steps are fulfilled for the system can recognize gestures: 

image capture, processing, feature extraction and recognition. The camera connected 

to the computer capture images of the human hand without the aid of gloves or 

dataglove that facilitate the extraction of features. The captured image is processed, so 

that it can be extracted from an array of features to model the posture of the human 

hand in a given time. This feature vector is then used in an Artificial Neural Network 

(ANN) trained to recognize the gesture executed. The whole system is developed using 

the C programming language, along with a library OpenCV (Open Source Computer 

Vision Library), developed by Intel for applications in Computer Vision. The results are 

show under what conditions the algorithm performs best and that you can use it in the 

application of a human-computer interaction system. 

 

Key Words: computer vision, hand gesture, neural network. 
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Capítulo 1  –  Introdução 

1.1  Apresentação 

Com o crescente aumento da influência dos computadores na sociedade, a 

Interação Humano-Computador (IHC) vem ganhando uma grande importância em 

nossa vida diária. A IHC tem se expandido rapidamente e de forma constante durante 

as últimas três décadas, atraindo profissionais de muitas outras disciplinas e 

incorporando diversos conceitos e abordagens (CARROL, 2009). 

Dos esforços dedicados aos estudos desta área, surgiram diferentes métodos 

de IHC, como o reconhecimento de voz, dispositivos tácteis, reconhecimentos de 

faces, entre outros. Entretanto, apenas nos últimos anos é que tem aumentado o 

interesse em novas técnicas de IHC, como o estudo de movimento de mãos e braços.  

Os gestos humanos são um meio de interação não verbal entre as pessoas, e 

vão desde ação simples para apontar e mover objetos até movimentos mais 

complexos que expressam os nossos sentidos e nos permitem nos comunicar 

(PAVLOVIC, 1997).  

Como forma de comunicação entre usuário e máquina, a utilização de 

movimentos da mão como forma de interação com o computador é muito intuitiva e dá 

ao sistema uma grande usabilidade. Desta forma, diversos tipos de algoritmo para o 

reconhecimento de gestos de mão humana vêm sido estudados de forma a tornar esta 

interação mais simples e independente de dispositivos de auxilio, como luvas ou 

sensores de captura de movimento. 

Assim, algoritmos de identificação de movimentos da mão humana, a partir de 

câmeras de captura de vídeo de baixo custo, são um grande desafio para a área de 

visão computacional. Este tipo de algoritmo pode ser aplicado em equipamentos que 

operam à distância e em tempo real, evitando o contato humano em locais inseguros e 

perigosos (GONZAGA, 2011). 

 

1.2  Objetivos 

Este trabalho tem por objetivo principal o desenvolvimento de um sistema de 

reconhecimento de gestos dinâmicos de mão humana situada à frente de uma 

webcam. Serão estudadas as melhores condições de ambiente para que o sistema 

seja preciso e eficiente, obtendo as melhores porcentagens no reconhecimento de 

gestos, para mãos de diferentes pessoas. 
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O projeto aborda todas as etapas de um problema de visão computacional, 

com a captura da imagem de vídeo, segmentação, extração de características, 

reconhecimentos de padrões treinados e interpretação dos resultados obtidos.  

As imagens de vídeo devem ser obtidas através de câmeras de captura de 

vídeo de baixo custo, sendo analisadas as melhores condições de iluminação do 

ambiente e a distância entre a mão humana e a câmera que tornam o sistema mais 

eficiente.  

A segmentação da imagem é direta, sem o auxilio de luvas ou dispositivos que 

facilitem a identificação da mão humana. Esta etapa foca na identificação dos 

melhores métodos de visão computacional que permitam a segmentação total da mão 

humana em um fundo simples e homogêneo. 

As características da imagem são extraídas em quadros capturados em 

intervalos regulares para que a variação do posicionamento da mão seja reconhecida. 

O intervalo de tempo de captura dos quadros será analisado para que o sistema tenha 

o melhor desempenho. 

1.3  Organização da Monografia 

A monografia se estrutura de acordo com a segmentação em capítulos 

proposta a seguir: 

Capítulo 1: Introdução – Apresenta o tema da monografia de modo a fornecer 

uma idéia total do trabalho. 

Capítulo 2: Revisão de Literatura – Tem como objetivo apresentar os conceitos 

de visão computacional utilizados na segmentação de imagens de vídeo e extração de 

características; e a rede neural aplicada para o reconhecimento de gestos de mão 

humana. 

Capítulo 3: Materiais e Métodos – Este capítulo trata a metodologia usada 

neste trabalho, bem como o material usado para que os objetivos propostos fossem 

alcançados. 

Capítulo 4: Resultados e Conclusões – Este capítulo apresenta os resultados 

obtidos com a aplicação da metodologia e a análise destes resultados. Apresenta 

também as conclusões do estudo e suas possíveis aplicações futuras. 
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Capítulo 2  – Revisão de Literatura 

2.1  Biblioteca OpenCV 

OpenCV (Open Source Computer Vision) é uma biblioteca de código aberto 

para o desenvolvimento de aplicações na área de visão computacional. Originalmente 

criada pela Intel, em 2000, esta biblioteca é escrita nas linguagens de programação C 

e C++, sendo compatível nos sistemas operacionais Linux, Windows e Mac OS X. 

A biblioteca OpenCV foi projetada com um forte foco em aplicações em tempo 

real, podendo tirar vantagens de processadores multicamadas. A biblioteca está 

disponível com o código fonte e os executáveis otimizados para os processadores 

Intel. Porém, um programa OpenCV ao ser executado, identifica automaticamente o 

tipo de processador que esta sendo usado e aciona a DLL (Dynamic Link Library) 

otimizada para este, permite que seus algoritmos sejam utilizados em diferentes 

sistemas de processamento de imagens de vídeo.  

A OpenCV tem como objetivo fornecer uma infraestrutura simples que permita 

a construção de aplicações sofisticadas de visão computacional rapidamente, sendo 

totalmente livre para o uso acadêmico e comercial. A biblioteca OpenCV contém mais 

de 500 funções que contemplam diversas áreas da visão computacional, como: 

aprendizagem de máquina, processamento de imagens, entrada e saída de imagens e 

dispositivos de vídeo, entre outras (BRADSKI, 2008). 

Sua utilização é constante em aplicações que envolvem a interação humano-

computador em tempo real, devido às facilidades que a biblioteca fornece. Sistemas 

para o reconhecimento de gestos podem ser criados com o uso de funções da 

OpenCV em todas as etapas do projeto, como descrito a seguir:  

 Na captura das imagens de vídeo, com funções que manipulam a 

entrada de vídeos de câmeras web;  

 No processamento de imagens, com funções que permitem a 

segmentação de imagens;  

 No pós-processamentos das imagens, na criação de filtros morfológicos 

que melhoram as características das imagens. 

 Na aprendizagem de máquinas, com funções que permitem o 

treinamento de diversos tipos de redes neurais;  

 No reconhecimento de padrões, utilizando funções que permitem o 

desenvolvimento de diversas aplicações. 
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2.2  Espaço de Cores 

2.2.1 Espaço de cores RGB  
O modelo RGB (Red, Green, Blue) é um sistema de cores aditivo formado 

pelas cores vermelho, verde e azul. Estas três cores primárias são combinadas de 

modo a formar as demais cores. 

Cada cor no modelo de cores RGB é representada pela quantidade de 

vermelho, verde e azul, sendo que cada uma varia desde um valor mínimo 

(completamente escura) até um valor máximo (completamente intenso). O branco é 

representado por todas as cores primárias em seu valor máximo e o preto por todas 

em seu valor mínimo. 

Um espaço de cor RGB é qualquer espaço de cor aditivo baseado no modelo 

de cor RGB. A representação mais utilizada para um espaço de cores RGB é a que 

associa um byte (8 bits) para cada uma das cores primárias, permitindo que seus 

valores variem de 0 a 255. Sendo assim podemos associar cada cor do espaço RGB a 

um ponto de um sistema de coordenadas de três eixos: R (vermelho), G (verde) e B 

(azul), com valores que variam de 0 a 255. 

A figura 1 apresenta esta representação em forma de cubo de cores. 

 
Figura 1 – Cubo de cores RGB 

Assim, no espaço de cores RGB cada pixel é associado a três bytes que 

representam as intensidades de vermelho, verde e azul. Alguns exemplos de 

representações de cores no RGB podem ser vistos na tabela 1. 
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Tabela 1 – Exemplo de representação de cores no espaço RGB  

Cores R G B 
Branco 255 255 255 
Preto 0 0 0 
Verde 0 255 0 

Vermelho 255 0 0 
Azul 0 0 255 

Amarelo 255 255 0 
 

A principal desvantagem do espaço RGB é a de que ele não é adequado para 

a representação de sistema baseados na percepção visual humana. Isto implica que 

cores próximas na percepção visual não representam cores no sistema RGB. Esta 

característica prejudica a segmentação de uma região de cores de interesse neste 

sistema (RIBEIRO H. L., 2006). 

 

2.2.2  RGB normalizado 
As componentes do espaço RGB normalizado são obtidas a partir do modelo 

de cores primárias RGB. A conversão entre estes dois modelos se dá através das 

equações (1), (2) e (3); que calculam os valores de r (vermelho normalizado), g (verde 

normalizado) e b (azul normalizado), respectivamente. 

ݎ =
ܴ

ܴ + ܩ + ܤ
																(1) 

݃ =
ܩ

ܴ + ܩ + ܤ
																(2) 

ܾ =
ܤ

ܴ + ܩ + ܤ
																(3) 

 

Sabendo que a soma das três componentes deste espaço de cores é sempre 

conhecida (r+g+b=1), pode-se diminuir a dimensão espacial omitindo o terceiro 

componente b. As demais componentes são chamadas de cores puras visto que a 

dependência do brilho é diminuída em relação ao espaço RGB. 

Uma propriedade importante deste espaço de cores é que o RGB normalizado 

é invariante às mudanças de orientação das fontes de luz na superfície, quando 

ignoramos a luz do ambiente em superfícies opacas. Aliado a simplicidade na 

transformação desde o espaço RGB, o RGB normalizado vem ganhando popularidade 

entre os pesquisadores (FIBIGER, 2004). 
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2.3 Segmentação de Imagens 

A segmentação na área de visão computacional é o processo responsável por 

dividir uma imagem em grupos ou objetos. Seu objetivo é simplificar a representação 

para outra mais significativa e de mais fácil análise. 

Para os seres humanos a tarefa de reconhecer objetos em uma imagem é 

trivial, independente do conhecimento prévio da cena visto que somos capazes de 

reconhecer as características similares que definem um objeto. Já para o 

processamento de imagens, o grande desafio é a extração rápida de características 

através da segmentação de imagens para a realização da análise (SALDANHA, 2009).  

A segmentação de imagens é o passo inicial na área de processamento de 

imagens e deve parar quando o objeto de interesse da aplicação esteja isolado 

(GONZALES, 2003). 

Os algoritmos para a segmentação de imagens normalmente utilizam 

características associadas aos níveis de cinza da imagem. As principais 

características são a descontinuidade, que consiste na divisão baseada na mudança 

brusca dos tons de cinza, como na detecção de pontos isolados, linhas e bordas; e a 

baseada em similaridades, baseada na separação de regiões que possuem tons de 

cinza com as mesmas características, como na limiarização (RIBEIRO J. M., 2007). 

  

2.3.1 Subtração de Imagens de Fundo 
A subtração de fundo tem como objetivo isolar objetos ou partes de um objeto 

em uma imagem. Atualmente existem diversas técnicas destinadas a este objetivo, 

algumas com resultados simples, outras com resultados mais robustos (SOUZA, 

2009). 

Um dos algoritmos mais simples que existem é o de subtração de quadros, 

baseando-se na diferença de imagem entre dois instantes de tempo diferentes. Cada 

pixel da imagem resultante é formado pela subtração do pixel corresponde no instante 

anterior pelo pixel no instante atual. 

Em um cenário de fundo simples, é possível utilizar a subtração de fundo como 

parte da segmentação de imagens. Um exemplo desta técnica pode ser observado na 

figura 2. 
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     (a) Imagem         (b) Fundo     (c) Resultado da Subtração 

Figura 2 – Exemplo de Subtração de Imagens 

A figura 2 mostra como é possível utilizar a subtração de imagens para 

segmentar um objeto em um cenário de fundo simples, em imagens em escala de 

cinza. O cenário de fundo é excluído da imagem, com os pixels desta região 

assumindo valores próximos a zero (cor preta). 

 

2.3.2 Histograma 
O histograma de uma imagem em tons de cinza é uma função H(k) que produz 

o número de ocorrências de cada nível de cinza k na imagem. Um exemplo de 

imagem e seu histograma podem ser observados na figura 3. 

 
                            (a) Histograma             (b) Imagem 

Figura 3 – Exemplo de Histograma e sua Imagem  
 

2.3.3 Limiarização 
Uma das formas mais simples de segmentar uma imagem digital é através da 

limiarização. A idéia desta segmentação é a que um objeto pode ser definido por uma 

região formada por pixels que tenham em comum uma faixa de intensidades. 

Assim é possível separar esta região das demais pela análise do histograma da 

imagem. Nessa situação o histograma apresenta um vale separando dois picos que 
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podem representar regiões distintas, como por exemplo, um fundo e um objeto 

(SALDANHA, 2009). 

A segmentação através do histograma é uma técnica simples que pode ser 

usada quando o objeto apresenta uma quantidade de pixels com tonalidades de cinza 

similares e que contrastam com as demais áreas da imagem. A figura 4 apresenta um 

histograma para a figura 2.c, e nele é possível observar que há uma separação entre 

os pixels que representam o fundo (cor preta) e os que representam a mão. 

 
Figura 4 – Histograma com Vale Assinalado 

A maior dificuldade da limiarização é na definição do valor que será o limite 

para a separação dos pixels. Uma das formas de definir este limite é através do 

método do vale, que busca este valor entre duas regiões de pico.  

Após a fixação do valor limite, é possível limiarizar a imagem fazendo com que 

cada pixel assuma a intensidade máxima (branco) quando sua intensidade está acima 

deste limiar e que assuma o valor mínimo (preto) quando sua intensidade está abaixo 

deste limiar. A figura 5 traz a imagem resultante para a limiarização da figura 2.c 

através do método do vale.  

  
Figura 5 – Exemplo de Limiarização através do Método do Vale 
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2.4  Morfologia matemática  

A morfologia matemática é baseada na teoria dos conjuntos, e é uma 

ferramenta para extração de componentes de imagens que sejam uteis na descrição 

da forma de uma região. Atualmente pode-se encontrar aplicações dos processos 

morfológicos na filtragem, segmentação, restauração, detecção de bordas, aumento 

de contraste, entre outros.  

A análise morfológica permite extrair componentes da imagem que são uteis na 

representação e descrição da forma das regiões, como fronteiras e esqueletos. 

Também permite obter características importantes dos objetos na imagem como a 

forma e o tamanho. 

As transformações morfológicas operam sobre conjuntos, mediante a utilização 

de outro conjunto de forma conhecida, denominado de elemento estruturante. O 

tamanho e a formato do elemento estruturante são escolhidos de acordo com a forma 

que se deseja obter. 

As classes básicas de operadores da morfologia matemática são a erosão e a 

dilatação. 

 

2.4.1 Erosão binária 
A transformação de erosão binária é resultado de comprovar se o elemento 

estruturante B está completamente incluído dentro do conjunto A, sendo que quando 

não ocorre, o resultado da erosão é um conjunto vazio. A equação 4 mostra como a 

operação de erosão binária pode ser definida. 

 
(4) 

A equação 4 indica que a erosão de A por B é o conjunto de todos os pontos x 

tal que B, transladado por x, está contido em A (GONZAGA, 2000). 

Quando os objetos da cena são menores que o elemento estruturante, eles 

desaparecem. Assim, a erosão se supõe como uma operação de degradação da 

imagem. A figura 6 mostra o resultado de uma operação de erosão binária. 
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Figura 6 – Exemplo de Erosão Binária 

 

2.4.2 Dilatação binária 
 A operação de dilatação binária e erosão binária são duais. As duas 

operações são duais, sendo que uma dilatação é o mesmo que uma erosão do 

complemento da imagem pelo elemento estruturante refletido. 

O resultado da dilatação é o conjunto de elementos tal que pelo menos algum 

elemento do conjunto estruturante B pertence ao conjunto A, quando B se move sobre 

o conjunto A. A equação 5 mostra como a operação de dilatação binária pode ser 

definida. 

 
(5) 

A equação 5 indica que a dilatação de A por B é um conjunto de todo os 

deslocamentos de x tal que B’ e A sobrepõem-se por pelo menos um elemento não 

nulo (GONZAGA, 2000). 

Esta operação representa um crescimento progressivo do conjunto A, visto que 

quando o elemento estruturante passa sobre o conjunto, este se expandirá. A figura 7 

mostra o resultado de uma operação de dilatação binária. 

 
Figura 7 – Exemplo de Dilatação Binária  
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2.4.3 Abertura 
A abertura de um conjunto A por um elemento estruturante B é definida como 

uma operação de erosão binária seguida de uma operação de dilatação. A equação 6 

mostra como a operação de abertura pode ser definida. 

 (6) 

A abertura geralmente suaviza o contorno de uma imagem, quebra istmos 

estreitos e elimina protusões finas. Esta operação tende a abrir pequenos vazios ou 

espaços entre objetos próximos numa imagem, também sendo usada para remover 

ruídos (somente pontos pretos de ruído). 

A figura 8 mostra o resultado de uma operação de abertura. 

 
Figura 8 – Exemplo de Abertura 

 

2.4.4 Fechamento 
O fechamento de um conjunto A por um elemento estruturante B é definido 

como uma operação de dilatação binária seguida de uma operação de erosão. A 

equação 7 mostra como a operação de fechamento é definida. 

 (7) 

O fechamento tende a suavizar os contornos, fundir partes, eliminar pequenos 

buracos e preencher fendas em um contorno. Esta operação tende a preencher ou 

fechar os vazios, podendo também remover muitos dos pixels brancos de ruído. 

As operações de abertura e fechamento são duais relativamente à 

complementação e reflexão dos conjuntos. 

A figura 9 mostra o resultado de uma operação de fechamento. 
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Figura 9 – Exemplo de Fechamento 

 

2.4.5 Filtro morfológico – Abertura e Fechamento 
Um filtro morfológico composto de uma operação de abertura seguida de uma 

operação de fechamento pode ser utilizado para a remoção de ruídos isolados, numa 

operação de pós-processamento de imagens. A figura 10 mostra o resultado da 

aplicação deste filtro sobre uma imagem. 

 
Figura 10 – Aplicação de Filtro Morfológico. Fonte: (GONZAGA, IRIS SEL, 2000). 
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2.5  Redes Neurais 

As redes neurais são técnicas computacionais que oferecem um modelo 

matemático guiado na estrutura neural de organismos inteligentes, adquirindo 

conhecimento através da experiência (CARVALHO, 2000).  

As redes neurais artificiais são compostas por unidades associadas a pesos, 

que são interconectadas através de canais de comunicação. Estas unidades realizam 

operações as suas entradas através de seus pesos, e sua saída esta interconectada a 

novas unidades de processamento. 

O modelo matemático de uma unidade de processamento de uma rede neural 

é apresentado na equação 8. A figura 11 traz uma representação desta unidade.  

 

߮(. ) = 1ܹ.1ݔ + 2ܹ.2ݔ + ⋯+  																݌ܹ݌ݔ

ݕ = 1, .)߮	݁ݏ ) ≥ ܾ																																														(8) 

ݕ = 0, .)߮	݁ݏ ) < ܾ 

 
Figura 11 – Representação do Perceptron. Fonte: (BARROS, 2009) 

 

Na equação 8, xi representa as entradas da unidade, Wi os pesos associados a 

cada entrada, b o limitador e y a saída da unidade. A saída da unidade assume o valor 

1 somente quando a somatória da multiplicação da cada entrada por seu peso 

associado assume um valor acima do limitador. 

As redes neurais são treinadas de modo que os pesos de cada unidade se 

adaptam, a partir de uma regra, aos exemplos utilizados para o treinamento. 

Normalmente as redes neurais são separadas em camadas, de modo que as unidades 

estejam conectadas às camadas superiores e/ou inferiores. 
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2.5.1 Perceptron Multicamadas (MLP) 
As redes neurais MLP (Multi-Layer Perceptron – Percéptron Multicamadas) são 

formadas por diversas camadas, sendo que cada uma possui uma função específica. 

A camada de saída constrói a resposta a partir de estímulos da camada intermediária, 

que por sua vez é a responsável pela extração das características, sendo seus pesos 

uma codificação das características apresentadas pela camada de entrada 

(CARVALHO, 2000).  

A figura 12 traz uma representação de uma rede neural MLP com uma camada 

intermediária. 

 
Figura 12 – Representação de uma Rede Neural MLP. Fonte: (FERRAMOLA, 2002) 

Uma representação adequada para simular o mapeamento da entrada para a 

saída através das unidades intermediárias pode ser obtida se existirem conexões 

entre as unidades de entrada e um conjunto suficientemente grande de unidades 

intermediárias. A escolha adequada do número de unidades intermediárias que 

reproduz a saída com exatidão é o grande desafio das redes neurais MLP.  

O treinamento da rede neural MLP é feita através do algoritmo de retro 

propagação de erro (backpropagation). Neste algoritmo primeiramente um padrão é 

apresentado à camada de entrada da rede e passa por todas as camadas até que a 

camada de saída produza um valor.  

Este resultado é comparado ao resultado esperado e um erro é calculado. Em 

seguida o erro obtido é propagado das camadas de saída até a camada de entrada, 

sendo que os pesos de cada camada vão sendo modificados conforme o erro se 

propaga. Desta forma os erros vão sendo diminuídos progressivamente. 
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Após o treinamento da rede MLP com o algoritmo backpropagation, ela pode 

ser usada para classificar novos dados. Neste caso, os dados são apresentados às 

camadas de entrada e são processados pelas camadas intermediárias até que os 

resultados sejam apresentados na saída. 

 

2.6  Gestos 

No contexto deste trabalho, gestos podem ser definidos como um movimento 

de braços e mãos com o objetivo de expressar sentimentos ou permitir a comunicação 

entre pessoas. Os gestos de mão possuem duas classificações básicas: 

 Gesto estático, ou postura, que é definido por um momento particular da 

mão sendo caracterizado em uma imagem; 

 Gesto dinâmico, que é definido por um movimento da mão ao longo de 

um tempo e caracterizado por um vídeo ou por uma sequencia de 

imagens.  

Em particular, os gestos dinâmicos da mão podem ser caracterizados por uma 

configuração inicial e final da mão e pelos movimentos intermediários que 

caracterizam a trajetória do movimento.  

Uma possível utilização dos gestos dinâmicos da mão na Interação Homem 

Computador é através da visão computacional. Esta abordagem se torna natural por 

não exigir que dispositivos mecânicos ou luvas sejam acoplados ao braço para que a 

interação seja realizada (RIBEIRO H. L., 2006). 

 

2.7  Considerações Finais 

Este capítulo apresentou alguns dos conceitos que serão utilizados para o 

desenvolvimento do sistema de reconhecimento de gestos dinâmicos de mão humana 

a partir de imagens de vídeo obtidas através de uma câmera web. 

A biblioteca OpenCV foi apresentada, mostrando que pode ser utilizada para a 

implementação de algoritmos na área de visão computacional. O modelo e os espaços 

RGB e RGB normalizado também foram explicados, tendo sido dito que usar o espaço 

RGB normalizado é mais adequado para a segmentação de pele humana. 

Alguns conceitos de segmentação de imagens foram apresentados, como 

subtração de fundo, histograma e limiarização, e estes conceitos podem ser utilizados 

no processamento de imagens para separação de área de interesse. 

Foi também explicado como filtros morfológicos podem auxiliar na eliminação 

de ruídos no pós-processamento de imagens, através dos conceitos de morfologia 
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matemática. Também foi apresentada a rede neural MLP e seu algoritmo de retro 

propagação de erro (backpropagation). 

Por último a definição de gestos dinâmicos de mão humana foi apresentada, 

bem como sua possível utilização na Interação Homem-Computador. 
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Capítulo 3  – Materiais e Métodos 

O objetivo deste trabalho é desenvolver um algoritmo para o reconhecimento 

de gestos dinâmicos de mão humana que são capturados de imagens de vídeo por 

meio de uma webcam, analisando quais condições de ambiente que produzem os 

melhores índices de reconhecimento. 

A figura 13 traz o diagrama de blocos da proposta de trabalho deste projeto. 

 
Figura 13 – Diagrama de blocos do projeto 

Um determinado gesto da mão humana esquerda é executado em frente a uma 

webcam, a uma distância e iluminação fixas. As imagens de vídeos que representam 

os gestos são adquiridos por meio de uma webcam. 

O processamento e pós-processamento das imagens de vídeo são realizados 

fazendo uso dos conceitos de visão computacional e implementados com o auxílio da 

biblioteca OpenCV, em linguagem de programação C.  

A extração de características que são usadas na rede neural, bem como o seu 

treinamento e a sua aplicação são também realizadas com o auxilio da biblioteca 

OpenCV com as funções relacionadas à aprendizagem de máquina. 

A análise de resultados identifica as condições de ambiente, referentes à 

distância da mão humana em relação à webcam e as condições de iluminação, que 

produzem os melhores resultados quanto ao reconhecimento dos gestos.  

Na ultima etapa da análise, é determinado o algoritmo apresenta bons índices 

de desempenho quanto ao reconhecimento para diferentes tipos de mão humana, nas 

melhores condições de ambiente verificadas. 

Assim, este projeto contempla todas as etapas de um sistema de visão 

computacional, e os materiais e métodos serão apresentados a seguir. 

 



40 
 

3.1  Materiais 

A câmera web utilizada para a aquisição de imagens foi a Genius Look 317. As 

características desta câmera podem ser vistas na tabela 2. 

Tabela 2 – Características da câmera web utilizada 

Marca Genius 
Modelo Look 317 

Sensor de Imagem VGA CMOS Image Sensor 
Interface USB 1.1/1.0 

Tipo de Lente Foco manual 
Resolução de Imagem 640x480 

Resolução de Vídeo 30 quadros/s 
Sistemas Operacionais suportados Windows 7, Vista, XP, 2000, Me, 98SE 

 

O computador utilizado neste projeto possui as seguintes características, 

apresentadas na tabela 3. 

Tabela 3 – Características do computador utilizado 

Marca Itautec 
Modelo INFOWAY NOTE W7645 

Sistema Operacional Windows 7 Professional 
Processador Intel Pentium Dual CPU T2330 1.6 GHz 

Memória RAM 2 GB 
Tipo de Sistema Sistema Operacional 64 bits 

 

Os programas (softwares) utilizados para o desenvolvimento do algoritmo e 

para a segmentação manual de imagens bem como a biblioteca que contém as 

funções de visão computacional e redes neurais são apresentados na tabela 4. 

Tabela 4 – Softwares e Biblioteca Utilizados 

Ambiente de Desenvolvimento 
Software Microsoft Visual Studio C++ 2010  
Versão Express Edition v. 10.0.30319.0 

Programa Usado para Segmentação Manual de Imagens 
Software Adobe Photoshop CS5 Extended 
Versão 12.1 x32 

Funções de Visão Computacional e Aprendizagem de Máquina 
Biblioteca OpenCV (Open Source Computer Vision Library) 

Versão 2.0 
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3.2  Sistema Proposto 

O algoritmo foi desenvolvido com o auxilio do software Microsoft Visual Studio 

C++, utilizando a linguagem de programação C e a biblioteca OpenCV. O Apêndice A 

traz os algoritmos completos, utilizado em cada uma das etapas deste sistema. 

A metodologia utilizada para o desenvolvimento do sistema proposto na figura 

13 será descrita a seguir. 

 

3.2.1 Captura de Imagens 
A webcam é posicionada por meio de um suporte, com suas lentes localizadas 

em frente a mão humana que executará os gestos. A distância entre a mão humana e 

a câmera é fixa para um grupo de imagens capturadas e sua influência em relação à 

taxa de reconhecimento dos gestos será fruto de análise. 

A iluminação e a cor do fundo utilizados neste ambiente também são fixas, e 

sua influência no processo de segmentação da imagem também será analisada. 

A câmera web está conectada ao computador por meio de uma conexão USB. 

O trecho do programa responsável pela captura do vídeo da webcam e pela 

separação dos quadros que serão analisado são mostrados na figura 14. 

CvCapture* capture; 
 IplImage* frame = 0; 
  
 capture = cvCaptureFromCAM(0); 
 frame = cvQueryFrame( capture ); 

Figura 14 – Código responsável pela Inicialização da Câmera. 

A função cvCaptureFromCAM(0) captura os quadros da câmera web a uma 

taxa máxima de 30 quadros por segundo. A função cvQueryFrame(capture) é a 

responsável por associar o quadro extraído a variável frame, do tipo imagem. 

A câmera web utilizada (Genius Look 317), integrada a este sistema, fornece a 

variável frame uma imagem de três canais de oito bits cada, no espaço RGB, de 

resolução 640x480 pixels. 

A variável frame é capturada a uma taxa de 15 quadros por segundo quando o 

programa está sendo executado, porém apenas alguns destes quadros serão 

processados e representarão o gesto dinâmico executado. O intervalo de tempo de 

captura dos quadros analisados é fixo, e definido de acordo com a velocidade de 

processamento do sistema.  
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Um exemplo de frame capturado pode ser visto na figura 15. 

 

Figura 15 – Exemplo de Quadro Capturado 

 

3.2.2 Processamento de Imagens 
O objetivo desta etapa é segmentar a mão humana em relação ao fundo da 

imagem. Cada quadro capturado no intervalo de tempo definido passa por este 

processo de segmentação. As etapas deste processo podem ser observadas na figura 

16. 

Conversão
RGB normal. Separa r Subtrai Fundo Método do Vale

(Histograma) Limiarização

 

Figura 16 – Etapas para o Processamento de Imagens 

Primeiramente a imagem capturada é transformada do espaço de cores RGB 

para o espaço RGB normalizado, visto que é mais adequado para a representação da 

pele humana (FIBIGER, 2004). A figura 17 traz o código que trata desta conversão. 
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cvCopy( frame, image, 0 ); 
 
 // Dados da Imagem 
 height = image->height; 
 width = image->width; 
 step = image->widthStep; 
 channels = image->nChannels; 
 data = (uchar *)image->imageData; 
 
 //Conversão para rgb normalizado 
 for(i=0;i<height;i++) for(j=0;j<width;j++) 
 { 
  B=data[i*step+j*channels+0]; 
  G=data[i*step+j*channels+1]; 
  R=data[i*step+j*channels+2]; 
  L=B+G+R; 
      
  if(L==0) { b=0; g=0; r=0; } 
  else { b=(float)B/L; g=(float)G/L; r=(float)R/L; } 
 
  data[i*step+j*channels+0]=(uchar)255*b; 
  data[i*step+j*channels+1]=(uchar)255*g; 
  data[i*step+j*channels+2]=(uchar)255*r; 
 } 

Figura 17 – Código responsável pela conversão para RGB normalizado 

 

A variável frame é copiada para a variável image, que representará a imagem 

no espaço RGB normalizado. A altura (height) e largura (height) da imagem, o número 

de canais da imagem (channels) e o vetor de representação da imagem (data) são 

capturados inicialmente. Em seguida, todos os pixels da imagem são convertidos para 

o RGB normalizado, conforme a descrição teórica do item 2.2.2. 

Um exemplo desta conversão pode ser visto na figura 18. 

 

Figura 18 – Exemplo de Conversão para o RGB normalizado 
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O terceiro canal da imagem que representa o vermelho normalizado é isolado 

através da função cvCvtPixToPlane(imagem, 0, 0, plano3, 0). Um exemplo do canal r 

normalizado pode ser observado na figura 17. 

 

Figura 19 – Exemplo do Canal r normalizado 

Em seguida o fundo da cena capturado previamente por meio da variável 

img_fundo, é subtraído da imagem no espaço RGB normalizado, representada pela 

variável plano3, pela função cvAbsDiff(img_fundo,plano3,plano3). A figura 20 traz as 

imagens presentes nesta função em um exemplo. 

  

     (a) Imagem     (b) Fundo 

 

(c) Subtração de Fundo 

Figura 20 – Exemplo de Subtração de Fundo 
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O histograma (hist) desta imagem é calculado e um valor para limiarização (thr) 

da imagem é definido utilizando-se o método do vale. O trecho de programa da figura 

21 trata destas etapas. 

cvCalcHist( &plano3, hist, 0, 0 ); 
 

 // Encontra o Vale 
 float *valor, *valorAnt; 
 if( !para)  
 { 
  thr=0; 
  valorAnt=cvGetHistValue_1D(hist,1); 
  for(i=2;(i<256)&&(!para);i++) 
  {  
   valor=cvGetHistValue_1D(hist,i); 
   if(*valor < *valorAnt) 
    para=true; 
   *valorAnt=*valor; 
  } 
  para=false; 
  for(;(i<256)&&(!para);i++) 
  {  
   valor=cvGetHistValue_1D(hist,i); 
   if(*valor > *valorAnt) 
    para=true; 
   *valorAnt=*valor; 
  } 
  thr=i; 
 } 

Figura 21 – Código responsável pelo Cálculo do Histograma 

 

A figura 22 traz o histograma gerado para o exemplo da figura 15 com o limiar 

estabelecido pelo método do vale. 

 

Figura 22 – Exemplo de Histograma para a Imagem da figura 20 
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Por ultimo a imagem é binarizada com o valor de limiarização encontrado (thr), 

utilizando-se a função cvThreshold(plano3,plano3,thr,255,CV_THRESH_BINARY). A 

figura 23 traz a figura 20 binarizada. 

 

Figura 23 – Exemplo de Binarização da Imagem da figura 20 

 

3.2.3 Pós Processamento de Imagens 
Após a obtenção da imagem segmentada, são utilizados dois filtros 

morfológicos, de abertura e de fechamento, para a remoção de ruídos ainda presentes 

na imagem. As funções da figura 24 executam estes filtros sobre a imagem binária 

resultante do processamento de imagens. 

 //Filtros Morfologicos 
 cvMorphologyEx(img_rgb_cinza,img_rgb_cinza,NULL,0,CV_MOP_OPEN,1); 
 cvMorphologyEx(img_rgb_cinza,img_rgb_cinza,NULL,0,CV_MOP_CLOSE,1); 

Figura 24 – Código responsável pelos Filtros Morfológicos  

 

A figura 25 traz o resultado da imagem após a aplicação dos filtros 

morfológicos. 
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Figura 25 – Exemplo de Aplicação de Filtro Morfológico 

Outra etapa deste pós-processamento de imagens é a remoção do punho que 

executa o gesto dinâmico, que não traz informações significativas quanto à 

representação do gesto. O trecho de programa da figura 26 aplica este procedimento. 

//Centro da Imagem 
 cvMoments(g_gray,&momento,1); 
 x=(int)(momento.m10/momento.m00); 
 y=(int)(momento.m01/momento.m00); 
 
 //Encontra Raio 
 step = imagem->widthStep; 
 channels = imagem->nChannels; 
 data = (uchar *)imagem->imageData; 
 raio=0; 
 for(j=x;j>=0;j--) 
  if(data[y*step+j*channels]==0) 
  { raio=x-j; break; }  
 
 //Imagem sem Punho 
 for(i=0;i<(imagem->width);i++) for(j=y+raio;j<(imagem->height);j++) 
 {  
  data[j*step+i*channels+0]=0; 
  data[j*step+i*channels+1]=0; 
  data[j*step+i*channels+2]=0; 
 } 

Figura 26 – Código responsável pelo Pós-Processamento da Imagem 

 

Primeiramente o centro da imagem que representa a mão é localizado através 

do momento de inércia dos pixels brancos da imagem binarizada (valor=1). Em 

seguida, é calculada a distância euclidiana entre o centro e o seu extremo esquerdo 

máximo, mantendo o valor de y que representa o centro constante. 
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Esta distância é usada para definir o extremo inferior da nova imagem. Nesta 

nova imagem, os pixels que estão localizados abaixo desta distância em relação ao 

centro da imagem são definidos com valor zero. A figura 27 traz o resultado da 

imagem após a remoção do punho. 

 

Figura 27 – Exemplo de Remoção de Punho 

 

3.2.4 Extração de características 
Primeiramente se buscam os limites que definem a nova imagem, sendo os 

extremos definidos pelos pontos que tem pixel branco na escala de cinza (valor=255). 

O trecho do código da figura 28 busca estes extremos. 

 int imin=imagem->width, imax=0, jmin=imagem->height, jmax=0; 
 step = g_gray->widthStep; 
 data = (uchar *)g_gray->imageData; 
 for(i=0;i<(g_gray->width);i++)  
  for(j=0;j<(g_gray->height);j++) 
   if(data[j*step+i]==255) 
   { 
    if(i<imin) imin=i; 
    if(j<jmin) jmin=j; 
    if(i>imax) imax=i; 
    if(j>jmax) jmax=j; 
   } 

Figura 28 – Código responsável por Encontrar os Limites da Imagem 
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Em seguida a imagem é dividida em 16 quadrantes de igual área e é calculada 

a porcentagem de pixels brancos de cada quadrante. Estes valores representam o 

vetor de características de um dos quadros capturados do vídeo. 

O trecho de código da figura 29 executa estes dois procedimentos. 

 //Calcula N Pixels Branco 
 step = imagem->widthStep; 
 channels = imagem->nChannels; 
 data = (uchar *)imagem->imageData; 
 for(i=imin;i<imax;i++) for(j=jmin;j<jmax;j++) 
  if(data[j*step+i*channels+0]==255) 
  {  
   N_PIXELS[0]++; 
   iL=(int)(((float)(i-imin)/(imax-imin))*PX_LIN);  
   jC=(int)(((float)(j-jmin)/(jmax-jmin))*PX_COL);    
   N_PIXELS[1+iL+jC*PX_LIN]++; 
  } 
  
 //Vetor de Caracteristicas 
 for(i=0;i<N_CARACT;i++) 
  Caract[i] =  

   (int) ((float)N_PIXELS[i+1]/((imax-imin)*(jmax-jmin)/(N_CARACT))*100); 
Figura 29 – Código responsável por Extrair as Características 

 

A imagem da figura 30 traz um exemplo de imagem segmentada e dividida em 

16 quadrantes de tamanhos iguais para o cálculo da porcentagem de pixels brancos.  

 

Figura 30 – Exemplo de Divisão de Imagem para Extração de Características 
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Em seguida, os vetores de características que representam cada quadro de um 

vídeo são agrupados sequencialmente, de forma que o novo vetor represente as 

características do vídeo. A função armazena, encontrada no Apêndice A, agrupa este 

vetor de característica em um arquivo de dados. 

 
3.2.5 Treinamento da Rede Neural 

Newman et al (1998) propuseram um algoritmo de rede neural MLP para o 

reconhecimento de letras. Este algoritmo está preparado para o treinamento e o 

reconhecimento de uma rede neural a partir de um vetor de características (NEWMAN, 

1998). 

Um algoritmo com parâmetros similares será utilizado para o treinamento da 

rede neural MLP a partir do vetor de característica que define cada imagem de cada 

vídeo que representa um gesto de mão humana. O código do programa desenvolvido 

pode ser encontrado no Apêndice A. 

Os parâmetros e critérios que definem a rede neural utilizada são mostrados na 

tabela 5. 

Tabela 5 – Parâmetros da Rede Neural utilizada 

Característica Valor Associado 
Rede Neural MLP – Perceptron Multicamadas 
Algoritmo Retro propagação (Backpropagation) 

Número de Camadas 4 
Neurônios por Camada (16*Nº de Quadros) / 100 / 100 / (Nº de Classes) 

Critério para Treino Máximo de 300 iterações com erro 0,01 
 

Como amostras para o treinamento desta rede neural são utilizadas os vetores 

de características que representam um gesto associado à classe que o representa. O 

número de classes e a quantidade de amostras para cada classe durante o 

treinamento da rede neural MLP variam de acordo com a análise realizada no item 3.3 

deste trabalho. 

 

3.2.6 Reconhecimento 
As funções desenvolvidas para o reconhecimento da rede neural foram 

similares às utilizadas por Newman et al (1998). Elas podem ser encontradas no 

código do programa, no Apêndice A. 

A partir de um vetor de dados de entrada e da rede neural treinada, o programa 

fornece como resultado um indicador que representa a probabilidade de pertencer a 

cada uma das classes (NEWMAN, 1998). 
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A interpretação destes resultados será realizada para cada análise no capítulo 

4 deste trabalho.  

3.3  Análises 

As seguintes análises e critérios serão utilizados para atingir os objetivos deste 

trabalho.  

3.3.1 Iluminação e Cor de Fundo 
Primeiramente serão avaliadas as condições de ambiente da captura de 

imagens, como o tipo de iluminação e a cor do cenário de fundo utilizado. A tabela 6 

traz os cenários que serão analisados. 

Tabela 6 – Cenários para Análise da Iluminação e Cor do Fundo 

Cenário Tipo de Iluminação Cor de Fundo 
1A Ambiente Branco 
1B Fluorescente Superior  Branco 
1C Ambiente Preto 
1D Fluorescente Superior Preto 

 

O fundo utilizado para captura de imagens é sempre simples e as cores variam 

entre branco e preto. As iluminações são a ambiente, a luz natural do dia, e a obtida 

por uma lâmpada incandescente localizada superiormente à cena. 

Para cada cenário são capturadas 50 imagens, a uma distância entre a câmera 

web e mão humana tal que se posicione entre o limite superior e inferior da imagem. 

Essas imagens são submetidas a uma segmentação manual através do programa 

Adobe Photoshop, e ao algoritmo de processamento e pós-processamento de 

imagens deste trabalho. 

Como classificador para este sistema foi criada uma tabela de contingências. 

Foi definida como imagem padrão a obtida através da segmentação manual e a 

imagem a ser analisada a obtida por meio da segmentação pelo algoritmo proposto. A 

figura 31 traz um exemplo destas imagens. 
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                                             (a)           (b) 

Figura 31 –  Exemplo de Segmentação Manual (a) e pelo Algoritmo proposto (b) 

Para cada imagem são calculados os seguintes índices: 

 VP (Verdadeiro Positivo) – O pixel é branco na imagem padrão e na 

analisada; 

 VN (Verdadeiro Negativo) – O pixel é preto na imagem padrão e na 

analisada; 

 FP (Falso Positivo) – O pixel é branco na imagem analisada e preto na 

padrão; 

 FN (Falso Negativo) – O pixel é preto na imagem analisada e branco na 

padrão. 

Como métricas para esta análise são usadas: 

 Sensibilidade –  ܴܶܲ = ௏௉
௏௉ାிே

 

 Acurácia –  ܣ = ௏௉ା௏ே
௏௉ା௏ேାி௉ାிே

 

 Precisão – P= ௏௉
௏௉ାி௉

 

Em cada cenário é calculada a média destes parâmetros para todas as 

imagens capturadas. O melhor cenário será aquele que apresentar os maiores valores 

para cada parâmetro. 

Este cenário é utilizado em todas as análises seguintes. 

 

3.3.2 Distância entre Mão e Câmera 
Nesta etapa foi analisada a distância entre a mão humana e câmera web que 

captura as imagens e produz os melhores resultados no reconhecimento de gestos. As 

distâncias analisadas se encontram na tabela 7. 
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Tabela 7 – Distâncias Avaliadas entre a Mão Humana e a Câmera Web  

Cenário Distancia 
2A 35 cm 
2B 45 cm 
2C 50 cm 
2D 55 cm 
2E 60 cm 
2F 70 cm 
2G 80 cm 
2H 85 cm 
2I 90 cm 
2J 100 cm  
2K 110 cm 

 

Para cada cenário são capturadas 5 classes de gestos dinâmicos de mão 

humana, sendo que em cada classe são capturadas 40 amostras. As classes de 

gestos podem ser visualizadas no Apêndice B. 

Em seguida, cada grupo de vídeos capturado é submetido ao algoritmo de 

reconhecimento de gestos proposto neste trabalho, sendo que metade das imagens é 

utilizada para treinar a rede neural e a outra metade é submetida à rede treinada. 

A porcentagem de acerto no reconhecimento de gestos para cada cenário é 

calculada e também a probabilidade média que o algoritmo encontrou para a classe 

correta. 

 A melhor distância será a que apresentar melhores resultados e será utilizada 

nas etapas de análise seguintes. 

 

3.3.3 Reconhecimento 
Nesta etapa, pretende se verificar se o algoritmo apresenta bons índices de 

desempenho quanto ao reconhecimento para diferentes tipos de mão humana, nas 

melhores condições de ambiente. 

São analisadas 25 classes de gestos, sendo capturadas 50 amostras de cada 

classe executadas por 5 mãos humanas distintas. As 25 classes utilizadas podem ser 

vistas no Apêndice C deste trabalho. 

Os vídeos capturados são submetidos ao algoritmo de reconhecimento de 

gestos, sendo metade utilizada para treinar a rede neural e a outra metade submetida 

à rede treinada. 
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Calcula-se, então, a porcentagem de acerto do reconhecimento de gestos, a 

probabilidade média que o algoritmo estipulou para a classe correta e a matriz de 

confusão para este sistema. Na matriz de contingência estará disponível o número de 

classes caracterizadas como cada classe e os seguintes parâmetros: 

 Falsa Aceitação - ܴܲܨ = ௏௉
௏௉ା்ே

; 

 Falsa Rejeição - ܴܰܨ = ௏ே
௏ேା்௉

 

 

Todos os resultados obtidos serão analisados no capítulo 4 deste trabalho. 
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Capítulo 4  – Resultados e Conclusões 

Este capítulo apresenta os resultados encontrados para as análises descritas 

no capítulo 3 e as conclusões dos resultados obtidos. 

 

4.1  Resultados 

Os resultados apresentados referem-se à análise das melhores condições de 

iluminação e a cor de fundo do cenário; da distância entre a mão humana e a câmera 

web; e a análise do algoritmo proposto nas melhores condições encontradas. 

 

4.1.1 Iluminação e Cor de Fundo 
As figuras 32, 33, 34 e 35 trazem dois exemplos de quadros que foram 

segmentados manualmente e usando o algoritmo proposto, para cada um dos 

cenários analisados quanto à iluminação do ambiente e a cor do cenário de fundo 

utilizado. 

A figura 32 traz os resultados obtidos para dois quadros capturados com a 

iluminação ambiente e com o cenário de fundo branco. 

   
         (a) Frame         (b) Padrão           (c) Segmentação pelo Algoritmo 

   
         (d) Frame         (e) Padrão           (f) Segmentação pelo Algoritmo 

Figura 32 – Imagens do Cenário 1A com Iluminação Ambiente e Fundo Branco 
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A figura 33 traz os resultados obtidos para dois quadros capturados com a 

iluminação fluorescente superior e com o cenário de fundo branco. 

   
         (a) Frame          (b) Padrão           (c) Segmentação pelo Algoritmo 

   
         (d) Frame          (e) Padrão           (f) Segmentação pelo Algoritmo 

Figura 33 – Imagens do Cenário 1B com Iluminação Fluorescente e Fundo Branco 

 

A figura 34 traz os resultados obtidos para dois quadros capturados com a 

iluminação ambiente e com o cenário de fundo preto. 

   
         (a) Frame          (b) Padrão           (c) Segmentação pelo Algoritmo 

   
         (d) Frame          (e) Padrão           (f) Segmentação pelo Algoritmo 

Figura 34 – Imagens do Cenário 1C com Iluminação Ambiente e Fundo Preto 
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A figura 35 traz os resultados obtidos para dois quadros capturados com a 

iluminação fluorescente superior e com o cenário de fundo preto. 

   
         (a) Frame          (b) Padrão           (c) Segmentação pelo Algoritmo 

   
(d) Frame          (e) Padrão           (f) Segmentação pelo Algoritmo 

Figura 35 – Imagens do Cenário 1D com Iluminação Fluorescente e Fundo Preto 

 

A comparação visual entre as imagens capturadas permite concluir que a 

segmentação com o cenário de fundo branco apresenta os melhores resultados.  

A segmentação pelo algoritmo proposto para os cenários 1A e 1B são as mais 

similares à segmentação padrão e são as que possuem a menor quantidade de ruído.  

A análise visual destes dois cenários não permite encontrar grandes diferenças 

para a segmentação da imagem com a variação da iluminação no cenário de fundo 

branco. Os quadros segmentados com a iluminação ambiente e com a iluminação 

fluorescente superior apresentam resultados similares.  

A tabela 8 mostra os resultados quantitativos das análises dos quatro cenários 

e a sensibilidade, a acurácia e a precisão médias para o grupo de imagens capturado.  

Tabela 8 – Resultados para a Análise da Iluminação e Cor de Fundo  

Cenário Iluminação Fundo TPR A P 
1A Ambiente Branco 95.280% 98.507% 99.849% 
1B Fluorescente Superior Branco 95.340% 98.534% 99.933% 
1C Ambiente Preto 57.992% 91.914% 99.987% 
1D Fluorescente Superior Preto 59.549% 86.773% 96.150% 
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Os cenários com os melhores resultados foram os de fundo simples de cor 

branca. Assim como a análise visual permitiu inferir, a variação das condições de 

iluminação para este cenário não alterou de forma significativa os parâmetros de 

desempenho da segmentação analisados, sendo que a iluminação fluorescente 

superior apresentou resultados levemente superiores para os três parâmetros 

avaliados. 

A sensibilidade e a acurácia apresentaram alterações significativas quando a 

cor do cenário de fundo foi alterada de branco para preto, podendo caracterizar um 

método de segmentação que não é robusto à variação das condições do cenário de 

fundo. 

Assim, foi escolhido o cenário 1B com o fundo de cor branco e com a 

iluminação fluorescente superior para a realização das demais etapas deste trabalho, 

visto que foi o cenário que apresentou os melhores resultados na análise visual e para 

os três parâmetros calculados: sensibilidade, acurácia e precisão.  

 

4.1.2 Distância entre Mão Humana e Câmera 
A tabela 9 apresenta a avaliação quantitativa da influencia da distância entre a 

mão humana e a câmera web na porcentagem de reconhecimento de gestos 

dinâmicos e na porcentagem média definida para a classe correta no grupo de gestos 

em cada cenário.  

 

Tabela 9 – Resultados para a Distância entre a Mão e a Câmera 

Cenário Distância 
% de Reconhecimento % Média para a Classe 

Correta Treinamento Testes 
2A 35 cm 100 % 96 % 87,523 % 
2B 45 cm 100 % 96 % 88,236 % 
2C 50 cm 100 % 95 % 87,531 % 
2D 55 cm 100 % 96 % 87,250 % 
2E 60 cm 100 % 95 % 86,762 % 
2F 70 cm 100 % 95 % 86,120 % 
2G 80 cm 100 % 94 % 85,341 % 
2H 85 cm 100 % 89 % 79,128 % 
2I 90 cm 100 % 73 % 64,523 % 
2J 100 cm  100 % 63 % 54,871 % 
2K 110 cm 100 % 54 % 47,234 % 
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Os resultados obtidos permitem inferir que para valores de distâncias entre 35 

cm e 80 cm o algoritmo proposto apresenta valores satisfatórios para a porcentagem 

de reconhecimento e para a porcentagem média de a classe reconhecida ser a classe 

correta. 

É possível observar que a partir de valores de distância acima de 80 cm os 

valores dos parâmetros utilizados passam a diminuir de forma significativa com o 

aumento da distância entre a câmera web e a mão que executa o gesto. 

Uma possível explicação para esta diminuição é que com o aumento da 

distância a imagem passa a ser muito pequena e isto impede que a imagem 

represente o gesto de uma mão humana, mesmo com o uso de características 

proporcionais que são independentes do tamanho da imagem. 

Assim se estabelece como valores de distância entre 35 cm e 80 cm como os 

valores que apresentam resultados ótimos de reconhecimento. 

A distância de 45 cm entre a mão humana e a câmera web utilizada para a 

captura de vídeos foi utilizada para a análise da ultima etapa deste trabalho, por 

apresentar os melhores resultados. 

 

4.1.3 Reconhecimento 
A tabela 10 traz o resultado da execução do algoritmo de reconhecimento de 

gestos dinâmicos de mão humana para uma amostra de 25 classes, com 50 imagens 

para cada uma das classes. A matriz de confusão para esta análise pode ser 

encontrada no Apêndice D.  

Tabela 10 – Parâmetros da Análise de Reconhecimento 

% de Reconhecimento % Média para a 
Classe Correta FNR FPR 

Treinamento Testes 
100 % 94,72 % 84,634 % 5,28% 0,223% 

 

O valor de 5,12% para a taxa de rejeição média (FNR) indica que poucas 

classes de entrada foram classificadas erroneamente. O valor máximo para esta taxa 

para uma classe, observado na tabela de contingências, foi de 12%. 

O valor de 0,223% para a taxa de aceitação média (FPR) indica a razão de 

amostras que foram classificados em uma classe sem pertencer a ela em relação ao 

total de elementos que não pertencem a esta classe. O valor máximo para esta taxa 

para uma classe, observado na tabela de contingências, foi de 0,518%. 
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Para cada gesto analisado pelo algoritmo proposto ofereceu como resposta a 

probabilidade de a amostra de entrada pertencer a cada uma das classes. A 

probabilidade média do sistema oferecer a classe correta foi de 84,634%. 

O sistema apresentou ainda uma alta precisão (94,72%) no reconhecimento de 

gestos visto que o grupo total de amostras utilizado para o reconhecimento é de 625 

gestos dinâmicos de mão humana.  

 

4.2  Conclusões 

A análise das condições de iluminação e cor do cenário de fundo permitiu 

concluir que o método de segmentação de imagens desenvolvido apresenta melhores 

resultados com a cor de cenário de fundo simples branco. A variação da iluminação de 

ambiente para fluorescente superior com o cenário simples branco não alterou de 

forma significativa o bom desempenho da segmentação, sendo que a iluminação 

fluorescente superior propiciou resultados levemente melhores. 

A variação do cenário para a cor de fundo preta influenciou negativamente no 

desempenho da segmentação, indicando um método que não é robusto a variação da 

cor do cenário de fundo simples utilizado. 

Em relação à variação da distância entre a câmera web utilizada para a captura 

de imagens e a mão humana que executa os gestos, o algoritmo mostrou se eficiente 

no reconhecimento dos gestos para valores entre 35 cm e 80 cm. Este desempenho 

se explica pela escolha de características proporcionais ao tamanho da mão humana 

com o corte do punho, que independem do tamanho da imagem. 

 A distância de 45 cm para um cenário de fundo simples com a cor branca e 

iluminação florescente superior foram as condições de ambiente para o sistema que 

resultaram em melhores porcentagens no reconhecimento de gestos.  

Nestas condições o sistema foi analisado para um conjunto de 25 classes de 

gestos dinâmicos distintos de mão humana, sendo que foram capturadas 50 amostras 

de 5 mãos humanas diferentes. O sistema mostrou se preciso e eficiente para este 

grupo fechado de classes, com alta porcentagem de reconhecimento de gestos e alta 

probabilidade média associada à classe de resposta correta. 

Assim, em condições de ambiente limitadas, o sistema proposto mostrou-se 

apto a ser utilizado em aplicações de Interação Humano-Computador (IHC). 
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4.3 Trabalhos Futuros 

O método de segmentação utilizado não se mostrou robusto com a variação 

das condições do cenário de fundo. Assim, podem ser estudados e utilizados em 

projetos futuros outros métodos que respondam melhor não só a variação da cor como 

a presença de objetos dinâmicos no cenário de captura dos gestos.  Algoritmos de 

segmentação que utilizam redes neurais são exemplos de métodos que respondem 

melhor a estas condições. 

O número de classes utilizadas deve ser aumentado para garantir uma análise 

estatística mais eficiente. 

O desenvolvimento de aplicações que utilizem este algoritmo também pode ser 

objeto de trabalhos futuros. Programas que utilizam o reconhecimento de gestos de 

mão humana para o acionamento de aplicativos em um computador são exemplos de 

aplicações. Neste cenário a mão humana, executando um gesto dinâmico previamente 

estabelecido, seria uma interface de entrada para programas executados em um 

computador, sem o auxilio do teclado ou do mouse para tal função.   
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APÊNDICE A – Códigos do Algoritmo Utilizado 

A.1 Algoritmo para Análise da Iluminação e Cor de Fundo 

// BIBLIOTECAS 
#include <math.h> 
#include <cv.h> 
#include <highgui.h> 
#include <ml.h> 
#include <stdio.h> 
#include <stdlib.h> 
#include <ctype.h> 
#include <string.h> 
 
//     DEFINICOES 
// Define o Numero de Imagens a Capturar 
#define N_IMAGENS        50 
 
// Define Cenário 
#define CENA      3 
 
int Captura=1, i, j, k; 
char NomeImg[50]; 
bool para=true; 
 
int hcc=1; 
 
int c; 
int thr=5, armazenou=0, salva=0; 
 
IplImage *image = 0, *img_rgb_cinza=0, *img_fundo=0, *img_hist=0; 
 
void Histograma (IplImage * imagem, IplImage * hist_img); 
 
void callback (IplImage* frame) 
{ 
 int step,height,width,channels; 
 unsigned char *data; 
 int R, G, B, L; 
 float r, g, b; 
 
 if( (char) c == 's') 
  salva=1; 
 
 cvCopy( frame, image, 0 ); 
 
 cvNamedWindow( "Video", 1); 
 cvShowImage( "Video", frame); 
  
 
 // Dados da Imagem 
 height = image->height; 
 width = image->width; 
 step = image->widthStep; 
 channels = image->nChannels; 
 data = (uchar *)image->imageData; 
 
 //Identica a Faixa e Zera o Resto 
 for(i=0;i<height;i++) for(j=0;j<width;j++) 
 { 
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  B=data[i*step+j*channels+0]; 
  G=data[i*step+j*channels+1]; 
  R=data[i*step+j*channels+2]; 
  L=B+G+R; 
      
  if(L==0) { b=0; g=0; r=0; } 
  else { b=(float)B/L; g=(float)G/L; r=(float)R/L; } 
 
  data[i*step+j*channels+0]=(uchar)255*b; 
  data[i*step+j*channels+1]=(uchar)255*g; 
  data[i*step+j*channels+2]=(uchar)255*r; 
 } 
 
 
 
 cvNamedWindow( "bin", 1 ); 
 Histograma(image,img_hist); 
 
 if(salva==1) 
 {  
  if( Captura > N_IMAGENS) 
   salva=0; 
  else 
  { 
   sprintf(NomeImg,"./Imagem/%d/Img%d - 
Padrao.bmp",CENA,Captura); 
   cvSaveImage(NomeImg,img_rgb_cinza); 
  }  
 } 
 
 cvMorphologyEx(img_rgb_cinza,img_rgb_cinza,NULL,0,CV_MOP_OPEN,1); 
 cvMorphologyEx(img_rgb_cinza,img_rgb_cinza,NULL,0,CV_MOP_CLOSE,1); 
  
 cvShowImage("bin",img_rgb_cinza); 
 
 if(salva==1) 
 {  
  if( Captura > N_IMAGENS) 
   salva=0; 
  else 
  { 
   printf("\n Capturando a Imagem na Cena %d - Img %d",CENA, 
Captura); 
   
   sprintf(NomeImg,"./Imagem/%d/Img%d - 
Frame.bmp",CENA,Captura); 
   cvSaveImage(NomeImg,frame); 
 
   sprintf(NomeImg,"./Imagem/%d/Img%d - 
Binaria.bmp",CENA,Captura); 
   cvSaveImage(NomeImg,img_rgb_cinza); 
 
   Captura++; 
    
   salva=0; 
  }  
 } 
 
 c=cvWaitKey(10); 
} 
 
void Histograma (IplImage * imagem, IplImage * hist_img) 
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{ 
 IplImage* plano3 = cvCreateImage( cvGetSize(imagem), 8, 1 ); 
 int hist_size = 256, bin_w, i; 
 float max_value=0; 
   
 cvCvtPixToPlane( imagem, 0, 0, plano3, 0 ); 
  
  
 plano3->origin = imagem->origin; 
  
 if((char) c == 'f' ) 
 {  
  cvCopy(plano3, img_fundo, 0 ); 
  //capt_max=5; 
 } 
 if((char) c == 'z')  
  img_fundo=0; 
 if( ((char) c == '=') && thr<255)  
  thr++; 
 if( ((char) c == '-') && thr>0)  
  thr--; 
 if((char) c == 't')  
  para=false; 
  
 
 if(img_fundo!=0) 
 { 
  cvAbsDiff(img_fundo,plano3,plano3); 
 } 
  
  
 

CvHistogram* hist; 
 { 
  float _ranges[] = { 0, 255 }; 
  float* ranges[] = { _ranges}; 
  hist = cvCreateHist(1,&hist_size,CV_HIST_ARRAY,ranges,1); 
 } 
  
 cvCalcHist( &plano3, hist, 0, 0 ); 
 
 cvZero( hist_img ); 
 cvGetMinMaxHistValue( hist, 0, &max_value, 0, 0 ); 
    cvScale( hist->bins, hist->bins, ((double)hist_img->height)/max_value, 0 ); 
 cvSet( hist_img, cvScalarAll(255), 0 ); 
   
 bin_w = cvRound((double)hist_img->width/hist_size); 
    for( i = 0; i < hist_size; i++ ) 
        cvRectangle( hist_img, cvPoint(i*bin_w, hist_img->height), 
   cvPoint((i+1)*bin_w,hist_img->height - 
cvRound(cvGetReal1D(hist->bins,i))),  
   cvScalarAll(0), -1, 8, 0 ); 
  
 // Encontra o Vale 
 float *valor, *valorAnt; 
 if( !para)  
 { 
  thr=0; 
  valorAnt=cvGetHistValue_1D(hist,1); 
  for(i=2;(i<256)&&(!para);i++) 
  {  
   valor=cvGetHistValue_1D(hist,i); 
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   if(*valor < *valorAnt) 
    para=true; 
   *valorAnt=*valor; 
  } 
  para=false; 
  for(;(i<256)&&(!para);i++) 
  {  
   valor=cvGetHistValue_1D(hist,i); 
   if(*valor > *valorAnt) 
    para=true; 
   *valorAnt=*valor; 
  } 
  thr=i; 
 } 
     
 cvRectangle(hist_img,cvPoint(thr,0),cvPoint(thr,hist_img-
>height),cvScalarAll(0),-1,8,0); 
 
 cvNamedWindow( "hist", 1 ); 
 cvShowImage("hist",hist_img); 
 
 if(img_fundo!=0) 
 { 
  cvThreshold(plano3,plano3,thr,255,CV_THRESH_BINARY); 
 } 
  
 cvCopy(plano3,img_rgb_cinza); 
 
 cvReleaseImage(&plano3); 
 cvReleaseHist(&hist); 
} 
 
 
int main( int argc, char** argv )  
{ 
  
 CvCapture* capture; 
 IplImage* frame = 0; 
 capture = cvCaptureFromCAM(0); 
 frame = cvQueryFrame( capture ); 
 
 if( !frame ) 
           exit(0); 
 
  if( !image ) 
  { 
   image = cvCreateImage( cvGetSize(frame), 8, 3 ); 
   image->origin = frame->origin; 
   img_fundo = cvCreateImage( cvGetSize(frame), 8, 1 ); 
   img_fundo->origin = frame->origin; 
   img_rgb_cinza = cvCreateImage( cvGetSize(frame), 8, 1 ); 
   img_rgb_cinza->origin = frame->origin; 
   img_hist = cvCreateImage( cvSize(256,256), 8, 1 ); 
 } 
  
 cvCopy( frame, image, 0 ); 
 
 while(1) 
 { 
  frame = cvQueryFrame( capture ); 
  callback(frame); 
 } 
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 // Fecha as Janelas Criadas 
    cvDestroyWindow("Video"); 
    cvDestroyWindow("rgb"); 
 cvReleaseImage( &image ); 
 return 0; 
} 
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A.2 Algoritmo de para Cálculo dos Parâmetros 

// BILIOTECAS  
#include <math.h> 
#include <cv.h> 
#include <highgui.h> 
#include <ml.h> 
#include <stdio.h> 
#include <stdlib.h> 
#include <ctype.h> 
#include <string.h> 
 
//     DEFINICOES 
// Define o Numero de Imagens a Capturar 
#define N_IMAGENS        2 
 
// Define Cenário 
#define N_CENAS      4 
#define ARQUIVO_DATA       "./analise.data" 
 
int main( int argc, char** argv )  
{ 
 // Variáveis 
 char NomeImg[50]; 
 int Img=1, Cena=1, i, j; 
 
 int heightP, widthP, stepP; 
    unsigned char *dataP; 
  
 int heightA, widthA, stepA; 
    unsigned char *dataA; 
  
 IplImage* imageA; 
 IplImage* imageP; 
 
 int TP, FP, TN, FN; 
  
 FILE *fp; 
  
 //Arquivo de dados 
 fp=fopen(ARQUIVO_DATA,"w"); 
 
 //dados 
 fprintf(fp,"CENA IMG TP FP TN FN \n"); 
  
 for(;Cena<=N_CENAS;Cena++)  
  for(Img=1;Img<=N_IMAGENS;Img++) 
  { 
  // Carrega a Imagem a Padrão 
  sprintf(NomeImg,"./Imagem/%d/Img%d - Padrao.bmp",Cena,Img); 
  imageP = cvLoadImage(NomeImg,CV_LOAD_IMAGE_GRAYSCALE); 
  
  // Carrega a Imagem a ser Analisada 
  sprintf(NomeImg,"./Imagem/%d/Img%d - Binaria.bmp",Cena,Img); 
  imageA = cvLoadImage(NomeImg,CV_LOAD_IMAGE_GRAYSCALE); 
  
  // Dados da Imagem Padrão 
  heightP = imageP->height; 
  widthP = imageP->width; 
  stepP = imageP->widthStep; 
  dataP = (uchar *)imageP->imageData; 
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  // Dados da Imagem a ser Analisada 
  heightA = imageA->height; 
  widthA = imageA->width; 
  stepA = imageA->widthStep; 
  dataA = (uchar *)imageA->imageData; 
  
  //Variáveis de Análise 
  TP=0; FP=0; 
  TN=0; FN=0; 
 
  //Calcula TP, FP, TN e FN  
  for(i=0;i<heightP;i++) for(j=0;j<widthP;j++) 
  { 
   if(dataA[i*stepA+j]>125) //Amostra Positiva 
   {  
    if(dataP[i*stepP+j]>125) // Padrão Positivo 
     TP++;  
    else // Padrão Negativo 
     FP++; 
   } 
   else // Amostra Negativa 
   {  
    if(dataP[i*stepP+j]>125) // Padrão Positivo 
     FN++;  
    else // Padrão Negativo 
     TN++; 
   } 
  
  } 
 
  //Salva dados 
  fprintf(fp,"%d %d %d %d %d %d \n",Cena,Img,TP,FP,TN,FN); 
  
 }  
  
 fclose(fp); 
 
 return 0; 
} 
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A.3   Algoritmo de Captura de Quadros e Segmentação 

//   BIBLIOTECAS 
#include <math.h> 
#include <cv.h> 
#include <highgui.h> 
#include <ml.h> 
#include <stdio.h> 
#include <stdlib.h> 
#include <ctype.h> 
#include <string.h> 
 
//    DEFINICOES 
// Define o Numero de Classes e de Capturas em cada Classe 
#define N_CAPTURAS        40 
#define N_CLASSES        5 
#define N_CAP_TEMPO     5 
#define WAIT      1 
 
//    VARIÁVEIS 
int Classe=1, Captura=1,i, j, k, tempo=0,wt=0; 
char NomeImg[50]; 
bool para=true; 
 
int hcc=1; 
 
int c; 
int thr=5, capt_max=0, treinou=0, armazenou=0, salva=0; 
IplImage *image = 0, *img_rgb_cinza=0, *img_fundo=0, *img_hist=0; 
 
void Histograma (IplImage * imagem, IplImage * hist_img); 
 
void callback (IplImage* frame) 
{ 
 int step,height,width,channels; 
 unsigned char *data; 
 int R, G, B, L; 
 float r, g, b; 
 
 if( (char) c == 's') 
  salva=1; 
 
 cvCopy( frame, image, 0 ); 
 
 cvNamedWindow( "Video", 1); 
 cvShowImage( "Video", frame); 
  
 // Dados da Imagem 
 height = image->height; 
 width = image->width; 
 step = image->widthStep; 
 channels = image->nChannels; 
 data = (uchar *)image->imageData; 
 
 //Conversão para rgb normalizado 
 for(i=0;i<height;i++) for(j=0;j<width;j++) 
 { 
  B=data[i*step+j*channels+0]; 
  G=data[i*step+j*channels+1]; 
  R=data[i*step+j*channels+2]; 
  L=B+G+R; 
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  if(L==0) { b=0; g=0; r=0; } 
  else { b=(float)B/L; g=(float)G/L; r=(float)R/L; } 
 
  data[i*step+j*channels+0]=(uchar)255*b; 
  data[i*step+j*channels+1]=(uchar)255*g; 
  data[i*step+j*channels+2]=(uchar)255*r; 
 } 
 
 cvNamedWindow( "bin", 1 ); 
 Histograma(image,img_hist); 
  
 //Filtros Morfologicos 
 cvMorphologyEx(img_rgb_cinza,img_rgb_cinza,NULL,0,CV_MOP_OPEN,1); 
 cvMorphologyEx(img_rgb_cinza,img_rgb_cinza,NULL,0,CV_MOP_CLOSE,1); 
  
 cvShowImage("bin",img_rgb_cinza); 
 
 if((salva==1) && (( tempo % WAIT) == 0) ) 
 {  
  if( (Classe >= N_CLASSES) && (Captura > N_CAPTURAS)) 
   salva=0; 
  else 
  { 
   printf("\n Capturando Classe %d, Imagem %d, Tempo 
%d",Classe,Captura,tempo/WAIT+1); 
   
  
 sprintf(NomeImg,"./Imagem/C%d_I%d_T%d.bmp",Classe,Captura,tempo/WAIT+1); 
   cvSaveImage(NomeImg,img_rgb_cinza); 
 
   tempo++; 
 
   if( (tempo/WAIT+1) > N_CAP_TEMPO ) 
   {  
    Captura++; 
    tempo=0; 
    salva=0; 
    
    if(Captura > N_CAPTURAS) 
    { 
     Classe++; 
     Captura=1; 
    } 
   } 
  
  }  
   
   
 } 
 else if (salva == 1) 
  tempo++; 
  
 
 c=cvWaitKey(10); 
 
} 
 
void Histograma (IplImage * imagem, IplImage * hist_img) 
{ 
 IplImage* plano3 = cvCreateImage( cvGetSize(imagem), 8, 1 ); 
 int hist_size = 256, bin_w, i; 
 float max_value=0; 
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 cvCvtPixToPlane( imagem, 0, 0, plano3, 0 ); 
  
  
 plano3->origin = imagem->origin; 
  
 if((char) c == 'f' ) 
 {  
  cvCopy(plano3, img_fundo, 0 ); 
  //capt_max=5; 
 } 
 if((char) c == 'z')  
  img_fundo=0; 
 if( ((char) c == '=') && thr<255)  
  thr++; 
 if( ((char) c == '-') && thr>0)  
  thr--; 
 if((char) c == 't')  
  para=false; 
  
 
 if(img_fundo!=0) 
 { 
  cvAbsDiff(img_fundo,plano3,plano3); 
 } 
  
  
 CvHistogram* hist; 
 { 
  float _ranges[] = { 0, 255 }; 
  float* ranges[] = { _ranges}; 
  hist = cvCreateHist(1,&hist_size,CV_HIST_ARRAY,ranges,1); 
 } 
  
 cvCalcHist( &plano3, hist, 0, 0 ); 
 
 cvZero( hist_img ); 
 cvGetMinMaxHistValue( hist, 0, &max_value, 0, 0 ); 
    cvScale( hist->bins, hist->bins, ((double)hist_img->height)/max_value, 0 ); 
 cvSet( hist_img, cvScalarAll(255), 0 ); 
   
 bin_w = cvRound((double)hist_img->width/hist_size); 
    for( i = 0; i < hist_size; i++ ) 
        cvRectangle( hist_img, cvPoint(i*bin_w, hist_img->height), 
   cvPoint((i+1)*bin_w,hist_img->height - 
cvRound(cvGetReal1D(hist->bins,i))),  
   cvScalarAll(0), -1, 8, 0 ); 
  
 // Encontra o Vale 
 float *valor, *valorAnt; 
 if( !para)  
 { 
  thr=0; 
  valorAnt=cvGetHistValue_1D(hist,1); 
  for(i=2;(i<256)&&(!para);i++) 
  {  
   valor=cvGetHistValue_1D(hist,i); 
   if(*valor < *valorAnt) 
    para=true; 
   *valorAnt=*valor; 
  } 
  para=false; 



75 

  for(;(i<256)&&(!para);i++) 
  {  
   valor=cvGetHistValue_1D(hist,i); 
   if(*valor > *valorAnt) 
    para=true; 
   *valorAnt=*valor; 
  } 
  thr=i; 
 } 
     
 cvRectangle(hist_img,cvPoint(thr,0),cvPoint(thr,hist_img-
>height),cvScalarAll(0),-1,8,0); 
 
 if(img_fundo!=0) 
 { 
  cvThreshold(plano3,plano3,thr,255,CV_THRESH_BINARY); 
 } 
  
 cvCopy(plano3,img_rgb_cinza); 
 cvReleaseImage(&plano3); 
 cvReleaseHist(&hist); 
} 
 
 
int main( int argc, char** argv )  
{ 
  
 CvCapture* capture; 
 IplImage* frame = 0; 
 capture = cvCaptureFromCAM(0); 
 frame = cvQueryFrame( capture ); 
 
 if( !frame ) 
           exit(0); 
 
  if( !image ) 
  { 
   image = cvCreateImage( cvGetSize(frame), 8, 3 ); 
   image->origin = frame->origin; 
   img_fundo = cvCreateImage( cvGetSize(frame), 8, 1 ); 
   img_fundo->origin = frame->origin; 
   img_rgb_cinza = cvCreateImage( cvGetSize(frame), 8, 1 ); 
   img_rgb_cinza->origin = frame->origin; 
   img_hist = cvCreateImage( cvSize(256,256), 8, 1 ); 
 } 
  
 cvCopy( frame, image, 0 ); 
 
 while(1) 
 { 
  frame = cvQueryFrame( capture ); 
  callback(frame); 
 } 
  
 // Fecha as Janelas Criadas 
    cvDestroyWindow("Video"); 
    cvDestroyWindow("rgb"); 
 cvReleaseImage( &image ); 
 return 0; 
} 
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A.4   Algoritmo de Extração de Características e Geração de 
Resultados 

//    BIBLIOTECAS 
#include <math.h> 
#include <cv.h> 
#include <highgui.h> 
#include <ml.h> 
#include <stdio.h> 
#include <stdlib.h> 
#include <ctype.h> 
#include <string.h> 
 
//     DEFINICOES 
// Define o Numero de Classes e de Capturas em cada Classe 
#define N_CAPTURAS        40 
#define N_CLASSES        5 
#define N_CARACT        16 
#define N_CAP_TEMPO     5 
 
#define PX_LIN   4 
#define PX_COL   4 
 
#define PORCENTAGEM_TREINAM   75 
 
#define XML          "./sinais.xml" 
#define ARQUIVO_DATA       "./sinais.data" 
#define ESTATISTICA_DATA   "./estatistica.data" 
 
//     VARIAVEIS 
int Classe=1, Captura=1, Tempo=1; 
char NomeImg[50]; 
CvMemStorage* g_storage = NULL; 
 
int Aleatorio[N_CLASSES*(N_CAPTURAS*PORCENTAGEM_TREINAM/100)]; 
int Dados[N_CLASSES][N_CAPTURAS][N_CARACT*N_CAP_TEMPO]; 
int Caract[N_CARACT]; 
int i, j, k; 
int c; 
int thr=5, capt_max=0, treinou=0, armazenou=0, salva=0; 
 
IplImage *image = 0, *img_rgb_cinza=0, *img_fundo=0, *img_hist=0; 
 
static int 
read_num_class_data( const char* filename, int var_count, 
                     CvMat** data, CvMat** responses ) 
{ 
    const int M = 1024; 
    FILE* f = fopen( filename, "rt" ); 
    CvMemStorage* storage; 
    CvSeq* seq; 
    char buf[M+2]; 
    float* el_ptr; 
    CvSeqReader reader; 
    int i, j; 
 
    if( !f ) 
        return 0; 
 
    el_ptr = new float[var_count+1]; 
    storage = cvCreateMemStorage(); 
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    seq = cvCreateSeq( 0, sizeof(*seq), (var_count+1)*sizeof(float), storage ); 
 
    for(;;) 
    { 
        char* ptr; 
        if( !fgets( buf, M, f ) || !strchr( buf, ',' ) ) 
            break; 
        el_ptr[0] = buf[0]; 
        ptr = buf+2; 
        for( i = 1; i <= var_count; i++ ) 
        { 
            int n = 0; 
            sscanf( ptr, "%f%n", el_ptr + i, &n ); 
            ptr += n + 1; 
        } 
        if( i <= var_count ) 
            break; 
        cvSeqPush( seq, el_ptr ); 
    } 
    fclose(f); 
 
    *data = cvCreateMat( seq->total, var_count, CV_32F ); 
    *responses = cvCreateMat( seq->total, 1, CV_32F ); 
 
    cvStartReadSeq( seq, &reader ); 
 
    for( i = 0; i < seq->total; i++ ) 
    { 
        const float* sdata = (float*)reader.ptr + 1; 
        float* ddata = data[0]->data.fl + var_count*i; 
        float* dr = responses[0]->data.fl + i; 
 
        for( j = 0; j < var_count; j++ ) 
            ddata[j] = sdata[j]; 
        *dr = sdata[-1]; 
        CV_NEXT_SEQ_ELEM( seq->elem_size, reader ); 
    } 
 
    cvReleaseMemStorage( &storage ); 
    delete el_ptr; 
    return 1; 
} 
 
void armazena(void) 
{ 
 FILE *fp; 
 float sort; 
 
 printf("\n Armazenando. Aguarde....");    
 
 // Inicializa os Enderecos   
 for(i=0;i<(N_CLASSES*(N_CAPTURAS*PORCENTAGEM_TREINAM/100));i++) 
   Aleatorio[i]=i; 
  
 // Embaralha   
 for(i=0;i<(N_CLASSES*(N_CAPTURAS*PORCENTAGEM_TREINAM/100));i++) 
 {   
  // Sorteia e muda pra inteiro     
  sort=((rand()%(N_CLASSES*(N_CAPTURAS*PORCENTAGEM_TREINAM/100)))); 
  j=(int)sort; 
   
  //Troca posicoes    
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  k=Aleatorio[j]; 
  Aleatorio[j]=Aleatorio[i]; 
  Aleatorio[i]=k; 
 } 
 
 //Armazena todos os Dados no .data 
 fp=fopen(ARQUIVO_DATA,"w"); 
 for(i=0;i<(N_CLASSES*(N_CAPTURAS*PORCENTAGEM_TREINAM/100));i++)  
 {  
 
 fprintf(fp,"%c",Aleatorio[i]/(N_CAPTURAS*PORCENTAGEM_TREINAM/100)+'A'); 
  //fprintf(fp,"%c",i/N_CAPTURAS+'A'); 
  for(j=0;j<N_CARACT*N_CAP_TEMPO;j++) 
  
 fprintf(fp,",%d",Dados[Aleatorio[i]/(N_CAPTURAS*PORCENTAGEM_TREINAM/100)][
Aleatorio[i]%(N_CAPTURAS*PORCENTAGEM_TREINAM/100)][j]); 
   //fprintf(fp,",%d",Dados[i/N_CAPTURAS][i%N_CAPTURAS][j]); 
  fprintf(fp,"\n"); 
 } 
 for(i=0;i<N_CLASSES;i++) 
for(j=(N_CAPTURAS*PORCENTAGEM_TREINAM/100);j<N_CAPTURAS;j++) 
 { 
  fprintf(fp,"%c",i+'A'); 
  for(k=0;k<(N_CARACT*N_CAP_TEMPO);k++) 
   fprintf(fp,",%d",Dados[i][j][k]); 
  fprintf(fp,"\n"); 
 } 
 fclose(fp); 
 
 printf("\n Armazenou!!!"); 
 armazenou=1; 
} 
 
void Treina(void) 
{ 
    char v_filename_to_save[] = XML; 
    char* filename_to_save = v_filename_to_save; 
 char  v_data_filename[] = ARQUIVO_DATA; 
    char* data_filename = v_data_filename; 
 FILE *fp; 
  
 const int class_count = N_CLASSES; 
    CvMat* data = 0; 
    CvMat train_data; 
    CvMat* responses = 0; 
    CvMat* mlp_response = 0; 
 
 armazena(); 
 
    int ok = read_num_class_data( data_filename, N_CARACT*N_CAP_TEMPO, &data, 
&responses ); 
    int nsamples_all = 0, ntrain_samples = 0; 
    int i, j; 
    double train_hr = 0, test_hr = 0; 
    CvANN_MLP mlp; 
 
 if( !ok ) 
    { 
        printf( "Could not read the database %s\n", data_filename ); 
    } 
 
    printf( "The database %s is loaded.\n", data_filename ); 
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    nsamples_all = data->rows; 
    ntrain_samples = (int)(nsamples_all*PORCENTAGEM_TREINAM/100); 
 
 
    CvMat* new_responses = cvCreateMat( ntrain_samples, class_count, CV_32F ); 
 
    printf( "Unrolling the responses...\n"); 
    for( i = 0; i < ntrain_samples; i++ ) 
    { 
        int cls_label = cvRound(responses->data.fl[i]) - 'A'; 
        float* bit_vec = (float*)(new_responses->data.ptr + i*new_responses-
>step); 
        for( j = 0; j < class_count; j++ ) 
            bit_vec[j] = 0.f; 
        bit_vec[cls_label] = 1.f; 
    } 
    cvGetRows( data, &train_data, 0, ntrain_samples ); 
 
    int layer_sz[] = { data->cols, 100, 100, class_count }; 
    CvMat layer_sizes = 
        cvMat( 1, (int)(sizeof(layer_sz)/sizeof(layer_sz[0])), CV_32S, layer_sz 
); 
    mlp.create( &layer_sizes ); 
    printf( "Training the classifier (may take a few minutes)..."); 
    mlp.train( &train_data, new_responses, 0, 0, 
        CvANN_MLP_TrainParams(cvTermCriteria(CV_TERMCRIT_ITER,300,0.01), 
  CvANN_MLP_TrainParams::RPROP,0.01)); 
    cvReleaseMat( &new_responses ); 
    printf("\n"); 
 
 mlp_response = cvCreateMat( 1, class_count, CV_32F ); 
 
    fp=fopen(ESTATISTICA_DATA,"w"); 
 for( i = 0; i < nsamples_all; i++ ) 
    { 
        int best_class; 
        CvMat sample; 
        cvGetRow( data, &sample, i ); 
        CvPoint max_loc = {0,0}; 
        mlp.predict( &sample, mlp_response ); 
        double minV, maxV; 
  cvMinMaxLoc( mlp_response, &minV, &maxV, 0, &max_loc, 0 ); 
        best_class = max_loc.x + 'A'; 
 
  fprintf(fp,"%c",(int)responses->data.fl[i]); 
  for(k=0;k<N_CLASSES;k++) 
   fprintf(fp,",%f",(mlp_response->data.fl[k]-
(float)minV)/(float)(maxV-minV)); 
  fprintf(fp,"\n"); 
  
  int r = fabs((double)best_class - responses->data.fl[i]) < 
FLT_EPSILON ? 1 : 0; 
 
        if( i < ntrain_samples ) 
            train_hr += r; 
        else 
            test_hr += r; 
    } 
 fclose(fp); 
  
    test_hr /= (double)(nsamples_all-ntrain_samples); 
    train_hr /= (double)ntrain_samples; 
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    printf( "Recognition rate: train = %.1f%%, test = 
%.1f%%\n",train_hr*100,test_hr*100); 
 
    mlp.save(filename_to_save); 
 
    cvReleaseMat(&mlp_response); 
    cvReleaseMat(&data); 
    cvReleaseMat(&responses); 
 
 printf("\n\n Treinou!!!"); 
} 
 
void caract(void) 
{ 
 int N_PIXELS[N_CARACT+1],iL,jC, DIST; 
  
 for(i=0;i<=N_CARACT;i++) 
  N_PIXELS[i]=0; 
 
 IplImage  *imagem = NULL, *g_gray = NULL, *gray=NULL; 
 CvMoments momento; 
 CvSeq* contorno = NULL, *circulos=NULL,*dedos=NULL; 
 CvSeq *maior = NULL, *next = NULL; 
  
 int  x=0,y=0,step,channels,raio=0,j,i; 
 unsigned char *data; 
 
 //Carrega Imagem 
 sprintf(NomeImg,"./Imagem/C%d_I%d_T%d.bmp",Classe,Captura,Tempo); 
 imagem=cvLoadImage(NomeImg,1); 
  
 g_gray = cvCreateImage( cvGetSize(imagem), 8, 1 ); 
 gray = cvCreateImage( cvGetSize(imagem), 8, 1 ); 
 cvCvtColor( imagem, g_gray, CV_BGR2GRAY ); 
 cvThreshold( g_gray, g_gray, 100, 255, CV_THRESH_BINARY ); 
 
 //Centro da Imagem 
 cvMoments(g_gray,&momento,1); 
 x=(int)(momento.m10/momento.m00); 
 y=(int)(momento.m01/momento.m00); 
 
 //Encontra Raio 
 step = imagem->widthStep; 
 channels = imagem->nChannels; 
 data = (uchar *)imagem->imageData; 
 raio=0; 
 for(j=x;j>=0;j--) 
  if(data[y*step+j*channels]==0) 
  { raio=x-j; break; }  
 
 //Imagem sem Punho 
 for(i=0;i<(imagem->width);i++) for(j=y+raio;j<(imagem->height);j++) 
 {  
  data[j*step+i*channels+0]=0; 
  data[j*step+i*channels+1]=0; 
  data[j*step+i*channels+2]=0; 
 } 
  
 //Contorno Certo 
 cvCvtColor( imagem, g_gray, CV_BGR2GRAY ); 
 cvThreshold( g_gray, g_gray, 100, 255, CV_THRESH_BINARY ); 
 cvFindContours( g_gray, g_storage, &contorno ); 
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 next=contorno->h_next; 
 maior=contorno; 
 while(next) 
 { 
  if(next->total > maior->total) 
   maior=next; 
  next=next->h_next; 
 } 
 contorno=maior; 
 contorno->h_next=NULL; 
 contorno->h_prev=NULL; 
 contorno->v_next=NULL; 
 contorno->v_prev=NULL; 
  
 cvZero( g_gray ); 
 if( contorno ) 
 
 cvDrawContours(g_gray,contorno,cvScalarAll(255),cvScalarAll(255),100); 
 
 int imin=imagem->width, imax=0, jmin=imagem->height, jmax=0; 
 step = g_gray->widthStep; 
 data = (uchar *)g_gray->imageData; 
 for(i=0;i<(g_gray->width);i++)  
  for(j=0;j<(g_gray->height);j++) 
   if(data[j*step+i]==255) 
   { 
    if(i<imin) imin=i; 
    if(j<jmin) jmin=j; 
    if(i>imax) imax=i; 
    if(j>jmax) jmax=j; 
   } 
 
 //Calcula N Pixels Branco 
 step = imagem->widthStep; 
 channels = imagem->nChannels; 
 data = (uchar *)imagem->imageData; 
 for(i=imin;i<imax;i++) for(j=jmin;j<jmax;j++) 
  if(data[j*step+i*channels+0]==255) 
  {  
   N_PIXELS[0]++; 
   iL=(int)(((float)(i-imin)/(imax-imin))*PX_LIN);  
   jC=(int)(((float)(j-jmin)/(jmax-jmin))*PX_COL);    
   N_PIXELS[1+iL+jC*PX_LIN]++; 
  } 
  
 //Caracteristicas 
 for(i=0;i<N_CARACT;i++) 
  Caract[i] = (int) ((float)N_PIXELS[i+1]/((imax-imin)*(jmax-
jmin)/(N_CARACT))*100); 
  
 
} 
 
void Extrai(void) 
{ 
 //Caracteristicas 
 caract(); 
  
 // Preenche 
 for(k=0;k<N_CARACT;k++) 
  Dados[Classe-1][Captura-1][(Tempo-1)*N_CARACT+k]=Caract[k]; 
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} 
 
 
int main( int argc, char** argv )  
{ 
 g_storage = cvCreateMemStorage(0); 
 
 //Dados 0 
 for(i=0;i<N_CLASSES;i++) for(j=0;j<N_CAPTURAS;j++) 
for(k=0;k<N_CARACT*N_CAP_TEMPO;k++)  
  Dados[i][j][k]=0; 
  
 //PROCESSOS 
 for(Classe=1;Classe<=N_CLASSES;Classe++) 
 { 
  printf("\n Captura da Classe %d. Aguarde....", Classe);  
  for(Captura=1;Captura<=N_CAPTURAS;Captura++) 
  for(Tempo=1;Tempo<=N_CAP_TEMPO;Tempo++) 
  { 
   Extrai(); 
   //cvWaitKey();  
  } 
 } 
 
 Treina(); 
  
 c=cvWaitKey(); 
 
 return 0; 
} 
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APÊNDICE B – Classes de Gestos para a Análise da 

Distância  

A tabela B-1 traz as 5 classes utilizadas para a análise da distância entre a 

mão humana e a câmera. 

 

Tabela B-1 – Classes de Gestos para a Análise da Distância entre a Mão e a Câmera11 

Classe Quadro 1 Quadro 2 Quadro 3 Quadro 4 Quadro 5 

1 

2 

3 

4 

5 
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APÊNDICE C – Classes de Gestos para a Análise do 

Reconhecimento 

A tabela C-1 traz as 25 classes utilizadas para a análise da distância entre a 

mão humana e a câmera. 

Tabela C-1 – Classes de Gestos para a Análise do Reconhecimento12 

Classe Quadro 1 Quadro 2 Quadro 3 Quadro 4 Quadro 5 

1 

2 

3 

4 

5 

6 

7 

8 
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Tabela C-1 – Classes de Gestos para a Análise do Reconhecimento 

Classe Quadro 1 Quadro 2 Quadro 3 Quadro 4 Quadro 5 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 
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Tabela C-1 – Classes de Gestos para a Análise do Reconhecimento 

Classe Quadro 1 Quadro 2 Quadro 3 Quadro 4 Quadro 5 

19 

20 

21 

22 

23 

24 

25 
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APÊNDICE D – Tabela de Contingências para Análise do 
Reconhecimento 

A tabela D-1 traz as tabela de contingências para a análise de reconhecimento 

do capítulo 4. A tabela traz a precisão (94,72%) da análise, a falsa aceitação (FPR) e a 

falsa rejeição (FNR) para cada classe analisada. 

Tabela D-1 – Tabela de Contingências para Análise do Reconhecimento 13 

 
SAÍDAS 

Ent A B C D E F G H I 
A 24 - - - - - - - - 
B - 25 - - - - - - - 
C - - 24 - - - - - - 
D - - - 24 - - - - - 
E - - - - 25 - - - - 
F - - 1 - - 22 - - - 
G - - - - - - 23 - - 
H - - - - - - - 25 - 
I - 1 - - - - - - 22 
J - - - - - - - - 1 
K - - - - - - - - - 
L - - - - - - - - - 
M - - - - - - - - - 
N - - - - - - - - - 
O - - - - - - - - - 
P - - - - - - - - - 
Q - - - - - 1 - 1 - 
R - - - - - - - - - 
S - - - - 1 - - - - 
T - - - - - - - - 1 
U - - - - - - - - - 
V - - - - - - - - - 
W - - - - - - - 1 - 
X - - - - - - - - - 
Y - - - - - - - - - 

FPR 0% 0.166% 0.166% 0% 0.166% 0.166% 0% 0.332% 0.332% 
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Tabela 13 – Tabela de Contingências para Análise do Reconhecimento 

 
SAÍDAS 

Ent J K L M N O P Q R 
A - - - - - - - - - 
B - - - - - - - - - 
C - - - - - - - - - 
D - - - - - - - - - 
E - - - - - - - - - 
F - - - - - - - 2 - 
G - 1 - - - 1 - - - 
H - - - - - - - - - 
I 1 - - 1 - - - - - 
J 24 - - - - - - - - 
K - 23 - - - - 1 - - 
L - - 24 - - - - 1 - 

M - - - 25 - - - - - 
N - - - 1 23 - - - - 
O - - - - - 24 - - - 
P - - - - - - 25 - - 
Q - - - - - - - 23 - 
R - 1 - - 1 - - - 23 
S - - - - - - - - - 
T - 1 - - - - - - - 
U - - - - - - 1 - - 
V - - - - 1 - - - - 
W - - - - - - - - - 
X - - - - - - - - - 
Y - - - - - - 100% - - 

FPR 0.166% 0.518% 0% 0.332% 0.332% 0.166% 0.518% 0.518% 0% 
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Tabela 13 – Tabela de Contingências para Análise do Reconhecimento 

 
SAÍDAS 

 Ent S T U V W X Y FNR 
A - - - 1 - - - 4% 
B - - - - - - - 0% 
C - - - 1 - - - 4% 
D 1 - - - - - - 4% 
E - - - - - - - 0% 
F - - - - - - - 12% 
G - - - - - - - 8% 
H - - - - - - - 0% 
I - - - - - - - 8% 
J - - - - - - - 4% 
K 1 - - - - - - 8% 
L - - - - - - - 4% 
M - - - - - - - 0% 
N - - 1 - - - - 8% 
O - 1 - - - - - 4% 
P - - - - - - - 0% 
Q - - - - - - - 8% 
R - - - - - - - 8% 
S 24 - - - - - - 4% 
T - 23 - - - - - 8% 
U - - 23 - 1 - - 8% 
V - - - 24 - - - 4% 
W 1 - - - 22 1 - 12% 
X - - - - - 25 - 0% 
Y - - - - - 1 23 8% 

FPR 0.518% 0.166% 0.166% 0.332% 0.166% 0.332% 0% 94.72% 
 


