BRUNO COELHO DE OLIVEIRA

MINIMIZACAO DO CONSUMO DE ENERGIA
E ATRASO TOTAL EM UM AMBIENTE
FLOW SHOP COM RESTRICOES DE
DISPONIBILIDADE

Sdo Paulo

2024

BRUNO COELHO DE OLIVEIRA

MINIMIZACAO DO CONSUMO DE ENERGIA
E ATRASO TOTAL EM UM AMBIENTE
FLOW SHOP COM RESTRICOES DE
DISPONIBILIDADE

Trabalho de Formatura apresentado a
Escola Politécnica da Universidade
de Sao Paulo para obtencdo do

Diploma de Engenheira de Produgao.

Sdo Paulo

2024

BRUNO COELHO DE OLIVEIRA

MINIMIZACAO DO CONSUMO DE ENERGIA
E ATRASO TOTAL EM UM AMBIENTE
FLOW SHOP COM RESTRICOES DE
DISPONIBILIDADE

Trabalho de Formatura apresentado a
Escola Politécnica da Universidade
de Sao Paulo para obtencdo do

Diploma de Engenheiro de Produgao.

Orientadora: Professora Dra. Débora

Pretti Ronconi

Sdo Paulo

2024

Autorizo a reprodugao e divulgacdo total ou parcial deste trabalho, por qualquer meio convencional ou eletronico, para

fins de estudo e pesquisa, desde que citada a fonte.

Catalogagdo-na-publicagdo

Ohverra, Bruno Coelho

Minimizagio do consumo de energia e atraso total em um ambiente
flow shop com restrighes de disponibilidade/ B.C. Oliveira -- Séio Paulo,
2024,

86 p.

Trabalho de Formatura - Escola Politécnica da Universidade de Sao

Paulo. Departamento de Engenharia de Produgiio.

1. Programacio da Produgdo. 2. Consumo de energia 3. Flow shop. 4.

Restrigio de disponibilidade. 5. Multi-objetivo. 1. Universidade de Sio

Paulo. Escola Politécnica. Departamento de Engenharia de Produgio 1Lt

Aos que sempre me apoiaram

AGRADECIMENTOS

Primeiramente gostaria de agradecer aos meus pais, Simone ¢ Eduardo, e a minha
irma, Laura, pelo apoio e suporte que sempre me deram em todos os aspectos da vida,
presentes tanto em momentos bons quanto ruins. Tenho certeza que vocés tém um papel
fundamental em tudo que conquistei e irei conquistar. Aos demais familiares, obrigado pelo
carinho e pela base que me proporcionam desde sempre.

A todos amigos que conheci durante a jornada da graduagdo, pessoas que fizeram
esses anos mais leves e agradaveis. Especialmente Aline, Gabriela e Leonardo, pela parceria
e amizade desde os primeiros dias de aula.

Ao time de futsal da Poli, onde pude conhecer grandes amigos e viver bons momentos
que estardo na minha memoria para sempre.

A todos funcionarios e corpo docente da Escola Politécnica que permitiram o meu
desenvolvimento enquanto aluno e pessoa durante todos esses anos, sempre entregando um
6timo servigo e educacgdo de qualidade.

A professora Débora Pretti Ronconi pelo compromisso com os alunos, e
principalmente pelo auxilio e orientagdo durante a elaboragdo deste trabalho, sempre se

colocando disposta e solicita para contribuir com a minha evolugao.

“O futuro depende do que fazemos no presente.”

Mahatma Gandhi

RESUMO

Com o aumento da relevancia de pautas ambientais, o gerenciamento da produgao
com um olhar ecoldgico tem ganhado cada vez mais visibilidade. Este trabalho tem como
objetivo abordar o problema de minimizacdo de consumo total de energia e atraso total em
um ambiente flow shop com restrigdes de disponibilidade, onde tarefas devem ser
processadas sequencialmente em todas as maquinas seguindo uma mesma ordem. A
estratégia de ligar e desligar maquinas entre periodos ociosos ¢ considerada para o controle
de energia. Para este problema foi proposto um modelo matematico multiobjetivo utilizando
a abordagem lexicografica, onde o consumo de energia ¢ o principal objetivo a ser otimizado
e o atraso total o objetivo secundario. Devido ao carater NP-hard deste problema também
foram propostos métodos heuristicos, sendo eles uma heuristica construtiva baseada na regra
de despacho FPD (fitting processing times and due dates) e uma heuristica de melhoria que
utiliza buscas locais e perturbagdo para explorar vizinhangas da solugao obtida pela heuristica
construtiva. O modelo matematico e os métodos heuristicos foram validados e testados em 45
instancias geradas com diferentes tamanhos baseados na literatura. Os resultados obtidos
demonstram que a resolucdo do problema através do modelo matematico apresenta
dificuldades para resolugdo de instdncias de maiores escalas, desta forma sendo necessario o
uso das heuristicas, que demonstraram alcancar resultados satisfatorios.

Palavras-chave: Programacao da produgdo. Consumo de energia. Flow shop. Restricao de

disponibilidade. Multi-objetivo

ABSTRACT

With the increasing relevance of environmental issues, production management with
an ecological perspective has gained greater visibility. This study aims to address the problem
of minimizing total energy consumption and total tardiness in a flow shop environment with
availability constraints, where tasks must be processed sequentially on all machines following
the same order. The strategy of turning machines on and off during idle periods is considered
for energy control. For this problem, a multi-objective mathematical model was proposed
using the lexicographic approach, where energy consumption is the primary objective to be
optimized, and total tardiness is the secondary objective. Due to the NP-hard nature of this
problem, heuristic methods were also proposed, including a constructive heuristic based on
the FPD (Fitting Processing Times and Due Dates) dispatching rule and an improvement
heuristic that uses local searches and perturbation to explore the neighborhoods of the
solution obtained by the constructive heuristic. The mathematical model and heuristic
methods were validated and tested on 45 instances generated with different sizes based on the
literature. The results demonstrate that solving the problem using the mathematical model
faces challenges with larger-scale instances, making the use of heuristics necessary. The
heuristics showed the ability to achieve satisfactory results.

Keywords: Production scheduling. Energy consumption. Flow shop. Availability constraint.
Multi-objective.

LISTA DE FIGURAS

Figura 1: Exemplo de alocacdo de uma tarefa em uma maquina com janelas de

indisponibilidade resumable (a) € non-resumable (D)...........cccueeeeueeecieeeiieeeiieeeie e 22

Figura 2: Sequenciamentos de trés tarefas em duas maquinas em um ambiente flow shop

PEIMULACIONALeieiiiieeiiieeiiee ettt e et e et e e stee e tbeeessseeessseeensbeeessseesnseeesnsneessseeennseeenns 25

Figura 3: Grafico Gantt do sequenciamento 6timo da instancia exemplo minimizando o gasto

de energia € atraso tOtal.........c.eeeriiiiiiie et eaaees 41

Figura 4: Grafico Gantt do sequenciamento 6timo da instancia exemplo minimizando o gasto

(4SS 113 o4 - USSR TUR 42
Figura 5: Janela de disponibilidade.............cooieiiiiiiiiiiniiieceeeee e 45
Figura 6: Tarefa menor do que janela diSponivel..........cocoeviriiriiiiniiiniininieccceeee 45
Figura 7: Tarefa maior do que janela diSponivel.............cccvieeiiieiiiieiiieeeeceeee e 45
Figura 8: Janela disponivel considerando indisponibilidade de maquinas...........cccccceeeeeunennee. 46
Figura 9: Ajuste da janela disponivel considerando espaco inutilizado............ccceeceerieniennnene 47
Figura 10: Exemplo de sequenciamento antes do pOs-processamento............cceeevereeruervenneene 49
Figura 11: Exemplo de sequenciamento depois do pds-processamento............cceeeevveeeveeennee. 49
Figura 12: Diagrama do processo heUriStiCO.......ccouiiriiiiiiriiiiiieiieeiereeete e 51

Figura 13: Relagdo entre a média dos gaps obtidos e o p utilizado na heuristica

COMISTIULIVAL. 1 e ee e ettt e e e e e e e et e e e e e e e e e e eee e aeaeeeeeeeaae e aaaeeeeeeeaaaeaaaaeeeaeeeeaaanaaaeseeeeesenennaaaasaaaaees 57

LISTA DE TABELAS

Tabela 1: Instancia exemplo com 6 tarefas € 3 MAQUINGS........ccceevvveerieeiienieeieerieeie e 40
Tabela 2: Resultado computacionais utilizando 0 método eXato..........ceceevvervierienerrieneenennne. 55
Tabela 3: Relacdo entre a média dos gaps obtidos e o p utilizado na heuristica construtiva...57
Tabela 3: Resultados computacionais utilizando a heuristica construtiva.............cccceeeeuveennnee. 58
Tabela 4: Resultados computacionais utilizando a heuristica de melhoria..............cccocenenee. 59
Tabela 5: Tempo computacional para encontrar solu¢des utilizando os 3 diferentes

TNETOAOS. ...ttt et ettt e b e e et e bt e et e e bt e e e bt e bee e ab e e bt e eat e e bt e eab e e bt e enteebeesanean 62

Tabela 6: Gaps médio da energia total gasta e atraso total para cenarios com aumento na

janela de indisponibilidade............oociiiiiiiiiiiie e 64
Tabela 7: Resultados obtido com a heuristica construtiva nas instancias de maior escala...... 65

Tabela &: Resultados obtido com a heuristica de melhoria nas instancias de maior escala..... 66

SUMARIO

1. INTRODUCAO

3. REVISAO DA LITERATURA

4. MODELO MATEMATICO

5. HEURISTICA

2. DESCRICAO DO PROBLEM A......uucuiieeeeeeeseeeesessass

20
22
27

3.1. Programacao da produGA0...........cccuuieeiiieriiieeciieeeteeerteeeireeeeeeesteeeeaeeesreeesnseeeenseeens
B2 FLOW SHOP ..ottt ettt ettt e et e e e e b eeeanee s
3.3. Restricdes de disponibilidade...........c.cooieeiiiiiiiiieiieiieee e
3.4. Flow shop com restri¢ao de disponibilidade..............ccccvveviiieniiiieiiieeieeeeeeee e,
3.5. Eficiéncia energética na Programacao da Produgao..........cccceeevveeniveenviieeciieenieeeee,
3.6. Eficiéncia energética na Programacao da Produciao com restri¢cdes de

AISPONIDIIIAAAE.....coneiiiiieiie et ettt

4.1, VATTAVEIS.....utiieee et e e ettt e ettt e e ettt e e e e aaa e e e e e atsaeeeeetaseeeeaasseeeeanaseeeeeensseeeensseeaeas
4.3. FUNGAO ODJELIVO....eeiiiiieiieeiiieiie ettt ettt ettt ettt e aeesbeessbeenseesnseenseessseenseas
B4, RESIIIGOECS. ...ccuvvveeeeeiueeee e ettt e e et e e et e e e ettt e e e eeeta e e e eeetteeeeeeetaeeeeeesaeeeeeenseeeeeeeaseeeeeennees

4.5. INStANCIA EXCIMIPLO...ccuttieeiiieeiiie et e ettt et e et e e eteeeeteeesbeeesabeeesaaeeeaseeesseeeneeesnsaeesnnes

5.1, HEUTISTICA COMSIIULIVAL - e e e e e e e e e e e e e e e e aeaeaeaeaeaeaeaeaeaeaeaeseaesaaeaananaaanas

5.1.1. Aproveitamento de janela (fif).........ccoceevueriereerienieniieneeseeteeeese e
5.1.2. FOlga diNAMICA........ccveiiiiieeeiie ettt ettt e et e et e e aeeensaeennee s

5.1.3. POS-PrOCESSAMENTO.eeeiiiieiiieeeiiieerieeeeieeeetee et e eeteeeaaeeeaaeeeaeeeenseeesnseeennnes

6. EXPERIMENTOS NUMERICOS

5.2. HeuriStica de MEINOTIA.covvveieieeiieeeieeeeeeeeeeeeeeeeeeee ettt ettt e e e e e e eeeeeeeeeeeeeees

6. 1. IIISTANICIAS .ot eaeeeeeeeeaa e aaeaeeaaenaan

6.2. RESUITAAOS € QISCUSSAO. ... eeeeiieitieeeeee ettt e e ettt eeeeeeeeeteeaaaaaeseeeeereaanaaaesseeeerenes

6.2.1. IMELOTO EXAL0....ceetereeieeieeaeeaeeeereeeeeaeeaeeaaeanane
6.2.2. MELOAOS NEUTTSTICOS. .. ettt e e e e e e e e e e e e e e eeeeeaaeeeeeeeeeeaaaaaens

6.2.3. Analise de SenSibilIdade.cooeeeemmeeeee e

27
28
29
30
31

6.2.4. Instancias de grande €Scala..............coouieriieeiieniieniicieee e 64
7. CONCLUSAO . .cuucuuininniasisscsssssnssisssassssssssssssssssssssssssssssssss 67
8. REFERENCIAS......cucvueereeneenrenesssessessessessessessessesssssssessessessessessessessesssssssssssssessessessessesssse 69
ANEXO A - Cédigo do modelo matematico utilizando Gurobi na linguagem Python....72

ANEXO B - Codigo da heuristica construtiva e de melhoria em Python......................... 76

20
1. INTRODUCAO

A programag¢do da produgdo, ou Scheduling, ¢ um processo de tomada de decisdo que
¢ utilizado como a base de muitas industrias de manufatura e servigos. Ela lida com a
alocacao de recursos a tarefas em um dado periodo de tempo com objetivo de otimizar um ou
mais objetivos (Pinedo, 2016). Estes recursos e tarefas podem ser visto de diferentes formas,
como equipes para realizagdo de um projeto, pistas para o pouso de avides, maquinas para
produzir um produto, entre outras. Quando nos referimos a manufatura, ¢ muito comum

chamarmos os recursos de maquinas e tarefas de jobs.

Dentro deste contexto da programacao da produgdo, podemos ter diversas variagdes
que vao moldar como o problema ¢, e também como pode ser resolvido, dentro dessas
caracteristicas temos a configuragdo de maquinas, ou seja, maquinas unicas, maquinas em
paralelo, flow shop e job shop. No caso do flow shop existem m maquinas em série e cada
tarefa tem que ser processada em cada uma das m maquinas, seguindo 0 mesmo roteiro, ou
seja, passar pela maquina 1, depois pela maquina 2, até a maquina m. Estes problemas de flow
shop muitas vezes possuem restrigdes que vao proibir uma tarefa de passar na frente de outra
na fila para ser processada nas maquinas (primeira que entra ¢ a primeira que sai, FIFO) e

assim caracterizando o que é chamado de flow shop permutacional.

Dentro desses casos de scheduling, modelar estes problemas contando que as
maquinas estdo sempre disponiveis e operando ndo representa bem o que acontece em
industrias e casos reais, desta forma surgindo o problema de disponibilidades nas maquinas.
As indisponibilidades podem representar situagdes como manutengdes programadas para uma
dada maquina, por exemplo, e € essencial que ao programarmos a tarefa seja levado em

consideragdo essas possiveis restricdes quanto ao uso dos recursos.

Sempre que fazemos a programagdo de tarefas temos um objetivo a ser alcangado, um
dos objetivos mais comuns de se encontrar ¢ o makespan, que diz respeito ao tempo total para
se realizar todas as tarefas, mas um outro critério importante ¢ o de atraso total, pois quando
uma tarefa ndo ¢ completada dentro do tempo esperado existem alguns custos referentes a
este atraso para a empresa (Armentano € Ronconi, 1999), desta forma ¢ interessante organizar

as tarefas de forma que este atraso total seja 0 menor possivel.

Outro ponto que vem tomando cada vez mais for¢ca na sociedade em geral sdao

questdes de sustentabilidade e na programa¢do da producdo ndo ¢ diferente, empresas de

21

manufatura tem dado cada vez mais importancia a sustentabilidade por diversos fatores:
consciéncia ambiental, a diminui¢do dos recursos ndo-renovaveis, legislagcdes mais rigorosas,
preferéncia do consumidor em produtos sustentaveis, entre outros (Giret, 2015). Esta visao
sustentavel da programacgdo da producdo estd diretamente ligada ao aumento da eficiéncia

energética, sendo um critério para ser levado em conta na otimizacao de scheduling.

Pouco se encontra na literatura sobre problemas que abordam a programagdo da
producdo em flow shops com restrigdes de disponibilidade e que tenham como objetivo
otimizar a eficiéncia energética e tempo total de atraso, desta forma o presente trabalho busca
estudar este problema, para isso sera proposto um modelo matematico para resolvé-lo, assim
como a otimizacdo do mesmo. Pelo fato do problema de minimizagao de atraso total ser
NP-hard, muitas vezes a solu¢do exata pode ndo ser a mais vidvel, entdo para a resolugao
deste problema sera proposto também a utilizagdo de métodos ndo-exatos, e posteriormente a

partir dos testes computacionais fazer a comparagao e validagao entre métodos de solugao.

22

2. DESCRICAO DO PROBLEMA

O problema a ser resolvido tem como base a otimizag¢do da programagao da producdo
em ambientes flow shops para m maquinas, mais especificamente o flow shop permutacional,
desta forma além das tarefas terem que passar por todas as méquinas, a ordem em que as

mesmas sao executadas em cada uma das m maquinas deve ser a mesma.

Além disso o problema também leva em consideracgdo restri¢des de disponibilidades
nas maquinas, em que cada uma delas pode apresentar janelas de indisponibilidades, a partir
disso teremos dois cenarios que sdo caracterizados segundo a definicdo de resumable e
non-resumable feita por Lee (1996) a qual nos traz que uma janela de indisponibilidade pode
ser caracterizada como resumable se caso uma tarefa ndo consiga ser terminada antes do
tempo de indisponibilidade, ela possa retomar seu processamento do momento em que parou,
assim que a maquina estiver disponivel novamente. J& uma janela non-resumable, as tarefas
devem ser reiniciadas se ndo for possivel termina-las antes do periodo de indisponibilidade.

Neste trabalho serd abordado janelas non-resumables.

Figura 1: Exemplo de alocacdo de uma tarefa em uma maquina com janelas de
indisponibilidade resumable (a) e non-resumable (b)

Indisponibilidade

M1

o1 2 3 4 5 6 7 8 9 10 11

M1

b)

o1 2 3 4 5 6 7 8 9 10 11

Fonte: Elaborado pelo autor

Para melhor entendermos este conceito, podemos observar na Figura 1 a programacao
de uma unica tarefa com tempo de processamento de 6 unidades de tempo em uma maquina
que apresenta um periodo de indisponibilidade entre os instantes 3 e 4 , no cenario (a) temos
o caso resumable no qual a tarefa comega a ser realizada no instante 0 ¢ quando chega o
periodo de indisponibilidade ela ¢ pausada para que assim que a maquina esteja disponivel
retome o seu processamento de onde parou, finalizando assim no instante 7. Ja no cenario (b)

temos um caso non-resumable em que por ndo ser possivel de ser realizada por completo a

23

tarefa devido o tempo de indisponibilidade ela comega apenas no instante 4, quando vai

poder ser realizada até sua finalizacdo sem interrupgdes.

Existem diferentes maneiras de se considerar essas restrigdes quanto a sua natureza na
programacao da producdo, dois tipos de suposi¢des sdo consideradas pelos pesquisadores, na
primeira, os tempos de indisponibilidade sdo conhecidos e fixados previamente (Aggoune,
2006), na segunda, esses tempos de indisponibilidade sdo flexiveis e podem ser planejados
(Cui et al., 2016). Para o primeiro tipo (fixos), podemos considerar que a indisponibilidade
vai acontecer apenas uma vez em cada maquina ou seguindo intervalos que nao se alteram. J&
no segundo tipo (flexivel) podemos ter, por exemplo, que o tempo que uma maquina processa
continuamente tarefas nao pode extrapolar um dado valor sem que ndo haja um periodo de
indisponibilidade, que pode ser visto como um periodo de manuten¢ao. Consideramos para
este trabalho o primeiro tipo, onde os periodos de indisponibilidade ja sd@o conhecidos e

fixados previamente.

Outro ponto para definir o problema ¢ quanto ao objetivo de otimizagdo, o presente
trabalho tem como proposta trazer uma perspectiva tanto sustentavel quanto econdmica para
este problema de scheduling, desta forma ao realizarmos a modelagem matematica, sera
utilizado a abordagem multi-objetivo, mais especificamente a otimizagdo lexicografica.
Quando falamos de otimizagdo multi-objetivo muitas vezes podemos ter objetivos que sdo
conflitantes entre si e portanto quando melhoramos um objetivo podemos pagar com a piora
de outro. Zhang et al. (2020) coloca trés principais métodos que sao adotados para lidar com
problemas multi-objetivo: ponderado, lexicografico e fronteira de pareto. Cada método tem
suas vantagens e desvantagens e sendo assim a escolha entre eles vai depender da preferéncia
do tomador de decisdo (Coello, 1999). Na abordagem ponderada sao atribuidos pesos para os
diferentes objetivos, determinando a relagdo entre eles e assim a solugdo 6tima ¢ encontrada
por estes ajustes de pesos. A fronteira de Pareto representa o conjunto de solugdes onde
melhorar um objetivo s6 € possivel piorando outro, sem preferéncias de peso entre eles, e
assim o tomador de decisdo pode escolher a solucdo que melhor se encaixa na suas

preferéncias

Ja a abordagem lexicografica, a qual sera utilizada neste trabalho, objetivos de
otimizacdo sdo colocados em ordem de prioridade, neste tipo de otimizacao o tomador de
decisdo esta disposto a aceitar uma solugdo sub-6tima para os objetivos menos criticos para

alcangar uma solugdo Otima para o critério mais importante, cada objetivo ¢ otimizado

24

enquanto os outros objetivos sdo fixados no nivel desejado (Isermann, 1982). Neste trabalho
o critério principal a ser otimizado serd o de eficiéncia energética, em que se busca diminuir
a energia gasta pelas maquinas para a realizagdo das tarefas programadas, este objetivo ¢
considerado nao regular. Segundo Pinedo (2016) um objetivo pode ser chamado de regular
se 0 mesmo ¢ nao-decrescente em relacdo ao completion time das tarefas, isto ¢, a medida
que o tempo de término das tarefas aumenta, o valor da funcdo objetivo cresce de maneira
previsivel ou se mantém. Em problemas de minimizagdo de energia, o objetivo
frequentemente envolve reduzir o consumo total, que pode variar dependendo do momento
em que as tarefas sao executadas, fazendo com que a funcdo objetivo possa ser mais
complexa e envolver penalidades e varidveis que irdo fazer com que o valor da fungdo

objetivo possa diminuir a medida que o tempo de término das tarefas aumenta.

Na Figura 2 podemos ver exemplo que ilustra dois diferentes sequenciamentos de trés
tarefas em duas maquinas em um ambiente flow shop permutacional, suponha que cada
unidade de tempo que as tarefas levam para ser processadas consomem uma unidade de
energia e cada unidade de tempo de periodo ocioso entre tarefas, isto ¢, periodos em que a
maquina esta ligada mas ndo processa nenhuma tarefa, consomem também uma unidade de
energia. Vamos considerar o consumo de energia como a soma de energia gasta processando
e energia gasta em tempo ocioso. No sequenciamento 1 temos um consumo de energia total
de 24 unidades de energia, sendo 21 unidades gastas com o processamento de tarefas e 3
unidades devido ao tempo ocioso entre tarefas. Ja no sequenciamento 2 ndo possuimos tempo
ocioso entre tarefas, portanto o consumo de energia total ¢ de 21 unidades, desta forma
mesmo com o aumento do tempo de conclusdo da tarefa 1, que passou do instante 5 para o

instante 8, a funcdo objetivo decresceu, o que caracteriza um objetivo ndo regular.

25

Figura 2: Sequenciamentos de trés tarefas em duas maquinas em um ambiente flow shop

permutacional
M1 1 2 3
Sequenciamento 1
M2 1 2 3
[| | | 1 1 | 1 L 1 1 | 1 | [| L
T rrrrrrrrrrors
5 10 15
M1 1 2 3
Sequenciamento 2
M2 1 2 3
1 1 | | 1 1 | 1 [1 1 1 1 | [| L
T rrrrrrrrrnnrS
5 10 15

Fonte: Elaborado pelo autor

O segundo critério de otimizacdo ¢ o de atraso total, que visa minimizar a soma de
atrasos na entrega de todas as tarefas, este critério por sua vez se encaixa na definicao
objetivos regulares, sendo diretamente relacionada com o tempo de conclusdao das tarefas,
assim a fun¢do objetivo tende a aumentar de maneira previsivel conforme as tarefas se

afastam dos prazos.

Ha diversas maneiras de fazermos o controle do consumo energético pelas méaquinas
de um ambiente de producdo, um dos métodos encontrados na literatura € o de desligar e ligar
as maquinas para que as mesmas ndo gastem energia desnecessariamente (Mouzon et al.,
2007), operando no chamado de IDLE time, que significa o tempo ocioso do sistema, em que
a maquina estd ligada mas nao esta processando nenhuma tarefa. Outra maneira que pode ser
encontrada na literatura ¢ o controle da velocidade das maquinas (Mansouri et al., 2016),
onde ¢ atribuido diferentes velocidades de processamento, geralmente representando uma
velocidade lenta, normal e rapida, que irdo influenciar diretamente no gasto de energia das

maquinas, quanto mais rapido € o processamento de uma tarefa, maior € a energia gasta pela

26

mesma. Neste trabalho sera utilizado a abordagem de desligar e ligar a méaquina para o

controle da energia gasta no processamento das tarefas.

Portanto o objetivo do presente trabalho ¢ apresentar a modelagem de um flow shop
com m maquinas, considerando restricdes de disponibilidade non-resumable, onde os
objetivos de otimizacdo sdo a redugdo do consumo de energia, como objetivo principal, € o
atraso total, como objetivo secundario, utilizando a estratégia de ligar e desligar maquinas no
tempo ocioso. Apds isso, por meio de instidncias geradas, validar o modelo resolvendo as
instancias através de um solver e também utilizar métodos ndo exatos para construir solugdes
para o problema, por meio de heuristicas, que se fazem necessarias devido a caracteristicas

NP-hard do problema.

27

3. REVISAO DA LITERATURA

Nesta secao sera apresentado o que se encontra a respeito dos assuntos abordados
neste trabalho, ou seja, uma visdo sobre a programa¢do da producdo, assim como as
caracteristicas que fazem parte do problema aqui estudado. Trazendo um maior
aprofundamento em flow shops, restricdes de disponibilidade, e como sdo aplicadas a este
tipo de problema e depois uma revisao da eficiéncia energética aplicada na programagao da

producdo.

Com a contribui¢ao dos autores que aqui serao evidenciadas busca-se obter uma base
teorica para a formulagdo matematica, assim como ferramentas para validar e solucionar o

problema tratado neste trabalho.
3.1. Programacio da producio

O problema da programagdo da produgdo ¢ a organizagdo da execugdo de um
conjunto de tarefas com o passar do tempo, de forma a atingir um dado objetivo, alocando
tarefas a recursos, este problema pode ser encontrado em diferentes situagdes como por
exemplo unidades de processamento em um ambiente computacional. A programacdo da
producdo ¢ de grande importancia para garantir a eficiéncia de processos e a melhor
utilizagdo de um dado recurso, levando em consideragdo restrigdes e particularidades do
mesmo. A partir da resolugdo deste problema ¢ possivel obter uma descri¢ao da execugao das
tarefas, também chamadas de “jobs”, e a alocacdo de recursos, também chamados de

“maquinas”, com o passar do tempo buscando otimizar um ou mais objetivos.

A programacdo da produgdo possui diferentes aspectos que levam a diferentes
abordagens, por exemplo, uma delas diz respeito a modelos deterministicos, que nao
incorporaram aleatoriedade ou incerteza, ja a outra de modelos estocasticos, que por sua vez
incorporam processos probabilisticos que estao relacionados a incerteza. Desta forma, a partir
das diferencas quanto a modelagem dos problemas ¢ possivel atender uma maior quantidade

de cenarios.

Segundo Pinedo (2016) um problema de programagdo da produgdo ¢ definido por 3
caracteristicas, 0 ambiente da maquina, as condi¢des e restricdes de processamento, € por fim

0 objetivo de otimizacao. Dentre os ambientes de maquina que podemos encontrar temos:

28

e Maiquina Unica: O caso mais simples possivel e ¢ definido como um caso
especial de todos os outros mais complexos, dificilmente representa um caso
real.

e Maiquinas paralelo: m maquinas em paralelo, em que um tarefa precisa de uma
unica operacdo a qual pode ser executada em qualquer uma das maquinas.
Além deste temos algumas variagdes, em que em um deles maquinas sao
idénticas, ¢ no outro elas podem assumir diferentes velocidades, que vao
influenciar no tempo de processamento das tarefas.

e [Flow shop: m maquinas em série, onde cada tarefa deve ser processada em
cada uma das m maquinas, seguindo o mesmo roteiro, ou seja, devem passar
pela méaquina 1, depois na maquina 2, até a maquina m. Depois de executado
em uma maquina, a tarefa entra na fila para ser executada na proxima
seguindo alguma regra, que geralmente ¢ a “primeiro que entra € o primeiro
que sai” (FIFO), caracterizando assim o chamado flow shop permutacional.

® job shop: m maquinas das quais cada tarefa pode apresentar um roteiro
diferente a ser seguido, desta forma podendo, ou ndo, ser necessario o
processamento de uma tarefa por todas maquinas, e tendo a possibilidade de

passar por uma mesma maquina mais de uma vez.

Outro diferente aspecto € o objetivo que o problema estd abordando, alguns exemplos

que podemos encontrar sao:

® Makespan: mede o tempo que a ultima tarefa que saiu do sistema ¢ completada, a
minimizagdo do mesmo implica numa boa eficiéncia das maquinas.

e Atraso maximo: mede a maior violagdo do tempo de entrega das tarefas que estdo
sendo processadas.

e Atraso total: mede a soma do atraso de todas as tarefas que foram processadas.

Desta forma, podemos encontrar diferentes combinagdes que irdo influenciar na
maneira que o problema ¢ modelado, agora iremos entender mais detalhadamente o problema

do flow shop, que ¢ discutido neste trabalho.
3.2. Flow shop

O flow shop, como explicado anteriormente, ¢ um tipo de ambiente de maquinas que

podemos encontrar em problemas de scheduling, esta categoria possui uma grande relevancia

29

de aplicacdo pratica, e ¢ amplamente estudada. A sua definicao ¢ dada como um sistema de
processamento no qual uma sequéncia de operacdes de uma determinada tarefa ¢
completamente especificada, e todas as tarefas visitam as unidades de trabalho levando em

conta um mesmo roteiro.

Dentro desta classe ainda podemos ter diferentes tipos de caracteristicas que vao
influenciar como o problema ¢ chamado e tratado, por exemplo podemos ter o flow shop
permutacional em que as tarefas devem seguir a mesma ordem de processamento em todas as
maquinas. E por outro lado podemos encontrar também os chamados flow shops nao
permutacionais, onde as tarefas podem ter diferentes sequéncias dentro de cada maquina.
Tanto os problemas permutacionais quanto ndo permutacionais em sua grande maioria sao
modelados levando em conta que as tarefas podem ser armazenadas no momento que saem
das maquina » at¢ o momento que deve entrar na maquina r+/, porém podemos também
encontrar problemas que irdo tratar do caso em que ndo € possivel ter esse armazenamento
entre as maquinas e desta forma caracterizando o chamado no-wait flow shop, que se uma
tarefa termina o seu processamento na maquina » mas a maquina »+/ ainda nao esta livre, a
tarefa impedird que a maquina » possa ser utilizada, neste trabalho abordaremos o caso geral

em que as tarefas podem ser armazenadas entre maquinas.
3.3. Restricoes de disponibilidade

Modelar problemas de programacdo de tarefas supondo que as maquinas nao terdo
tempos de indisponibilidade ndo representa bem o que acontece no mundo real, ¢ comum
termos situacdes de manutencdes preventivas ou paradas programadas para que se mantenha
a maquina em perfeitas condi¢des para uso, ou até mesmo podemos lidar com situagdes de
quebra e mau funcionamento que impedirdo as maquinas de processar as tarefas em um dado
intervalo de tempo. Devido a este fator para a adequacdo dos problemas de programacao da
producdao ¢ necessario levar em conta restricoes quanto a disponibilidade das maquinas.
Segundo a definicao feita por Lee (1996), podemos ter os casos resumables e non-resumables
que irdo definir se apds uma janela de indisponibilidade um tarefa pode continuar de onde
parou, se for interrompida no meio do processamento (resumable), ou se nao pode e deve ser
reiniciada (non-resumable), posteriormente o caso semiresumable ¢ definido por Lee (1999),
que ¢ caracterizado quando uma operagao interrompida deve recomecar parcialmente depois

que a maquina estiver disponivel novamente.

30

O caso non-resumable de restricao de disponibilidade para uma maquina foi estudado
por Adiri et al. (1989) que foca na otimiza¢do da soma dos completion time, eles mostraram
que o problema é NP-hard ¢ que a sequéncia SPT (Shortest processing time), que
corresponde a ordenar as tarefas em uma ordem ndo decrescente do seu tempo de
processamento, tem uma margem de erro relativa de menos de %, quando levamos em conta
uma Unica janela de indisponibilidade. Posteriormente, para o mesmo problema, um
algoritmo de aproximagdo MSPT foi proposto por Sadfi etl al. (2005) e um algoritmo
paramétrico O(nlog n) com melhores casos de piores margens de erros foi proposto por Breit

(2007).

Para o caso resumable de restricao de disponibilidade para uma méaquina Lee (1996)
mostra que os problemas que tem foco na minimizacdo do makespan, atraso maximo e soma
dos completion time, podem ser resolvidos otimamente por uma sequéncia arbitraria, regra

SPT e pela regra EDD (Earliest Due Date) respectivamente.
3.4. Flow shop com restricao de disponibilidade

De acordo com Ma, Chu, Zuo (2010) existem muitos estudos de flow shops com
restricdes de disponibilidade para duas maquinas, porém poucos para multiplas maquinas,
além disso a maioria dos estudos levam em consideragdo o makespan como o critério de
otimiza¢do. O primeiro estudo de programagao de tarefas em flow shop com restrigdes de
disponibilidade (caso resumable) para duas maquinas foi realizado por Lee (1997), levando
em conta o critério de otimiza¢do do makespan, neste estudo ele mostra que o problema se
torna NP-hard para duas maquinas se tivermos apenas uma janela de indisponibilidade
somente na primeira ou somente na segunda maquina, ele também mostra que o algoritmo de

Johnson leva a uma margem de erro relativa menor ou igual a 1.

Para o caso resumable onde cada uma das maquinas pode ter um niimero arbitrario de
janelas de indisponibilidade Btazewicz et al. (2001) apresenta duas heuristicas construtivas e
uma heuristica de busca local para resolver o problema, estas heuristicas foram testadas em
problemas faceis e mais dificeis de até 100 tarefas e 10 intervalos de indisponibilidade e
obtiveram o pior desvio relativo do 6timo de 2,6% para os problemas mais faceis e 44,4%
para os dificeis. Kubiak et al. (2002) considera o problema com varias janelas de
indisponibilidade somente na primeira maquina, somente na segunda ou em ambas, €
mostram que o problema ¢ NP-hard até para o caso que ocorre apenas em uma maquina e que

se existir pelo menos uma janela na segunda maquina ndo existem heuristicas com tempo

31

polinomial que apresentem um erro relativo constante. Além disso Kubzin et al. (2009)
apresenta um algoritmo de aproximacdo para o problema com multiplas janelas de

indisponibilidade na primeira maquina.

Para o caso non-resumable Allaoui et al. (2006) considera o problema com
indisponibilidade apenas na primeira maquina, € propdoem um modelo de programagao
dindmica que ¢ independente do tempo de processamento das tarefas. Lee & Kim (2017)
estudam o problema da programagdo de tarefas em um flow shop de duas maquinas com
objetivo de minimizar o atraso total, para o caso em que a maquina do primeiro estagio
precisa de manutengao preventiva (restricdo de disponibilidade), dado um periodo de tempo
cumulativo entre a manutencdo anterior. Este estudo considera o caso non-resumable, ¢eles
propdoem um algoritmo de branch and bound, com limites inferiores definidos por
programacdes parciais e limite superior definido por um algoritmo heuristico, como resultado
obtiveram que o algoritmo consegue achar solugdes 6timas para problemas de até 24 tarefas

em um tempo computacional razoavel.

Para multiplas maquinas sdo poucos os estudos que podemos encontrar, Aggoune
(2004) considera o problema com varias janelas de indisponibilidade (rnon-resumable) em
cada maquina, devido o problema ser fortemente NP-hard ele propdem uma busca tabu e um
algoritmo genético para resolvé-lo. Posteriormente Aggoune e Portmann (2006) apresentam
uma abordagem geométrica temporizada para resolver o problema com duas tarefas e com
base nisso uma heuristica para resolver aproximadamente o problema com mais de duas
tarefas. Outras pesquisas que consideram multiplas maquinas comumente levam em
consideracdo o flow shop hibrido, uma mistura do ambiente de maquinas em série e paralelo,
onde temos uma série de estagios nos quais cada estdgio possui multiplas maquinas em

paralelo, e as tarefas devem ser processados seguindo uma mesma ordem de estagios.
3.5. Eficiéncia energética na Programacio da Producao

Um topico que estd muito em alta atualmente € a sustentabilidade, trazendo cada vez
mais um olhar de responsabilidade para com o meio ambiente, isso se deve ao fato de
desafios relacionados a crises de recursos, energia, mudangas climaticas e ambientais estarem
cada vez mais comum, desta forma o mundo como um todo trabalha na estipulacdo de metas
e objetivos para balancear aspectos economicos, sociais € ambientais. A industria tem um
papel vital nestes objetivos visto o grande consumo de recursos e energia que as mesmas

fazem utilizagdo, por exemplo, a industria de manufatura consumiu quase que um ter¢o do

32

consumo energético global (Gao et al., 2019), além da grande quantidade de poluentes
emitidos por estas. Para atingir esse desenvolvimento sustentdvel, podemos utilizar o
chamado “Green Shop Scheduling”, a programacao da produgdo com um olhar sustentavel,
que tem potencial de aumentar significativamente a eficiéncia energética a um custo de

praticamente zero (Li, 2022).

Os problemas de programagdo da produgdo verdes ou green scheduling shop
problems (GSSPs) sdo extensdes dos problemas classicos de programagdo da produgdo,
porém mais orientados aos recursos € ambiente, isto €, os problemas cldssicos tendem a
otimizar apenas indicadores econdmicos, mas sem ter uma visdo sobre o consumo energético
e impacto ambiental. Estes problemas em sua grande maioria possuem abordagens
multi-objetivos, tendo ndo s6 objetivos econdmicos, como makespan, atraso total e custo de
producdo, por exemplo, mas também objetivos ambientais, que visam diminuir o consumo de
energia e a poluicdo do ambiente, ¢ muito comum observamos este consumo energético ou
emissao de poluentes relacionados a duas estratégias na programagao da producao, a primeira
¢ a estratégia de ligar e desligar maquinas ociosas para reduzir a energia gasta pela mesma e a
segunda estratégia ¢ baseada na velocidade de processamento das maquinas, quanto menor

for a velocidade, mais lento é o processamento da tarefa porém o consumo energético ¢

reduzido.

Um dos primeiros trabalhos relevantes nessa area de economia energética foi o de
Mouzon et al. (2007) que estudou o uso da programagao da produgdo para minimizagao do
uso energético em uma unica maquina, baseado no conceito de desligar a maquina quando a
mesma nao precisava ser utilizada. Posteriormente Mouzon & Yildrim (2008) desenvolveram
um framework para resolver o problema multi-objetivo que minimiza o consumo total de
energia e o atraso total para uma maquina por meio do método GRASP (Greedy Randomised
Adaptive Search Procedure) e constataram que a medida que o atraso total diminui o

consumo energético aumenta.

O problema de flow shop permutacional verde ou green permutation flow shop
problem (GPFSP), utilizando a abordagem baseada na velocidade de processamento das
maquinas pode ser encontrado com diversas fungdes objetivo na literatura. Fang et al. (2013)
consideraram este problema com uma restrigdo de pico de energia consumida, juntamente
com funcdes objetivos baseadas em tempo, desenvolvendo um modelo matematico e

abordagens para resolver este problema. Mansouri ef al. (2016) abordou o GPFSP para duas

33

maquinas e analisou qual era a relagdo entre minimizar o makespan e a energia total
consumida a partir de um modelo de programacao linear inteira mista usado para obter a

fronteira de Pareto dos dois objetivos de otimizagao.

Foumani & Smith-Miles (2019) estudam um problema multi-objetivo do flow shop
verde para minimizar o makespan e a emissao total de carbono, eles propuseram um modelo
de programacdo linear inteiro misto e usando a abordagem de agregar pesos aos objetivos

transformaram o problema original em um problema de objetivo de otimizagdo tnico.

3.6. Eficiéncia energética na Programacio da Producio com restricoes de

disponibilidade

Pouco se encontra na literatura quanto aos problemas de GSSPs levando em
consideragdo a restricdo de disponibilidade de maquinas. Assia et al. (2019) aborda o flow
shop ndo permutacional com intervalos de indisponibilidade e foco na minimizagdo da
energia total consumida e makespan, com intervalos de indisponibilidades periddicos fixos
em um caso € no outro com intervalos flexiveis onde a maquina nao pode superar um dado
tempo de trabalho continuo, em ambos os casos as tarefas sdo non-resumables. Eles apenas
propdem modelos matematicos de programagdo linear binaria mista, sem se aprofundar em

métodos e testes computacionais.

Cui & Lu (2020) ja trazem uma abordagem bi-objetivo, com foco na minimizacao do
makespan e consumo energético, para o problema do flow shop com restricdes de pico de
demanda energética. Eles propuseram um modelo integrado baseado no planejamento da
produgdo, isto ¢, com planejamento de manutengdo preventiva e controle de energia. Foi
formulado um modelo matematico, assim como um algoritmo meta-heuristico baseado no
algoritmo evolutivo NSGA - II, a partir de testes computacionais os autores puderam
constatar que os impactos da manuten¢do preventiva e restrigdes de pico de demanda

energética influenciam fortemente na sequéncia 6tima das tarefas.

Ao conhecimento do autor ndo existem trabalhos que abordam o problema

multi-objetivo de energia total consumida e tempo total de atraso para um flow shop

permutacional levando em conta restrigdes de disponibilidade fixas.

34

4. MODELO MATEMATICO

Com a descrigdo do problema, podemos montar um modelo matematico com base nas
ideias de Wilson (1989), que aborda diferentes modelos matematicos para o flow shop e
Meng et al. (2019), que apresenta seis diferentes modelos de programacao inteira mista para
o problema do job shop com objetivo de minimizar a energia total consumida. Assim, o
modelo proposto neste trabalho, por meio de expressdes matemadticas, ird restringir as
solugdes de modo que respeite as condi¢des que foram colocadas na definicdo e otimize o
sequenciamento das tarefas para atingir a melhor eficiéncia energética com olhar também
para o atraso total, deste modo serd necessario definir os parametros, variaveis de decisdes e

as equagdes que irdao compor o modelo.

Neste exemplo sao considerados »n tarefas (caso non-resumable) a serem alocadas em
m maquinas de forma que cada uma das maquinas pode apresentar uma janela de
indisponibilidade, esse periodo de indisponibilidade na méquina » ¢ visto como uma tarefa,
de indice n+r a ser realizada. Desta forma a tarefa n+7 deve possuir o instante de inicio igual

ao instante em que a indisponibilidade na maquina 7 se inicia (s), tempo de processamento
(pr n+r) somente na maquina em que a indisponibilidade ocorre e a data de entrega (dn+r)

deve ser um valor suficientemente grande, pois ndo levaremos em consideracao atraso nesta

tarefa.

4.1. Variaveis
X Variavel bindria que tem valor 1 se a tarefa i foi programada como a j-ésima
tarefa, e valor 0 caso contrario.

S Variavel que indica o instante em que a j-ésima tarefa comeca a ser

processada pela maquina 7.

C Varidvel que indica o instante em que a j-ésima tarefa termina de ser

processada pela maquina r

T Variavel que indica qual foi o atraso da j-ésima tarefa.

35

7 Varidvel bindria que indica se a estratégia de ligar e desligar foi

implementada entre a tarefa na posi¢do j e j+/ na maquina r

U , W _ \Varidveis intermediarias continuas para a linearizagdo da fungdo objetivo
rJ rJ
ndo linear

4.2. Parametros

p Tempo de processamento da tarefa i na maquina » (unidade de tempo).
T,i
d Prazo de entrega para a tarefa i (unidade de tempo).
l
S Instante em que comeca o periodo de indisponibilidade na maquina r

(unidade de tempo).

oténcia de processamento da tarefa i na maquina r (unidade de
. A pot d to da taref: dade d
T,i
energia).
Pidle A poténcia ociosa da maquina » (unidade de energia).
r
. um, umi ui) N uxili
Poténcia comum, consumida pelos equipamentos e instalacoes auxiliares
0

(unidade de energia).

N Numero de vezes maximas de estratégias on/off na maquina .
TB Tempo de break-even da maquina r (unidade de tempo).

Energy$S Energia gasta para realizar uma operagao de desligar e ligar a maquina r
r

(unidade de energia).

M Valor suficientemente grande.

36

4.3. Funcao objetivo

Como visto anteriormente o objetivo de otimizacdo principal serd o consumo de

energia, e portanto para computar este consumo podemos usar a seguinte expressao.

m n+m-—1

' idl
TEC' = ¥ ¥ ((1 ~Z J(S, ., —C)P+ EnergySrZ”) +
r=1 j=1 - - ” ’

(D

0 (Cm,n+m N 51,1)

Na expressdao (1) temos o consumo total de energia (TEC), a primeira parte ¢ a
energia /DLE consumida, que contempla o tempo ocioso entre processamento de tarefas ou a
energia gasta para desligar e ligar a maquina, se a estratégia for utilizada. A segunda parte € o
gasto comum de energia, que corresponde a energia gasta para manter o ambiente com
instalacdes auxiliares, que ¢ calculada do momento em que a primeira tarefa comeca a ser

processada até o momento em que a ultima tarefa termina de ser processada.

Porém esta equacdo que vai ser utilizada na fung@o objetivo € ndo-linear, pois contém
idl : : . T
o termo (1 — er)(srj+1 - er)Plr ‘. Como isso dificultaria a otimizagdo deste problema se faz

necessario linearizar a equagdo, adicionando variaveis intermediarias U”,Jr1 e er que substituiriam

1 - er)Serrl e(l — er) C v respectivamente. Desta forma o objetivo desta duas variaveis ¢ apenas

linearizar a equagdo (1), resultando na seguinte equacdo linearizada.

m n+m—1 .
l
TEC = El El ((it T r}j)P + EnergySrZr’j)+

2)

Com isso podemos utilizar agora a esta equacao (2) do consumo total de energia na

funcdo objetivo do modelo o que nos resulta na seguinte funcao objetivo.

37

n+m
5T

. =1
min TEC + W 3)

Onde TEC ¢ a fung¢do linearizada do consumo de energia, equagdo (2), e o segundo
termo presente na funcao objetivo diz respeito ao atraso total das tarefas, otimizado por uma
abordagem lexicografica, a ideia ¢ por meio da utilizagdo de um upper bound para o atraso,
transformar o valor referente ao atraso total em um numero entre 0 e 1 fazendo com que o
modelo priorize a otimizagdo do consumo de energia e depois ao atraso das tarefas, o upper
bound foi calculado considerando o pior cenario possivel, onde apenas uma operagao ¢

realizada por vez e o atraso ¢ calculado com base na primeira tarefa a ser entregue.

m n+m
UBTj(n +m) =) X p,, — min di (n + m) 4)
r=1i=1 '
4.4. Restricoes
n+m
xi,j =1 i=12,..,n+m ®))
j=1
n+m
121 X = 1 j=12.mn+m (6)
S —s5 < M(— X) r=12mm;j=12.,n+m (7)
r,j ro n+r,j
S —g5 > —M(l — 5) r=12mm;j=12.,n+m (8)
rj r n+r,j
n+m
> r=12..m;j=12,.,n + m—1
rj+1 — Sr,j T Z pr,ixi,j ©)

n+m
>
r+1,j — Sr,j + i—1 pr,ixi,j
S . =20
1,1
n+m
Cr,] - Sr,j + i§1 pr,i i,j
n
> —
Tj - Sm,j t l§1 xi,j (pm,i dl)
T =0
]

rj+1 T,j

n+m—1

Y Z <N

=1 r,j T
= .. = MZ
rj+1 r,j+1 T,J
=< .+ MZ
r,j+1 r,j+1 T,J
L=< Mi-2z)
r,j+1 T,j

u =20

T,

W = C — MZ

r=1,,2..m-1j=12..,n+ m

r=12,..m j=12..,n + m

j=L1,2,.,n+m

j=1,2,.,n+m

r=1,,2..,m;j=1,2.,n+ m-1

r=12..m;j=12,.,n + m-1

r=12,..m

r=21.,,2.,m;j=1,2.,n+ m-—1

r=1.,2..,m;j=1,2.,n+ m-—1

r=1.2,..m;j=12.n+ m-1

r=2L1,2..m;j=1L12..n+ m

r=1,,2,..,m;j=1.,,2.,n + m—1

38

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

1)

(22)

39

W < C _|_ MZ r=1,,2..,m;j=1,2.,n+ m-—1 (23)
rj o~ rj rj

w < M(l _7) r=12.m; =120 + m—1 (24)
r’j - T,j

W > O r=1,,2..,m;j=12.,n + m (25)
rj

X €{0,1} j=12mn+m (26)
)

O conjunto de restrigdes (5) vai garantir que cada tarefa esteja atribuida a somente
uma posicdo, ja o conjunto de restri¢des (6), por sua vez, ird garantir que cada posi¢ao esteja
atribuida a uma tnica tarefa. J4 o conjunto de restri¢cdes (7) e (8) vao garantir que o periodo
de indisponibilidade da maquina » comece exatamente em s, . O conjunto de restrigdes (9)
garantem que, numa mesma maquina, a tarefa na posi¢cdo j comece apenas quando a tarefa na
posi¢do anterior ja tenha sido processada. O conjunto de restrigdes (10) vai garantir que uma
tarefa apenas possa comecar a ser processada em uma dada méaquina se ja foi processada na
maquina anterior. A restricdo (11) garante que a primeira tarefa comece somente apos o

instante 0.

O conjunto de restrigdes (12) serve para definir a variavel que indica o instante de
término das tarefas nas maquinas. O conjunto de restri¢des (13) vai garantir que o atraso seja
maior ou igual a diferenca do tempo de conclusdo e a entrega de um determinada tarefa, ja o
conjunto de restricdes (14) garante que o atraso de uma tarefa seja maior ou igual a zero, ndo

assumindo valores negativos.

O conjunto de restri¢des (15) e (16) vao restringir a estratégia de ligar e desligar a

maquina, ou seja, quando o tempo /DLE (STJ_ - er) ¢ maior que o chamado “ponto de

+1

equilibrio”, TBr, ela pode ser desligada, caso o contrario nao. O conjunto de restricdes (17)

garante que ndo haja mais do que o niimero maximo permitido de utilizagdo da estratégia de
ligar e desligar a maquina. Os conjuntos de restrigdes (18),(19),(20),(21) vao garantir que

o 1 - Zr,j)Sr,j+ , seja sempre verdade, isto &, se Zr,j: 0 entdo os conjuntos (18) e

(19) vao garantir que Urj+) seja maior ou igual e menor ou igual a Srj a0 mesmo tempo,

+1

40

desta forma assumindo seu valor. Agora se er= 1 os conjuntos (20) e (21) vao garantir que
Uerrl seja maior ou igual e menor ou igual a 0, desta forma assumindo o valor 0.
Semelhantemente as restrigoes (22),(23),(24),(25) vao garantir que er = (1 - er) er

seja sempre verdade, isto € se Z”,: 0 entdo er assume o valor de er. Se erz 1, entdo

er assume o valor 0.

4.5. Instancia exemplo

Para avaliarmos o modelo descrito anteriormente, podemos utilizar uma instancia de
teste e encontrar a solugdo Otima deste problema, isto é, minimizar a energia consumida ao
processarmos a tarefa e o atraso total das mesmas. Para este exemplo consideramos um
ambiente com 3 maquinas que deve processar 6 tarefas os tempos de processamento de cada

uma dessas tarefa nas 3 maquinas ¢ dado a seguir:

Tabela 1: Instdncia exemplo com 6 tarefas e 3 maquinas

Ji Pii D2 Psi d;
J; 2 1 5 8
J, 3 3 3 10
Js 3 5 4 14
Jy 4 3 2 17
Js 2 2 4 21
Js 3 4 6 29

Fonte: elaborado pelo autor

Neste exemplo iremos considerar que cada maquina possui um periodo de
indisponibilidade, na maquina 1 o periodo de indisponibilidade comega em 5 (s, =5) e tem
duracdo de uma unidade de tempo, o periodo de indisponibilidade da maquina 2 comega em
10 (s,= 10) e tem duracao de uma unidade de tempo, por fim, na maquina 3 no periodo de

indisponibilidade comega em 20 (s; = 20) e também tem duracdo de 1 unidade de tempo.

41

Além dos parametros ja citados, aqui iremos considerar que a energia consumida em tempo
IDLE pelas maquinas ¢ de 2 unidades de energia, o consumo quando se utiliza a estratégia de
ligar e desligar as maquinas ¢ 1 unidade de energia. E o custo comum, isto ¢, para os

equipamentos auxiliares ¢ de 1 unidade de energia.

Aplicando no modelo matematico chegamos a uma solu¢do otima que tem como
sequenciamento tarefa 1, tarefa 2, tarefa 5, tarefa 3, tarefa 4, tarefa 6. O valor da fungao
objetivo encontrado foi de 30,03, onde a parte inteira representa a energia consumida e os
decimais representam a otimizagdo do atraso total, neste exemplo obtemos um consumo de
30 unidades de energia e o atraso total obtido de 15 unidades de tempo. Podemos perceber
pelo sequenciamento presente na Figura 3, que a estratégia de ligar e desligar a maquina foi

utilizada entre a tarefa 1 e tarefa 2 na maquina 2.

Figura 3: Grafico Gantt do sequenciamento 6timo da instancia exemplo minimizando o gasto

de energia e atraso total
Gréfico de Gantt para Sequenciamento de Tarefas em Flow Shop (3 Maquinas)

Maquina 1 1

Maquina 2 4

Maquina 3 4

01 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
Tempo

Fonte: Matplotlib Python

Com base nesse exemplo podemos também evidenciar o funcionamento da
otimizac¢do lexicografica, que tem como foco a minimiza¢do da energia total gasta, mas
também mantém em vista o atraso total. Podemos destacar seu funcionamento retirando da

funcdo objetivo a expressdo responsavel por calcular o atraso total, otimizando o problema

42

apenas na oOtica de energia. A solu¢do Otima obtida entdo tem o seguinte sequenciamento:
tarefa 1, tarefa 2, tarefa 5 , tarefa 3, tarefa 6, tarefa 4. Com o valor da fun¢do objetivo de 30,
logo, temos 0 mesmo consumo energético quando comparado a primeira solu¢do, porém o
atraso total obtido na solu¢do da Figura 4 ¢ de 21, tendo um aumento de 6 unidades quando

comparado a primeira solucao.

Figura 4: Grafico Gantt do sequenciamento 6timo da instancia exemplo minimizando o gasto

de energia
Grafico de Gantt para Sequenciamento de Tarefas em Flow Shop (3 Maquinas)

) 3 I 4
Méquina 2 4 1 I 5 I 3
Magquina 3 - 1 I 5 3

Maguina1{ 14

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
Tempo

Fonte: Matplotlib Python

43

5. HEURISTICA

Diante da crescente complexidade dos problemas de programacao da produgao, como
¢ o caso dos ambientes flow shop com restricdes de disponibilidade, muitas vezes torna-se
invidvel encontrar solugdes exatas em um tempo computacional razoavel. Isso ocorre porque
esses problemas se enquadram na classe NP-hard, ou seja, a medida que o tamanho do
problema aumenta, o esfor¢co necessario para encontrar a solu¢do Otima cresce
exponencialmente. Diante dessa limitagdo, torna-se essencial o uso de heuristicas como
abordagem pratica para tomada de decisdo. A area de produgdo ¢ uma das areas que mais

utiliza métodos heuristicos (Zanakis ef al. 1989).

Heuristicas sdo procedimentos para resolver problemas através de um enfoque
“Intuitivo”, em geral racional, no qual a estrutura do problema possa ser interpretada
explorada inteligentemente para obter uma solucdo razodvel (Nicholson, 1971). Portanto, sao
métodos ou estratégias simplificadas que ndo garantem a solu¢do 6tima, mas conseguem
encontrar solucdes satisfatorias e proximas do ideal em tempo vidvel. Em vez de explorar
exaustivamente todas as combinagdes possiveis, esses métodos procuram identificar padroes

e atalhos que conduzam a solugdes de alta qualidade, mantendo a viabilidade operacional.
5.1. Heuristica construtiva

Para a constru¢dao de uma solugdo inicial iremos utilizar uma heuristica construtiva
que ird levar em conta aspectos importantes da formulagdo do problema para montar um
sequenciamento de tarefas. Heuristicas construtivas constroem uma solu¢do de forma
incremental, adicionando elementos passo a passo até formar uma solugdo completa. Essas
heuristicas seguem uma abordagem sequencial, onde cada decisdo feita em uma etapa

impacta as etapas seguintes.

A heuristica que sera utilizada esta baseada na proposta por Ronconi & Henriques
(2009), que faz o uso da regra de despacho FPD (fitting processing times and due dates).
Utilizaremos uma regra de despacho com um funcionamento dindmico, ou seja, depois da
selecdo de uma dada tarefa para uma determinada posi¢do no sequenciamento, uma lista de
prioridade ¢ calculada considerando todas tarefas que ainda nao foram posicionadas. A
escolha de uma tarefa estd diretamente ligada com a tarefa que foi posicionada previamente,
desta forma para iniciarmos o algoritmo precisamos selecionar a primeira tarefa para que a

lista de prioridade seja calculada, uma abordagem que pode ser utilizada para a escolha dessa

44

tarefa inicial ¢ a tarefa que tenha a menor soma da data de entrega e tempo de processamento
na primeira maquina ([,), fazendo isso estamos levando em consideragdo uma das

caracteristicas do problema que ¢ a minimizacao do atraso total.
I =d
k k + pl,k

Para as tarefas seguintes, iremos utilizar uma medida de prioridade (F}), onde a
tarefa com menor valor dessa medida serd escolhida como a préxima a ser posicionada. Essa
medida de prioridade considera aspectos relacionados ao tempo de processamento e data de
entrega das tarefas candidatas, ela ¢ calculada por meio de dois termos, o primeiro termo
(aproveitamento de janela) vai beneficiar tarefas que possuam um melhor “encaixe” com as
janelas deixadas pela ultima tarefa posicionada em cada maquina, visto que o objetivo de
otimizacao principal ¢ o de minimizagdo de consumo energético ¢ de extrema importancia
que as tarefas sejam alocadas de forma a reduzir o tempo ocioso das maquinas. J& o segundo
termo (folga dindmica) visa aumentar a prioridade de tarefas que estejam proximas de sua

data de entrega, trazendo um olhar para o atraso total.
5.1.1. Aproveitamento de janela (fif)

Para calcular o aproveitamento da janela que uma tarefa candidata & terd em relagdo a
tarefa anteriormente posicionada precisamos levar em conta a janela em uma dada maquina (
b,) assim como o tempo de processamento da tarefa a ser posicionada (p,;), queremos a
tarefa que melhor se encaixe nessas janelas, portanto podemos medir esse encaixe a partir da
soma da diferenca absoluta entre a janela e o tempo de processamento da tarefa a ser

posicionada em cada maquina.

m—1
flt: Z |br_prk
r=1

A janela de disponibilidade de cada maquina (b,), diz respeito ao espago de tempo
deixado para realizarmos uma tarefa quando outra ja estd posicionada, a maneira mais
intuitiva de pensarmos nessa janela € a partir do instante de tempo que a tarefa ja posicionada
(¢;) acaba de ser processada em uma maquina »+/ (C,,,) e subtrai-lo do instante tempo que
esta mesma tarefa termina na maquina anterior » (C,,;). Na Figura 5, temos a representacdo

dessa janela de tempo.

45

Figura 5: Janela de disponibilidade

My I: ' i

M‘."‘o- 1 11

C?"»f , e

Fonte: elaborado pelo autor

A ideia ¢ a partir disso escolher a tarefa que vai melhor se encaixar nesse espaco

deixado pela tarefa ¢, de modo a evitar possiveis tempos ociosos como descritos na Figura 6 e

Figura 7.
Figura 6: Tarefa menor do que janela disponivel
P by
Mo . E
Ny t
Fonte: elaborado pelo autor
Figura 7: Tarefa maior do que janela disponivel
: by
Mr T, . '
M‘f‘& 1 t‘

Fonte: elaborado pelo autor

Considerando o problema tratado neste trabalho, precisamos também levar em conta

que as maquinas terdo tempos de indisponibilidade que irdo interferir diretamente nestas

46

janelas, visto que estamos tratando do caso non-resumable e assim uma vez que as tarefas sao
iniciadas ndo podem ser interrompidas no meio de seu processamento. Portanto ¢ de extrema
importancia ter em vista o cenario descrito pela Figura 8, onde a indisponibilidade que se
inicia em (s,) vai fazer com que a janela da maquina r seja menor do que se inicialmente
pensava, o seu calculo entdo serd a diferenca entre o instante que a indisponibilidade se inicia

('s,) subtraido do instante em que a tarefa j& posicionada termina na maquina » (C,,;) .

Figura 8: Janela disponivel considerando indisponibilidade de méaquinas

M f.

M'}% 1 .t’l.

..

' CT‘A,I{

Fonte: elaborado pelo autor

Outro ponto importante ¢ que, com excecdo da primeira maquina, o0 modo de se
calcular a janela (b,) pode variar de acordo com o encaixe da tarefa £ na maquina anterior,
isto ¢, se tivermos a situacao observada na Figura 6 o calculo deve ser feito da maneira como
foi ja foi descrito anteriormente, porém se tivermos a situagdo que ¢ observada na Figura 7,
precisamos levar em conta que a tarefa k s estard disponivel para ser realizada na maquina
r+1 quando ela terminar de ser processada na maquina 7 entdo se considerarmos a janela de
disponibilidade comegando assim que a tarefa ja posicionada (¢) termina na maquina r

estaremos atribuindo a esta janela um espago que nao podera ser utilizado.

Desta forma como podemos observar na Figura 9, para a maquina -1 o célculo da
janela serd feito normalmente, porém quando analisarmos a janela da maquina » devemos
subtrair do instante de término da tarefa ¢, na maquina »+1 o instante em que a tarefa k
termina de ser processada na maquina r-1, e assim a janela b, ndo ird considerar o espago que
ndo pode ser utilizado, hachurado em vermelho. O instante em que a tarefa £ termina numa
maquina pode ser considerado como o instante que a tarefa ¢, termina na primeira maquina
somado dos tempos de processamento da tarefa k nas maquinas anteriores a aquela que se

calcula a janela.

47

Figura 9: Ajuste da janela disponivel considerando espago inutilizado

b
N\r_q T. K
e 4 o
P : : by :
t Fors e atesesesannnaaiaaaeton.
M t
S, %2 .
C')"‘;tt : ;
N\ray ti.
Cr‘fﬂ.t

Fonte: elaborado pelo autor

A partir de todas caracteristicas das janelas que foram descritas, podemos chegar

numa expressao para o calculo da mesma, para a primeira maquina teremos:

—C
1,t

i i i

Para as maquinas seguintes:

r—1
bj - mln>0 { Cr+1,ti o max{ Cr,ti' Cl,k + Z pw,k}' Sr o max{ Cr,ti' Cl,k + ; p f

w=1
5.1.2. Folga dindmica

O segundo termo utilizado para compor a medida de prioridade é o referente a folga
dinamica, este termo € importante para que tarefas que estejam mais proximas a sua data de
entrega tenham a sua prioridade aumentada, isso vai de encontro com o outro objetivo de
otimiza¢do do problema deste trabalho que ¢ a minimizacdo do tempo total de atraso. O

calculo deste termo sera dado por:

dynslack = (LBk — Cl,ti)

Onde LB, representa um limite inferior para a entrega da tarefa k, que pode ser
calculado como a diferenga entre o instante em que a tarefa deve ser entregue e a soma dos

tempos de processamento da mesma em todas as maquinas.

48

LBk :dk_ 2 [

Com este segundo termo estabelecido podemos entao fazer a definicdo do calculo da
medida de prioridade, juntando o fit com dynslack teremos a medida de prioridade que pode

ser ajustada quando ao peso dado para cada termo por meio de um parametro p.
m—1
Fe=0p 21 |br B prk| + (1= p)(LBk B Cl,ti)

5.1.3. Pos-processamento

Depois que todas as tarefas ja tiverem sidos posicionadas de acordo com a lista de
prioridade calculada dinamicamente, iremos obter o sequenciamento das tarefas, porém para
melhor adequarmos a solucdo ao problema estudado, serd aplicado um pds-processamento
que vai ajustar o instante em que cada tarefa deve comegar, respeitando a ordem que foi
obtida. Este passo tem como objetivo, agrupar as tarefas para que o tempo ocioso das

maquinas seja o menor possivel, e consequentemente a energia total gasta também.

Comecando pela Gltima maquina, as tarefas serdo ajustadas de acordo com o instante
de inicio da ultima tarefa posicionada (tarefa na posi¢do 0). Logo o instante de término da
tarefa na posicdo 0-1 serd ajustado para o instante em que a tarefa na posicao 0 inicia, € o
instante de inicio recalculado com base no seu tempo de processamento, o mesmo sera feito
para a tarefa 0-2, porém agora com base no instante de inicio da tarefa na posicdo 6-1, e
assim por diante, até que todas as tarefas sejam ajustadas, vale lembrar que em cada méaquina
iremos possuir periodos de indisponibilidade, desta forma as tarefas devem ser ajustadas

respeitando essas janelas.

Nas maquinas seguintes isso deve ser feito seguindo a mesma ideia que foi aplicada
na ultima maquina, porém o ajuste da tarefa na posi¢do 0-1 numa maquina » ndo deve
considerar apenas o instante de inicio da tarefa uma posi¢do acima (0) mas também o
instante de inicio da tarefa na posicdo 6-1 na maquina r+1, visto que por estarmos
considerando um ambiente flow shop uma tarefa s6 pode iniciar seu processamento na
maquina r+1 se ja foi completada na maquina r. Portanto o instante de término da tarefa na

posicao 6-1 deve assumir o menor valor entre o instante de inicio da tarefa na posi¢ao 6 na

49

maquina » e instante de inicio da tarefa na posicdo 0-1 na maquina r+1, sempre respeitando
as janelas de indisponibilidade.

Apobs o pds processamento teremos o sequenciamento final que sera utilizado para
calcular o atraso total e consumo total de energia, aplicando a estratégia liga e desliga
removendo os maiores tempos ociosos entre tarefas, desde que respeitem o tempo de
break-even e numero maximo de utilizacdo da estratégia liga e desliga por maquina. Na
Figura 10 temos um exemplo de um sequenciamento de trés tarefas em trés maquinas obtido
posicionando as tarefas assim que as mesmas possam ser processadas na maquina seguinte e
na Figura 11 temos outro sequenciamento que segue a mesma ordem de tarefas, porém nesse
caso, o pos-processamento foi aplicado e as tarefas estdo dispostas de modo a minimizar os

tempos ociosos das maquinas.

Figura 10: Exemplo de sequenciamento antes do pds-processamento
ST
=L

——t— 1ttt

M3

Fonte: elaborado pelo autor

Figura 11: Exemplo de sequenciamento depois do pds-processamento

M1]

M2

CIi

LI : : : : o rrrroronl : >

Fonte: elaborado pelo autor

50

5.2. Heuristica de melhoria

A fim de melhorar a solu¢do obtida pela heuristica construtiva, iremos utilizar uma
heuristica de melhoria baseada em busca local. Heuristicas de melhoria sdo técnicas
utilizadas para refinar uma solucdo inicial existente, melhorando-a por meio de pequenas
alteracdes controladas, essas heuristicas operam principalmente com métodos de busca local.
A busca local ¢ uma abordagem amplamente usada para resolver problemas de otimizacao
dificeis. Um problema de otimizacdo tem um conjunto de solu¢des e uma funcgao de custo que
atribui um valor numérico a cada solu¢do. O objetivo € encontrar uma solugdo 6tima, uma

que tenha o custo minimo, ou maximo, a depender do problema (Aarts & Lenstra, 2003).

Desta forma utilizaremos a heuristica construtiva como ponto de partida e com base
nela construir uma vizinhanga de solugdes. O movimento escolhido para gerar as vizinhangas
serd o de insercdo, retirando um elemento da sua posicao e o inserindo nas demais, por
exemplo, vamos considerar uma solu¢do x dada por uma permutacio de tarefas de 1 a 4.
Entdo se x = (2,3,1,4) a vizinhanga N(x) gerada pelo movimento de inser¢do serd N(x) =
{(3,2,1,4), (3,1,2,4), (3,1,4,2), (2,1,3,4), (2,1,4,3), (1,2,3,4), (2,3,4,1), (4,2,3,1), (2,4,3,1)}.

Apos gerada a vizinhancga, escolhemos a sequéncia que ird apresentar a menor energia
total gasta, caracterizando um movimento best-move, onde se avalia todas as possiveis
vizinhangas da solugdo atual e se escolhe a que oferece o maior ganho antes de efetuar o
movimento. Com essa nova sequéncia escolhida iremos repetir o processo de gerar a
vizinhanga até que nao haja nenhuma solugdo melhor do que a sequéncia geradora da

vizinhanga, atingindo o critério de parada da busca local.

Por fim, foi adicionado uma perturba¢do juntamente com a repeticdo da etapa de
busca local, com intuito de fugir de 6timos locais. Em buscas locais temos uma forte
influéncia da sequéncia de partida (gerada pela heuristica construtiva), essa perturbagao pode
nos permitir alcancar uma melhor solucao ao aplicar uma mudanga aleatoria na sequéncia.

Para isso foi utilizado o movimento de troca aleatoria entre elementos da sequéncia alcangada
. . ’ ~ . n
na busca local anterior. Com » referindo-se ao niimero de tarefas, sdo realizadas - trocas,

sendo esse resultado sempre arredondado para cima, entdo por exemplo, se tivermos 5
tarefas, 3 trocas serdo feitas, se tivermos 9 tarefas, 5 trocas serdo feitas e assim por diante.
Ap0s realizada a troca o processo de busca local ¢ feito novamente e como saida teremos a

solucao incumbente. Este processo de perturbacdo e busca local € refeito até que a solugdo

incumbente passe a ter uma melhora menor do que 0.5%, assim atingido o critério de parada.

Na figura 12 temos um diagrama que representa o fluxo do processo heuristico empregado.

Figura 12: Diagrama do processo heuristico

[Heuristica construtiva J

[Busca local

[Perturbagio

[Busca local

Critério

Heuristica de melhoria

(ng]amm;ﬁu ﬁnaD

Fonte: elaborado pelo autor

51

52

6. EXPERIMENTOS NUMERICOS

Foram realizados testes, utilizando instancias geradas, para analisar os resultados
obtidos utilizando o modelo matematico, assim como os métodos heuristicos, a fim de
comparar a qualidade das solucdes obtidas e o tempo computacional necessario para cada

uma das abordagens.

Todos os experimentos foram resolvidos em um computador Intel Core i7 3.40 GHz e
com memoria RAM de 16 GB, a linguagem de programacao utilizada foi Python e o modelo

matematico foi implementado utilizando a ferramenta Gurobi 11.0.3.

6.1. Instancias

Para realizarmos os testes computacionais sdo necessarios dados que representem o
ambiente de produ¢do em que estamos modelando os métodos de solugdo, e para tal
utilizaremos instancias de diferentes tamanhos baseadas em trabalhos retirados da literatura

que irdo contemplar diferentes cenarios para uma posterior analise.

Devido a complexidade do problema aqui tratado, como queremos fazer a utilizagao
de um modelo matematico, ou seja um método exato, ao aumentarmos a quantidade de
tarefas e maquinas presente no problema o tempo computacional ¢ cada vez mais requerido.
Desta forma foram geradas diferentes instincias que se adequam ao tamanho do problema.
As instancias geradas para teste e validacdo dos métodos foram baseadas em Mouzon et al.
(2019), com tamanhos de 5, 6, 7, 8 tarefas em ambientes de 5, 6 ¢ 7 maquinas e tamanhos de
7, 8 e 9 tarefas para ambiente de 8 maquinas, desta forma 15 diferentes tamanhos de
problema. Para cada tamanho foram geradas 3 instancias, totalizando assim 45 experimentos.
Ja para os testes de maior escala, onde os métodos heuristicos serdo testados em situagdes que
podem também ser encontradas na pratica, as instancias foram retiradas de Taillard (1993)
com tamanhos de problemas com 20, 50, 100 e 200 tarefas para um ambiente de 10

maquinas.

Os tempos de processamento das tarefas foram gerados a partir de uma distribuicao
discreta uniforme entre 1 ¢ 99. O tempo de indisponibilidade de cada méaquina foi definido
com base em Aggoune (2004), assumindo o valor da média dos tempos de processamento de

cada maquina, desta forma teremos:

53

n

xp
i=1
p =

r, n+r

r,i

Ja o inicio do tempo de indisponibilidade de cada maquina foi definido por uma
adaptagdo do que temos em Xu et al. (2018), generalizando o caso de duas maquinas para

multiplas maquinas. No caso de duas maquinas s ¢ definido pela soma dos tempos de

processamentos das tarefas na maquinas » dividido por dois, para o caso de multiplas
maquinas iremos adicionar a soma dos tempos de indisponibilidade das maquinas anteriores,

portanto teremos que:

n
Zpri r
=1
Sr o 2 + kg:l pk,n+k

As datas de entregas serdo geradas seguindo Armentano & Ronconi (1999), onde
essas datas sdo distribuidas uniformemente entre P(1 — T — R/2) e P(1 — T + R/2).
Nestas equagdes T e R representam o fator de atraso das tarefas e a faixa de dispersao das
datas de entrega, respectivamente, desta forma quando variamos os valores desses dois
parametros temos diferentes cendrios. P representa um lower bound para o makespan,
partindo da definicdo feita por Taillard (1993) e adaptando para melhor adequarmos ao
problema deste trabalho, isto ¢, levar em consideracdo a restricdo de disponibilidade,

podemos calcular P como:

n r—1 m
P = max{max,__ (¥ p +p . +mn ¥ p +mn 3 pl
i=1 k=1 k=r+1
m
max, Y p,_ 3
r=1

Neste trabalho optou-se por utilizar um cendrio mais critico para as datas de entrega,
com alto fator de atraso e pequena faixa de datas de entrega, desta forma ao gerarmos as
instancias foi considerado T = 0,4 ¢ R = 0,6. Além disso, os demais parametros considerados
foram baseados em Meng et al. (2019), a poténcia comum e a poténcia ociosa das maquinas
sdo 1 e 2 respectivamente. O niimero maximo de utilizagdo da estratégia liga e desliga por

maquina ¢ 3 e o tempo de break-even das maquinas ¢ 20.

54

6.2. Resultados e discussao

Os resultados obtidos a partir da utilizagdo das instancias nos permitirdo validar e
avaliar os métodos explorados neste trabalho, primeiramente as instancias serdo resolvidas
utilizando o método exato e os métodos heuristicos propostos, apds isso sera realizado uma
analise de sensibilidade em relagdo ao tamanho das janelas de indisponibilidade das maquinas
e por fim os métodos heuristicos serdo aplicados as instancias de maior escala para validacao

em cenarios mais proximos da pratica.

6.2.1. Método exato

A Tabela 1 apresenta os resultados obtidos utilizando o modelo matematico da se¢do
4 para os 45 experimentos, a otimizacao do modelo tinha um limite de 30 minutos de tempo
de execucdo, desta forma para os experimentos que extrapolaram esse limite de tempo e ndo
alcangaram a solucdo 6tima, temos o gap que representa diferenga entre o limite inferior € o
limite superior da fungdo objetivo. A média do gap obtido foi de 1,61%, sendo que 26 dos 45
experimentos tiveram gap igual a 0, ou seja, foi possivel encontrar a melhor solugao possivel,
e 0 maior gap obtido foi de 16,5 % para a segunda instancia do problema com § tarefas e 7

maquinas.

Podemos perceber que ao aumentarmos o numero de maquinas o tempo
computacional aumenta substancialmente, por exemplo, considerando os problemas com 7
tarefas, para um ambiente de 5 maquinas a média do tempo computacional das 3 instancias
foi de aproximadamente 53 segundos, ja para o ambiente de 6 maquinas essa média foi de
748 segundos. Essa tendéncia confirma a complexidade do problema e a dificuldade da
utilizagdo do modelo matematico quando escalamos o tamanho dos experimentos. Vale
ressaltar também que os resultados obtidos para o atraso total ndo representam o valor 6timo,
isto ¢, como foi utilizado a otimizagdo lexicografica primeiro otimizamos a energia total
gasta, para que assim o atraso total seja otimizado de modo que a programacdo da producao

tenha o valor que ja havia sido obtido para o objetivo referente a energia consumida.

Tabela 2: Resultado computacionais utilizando o método exato

55

Método exato
Tarefas | Maquinas | Instancia Tempo Enersia Atraso
ci’l(’slfgl:zzig;a (UEg) Total (UT) | AT (0
5 5 1 33 636 1089 0
5 5 2 8 657 1333 0
5 5 3 10 632 917 0
6 5 1 14 665 1135 0
6 5 2 23 657 828 0
6 5 3 90 550 866 0
7 5 1 25 587 895 0
7 5 2 99 759 1407 0
7 5 3 36 637 1435 0
8 5 1 77 810 1536 0
8 5 2 326 740 1119 0
8 5 3 275 609 1232 0
5 6 1 843 665 1015 0
5 6 2 232 743 884 0
5 6 3 647 738 1115 0
6 6 1 1800 818 1271 0,98
6 6 2 1800 856 1150 0,23
6 6 3 98 815 1721 0
7 6 1 601 838 1656 0
7 6 2 900 763 1578 0,51
7 6 3 744 868 1231 0
8 6 1 253 841 1653 0
8 6 2 899 743 1435 0
8 6 3 1106 746 2167 0
5 7 1 258 756 1026 0
5 7 2 745 725 1180 0
5 7 3 1254 617 551 0
6 7 1 222 841 2216 0

56

6 7 2 1800 889 1670 1
6 7 3 1800 732 1641 1,64
7 7 1 305 789 2542 0
7 7 2 1800 729 1771 0,74
7 7 3 1800 770 2098 1,41
8 7 1 1800 853 2724 0,58
8 7 2 1800 945 2040 16,5
8 7 3 1800 904 1774 6,6
7 8 1 1800 968 1276 0,87
7 8 2 1800 936 1976 0,52
7 8 3 1800 901 1389 6,21
8 8 1 1800 943 2253 3,6
8 8 2 1800 1009 2916 0,8
8 8 3 1800 1069 2138 6,8
9 8 1 1800 993 2687 9,3
9 8 2 1800 1011 2916 12,2
9 8 3 1800 1019 2367 2
Média 1,61

Fonte: elaborado pelo autor

6.2.2. Métodos heuristicos

Para executar os testes com a heuristica construtiva, primeiramente foi realizado uma

analise de sensibilidade do parametro p utilizado para ajustar os pesos do célculo da medida

de prioridade utilizado no método heuristico, desta forma variando p no intervalo de 0 e 1

com passos de 0,2 chegamos no gap médio da energia e o gap médio do atraso (%), fazendo a

comparagdo entre os resultados obtidos para energia total gasta (FE) e resultados obtidos para

atraso total (FA), utilizando a heuristica (HC) e o modelo matematico (MM), calculados da

seguinte forma.

GAP Energia(%) =

57

FA —FA
HC MM

GAP Atraso(%) =

FA
MM

A Tabela 3 apresenta os resultados obtidos para cada valor de pardmetro utilizado, e a
Figura 13 traz a representagdo grafica. Analisando os 3 melhores resultados quanto ao gap de
energia, principal critério a ser otimizado, temos os valores de 0,2, 0,4 ¢ 0,8 com gaps da
energia de 25,08%, 25,23% e 26,19% respectivamente. A diferenca percentual entre esses
valores estd em aproximadamente 1%, o que demonstra a robustez da heuristica quanto a
diferentes p, e portanto para a posterior andlise o valor do parametro que sera utilizado ¢ 0,5,
distribuindo igualmente os pesos para as duas componentes que compdem a medida de

prioridade da heuristica construtiva.

Tabela 3: Relacao entre a média dos gaps obtidos e o p utilizado na heuristica construtiva

GAP Energia| GAP Atraso

P (%) (%)

0 28,51 57,47
0,2 25,08 51,07
0,4 25,23 50,02
0,6 27,30 51,93
0,8 26,19 48,66

1 27,03 48,07

Fonte: elaborado pelo autor

Figura 13: Relagao entre a média dos gaps obtidos e o p utilizado na heuristica construtiva

== GAP Energia == GAP Afraso
60,00%

50,00%
40,00%

30,00%

\—/\/

0 0,2 0,4 0,6 0,8 1

20,00%

Fonte: elaborado pelo autor

58

Na Tabela 3 e Tabela 4 encontramos os resultados obtidos utilizando a heuristica
construtiva e heuristica de melhoria, respectivamente. Com a heuristica construtiva chegamos
em um gap médio da energia em comparagdo a solucdo exata de 25,34% e um gap médio do
atraso de 54,25%. Jé& para heuristica de melhoria, que utiliza a anterior como ponto de partida,
foi possivel alcangar um gap médio da energia de 7,49% e um gap médio do atraso 21,84%.
Podemos notar que a heuristica de melhoria foi capaz de diminuir em aproximadamente 18
pontos percentuais do gap de consumo de energia e 32 pontos percentuais do gap de atraso
total, e mesmo com um aumento no custo computacional, isso torna-se insignificante quando

comparado a melhoria nos resultados alcangados.

A Tabela 5 mostra a comparagdo dos tempos de execucdo entre os métodos
explorados neste trabalho, o método exato e os dois métodos heuristicos. E possivel notar que
o tempo computacional necessario para os métodos heuristicos, com médias de 0,0027 e
3,2911 segundos, ¢ consideravelmente menor quando comparado ao método utilizado pelo

modelo matematico, que levou em média 944,26 segundos.

Tabela 3: Resultados computacionais utilizando a heuristica construtiva

Heuristica construtiva
Tarefas | Maquinas | Instincia | Enpergia Atraso EfeAr:ia GAP
(UE) Total (UT) (%) Atraso (%)

5 5 1 755 908 18,71 -16,62
5 5 2 799 1874 21,61 40,59
5 5 3 745 1347 17,88 46,89
6 5 1 783 1611 17,74 41,94
6 5 2 831 1118 26,48 35,02
6 5 3 672 1502 22,18 73,44
7 5 1 777 1696 32,37 89,50
7 5 2 952 2453 25,43 74,34
7 5 3 845 3157 32,65 120,00
8 5 1 1043 3004 28,77 95,57
8 5 2 833 1623 12,57 45,04
8 5 3 767 2035 25,94 65,18
5 6 1 891 1590 33,98 56,65
5 6 2 833 1256 12,11 42,08

59

5 6 3 884 2023 19,78 81,43
6 6 1 982 2253 20,05 77,26
6 6 2 978 1762 14,25 53,22
6 6 3 876 2198 7,48 27,72
7 6 1 1017 3160 21,36 90,82
7 6 2 990 2188 29,75 38,66
7 6 3 1121 1152 29,15 -6,42
8 6 1 1075 1880 27,82 13,73
8 6 2 1003 2598 34,99 81,05
8 6 3 1151 4591 54,29 111,86
5 7 1 948 1506 25,40 46,78
5 7 2 829 1412 14,34 19,66
5 7 3 750 1280 21,56 132,30
6 7 1 1006 2620 19,62 18,23
6 7 2 1109 3258 24,75 95,09
6 7 3 913 2733 24,73 66,54
7 7 1 965 2675 22,31 5,23
7 7 2 973 3146 33,47 77,64
7 7 3 981 2379 27,40 13,39
8 7 1 982 3557 15,12 30,58
8 7 2 1262 2634 33,54 29,12
8 7 3 1120 3173 23,89 78,86
7 8 1 1244 2140 28,51 67,71
7 8 2 1152 3208 23,08 62,35
7 8 3 1189 2248 31,96 61,84
8 8 1 1265 3463 34,15 53,71
8 8 2 1251 3534 23,98 21,19
8 8 3 1287 2354 20,39 10,10
9 8 1 1334 4029 34,34 49,94
9 8 2 1475 4073 45,90 39,68
9 8 3 1269 4312 24,53 82,17
Meédia 25,34 54,25

Fonte: elaborado pelo autor

60

Tabela 4: Resultados computacionais utilizando a heuristica de melhoria

Heuristica de melhoria

Tarefas | Maquinas | Instincia | Epergia Atraso Efﬁ;’ia GAP
(UE) Total (UT) (%) Atraso (%)

5 5 1 646 1365 1,57 25,34
5 5 2 672 1551 2,28 16,35
5 5 3 669 1192 5,85 29,99
6 5 1 677 1345 1,80 18,50
6 5 2 686 854 4,41 3,14
6 5 3 567 876 3,09 1,15
7 5 1 642 1368 9,37 52,85
7 5 2 795 1637 4,74 16,35
7 5 3 663 1923 4,08 34,01
8 5 1 831 1640 2,59 6,77
8 5 2 786 1177 6,22 5,18
8 5 3 669 1581 9,85 28,33
5 6 1 735 953 10,53 -6,11
5 6 2 784 1065 5,52 20,48
5 6 3 830 1675 12,47 50,22
6 6 1 830 1468 1,47 15,50
6 6 2 875 1297 2,22 12,78
6 6 3 826 2007 1,35 16,62
7 6 1 878 1802 4,77 8,82
7 6 2 792 1923 3,80 21,86
7 6 3 924 1556 6,45 26,40
8 6 1 920 1910 9,39 15,55
8 6 2 790 1674 6,33 16,66
8 6 3 823 2354 10,32 8,63
5 7 1 857 1397 13,36 36,16
5 7 2 800 1647 10,34 39,58
5 7 3 749 1280 21,39 132,30
6 7 1 896 2413 6,54 8,89

61

6 7 2 957 2211 7,65 32,40
6 7 3 761 1687 3,96 2,80
7 7 1 888 3059 12,55 20,34
7 7 2 796 2145 9,19 21,12
7 7 3 815 2609 5,84 24,36
8 7 1 914 2922 7,15 7,27
8 7 2 1021 2119 8,04 3,87
8 7 3 989 2266 9,40 27,73
7 8 1 1053 1344 8,78 5,33
7 8 2 980 2220 4,70 12,35
7 8 3 972 2328 7,88 67,60
8 8 1 1018 2685 7,95 19,17
8 8 2 1120 2663 11,00 -8,68
8 8 3 1164 2911 8,89 36,16
9 8 1 1150 3528 15,81 31,30
9 8 2 1197 3155 18,40 8,20
9 8 3 1097 2582 7,65 9,08

Média 7,49 21,84

Fonte: elaborado pelo autor

62

Tabela 5: Tempo computacional para encontrar solucdes utilizando os 3 diferentes métodos

Tempo computacional (segundos)

Tarefas Magquinas Instancia Modelo Heuristica [Heuristica de
matematico | construtiva melhoria
5 5 1 33 0,0030 0,1654
5 5 2 8 0,0020 0,1656
5 5 3 10 0,0010 0,1506
6 5 1 14 0,0020 0,4104
6 5 2 23 0,0010 0,6572
6 5 3 90 0,0020 0,5658
7 5 1 25 0,0020 1,3105
7 5 2 99 0,0020 7,6387
7 5 3 36 0,0020 1,3887
8 5 1 77 0,0020 2,3772
8 5 2 326 0,0020 1,8581
8 5 3 275 0,0020 1,7600
5 6 1 843 0,0020 0,3920
5 6 2 232 0,0030 0,2554
5 6 3 647 0,0020 0,3072
6 6 1 1800 0,0020 0,6717
6 6 2 1800 0,0020 0,5376
6 6 3 98 0,0020 0,5037
7 6 1 601 0,0030 1,8672
7 6 2 900 0,0040 2,1126
7 6 3 744 0,0020 1,2178
8 6 1 253 0,0030 2,1644
8 6 2 899 0,0010 5,0979
8 6 3 1106 0,0020 4,3812
5 7 1 258 0,0040 0,2982
5 7 2 745 0,0010 0,3241
5 7 3 1254 0,0020 0,2214
6 7 1 222 0,0050 1,2276
6 7 2 1800 0,0020 0,8753

63

6 7 3 1800 0,0020 0,9159
7 7 1 305 0,0020 2,4951
7 7 2 1800 0,0020 1,4072
7 7 3 1800 0,0030 1,6885
8 7 1 1800 0,0060 6,4931
8 7 2 1800 0,0030 3,5745
8 7 3 1800 0,0030 2,9483
7 8 1 1800 0,0040 4,1308
7 8 2 1800 0,0030 1,8144
7 8 3 1800 0,0040 4,5052
8 8 1 1800 0,0060 11,0913
8 8 2 1800 0,0040 4,4713
8 8 3 1800 0,0030 4,1835
9 8 1 1800 0,0060 14,3794
9 8 2 1800 0,0030 20,8115
9 8 3 1800 0,0040 22,2855
Meédia 944,96 0,0027 3,2911

Fonte: elaborado pelo autor
6.2.3. Analise de Sensibilidade

Para realizarmos esta analise utilizaremos as instancias geradas para 5, 6, 7 ¢ 8 tarefas
em ambientes de 5 maquinas. Para isso, foram criados dois cendrios, partindo do cenario base
que encontramos os resultados na Tabela 2, Tabela 3 e Tabela 4. Estes dois cendrios terdo um
aumento no tamanho da janela de indisponibilidade de 10% e 20% respectivamente. As
instancias foram entao resolvidas, utilizando o método exato e os métodos heuristicos, o gap
médio da energia total gasta e o gap médio do atraso total obtido comparando estes métodos
podem ser encontrados na Tabela 6. Podemos notar que tanto a heuristica construtiva, quanto
a heuristica de melhoria apresentam valores percentuais nos cenarios com aumento da janela
de indisponibilidade, para o gap da energia, semelhantes ou até menores daquele que foi
obtido no cendrio base. Isso demonstra que os métodos heuristicos sdo capazes de lidar com
cenarios em que as maquinas possuem mais restrigdes de disponibilidade. Porém em ambos

os métodos houve um aumento no gap do atraso total encontrado, representando que os

64

valores encontrados para o atraso total das tarefas foi mais distante daquele obtido pelo

método exato com o aumento das janelas de indisponibilidade.

Tabela 6: Gaps médio da energia total gasta e atraso total para cenarios com aumento na
janela de indisponibilidade

Heuristica construtiva Heuristica de melhoria
Janela de GAP Energia| GAP Atraso |GAP Energia| GAP Atraso
Indisponibilidade (%) (%) (%) (%)
Base 23,53 59,24 4,66 19,83
Com aumento de 10% 22,25 64,33 3,75 25,35
Com aumento de 20% 22,51 65,61 4,22 22,41

Fonte: elaborado pelo autor

6.2.4. Instancias de grande escala

Na Tabela 7 e Tabela 8 temos os resultados obtidos utilizando a heuristica construtiva
e a heuristica de melhoria, respectivamente, nas instdncias com maior escala, que também
representam cenarios que podem ser encontrados na pratica. A heuristica construtiva
apresentou uma média do tempo computacional de 0,34 segundos. Ja a heuristica de
melhoria, com o aumento do numero de tarefas apresentou um crescimento no tempo
computacional necessario para aplicagdio do método, mas apesar deste aumento ainda
apresenta tempos aceitaveis para uma aplicagdo pratica, ficando com uma média de 860,30
segundos. Isso se deve ao fato da vizinhanga explorada crescer com o aumento do nimero de
tarefas, para o caso de 200 tarefas o tempo computacional ja atingiu o limite de 30 minutos
aplicado, isso demonstra que com o aumento da escala da instancia pode ser importante
explorar outros tipo de movimento gerado pela busca local, para que seja possivel explorar
solucdes mais vantajosas em um tempo menor, sendo que, o movimento utilizado neste

trabalho apresenta uma maior vantagem para instancias menores.

65

Tabela 7: Resultados obtido com a heuristica construtiva nas instincias de maior escala

Heuristica construtiva
Tarefas Maquinas Instancia Atraso Total Tempo
Energia (UE) (UT) computacional
(segundos)
20 10 1 3918 11994 0,0160
20 10 2 3474 15234 0,0090
20 10 3 2790 14180 0,0090
50 10 1 6228 51097 0,0539
50 10 2 4621 28454 0,0558
50 10 3 4835 39960 0,0621
100 10 1 11182 83173 0,3779
100 10 2 7940 74571 0,2329
100 10 3 9988 153476 0,2199
200 10 1 15956 251033 0,8912
200 10 2 20577 166923 0,9909
200 10 3 20397 105074 1,1818
Média 0,34

Fonte: elaborado pelo autor

66

Tabela &: Resultados obtido com a heuristica de melhoria nas instancias de maior escala

Heuristica de Melhoria
Tarefas Maquinas Instancia Energia | Atraso Total comr[l:ll::lll(i)onal
(UE) (T (segundos)

20 10 1 2058 15423 81,61
20 10 2 2286 14639 197,87
20 10 3 2002 12197 61,89
50 10 1 4787 65090 409,51
50 10 2 4257 32750 410,26
50 10 3 4447 53025 411,89
100 10 1 9411 128727 1299,91
100 10 2 7629 81962 1314,72
100 10 3 8689 173023 1335,98
200 10 1 14503 263894 1600
200 10 2 17763 177270 1600
200 10 3 19438 110026 1600

Meédia 860,30

Fonte: elaborado pelo autor

67

7. CONCLUSAO

O presente trabalho teve como objetivo explorar o problema de minimizagdo de
consumo de energia e atraso total no sequenciamento de tarefas non-resumables em um
ambiente flow shop com periodos de indisponibilidade. Para isso, com base em conceitos
aprendidos no curso de Engenharia de Producdo podemos contextualizar e descrever
caracteristicas que nos ajudam a entender particularidades desse problema. O referencial
teorico retirado de estudos académicos foi de extrema importancia para guiar o andamento do
trabalho e demonstrar lacunas para contribui¢do, principalmente por se tratar de um problema
ainda pouco enderegado ao conhecimento do autor.

O tema estudado refor¢a a relevancia de integrar praticas sustentdveis a gestdo
operacional. Os resultados obtidos demonstram que ¢ possivel alinhar eficiéncia produtiva
com a redugcdo de impactos ambientais, contribuindo diretamente para os Objetivos de
Desenvolvimento Sustentavel (ODS) da ONU, especialmente os ODS 9 (Industria, Inovacao
e Infraestrutura) e 12 (Consumo e Produg¢dao Responsaveis). Assim, este estudo ndo apenas
atende a demanda por processos mais otimizados, mas também enfatiza a importancia de
estratégias que promovam a sustentabilidade e a responsabilidade corporativa no setor

industrial.

Utilizando como base Wilson (1989) e Meng et al. (2019) foi desenvolvido um
modelo matematico que busca encontrar o melhor sequenciamento de tarefas, otimizado de
maneira lexicografica, isto ¢, atribuindo maior prioridade para a minimizagdo do consumo
energético em comparagdo a minimizagdo do atraso total. Para o controle do consumo de
energia foi atribuida ao modelo a decisdo de utilizar a estratégia de ligar e desligar méquinas

durante periodos ociosos entre tarefas.

Devido a complexidade do problema, que assim como muitos problemas de
scheduling apresenta carater combinatorio NP-hard , foram propostos métodos heuristicos
que ndo garantem a solugdo 6tima, mas apresentam solucdes satisfatdrias em tempo viavel. A
heuristica construtiva apresentada utilizou das caracteristicas do problema para sequenciar as
tarefas, fazendo o aproveitamento de janelas para diminuir o tempo ocioso, além de levar em
consideragdo a data de entrega das tarefas. J& a heuristica de melhoria aproveitou o resultado
obtido pela construtiva para, por meio de buscas locais e perturbagdes, encontrar melhores
solucdes, a metodologia utilizada para essa heuristica apesar de ndo ser exatamente igual, se

assemelha a ILS ({terated Local Search) que se baseia em aprimorar solugdes locais através

68

de um processo iterativo, sendo o aprimoramento para esta meta-heuristica uma possibilidade

para futuros trabalhos.

Observando os resultados obtidos, podemos concluir que com os métodos heuristicos
foi possivel obter resultados satisfatorios em tempos computacionais viaveis, apesar da
heuristica construtiva apresentar resultados um pouco mais distantes dos resultados 6timos,
pode-se utilizar a mesma como uma soluc¢do inicial para a heuristica de melhoria, que
conseguiu atingir resultados mais satisfatorios com gaps médios do consumo total de energia
e atraso total de 7,49% e 21,84% respectivamente, para os 45 experimentos utilizados na

validacao.

Outro ponto importante de se notar ¢ que o gap de atraso total foi mais alto quando
comparado ao consumo total de energia, isso se da devido a relacao que esses dois objetivos
tem quanto a otimizacdo. Muitas vezes o ajuste na programacao das tarefas, ao beneficiar um
dos objetivos, pode por vezes acarretar prejuizos ao outro. Como na constru¢do desse
problema o objetivo principal a ser otimizado foi o consumo de energia, os métodos
utilizados foram desenhados com maior foco no mesmo, seja no modelo matematico, com a

otimizagdo lexicografica, ou nos métodos heuristicos, com o pos-processamento.

Como direcionamento para pesquisas futuras, uma analise utilizando outras formas
de otimizagdo multi-objetivo poderia nos permitir entender melhor a relacdo entre os dois
objetivos aqui tratados. O desenvolvimento das heuristicas propostas, como por exemplo,
diferentes regras de geracdo de solugdo e analise de diferentes tipos de vizinhanga, para que
se adequem cada vez mais ao aumento da escala de instancias. Além disso a extensdo do
problema para tarefas resumables e desta forma explorando a indisponibilidade das maquinas

para os dois casos apresentados na literatura.

69

8. REFERENCIAS

AARTS, E.; LENSTRA, J. K. Local search in combinatorial optimization. Princeton:

Princeton University Press, 2003.

ADIRI, I.; BRUNO, J.; FROSTIG, E.; RINNOOY KAN, A. H. G. Single machine flowtime
scheduling with a single breakdown. Acta Informatica, v. 26, p. 679—696, 1989.

AGGOUNE, R. Minimizing the makespan for the flow shop scheduling problem with
availability constraints. European Journal of Operational Research, v. 153, p. 534-543, 2004.

AGGOUNE, R.; PORTMANN, M.-C. Flow shop scheduling problem with limited machine
availability: A heuristic approach. International Journal of Production Economics, v. 99, p.

4-15, 2006.

ALLAOUI, A.; ARTIBA, A.; ELMAGHRABY, S. E.; RIANE, F. Scheduling of a
two-machine flowshop with availability constraints on the first machine. International Journal

of Production Economics, v. 99, p. 16-27, 2006.

ARMENTANO, V. A.; RONCONI, D. P. Tabu search for total tardiness minimization in
flowshop scheduling problems. Computers & Operations Research, v. 26, n. 3, p. 219-235,
1999.

ASSIA, S.; IKRAM, E. A.; BARKANY, A.; AHMED, E. B. Non-permutation flow shop
scheduling problems with unavailability constraints to minimize total energy consumption.
In: 5th International Conference on Optimization and Applications (ICOA), Kenitra,

Morocco, 2019. p. 1-5.

BLAZEWICZ, J.; BREIT, J.; FORMANOWICZ, P.; KUBIAK, W.; SCHMIDT, G. Heuristic
algorithms for the two-machine flowshop with limited machine availability. Omega, v. 29, p.

599-608, 2001.

BREIT, J. Improved approximation for non-preemptive single machine flowtime scheduling
with an availability constraint. European Journal of Operational Research, v. 183, p. 516-524,

2007.

CUI, W.; LU, B. A bi-objective approach to minimize makespan and energy consumption in

flow shops with peak demand constraint. Sustainability, v. 12, p. 4110, 2020.

70

COELLO, C. A. C. A comprehensive survey of evolutionary-based multiobjective
optimization techniques. Knowledge and Information Systems, v. 1, n. 3, p. 269-308, 1999.

FANG, K.; UHAN, N. A.; ZHAO, F.; ZHANG, J. Flow shop scheduling with peak power

consumption constraints. Annals of Operations Research, v. 206, p. 115-145, 2013.

FOUMANI, M.; SMITH-MILES, K. The impact of various carbon reduction policies on
green flowshop scheduling. Applied Energy, v. 249, p. 300-315, 2019.

GIRET, A.; TRENTESAUX, D.; PRABHU, V. Sustainability in manufacturing operations
scheduling: A state of the art review. Journal of Manufacturing Systems, v. 37, parte 1, p.
126-140, 2015.

ISERMANN, H. Linear lexicographic optimization. OR Spektrum, v. 4, n. 4, p. 223-228,
1982.

KUBIAK, W.; BLAZEWICZ, J.; FORMANOWICZ, P.; BREIT, J.; SCHMIDT, G.
Two-machine flow shops with limited machine availability. European Journal of Operational

Research, v. 136, p. 528-540, 2002.

KUBZIN, M. A.; POTTS, C. N.; STRUSEVICH, V. A. Approximation results for flowshop
scheduling problems with machine availability constraints. Computers & Operations

Research, v. 36, p. 379-390, 2009.

LEE, C. Y. Machine scheduling with availability constraints. Journal of Global Optimization,
v. 9, p. 363-382, 1996.

LEE, C. Y. Minimizing the makespan in the two-machine flowshop scheduling problem with
an availability constraint. Operations Research Letters, v. 20, p. 129-139, 1997.

LEE, C. Y. Two-machine flowshop scheduling with availability constraints. European Journal

of Operational Research, v. 114, p. 420-429, 1999.

LEE, J. Y.;; KIM, Y. D. Minimizing total tardiness in a two-machine flowshop scheduling
problem with availability constraint on the first machine. Computers & Industrial

Engineering, v. 114, p. 22-30, 2017. DOI: 10.1016/j.cie.2017.10.004.

LI, M.; WANG, G. G. A review of green shop scheduling problem. Information Sciences, v.
589, p. 478-496, 2022. DOI: 10.1016/j.ins.2021.12.122.

71

MA, Y.; CHU, C.; ZUO, C. A survey of scheduling with deterministic machine availability
constraints. Computers and Industrial Engineering, v. 58, n. 2, p. 199-211, 2010.

MANSOURI, S. A.; AKTAS, E.; BESIKCI, U. Green scheduling of a two-machine
flowshop: Trade-off between makespan and energy consumption. European Journal of

Operational Research, v. 248, n. 3, p. 772-788, 2016.

MENG, Leilei; ZHANG, Chaoyong; SHAO, Xinyu; REN, Yaping. MILP models for
energy-aware flexible job shop scheduling problem. Journal of Cleaner Production, v. 210, p.

710-723, 2019.

MOUZON, G.; YILDIRIM, M. B.; TWOMEY, J. Operational methods for minimization of
energy consumption of manufacturing equipment. International Journal of Production

Research, v. 45, n. 18-19, p. 4247-4271, 2007.

MOUZON, G.; YILDIRIM, M. B. A framework to minimize total energy consumption and
total tardiness on a single machine. International Journal of Sustainable Engineering, v. 1, n.

2,p. 105-116, 2008. DOI: 10.1080/19397030802257236.

NICHOLSON, T. A. J. Optimization in industry: Optimization techniques. London Business
School series. Chicago: Aldine Atherton, 1971.

PINEDO, M. L. Scheduling: Theory, Algorithms, and Systems. New York: Springer, 2016.

RONCONI, D. P.; HENRIQUES, L. R. S. Some heuristic algorithms for total tardiness
minimization in a flowshop with blocking. Omega, v. 37, p. 272-281, 2009.

SADFI, C.; PENZ, B.; RAPINE, C.; BLAZEWICZ, J.; FORMANOWICZ, P. An improved
approximation algorithm for the single machine total completion time scheduling problem
with availability constraints. European Journal of Operational Research, v. 161, p. 3-10,

2005.

TAILLARD, E. Benchmarks for basic scheduling problems. European Journal of Operational
Research, v. 64, n. 2, p. 278-285, 1993.

WILSON, J. M. Alternative formulations of a flow-shop scheduling problem. Journal of the
Operational Research Society, v. 40, n. 4, p. 395-399, 1989.

72

ZANAKIS, S. H.; EVANS, J. R.; VAZACOPOULOS, A. A. Heuristic methods and
applications: A categorized survey. European Journal of Operational Research, v. 43, p.

88-110, 1989.

73

ANEXO A - Codigo do modelo matematico utilizando Gurobi na
linguagem Python

import gurobipy as gp
q = gp.Model()

#Inserir variaveis de decisdo

x = g.addVars(jobs,pos, vtype = gp.GRB.BINARY)

S = gq.addVars(maquinas,jobs, vtype = gp.GRB.CONTINUOUS)

F = g.addVars(maquinas,jobs, vtype = gp.GRB.CONTINUOUS)

T = q.addVars(jobs, vtype = gp.GRB.CONTINUOUS)

Z = q.addVars(maquinas,jobs, vtype = gp.GRB.BINARY)

U = g.addVars(magquinas,jobs, vtype = gp.GRB.CONTINUOUS)
W = g.addVars(maquinas,jobs, vtype = gp.GRB.CONTINUOUS)

g.setParam('TimeLimit', 30 * 60) #Limite 30 minutos
q.setParam("IntegralityFocus",1)

#Definir Funcao objetivo

q.setObjective(gp.quicksum(((U[r,j+1] - W[r,j]) * Pidle[r] + EnergyS[r] * Z[r,j]) for r in
magquinas for j in range(n+m-1)) + PO*F[m-1,n+m-1] + (gp.quicksum(T[j] for j in jobs)/UB),
sense=gp.GRB.MINIMIZE)

#Restricao 5
cl = q.addConstrs(

gp.quicksum(x[i,j] for 1 in jobs) == 1 for j in pos
)

#Restricao 6
c2 = g.addConstrs(

gp-quicksum(x[1,j] for j in pos) == 1 for i in jobs
)

#Restricao 7
c3 = q.addConstrs(
S[r,j] - s[r] <=M * (1 - x[n+r,j]) for r in maquinas for j in pos

)

#Restricao 8
c4 = q.addConstrs(
S[r,j] - s[r] >=-M * (1 - x[n+r,j]) for r in maquinas for j in pos

74

#Restricao 9
c5 = g.addConstrs(

S[r,j+1] >= S[r,j] + gp.quicksum(p[r,i]*x[i,j] for i in jobs) for r in maquinas for j in
range(n+m-1)

)

#Restricao 10
c6 = q.addConstrs(

S[r+1,j] >= S[r,j] + gp.quicksum(p[r,i]*x[1,j] for i in jobs) for r in range(m-1) for j in pos
)

#Restrigao 11

c7 = q.addConstr(
S[0,0]1>=0

)

#Restricao 12
c8 = g.addConstrs(

T[j] >= S[m-1,j]+gp.quicksum(x[i,j]*(p[m-1,1]-d[i]) for i in jobs) for j in pos
)

#Restricao 13

c9 = g.addConstrs(
T[j] >= 0 for j in pos

)

#Restricdo 14

c10 = g.addConstrs(
F[r,j] == S[r,j]+gp.quicksum(p[r,1]*x[1,j] for 1 in jobs) for r in maquinas for j in pos

)

#Restricao 15
cll = g.addConstrs(

S[r,j+1] - F[r,j] >=TB[r] - M * (1 - Z][r,j]) for r in maquinas for j in range(n+m-1)
)

#Restricao 16

cl1 = qg.addConstrs(
S[r,j+1] - F[r,j] <= TB[r] + M * Z]r,j] for r in maquinas for j in range(n+m-1)

75

#Restricao 17
c12 = q.addConstrs(
gp.quicksum(Z[r,j] for j in range(n+m-1)) <= Nes|[r] for r in maquinas

)

#Restricao 18

c13 = q.addConstrs(
Ulr,j+1]>=S[r,j+1] - M * Z[r,j] for r in maquinas for j in range(n+m-1)

)

#Restricao 19

c14 = q.addConstrs(
U[r,j+1] <= S[r,j+1] + M * Z]r,j] for r in maquinas for j in range(n+m-1)

)

#Restricdo 20

cl5 = q.addConstrs(
Ulrj+1] <= M * (1 - Z][r,j]) for r in maquinas for j in range(n+m-1)

)

#Restricao 21

c16 = q.addConstrs(
Ulr,j] >= 0 for r in maquinas for j in pos

)

#Restricao 22

c17 = q.addConstrs(
W(r,j] >= F[r,j] - M * Z][1,j] for r in maquinas for j in range(n+m-1)

)

#Restricdo 23
c18 = g.addConstrs(

Wi]r,j] <= F[r,j] + M * Z[r,j] for r in maquinas for j in range(n+m-1)

)

#Restricdo 24

c19 = q.addConstrs(
Wir,j] <= M * (1 - Z[r,j]) for r in maquinas for j in range(n+m-1)

)

#Restricao 25

c20 = g.addConstrs(
W][r,j] >= 0 for r in maquinas for j in pos

)

q.optimize()

76

77

ANEXO B - Codigo da heuristica construtiva e de melhoria em
Python

import time
import random
import math

def carregar instancia(arquivo caminho, numero_instancia,x):
with open(arquivo_caminho, 'r') as f:
linhas = f.readlines()

instancias = []
instancia_atual = []

for linha in linhas:
linha = linha.strip()
if linha == str(x):
if instancia_atual:
instancias.append(instancia_atual)
instancia_atual =[]
else:
numeros = list(map(int, linha.split()))
instancia_atual.append(numeros)

if instancia_atual: # Adiciona a ultima instancia
instancias.append(instancia_atual)

if 1 <= numero_instancia <= len(instancias):
return instancias[numero_instancia - 1] # Retorna a instancia escolhida
else:
raise ValueError(f"Numero de instancia invalido. Existem {len(instancias)} instancias.")

def soma parcial(instancia, x):
vetor_somas =[]
sobra_acumulada = [] # Para acumular os nlimeros que ndo foram usados nas linhas

anteriores

for linha in instancia:
soma_primeiros_x = round(sum(linha[:x])/2)

soma_com_sobra acumulada = soma_ primeiros x + sum(sobra_acumulada)

vetor_somas.append(soma _com_sobra_acumulada)

sobra_acumulada.extend(linha[x:]) # Acumula os numeros apos os primeiros 'x'

return vetor _somas

def min_positive(a, b):
return min(x for x in (a, b,100000) if x >= 0)

def valoresD(job):
#Calcula o valor de D para o primeiro job
if len(ordem)==0:
acumulado =0
for chave,valor in D.items():
X,y = chave
if y == job:
if x == 0 and len(ordem)>0:
acumulado = D[x,ordem][-1]]
if x>0 and len(ordem)>0:
if n+x in maqindisp:
acumulado = max(D[x,ordem[-1]],D[x-1,y],s[x]+p[x,n+X])
else:
acumulado = max(D[x,ordem[-1]],D[x-1,y])
S[chave] = acumulado
if S[chave] <= s[x] and S[chave] + p[chave] > s[x]:
S[chave] = s[x]+p[x,n+xX]
S[x,n+x] = s[x]
D[x,n+x] = s[x]+p[x,n+x]
S[chave] = max(acumulado, s[x]+p[x,n+X])
if n+x not in ordem:
ordem3.append(n+x)
magqindisp.append(x)
if S[chave] > s[x] and n+x not in ordem3:
S[x,n+x] = s[x]
D[x,n+x] = s[x]+p[x,n*x]
if len(ordem)==0:
S[chave] = max(D[x-1,y],s[x]+p[x,n+x])
else:
S[chave] = max(D[x,ordem[-1]],D[x-1,y],s[x]+p[x,n+xX])
if n+x not in ordem:
ordem3.append(n+x)
magqindisp.append(x)

acumulado = S[chave] + p[chave]
D[chave] = acumulado

78

79

def gerar vizinhanca_insercao(x):
vizinhanca = set()
n = len(x)

for 1 in range(n):
Remove o elemento x[i]
for j in range(n):
ifi!=j:

nova_permutacao = list(x)
elemento = nova_permutacao.pop(i) # Remove o elemento na posi¢ao i
nova_permutacao.insert(j, elemento) # Insere o elemento na posigao]
vizinhanca.add(tuple(nova permutacao))

return vizinhanca

def posproc(D,S,ordem3): #Pos-processamento
ordem2={]
for job in reversed(ordem3):
if job <n:
ordem2.append(job)
for mags, teste in reversed(p maquinas.items()):
if maqs>=0:
ordemtemp = [job for job in ordem?2 if job <n]
#print(ordemtemp)
for 1 in range(n):
ifi>0:
if D[mags,ordem?2[i]] > s[magqs]: #+ p[maqs,n+magqs)
if maqs == m-1:
D[mags,ordem?2[i]] = S[mags,ordem?2[i-1]]
else:
D[mags,ordem2[i]] = min(S[mags,ordem2[i-1]], S[maqgs+1,ordem2[i]])
S[mags,ordem2[i]] = D[mags,ordem2[i]] - p[mags,ordem2[i]]
if D[mags,ordem2[i]] <= s[mags]:
if mags == m-1:
if S[mags,ordem2[i-1]] - D[mags,n+magqs] >= p[maqs,ordem2[i]]:
D[mags,ordem?2[i]] = S[mags,ordem?2[i-1]]
indice = ordem3.index(ordem2[i])
ordem3.remove(n+maqgs)
ordem3.insert(indice,n+magqs)
S[mags,ordem2[i]] = D[mags,ordem2[i]] - p[mags,ordem2[i]]
if mags '=m-1:
if min(S[mags,ordem2[i-1]], S[maqgs+1,ordem2[i]]) - D[mags,n+maqs] >=
p[mags,ordem2[i]]:

80

D[mags,ordem2[i]] = min(S[mags,ordem2[i-1]], S[mags+1,ordem2[i]])
indice = ordem3.index(ordem2[i])
ordem3.remove(n+maqs)
ordem3.insert(indice,n+mags)
else:
D[mags,ordem2[i]] =
min(S[mags,ordem2[i-1]],s[maqs],S[maqgs+1,ordem2[i]])
S[mags,ordem?2[i]] = D[mags,ordem2[i]] - p[mags,ordem2[i]]
if D[mags,ordem2[i]] <= s[mags]:
if mags == m-1:
D[mags,ordem2[i]] = min(S[mags,ordem?2[i-1]],s[maqs])
else:
D[mags,ordem?2[i]] = min(S[mags,ordem2[i-1]],
S[mags+1,ordem2[i]],s[mags])
S[mags,ordem2[i]] = D[mags,ordem2[i]] - p[mags,ordem2[i]]

def FO(D,S,ordem3):
ordemoriginal = ordem3.copy()
atrasotot =0
for i in ordem:
atraso = max(0,(D[m-1,i])-d[i])
atrasotot = atrasotot + atraso

energia=0
for r in range(m):
contoff =0
ordemtemp = [job for job in ordemoriginal if job <n or job == n+r]
for 1 in range(len(ordemtemp)-1):
if S[r,ordemtemp[i+1]] - D[r,ordemtemp[i]] > TB[r] and contoff<Nes|[r]:
energia = energia + EnergyS|[r]
contoff = contoff + 1
else:
energia = energia + ((S[r,ordemtemp[i+1]] - D[r,ordemtemp[i]])*Pidle[r])
energia = energia + PO*(D[m-1,ordem[-1]])

return energia,atrasotot

def troca_aleatoria(lista, x):
for _in range(x):
Escolhe duas posicoes aleatorias diferentes na lista
1, j = random.sample(range(len(lista)), 2)
Troca os elementos nas posicoesie j
lista[1], lista[j] = lista[j], lista[i]
return lista

n=9

m=38

nome = "' {n:02}-{m:02} .txt"
nomel = f"{n:02}-{m:02}d.txt"
instancias = [1,2,3]

t=n+tm

qtd_jobs = range(n+m)
qtd_maquinas = range(m)
print("Arquivo:",nome)

for instancia in instancias:
vet p = carregar_instancia(nome, instancia, m)
vet d = carregar instancia(nomel,instancia,n)[0]

mind=min(vet_d)
somap = [sum(lista) for lista in vet p]
UB = (sum(somap)-mind)*(m+n)
M=UB
for i in range(m):

vet_d.append(M)
vet_s =soma_parcial(vet p, n)

#Energia gasta em tempo IDLE

vet Pidle =]

#Energia gasta pela fabrica

PO=1

#Energia gasta para ligar e desligar

vet EnergyS =[]

vet Nes =[] #Numero maximo de vezes que uma maquina para desligar e ligar
vet TB =[] #Tempo de Break-even da maquina

for 1 in range(m):
vet Pidle.append(2)
vet_EnergyS.append(1)
vet Nes.append(3)
vet_TB.append(20)

#Rotulos jobs
jobs = list(qtd_jobs)

#Rotulos posicdes
pos = list(qtd_jobs)

81

#Rotulos maquinas
magquinas = list(qtd_maquinas)

#Dicionario dos tempos de processamento nas maquinas
p = dict()
for 1 in range(n+m):
for r in range(m):
p[r,i]=vet_p[r][i]

#Dicionario inicio do periodo de indisponibilidade nas maquinas
s = dict()
for i in range(m):

s[i] = vet s[i]

d = dict()
for 1 in range(n+m):
d[i] = vet_d[i]

D = dict()
for i in range(n+m):
for r in range(m):
DJ[r,i]=0

S = dict()
for 1 in range(n+m):
for r in range(m):
S[r,i]=0

Pidle = dict()
for i in range(m):
Pidle[i] = vet Pidle[i]

EnergyS = dict()
for 1 in range(m):
EnergyS[i] = vet_EnergyS][i]

Nes = dict()
for i in range(m):
Nes[i] = vet Nes][i]

TB = dict()
for 1 in range(m):
TBJi] = vet TBJi]

jobs = [i for i in range(n)]

ordem =[]

ordem3 =[]

psS=p

ds=d

for 1 in range(n,n+m):
ps = {k: v for k, v in ps.items() if k[1] !=1}
ds = {k: v for k, v in ds.items() if k !=1}

ps_maquinas = {}
p_maquinas = {}

Iterar sobre o dicionario original
for chave, valor in ps.items():
X, y = chave # Separar os elementos da chave (x, y)
Se o valor y ndo estiver no novo diciondrio, criar um dicionario para ele
if x not in ps_maquinas:
ps_maquinas[x] = {}
Adicionar a chave (X, y) e seu valor no dicionario correspondente a y
ps_magquinas[x][chave] = valor

Iterar sobre o diciondrio original
for chave, valor in p.items():
X, y = chave # Separar os elementos da chave (x, y)
Se o valor y ndo estiver no novo dicionario, criar um diciondrio para ele
if x not in p_maquinas:
p_maquinas[x] = {}
Adicionar a chave (X, y) e seu valor no dicionario correspondente a y
p_maquinas[x][chave] = valor

1=1000000
for chave,valor in ps_maquinas[0].items():
x,y = chave
if valor + ds[y]< I:
I =valor + ds[y]
job=y

valoresD(job)
ordem.append(job)
ordem3.append(job)
jobs.remove(job)

magqindisp=[]

83

84

F=(]
flag=0
rtho=0.5
while jobs:
Fref = 1000000
flag=0
for job in jobs:
F=0
janela=0
LB=0
pj=0
for mags, teste in ps_maquinas.items():
pj = pj + ps[magqs,job]
if mags != m-1:
if maqgs ==0:
bj = min_positive(D[maqs+1,ordem[-1]]-D[mags,ordem[-1]], s[maqgs] -
D[mags,ordem|[-1]])
else:
pacumul=0
for r in range(mags):
pacumul = pacumul+p[r,job]
bj =
min_positive(D[maqgs+1,ordem[-1]]-max(D[mags,ordem[-1]],D[0,ordem][-1]]+pacumul),
s[magqgs] - max(D[mags,ordem[-1]],D[0,ordem[-1]]+pacumul))
janela = abs(bj-ps[mags,job]) + janela
LB = ds[job] - pj
F =rho * (janela) + (1-tho)*(LB-D[0,ordem[-1]])
if F<Fref:
Fref=F
jobref = job
jobrefl = job
if F==Fref and ps[0,job]>ps[0,jobref]:
Fref=F
jobref = job
jobrefl = job

valoresD(jobref)
ordem.append(jobref)
ordem3.append(jobref)
if jobref in jobs:
jobs.remove(jobref)

posproc(D,S,ordem3)
energia,atrasotot = FO(D,S,ordem3)

start_time = time.time()
ordemi = ordem
flag=1
flagl =0
energiac = energia
atrasototc = atrasotot
energiai = energia
atrasototi = atrasotot
Di=D
Si=S
while flagl < 10:
while flag == 1:
flag=0
vizinhos = gerar_vizinhanca insercao(ordemi)
for v in vizinhos:
for 1 in range(n+m):
for r in range(m):
DIr,i]=0
for 1 in range(n+m):
for r in range(m):
S[r,i]=0
ordem=|]
ordem3=[]
for job in v:
valoresD(job)
ordem3.append(job)
ordem.append(job)
posproc(D,S,ordem3)
energia2,atrasotot2 = FO(D,S,ordem3)
if energia2 < energiai:
energiai = energia2
atrasototi = atrasotot2
Di=D
Si=S
ordemi = ordem
flag=1
flagl=0
ordemi = troca_aleatoria(ordemi,math.ceil(n/2))
flagl = flagl + 1
flag=1

print("Cosntrutiva",energiac,atrasototc)
print("Melhoria",energiai,atrasototi)
end time = time.time() # Registra o horario final

85

execution_time= end_time - start_time # Calcula o tempo de execugdo
numero_com_virgula = str(execution_time).replace('.", ',")

86

