
UNIVERSIDADE DE SÃO PAULO

ESCOLA DE ENGENHARIA DE SÃO CARLOS

Desenvolvimento de uma comunicação entre o Unity3D e o braço
robótico do tipo SCARA utilizando protocolo TCP/IP.

Guilherme Rodrigues Chiqueti

Orientador: Prof. Dr. Glauco Augusto de Paula Caurin

São Carlos

2017

GUILHERME RODRIGUES CHIQUETI

Desenvolvimento de uma comunicação entre o Unity3D e o braço
robótico do tipo SCARA utilizando protocolo TCP/IP.

Trabalho de Conclusão de Curso apresentado à Escola de

Engenharia de São Carlos, da Universidade de São Paulo

Curso de Engenharia Elétrica com ênfase em

Sistemas de Energia e Automação

ORIENTADOR: Glauco Augusto de Paula Caurin

São Carlos

2017

AUTORIZO A REPRODUÇÃO TOTAL OU PARCIAL DESTE TRABALHO,
POR QUALQUER MEIO CONVENCIONAL OU ELETRÔNICO, PARA FINS
DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE.

Chiqueti, Guilherme Rodrigues
 C532d Desenvolvimento de uma comunicação entre o Unity3D

e o braço robótico do tipo SCARA utilizando protocolo
TCP/IP. / Guilherme Rodrigues Chiqueti; orientador
Glauco Augusto de Paula Caurin. São Carlos, 2017.

Monografia (Graduação em Engenharia Elétrica com
ênfase em Sistemas de Energia e Automação) -- Escola de
Engenharia de São Carlos da Universidade de São Paulo,
2017.

1. Jogos sérios. 2. Reabilitação Robótica. 3.
Unity3D. 4. TCP/IP. 5. Socket. I. Título.

Agradecimentos

A Deus por ter mе dado saúde е força pаrа superar аs dificuldades.

A minha família, principalmente aos meus pais, Edson e Bárbara, por me darem forças nos altos e baixos

desse caminho. Sou grato pelo apoio e ajuda nos momentos fáceis e de desespero, pelas conversas que me

fortaleceram a terminar esse trabalho. Sou grato pelos momentos de felicidade e de preocupação. Não há

outra fonte de inspiração maior que eles pra mim.

Aos mestrandos e doutorandos dos laboratórios de Dinâmica e Mecatrônica da EESC, pelas conversas e

motivações comigo durante o período deste trabalho. O aprendizado decorrido dessas conversas foi de

grande importância para a conclusão deste trabalho. Agradecimento especial ao Thales e Henrique.

Ao meu orientador, Glauco Caurin, por me permitir trabalhar no Laboratório de Mecatrônica e fornecer

todos os equipamentos necessários. Agradeço também pela motivação e ajuda com os problemas que tive.

Aqueles que seguiram comigo durante os anos da graduação: Noel Araújo, Bruno, Kae, Gabriel, Augusto, e a

todos aqueles que dе alguma forma estiveram е estão próximos a mim, fazendo esta vida valer cada vеz mais

а pena.

Sumário

Agradecimentos...3

Índice de figuras..7

Lista de quadros...9

Lista de Abreviações e Siglas...11

Resumo..13

Abstract...15

Capítulo 1- Introdução...17

 1.1 Objetivos...18

 1.2 Estrutura do trabalho...18

Capítulo 2-Revisão Bibliográfica...19

 2.1- Redes de Computadores..19

 2.2- Camadas de comunicação e o protocolo TCP/IP...20

 2.3- Servidores e Clientes...21

 2.4- Socket..21

 2.5- Reabilitação robótica e os jogos sérios..22

Capítulo 3– Materiais e Métodos...25

 3.1 – O robô do tipo SCARA..25

 3.2- Controle de impedância...28

 3.3- O Unity3D...30

 3.4- Funcionalidade do Software..31

Capítulo 4- Experimento..35

 4.1- O jogo "Capture o Azul"..35

Capítulo 5- Conclusões finais..39

Capítulo 6- Referências Bibliográficas..41

Apêndice A – Manual do SCARA...43

Índice de figuras

Figura 1- Paciente com AVE durante terapia no hospital de reabilitação Burke...18

Figura 2– Exemplo de endereço IPv4..19

Figura 3- Uma rede TCP/IP...21

Figura 4- O SCARA..25

Figura 5- Ilustação dos ângulos de movimento do manipulador..26

Figura 6 - Representação do espaço de trabalho do SCARA...26

Figura 7- Transdutor de força em seis eixos acoplado ao TCP do manipulador...27

Figura 8- Visão geral dos componentes do sistema SCARA..28

Figura 9- Ilustração de um manipulador robótico ccom duas juntas em série e alinhadas...................................29

Figura 10- Ambiente de trabalho do Unity3D..30

Figura 11- Fluxograma do servidor..31

Figura 12- o dado encapsulado em um pacote TCP/IP é um vetor de bytes com os dados de posição e velocidade

do TCP do SCARA e comprimento total de 48 bytes...32

Figura 13- Exemplo de uso da classe do cliente...33

Figura 14- Foto retirada do jogo Capture o Azul...35

Figura 15- Fluxograma do cliente usado no Capture o Azul. A parte START do fluxograma é executada no início

do jogo e a UPDATE é executada uma vez a cada frame...36

Figura 16 - Interface do usurário do programa de controle de impedância..46

Figura 17- Imagem da instância CAN1 após o término do processo..48

Figura 18– Imagem da instância CAN2 após o término do processo...48

Figura 19- Localização do endereço local IPv4 da máquina na rede conectada...50

Lista de quadros

Quadro 1- Descrição do programa controlador do robô SCARA...46

Quadro 2- Funções contidas na API para a utilização no Unity3D..49

Lista de Abreviações e Siglas

MMORPG Massively Multiplayer Online Role Playing Game

TCP Tool Center Point

TCP/IP Transmission Control Protocol / Internet Protocol

I/O Input/Output

API Application Programming Interface

CAN Controler Area Network

fps frames per second

Resumo

Este projeto apresenta o desenvolvimento de um software contendo um protocolo de comunicação para

utilização no braço robótico SCARA. O robô serve para propósitos gerais, mas nesse projeto é utilizado como

ferramenta de terapia de movimentos no tratamento de pacientes em reabilitação de membros superiores. A

solução oferece ao paciente uma alternativa mais atraente para o tratamento. O projeto baseou-se na elaboração

de dois programas distintos que se comunicam usando protocolo TCP/IP. Um programa atua como servidor e

fica responsável por enviar informações do robô SCARA para a rede, enquanto o outro programa, atuando como

cliente, recebe essas informações para que o desenvolvedor de jogos, utilizando o Unity3D, possa trabalhá-las.

A implementação do protocolo TCP/IP permite que o jogo e o programa do SCARA sejam executados em

computadores distintos, o que permite ao terapeuta analisar o desempenho do paciente durante a terapia. Por fim

realizou-se um experimento com o objetivo de validar os softwares desenvolvidos. Foi criado um jogo no

ambiente Unity3D que utilizou o programa cliente. Durante 120 segundos o jogo permaneceu ativado e o

manipulador SCARA, com o programa servidor, foi movimentado de forma a cumprir com os desafios do jogo.

Foi observado que a taxa média de envio de mensagens do servidor para o cliente chegou a 115 fps, maior que a

taxa de atualização do jogo que atingia um máximo de 80 fps.

Socket, TCP/IP, Reabilitação Robótica, Jogos sérios, Unity3D, Software

Abstract

This project presents the development of a software containing a communication protocol for use in the robotic

arm SCARA. The robot serves for general purposes, but in this project it is used as a tool of movement therapy

in the treatment of patients in rehabilitation of upper limbs. The solution offers the patient a more attractive

alternative to the treatment. This project was based on the elaboration of two distinct programs that

communicate with each other using TCP/IP protocol. One program acts as a server and is responsible for

sending information from SCARA to network, while the other program, acting as a client, receives the

information so that the game developer using Unity3D can work with them. The implementation of the TCP/IP

protocol allows client and server to run on separate computers, allowing the therapist to analyze the patient's

performance during therapy. A game was created in the Unity3D environment that used the client program. For

120 seconds the game remained activated and the SCARA handler, with the server program, was moved to meet

the challenges of the game. It was observed that the average rate of sending messages from the server to the

client reached 115 fps, higher than the game update rate that reached a maximum of 80 fps (frames per second).

Socket, TCP/IP, Robotic rehabilitation, Serious games, Unity3D, Software

Capítulo 1- Introdução

Jogos sérios são definidos como jogos que abordam aspectos que transcendem o objetivo de

entretenimento. Esses jogos são desenvolvidos para diversas aplicações como treinamento militar,

comunicação estratégica, educação e a área da saúde. Em adição ao entretenimento proporcionado pelos

jogos comuns, os jogos sérios promovem e avaliam o desenvolvimento dos jogadores (ZYDA, 2005).

A fim de verificar a eficácia dos jogos sérios, a Universidade do Colorado realizou um estudo

comparando treineiros que aprenderam conteúdos diversos usando o método convencional com aqueles que

usaram jogos para o aprendizado. Verificou-se um aumento de 9% na retenção do aprendizado, 14% na

habilidade comportamental e 11% no aprendizado factual dos alunos que utilizaram os jogos (UNIVERSITY

OF COLORADO DENVER, 2010), mostrando a eficiência que os jogos podem trazer.

Dentre outros campos, a reabilitação robótica é uma forma de terapia que, assistida por jogos, pode

trazer benefícios. Enquanto os jogos aumentam a motivação do usuário proporcionando desafios, os

manipuladores robóticos controlados auxiliam o movimento de alguma articulação do paciente de forma

confiável e segura (ANDRADE et al., 2013). Além disso as sessões de treinamento deixam de ser

influenciadas pelo cansaço ou estado emocional do terapeuta, garantindo uniformidade no tratamento

(CAURIN et al., 2011).

Como exemplo de reabilitação robótica assistida a jogos, podemos citar o braço robótico MIT-

MANUS. O manipulador, mostrado na figura 1, foi desenvolvido para ser utilizado na reabilitação de

membros superiores de pacientes que sofreram AVE (acidente vascular encefálico). Este manipulador move-

se suavemente graças ao controle de impedância implementado, cumprindo com as ações motoras do

paciente (KREBS et al., 2003), enquanto os jogos sérios motivam o paciente com desafios e entretenimento,

e avaliam seu desempenho ao decorrer do jogo.

17

1.1 Objetivos

Visando futuros trabalhos relacionados à reabilitação robótica com jogos no Laboratório de

Mecatrônica da USP de São Carlos, o objetivo foi desenvolver uma ferramenta de comunicação utilizando o

protocolo TCP/IP entre o braço robótico do tipo SCARA pertencente ao Laboratório de Mecatrônica, que

opera em linguagem C/C++ e a ferramenta de desenvolvimento de jogos digitais Unity3D, cujo algoritmo foi

escrito na linguagem C#. O projeto deste trabalho adicionado ao controle de impedância previamente

implementado no manipulador SCARA permite a utilização do mesmo para reabilitação robótica com jogos.

1.2 Estrutura do trabalho

O capítulo 2 revisa os conceitos que foram utilizados no desenvolvimento deste trabalho. Inclui o

conceito de IP, servidor e cliente, protocolo de comunicação TCP/IP e socket.

O capítulo 3 introduz e detalha os materiais e métodos usados neste trabalho. Ele detalha o

funcionamento do braço robótico SCARA pertencente ao laboratório de Mecatrônica. Além disso, descreve

os hardwares utilizados e o software de controle de impedância, que foi desenvolvido em outro projeto

(FERNANDES, 2013). Por fim, é apresentado o ambiente de desenvolvimento de jogos Unity3D utilizado

neste trabalho.

O capítulo 4 mostra o experimento realizado com o software gerado no braço robótico. Inclui o

experimento de comunicação com um jogo criado com o Unity3D.

18

Figura 1- Paciente com AVE durante terapia no hospital de reabilitação Burke.

Fonte: KREBS (2003).

Capítulo 2-Revisão Bibliográfica

A comunicação entre os dois computadores foi realizada com sockets que, uma vez acoplados em

portas de comunicação, realizam o tráfego de informação entre diferentes aplicações. Um estudo dos

conceitos descritos neste capítulo foram indispensáveis para o uso de sockets e consequente realização deste

projeto de graduação.

2.1- Redes de Computadores

Uma rede de computadores consiste de máquinas interconectadas por canais de comunicação. Essas

máquinas podem ser hosts e roteadores. Hosts são máquinas cuja finalidade é executar as aplicações do

usuário (TANENBAUM, 2003), como um computador pessoal por exemplo.

Roteadores, por outro lado, são dispositivos com a função de passar dados de um canal de

comunicação para outro. Sua importância vem do fato de que não é conveniente interligar todos os

computadores entre si dois a dois. Em vez disso, vários computadores são conectados a um roteador, que por

sua vez conectados a outros roteadores, e assim por diante, formando uma rede de comunicação

(DONAHOO; CALVERT, 2009).

Cada dispositivo conectado a uma rede possui um endereço único. Esse endereço é como uma

identificação do computador, e é usado para reconhecimento do dispositivo por outros visando troca de

informações. No protocolo IP versão 4 ou IPv4, cada endereço é representado por um número de 4 bytes

separados por ponto, sendo cada byte um valor entre 0 e 255. Um exemplo de endereço IPv4 se encontra na

figura 2, imagem esta tirada do prompt de comando no Windows 7 de um computador pessoal após o uso da

função ipconfig.

Figura 2– Exemplo de endereço IPv4.

O endereço no protocolo IPv4 pode ser dividido em duas partes. Em uma parte está armazenado o

endereço local da rede e em outra o número do host. O que define quais dos números do protocolo IPv4

pertencem à rede e quais números pertencem aos hosts é a máscara de Sub-rede, que contém números de

mesma magnitude que o IPv4. Esse número é como uma senha, e seus bits setados em 1 indicam quais

números do endereço representam a rede. No exemplo da figura 2 os três primeiros números da máscara de

sub-rede estão em 255 e o último em 0, indicando que os três primeiros bytes estão com seus bits setados em

19

1 e o restante em 0. Isso indica que os três primeiros bytes do endereço representam o endereço da rede local

e o último byte representa o número do host conectado a ele.

Porém, com a quantidade de dispositivos crescendo, o número de endereços disponíveis no IPv4 vai

saturar e não sobrará endereços para os novos dispositivos. Por isso, recentemente foi oficializado o IPv6 que

possui um tamanho de endereçamento de 128 bits.

Para realizar a comunicação de dispositivos, é necessário saber qual a porta de comunicação onde

será realizada o envio e coleta de dados. Por definição, porta é um software de aplicação específica ou

processo específico servindo de ponto final de comunicações em um sistema operacional hospedeiro de um

computador. O propósito das portas é identificar aplicações e processos de um computador e assim

possibilitá-los a compartilhar uma única conexão física com uma rede de comutação de pacotes, como a

internet. (DONAHOO; CALVERT, 2009)

2.2- Camadas de comunicação e o protocolo TCP/IP

Na comunicação é essencial que haja uma padronização no tipo de informação a ser trocada entre as

aplicações, uma vez que essas aplicações não são necessariamente executadas na mesma linguagem. Esse

conjunto de regras e normas são denominados de protocolos de comunicação, e definem regras no envio de

pacotes (DONAHOO, M. J.; CALVERT, L. K, 2009). A figura 3 ilustra o caminho percorrido por um pacote

de dados entre duas aplicações TCP/IP.

O modelo ou arquitetura TCP/IP de encapsulamento busca fornecer abstração aos protocolos e

serviços para diferentes camadas de uma pilha:

• Camada de Rede – camada física pois trata-se das tecnologias usadas para as conexões. Exemplo:

Ethernet, Wireless, Modem, etc.

• Camada de Internet – Responsável pelo empacotamento dos dados e o seu roteamento. Exemplo: IP

• Camada de Transporte – Responsável pelo controle da comunicação host a host. Exemplo: TCP e

UDP.

• Camada de Aplicação – Contém todos os protocolos para um serviço específico de comunicação de

dados em um nível de processo a processo (por exemplo: como um web browser deve se comunicar

com um servidor da web). Exemplo: HTTP, DHCP, Telnet.

20

2.3- Servidores e Clientes

Servidores e Clientes são teorias usadas para realizar a conexão entre dois hosts ou dois simples

programas via rede. É chamado de servidor a aplicação que vai aguardar um pedido de conexão. Um servidor

é responsável por se preparar e aguardar até que algum outro programa tente se comunicar com ele. Uma vez

que ele só tenha que aguardar um pedido de conexão, não é necessário que ele saiba o endereço do

computador que vai pedir a conexão. Um servidor pode ter vários clientes conectados a ele ao mesmo tempo.

Um exemplo são os jogos de MMORPG online, onde vários jogadores (clientes) acessam o jogo (presente no

servidor) ao mesmo tempo.

Cliente, por outro lado, é o programa que vai solicitar uma conexão e portanto é fundamental que ele

saiba o endereço do servidor para poder pedir a conexão. Quando o cliente pedir a conexão e o servidor

aceitá-la, o envio de dados pode acontecer em ambos os sentidos, isto é, do servidor para o cliente ou do

cliente para o servidor.

2.4- Socket

Um socket é uma abstração através do qual uma aplicação pode enviar e receber dados, da mesma

maneira que um arquivo aberto permite que uma aplicação escreva e leia dados da memória (DONAHOO;

KENNETH, 2009).

Sockets são uma maneira eficiente de se enviar dados entre hospedeiros usando as portas do

computador. A vantagem do uso dos sockets neste projeto é a capacidade de transmissão de dados à distância,

21

Figura 3- Uma rede TCP/IP

Fonte: DONAHOO (2009).

uma vez que eles se comunicam por rede. Dentre as funções usadas na programação via socket, a lista abaixo

mostra as essenciais para uma comunicação TCP/IP:

• Bind(): função que acopla o socket previamente criado em uma porta desejada. Na comunicação

TCP/IP , essa função é usada no servidor..

• Listen(): Coloca o socket em modo de escuta, preparando-o para receber pedidos de comunicação de

outros sockets.

• Accept(): Aguarda por uma comunicação. Se o socket for bloqueado, essa função trava o programa

até que algum programa peça por uma comunicação. Caso contrário retorna um erro se não tiver

comunicação pendente. Usado no programa servidor logo após Listen();

• Connect(): Função que acopla o socket em uma porta aleatória livre do computador e faz o

requerimento de uma conexão. Retorna SOCKET_ERROR caso a conexão falhe.

• Close(): Função que encerra o socket e limpa a memória alocada por ele.

2.5- Reabilitação robótica e os jogos sérios

A reabilitação é uma área da saúde que busca reintegrar uma pessoa, com uma ou mais

funcionalidades prejudicadas, à sua atividade de vida diária. Acidentes e doenças, por exemplo, podem levar

à perda parcial de movimentos, que dificultam uma pessoa de continuar sua rotina. Através de técnicas

específicas, a reabilitação busca auxiliar na recuperação dos pacientes.

Normalmente, os procedimentos de reabilitação tradicionais são realizados com exercícios

repetitivos, que tendem a diminuir a motivação do paciente. Além disso, estes procedimentos não possuem

um monitoramento informatizado, o que não proporciona dados armazenáveis para análise (APPEL,2014;

BURDEA, 2002). Por fim, “as sessões de reabilitação requerem intenso contato do terapeuta com o paciente

durante todo o tempo de retreinamento” (APPEL, 2014).

A reabilitação robótica introduz os robôs às sessões de reabilitação. Segundo Robertson, Jarrassé e

Roby-Brami (2010), um robô é uma máquina capaz de se adaptar ao ambiente extendendo ou substituindo

habilidades humanas em algumas atividades. Os robôs são compostos de uma estrutura mecânica com

diversos mecanismos e um certo número de graus de liberdade, e possuem sensores capturando informações

de seu estado atual e do ambiente ao seu redor e que permitem a execução de uma tarefa corretamente. Na

reabilitação robótica, os robôs são chamados de cooperativos, pois existe contato físico entre o robô e o

paciente (APPEL, 2014).

Uma vantagem da reabilitação robótica é a capacidade de medir e armazenar dados do paciente sob a

forma de grandezas físicas como posição, velocidade e força. Dessa forma, é possível avaliar o desempenho

do paciente através de comparações das medidas ao longo do tempo de forma visual e automática (APPEL,

2014). Além disso, outra vantagem é que devido à característica colaborativa dos robôs na reabilitação, é

22

possível alterar os parâmetros do robô para modificar seu grau de assistência ao paciente, e esses parâmetros

podem ser alterados diretamente pelo terapeuta. Por fim, a robótica na reabilitação permite a inserção de

jogos sérios à terapia.

Zyda (2005) define jogos sérios como “uma disputa mental, jogado com um computador de acordo

com as regras, que utiliza entretenimento como incorporação em treinamentos, educação, saúde, políticas

públicas e objetivos de comunicação estratégica”. Em outras palavras, jogos sérios são jogos cuja finalidade

não é o entretenimento, mas utiliza da diversão proporcionada pelos jogos para outros objetivos.

No caso da reabilitação robótica, os jogos sérios auxiliam no processo de reabilitação trazendo

benefícios ao paciente e ao terapeuta. Os jogos podem aumentar a motivação do paciente criando desafios

que precisam ser concluídos para se avançar na terapia, além de mascarar o processo repetitivo e as vezes

tedioso da reabilitação. Por fim, os jogos sérios geram dados para o terapeuta analisar o desempenho do

paciente na reabilitação (ZYDA, 2005).

Dentre as pesquisas de jogos na reabilitação, podemos citar o jogo Roll the Ball. ANDRADE et al

(2013) introduz e explica o funcionamento deste jogo, criado no ambiente Unity3D, e dos dispositivos

utilizados para reabilitação robótica de punho. Desenvolvido no Laboratório de Mecatrônica da USP de São

Carlos, o jogo e os dispositivos se comunicam por protocolo TCP/IP (ANDRADE et al, 2013), mesmo

protocolo de comunicação utilizado por este trabalho.

23

24

Capítulo 3 – Materiais e Métodos

Este capítulo introduz e explica os materiais utilizados neste trabalho e, posteriormente, o método de

comunicação é explicado.

3.1 – O robô do tipo SCARA

Para desenvolvimento da parte experimental foi utilizado o braço robótico SCARA pertencente ao

laboratório de Mecatrônica da Escola de Engenharia de São Carlos. “A sigla SCARA é proveniente da

descrição do conceito construtivo e graus de liberdade presentes neste manipulador: Selectively Compliant

Assembly Robot Arm” (FERNANDES, 2013).

O manipulador, mostrado na figura 4, é composto de quatro juntas, sendo três de rotação e uma de

translação. Três juntas possuem eixos que rotacionam de forma perpendicular ao chão, ou seja, na horizontal,

e o quarto eixo realiza a translação do TCP na vertical com 200 mm de curso. Cada eixo é acionado por um

motor distinto e portanto cada junta pode ser operada separadamente.

A figura 5 apresenta os graus de liberdade do SCARA. A primeira junta, responsável pela rotação do

primeiro braço do sistema no plano x–y tem seu ângulo definido entre 0º < Ɵ1 < 200º e é acionado através de

uma relação de transmissão de 1:157. O comprimento do primeiro braço é 400 mm. O segundo braço do

manipulador possui limite de movimento entre 0º < Ɵ2 < 135º e apresenta uma redução de 1:80. O

comprimento do segundo braço é de 250 mm. A terceira junta é responsável pela rotação do eixo do TCP,

25

Figura 4 - O SCARA.

Fonte: FERNANDES (2013)

que é limitado entre -180º < Ɵ3 < 180º e pode ser acionada sem a influência dos movimentos do primeiro e

segundo manipuladores. Por fim, o último eixo, responsável pelo movimento de translação do TCP na

direção vertical, é acionado através de um fuso de esferas de passo 5 mm e possui um deslocamento total de

200 mm (FERNANDES, 2013). O espaço de trabalho do SCARA é ilustrado na figura 6.

Outra característica deste manipulador é o sensor de força que está acoplado em seu TCP. O

transdutor é mostrado na figura 7. Ele é composto de seis extensômetros espaçados entre si no mesmo plano

e alocados da forma que é possível encontrar o vetor de forças e torques descritos no sistema de referência do

centro do transdutor (FERNANDES, 2013).

O sensor têm os sinais de seus extensômetros amplificados por um condicionador de sinal, que

disponibiliza seis sinais de amplitude entre -10 V e 10 V com cada um relativo a um extensômetro. Esses

26

Figura 5- Ilustação dos ângulos de movimento do manipulador.

 Fonte: FERNANDES (2013)

Figura 6 - Representação do espaço de trabalho do SCARA.

Fonte: FERNANDES (2013)

sinais são levados a um bloco de I/O da PHOENIX CONTACT, cujo em seu módulo estão ligados três

cartões de entrada analógica com conversores de 16 bits (FERNANDES, 2013).

Cada eixo do SCARA possui um encoder que mede o ângulo atual do respectivo eixo, e seus sinais

são levados para o computador via USB, RS232 ou CAN/CANOpen. Além disso, o manipulador utilizado

pertencente ao Laboratório de Mecatrônica não possui sensores de fim de curso, apenas um botão de

emergência que corta a corrente de todos os motores.

Cada servomotor do SCARA é controlado por um servodriver da marca MAXON do tipo EPOS2

70/10. Os servodrivers estão conectados entre si via CAN e um deles está conectado ao computador via CAN

também. O sensor recebe a força de forma analógica, passa para o amplificador de sinal e depois para o

conversor de 16 bits, que entrega o sinal digitalmente para os servodrivers (FERNANDES, 2013). A figura 8

apresenta uma arquitetura geral do robô com ênfase nas tecnologias utilizadas para comunicação entre os

dispositivos apresentados.

27

Figura 7- Transdutor de força em seis eixos acoplado ao TCP do manipulador.

Fonte: FERNANDES (2013)

3.2- Controle de impedância

Para o sistema de controle do manipulador foi utilizado um controle de impedância escrito por

Guilherme Fernandes, que “consiste em controlar a relação dinâmica existente entre força e posição em vez

de controlar somente a força ou somente a posição” (FERNANDES, 2013; HOGAN, 1985). Este programa é

responsável por realizar a movimentação do braço robótico de acordo com a força aplicada no sensor e

armazenar as informações dinâmicas em variáveis facilmente acessíveis. Entre essas informações, encontra-

se a posição e velocidade do TCP (Tool Center Point) no sistema de coordenadas 3D e a força e torque,

capturados pelo extensômetro em tempo real.

Todas as informações do manipulador são armazenadas em variáveis globais e atualizadas

constantemente durante a execução do controle de impedância. Porém, a introdução de novos comandos logo

após o controle não foi possível, uma vez que novos comandos implica num gasto de tempo de execução

maior que 1 ms por junta, alterando o período do controle e comprometendo toda sua estrutura. A solução

encontrada foi acessar essas variáveis em um processo paralelo, copiando os dados dinâmicos para uma

variável local para que pudessem ser transmitidos via rede.

Com relação ao controle de impedância, a velocidade V do TCP pode ser relacionada com o vetor de

velocidades das juntas através da equação 3.1, sendo J(θ) a matriz Jacobiana formada pelas derivadas

parciais do ângulo das juntas em relação à coordenada cartesiana.

28

Figura 8- Visão geral dos componentes do sistema SCARA.

Fonte: FERNANDES (2013). Adaptado

V=J (Θ)∗Θ
. (3.1)

Para um manipulador com duas juntas como mostrado na figura 9, o Jacobiano é determinado pela

equação 3.2 e o determinante do Jacobiano é representado na equação 3.3:

J (Θ) = [−a1∗sen(Θ1)−a2∗sen(Θ1+Θ2) −a2∗sen(Θ1+Θ2)

a1∗cos (Θ1)+a2∗cos (Θ1+Θ2) a2∗cos(Θ1+Θ2)] (3.2)

det (J)=a1∗a2∗sen(Θ2) (3.3)

Para a situação de alinhamento das juntas, o determinante da matriz Jacobiana se torna nulo,

caracterizando um ponto de singularidade. Em torno deste ponto, pequenas velocidades no espaço de

trabalho podem resultar em alta velocidade no espaço das juntas (BECKER, 2008), tornando o controle de

impedância impreciso.

Por fim, devido a um acidente, a primeira junta se encontra mais rígida do que antes, o que desregula

o controle de impedância da primeira junta e consequentemente o resto.

29

Figura 9- Ilustração de um manipulador robótico ccom duas

juntas em série e alinhadas.

Fonte: BECKER (2008).

3.3- O Unity3D

Unity3D é um ambiente de desenvolvimento de jogos, tanto 2D quanto 3D. Ele conta com uma

grande comunidade online, que compartilham informações sobre a ferramenta, e também com uma enorme

quantidade de recursos em uma galeria de exemplos e modelos, onde artistas, modeladores, programadores e

desenvolvedores de jogos disponibilizam seus trabalhos para serem usados nesse ambiente. A versão 5,

última versão lançada tem como grande vantagem a possibilidade de exportar código executável para

diferentes sistemas operacionais como Android, iOS, Windows, Linux, entre outros. Essa característica em

especial levou a sua escolha. O ambiente de trabalho do Unity3D é ilustrado na figura 10.

O Unity3D conta com um ambiente de programação, chamado Scripting, construído sobre o

framework MonoDevelop que é open-source. Graças a esse ambiente, a Unity3D possui suporte às

linguagens JavaScript, C# e Boo (que tem uma sintaxe inspirada pela linguagem Python). Logo, esse

ambiente permite ao programador utilizar mais de uma linguagem, sendo prático e versátil (PIRES, 2014).

Todos os scripts criados e usados no Unity3D possuem como padrão duas funções de programação: a

função Start que é chamada no início do processamento do Script, geralmente usada para inicialização de

variáveis, e a função Update, que é chamada após o Start e executado uma vez a cada frame.

Esse trabalho utilizou a linguagem C# para a programação do cliente, pois é a linguagem padrão

escolhida para projetos em Unity3D no Laboratório de Mecatrônica.

30

Figura 10- Ambiente de trabalho do Unity3D

3.4- Funcionalidade do Software

O software de comunicação criado neste trabalho é dividido em dois programas separados e

trabalhando ao mesmo tempo, que podem ou não serem executados em diferentes computadores, desde que

estejam na mesma rede.

O programa servidor deste trabalho foi desenvolvido em C/C++ e incluído no programa de controle

de impedância previamente escrito por Guilherme Fernandes (FERNANDES, 2013) como um processo

paralelo visando interferir minimamente no tempo de execução do controle. O servidor criado tem como

característica a capacidade de se preparar para uma nova comunicação caso a conexão com o cliente se

perca. A figura 11 mostra o fluxograma do servidor.

A escolha da inserção do programa servidor no controlador do SCARA, e não no jogo, visa

simplificar o desenvolvimento de jogos, uma vez que a inicialização do controle de impedância é mais

demorada. Com a inserção do servidor no controle de impedância, não é necessário desligá-lo caso o

desenvolvedor encontre alguma falha em seu jogo., basta apenas desligar o jogo.

31

Figura 11- Fluxograma do servidor.

Ao iniciar o controle de impedância, um processo paralelo em separado é criado para gerenciar o

servidor. Primeiro, é criado um socket do tipo stream, usado para comunicações TCP/IP, e conectado o

socket na porta lógica 8888 do computador, que foi escolhida arbitrariamente. Caso seja necessário, o

número da porta pode ser alterado. Por fim o socket é configurado para modo de escuta e permanece em

espera, aguardando algum outro socket se comunicar com ele.

Caso algum programa peça conexão a esse socket, ela é aceita. O servidor captura os dados

dinâmicos do controle de impedância, isto é, a posição e velocidade do TCP do manipulador contidos em

variáveis do tipo double, e faz uma cópia destes dados em um vetor de bytes utilizando a função memcpy (do

inglês memory copy). O dado, ilustrado na figura 12, é enviado via socket para a camada TCP e

posteriormente para a IP onde o dado é empacotado e enviado para a rede até chegar ao cliente. A quantidade

de bytes enviados ao cliente é retornada ao servidor para confirmação. Caso o envio do pacote de dados

falhar, o servidor declara que a conexão com o cliente foi perdida. O socket é então reconfigurado para

aguardar até que uma nova conexão seja realizada. Essa capacidade de reconfiguração é feita

automaticamente.

O programa cliente deste trabalho foi escrito na linguagem C# e é inserido no algoritmo do jogo para

interagir com o manipulador. Para o software cliente, foi criada uma API em forma de classe para que o

desenvolvedor possa escolher como deseja realizar a comunicação, sempre respeitando o funcionamento do

servidor. Dentre as funções criadas, inclui a função de conectar ao servidor, funções de enviar e receber

pacotes via protocolo TCP/IP, uma função que converte as informações recebidas como vetor de bytes em

números racionais e funções de verificação. Um exemplo de uso das funções encontra-se na figura 13.

Ao instanciar a classe, um novo socket do tipo stream é criado. O socket não é conectado a nenhuma

porta e só pode ser usado caso esteja conectado ao servidor.

A função de conectar ao servidor, nomeada como SCARA_Connect, recebe como parâmetro um

texto, que deve conter o IP da máquina do servidor na rede, sob a forma de IPv4, e o número da porta lógica

que o servidor está aguardando a conexão. Uma vez chamada essa função, o socket é acoplado a uma porta

lógica aleatória e então faz o requerimento de conexão para o servidor de acordo com o endereço IP e porta

32

Figura 12- o dado encapsulado em um pacote TCP/IP é um vetor de bytes com os

dados de posição e velocidade do TCP do SCARA e comprimento total de 48 bytes.

dados. Independente do sucesso ou fracasso da tentativa de conexão, a função retorna nada. A verificação da

conexão deve ser feita utilizado a função is_connected.

A função de receber um pacote de dados, nomeada como SCARA_Receive, possui em um de seus

parâmetros a possibilidade de bloquear ou desbloquear o socket usado na comunicação. Um socket em modo

desbloqueado impede que a função aguarde o servidor enviar o dado. Caso a função seja chamada em modo

de socket desbloqueado e o servidor não está enviando dado algum, a função retorna.

33

Figura 13- Exemplo de uso da classe do cliente.

A função SCARA_Send envia uma mensagem ao servidor codificada em código ASCII. Ela é usada

para manter o servidor atualizado com as informações do jogo, e também manter um controle na

transmissão, uma vez que o servidor só envia o próximo dado caso receba uma resposta do cliente. Para

verificar se as funções de receber e enviar foram bem-sucedidas, é necessário utilizar as funções was_sent e

was_received que verificam, respectivamente, se a última função SCARA_Send enviou a mensagem e se a

última função SCARA_Receive recebeu algum dado.

Por fim a função de extração de dados, nomeada de ExtractV3, captura os números contidos no

pacote enviado pelo servidor e os inserem em vetores de 3 dimensões comumente utilizados por

desenvolvedores no Unity3D.

Todo o trabalho foi documentado para permitir a reprodução do mesmo ou para a criação de novas

aplicações. Ele inclui composição do maquinário, explicação e detalhes do modo de operação, solução de

prováveis erros ou problemas, explicação dos programas usados, e cuidados a serem tomados visando à

integridade do equipamento e de seus usuários. O Manual encontra-se no apêndice A.

34

Capítulo 4- Experimento

Os objetivos do experimento envolveram validar o estado da comunicação e a capacidade de

reconfiguração do servidor caso a comunicação com o cliente fosse perdida, como no caso do jogo ser

desligado. Nesse teste o braço robótico se move livremente e não impõe restrição ao movimento do jogador.

Além disso, o teste foi realizado com a máxima velocidade de transmissão de dados possível entre cliente e

servidor.

4.1- O jogo "Capture o Azul"

O jogo Capture o Azul visualizado na figura 14 foi criado no Unity3D versão 5, e pertence ao estilo

2D com perspectiva de cima. Nele o jogador, utilizando o SCARA, comanda um elemento (bolinha verde na

figura) que deve interceptar os objetos azuis para coletá-los, estes objetos se movem da esquerda para a

direita com diferentes velocidades. A cada coleta, um ponto é ganho. O jogador pode se mover em todo o

plano do jogo e não há nada que impeça seu movimento. Grandezas como atrito, gravidade, força ou

momento linear não foram incluídas. Para esse jogo usou-se apenas os dados de posição X e Y, descartando a

posição Z e os valores de velocidade contidos no dado recebido do servidor.

35

Figura 14- Foto retirada do jogo Capture o Azul.

A figura 15 mostra o fluxograma do cliente criado para esse jogo usando a API.

O experimento foi realizado com uma rede com velocidade de transmissão de 100 Megabits por

segundo. Nele, foi inicializado o servidor e em seguida o jogo com o programa cliente. O jogo permaneceu

ligado por 120 segundos, contados com um cronômetro. Para o cálculo do número de mensagens recebidas

foi adicionado uma variável do tipo inteiro no programa cliente agindo como contador, de forma que a cada

mensagem recebida do servidor este contador é incrementado em 1. Ao fim dos 120 segundos, o cliente foi

desligado e observou-se através do contador que o número total de mensagens recebidas pelo cliente foi

aproximadamente 13,7 mil. Dividindo este número pela duração do experimento, temos que o número médio

aproximado de mensagens recebidas por segundo foi de 115 fps.

36

Figura 15- Fluxograma do cliente usado no Capture o Azul. A parte START do fluxograma é executada no

início do jogo e a UPDATE é executada uma vez a cada frame.

Para cálculo da taxa de atualização do jogo ou fps (frames per second), utilizou-se a função stats

presente no Unity3D. Durante a execução do jogo, observou-se que seu fps atingia picos de 80 e mínimos de

60. Esses valores mostram que mesmo que a comunicação entre servidor e cliente ocorra a uma taxa de 115

segundos, no máximo 80 mensagens serão utilizados para movimentar o objeto presente no jogo (bolinha

verde). Logo, a comunicação mostrou-se satisfatória uma vez que a quantidade de dados enviadas é superior

à utilizada, permitindo que a movimentação do jogador seja atualizada em todos os frames. Por fim, vale

destacar que todos os pacotes de dados enviados pelo servidor chegaram ao cliente, isto é, não houve perda

de pacote na rede.

37

38

Capítulo 5- Conclusões finais

Este trabalho utilizou o protocolo de comunicação TCP/IP para criar uma ferramenta de

comunicação entre o software de controle de impedância que movimenta o braço robótico do tipo SCARA

pertercente ao Laboratório de Mecatrônica e o ambiente de desenvolvimento de jogos Unity3D. A ferramenta

é um sistema composto de dois softwares distintos.

O primeiro software, o servidor, escrito em C/C++, está inserido no software de controle de

impedância do robô SCARA previamente criado por Guilherme Fernandes (FERNANDES, 2013), ex-aluno

de mestrado do Laboratório de Mecatrônica da USP. O software servidor é responsável por aguardar uma

comunicação de um cliente e caso uma comunicação anterior é terminada, reconfigurar os sockets para

aguardar uma nova comunicação.

O segundo software é composto de uma API escrita em C# contendo funções de cliente TCP/IP para

gerir uma comunicação com o servidor. A criação de uma API de comunicação foi de importante para dar

liberdade ao desenvolvedor de games ao criar um jogo para utilizar a comunicação.

O teste de comunicação realizado com a ferramenta criada neste trabalho mostrou resultados

satisfatórios. Durante um período de teste de 120 segundos, nenhum pacote de dado trocado entre servidor e

um cliente se perdeu na rede, cliente este que foi desenvolvido com a API criada. Além disso, a taxa de envio

de dados do servidor para o cliente chegou a 115 mensagens por segundo, e portanto satisfatória para a

utilização desses dados no movimento de um objeto em um jogo do Unity3D, uma vez que a taxa de

atualização do Unity3D é menor, cerca de 80 mensagens por segundo. Portanto, esses dados mostram que a

escolha do protocolo TCP/IP para este projeto cumpriu com os objetivos propostos.

A ferramenta criada com este trabalho permite a expansão do uso do robô SCARA para a área de

reabilitação robótica. Como um exemplo de um futuro trabalho, o TCP do manipulador contém um

instrumento que segura um membro superior do corpo do paciente. Então, o robô realiza uma força que

auxilia este membro a atingir uma posição específica no espaço para completar um desafio do jogo.

O entretimento proporcionado pelos jogos digitais e a robótica podem tornar a reabilitação mais

prazerosa e motivadora para o paciente, e ainda cumprir com o principal objetivo do tratamento, o retorno do

paciente às suas atividades de vida diária.

39

40

Capítulo 6- Referências Bibliográficas

ANDRADE, K. et al, Rehabilitation robotics and serious games: An initial architecture for

simultaneous players, 2013 ISSNIP Biosignals and Biorobotics Conference: Biosignals and Robotics for

Better and Safer Living (BRC), Rio de Janerio, 2013, pp. 1-6.

APPEL, V.C.R. Classificando emoções em processos de reabilitação robótica. 2014. Dissertação

(Mestrado) – Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2014.

BECKER, M. Jacobiano: Velocidades e Forças Estáticas, Anotações de Aula da Disciplina “Dinâmica e

Controle de Sistemas Robóticos I”, Escola de Engenharia de São Carlos - Universidade de São Paulo, 2008.

BURDEA, G. Keynote address: virtual rehabilitation-benefits and challenges. In: INTERNATIONAL

WORKSHOP ON VIRtUAL REALITY REHABILITATION (Mental Health, Neurological, Physical,

Vocational), 2002. Proceedings… [S.1.:s.n], 2002. p.1-11.

CAURIN, G.A.P et al. Adaptive strategy for multi-user robotic rehabilitation games. In: Annual

International Conference of the IEEE engineering in medicine and biology society, 2011, Boston.

Proceedings… Piscataway: IEEE, 2011. p.1395-1398.

DONAHOO, M. J.; CALVERT, L. K. TCP/IP Sockets in C: Practical Guide for Programmers.

Amsterdam: Morgan Kaufmann, 2009.

FERNANDES, G. Exploração de ambientes não estruturados através de manipulador robótico

implementando controlador de impedância com parâmetros variáveis. Dissertação (Mestrado) - Escola

de Engenharia de São Carlos, Universidade de São Paulo, São Carlos. 2013.

HOGAN, N. Impedance control: An approach to manipulation: I,ii and iii. Journal of dynamic system,

measurement, and control, v. 107, n.2, p. 17, 1985.

KREBS, H. I. et al. Rehabilitation robotics: performance-based progressive robot-assisted

therapy. Autonomous Robots,v. 15, n. 1, p. 7-20, 2003.

PIRES, F. A. Avaliação de métodos de telereabilitação robótica utilizando comunicação TCP/IP e Unity.

Dissertação (Mestrado) - Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos. 2014.

41

ROBERTSON, J.; JARRASSÉ, N.; ROBY-BRAMI, A. Rehabilitation robots: a compliment to virtual reality.

Schedae, v.6, n.1, p. 77-94, 2010.

TANENBAUM, A. S. – Redes de Computadores – 4ª Ed., Editora Campus (Elsevier), 2003.

STUDY shows employees learn best from videogames. Universidade Denver, Colorado, 2010. Disponível

em: <http://www.cudenvertoday.org/videogamesmakebetteremployees/>. Acesso em: 12 maio. 2017.

ZYDA, M. (2005) From visual simulation to virtual reality to games. Computer 38(9): 25-32. IEEE.

42

Apêndice A – Manual do SCARA

Manual do SCARA

do Laboratório de Mecatrônica da EESC/USP.

Autor Guilherme Rodrigues Chiqueti, com referências das anotações do Prof. Dr. Leonardo

Marques Pedro e Guilherme Fernandes. Aqui você encontrará alguns cuidados e dicas para utilizar o

SCARA do laboratório de Mecatrônica da ESSC e utilizar o software criado para comunicar o

manipulador com o Unity3D.

43

Sumário

A1- Ligar e desligar o SCARA...45

A2- Requisitos..45

A3- O botão de emergência..45

A4-Utilizando o controle de impedância..46

A5- Usando o EPOS Studio para eliminar erros nas EPOS..47

A6- Resolvendo problemas de captura de dados parciais pelo programa de controle de impedância.............47

A7- Utilizando o SCARA para jogos do Unity3D..48

A8- Descobrindo o IP do servidor..50

A9- Recomendações...51

44

A1- Ligar e desligar o SCARA

O manipulador possui 3 tomadas de energia: Um para o acionamento dos motores, um para o

acionamento da EPOS e outro para o bloco de I/O que converte os dados do sensor de força. As duas

tomadas grandes devem ser ligadas no 220V, enquanto a do bloco do sensor em 127 V. Em seguida arme os

dois disjuntores encontrados na parte central esquerda do painel para ligar. Para verificar se a ligação está

correta, desarme o botão de emergência. O sucesso é validado se ouvir um estalo.

Para desligar o manipulador pressione o botão de emergência e desligue todos os programas que

utilizam o robô. Então, desligue os dois disjuntores no painel e retire a tomada do sensor de força.

A2- Requisitos

O programa de controle de impedância foi executado em um computador do Laboratório de

Mecatrônica, que possui os hardwares e softwares necessários instalados anteriormente.

Para uso do programa de controle de impedância

• Windows 7

• Visual Studio 2010

• Placa CAN instalada

• Bibliotecas Boost e Rapidjson instaladas

Para solução de prováveis erros

• BusMonitor

• Epos Studio

• Conexão USB

A3- O botão de emergência

O SCARA não possui sistema de fim de curso. Por isso, ao movimentar as juntas, deve-se tomar

cuidado para que ele não bata nas laterais, o que pode danificá-lo. Por essa razão, ao comandar o braço

robótico, mantenha sempre o botão de emergência em mãos e mantenha-se atento ao seu movimento.

45

A4-Utilizando o controle de impedância

Plugue os cabos CAN do painel do SCARA e do sensor na placa CAN do computador. Abra e

execute o programa no Microsoft Visual Studio 2010. Após a inicialização das variáveis e a verificação da

comunicação com a EPOS, é aberto o menu de opções ilustrado na figura.

Figura 16 - Interface do usurário do programa de controle de impedância.

Quadro 1- Descrição do programa controlador do robô SCARA

Commando Função

[00] – ENCERRAR PROGRAMA Termina o programa e libera as variáveis.

[01] – LEITURA DO STATUS WORD Mostra o estado atual do hardware das EPOS e dos motores.

[02] – RESET DE FALHAS Elimina as falhas deixadas por usos anteriores.

[03] – LEITURA DA POSIÇÂO ATUAL Mostra informações de posição dos encoders e o torque e força que o

sensor de força está capturando.

[04] – ZERA SENSOR DE FORÇA Seta as forças atuais aplicadas ao sensor de força como sendo a

origem.

[05] – RESGATA A POSIÇÃO DE ORIGEM Utiliza como referência a última posição salva.

[06] – DEFINE POSIÇÃO DE ORIGEM DO

EIXO

Redefine a origem da coordenada do TCP e salva essa posição.

[07] – REALIZA CONTROLE Inicializa controle de impedância e o servidor.

46

Use o comando 4 para zerar o sensor de força. Essa função deve ser usada antes do início do controle

de impedância para garantir seu correto funcionamento e evitar movimento irregular do SCARA. Uma falha

comum envolve a não captura dos dados dos encoders 2, 3 e 4. Usando o comando “LEITURA DA POSIÇÂO

ATUAL” do programa, mexa o SCARA manualmente e verifique se os valores de q2, q3 e q4 alteram. Se eles

não se alterarem, desligue o programa e siga as instruções do sub-ítem “A6- Resolvendo problemas de

captura de dados parciais pelo programa de controle de impedância” para resolver o problema.

Em seguida ligue o controle de impedância (comando 7). Mantenha sempre o botão de emergência

em mãos caso o robô comece a agir desordenadamente. Nesse ponto o controle está funcionando e o servidor

está prepara para receber a comunicação do jogo no Unity3D.

Evite rodar o programa de controle de impedância por mais de 5 minutos.

A5- Usando o EPOS Studio para eliminar erros nas EPOS

É possível verificar o estado das EPOS observando seus respectivos LEDs no painel.

• LED vermelho contínuo → EPOS com erro.

• LED verde piscando → EPOS sem erros, porém desabilitada.

• LED verde contínuo → EPOS habilitada e funcionando.

Para eliminiar algum erro, plugue a conexão USB do painel do robô SCARA no computador, abra o

programa EPOS Studio e crie um novo projeto de modelo EPOS2 se já não estiver criado antes. Então clique

em conectar todos para que o EPOS Studio conecte as EPOS. Se aparecer algum erro em qualquer das EPOS

clique com o botão direito na EPOS com o erro e clique em reset all errors. Desconecte as EPOS e feche o

EPOS Studio.

A6- Resolvendo problemas de captura de dados parciais pelo programa de controle de

impedância.

Siga os passos abaixo:

• Abra duas instâncias do BusMonitor, sendo uma instância utilizando a CAN1 e outra a CAN2.

• Configure ambas as instâncias para uma taxa de transmissão de 500kbits.

• Inicie a CAN2.

• Usando a CAN2, transmita o dado: 01 00 00 00 00 00 00 00 para a CAN 1 com o Id: x00 e observe a

resposta na instância da CAN2, que deve ter apenas 1 linha.

• Ainda usando a CAN2, transmita o dado: 00 00 00 00 00 00 00 00 para a CAN 1 com o Id: x80 e

observe a resposta na instância da CAN2. O resultado final está ilustrado nas figuras 17 e 18. Então

termine a instância da CAN2 e feche ambas as instâncias para terminar o processo.

47

A7- Utilizando o SCARA para jogos do Unity3D.

Esse tópico é um passo a passo explicativo para o uso correto do programa cliente nos jogos. Inclui

um jogo modelo com códigos em C# comentados. Para criar suas próprias aplicações, estude os scripts

48

Figura 17- Imagem da instância CAN1 após o término do processo.

Figura 18– Imagem da instância CAN2 após o término do processo.

ReRobClient, que é a classe responsável pela comunicação, e Conectar_Client, que utiliza a comunicação

para movimentar a bolinha verde. A API criada para o cliente possui as funções descritas no quadro 2.

Quadro 2- Funções contidas na API para a utilização no Unity3D

Função Descrição Entrada(s) Saída Exemplo de uso

SCARA_Connect Tenta uma conexão
com um servidor.

IP do servidor

Porta de conexão
–

SCARA_Connect(“127.0.
0.1”, 8888);

SCARA_Send Envia uma mensagem
para o servidor.

Mensagem a ser
enviada

– SCARA_Send(“RIGHT”);

SCARA_Receive Recebe uma mensagem
do servidor.

Referência do vetor
que vai armazenar a
resposta e a opção de
desbloquear o socket*

–
SCARA_Receive(ref byte,

true);

ExtractV3

Extrai posição ou
velocidade do dado
recebido retornando

um vetor de 3
dimensões contendo os

eixos x, y e z.

Referência do dado
contendo os valores e
o tipo de dado, sendo

0 para posição e 1
para velocidade

Vector 3 Vector3 vetor =
ExtractV3(ref data, 0);

is_connected

Retorna true se o
cliente está conectado
com o servidor e false

caso contrário.

- bool bool error =
is_connected();

was_sent

Retorna true se a
última chamada da

função Send enviou a
mensagem

corretamente.

- bool bool error =
was_sent();

was_received

Retorna true caso
nenhuma mensagem

foi recebida na função
Receive.

- bool bool error =
was_received();

*Se o socket for bloqueado a função aguarda até que a mensagem seja recebida, parando o código. Se for

false e o servidor não estiver enviando mensagem alguma, então Receive retorna e a função was_received

retorna false.

49

A8- Descobrindo o IP do servidor

O cliente deve saber o IP do computador servidor para se comunicar. Se o programa de controle de

impedância e o jogo estão executando no mesmo computador, o IP a ser inserido pode ser o “127.0.0.1”, que

representa o IP do próprio computador. Do contrário, é necessário encontrar o IP do host servidor.

Para encontrar o IP, use a máquina do servidor. Se for Windows 7, vá em Painel de Controle, Rede e

Internet e Central de Rede e Compartilhamento. No campo Conexões, clique em sua conexão. Em seguida

clique em Detalhes e anote o IP que está na linha “Endereço Ipv4”. Observe a figura 19 caso tenha dúvidas.

Figura 19- Localização do endereço local IPv4 da máquina na rede conectada.

50

Para ver a comunicação funcionando, abra o projeto modelo no Unity3D. Abra o script ReRob

Client. Na variável IP insira o IP encontrado. Então execute o jogo. Se a comunicação ocorreu com sucesso o

jogo iniciará normalmente. Utilize o robô para movimentar a bolinha verde e tente capturar os objetos azuis.

A9- Recomendações

• O sistema de controle foi programado em tempo real, com funções que duram 1ms. Por isso,

ao adicionar códigos no programa utilize processamento paralelo. A adição de códigos na

função de controle de impedância pode acarretar em um movimento desordenado do braço

robótico durante a execução, podendo danificar o robô e ferir as pessoas à sua volta.

• Mantenha o botão de emergência sempre em mãos durante o funcionamento do controle de

impedância. Caso note algum movimento incomum do robô, pressione o botão de

emergência e desligue o controle de impedância. Com o botão ainda pressionado rode o

programa e execute a função Reset de Falhas. Então libere o botão de emergência e prossiga

normalmente.

• De preferência, desligue primeiro o jogo e somente depois o controle de impedância. O jogo

pode ser encerrado sem se preocupar com a função do servidor.

• Evite utilizar o controle de impedância por mais de 5 minutos.

• O controle de impedância tem sua precisão reduzida à medida que os eixos 1 e 2 se alinham.

Procure usar o robô na posição menos alinhada possível.

• Uma batida da junta 1 à sua limitação mecânica em Novembro de 2016 gerou um

endurecimeto desta junta. Portanto, o controle de impedância não está funcionando

corretamente. Caso utilize o manipulador, foque seu trabalho na junta 2, 3 e na junta de

translação. Uma tentativa de conserto é bem vinda.

• Este manual não substitui um estudo aprofundado no assunto e nem lições aprendidas em

conversas com estudantes e professores.

51

