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RESUMO

Com o aumento da relevância de pautas ambientais, o gerenciamento da produção
com um olhar ecológico tem ganhado cada vez mais visibilidade. Este trabalho tem como
objetivo abordar o problema de minimização de consumo total de energia e atraso total em
um ambiente flow shop com restrições de disponibilidade, onde tarefas devem ser
processadas sequencialmente em todas as máquinas seguindo uma mesma ordem. A
estratégia de ligar e desligar máquinas entre períodos ociosos é considerada para o controle
de energia. Para este problema foi proposto um modelo matemático multiobjetivo utilizando
a abordagem lexicográfica, onde o consumo de energia é o principal objetivo a ser otimizado
e o atraso total o objetivo secundário. Devido ao caráter NP-hard deste problema também
foram propostos métodos heurísticos, sendo eles uma heurística construtiva baseada na regra
de despacho FPD (fitting processing times and due dates) e uma heurística de melhoria que
utiliza buscas locais e perturbação para explorar vizinhanças da solução obtida pela heurística
construtiva. O modelo matemático e os métodos heurísticos foram validados e testados em 45
instâncias geradas com diferentes tamanhos baseados na literatura. Os resultados obtidos
demonstram que a resolução do problema através do modelo matemático apresenta
dificuldades para resolução de instâncias de maiores escalas, desta forma sendo necessário o
uso das heurísticas, que demonstraram alcançar resultados satisfatórios.

Palavras-chave: Programação da produção. Consumo de energia. Flow shop. Restrição de

disponibilidade. Multi-objetivo





ABSTRACT

With the increasing relevance of environmental issues, production management with
an ecological perspective has gained greater visibility. This study aims to address the problem
of minimizing total energy consumption and total tardiness in a flow shop environment with
availability constraints, where tasks must be processed sequentially on all machines following
the same order. The strategy of turning machines on and off during idle periods is considered
for energy control. For this problem, a multi-objective mathematical model was proposed
using the lexicographic approach, where energy consumption is the primary objective to be
optimized, and total tardiness is the secondary objective. Due to the NP-hard nature of this
problem, heuristic methods were also proposed, including a constructive heuristic based on
the FPD (Fitting Processing Times and Due Dates) dispatching rule and an improvement
heuristic that uses local searches and perturbation to explore the neighborhoods of the
solution obtained by the constructive heuristic. The mathematical model and heuristic
methods were validated and tested on 45 instances generated with different sizes based on the
literature. The results demonstrate that solving the problem using the mathematical model
faces challenges with larger-scale instances, making the use of heuristics necessary. The
heuristics showed the ability to achieve satisfactory results.

Keywords: Production scheduling. Energy consumption. Flow shop. Availability constraint.

Multi-objective.
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1. INTRODUÇÃO

A programação da produção, ou Scheduling, é um processo de tomada de decisão que

é utilizado como a base de muitas indústrias de manufatura e serviços. Ela lida com a

alocação de recursos a tarefas em um dado período de tempo com objetivo de otimizar um ou

mais objetivos (Pinedo, 2016). Estes recursos e tarefas podem ser visto de diferentes formas,

como equipes para realização de um projeto, pistas para o pouso de aviões, máquinas para

produzir um produto, entre outras. Quando nos referimos à manufatura, é muito comum

chamarmos os recursos de máquinas e tarefas de jobs.

Dentro deste contexto da programação da produção, podemos ter diversas variações

que vão moldar como o problema é, e também como pode ser resolvido, dentro dessas

características temos a configuração de máquinas, ou seja, máquinas únicas, máquinas em

paralelo, flow shop e job shop. No caso do flow shop existem m máquinas em série e cada

tarefa tem que ser processada em cada uma das m máquinas, seguindo o mesmo roteiro, ou

seja, passar pela máquina 1, depois pela máquina 2, até a máquina m. Estes problemas de flow

shop muitas vezes possuem restrições que vão proibir uma tarefa de passar na frente de outra

na fila para ser processada nas máquinas (primeira que entra é a primeira que sai, FIFO) e

assim caracterizando o que é chamado de flow shop permutacional.

Dentro desses casos de scheduling, modelar estes problemas contando que as

máquinas estão sempre disponíveis e operando não representa bem o que acontece em

indústrias e casos reais, desta forma surgindo o problema de disponibilidades nas máquinas.

As indisponibilidades podem representar situações como manutenções programadas para uma

dada máquina, por exemplo, e é essencial que ao programarmos a tarefa seja levado em

consideração essas possíveis restrições quanto ao uso dos recursos.

Sempre que fazemos a programação de tarefas temos um objetivo a ser alcançado, um

dos objetivos mais comuns de se encontrar é o makespan, que diz respeito ao tempo total para

se realizar todas as tarefas, mas um outro critério importante é o de atraso total, pois quando

uma tarefa não é completada dentro do tempo esperado existem alguns custos referentes a

este atraso para a empresa (Armentano e Ronconi, 1999), desta forma é interessante organizar

as tarefas de forma que este atraso total seja o menor possível.

Outro ponto que vem tomando cada vez mais força na sociedade em geral são

questões de sustentabilidade e na programação da produção não é diferente, empresas de
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manufatura tem dado cada vez mais importância a sustentabilidade por diversos fatores:

consciência ambiental, a diminuição dos recursos não-renováveis, legislações mais rigorosas,

preferência do consumidor em produtos sustentáveis, entre outros (Giret, 2015). Esta visão

sustentável da programação da produção está diretamente ligada ao aumento da eficiência

energética, sendo um critério para ser levado em conta na otimização de scheduling.

Pouco se encontra na literatura sobre problemas que abordam a programação da

produção em flow shops com restrições de disponibilidade e que tenham como objetivo

otimizar a eficiência energética e tempo total de atraso, desta forma o presente trabalho busca

estudar este problema, para isso será proposto um modelo matemático para resolvê-lo, assim

como a otimização do mesmo. Pelo fato do problema de minimização de atraso total ser

NP-hard, muitas vezes a solução exata pode não ser a mais viável, então para a resolução

deste problema será proposto também a utilização de métodos não-exatos, e posteriormente a

partir dos testes computacionais fazer a comparação e validação entre métodos de solução.
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2. DESCRIÇÃO DO PROBLEMA

O problema a ser resolvido tem como base a otimização da programação da produção

em ambientes flow shops para m máquinas, mais especificamente o flow shop permutacional,

desta forma além das tarefas terem que passar por todas as máquinas, a ordem em que as

mesmas são executadas em cada uma das m máquinas deve ser a mesma.

Além disso o problema também leva em consideração restrições de disponibilidades

nas máquinas, em que cada uma delas pode apresentar janelas de indisponibilidades, a partir

disso teremos dois cenários que são caracterizados segundo a definição de resumable e

non-resumable feita por Lee (1996) a qual nos traz que uma janela de indisponibilidade pode

ser caracterizada como resumable se caso uma tarefa não consiga ser terminada antes do

tempo de indisponibilidade, ela possa retomar seu processamento do momento em que parou,

assim que a máquina estiver disponível novamente. Já uma janela non-resumable, as tarefas

devem ser reiniciadas se não for possível terminá-las antes do período de indisponibilidade.

Neste trabalho será abordado janelas non-resumables.

Figura 1: Exemplo de alocação de uma tarefa em uma máquina com janelas de
indisponibilidade resumable (a) e non-resumable (b)

Fonte: Elaborado pelo autor

Para melhor entendermos este conceito, podemos observar na Figura 1 a programação

de uma única tarefa com tempo de processamento de 6 unidades de tempo em uma máquina

que apresenta um período de indisponibilidade entre os instantes 3 e 4 , no cenário (a) temos

o caso resumable no qual a tarefa começa a ser realizada no instante 0 e quando chega o

período de indisponibilidade ela é pausada para que assim que a máquina esteja disponível

retome o seu processamento de onde parou, finalizando assim no instante 7. Já no cenário (b)

temos um caso non-resumable em que por não ser possível de ser realizada por completo a
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tarefa devido o tempo de indisponibilidade ela começa apenas no instante 4, quando vai

poder ser realizada até sua finalização sem interrupções.

Existem diferentes maneiras de se considerar essas restrições quanto a sua natureza na

programação da produção, dois tipos de suposições são consideradas pelos pesquisadores, na

primeira, os tempos de indisponibilidade são conhecidos e fixados previamente (Aggoune,

2006), na segunda, esses tempos de indisponibilidade são flexíveis e podem ser planejados

(Cui et al., 2016). Para o primeiro tipo (fixos), podemos considerar que a indisponibilidade

vai acontecer apenas uma vez em cada máquina ou seguindo intervalos que não se alteram. Já

no segundo tipo (flexível) podemos ter, por exemplo, que o tempo que uma máquina processa

continuamente tarefas não pode extrapolar um dado valor sem que não haja um período de

indisponibilidade, que pode ser visto como um período de manutenção. Consideramos para

este trabalho o primeiro tipo, onde os períodos de indisponibilidade já são conhecidos e

fixados previamente.

Outro ponto para definir o problema é quanto ao objetivo de otimização, o presente

trabalho tem como proposta trazer uma perspectiva tanto sustentável quanto econômica para

este problema de scheduling, desta forma ao realizarmos a modelagem matemática, será

utilizado a abordagem multi-objetivo, mais especificamente a otimização lexicográfica.

Quando falamos de otimização multi-objetivo muitas vezes podemos ter objetivos que são

conflitantes entre si e portanto quando melhoramos um objetivo podemos pagar com a piora

de outro. Zhang et al. (2020) coloca três principais métodos que são adotados para lidar com

problemas multi-objetivo: ponderado, lexicográfico e fronteira de pareto. Cada método tem

suas vantagens e desvantagens e sendo assim a escolha entre eles vai depender da preferência

do tomador de decisão (Coello, 1999). Na abordagem ponderada são atribuídos pesos para os

diferentes objetivos, determinando a relação entre eles e assim a solução ótima é encontrada

por estes ajustes de pesos. A fronteira de Pareto representa o conjunto de soluções onde

melhorar um objetivo só é possível piorando outro, sem preferências de peso entre eles, e

assim o tomador de decisão pode escolher a solução que melhor se encaixa na suas

preferências

Já a abordagem lexicográfica, a qual será utilizada neste trabalho, objetivos de

otimização são colocados em ordem de prioridade, neste tipo de otimização o tomador de

decisão está disposto a aceitar uma solução sub-ótima para os objetivos menos críticos para

alcançar uma solução ótima para o critério mais importante, cada objetivo é otimizado
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enquanto os outros objetivos são fixados no nível desejado (Isermann, 1982). Neste trabalho

o critério principal a ser otimizado será o de eficiência energética, em que se busca diminuir

a energia gasta pelas máquinas para a realização das tarefas programadas, este objetivo é

considerado não regular. Segundo Pinedo (2016) um objetivo pode ser chamado de regular

se o mesmo é não-decrescente em relação ao completion time das tarefas, isto é, à medida

que o tempo de término das tarefas aumenta, o valor da função objetivo cresce de maneira

previsível ou se mantém. Em problemas de minimização de energia, o objetivo

frequentemente envolve reduzir o consumo total, que pode variar dependendo do momento

em que as tarefas são executadas, fazendo com que a função objetivo possa ser mais

complexa e envolver penalidades e variáveis que irão fazer com que o valor da função

objetivo possa diminuir à medida que o tempo de término das tarefas aumenta.

Na Figura 2 podemos ver exemplo que ilustra dois diferentes sequenciamentos de três

tarefas em duas máquinas em um ambiente flow shop permutacional, suponha que cada

unidade de tempo que as tarefas levam para ser processadas consomem uma unidade de

energia e cada unidade de tempo de período ocioso entre tarefas, isto é, períodos em que a

máquina está ligada mas não processa nenhuma tarefa, consomem também uma unidade de

energia. Vamos considerar o consumo de energia como a soma de energia gasta processando

e energia gasta em tempo ocioso. No sequenciamento 1 temos um consumo de energia total

de 24 unidades de energia, sendo 21 unidades gastas com o processamento de tarefas e 3

unidades devido ao tempo ocioso entre tarefas. Já no sequenciamento 2 não possuímos tempo

ocioso entre tarefas, portanto o consumo de energia total é de 21 unidades, desta forma

mesmo com o aumento do tempo de conclusão da tarefa 1, que passou do instante 5 para o

instante 8, a função objetivo decresceu, o que caracteriza um objetivo não regular.
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Figura 2: Sequenciamentos de três tarefas em duas máquinas em um ambiente flow shop
permutacional

Fonte: Elaborado pelo autor

O segundo critério de otimização é o de atraso total, que visa minimizar a soma de

atrasos na entrega de todas as tarefas, este critério por sua vez se encaixa na definição

objetivos regulares, sendo diretamente relacionada com o tempo de conclusão das tarefas,

assim a função objetivo tende a aumentar de maneira previsível conforme as tarefas se

afastam dos prazos.

Há diversas maneiras de fazermos o controle do consumo energético pelas máquinas

de um ambiente de produção, um dos métodos encontrados na literatura é o de desligar e ligar

as máquinas para que as mesmas não gastem energia desnecessariamente (Mouzon et al.,

2007), operando no chamado de IDLE time, que significa o tempo ocioso do sistema, em que

a máquina está ligada mas não está processando nenhuma tarefa. Outra maneira que pode ser

encontrada na literatura é o controle da velocidade das máquinas (Mansouri et al., 2016),

onde é atribuído diferentes velocidades de processamento, geralmente representando uma

velocidade lenta, normal e rápida, que irão influenciar diretamente no gasto de energia das

máquinas, quanto mais rápido é o processamento de uma tarefa, maior é a energia gasta pela
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mesma. Neste trabalho será utilizado a abordagem de desligar e ligar a máquina para o

controle da energia gasta no processamento das tarefas.

Portanto o objetivo do presente trabalho é apresentar a modelagem de um flow shop

com m máquinas, considerando restrições de disponibilidade non-resumable, onde os

objetivos de otimização são a redução do consumo de energia, como objetivo principal, e o

atraso total, como objetivo secundário, utilizando a estratégia de ligar e desligar máquinas no

tempo ocioso. Após isso, por meio de instâncias geradas, validar o modelo resolvendo as

instâncias através de um solver e também utilizar métodos não exatos para construir soluções

para o problema, por meio de heurísticas, que se fazem necessárias devido a características

NP-hard do problema.
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3. REVISÃO DA LITERATURA

Nesta seção será apresentado o que se encontra a respeito dos assuntos abordados

neste trabalho, ou seja, uma visão sobre a programação da produção, assim como as

características que fazem parte do problema aqui estudado. Trazendo um maior

aprofundamento em flow shops, restrições de disponibilidade, e como são aplicadas a este

tipo de problema e depois uma revisão da eficiência energética aplicada na programação da

produção.

Com a contribuição dos autores que aqui serão evidenciadas busca-se obter uma base

teórica para a formulação matemática, assim como ferramentas para validar e solucionar o

problema tratado neste trabalho.

3.1. Programação da produção

O problema da programação da produção é a organização da execução de um

conjunto de tarefas com o passar do tempo, de forma a atingir um dado objetivo, alocando

tarefas a recursos, este problema pode ser encontrado em diferentes situações como por

exemplo unidades de processamento em um ambiente computacional. A programação da

produção é de grande importância para garantir a eficiência de processos e a melhor

utilização de um dado recurso, levando em consideração restrições e particularidades do

mesmo. A partir da resolução deste problema é possível obter uma descrição da execução das

tarefas, também chamadas de “jobs”, e a alocação de recursos, também chamados de

“máquinas”, com o passar do tempo buscando otimizar um ou mais objetivos.

A programação da produção possui diferentes aspectos que levam a diferentes

abordagens, por exemplo, uma delas diz respeito a modelos determinísticos, que não

incorporaram aleatoriedade ou incerteza, já a outra de modelos estocásticos, que por sua vez

incorporam processos probabilísticos que estão relacionados a incerteza. Desta forma, a partir

das diferenças quanto à modelagem dos problemas é possível atender uma maior quantidade

de cenários.

Segundo Pinedo (2016) um problema de programação da produção é definido por 3

características, o ambiente da máquina, as condições e restrições de processamento, e por fim

o objetivo de otimização. Dentre os ambientes de máquina que podemos encontrar temos:
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● Máquina única: O caso mais simples possível e é definido como um caso

especial de todos os outros mais complexos, dificilmente representa um caso

real.

● Máquinas paralelo: m máquinas em paralelo, em que um tarefa precisa de uma

única operação a qual pode ser executada em qualquer uma das máquinas.

Além deste temos algumas variações, em que em um deles máquinas são

idênticas, e no outro elas podem assumir diferentes velocidades, que vão

influenciar no tempo de processamento das tarefas.

● Flow shop: m máquinas em série, onde cada tarefa deve ser processada em

cada uma das m máquinas, seguindo o mesmo roteiro, ou seja, devem passar

pela máquina 1, depois na máquina 2, até a máquina m. Depois de executado

em uma máquina, a tarefa entra na fila para ser executada na próxima

seguindo alguma regra, que geralmente é a “primeiro que entra é o primeiro

que sai” (FIFO), caracterizando assim o chamado flow shop permutacional.

● job shop: m máquinas das quais cada tarefa pode apresentar um roteiro

diferente a ser seguido, desta forma podendo, ou não, ser necessário o

processamento de uma tarefa por todas máquinas, e tendo a possibilidade de

passar por uma mesma máquina mais de uma vez.

Outro diferente aspecto é o objetivo que o problema está abordando, alguns exemplos

que podemos encontrar são:

● Makespan: mede o tempo que a última tarefa que saiu do sistema é completada, a

minimização do mesmo implica numa boa eficiência das máquinas.

● Atraso máximo: mede a maior violação do tempo de entrega das tarefas que estão

sendo processadas.

● Atraso total: mede a soma do atraso de todas as tarefas que foram processadas.

Desta forma, podemos encontrar diferentes combinações que irão influenciar na

maneira que o problema é modelado, agora iremos entender mais detalhadamente o problema

do flow shop, que é discutido neste trabalho.

3.2. Flow shop

O flow shop, como explicado anteriormente, é um tipo de ambiente de máquinas que

podemos encontrar em problemas de scheduling, esta categoria possui uma grande relevância
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de aplicação prática, e é amplamente estudada. A sua definição é dada como um sistema de

processamento no qual uma sequência de operações de uma determinada tarefa é

completamente especificada, e todas as tarefas visitam as unidades de trabalho levando em

conta um mesmo roteiro.

Dentro desta classe ainda podemos ter diferentes tipos de características que vão

influenciar como o problema é chamado e tratado, por exemplo podemos ter o flow shop

permutacional em que as tarefas devem seguir a mesma ordem de processamento em todas as

máquinas. E por outro lado podemos encontrar também os chamados flow shops não

permutacionais, onde as tarefas podem ter diferentes sequências dentro de cada máquina.

Tanto os problemas permutacionais quanto não permutacionais em sua grande maioria são

modelados levando em conta que as tarefas podem ser armazenadas no momento que saem

das máquina r até o momento que deve entrar na máquina r+1, porém podemos também

encontrar problemas que irão tratar do caso em que não é possível ter esse armazenamento

entre as máquinas e desta forma caracterizando o chamado no-wait flow shop, que se uma

tarefa termina o seu processamento na máquina r mas a máquina r+1 ainda não está livre, a

tarefa impedirá que a máquina r possa ser utilizada, neste trabalho abordaremos o caso geral

em que as tarefas podem ser armazenadas entre máquinas.

3.3. Restrições de disponibilidade

Modelar problemas de programação de tarefas supondo que as máquinas não terão

tempos de indisponibilidade não representa bem o que acontece no mundo real, é comum

termos situações de manutenções preventivas ou paradas programadas para que se mantenha

a máquina em perfeitas condições para uso, ou até mesmo podemos lidar com situações de

quebra e mau funcionamento que impedirão as máquinas de processar as tarefas em um dado

intervalo de tempo. Devido a este fator para a adequação dos problemas de programação da

produção é necessário levar em conta restrições quanto a disponibilidade das máquinas.

Segundo a definição feita por Lee (1996), podemos ter os casos resumables e non-resumables

que irão definir se após uma janela de indisponibilidade um tarefa pode continuar de onde

parou, se for interrompida no meio do processamento (resumable), ou se não pode e deve ser

reiniciada (non-resumable), posteriormente o caso semiresumable é definido por Lee (1999),

que é caracterizado quando uma operação interrompida deve recomeçar parcialmente depois

que a máquina estiver disponível novamente.
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O caso non-resumable de restrição de disponibilidade para uma máquina foi estudado

por Adiri et al. (1989) que foca na otimização da soma dos completion time, eles mostraram

que o problema é NP-hard e que a sequência SPT (Shortest processing time), que

corresponde a ordenar as tarefas em uma ordem não decrescente do seu tempo de

processamento, tem uma margem de erro relativa de menos de ¼, quando levamos em conta

uma única janela de indisponibilidade. Posteriormente, para o mesmo problema, um

algoritmo de aproximação MSPT foi proposto por Sadfi etl al. (2005) e um algoritmo

paramétrico O(nlog n) com melhores casos de piores margens de erros foi proposto por Breit

(2007).

Para o caso resumable de restrição de disponibilidade para uma máquina Lee (1996)

mostra que os problemas que tem foco na minimização do makespan, atraso máximo e soma

dos completion time, podem ser resolvidos otimamente por uma sequência arbitrária, regra

SPT e pela regra EDD (Earliest Due Date) respectivamente.

3.4. Flow shop com restrição de disponibilidade

De acordo com Ma, Chu, Zuo (2010) existem muitos estudos de flow shops com

restrições de disponibilidade para duas máquinas, porém poucos para múltiplas máquinas,

além disso a maioria dos estudos levam em consideração o makespan como o critério de

otimização. O primeiro estudo de programação de tarefas em flow shop com restrições de

disponibilidade (caso resumable) para duas máquinas foi realizado por Lee (1997), levando

em conta o critério de otimização do makespan, neste estudo ele mostra que o problema se

torna NP-hard para duas máquinas se tivermos apenas uma janela de indisponibilidade

somente na primeira ou somente na segunda máquina, ele também mostra que o algoritmo de

Johnson leva a uma margem de erro relativa menor ou igual a 1.

Para o caso resumable onde cada uma das máquinas pode ter um número arbitrário de

janelas de indisponibilidade Błazewicz et al. (2001) apresenta duas heurísticas construtivas e

uma heurística de busca local para resolver o problema, estas heurísticas foram testadas em

problemas fáceis e mais difíceis de até 100 tarefas e 10 intervalos de indisponibilidade e

obtiveram o pior desvio relativo do ótimo de 2,6% para os problemas mais fáceis e 44,4%

para os difíceis. Kubiak et al. (2002) considera o problema com várias janelas de

indisponibilidade somente na primeira máquina, somente na segunda ou em ambas, e

mostram que o problema é NP-hard até para o caso que ocorre apenas em uma máquina e que

se existir pelo menos uma janela na segunda máquina não existem heurísticas com tempo
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polinomial que apresentem um erro relativo constante. Além disso Kubzin et al. (2009)

apresenta um algoritmo de aproximação para o problema com múltiplas janelas de

indisponibilidade na primeira máquina.

Para o caso non-resumable Allaoui et al. (2006) considera o problema com

indisponibilidade apenas na primeira máquina, e propõem um modelo de programação

dinâmica que é independente do tempo de processamento das tarefas. Lee & Kim (2017)

estudam o problema da programação de tarefas em um flow shop de duas máquinas com

objetivo de minimizar o atraso total, para o caso em que a máquina do primeiro estágio

precisa de manutenção preventiva (restrição de disponibilidade), dado um período de tempo

cumulativo entre a manutenção anterior. Este estudo considera o caso non-resumable, eles

propõem um algoritmo de branch and bound, com limites inferiores definidos por

programações parciais e limite superior definido por um algoritmo heurístico, como resultado

obtiveram que o algoritmo consegue achar soluções ótimas para problemas de até 24 tarefas

em um tempo computacional razoável.

Para múltiplas máquinas são poucos os estudos que podemos encontrar, Aggoune

(2004) considera o problema com várias janelas de indisponibilidade (non-resumable) em

cada máquina, devido o problema ser fortemente NP-hard ele propõem uma busca tabu e um

algoritmo genético para resolvê-lo. Posteriormente Aggoune e Portmann (2006) apresentam

uma abordagem geométrica temporizada para resolver o problema com duas tarefas e com

base nisso uma heurística para resolver aproximadamente o problema com mais de duas

tarefas. Outras pesquisas que consideram múltiplas máquinas comumente levam em

consideração o flow shop híbrido, uma mistura do ambiente de máquinas em série e paralelo,

onde temos uma série de estágios nos quais cada estágio possui múltiplas máquinas em

paralelo, e as tarefas devem ser processados seguindo uma mesma ordem de estágios.

3.5. Eficiência energética na Programação da Produção

Um tópico que está muito em alta atualmente é a sustentabilidade, trazendo cada vez

mais um olhar de responsabilidade para com o meio ambiente, isso se deve ao fato de

desafios relacionados a crises de recursos, energia, mudanças climáticas e ambientais estarem

cada vez mais comum, desta forma o mundo como um todo trabalha na estipulação de metas

e objetivos para balancear aspectos econômicos, sociais e ambientais. A indústria tem um

papel vital nestes objetivos visto o grande consumo de recursos e energia que as mesmas

fazem utilização, por exemplo, a indústria de manufatura consumiu quase que um terço do
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consumo energético global (Gao et al., 2019), além da grande quantidade de poluentes

emitidos por estas. Para atingir esse desenvolvimento sustentável, podemos utilizar o

chamado “Green Shop Scheduling”, a programação da produção com um olhar sustentável,

que tem potencial de aumentar significativamente a eficiência energética a um custo de

praticamente zero (Li, 2022).

Os problemas de programação da produção verdes ou green scheduling shop

problems (GSSPs) são extensões dos problemas clássicos de programação da produção,

porém mais orientados aos recursos e ambiente, isto é, os problemas clássicos tendem a

otimizar apenas indicadores econômicos, mas sem ter uma visão sobre o consumo energético

e impacto ambiental. Estes problemas em sua grande maioria possuem abordagens

multi-objetivos, tendo não só objetivos econômicos, como makespan, atraso total e custo de

produção, por exemplo, mas também objetivos ambientais, que visam diminuir o consumo de

energia e a poluição do ambiente, é muito comum observamos este consumo energético ou

emissão de poluentes relacionados a duas estratégias na programação da produção, a primeira

é a estratégia de ligar e desligar máquinas ociosas para reduzir a energia gasta pela mesma e a

segunda estratégia é baseada na velocidade de processamento das máquinas, quanto menor

for a velocidade, mais lento é o processamento da tarefa porém o consumo energético é

reduzido.

Um dos primeiros trabalhos relevantes nessa área de economia energética foi o de

Mouzon et al. (2007) que estudou o uso da programação da produção para minimização do

uso energético em uma única máquina, baseado no conceito de desligar a máquina quando a

mesma não precisava ser utilizada. Posteriormente Mouzon & Yildrim (2008) desenvolveram

um framework para resolver o problema multi-objetivo que minimiza o consumo total de

energia e o atraso total para uma máquina por meio do método GRASP (Greedy Randomised

Adaptive Search Procedure) e constataram que a medida que o atraso total diminui o

consumo energético aumenta.

O problema de flow shop permutacional verde ou green permutation flow shop

problem (GPFSP), utilizando a abordagem baseada na velocidade de processamento das

máquinas pode ser encontrado com diversas funções objetivo na literatura. Fang et al. (2013)

consideraram este problema com uma restrição de pico de energia consumida, juntamente

com funções objetivos baseadas em tempo, desenvolvendo um modelo matemático e

abordagens para resolver este problema. Mansouri et al. (2016) abordou o GPFSP para duas
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máquinas e analisou qual era a relação entre minimizar o makespan e a energia total

consumida a partir de um modelo de programação linear inteira mista usado para obter a

fronteira de Pareto dos dois objetivos de otimização.

Foumani & Smith-Miles (2019) estudam um problema multi-objetivo do flow shop

verde para minimizar o makespan e a emissão total de carbono, eles propuseram um modelo

de programação linear inteiro misto e usando a abordagem de agregar pesos aos objetivos

transformaram o problema original em um problema de objetivo de otimização único.

3.6. Eficiência energética na Programação da Produção com restrições de

disponibilidade

Pouco se encontra na literatura quanto aos problemas de GSSPs levando em

consideração a restrição de disponibilidade de máquinas. Assia et al. (2019) aborda o flow

shop não permutacional com intervalos de indisponibilidade e foco na minimização da

energia total consumida e makespan, com intervalos de indisponibilidades periódicos fixos

em um caso e no outro com intervalos flexíveis onde a máquina não pode superar um dado

tempo de trabalho contínuo, em ambos os casos as tarefas são non-resumables. Eles apenas

propõem modelos matemáticos de programação linear binária mista, sem se aprofundar em

métodos e testes computacionais.

Cui & Lu (2020) já trazem uma abordagem bi-objetivo, com foco na minimização do

makespan e consumo energético, para o problema do flow shop com restrições de pico de

demanda energética. Eles propuseram um modelo integrado baseado no planejamento da

produção, isto é, com planejamento de manutenção preventiva e controle de energia. Foi

formulado um modelo matemático, assim como um algoritmo meta-heurístico baseado no

algoritmo evolutivo NSGA - II, a partir de testes computacionais os autores puderam

constatar que os impactos da manutenção preventiva e restrições de pico de demanda

energética influenciam fortemente na sequência ótima das tarefas.

Ao conhecimento do autor não existem trabalhos que abordam o problema

multi-objetivo de energia total consumida e tempo total de atraso para um flow shop

permutacional levando em conta restrições de disponibilidade fixas.
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4. MODELOMATEMÁTICO

Com a descrição do problema, podemos montar um modelo matemático com base nas

ideias de Wilson (1989), que aborda diferentes modelos matemáticos para o flow shop e

Meng et al. (2019), que apresenta seis diferentes modelos de programação inteira mista para

o problema do job shop com objetivo de minimizar a energia total consumida. Assim, o

modelo proposto neste trabalho, por meio de expressões matemáticas, irá restringir as

soluções de modo que respeite as condições que foram colocadas na definição e otimize o

sequenciamento das tarefas para atingir a melhor eficiência energética com olhar também

para o atraso total, deste modo será necessário definir os parâmetros, variáveis de decisões e

as equações que irão compor o modelo.

Neste exemplo são considerados n tarefas (caso non-resumable) a serem alocadas em

m máquinas de forma que cada uma das máquinas pode apresentar uma janela de

indisponibilidade, esse período de indisponibilidade na máquina r é visto como uma tarefa,

de índice n+r a ser realizada. Desta forma a tarefa n+r deve possuir o instante de início igual

ao instante em que a indisponibilidade na máquina r se inicia ( ), tempo de processamento 𝑠
𝑟 

somente na máquina em que a indisponibilidade ocorre e a data de entrega( 𝑝
𝑟, 𝑛+𝑟

 ) (𝑑
𝑛+𝑟

 )

deve ser um valor suficientemente grande, pois não levaremos em consideração atraso nesta

tarefa.

4.1. Variáveis

𝑋
𝑖,𝑗

Variável binária que tem valor 1 se a tarefa i foi programada como a j-ésima

tarefa, e valor 0 caso contrário.

𝑆
𝑟,𝑗

Variável que indica o instante em que a j-ésima tarefa começa a ser

processada pela máquina r.

𝐶
𝑟,𝑗

Variável que indica o instante em que a j-ésima tarefa termina de ser

processada pela máquina r

𝑇
𝑗

Variável que indica qual foi o atraso da j-ésima tarefa.
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𝑍
𝑟,𝑗

Variável binária que indica se a estratégia de ligar e desligar foi

implementada entre a tarefa na posição j e j+1 na máquina r

𝑈
𝑟,𝑗

 ,  𝑊
𝑟,𝑗

Variáveis intermediárias contínuas para a linearização da função objetivo

não linear

4.2. Parâmetros

𝑝
𝑟,𝑖

Tempo de processamento da tarefa i na máquina r (unidade de tempo).

𝑑
𝑖

Prazo de entrega para a tarefa i (unidade de tempo).

𝑠
𝑟

Instante em que começa o período de indisponibilidade na máquina r

(unidade de tempo).

𝑃
𝑟,𝑖

A potência de processamento da tarefa i na máquina r (unidade de

energia).

𝑃
𝑟
𝑖𝑑𝑙𝑒 A potência ociosa da máquina r (unidade de energia).

𝑃
0

Potência comum, consumida pelos equipamentos e instalações auxiliares

(unidade de energia).

𝑁
𝑟

Número de vezes máximas de estratégias on/off na máquina r.

𝑇𝐵
𝑟

Tempo de break-even da máquina r (unidade de tempo).

𝐸𝑛𝑒𝑟𝑔𝑦𝑆
𝑟

Energia gasta para realizar uma operação de desligar e ligar a máquina r

(unidade de energia).

𝑀 Valor suficientemente grande.
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4.3. Função objetivo

Como visto anteriormente o objetivo de otimização principal será o consumo de

energia, e portanto para computar este consumo podemos usar a seguinte expressão.

𝑇𝐸𝐶' =  
𝑟=1

𝑚

∑
𝑗=1

𝑛+𝑚−1

∑ 1 − 𝑍
𝑟,𝑗( ) 𝑆

𝑟,𝑗+1
− 𝐶

𝑟,𝑗( )𝑃
𝑟
𝑖𝑑𝑙𝑒 + 𝐸𝑛𝑒𝑟𝑔𝑦𝑆

𝑟
𝑍

𝑟,𝑗( ) +  

(1)𝑃
0

𝐶
𝑚,𝑛+𝑚

− 𝑆
1,1( )

Na expressão (1) temos o consumo total de energia (TEC), a primeira parte é a

energia IDLE consumida, que contempla o tempo ocioso entre processamento de tarefas ou a

energia gasta para desligar e ligar a máquina, se a estratégia for utilizada. A segunda parte é o

gasto comum de energia, que corresponde a energia gasta para manter o ambiente com

instalações auxiliares, que é calculada do momento em que a primeira tarefa começa a ser

processada até o momento em que a última tarefa termina de ser processada.

Porém esta equação que vai ser utilizada na função objetivo é não-linear, pois contém

o termo . Como isso dificultaria a otimização deste problema se faz(1 − 𝑍
𝑟,𝑗

)(𝑆
𝑟,𝑗+1

− 𝐶
𝑟,𝑗

)𝑃
𝑟
𝑖𝑑𝑙𝑒

necessário linearizar a equação, adicionando variáveis intermediárias e que substituiriam𝑈
𝑟,𝑗+1

𝑊
𝑟,𝑗

e respectivamente. Desta forma o objetivo desta duas variáveis é apenas(1 − 𝑍
𝑟,𝑗

)𝑆
𝑟,𝑗+1

(1 − 𝑍
𝑟𝑗

)𝐶
𝑟,𝑗

linearizar a equação (1), resultando na seguinte equação linearizada.

𝑇𝐸𝐶 =  
𝑟=1

𝑚

∑
𝑗=1

𝑛+𝑚−1

∑ 𝑈
𝑟,𝑗+1

− 𝑊
𝑟,𝑗( )𝑃

𝑟
𝑖𝑑𝑙𝑒 + 𝐸𝑛𝑒𝑟𝑔𝑦𝑆

𝑟
𝑍

𝑟,𝑗( ) +  

(2)𝑃
0

𝐶
𝑚,𝑛+𝑚

− 𝑆
1,1( )

Com isso podemos utilizar agora a esta equação (2) do consumo total de energia na

função objetivo do modelo o que nos resulta na seguinte função objetivo.
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(3)𝑚𝑖𝑛     𝑇𝐸𝐶 +  𝑗=1

𝑛+𝑚

∑ 𝑇𝑗

𝑈𝐵
𝑇𝑗

(𝑛+𝑚)

Onde TEC é a função linearizada do consumo de energia, equação (2), e o segundo

termo presente na função objetivo diz respeito ao atraso total das tarefas, otimizado por uma

abordagem lexicográfica, a ideia é por meio da utilização de um upper bound para o atraso,

transformar o valor referente ao atraso total em um número entre 0 e 1 fazendo com que o

modelo priorize a otimização do consumo de energia e depois ao atraso das tarefas, o upper

bound foi calculado considerando o pior cenário possível, onde apenas uma operação é

realizada por vez e o atraso é calculado com base na primeira tarefa a ser entregue.

(4)𝑈𝐵
𝑇𝑗

𝑛 + 𝑚( ) =  
𝑟=1

𝑚

∑
𝑖=1

𝑛+𝑚

∑ 𝑝
𝑟,𝑖

 −  𝑚𝑖𝑛
𝑖
 𝑑

𝑖
 ( ) 𝑛 + 𝑚( )

4.4. Restrições

𝑗=1

𝑛+𝑚

∑ 𝑥
𝑖,𝑗

 =  1 𝑖 = 1, 2,..., 𝑛 + 𝑚 (5)

𝑖=1

𝑛+𝑚

∑ 𝑥
𝑖,𝑗

 =  1 𝑗 = 1, 2,..., 𝑛 + 𝑚 (6)

𝑆
𝑟,𝑗 

− 𝑠
𝑟
 ≤  𝑀  1 − 𝑥

𝑛+𝑟,𝑗
 ( ) 𝑟 = 1, 2,..., 𝑚 ;  𝑗 = 1, 2,..., 𝑛 + 𝑚 (7)

𝑆
𝑟,𝑗 

− 𝑠
𝑟
 ≥  − 𝑀 1 − 𝑥

𝑛+𝑟,𝑗
 ( ) 𝑟 = 1, 2,..., 𝑚 ;  𝑗 = 1, 2,..., 𝑛 +  𝑚 (8)

𝑆
𝑟,𝑗+1 

≥  𝑆
𝑟,𝑗 

+
𝑖=1

𝑛+𝑚

∑ 𝑝
𝑟,𝑖

𝑥
𝑖,𝑗

𝑟 = 1, 2,..., 𝑚 ;  𝑗 = 1, 2,..., 𝑛 +  𝑚 − 1 (9)
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𝑆
𝑟+1,𝑗 

≥  𝑆
𝑟,𝑗 

+
𝑖=1

𝑛+𝑚

∑ 𝑝
𝑟,𝑖

𝑥
𝑖,𝑗 𝑟 = 1, 2,..., 𝑚 − 1;  𝑗 = 1, 2,..., 𝑛 +  𝑚 (10)

𝑆
1,1 

≥ 0 (11)

𝐶
𝑟,𝑗 

=  𝑆
𝑟,𝑗 

+
𝑖=1

𝑛+𝑚

∑ 𝑝
𝑟,𝑖

𝑥
𝑖,𝑗 𝑟 = 1, 2,..., 𝑚;  𝑗 = 1, 2,..., 𝑛 +  𝑚 (12)

𝑇
𝑗

≥  𝑆
𝑚,𝑗 

+
𝑖=1

𝑛

∑ 𝑥
𝑖,𝑗

 𝑝
𝑚,𝑖

− 𝑑
𝑖( ) 𝑗 = 1, 2,..., 𝑛 + 𝑚 (13)

𝑇
𝑗

≥ 0  𝑗 = 1, 2,..., 𝑛 + 𝑚 (14)

𝑆
𝑟,𝑗+1 

−  𝐶
𝑟,𝑗

≥  𝑇𝐵
𝑟

− 𝑀 1 − 𝑍
𝑟,𝑗( ) 𝑟 = 1, 2,..., 𝑚 ;  𝑗 = 1, 2,..., 𝑛 +  𝑚 − 1 (15)

𝑆
𝑟,𝑗+1 

−  𝐶
𝑟,𝑗

 ≤ 𝑇𝐵
𝑟

+ 𝑀𝑍
𝑟,𝑗

𝑟 = 1, 2,..., 𝑚 ;  𝑗 = 1, 2,..., 𝑛 +  𝑚 − 1 (16)

𝑗=1

𝑛+𝑚−1

∑ 𝑍
𝑟,𝑗

 ≤  𝑁
𝑟

𝑟 = 1, 2,..., 𝑚 (17)

𝑈
𝑟,𝑗+1 

≥  𝑆
𝑟,𝑗+1

− 𝑀𝑍
𝑟,𝑗

𝑟 = 1, 2,..., 𝑚 ;  𝑗 = 1, 2,..., 𝑛 +  𝑚 − 1 (18)

𝑈
𝑟,𝑗+1 

≤  𝑆
𝑟,𝑗+1

+ 𝑀𝑍
𝑟,𝑗

𝑟 = 1, 2,..., 𝑚 ;  𝑗 = 1, 2,..., 𝑛 +  𝑚 − 1 (19)

𝑈
𝑟,𝑗+1 

≤  𝑀 1 − 𝑍
𝑟,𝑗( ) 𝑟 = 1, 2,..., 𝑚 ;  𝑗 = 1, 2,..., 𝑛 +  𝑚 − 1 (20)

𝑈
𝑟,𝑗 

≥  0 𝑟 = 1, 2,..., 𝑚 ;  𝑗 = 1, 2,..., 𝑛 +  𝑚 (21)

𝑊
𝑟,𝑗 

≥  𝐶
𝑟,𝑗

− 𝑀𝑍
𝑟,𝑗

𝑟 = 1, 2,..., 𝑚 ;  𝑗 = 1, 2,..., 𝑛 +  𝑚 − 1 (22)
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𝑊
𝑟,𝑗 

≤  𝐶
𝑟,𝑗

+ 𝑀𝑍
𝑟,𝑗

𝑟 = 1, 2,..., 𝑚 ;  𝑗 = 1, 2,..., 𝑛 +  𝑚 − 1 (23)

𝑊
𝑟,𝑗 

≤  𝑀 1 − 𝑍
𝑟,𝑗( ) 𝑟 = 1, 2,..., 𝑚 ;  𝑗 = 1, 2,..., 𝑛 +  𝑚 − 1 (24)

𝑊
𝑟,𝑗 

≥  0 𝑟 = 1, 2,..., 𝑚 ;  𝑗 = 1, 2,..., 𝑛 +  𝑚 (25)

𝑋
𝑖𝑗

ϵ {0, 1} 𝑖, 𝑗 = 1, 2,..., 𝑛 + 𝑚 (26)

O conjunto de restrições (5) vai garantir que cada tarefa esteja atribuída a somente

uma posição, já o conjunto de restrições (6), por sua vez, irá garantir que cada posição esteja

atribuída a uma única tarefa. Já o conjunto de restrições (7) e (8) vão garantir que o período

de indisponibilidade da máquina r comece exatamente em sr . O conjunto de restrições (9)

garantem que, numa mesma máquina, a tarefa na posição j comece apenas quando a tarefa na

posição anterior já tenha sido processada. O conjunto de restrições (10) vai garantir que uma

tarefa apenas possa começar a ser processada em uma dada máquina se já foi processada na

máquina anterior. A restrição (11) garante que a primeira tarefa comece somente após o

instante 0.

O conjunto de restrições (12) serve para definir a variável que indica o instante de

término das tarefas nas máquinas. O conjunto de restrições (13) vai garantir que o atraso seja

maior ou igual à diferença do tempo de conclusão e a entrega de um determinada tarefa, já o

conjunto de restrições (14) garante que o atraso de uma tarefa seja maior ou igual a zero, não

assumindo valores negativos.

O conjunto de restrições (15) e (16) vão restringir a estratégia de ligar e desligar a

máquina, ou seja, quando o tempo IDLE ( ) é maior que o chamado “ponto de𝑆
𝑟,𝑗+1 

−  𝐶
𝑟,𝑗

equilíbrio”, , ela pode ser desligada, caso o contrário não. O conjunto de restrições (17)𝑇𝐵
𝑟

garante que não haja mais do que o número máximo permitido de utilização da estratégia de

ligar e desligar a máquina. Os conjuntos de restrições (18),(19),(20),(21) vão garantir que

seja sempre verdade, isto é, se = 0 então os conjuntos (18) e𝑈
𝑟,𝑗+1 

=  (1 − 𝑍
𝑟,𝑗

)𝑆
𝑟,𝑗+1

𝑍
𝑟,𝑗

(19) vão garantir que seja maior ou igual e menor ou igual à ao mesmo tempo,𝑈
𝑟,𝑗+1 

𝑆
𝑟,𝑗+1
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desta forma assumindo seu valor. Agora se = 1 os conjuntos (20) e (21) vão garantir que𝑍
𝑟,𝑗

seja maior ou igual e menor ou igual à 0, desta forma assumindo o valor 0.𝑈
𝑟,𝑗+1 

Semelhantemente as restrições (22),(23),(24),(25) vão garantir que 𝑊
𝑟,𝑗 

=  (1 − 𝑍
𝑟,𝑗

) 𝐶
𝑟,𝑗

seja sempre verdade, isto é se = 0 então assume o valor de . Se = 1, então𝑍
𝑟,𝑗

𝑊
𝑟,𝑗 

𝐶
𝑟,𝑗

𝑍
𝑟,𝑗

assume o valor 0.𝑊
𝑟,𝑗 

4.5. Instância exemplo

Para avaliarmos o modelo descrito anteriormente, podemos utilizar uma instância de

teste e encontrar a solução ótima deste problema, isto é, minimizar a energia consumida ao

processarmos a tarefa e o atraso total das mesmas. Para este exemplo consideramos um

ambiente com 3 máquinas que deve processar 6 tarefas os tempos de processamento de cada

uma dessas tarefa nas 3 máquinas é dado a seguir:

Tabela 1: Instância exemplo com 6 tarefas e 3 máquinas

Ji p1i p2i p3i di

J1 2 1 5 8

J2 3 3 3 10

J3 3 5 4 14

J4 4 3 2 17

J5 2 2 4 21

J6 3 4 6 29

Fonte: elaborado pelo autor

Neste exemplo iremos considerar que cada máquina possui um período de

indisponibilidade, na máquina 1 o período de indisponibilidade começa em 5 ( s1 = 5 ) e tem

duração de uma unidade de tempo, o período de indisponibilidade da máquina 2 começa em

10 (s2 = 10) e tem duração de uma unidade de tempo, por fim, na máquina 3 no período de

indisponibilidade começa em 20 ( s3 = 20 ) e também tem duração de 1 unidade de tempo.
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Além dos parâmetros já citados, aqui iremos considerar que a energia consumida em tempo

IDLE pelas máquinas é de 2 unidades de energia, o consumo quando se utiliza a estratégia de

ligar e desligar as máquinas é 1 unidade de energia. E o custo comum, isto é, para os

equipamentos auxiliares é de 1 unidade de energia.

Aplicando no modelo matemático chegamos a uma solução ótima que tem como

sequenciamento tarefa 1, tarefa 2, tarefa 5, tarefa 3, tarefa 4, tarefa 6. O valor da função

objetivo encontrado foi de 30,03, onde a parte inteira representa a energia consumida e os

decimais representam a otimização do atraso total, neste exemplo obtemos um consumo de

30 unidades de energia e o atraso total obtido de 15 unidades de tempo. Podemos perceber

pelo sequenciamento presente na Figura 3, que a estratégia de ligar e desligar a máquina foi

utilizada entre a tarefa 1 e tarefa 2 na máquina 2.

Figura 3: Gráfico Gantt do sequenciamento ótimo da instância exemplo minimizando o gasto
de energia e atraso total

Fonte: Matplotlib Python

Com base nesse exemplo podemos também evidenciar o funcionamento da

otimização lexicográfica, que tem como foco a minimização da energia total gasta, mas

também mantém em vista o atraso total. Podemos destacar seu funcionamento retirando da

função objetivo a expressão responsável por calcular o atraso total, otimizando o problema
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apenas na ótica de energia. A solução ótima obtida então tem o seguinte sequenciamento:

tarefa 1, tarefa 2, tarefa 5 , tarefa 3, tarefa 6, tarefa 4. Com o valor da função objetivo de 30,

logo, temos o mesmo consumo energético quando comparado a primeira solução, porém o

atraso total obtido na solução da Figura 4 é de 21, tendo um aumento de 6 unidades quando

comparado a primeira solução.

Figura 4: Gráfico Gantt do sequenciamento ótimo da instância exemplo minimizando o gasto
de energia

Fonte: Matplotlib Python



43

5. HEURÍSTICA

Diante da crescente complexidade dos problemas de programação da produção, como

é o caso dos ambientes flow shop com restrições de disponibilidade, muitas vezes torna-se

inviável encontrar soluções exatas em um tempo computacional razoável. Isso ocorre porque

esses problemas se enquadram na classe NP-hard, ou seja, à medida que o tamanho do

problema aumenta, o esforço necessário para encontrar a solução ótima cresce

exponencialmente. Diante dessa limitação, torna-se essencial o uso de heurísticas como

abordagem prática para tomada de decisão. A área de produção é uma das áreas que mais

utiliza métodos heurísticos (Zanakis et al. 1989).

Heurísticas são procedimentos para resolver problemas através de um enfoque

“intuitivo”, em geral racional, no qual a estrutura do problema possa ser interpretada

explorada inteligentemente para obter uma solução razoável (Nicholson, 1971). Portanto, são

métodos ou estratégias simplificadas que não garantem a solução ótima, mas conseguem

encontrar soluções satisfatórias e próximas do ideal em tempo viável. Em vez de explorar

exaustivamente todas as combinações possíveis, esses métodos procuram identificar padrões

e atalhos que conduzam a soluções de alta qualidade, mantendo a viabilidade operacional.

5.1. Heurística construtiva

Para a construção de uma solução inicial iremos utilizar uma heurística construtiva

que irá levar em conta aspectos importantes da formulação do problema para montar um

sequenciamento de tarefas. Heurísticas construtivas constroem uma solução de forma

incremental, adicionando elementos passo a passo até formar uma solução completa. Essas

heurísticas seguem uma abordagem sequencial, onde cada decisão feita em uma etapa

impacta as etapas seguintes.

A heurística que será utilizada está baseada na proposta por Ronconi & Henriques

(2009), que faz o uso da regra de despacho FPD (fitting processing times and due dates).

Utilizaremos uma regra de despacho com um funcionamento dinâmico, ou seja, depois da

seleção de uma dada tarefa para uma determinada posição no sequenciamento, uma lista de

prioridade é calculada considerando todas tarefas que ainda não foram posicionadas. A

escolha de uma tarefa está diretamente ligada com a tarefa que foi posicionada previamente,

desta forma para iniciarmos o algoritmo precisamos selecionar a primeira tarefa para que a

lista de prioridade seja calculada, uma abordagem que pode ser utilizada para a escolha dessa
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tarefa inicial é a tarefa que tenha a menor soma da data de entrega e tempo de processamento

na primeira máquina ( Ik ), fazendo isso estamos levando em consideração uma das

características do problema que é a minimização do atraso total.

𝐼
𝑘

= 𝑑
𝑘

+ 𝑝
1,𝑘

Para as tarefas seguintes, iremos utilizar uma medida de prioridade ( Fk ), onde a

tarefa com menor valor dessa medida será escolhida como a próxima a ser posicionada. Essa

medida de prioridade considera aspectos relacionados ao tempo de processamento e data de

entrega das tarefas candidatas, ela é calculada por meio de dois termos, o primeiro termo

(aproveitamento de janela) vai beneficiar tarefas que possuam um melhor “encaixe” com as

janelas deixadas pela última tarefa posicionada em cada máquina, visto que o objetivo de

otimização principal é o de minimização de consumo energético é de extrema importância

que as tarefas sejam alocadas de forma a reduzir o tempo ocioso das máquinas. Já o segundo

termo (folga dinâmica) visa aumentar a prioridade de tarefas que estejam próximas de sua

data de entrega, trazendo um olhar para o atraso total.

5.1.1. Aproveitamento de janela (fit)

Para calcular o aproveitamento da janela que uma tarefa candidata k terá em relação a

tarefa anteriormente posicionada precisamos levar em conta a janela em uma dada máquina (

br ) assim como o tempo de processamento da tarefa a ser posicionada ( prk ), queremos a

tarefa que melhor se encaixe nessas janelas, portanto podemos medir esse encaixe a partir da

soma da diferença absoluta entre a janela e o tempo de processamento da tarefa a ser

posicionada em cada máquina.

𝑓𝑖𝑡 =
𝑟=1

𝑚−1

∑ 𝑏
𝑟

− 𝑝
𝑟𝑘| |

A janela de disponibilidade de cada máquina ( br ), diz respeito ao espaço de tempo

deixado para realizarmos uma tarefa quando outra já está posicionada, a maneira mais

intuitiva de pensarmos nessa janela é a partir do instante de tempo que a tarefa já posicionada

( ti ) acaba de ser processada em uma máquina r+1 ( Cr+1,ti ) e subtraí-lo do instante tempo que

esta mesma tarefa termina na máquina anterior r ( Cr,ti ). Na Figura 5, temos a representação

dessa janela de tempo.
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Figura 5: Janela de disponibilidade

Fonte: elaborado pelo autor

A ideia é a partir disso escolher a tarefa que vai melhor se encaixar nesse espaço

deixado pela tarefa ti de modo a evitar possíveis tempos ociosos como descritos na Figura 6 e

Figura 7.

Figura 6: Tarefa menor do que janela disponível

Fonte: elaborado pelo autor

Figura 7: Tarefa maior do que janela disponível

Fonte: elaborado pelo autor

Considerando o problema tratado neste trabalho, precisamos também levar em conta

que as máquinas terão tempos de indisponibilidade que irão interferir diretamente nestas
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janelas, visto que estamos tratando do caso non-resumable e assim uma vez que as tarefas são

iniciadas não podem ser interrompidas no meio de seu processamento. Portanto é de extrema

importância ter em vista o cenário descrito pela Figura 8, onde a indisponibilidade que se

inicia em ( sr ) vai fazer com que a janela da máquina r seja menor do que se inicialmente

pensava, o seu cálculo então será a diferença entre o instante que a indisponibilidade se inicia

( sr ) subtraído do instante em que a tarefa já posicionada termina na máquina r ( Cr,ti ) .

Figura 8: Janela disponível considerando indisponibilidade de máquinas

Fonte: elaborado pelo autor

Outro ponto importante é que, com exceção da primeira máquina, o modo de se

calcular a janela ( br ) pode variar de acordo com o encaixe da tarefa k na máquina anterior,

isto é, se tivermos a situação observada na Figura 6 o cálculo deve ser feito da maneira como

foi já foi descrito anteriormente, porém se tivermos a situação que é observada na Figura 7,

precisamos levar em conta que a tarefa k só estará disponível para ser realizada na máquina

r+1 quando ela terminar de ser processada na máquina r, então se considerarmos a janela de

disponibilidade começando assim que a tarefa já posicionada ( ti ) termina na máquina r

estaremos atribuindo a esta janela um espaço que não poderá ser utilizado.

Desta forma como podemos observar na Figura 9, para a máquina r-1 o cálculo da

janela será feito normalmente, porém quando analisarmos a janela da máquina r devemos

subtrair do instante de término da tarefa ti na máquina r+1 o instante em que a tarefa k

termina de ser processada na máquina r-1, e assim a janela br não irá considerar o espaço que

não pode ser utilizado, hachurado em vermelho. O instante em que a tarefa k termina numa

máquina pode ser considerado como o instante que a tarefa ti termina na primeira máquina

somado dos tempos de processamento da tarefa k nas máquinas anteriores a aquela que se

calcula a janela.
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Figura 9: Ajuste da janela disponível considerando espaço inutilizado

Fonte: elaborado pelo autor

A partir de todas características das janelas que foram descritas, podemos chegar

numa expressão para o cálculo da mesma, para a primeira máquina teremos:

𝑏
1
 =  𝑚𝑖𝑛

>0
  𝐶

2, 𝑡
𝑖

− 𝐶
1 , 𝑡

𝑖

 ,  𝑠
1
 − 𝐶

1 , 𝑡
𝑖

⎰
⎱

⎱
⎰

Para as máquinas seguintes:

𝑏
𝑗
 =  𝑚𝑖𝑛

>0
  𝐶

𝑟+1, 𝑡𝑖
− 𝑚𝑎𝑥  𝐶

𝑟 , 𝑡𝑖
, 𝐶

1 , 𝑘
+

𝑤=1

𝑟−1

∑ 𝑝
𝑤,𝑘

⎰
⎱

⎱
⎰ ,  𝑠

𝑟
 − 𝑚𝑎𝑥  𝐶

𝑟 , 𝑡𝑖
, 𝐶

1 , 𝑘
+

𝑤=1

𝑟−1

∑ 𝑝
𝑤,𝑘

⎰
⎱

⎱
⎰

⎰
⎱

⎱
⎰

5.1.2. Folga dinâmica

O segundo termo utilizado para compor a medida de prioridade é o referente a folga

dinâmica, este termo é importante para que tarefas que estejam mais próximas a sua data de

entrega tenham a sua prioridade aumentada, isso vai de encontro com o outro objetivo de

otimização do problema deste trabalho que é a minimização do tempo total de atraso. O

cálculo deste termo será dado por:

𝑑𝑦𝑛𝑠𝑙𝑎𝑐𝑘 = 𝐿𝐵
𝑘
 − 𝐶

1,𝑡𝑖( ) 

Onde LBk representa um limite inferior para a entrega da tarefa k, que pode ser

calculado como a diferença entre o instante em que a tarefa deve ser entregue e a soma dos

tempos de processamento da mesma em todas as máquinas.
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𝐿𝐵
𝑘
 = 𝑑

𝑘
−

𝑟=1

𝑚

∑ 𝑝
𝑟,𝑘

 

Com este segundo termo estabelecido podemos então fazer a definição do cálculo da

medida de prioridade, juntando o fit com dynslack teremos a medida de prioridade que pode

ser ajustada quando ao peso dado para cada termo por meio de um parâmetro ρ.

𝐹
𝑘
 = ρ

𝑟=1

𝑚−1

∑ 𝑏
𝑟

− 𝑝
𝑟𝑘| |( ) + 1 − ρ( ) 𝐿𝐵

𝑘
 − 𝐶

1,𝑡𝑖( ) 

5.1.3. Pós-processamento

Depois que todas as tarefas já tiverem sidos posicionadas de acordo com a lista de

prioridade calculada dinamicamente, iremos obter o sequenciamento das tarefas, porém para

melhor adequarmos a solução ao problema estudado, será aplicado um pós-processamento

que vai ajustar o instante em que cada tarefa deve começar, respeitando a ordem que foi

obtida. Este passo tem como objetivo, agrupar as tarefas para que o tempo ocioso das

máquinas seja o menor possível, e consequentemente a energia total gasta também.

Começando pela última máquina, as tarefas serão ajustadas de acordo com o instante

de início da última tarefa posicionada (tarefa na posição θ). Logo o instante de término da

tarefa na posição θ-1 será ajustado para o instante em que a tarefa na posição θ inicia, e o

instante de início recalculado com base no seu tempo de processamento, o mesmo será feito

para a tarefa θ-2, porém agora com base no instante de início da tarefa na posição θ-1, e

assim por diante, até que todas as tarefas sejam ajustadas, vale lembrar que em cada máquina

iremos possuir períodos de indisponibilidade, desta forma as tarefas devem ser ajustadas

respeitando essas janelas.

Nas máquinas seguintes isso deve ser feito seguindo a mesma ideia que foi aplicada

na última máquina, porém o ajuste da tarefa na posição θ-1 numa máquina r não deve

considerar apenas o instante de início da tarefa uma posição acima (θ) mas também o

instante de início da tarefa na posição θ-1 na máquina r+1, visto que por estarmos

considerando um ambiente flow shop uma tarefa só pode iniciar seu processamento na

máquina r+1 se já foi completada na máquina r. Portanto o instante de término da tarefa na

posição θ-1 deve assumir o menor valor entre o instante de início da tarefa na posição θ na
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máquina r e instante de início da tarefa na posição θ-1 na máquina r+1, sempre respeitando

as janelas de indisponibilidade.

Após o pós processamento teremos o sequenciamento final que será utilizado para

calcular o atraso total e consumo total de energia, aplicando a estratégia liga e desliga

removendo os maiores tempos ociosos entre tarefas, desde que respeitem o tempo de

break-even e número máximo de utilização da estratégia liga e desliga por máquina. Na

Figura 10 temos um exemplo de um sequenciamento de três tarefas em três máquinas obtido

posicionando as tarefas assim que as mesmas possam ser processadas na máquina seguinte e

na Figura 11 temos outro sequenciamento que segue a mesma ordem de tarefas, porém nesse

caso, o pós-processamento foi aplicado e as tarefas estão dispostas de modo a minimizar os

tempos ociosos das máquinas.

Figura 10: Exemplo de sequenciamento antes do pós-processamento

Fonte: elaborado pelo autor

Figura 11: Exemplo de sequenciamento depois do pós-processamento

Fonte: elaborado pelo autor
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5.2. Heurística de melhoria

A fim de melhorar a solução obtida pela heurística construtiva, iremos utilizar uma

heurística de melhoria baseada em busca local. Heurísticas de melhoria são técnicas

utilizadas para refinar uma solução inicial existente, melhorando-a por meio de pequenas

alterações controladas, essas heurísticas operam principalmente com métodos de busca local.

A busca local é uma abordagem amplamente usada para resolver problemas de otimização

difíceis. Um problema de otimização tem um conjunto de soluções e uma função de custo que

atribui um valor numérico a cada solução. O objetivo é encontrar uma solução ótima, uma

que tenha o custo mínimo, ou máximo, a depender do problema (Aarts & Lenstra, 2003).

Desta forma utilizaremos a heurística construtiva como ponto de partida e com base

nela construir uma vizinhança de soluções. O movimento escolhido para gerar as vizinhanças

será o de inserção, retirando um elemento da sua posição e o inserindo nas demais, por

exemplo, vamos considerar uma solução x dada por uma permutação de tarefas de 1 a 4.

Então se x = (2,3,1,4) a vizinhança N(x) gerada pelo movimento de inserção será N(x) =

{(3,2,1,4), (3,1,2,4), (3,1,4,2), (2,1,3,4), (2,1,4,3), (1,2,3,4), (2,3,4,1), (4,2,3,1), (2,4,3,1)}.

Após gerada a vizinhança, escolhemos a sequência que irá apresentar a menor energia

total gasta, caracterizando um movimento best-move, onde se avalia todas as possíveis

vizinhanças da solução atual e se escolhe a que oferece o maior ganho antes de efetuar o

movimento. Com essa nova sequência escolhida iremos repetir o processo de gerar a

vizinhança até que não haja nenhuma solução melhor do que a sequência geradora da

vizinhança, atingindo o critério de parada da busca local.

Por fim, foi adicionado uma perturbação juntamente com a repetição da etapa de

busca local, com intuito de fugir de ótimos locais. Em buscas locais temos uma forte

influência da sequência de partida (gerada pela heurística construtiva), essa perturbação pode

nos permitir alcançar uma melhor solução ao aplicar uma mudança aleatória na sequência.

Para isso foi utilizado o movimento de troca aleatória entre elementos da sequência alcançada

na busca local anterior. Com n referindo-se ao número de tarefas, são realizadas trocas,𝑛
2

sendo esse resultado sempre arredondado para cima, então por exemplo, se tivermos 5

tarefas, 3 trocas serão feitas, se tivermos 9 tarefas, 5 trocas serão feitas e assim por diante.

Após realizada a troca o processo de busca local é feito novamente e como saída teremos a

solução incumbente. Este processo de perturbação e busca local é refeito até que a solução
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incumbente passe a ter uma melhora menor do que 0.5%, assim atingido o critério de parada.

Na figura 12 temos um diagrama que representa o fluxo do processo heurístico empregado.

Figura 12: Diagrama do processo heurístico

Fonte: elaborado pelo autor
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6. EXPERIMENTOS NUMÉRICOS

Foram realizados testes, utilizando instâncias geradas, para analisar os resultados

obtidos utilizando o modelo matemático, assim como os métodos heurísticos, a fim de

comparar a qualidade das soluções obtidas e o tempo computacional necessário para cada

uma das abordagens.

Todos os experimentos foram resolvidos em um computador Intel Core i7 3.40 GHz e

com memória RAM de 16 GB, a linguagem de programação utilizada foi Python e o modelo

matemático foi implementado utilizando a ferramenta Gurobi 11.0.3.

6.1. Instâncias

Para realizarmos os testes computacionais são necessários dados que representem o

ambiente de produção em que estamos modelando os métodos de solução, e para tal

utilizaremos instâncias de diferentes tamanhos baseadas em trabalhos retirados da literatura

que irão contemplar diferentes cenários para uma posterior análise.

Devido a complexidade do problema aqui tratado, como queremos fazer a utilização

de um modelo matemático, ou seja um método exato, ao aumentarmos a quantidade de

tarefas e máquinas presente no problema o tempo computacional é cada vez mais requerido.

Desta forma foram geradas diferentes instâncias que se adequam ao tamanho do problema.

As instâncias geradas para teste e validação dos métodos foram baseadas em Mouzon et al.

(2019), com tamanhos de 5, 6, 7, 8 tarefas em ambientes de 5, 6 e 7 máquinas e tamanhos de

7, 8 e 9 tarefas para ambiente de 8 máquinas, desta forma 15 diferentes tamanhos de

problema. Para cada tamanho foram geradas 3 instâncias, totalizando assim 45 experimentos.

Já para os testes de maior escala, onde os métodos heurísticos serão testados em situações que

podem também ser encontradas na prática, as instâncias foram retiradas de Taillard (1993)

com tamanhos de problemas com 20, 50, 100 e 200 tarefas para um ambiente de 10

máquinas.

Os tempos de processamento das tarefas foram gerados a partir de uma distribuição

discreta uniforme entre 1 e 99. O tempo de indisponibilidade de cada máquina foi definido

com base em Aggoune (2004), assumindo o valor da média dos tempos de processamento de

cada máquina, desta forma teremos:
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𝑝
𝑟, 𝑛+𝑟

= 𝑖=1

𝑛

∑ 𝑝
𝑟,𝑖

𝑛

Já o início do tempo de indisponibilidade de cada máquina foi definido por uma

adaptação do que temos em Xu et al. (2018), generalizando o caso de duas máquinas para

múltiplas máquinas. No caso de duas máquinas é definido pela soma dos tempos de𝑠
𝑟

processamentos das tarefas na máquinas r dividido por dois, para o caso de múltiplas

máquinas iremos adicionar a soma dos tempos de indisponibilidade das máquinas anteriores,

portanto teremos que:

𝑠
𝑟

= 𝑖=1

𝑛

∑ 𝑝
𝑟,𝑖

2 +
𝑘=1

𝑟

∑ 𝑝
𝑘,𝑛+𝑘

As datas de entregas serão geradas seguindo Armentano & Ronconi (1999), onde

essas datas são distribuídas uniformemente entre e .𝑃(1 − 𝑇 − 𝑅/2) 𝑃(1 − 𝑇 + 𝑅/2)

Nestas equações T e R representam o fator de atraso das tarefas e a faixa de dispersão das

datas de entrega, respectivamente, desta forma quando variamos os valores desses dois

parâmetros temos diferentes cenários. P representa um lower bound para o makespan,

partindo da definição feita por Taillard (1993) e adaptando para melhor adequarmos ao

problema deste trabalho, isto é, levar em consideração a restrição de disponibilidade,

podemos calcular P como:

𝑃 =  𝑚𝑎𝑥 { 𝑚𝑎𝑥
1≤𝑟≤ 𝑚

{
𝑖=1

𝑛

∑ 𝑝
𝑟,𝑖

+ 𝑝
𝑟,𝑛+𝑟

+ 𝑚𝑖𝑛
𝑖

𝑘=1

𝑟−1

∑ 𝑝
𝑘,𝑖

+ 𝑚𝑖𝑛
𝑖

𝑘=𝑟+1

𝑚

∑ 𝑝
𝑘,𝑖

} ,  

𝑚𝑎𝑥
𝑖
 

𝑟=1

𝑚

∑ 𝑝
𝑟,𝑖

 }

Neste trabalho optou-se por utilizar um cenário mais crítico para as datas de entrega,

com alto fator de atraso e pequena faixa de datas de entrega, desta forma ao gerarmos as

instâncias foi considerado T = 0,4 e R = 0,6. Além disso, os demais parâmetros considerados

foram baseados em Meng et al. (2019), a potência comum e a potência ociosa das máquinas

são 1 e 2 respectivamente. O número máximo de utilização da estratégia liga e desliga por

máquina é 3 e o tempo de break-even das máquinas é 20.
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6.2. Resultados e discussão

Os resultados obtidos a partir da utilização das instâncias nos permitirão validar e

avaliar os métodos explorados neste trabalho, primeiramente as instâncias serão resolvidas

utilizando o método exato e os métodos heurísticos propostos, após isso será realizado uma

análise de sensibilidade em relação ao tamanho das janelas de indisponibilidade das máquinas

e por fim os métodos heurísticos serão aplicados as instâncias de maior escala para validação

em cenários mais próximos da prática.

6.2.1. Método exato

A Tabela 1 apresenta os resultados obtidos utilizando o modelo matemático da seção

4 para os 45 experimentos, a otimização do modelo tinha um limite de 30 minutos de tempo

de execução, desta forma para os experimentos que extrapolaram esse limite de tempo e não

alcançaram a solução ótima, temos o gap que representa diferença entre o limite inferior e o

limite superior da função objetivo. A média do gap obtido foi de 1,61%, sendo que 26 dos 45

experimentos tiveram gap igual a 0, ou seja, foi possível encontrar a melhor solução possível,

e o maior gap obtido foi de 16,5 % para a segunda instância do problema com 8 tarefas e 7

máquinas.

Podemos perceber que ao aumentarmos o número de máquinas o tempo

computacional aumenta substancialmente, por exemplo, considerando os problemas com 7

tarefas, para um ambiente de 5 máquinas a média do tempo computacional das 3 instâncias

foi de aproximadamente 53 segundos, já para o ambiente de 6 máquinas essa média foi de

748 segundos. Essa tendência confirma a complexidade do problema e a dificuldade da

utilização do modelo matemático quando escalamos o tamanho dos experimentos. Vale

ressaltar também que os resultados obtidos para o atraso total não representam o valor ótimo,

isto é, como foi utilizado a otimização lexicográfica primeiro otimizamos a energia total

gasta, para que assim o atraso total seja otimizado de modo que a programação da produção

tenha o valor que já havia sido obtido para o objetivo referente à energia consumida.
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Tabela 2: Resultado computacionais utilizando o método exato

Tarefas Máquinas Instância

Método exato

Tempo
computaciona
l (segundos)

Energia
(UE)

Atraso
Total (UT) GAP (%)

5 5 1 33 636 1089 0

5 5 2 8 657 1333 0

5 5 3 10 632 917 0

6 5 1 14 665 1135 0

6 5 2 23 657 828 0

6 5 3 90 550 866 0

7 5 1 25 587 895 0

7 5 2 99 759 1407 0

7 5 3 36 637 1435 0

8 5 1 77 810 1536 0

8 5 2 326 740 1119 0

8 5 3 275 609 1232 0

5 6 1 843 665 1015 0

5 6 2 232 743 884 0

5 6 3 647 738 1115 0

6 6 1 1800 818 1271 0,98

6 6 2 1800 856 1150 0,23

6 6 3 98 815 1721 0

7 6 1 601 838 1656 0

7 6 2 900 763 1578 0,51

7 6 3 744 868 1231 0

8 6 1 253 841 1653 0

8 6 2 899 743 1435 0

8 6 3 1106 746 2167 0

5 7 1 258 756 1026 0

5 7 2 745 725 1180 0

5 7 3 1254 617 551 0

6 7 1 222 841 2216 0
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6 7 2 1800 889 1670 1

6 7 3 1800 732 1641 1,64

7 7 1 305 789 2542 0

7 7 2 1800 729 1771 0,74

7 7 3 1800 770 2098 1,41

8 7 1 1800 853 2724 0,58

8 7 2 1800 945 2040 16,5

8 7 3 1800 904 1774 6,6

7 8 1 1800 968 1276 0,87

7 8 2 1800 936 1976 0,52

7 8 3 1800 901 1389 6,21

8 8 1 1800 943 2253 3,6

8 8 2 1800 1009 2916 0,8

8 8 3 1800 1069 2138 6,8

9 8 1 1800 993 2687 9,3

9 8 2 1800 1011 2916 12,2

9 8 3 1800 1019 2367 2

Média 1,61

Fonte: elaborado pelo autor

6.2.2. Métodos heurísticos

Para executar os testes com a heurística construtiva, primeiramente foi realizado uma

análise de sensibilidade do parâmetro ⍴ utilizado para ajustar os pesos do cálculo da medida

de prioridade utilizado no método heurístico, desta forma variando ⍴ no intervalo de 0 e 1

com passos de 0,2 chegamos no gap médio da energia e o gap médio do atraso (%), fazendo a

comparação entre os resultados obtidos para energia total gasta (FE) e resultados obtidos para

atraso total (FA), utilizando a heurística (HC) e o modelo matemático (MM), calculados da

seguinte forma.

𝐺𝐴𝑃 𝐸𝑛𝑒𝑟𝑔𝑖𝑎(%) =
 𝐹𝐸

𝐻𝐶
 − 𝐹𝐸

𝑀𝑀

𝐹𝐸
𝑀𝑀
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𝐺𝐴𝑃 𝐴𝑡𝑟𝑎𝑠𝑜(%) =
 𝐹𝐴

𝐻𝐶
 − 𝐹𝐴

𝑀𝑀

𝐹𝐴
𝑀𝑀

A Tabela 3 apresenta os resultados obtidos para cada valor de parâmetro utilizado, e a

Figura 13 traz a representação gráfica. Analisando os 3 melhores resultados quanto ao gap de

energia, principal critério a ser otimizado, temos os valores de 0,2, 0,4 e 0,8 com gaps da

energia de 25,08%, 25,23% e 26,19% respectivamente. A diferença percentual entre esses

valores está em aproximadamente 1%, o que demonstra a robustez da heurística quanto a

diferentes ⍴, e portanto para a posterior análise o valor do parâmetro que será utilizado é 0,5,

distribuindo igualmente os pesos para as duas componentes que compõem a medida de

prioridade da heurística construtiva.

Tabela 3: Relação entre a média dos gaps obtidos e o ⍴ utilizado na heurística construtiva

⍴
GAP Energia

(%)
GAP Atraso

(%)

0 28,51 57,47

0,2 25,08 51,07

0,4 25,23 50,02

0,6 27,30 51,93

0,8 26,19 48,66

1 27,03 48,07
Fonte: elaborado pelo autor

Figura 13: Relação entre a média dos gaps obtidos e o ⍴ utilizado na heurística construtiva

.
Fonte: elaborado pelo autor
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Na Tabela 3 e Tabela 4 encontramos os resultados obtidos utilizando a heurística

construtiva e heurística de melhoria, respectivamente. Com a heurística construtiva chegamos

em um gap médio da energia em comparação a solução exata de 25,34% e um gap médio do

atraso de 54,25%. Já para heurística de melhoria, que utiliza a anterior como ponto de partida,

foi possível alcançar um gap médio da energia de 7,49% e um gap médio do atraso 21,84%.

Podemos notar que a heurística de melhoria foi capaz de diminuir em aproximadamente 18

pontos percentuais do gap de consumo de energia e 32 pontos percentuais do gap de atraso

total, e mesmo com um aumento no custo computacional, isso torna-se insignificante quando

comparado à melhoria nos resultados alcançados.

A Tabela 5 mostra a comparação dos tempos de execução entre os métodos

explorados neste trabalho, o método exato e os dois métodos heurísticos. É possível notar que

o tempo computacional necessário para os métodos heurísticos, com médias de 0,0027 e

3,2911 segundos, é consideravelmente menor quando comparado ao método utilizado pelo

modelo matemático, que levou em média 944,26 segundos.

Tabela 3: Resultados computacionais utilizando a heurística construtiva

Tarefas Máquinas Instância

Heurística construtiva

Energia
(UE)

Atraso
Total (UT)

GAP
Energia
(%)

GAP
Atraso (%)

5 5 1 755 908 18,71 -16,62

5 5 2 799 1874 21,61 40,59

5 5 3 745 1347 17,88 46,89

6 5 1 783 1611 17,74 41,94

6 5 2 831 1118 26,48 35,02

6 5 3 672 1502 22,18 73,44

7 5 1 777 1696 32,37 89,50

7 5 2 952 2453 25,43 74,34

7 5 3 845 3157 32,65 120,00

8 5 1 1043 3004 28,77 95,57

8 5 2 833 1623 12,57 45,04

8 5 3 767 2035 25,94 65,18

5 6 1 891 1590 33,98 56,65

5 6 2 833 1256 12,11 42,08
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5 6 3 884 2023 19,78 81,43

6 6 1 982 2253 20,05 77,26

6 6 2 978 1762 14,25 53,22

6 6 3 876 2198 7,48 27,72

7 6 1 1017 3160 21,36 90,82

7 6 2 990 2188 29,75 38,66

7 6 3 1121 1152 29,15 -6,42

8 6 1 1075 1880 27,82 13,73

8 6 2 1003 2598 34,99 81,05

8 6 3 1151 4591 54,29 111,86

5 7 1 948 1506 25,40 46,78

5 7 2 829 1412 14,34 19,66

5 7 3 750 1280 21,56 132,30

6 7 1 1006 2620 19,62 18,23

6 7 2 1109 3258 24,75 95,09

6 7 3 913 2733 24,73 66,54

7 7 1 965 2675 22,31 5,23

7 7 2 973 3146 33,47 77,64

7 7 3 981 2379 27,40 13,39

8 7 1 982 3557 15,12 30,58

8 7 2 1262 2634 33,54 29,12

8 7 3 1120 3173 23,89 78,86

7 8 1 1244 2140 28,51 67,71

7 8 2 1152 3208 23,08 62,35

7 8 3 1189 2248 31,96 61,84

8 8 1 1265 3463 34,15 53,71

8 8 2 1251 3534 23,98 21,19

8 8 3 1287 2354 20,39 10,10

9 8 1 1334 4029 34,34 49,94

9 8 2 1475 4073 45,90 39,68

9 8 3 1269 4312 24,53 82,17

Média 25,34 54,25
Fonte: elaborado pelo autor
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Tabela 4: Resultados computacionais utilizando a heurística de melhoria

Tarefas Máquinas Instância

Heurística de melhoria

Energia
(UE)

Atraso
Total (UT)

GAP
Energia
(%)

GAP
Atraso (%)

5 5 1 646 1365 1,57 25,34

5 5 2 672 1551 2,28 16,35

5 5 3 669 1192 5,85 29,99

6 5 1 677 1345 1,80 18,50

6 5 2 686 854 4,41 3,14

6 5 3 567 876 3,09 1,15

7 5 1 642 1368 9,37 52,85

7 5 2 795 1637 4,74 16,35

7 5 3 663 1923 4,08 34,01

8 5 1 831 1640 2,59 6,77

8 5 2 786 1177 6,22 5,18

8 5 3 669 1581 9,85 28,33

5 6 1 735 953 10,53 -6,11

5 6 2 784 1065 5,52 20,48

5 6 3 830 1675 12,47 50,22

6 6 1 830 1468 1,47 15,50

6 6 2 875 1297 2,22 12,78

6 6 3 826 2007 1,35 16,62

7 6 1 878 1802 4,77 8,82

7 6 2 792 1923 3,80 21,86

7 6 3 924 1556 6,45 26,40

8 6 1 920 1910 9,39 15,55

8 6 2 790 1674 6,33 16,66

8 6 3 823 2354 10,32 8,63

5 7 1 857 1397 13,36 36,16

5 7 2 800 1647 10,34 39,58

5 7 3 749 1280 21,39 132,30

6 7 1 896 2413 6,54 8,89
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6 7 2 957 2211 7,65 32,40

6 7 3 761 1687 3,96 2,80

7 7 1 888 3059 12,55 20,34

7 7 2 796 2145 9,19 21,12

7 7 3 815 2609 5,84 24,36

8 7 1 914 2922 7,15 7,27

8 7 2 1021 2119 8,04 3,87

8 7 3 989 2266 9,40 27,73

7 8 1 1053 1344 8,78 5,33

7 8 2 980 2220 4,70 12,35

7 8 3 972 2328 7,88 67,60

8 8 1 1018 2685 7,95 19,17

8 8 2 1120 2663 11,00 -8,68

8 8 3 1164 2911 8,89 36,16

9 8 1 1150 3528 15,81 31,30

9 8 2 1197 3155 18,40 8,20

9 8 3 1097 2582 7,65 9,08

Média 7,49 21,84
Fonte: elaborado pelo autor
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Tabela 5: Tempo computacional para encontrar soluções utilizando os 3 diferentes métodos

Tarefas Máquinas Instância

Tempo computacional (segundos)

Modelo
matemático

Heurística
construtiva

Heurística de
melhoria

5 5 1 33 0,0030 0,1654

5 5 2 8 0,0020 0,1656

5 5 3 10 0,0010 0,1506

6 5 1 14 0,0020 0,4104

6 5 2 23 0,0010 0,6572

6 5 3 90 0,0020 0,5658

7 5 1 25 0,0020 1,3105

7 5 2 99 0,0020 7,6387

7 5 3 36 0,0020 1,3887

8 5 1 77 0,0020 2,3772

8 5 2 326 0,0020 1,8581

8 5 3 275 0,0020 1,7600

5 6 1 843 0,0020 0,3920

5 6 2 232 0,0030 0,2554

5 6 3 647 0,0020 0,3072

6 6 1 1800 0,0020 0,6717

6 6 2 1800 0,0020 0,5376

6 6 3 98 0,0020 0,5037

7 6 1 601 0,0030 1,8672

7 6 2 900 0,0040 2,1126

7 6 3 744 0,0020 1,2178

8 6 1 253 0,0030 2,1644

8 6 2 899 0,0010 5,0979

8 6 3 1106 0,0020 4,3812

5 7 1 258 0,0040 0,2982

5 7 2 745 0,0010 0,3241

5 7 3 1254 0,0020 0,2214

6 7 1 222 0,0050 1,2276

6 7 2 1800 0,0020 0,8753
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6 7 3 1800 0,0020 0,9159

7 7 1 305 0,0020 2,4951

7 7 2 1800 0,0020 1,4072

7 7 3 1800 0,0030 1,6885

8 7 1 1800 0,0060 6,4931

8 7 2 1800 0,0030 3,5745

8 7 3 1800 0,0030 2,9483

7 8 1 1800 0,0040 4,1308

7 8 2 1800 0,0030 1,8144

7 8 3 1800 0,0040 4,5052

8 8 1 1800 0,0060 11,0913

8 8 2 1800 0,0040 4,4713

8 8 3 1800 0,0030 4,1835

9 8 1 1800 0,0060 14,3794

9 8 2 1800 0,0030 20,8115

9 8 3 1800 0,0040 22,2855

Média 944,96 0,0027 3,2911
Fonte: elaborado pelo autor

6.2.3. Análise de Sensibilidade

Para realizarmos esta análise utilizaremos as instâncias geradas para 5, 6, 7 e 8 tarefas

em ambientes de 5 máquinas. Para isso, foram criados dois cenários, partindo do cenário base

que encontramos os resultados na Tabela 2, Tabela 3 e Tabela 4. Estes dois cenários terão um

aumento no tamanho da janela de indisponibilidade de 10% e 20% respectivamente. As

instâncias foram então resolvidas, utilizando o método exato e os métodos heurísticos, o gap

médio da energia total gasta e o gap médio do atraso total obtido comparando estes métodos

podem ser encontrados na Tabela 6. Podemos notar que tanto a heurística construtiva, quanto

a heurística de melhoria apresentam valores percentuais nos cenários com aumento da janela

de indisponibilidade, para o gap da energia, semelhantes ou até menores daquele que foi

obtido no cenário base. Isso demonstra que os métodos heurísticos são capazes de lidar com

cenários em que as máquinas possuem mais restrições de disponibilidade. Porém em ambos

os métodos houve um aumento no gap do atraso total encontrado, representando que os
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valores encontrados para o atraso total das tarefas foi mais distante daquele obtido pelo

método exato com o aumento das janelas de indisponibilidade.

Tabela 6: Gaps médio da energia total gasta e atraso total para cenários com aumento na
janela de indisponibilidade
Heurística construtiva Heurística de melhoria

Janela de
Indisponibilidade

GAP Energia
(%)

GAP Atraso
(%)

GAP Energia
(%)

GAP Atraso
(%)

Base 23,53 59,24 4,66 19,83

Com aumento de 10% 22,25 64,33 3,75 25,35

Com aumento de 20% 22,51 65,61 4,22 22,41
Fonte: elaborado pelo autor

6.2.4. Instâncias de grande escala

Na Tabela 7 e Tabela 8 temos os resultados obtidos utilizando a heurística construtiva

e a heurística de melhoria, respectivamente, nas instâncias com maior escala, que também

representam cenários que podem ser encontrados na prática. A heurística construtiva

apresentou uma média do tempo computacional de 0,34 segundos. Já a heurística de

melhoria, com o aumento do número de tarefas apresentou um crescimento no tempo

computacional necessário para aplicação do método, mas apesar deste aumento ainda

apresenta tempos aceitáveis para uma aplicação prática, ficando com uma média de 860,30

segundos. Isso se deve ao fato da vizinhança explorada crescer com o aumento do número de

tarefas, para o caso de 200 tarefas o tempo computacional já atingiu o limite de 30 minutos

aplicado, isso demonstra que com o aumento da escala da instância pode ser importante

explorar outros tipo de movimento gerado pela busca local, para que seja possível explorar

soluções mais vantajosas em um tempo menor, sendo que, o movimento utilizado neste

trabalho apresenta uma maior vantagem para instâncias menores.
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Tabela 7: Resultados obtido com a heurística construtiva nas instâncias de maior escala

Tarefas Máquinas Instância

Heurística construtiva

Energia (UE) Atraso Total
(UT)

Tempo
computacional
(segundos)

20 10 1 3918 11994 0,0160

20 10 2 3474 15234 0,0090

20 10 3 2790 14180 0,0090

50 10 1 6228 51097 0,0539

50 10 2 4621 28454 0,0558

50 10 3 4835 39960 0,0621

100 10 1 11182 83173 0,3779

100 10 2 7940 74571 0,2329

100 10 3 9988 153476 0,2199

200 10 1 15956 251033 0,8912

200 10 2 20577 166923 0,9909

200 10 3 20397 105074 1,1818

Média 0,34
Fonte: elaborado pelo autor
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Tabela 8: Resultados obtido com a heurística de melhoria nas instâncias de maior escala

Tarefas Máquinas Instância

Heurística de Melhoria

Energia
(UE)

Atraso Total
(UT)

Tempo
computacional
(segundos)

20 10 1 2058 15423 81,61

20 10 2 2286 14639 197,87

20 10 3 2002 12197 61,89

50 10 1 4787 65090 409,51

50 10 2 4257 32750 410,26

50 10 3 4447 53025 411,89

100 10 1 9411 128727 1299,91

100 10 2 7629 81962 1314,72

100 10 3 8689 173023 1335,98

200 10 1 14503 263894 1600

200 10 2 17763 177270 1600

200 10 3 19438 110026 1600

Média 860,30
Fonte: elaborado pelo autor
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7. CONCLUSÃO

O presente trabalho teve como objetivo explorar o problema de minimização de

consumo de energia e atraso total no sequenciamento de tarefas non-resumables em um

ambiente flow shop com períodos de indisponibilidade. Para isso, com base em conceitos

aprendidos no curso de Engenharia de Produção podemos contextualizar e descrever

características que nos ajudam a entender particularidades desse problema. O referencial

teórico retirado de estudos acadêmicos foi de extrema importância para guiar o andamento do

trabalho e demonstrar lacunas para contribuição, principalmente por se tratar de um problema

ainda pouco endereçado ao conhecimento do autor.

O tema estudado reforça a relevância de integrar práticas sustentáveis à gestão

operacional. Os resultados obtidos demonstram que é possível alinhar eficiência produtiva

com a redução de impactos ambientais, contribuindo diretamente para os Objetivos de

Desenvolvimento Sustentável (ODS) da ONU, especialmente os ODS 9 (Indústria, Inovação

e Infraestrutura) e 12 (Consumo e Produção Responsáveis). Assim, este estudo não apenas

atende à demanda por processos mais otimizados, mas também enfatiza a importância de

estratégias que promovam a sustentabilidade e a responsabilidade corporativa no setor

industrial.

Utilizando como base Wilson (1989) e Meng et al. (2019) foi desenvolvido um

modelo matemático que busca encontrar o melhor sequenciamento de tarefas, otimizado de

maneira lexicográfica, isto é, atribuindo maior prioridade para a minimização do consumo

energético em comparação à minimização do atraso total. Para o controle do consumo de

energia foi atribuída ao modelo a decisão de utilizar a estratégia de ligar e desligar máquinas

durante períodos ociosos entre tarefas.

Devido a complexidade do problema, que assim como muitos problemas de

scheduling apresenta caráter combinatório NP-hard , foram propostos métodos heurísticos

que não garantem a solução ótima, mas apresentam soluções satisfatórias em tempo viável. A

heurística construtiva apresentada utilizou das características do problema para sequenciar as

tarefas, fazendo o aproveitamento de janelas para diminuir o tempo ocioso, além de levar em

consideração a data de entrega das tarefas. Já a heurística de melhoria aproveitou o resultado

obtido pela construtiva para, por meio de buscas locais e perturbações, encontrar melhores

soluções, a metodologia utilizada para essa heurística apesar de não ser exatamente igual, se

assemelha a ILS (Iterated Local Search) que se baseia em aprimorar soluções locais através
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de um processo iterativo, sendo o aprimoramento para esta meta-heurística uma possibilidade

para futuros trabalhos.

Observando os resultados obtidos, podemos concluir que com os métodos heurísticos

foi possível obter resultados satisfatórios em tempos computacionais viáveis, apesar da

heurística construtiva apresentar resultados um pouco mais distantes dos resultados ótimos,

pode-se utilizar a mesma como uma solução inicial para a heurística de melhoria, que

conseguiu atingir resultados mais satisfatórios com gaps médios do consumo total de energia

e atraso total de 7,49% e 21,84% respectivamente, para os 45 experimentos utilizados na

validação.

Outro ponto importante de se notar é que o gap de atraso total foi mais alto quando

comparado ao consumo total de energia, isso se dá devido a relação que esses dois objetivos

tem quanto a otimização. Muitas vezes o ajuste na programação das tarefas, ao beneficiar um

dos objetivos, pode por vezes acarretar prejuízos ao outro. Como na construção desse

problema o objetivo principal a ser otimizado foi o consumo de energia, os métodos

utilizados foram desenhados com maior foco no mesmo, seja no modelo matemático, com a

otimização lexicográfica, ou nos métodos heurísticos, com o pós-processamento.

Como direcionamento para pesquisas futuras, uma análise utilizando outras formas

de otimização multi-objetivo poderia nos permitir entender melhor a relação entre os dois

objetivos aqui tratados. O desenvolvimento das heurísticas propostas, como por exemplo,

diferentes regras de geração de solução e análise de diferentes tipos de vizinhança, para que

se adequem cada vez mais ao aumento da escala de instâncias. Além disso a extensão do

problema para tarefas resumables e desta forma explorando a indisponibilidade das máquinas

para os dois casos apresentados na literatura.
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ANEXO A - Código do modelo matemático utilizando Gurobi na
linguagem Python

import gurobipy as gp
q = gp.Model()

#Inserir variáveis de decisão
x = q.addVars(jobs,pos, vtype = gp.GRB.BINARY)
S = q.addVars(maquinas,jobs, vtype = gp.GRB.CONTINUOUS)
F = q.addVars(maquinas,jobs, vtype = gp.GRB.CONTINUOUS)
T = q.addVars(jobs, vtype = gp.GRB.CONTINUOUS)
Z = q.addVars(maquinas,jobs, vtype = gp.GRB.BINARY)
U = q.addVars(maquinas,jobs, vtype = gp.GRB.CONTINUOUS)
W = q.addVars(maquinas,jobs, vtype = gp.GRB.CONTINUOUS)

q.setParam('TimeLimit', 30 * 60) #Limite 30 minutos
q.setParam("IntegralityFocus",1)

#Definir Função objetivo
q.setObjective(gp.quicksum(((U[r,j+1] - W[r,j]) * Pidle[r] + EnergyS[r] * Z[r,j]) for r in
maquinas for j in range(n+m-1)) + P0*F[m-1,n+m-1] + (gp.quicksum(T[j] for j in jobs)/UB),
sense=gp.GRB.MINIMIZE)

#Restrição 5
c1 = q.addConstrs(
gp.quicksum(x[i,j] for i in jobs) == 1 for j in pos

)

#Restrição 6
c2 = q.addConstrs(
gp.quicksum(x[i,j] for j in pos) == 1 for i in jobs

)

#Restrição 7
c3 = q.addConstrs(
S[r,j] - s[r] <= M * (1 - x[n+r,j]) for r in maquinas for j in pos

)

#Restrição 8
c4 = q.addConstrs(
S[r,j] - s[r] >= - M * (1 - x[n+r,j]) for r in maquinas for j in pos
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)

#Restrição 9
c5 = q.addConstrs(

S[r,j+1] >= S[r,j] + gp.quicksum(p[r,i]*x[i,j] for i in jobs) for r in maquinas for j in
range(n+m-1)
)

#Restrição 10
c6 = q.addConstrs(
S[r+1,j] >= S[r,j] + gp.quicksum(p[r,i]*x[i,j] for i in jobs) for r in range(m-1) for j in pos

)

#Restrição 11
c7 = q.addConstr(
S[0,0] >= 0

)

#Restrição 12
c8 = q.addConstrs(
T[j] >= S[m-1,j]+gp.quicksum(x[i,j]*(p[m-1,i]-d[i]) for i in jobs) for j in pos

)

#Restrição 13
c9 = q.addConstrs(
T[j] >= 0 for j in pos

)

#Restrição 14

c10 = q.addConstrs(
F[r,j] == S[r,j]+gp.quicksum(p[r,i]*x[i,j] for i in jobs) for r in maquinas for j in pos

)

#Restrição 15

c11 = q.addConstrs(
S[r,j+1] - F[r,j] >= TB[r] - M * (1 - Z[r,j]) for r in maquinas for j in range(n+m-1)

)

#Restrição 16

c11 = q.addConstrs(
S[r,j+1] - F[r,j] <= TB[r] + M * Z[r,j] for r in maquinas for j in range(n+m-1)
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)

#Restrição 17
c12 = q.addConstrs(
gp.quicksum(Z[r,j] for j in range(n+m-1)) <= Nes[r] for r in maquinas

)

#Restrição 18

c13 = q.addConstrs(
U[r,j+1] >= S[r,j+1] - M * Z[r,j] for r in maquinas for j in range(n+m-1)

)

#Restrição 19

c14 = q.addConstrs(
U[r,j+1] <= S[r,j+1] + M * Z[r,j] for r in maquinas for j in range(n+m-1)

)

#Restrição 20

c15 = q.addConstrs(
U[r,j+1] <= M * (1 - Z[r,j]) for r in maquinas for j in range(n+m-1)

)

#Restrição 21

c16 = q.addConstrs(
U[r,j] >= 0 for r in maquinas for j in pos

)

#Restrição 22

c17 = q.addConstrs(
W[r,j] >= F[r,j] - M * Z[r,j] for r in maquinas for j in range(n+m-1)

)

#Restrição 23

c18 = q.addConstrs(
W[r,j] <= F[r,j] + M * Z[r,j] for r in maquinas for j in range(n+m-1)

)

#Restrição 24
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c19 = q.addConstrs(
W[r,j] <= M * (1 - Z[r,j]) for r in maquinas for j in range(n+m-1)

)

#Restrição 25

c20 = q.addConstrs(
W[r,j] >= 0 for r in maquinas for j in pos

)

q.optimize()
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ANEXO B - Código da heurística construtiva e de melhoria em
Python

import time
import random
import math

def carregar_instancia(arquivo_caminho, numero_instancia,x):
with open(arquivo_caminho, 'r') as f:
linhas = f.readlines()

instancias = []
instancia_atual = []

for linha in linhas:
linha = linha.strip()
if linha == str(x):
if instancia_atual:
instancias.append(instancia_atual)
instancia_atual = []

else:
numeros = list(map(int, linha.split()))
instancia_atual.append(numeros)

if instancia_atual: # Adiciona a última instância
instancias.append(instancia_atual)

if 1 <= numero_instancia <= len(instancias):
return instancias[numero_instancia - 1] # Retorna a instância escolhida

else:
raise ValueError(f"Número de instância inválido. Existem {len(instancias)} instâncias.")

def soma_parcial(instancia, x):
vetor_somas = []
sobra_acumulada = [] # Para acumular os números que não foram usados nas linhas

anteriores

for linha in instancia:
soma_primeiros_x = round(sum(linha[:x])/2)

soma_com_sobra_acumulada = soma_primeiros_x + sum(sobra_acumulada)

vetor_somas.append(soma_com_sobra_acumulada)
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sobra_acumulada.extend(linha[x:]) # Acumula os números após os primeiros 'x'

return vetor_somas

def min_positive(a, b):
return min(x for x in (a, b,100000) if x >= 0)

def valoresD(job):
#Calcula o valor de D para o primeiro job
if len(ordem)==0:

acumulado = 0
for chave,valor in D.items():
x,y = chave
if y == job:
if x == 0 and len(ordem)>0:
acumulado = D[x,ordem[-1]]

if x>0 and len(ordem)>0:
if n+x in maqindisp:
acumulado = max(D[x,ordem[-1]],D[x-1,y],s[x]+p[x,n+x])

else:
acumulado = max(D[x,ordem[-1]],D[x-1,y])

S[chave] = acumulado
if S[chave] <= s[x] and S[chave] + p[chave] > s[x]:
S[chave] = s[x]+p[x,n+x]
S[x,n+x] = s[x]
D[x,n+x] = s[x]+p[x,n+x]
S[chave] = max(acumulado, s[x]+p[x,n+x])
if n+x not in ordem:
ordem3.append(n+x)

maqindisp.append(x)
if S[chave] > s[x] and n+x not in ordem3:
S[x,n+x] = s[x]
D[x,n+x] = s[x]+p[x,n+x]
if len(ordem)==0:
S[chave] = max(D[x-1,y],s[x]+p[x,n+x])

else:
S[chave] = max(D[x,ordem[-1]],D[x-1,y],s[x]+p[x,n+x])

if n+x not in ordem:
ordem3.append(n+x)

maqindisp.append(x)

acumulado = S[chave] + p[chave]
D[chave] = acumulado
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def gerar_vizinhanca_insercao(x):
vizinhanca = set()
n = len(x)

for i in range(n):
# Remove o elemento x[i]
for j in range(n):
if i != j:
nova_permutacao = list(x)
elemento = nova_permutacao.pop(i) # Remove o elemento na posição i
nova_permutacao.insert(j, elemento) # Insere o elemento na posição j
vizinhanca.add(tuple(nova_permutacao))

return vizinhanca

def posproc(D,S,ordem3): #Pós-processamento
ordem2=[]
for job in reversed(ordem3):
if job < n:
ordem2.append(job)

for maqs, teste in reversed(p_maquinas.items()):
if maqs>=0:
ordemtemp = [job for job in ordem2 if job < n ]
#print(ordemtemp)
for i in range(n):
if i > 0:
if D[maqs,ordem2[i]] > s[maqs]: #+ p[maqs,n+maqs)
if maqs == m-1:
D[maqs,ordem2[i]] = S[maqs,ordem2[i-1]]

else:
D[maqs,ordem2[i]] = min(S[maqs,ordem2[i-1]], S[maqs+1,ordem2[i]])

S[maqs,ordem2[i]] = D[maqs,ordem2[i]] - p[maqs,ordem2[i]]
if D[maqs,ordem2[i]] <= s[maqs]:
if maqs == m-1:
if S[maqs,ordem2[i-1]] - D[maqs,n+maqs] >= p[maqs,ordem2[i]]:
D[maqs,ordem2[i]] = S[maqs,ordem2[i-1]]
indice = ordem3.index(ordem2[i])
ordem3.remove(n+maqs)
ordem3.insert(indice,n+maqs)
S[maqs,ordem2[i]] = D[maqs,ordem2[i]] - p[maqs,ordem2[i]]

if maqs != m-1:
if min(S[maqs,ordem2[i-1]], S[maqs+1,ordem2[i]]) - D[maqs,n+maqs] >=

p[maqs,ordem2[i]]:
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D[maqs,ordem2[i]] = min(S[maqs,ordem2[i-1]], S[maqs+1,ordem2[i]])
indice = ordem3.index(ordem2[i])
ordem3.remove(n+maqs)
ordem3.insert(indice,n+maqs)

else:
D[maqs,ordem2[i]] =

min(S[maqs,ordem2[i-1]],s[maqs],S[maqs+1,ordem2[i]])
S[maqs,ordem2[i]] = D[maqs,ordem2[i]] - p[maqs,ordem2[i]]

if D[maqs,ordem2[i]] <= s[maqs]:
if maqs == m-1:
D[maqs,ordem2[i]] = min(S[maqs,ordem2[i-1]],s[maqs])

else:
D[maqs,ordem2[i]] = min(S[maqs,ordem2[i-1]],

S[maqs+1,ordem2[i]],s[maqs])
S[maqs,ordem2[i]] = D[maqs,ordem2[i]] - p[maqs,ordem2[i]]

def FO(D,S,ordem3):
ordemoriginal = ordem3.copy()
atrasotot = 0
for i in ordem:
atraso = max(0,(D[m-1,i])-d[i])
atrasotot = atrasotot + atraso

energia=0
for r in range(m):
contoff = 0
ordemtemp = [job for job in ordemoriginal if job < n or job == n+r]
for i in range(len(ordemtemp)-1):
if S[r,ordemtemp[i+1]] - D[r,ordemtemp[i]] > TB[r] and contoff<Nes[r]:
energia = energia + EnergyS[r]
contoff = contoff + 1

else:
energia = energia + ((S[r,ordemtemp[i+1]] - D[r,ordemtemp[i]])*Pidle[r])

energia = energia + P0*(D[m-1,ordem[-1]])

return energia,atrasotot

def troca_aleatoria(lista, x):
for _ in range(x):
# Escolhe duas posições aleatórias diferentes na lista
i, j = random.sample(range(len(lista)), 2)
# Troca os elementos nas posições i e j
lista[i], lista[j] = lista[j], lista[i]

return lista
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n = 9
m = 8
nome = f"{n:02}-{m:02}.txt"
nome1 = f"{n:02}-{m:02}d.txt"
instancias = [1,2,3]
t = n+m
qtd_jobs = range(n+m)
qtd_maquinas = range(m)
print("Arquivo:",nome)

for instancia in instancias:
vet_p = carregar_instancia(nome, instancia, m)
vet_d = carregar_instancia(nome1,instancia,n)[0]

mind=min(vet_d)
somap = [sum(lista) for lista in vet_p]
UB = (sum(somap)-mind)*(m+n)
M = UB
for i in range(m):
vet_d.append(M)

vet_s = soma_parcial(vet_p, n)

#Energia gasta em tempo IDLE
vet_Pidle = []
#Energia gasta pela fábrica
P0 = 1
#Energia gasta para ligar e desligar
vet_EnergyS = []
vet_Nes = [] #Numero máximo de vezes que uma maquina para desligar e ligar
vet_TB = [] #Tempo de Break-even da máquina

for i in range(m):
vet_Pidle.append(2)
vet_EnergyS.append(1)
vet_Nes.append(3)
vet_TB.append(20)

#Rótulos jobs
jobs = list(qtd_jobs)

#Rótulos posições
pos = list(qtd_jobs)
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#Rótulos máquinas
maquinas = list(qtd_maquinas)

#Dicionário dos tempos de processamento nas máquinas
p = dict()
for i in range(n+m):
for r in range(m):
p[r,i]=vet_p[r][i]

#Dicionário inicio do periodo de indisponibilidade nas maquinas
s = dict()
for i in range(m):
s[i] = vet_s[i]

d = dict()
for i in range(n+m):
d[i] = vet_d[i]

D = dict()
for i in range(n+m):
for r in range(m):
D[r,i]=0

S = dict()
for i in range(n+m):
for r in range(m):
S[r,i]=0

Pidle = dict()
for i in range(m):
Pidle[i] = vet_Pidle[i]

EnergyS = dict()
for i in range(m):
EnergyS[i] = vet_EnergyS[i]

Nes = dict()
for i in range(m):
Nes[i] = vet_Nes[i]

TB = dict()
for i in range(m):
TB[i] = vet_TB[i]
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jobs = [i for i in range(n)]
ordem = []
ordem3 = []
ps = p
ds = d
for i in range(n,n+m):
ps = {k: v for k, v in ps.items() if k[1] != i}
ds = {k: v for k, v in ds.items() if k != i}

ps_maquinas = {}
p_maquinas = {}

# Iterar sobre o dicionário original
for chave, valor in ps.items():
x, y = chave # Separar os elementos da chave (x, y)
# Se o valor y não estiver no novo dicionário, criar um dicionário para ele
if x not in ps_maquinas:
ps_maquinas[x] = {}

# Adicionar a chave (x, y) e seu valor no dicionário correspondente a y
ps_maquinas[x][chave] = valor

# Iterar sobre o dicionário original
for chave, valor in p.items():
x, y = chave # Separar os elementos da chave (x, y)
# Se o valor y não estiver no novo dicionário, criar um dicionário para ele
if x not in p_maquinas:
p_maquinas[x] = {}

# Adicionar a chave (x, y) e seu valor no dicionário correspondente a y
p_maquinas[x][chave] = valor

I=1000000
for chave,valor in ps_maquinas[0].items():
x,y = chave
if valor + ds[y]< I:
I = valor + ds[y]
job = y

valoresD(job)
ordem.append(job)
ordem3.append(job)
jobs.remove(job)

maqindisp=[]
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F=[]
flag = 0
rho = 0.5
while jobs:
Fref = 1000000
flag = 0
for job in jobs:
F = 0
janela = 0
LB = 0
pj = 0
for maqs, teste in ps_maquinas.items():
pj = pj + ps[maqs,job]
if maqs != m-1:
if maqs ==0:

bj = min_positive(D[maqs+1,ordem[-1]]-D[maqs,ordem[-1]], s[maqs] -
D[maqs,ordem[-1]])

else:
pacumul=0
for r in range(maqs):
pacumul = pacumul+p[r,job]

bj =
min_positive(D[maqs+1,ordem[-1]]-max(D[maqs,ordem[-1]],D[0,ordem[-1]]+pacumul),
s[maqs] - max(D[maqs,ordem[-1]],D[0,ordem[-1]]+pacumul) )

janela = abs(bj-ps[maqs,job]) + janela
LB = ds[job] - pj
F = rho * (janela) + (1-rho)*(LB-D[0,ordem[-1]])
if F<Fref:
Fref = F
jobref = job
jobref1 = job

if F==Fref and ps[0,job]>ps[0,jobref]:
Fref = F
jobref = job
jobref1 = job

valoresD(jobref)
ordem.append(jobref)
ordem3.append(jobref)
if jobref in jobs:
jobs.remove(jobref)

posproc(D,S,ordem3)
energia,atrasotot = FO(D,S,ordem3)
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start_time = time.time()
ordemi = ordem
flag=1
flag1 =0
energiac = energia
atrasototc = atrasotot
energiai = energia
atrasototi = atrasotot
Di=D
Si=S
while flag1 < 10:
while flag == 1:
flag=0
vizinhos = gerar_vizinhanca_insercao(ordemi)
for v in vizinhos:
for i in range(n+m):
for r in range(m):
D[r,i]=0

for i in range(n+m):
for r in range(m):
S[r,i]=0

ordem=[]
ordem3=[]
for job in v:
valoresD(job)
ordem3.append(job)
ordem.append(job)

posproc(D,S,ordem3)
energia2,atrasotot2 = FO(D,S,ordem3)
if energia2 < energiai:
energiai = energia2
atrasototi = atrasotot2
Di=D
Si=S
ordemi = ordem
flag = 1
flag1=0

ordemi = troca_aleatoria(ordemi,math.ceil(n/2))
flag1 = flag1 + 1
flag = 1

print("Cosntrutiva",energiac,atrasototc)
print("Melhoria",energiai,atrasototi)
end_time = time.time() # Registra o horário final
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execution_time= end_time - start_time # Calcula o tempo de execução
numero_com_virgula = str(execution_time).replace('.', ',')


