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RESUMO 

O assunto desenvolvido neste trabalho acadêmico está relacionado à Indústria 

e Produção de Papelcartão. Uma das principais características deste produto é sua 

rigidez à flexão. A produção de papelcartão é contínua e impossibilita a realização da 

medição de rigidez durante o processo produtivo, já que para se conhecer esta 

resultante, é necessário a coleta de amostras físicas e medição em laboratório com 

equipamento específico.  O uso de dados históricos de todos os parâmetros de 

máquina registrados, atrelado à identificação de comportamentos e padrões pode 

predizer os valores de rigidez sem a necessidade de coletar amostras físicas de 

papelcartão, o que possibilitaria melhor controle da qualidade do produto, redução de 

desperdícios, economia de custos com matéria prima e flexibilização de atividades 

tanto da área de operações quanto da área de controle da qualidade.  

Foram avaliados diferentes algoritmos de aprendizado de máquina para prever 

a rigidez do papelcartão em tempo real. Os resultados mostram que o modelo Redes 

Neurais obteve o melhor desempenho com um MSE de 0,0350, MAE de 0,1038 e r² 

de 0,9668 e os modelos Random Forest e KNN obtiveram excelente precisão. O 

Random Forest, por exemplo, apresentou um MSE de 1,6976, MAE de 0,5669 e r² de 

0,9807, enquanto o KNN obteve um MSE de 1,7161, MAE de 0,5858 e r² de 0,9805. 

Esses valores refletem a capacidade dos modelos de capturar com precisão a rigidez 

do papelcartão com base em dados de processo, revelando sua potencial aplicação 

para controle de qualidade em ambientes produtivos contínuos. 

A aplicação do algoritmo utilizando Redes Neurais, permite ação preventiva dos 

operadores antes que os parâmetros de qualidade do produto ultrapassem seus 

limites de especificação, além de viabilizar a identificação e remoção de materiais não 

conformes, garantindo que apenas produtos dentro dos padrões sejam enviados aos 

clientes. 

 

Palavras-chave: Aprendizado de Máquina, Internet das Coisas, Papelcartão, 

Produção de Papel, Rigidez, Predição, Análise Preditiva, Simulação, Big Data, Análise 

Estatística, Mineração de Dados, Inteligência Artificial. 



 

 

ABSTRACT 

The subject developed in this academic work is related to the Paperboard 

Production Industry. One of the main characteristics of this product is its flexural 

rigidity. Paperboard production is continuous and makes it impossible to measure 

rigidity during the production process, as obtaining this result requires the collection of 

physical samples and measurement in a laboratory with specific equipment. The use 

of historical data for all registered machine parameters, coupled with the identification 

of behaviors and patterns, can predict rigidity values without the need to collect 

physical paperboard samples. This would enable better product quality control, waste 

reduction, cost savings on raw materials, and greater flexibility in both operations and 

quality control areas.  

Different machine learning algorithms were evaluated to predict the stiffness of 

paperboard in real-time. The results show that the Neural Networks model achieved 

the best performance, with an MSE of 0.0350, MAE of 0.1038, and r² of 0.9668. The 

Random Forest and KNN models also demonstrated excellent accuracy. For example, 

Random Forest achieved an MSE of 1.6976, MAE of 0.5669, and r² of 0.9807, while 

KNN obtained an MSE of 1.7161, MAE of 0.5858, and r² of 0.9805. These values reflect 

the models' ability to accurately capture the stiffness of paperboard based on process 

data, highlighting their potential application for quality control in continuous production 

environments. 

The application of the algorithm using Neural Networks enables preventive 

actions by operators before quality deviates from specifications, while also allowing the 

identification and removal of non-conforming materials, ensuring that only products 

meeting standards are delivered to customers. 

 

Keywords: Machine Learning, Internet of Things, Paperboard, Paper Manufacturing, 

Bending Stiffness, Prediction, Predictive Analysis, Simulation, Big Data, Statistical 

Analysis, Data Mining, Artificial Intelligence. 
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1 INTRODUÇÃO 

A indústria de papel é fundamental no mercado global e tem impacto significativo 

em diversas áreas econômicas, ambientais e sociais e segue em crescimento devido 

à demanda constante por produtos de papel em suas várias aplicações, como 

embalagens, papel de imprimir e escrever e produtos de higiene. De acordo com o 

Relatório Anual do IBÁ (Indústria Brasileira de Árvores) 2023, o Brasil, junto à Estados 

Unidos, Canadá e China representam uma parcela substancial da produção global. 

Esta indústria está dividida em dois segmentos principais: o de papel para 

impressão e escrita, e o de papel para embalagens, onde o papelcartão é um dos 

produtos mais destacados e será tema deste trabalho acadêmico. 

O papelcartão é um tipo de papel mais espesso e resistente, utilizado 

principalmente na fabricação de embalagens, utilizadas em diversos setores com 

destaque para o alimentício e farmacêutico. Suas propriedades de resistência, 

durabilidade, capacidade de impressão de alta qualidade e espaço para informações 

essenciais dos produtos, fazem dele uma ótima escolha para embalagens que 

precisam ser tanto funcionais quanto atraentes para o consumidor final. 

Uma das principais características do papelcartão é sua resistência à flexão ou 

rigidez, característica esta muito importante no processo de formação da embalagem 

final, conhecida também pela nomenclatura “cartucho” na indústria gráfica, sendo este 

atributo fundamental para garantir a integridade estrutural, a estabilidade e a 

funcionalidade de embalagens, caixas e outros produtos fabricados com papelcartão. 

Em primeiro lugar, a rigidez à flexão é essencial durante o processo de 

fabricação, especialmente nas etapas de corte, dobra e conformação do cartucho. 

Materiais que apresentam boa rigidez à flexão são mais fáceis de manusear nas linhas 

de produção, resultando em eficiência operacional e menor incidência de falhas. 

A produção do papelcartão é contínua e a medição direta da rigidez à flexão 

acontece com a retirada de amostras físicas de tamanho pré-determinado nos 

sentidos longitudinal e transversal da folha de papel para ensaio em laboratório com 
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uso de um equipamento que mede através de uma força conhecida aplicada à esta 

amostra a sua rigidez resultante, medida em mN.m (mili Newton x metro).  

A utilização de um scanner na máquina de papel, que realiza leituras de 

gramatura, espessura e umidade em tempo real, possibilita conhecer de maneira on-

line, algumas variáveis correlatas à rigidez à flexão.  

O scanner, ao realizar uma "varredura" contínua, gera registros a cada segundo 

das variáveis acima citadas. Isso não apenas fornece informações em tempo real para 

ajustes imediatos, mas também cria um histórico detalhado que pode ser analisado 

posteriormente para otimizações contínuas e aprimoramentos no processo produtivo. 

A leitura contínua de gramatura, espessura e umidade contribui para o controle de 

qualidade e a prevenção de desvios que poderiam comprometer a rigidez à flexão do 

papelcartão, além de outras inúmeras variáveis de processo. 

O processo de medição de rigidez no laboratório de qualidade complementa 

essa abordagem. Mesmo que a medição não seja realizada continuamente, a retirada 

de amostras físicas após cada rolo finalizado proporciona uma representação do 

produto ao longo do tempo. 

Este é um processo em que o analista de qualidade demanda aproximadamente 

5 minutos de seu tempo a cada 30 minutos, que é o tempo aproximado de fabricação 

de um rolo jumbo de 6 à 7 toneladas na máquina de papel do caso estudado. A 

informação obtida é crucial para validar a conformidade do papelcartão com os 

padrões estabelecidos, assegurando que o produto final atende às exigências de 

rigidez à flexão, porém, variações de outros parâmetros de máquina e processo 

podem interferir nos resultados de rigidez e este não ter sido identificado nas amostras 

medidas. 

1.1 Motivação 

Para a comunidade acadêmica, a exploração e uso de diferentes modelos de 

predição oferece uma oportunidade de desenvolver novos conhecimentos sobre a 

mecânica e o comportamento dos materiais celulósicos. Para o setor industrial, 

resolver esses desafios pode resultar em produtos de papelcartão mais eficientes, 
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econômicos e ecologicamente sustentáveis. A solução dessas questões práticas pode 

melhorar a competitividade das empresas e contribuir para a evolução das 

embalagens sustentáveis, com impacto em vários setores, incluindo alimentos, 

cosméticos e produtos farmacêuticos. 

1.2 Objetivo 

Avaliar diferentes modelos de predição que, baseados em dados de processo e 

medições de qualidade, possam determinar a rigidez do papelcartão em tempo real. 

A abordagem proposta visa eliminar a dependência de amostras físicas, que 

frequentemente não refletem de forma precisa a produção contínua.  

E para alcançar este objetivo principal, tem-se como objetivos específicos: 

 Avaliar diferentes algoritmos para determinar quais possuem maior precisão e 

confiabilidade na predição da rigidez do papelcartão. 

 Realizar experimentos com dados históricos de processo e de medições de 

qualidade, treinando os modelos com diferentes subconjuntos de dados, a fim 

de identificar aqueles que melhor capturam a relação entre as variáveis de 

processo e a rigidez do papelcartão. 

 Implementar um processo de validação cruzada, com avaliação dos modelos 

em cenários de produção real, garantindo que os resultados obtidos em 

condições controladas sejam replicáveis e estáveis em ambiente de produção 

contínua. 

1.3 Justificativa 

Para garantir a predição precisa e confiável da rigidez do papelcartão, é 

essencial avaliar uma variedade de algoritmos que capturem comportamentos das 

variáveis de processo, identificando os mais adequados em termos de precisão e 

estabilidade. A experimentação com dados históricos de produção permite explorar a 

variabilidade do processo, treinando modelos com subconjuntos de dados que melhor 

representem a relação entre variáveis e rigidez, e resultando em um modelo adaptado 

às condições reais de produção. Ao avaliar diferentes modelos, busca-se maximizar 



14 

 

a acurácia e robustez das previsões, aproveitando os pontos fortes de cada 

abordagem, o que contribui para predições mais confiáveis e consistentes. Para 

assegurar que o modelo se mantenha replicável e estável em produção contínua, a 

implementação de validação cruzada é fundamental, garantindo previsões robustas e 

mitigando o risco de overfitting, além de possibilitar a integração do modelo ao sistema 

de produção com confiança, eliminando a necessidade de amostras físicas para 

monitoramento de qualidade. 

1.4 Metodologia 

A abordagem metodológica aplicada à esta pesquisa é a Design Science 

Research (DSR) que traz uma forma de produzir conhecimento relevante. Ela é 

utilizada em várias áreas, como sistemas de informação, gestão organizacional e 

ciência da informação e tem como principais características a orientação para solução 

de problemas específicos, envolve a pesquisa na resolução de situações-problema 

em que as ciências tradicionais não são suficientes e busca de soluções que 

melhorem sistemas existentes.  

Explicitar os objetivos, explicar como os modelos podem ser testados e 

descrever os mecanismos que gerarão os resultados a serem controlados ou 

acompanhados vão garantir a validade dos resultados gerados pela DSR. 

Realiza-se no decorrer deste trabalho a avaliação de algoritmos de aprendizado 

de máquina, selecionando um conjunto inicial de modelos a serem testados. Em 

seguida, realizar-se-á a experimentação e ajuste dos modelos com dados históricos 

de processo, utilizando técnicas de validação cruzada para encontrar os melhores 

parâmetros.  
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2 FUNDAMENTAÇÃO TEÓRICA 

Este capítulo tem como objetivo apresentar e discutir os principais conceitos, 

teorias e abordagens que embasam o tema investigado, situando-o no contexto 

acadêmico e científico relevante. 

2.1 Processo de fabricação de papelcartão 

O processo de fabricação do papelcartão pode ser dividido em vários “blocos”, 

em que cada um realiza uma transformação na matéria-prima fibrosa. Para um 

entendimento macro e inicial sobre este processo, dividiremos em seis grandes 

blocos: preparação de massa, caixa de entrada e formação, prensagem, secagem, 

aplicação e enroladeira. 

2.1.1 Preparação de massa 

Esta é a etapa inicial do processo de fabricação de papelcartão com uma 

sequência de operações que promovem alterações na estrutura das fibras celulósicas, 

adequando-as às necessidades do papel a ser produzido.  

A matéria prima fibrosa é submetida a tratamentos mecânicos e à adição de 

produtos químicos (aditivos) necessários à fabricação do papel como mostrado na 

Figura 1. 

 

Figura 1. Diagrama de blocos da preparação de massa 

Fonte: Reproduzido de ROBUSTI, Célio; VIANA, Eder Francisco; FERREIRA JÚNIOR, Fernando; 
GOMES, Ilduardo; TOGNETTA, Laudo; SANTOS, Osni dos; DRAGONI, Paulo. Celulose e Papel. São 

Paulo: SENAI-SP, 2014, p.37. 
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Durante a desagregação das fibras, devem ser rigorosamente controladas duas 

variáveis importantes desta etapa do processo, que são a consistência e o pH 

(potencial hidrogeniônico). 

A consistência, expressa em porcentagem (%) e representada pela Equação 1, 

é utilizada para designar a quantidade de pasta celulósica seca e outros materiais 

sólidos existentes na massa em processo. Existem equipamentos (sensores) que 

realizam a medição da consistência em tempo real, além de medições periódicas em 

laboratório através de amostras físicas coletadas no processo. 

Equação 1 

𝐶𝑜𝑛𝑠𝑖𝑠𝑡ê𝑛𝑐𝑖𝑎 (%)
 𝑚𝑠

𝑚𝑖
=  x 100 

Onde: 

ms é a massa da amostra seca em estufa, expressa em g; 

mi é a massa amostra inicial, expressa em g. 

O pH é a medida de acidez ou alcalinidade de uma amostra. A escala de pH 

compreende a faixa de 0 a 14, sendo o valor 7 considerado neutro. Este parâmetro 

afeta uma série de etapas na preparação da massa, como a desagregação, a 

refinação, a drenagem e a retenção de material fibroso e não fibroso, que farão parte 

da composição da folha durante sua formação. Portanto é importante ter um bom 

controle do pH durante todo o processo de fabricação. A medição do pH é realizada 

in line com aparelhos eletrônicos chamado medidor de pH ou “pH-metro”. Amostras 

também são coletadas em diversas etapas do processo para medição do pH em 

laboratório. 

Depois de desagregada, a massa passa pela depuração, que é a operação que 

tem por objetivo retirar a maior quantidade possível de contaminantes com a menor 

perda de fibras celulósicas e de aditivos que comporão a receita de fabricação do 

papel. Portanto, a qualidade do papel depende fortemente do grau de limpeza da 

massa e uma consistência mínima de 3% e máxima de 6%. 

Se a pasta celulósica, devidamente desagregada, alimentar a máquina de papel 

sem passar pela etapa de refinação, o produto final obtido apresentará alguma 

deficiência, portanto, posteriormente ao processo de depuração, esta precisa ser 
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refinada. A refinação consiste em um tratamento mecânico que modifica a estrutura 

das fibras e a fibrilação proveniente deste processo aumenta a área superficial da fibra 

com o consequente aumento das forças de ligação entre as fibras que vão compor a 

folha de papel. 

Além de alguns parâmetros importantes nesta etapa do processo como 

consistência, temperatura, vazão e pressão, temos como principal característica a 

intensidade de refinação e os métodos mais comuns para determiná-la são 

drenabilidade (SR), potência de refino (kW), energia útil de refino (kWh/t) e nível de 

vácuo na máquina de papel. 

No que tange a drenabilidade, é bastante comum determinar a intensidade de 

refinação por meio da resistência à drenagem de uma suspensão fibrosa com 2 g/L 

em um equipamento denominado Schopper-Riegler (SR). 

No tanque de mistura, depois do processo de refinação, alguns aditivos são 

acrescentados à massa e os mais comuns são cargas minerais, amido e agentes de 

colagem interna para impermeabilização parcial do papel, alvejantes ópticos e 

agentes de retenção para reter na folha formada a maior quantidade possível das 

fibras celulósicas e aditivos que compõem a folha de papel. O cálculo da retenção é 

mostrado na Equação 2. 

Equação 2 
 

𝑅𝑒𝑡𝑒𝑛çã𝑜 (%) =
consistência da caixa de entrada (%) − 𝑐𝑜𝑛𝑠𝑖𝑠𝑡ê𝑛𝑐𝑖𝑎 𝑑𝑎 á𝑔𝑢𝑎 𝑏𝑟𝑎𝑛𝑐𝑎 (%) × 100

𝑐𝑜𝑛𝑠𝑖𝑠𝑡ê𝑛𝑐𝑖𝑎 𝑑𝑎 𝑐𝑎𝑖𝑥𝑎 𝑑𝑒 𝑒𝑛𝑡𝑟𝑎𝑑𝑎 (%) 
  

2.1.2 Caixa de entrada e formação 

A caixa de entrada, representada pela Figura 2, é o primeiro componente da 

máquina de papel. Sua função é receber a massa da etapa anterior e transportá-la 

para a mesa formadora em um fluxo constante, com a velocidade do jato uniforme em 

função da velocidade na direção da máquina. Este sistema não somente distribui a 

massa por igual ao longo da largura da máquina, como também trabalha com a 

velocidade e o ângulo corretos. 



18 

 

O lábio da caixa de entrada, também conhecido por régua, permite através de 

sua abertura, que o fluxo da suspensão fibrosa (jato de massa) saia da caixa de 

entrada e flua para a tela da máquina de papel, portanto, o controle da abertura do 

lábio é essencial para dar início à boa formação da folha de papel. 

 

Figura 2. Caixa de entrada pressurizada 

Fonte: Reproduzido de ROBUSTI, Célio; VIANA, Eder Francisco; FERREIRA JÚNIOR, Fernando; 
GOMES, Ilduardo; TOGNETTA, Laudo; SANTOS, Osni dos; DRAGONI, Paulo. Celulose e Papel. São 

Paulo: SENAI-SP, 2014, p.154. 

Para calcular a abertura dos lábios, utiliza-se a seguinte fórmula indicada na 

Equação 3: 

Equação 3 

𝑏 =
Q

Largura ×  V
 

Onde: 

b é a abertura dos lábios; 

Largura é a largura da máquina (m); 

Q é a vazão (m³/s); 

V é a velocidade da máquina (m/min) 

2.1.3 Prensagem 

Logo após a formação da folha, a etapa seguinte é a prensagem que tem como 

principal função, retirar parte da água da estrutura capilar das fibras através da 
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compressão da folha, mostrado na Figura 3. Maior remoção de água determina melhor 

eficiência da seção. 

Enquanto a mesa plana pode atingir desaguamento aproximado de 26% de teor 

seco, partindo de aproximadamente 1% de consistência na caixa de entrada, com as 

prensas é possível atingir de 46% a 51% de teor seco.  

 

Figura 3. Prensa plana 

Fonte: Reproduzido de ROBUSTI, Célio; VIANA, Eder Francisco; FERREIRA JÚNIOR, Fernando; 
GOMES, Ilduardo; TOGNETTA, Laudo; SANTOS, Osni dos; DRAGONI, Paulo. Celulose e Papel. São 

Paulo: SENAI-SP, 2014, p.197. 

Nesta etapa, os principais parâmetros medidos pelo equipamento em tempo real 

são pressão e vácuo da 1ª, 2ª e 3ª prensa da máquina. 

2.1.4 Secagem 

Secagem é o processo na qual a água é removida da folha por evaporação e 

para isso faz-se o uso de cilindros secadores rotativos, representado pela Figura 4, 

aquecidos por vapor para fornecer calor e controle da folha em operação contínua, 

separados em grupos secadores com vários cilindros em cada grupo. 

 

Figura 4. Cilindro secador 

Fonte: Reproduzido de ROBUSTI, Célio; VIANA, Eder Francisco; FERREIRA JÚNIOR, Fernando; 
GOMES, Ilduardo; TOGNETTA, Laudo; SANTOS, Osni dos; DRAGONI, Paulo. Celulose e Papel. São 

Paulo: SENAI-SP, 2014, p.154. 
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No primeiro cilindro secador, a folha está ainda com um teor de umidade próximo 

de 50% e sai do último cilindro secador com teor de umidade próximo de 6%. O 

processo de secagem tem como principais parâmetros a vazão de vapor, abertura de 

válvulas, temperatura e retorno de condensado para a caldeira de vapor. 

2.1.5 Aplicação de Tinta 

Antes de ser aplicada, a tinta é preparada em um misturador, incluindo a adição 

de pigmentos, aditivos e solventes para ajuste de cor, viscosidade e brilho. Depois de 

preparada, o processo de aplicação da tinta no papelcartão consiste essencialmente 

em um rolo aplicador que retira tinta de uma calha, transferindo-a para o papel. O 

excesso de tinta é retirado por uma lâmina de aço de alta precisão, como pode ser 

observado na Figura 5. 

Após a aplicação, o papelcartão passa por unidades de secagem. Essas 

unidades usam sistemas de ar quente ou infravermelho, que aceleram a evaporação 

dos solventes e ajudam na fixação da tinta na superfície.  

 

Figura 5. Cilindro aplicador 

Fonte: Reproduzido de ROBUSTI, Célio; VIANA, Eder Francisco; FERREIRA JÚNIOR, Fernando; 
GOMES, Ilduardo; TOGNETTA, Laudo; SANTOS, Osni dos; DRAGONI, Paulo. Celulose e Papel. São 

Paulo: SENAI-SP, 2014, p.273. 
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2.1.6 Enroladeira 

A seção de enrolamento, representada pela Figura 6, é o último elemento da 

máquina de papel. É constituída de eixos acionados ou cilindros suporte. Até a entrada 

da folha na seção de enrolamento, o processo é contínuo. A função da enroladeira é 

transformar a folha em unidades finitas e independentes, que permitirão o 

processamento e a utilização do papel.  

Considerando a velocidade de produção da máquina constante, com o 

crescimento do rolo de papel, as rotações do eixo devem decrescer, a fim de manter 

constante a velocidade periférica do rolo de papel. 

Para que o enrolamento não seja interrompido, quando um rolo é finalizado, 

corta-se o papel e passa-se a enrolá-lo em um outro eixo, também conhecido como 

estanga, o que permite que o processo seja initerrupto. Este é o momento em que se 

retira amostras fisicas do rolo que acaba de ser produzido para medições em 

laboratório. 

 

Figura 6. Seções da enroladeira 

Fonte: Reproduzido de ROBUSTI, Célio; VIANA, Eder Francisco; FERREIRA JÚNIOR, Fernando; 
GOMES, Ilduardo; TOGNETTA, Laudo; SANTOS, Osni dos; DRAGONI, Paulo. Celulose e Papel. São 

Paulo: SENAI-SP, 2014, p.284. 
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2.2 Processo de medição na indústria de papelcartão 

Para executar qualquer ensaio, é necessário obter amostras representativas do 

material a ser testado e o procedimento para amostragem de papelcartão está na NBR 

NM-ISSO 186:2006, Norma da Associação Brasileira de Normas Técnicas (ABNT). 

Entre os diversos testes físicos realizados com amostras de papelcartão para 

verificação de todas suas características, a fundamentação teórica para este trabalho 

se restringirá ao tema do trabalho que é a rigidez à flexão do papelcartão. 

Como a produção do papelcartão é contínua e não é possível realizar a medição 

da rigidez à flexão através de sensores enquanto o papel é fabricado, faz-se 

necessário a retirada de amostras físicas para medição da rigidez em laboratório. Esta 

medição é realizada nos dois sentidos do papel, longitudinal e transversal. 

2.2.1 Determinação da rigidez à flexão (Bending Stiffness) 

Rigidez à flexão é a força necessária para fletir um corpo de prova preso em uma 

de suas extremidades, até formar um ângulo de flexão de 15º. Esse procedimento visa 

determinar a força necessária para fletir um corpo de prova com comprimento de 

flexão de 50mm, preso em uma de suas extremidades, formando um ângulo 

especificado. 

Podem ser utilizados alguns equipamentos como o Taber, Bekk ou L&W, desde 

que atendam à algumas especificações: 

 possua ângulo de flexão de 15º +/- 0,3º ou 7,5º +/- 0,3º; 

 possa prender um corpo de prova com largura de 38,0mm +/- 0,2 mm; 

 velocidade de flexão constante e ângulo de flexão de 15º alcançado na faixa 

de tempo  de 3s a 20s; 

 escala de leitura com exatidão de +/- 2%; 

 dispositivo para cortar os corpos de prova. 
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2.2.2 Procedimentos 

 cortar cinco corpos de prova (mínimo), com largura de 38,0mm +/- 0,2mm e 

comprimento não inferior a 70mm, para cada direção do papel. 

 colocar e alinhar o corpo de prova na garra do equipamento de forma que o 

comprimento livre seja de 57mm +/- 3mm e acionar o botão de início do teste. 

2.2.3 Resultados de laboratório 

Após alcançar os 15º de flexão da amostra, o equipamento mostra em seu 

display o resutado de resistência à flexão para a amostra medida. Um exemplo pode 

ser visualizado na Figura 7 abaixo. O mesmo processo é executado para as 10 

amostras de cada rolo jumbo de papelcartão produzido e os valores são anotados e 

inseridos em sistema, no caso, o SAP. O sistema calcula a média aritmética das 

leituras para cada direção ensaiada e expressa a resistência à flexão em mN.m, com 

três algarismos significativos. 

 

Figura 7. Aparelho L&W 

Fonte: ABB. Imagem disponível em: https://new.abb.com /news/pt-br/detail/99192/abb-lanca-mais-
nova-geracao-de-lw-bending-tester-para-testes-faceis-rapidos-e-confiaveis-de-papel. Acesso em: 06 

nov. 2024. 



24 

 

2.3 Escolha dos modelos de predição 

A escolha e validação de modelos é um passo essencial no processo de 

desenvolvimento de modelos de predição, garantindo que o modelo escolhido tenha 

bom desempenho e generalize bem para novos dados.  

Os dados são normalmente separados em três conjuntos, um para treinamento 

que vai treinar o modelo, outro para validação, utilizado para ajustar hiperparâmetros 

e por fim o conjunto de dados de teste, completamente isolado para verificar o 

desempenho final do modelo em dados não vistos. 

Existem mais de 40 técnicas de modelagem que podem ser utilizadas para 

prever um evento e alguns indicadores são utilizados para medição de desempenho 

do modelo. É comum utilizar: 

 MSE (Erro Quadrático Médio): Dá mais peso a erros maiores, elevando ao 

quadrado a diferença entre valor real e predito, representado pela Equação 4: 

Equação 4 

𝑀𝑆𝐸 =
1

𝑛0
∑(у𝑖 − ŷ𝑖)²

𝑛

𝑖=1

 

onde уi é o valor real, ŷi é o valor previsto, e n é o número de observações  

Quanto menor o MSE, melhor é o ajuste do modelo. O valor tende a amplificar 

erros grandes, pois os erros são elevados ao quadrado. É útil principalmente para 

penalizar erros grandes, mas pode ser mais difícil de interpretar diretamente em 

termos práticos, já que está na unidade elevada ao quadrado dos valores reais. 

 MAE (Erro Médio Absoluto): Mede a média das diferenças absolutas entre os 

valores preditos e os valores reais sendo representado pela Equação 5: 

Equação 5 

𝑀𝐴𝐸 =
1

𝑛
∑ |у𝑖 − ŷ𝑖|

𝑛

𝑖=1

 

O MAE fornece a magnitude média dos erros de forma direta, pois não eleva os 

erros ao quadrado. Ele é menos sensível a erros grandes que o MSE, sendo útil para 
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entender o erro médio de cada previsão. Quanto menor o MAE, melhor é o ajuste do 

modelo. 

 R² (Coeficiente de Determinação): Mede quão bem o modelo captura a 

variabilidade dos dados, mostrado na fórmula a seguir na Equação 6: 

Equação 6 

𝑅2 = 1 −
∑ (у𝑖 − ŷ𝑖)²

𝑛

𝑖=1

∑ (у𝑖 − ȳ𝑖)²
𝑛

𝑖=1

 

onde ȳ é a média dos valores reais. 

O valor do R² varia entre 0 e 1, onde 1 indica que o modelo explica toda a 

variação dos dados, enquanto valores próximos de 0 indicam que o modelo não 

explica quase nada. Um R² alto indica que o modelo se ajusta bem aos dados, mas 

um valor muito alto pode ser um sinal de sobre ajuste, dependendo do contexto. 

 Acurácia (para classificação): Mede a porcentagem de previsões corretas em 

relação ao total. A fórmula é mostrada na Equação 7 abaixo: 

Equação 7 

𝐴𝑐𝑢𝑟á𝑐𝑖𝑎 =
𝑁º 𝑑𝑒 𝑃𝑟𝑒𝑣𝑖𝑠õ𝑒𝑠 𝐶𝑜𝑟𝑟𝑒𝑡𝑎𝑠

𝑁º 𝑇𝑜𝑡𝑎𝑙 𝑑𝑒 𝑃𝑟𝑒𝑣𝑖𝑠õ𝑒𝑠
 

Um valor de acurácia próximo de 1 (ou 100%) indica que o modelo classifica 

corretamente a maioria dos casos. Contudo, em conjuntos de dados desbalanceados, 

a acurácia pode ser enganosa, pois ela não considera a distribuição das classes (por 

exemplo, um modelo que classifica todas as amostras como a classe majoritária ainda 

pode ter alta acurácia). 

Após a validação, o modelo deve ser testado em um ambiente de produção, onde 

recebe dados em tempo real. Isso ajuda a garantir que o modelo funciona 

adequadamente sob as condições reais de operação. O acompanhamento de 

desempenho contínuo é essencial para identificar possíveis problemas de degradação 

do modelo. 

Por fim, realizar-se-á uma comparação entre os modelos para avaliar se a 

complexidade adicional de modelos mais avançados é justificada pelo ganho de 

desempenho. 
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De maneira geral, modelos de predição podem ser utilizados para classificação 

ou regressão. Os modelos comumente aplicados à classificação de dados, como o 

Naive Beyes, não serão considerados pois não há dados categóricos entre os 

parâmetros citados como principais no processo de fabricação do papelcartão. 

Além da aplicação da Regressão Linear para n variáveis, serão analisadas as 

principais técnicas de modelagem para previsão de variáveis numéricas como Redes 

Neurais, SVM (Support Vector Machine), K-NN (Nearest Neighbors), Random Forest 

e a utilização do PCA (Principal Component Analisys). 

2.3.1 Regressão Linear 

A regressão linear é um método estatístico usado para modelar a relação entre 

uma variável dependente (ou alvo) e uma ou mais variáveis independentes (ou 

preditoras). Seu objetivo é prever o valor da variável dependente com base nos 

valores das variáveis independentes. A Equação 8 mostra a regressão linear simples 

(com uma variável independente) descrita como: 

Equação 8 

𝑌 = 𝑏0 + 𝑏1𝑋 + 𝜖 

Onde: 

Y é a variável dependente que queremos prever. 

X é a variável independente. 

b0 é o intercepto (o valor de Y quando X=0). 

b1 é o coeficiente de inclinação 

ϵ é o erro, representando a diferença entre o valor observado e o valor previsto. 

O modelo de regressão linear ajusta uma linha reta (no caso da regressão linear 

simples) ou um hiperplano (na regressão linear múltipla) que minimiza o erro entre os 

valores previstos e os valores reais. Para isso, utiliza o método dos mínimos 

quadrados, que minimiza a soma dos quadrados dos erros. 

Uma vez que os coeficientes b0 e b1 são ajustados durante o treinamento, eles 

são usados para prever novos valores de Y com base nos novos valores de X. 
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Utilizando múltiplas variáveis, o modelo inclui mais termos b2X2,b3X3, etc., para 

modelar as influências de múltiplos fatores sobre a variável de interesse. 

Esse modelo é especialmente útil quando a relação entre as variáveis é 

aproximadamente linear e quando se busca interpretar o impacto de cada variável 

preditora. 

2.3.2 Árvore de Decisão 

Uma árvore de decisão é um modelo preditivo que utiliza uma estrutura de árvore 

para tomar decisões baseadas nos valores de variáveis de entrada. Ela é amplamente 

usada tanto para problemas de regressão (previsão de variáveis contínuas) quanto de 

classificação (previsão de categorias). A árvore de decisão é composta por: 

 Nós internos: Representam uma variável de decisão (ou preditora) e uma 

condição de divisão (split). Cada nó faz uma pergunta baseada no valor de uma 

variável. 

 Ramos: São os caminhos que conectam os nós e representam o resultado de 

uma condição. Cada ramo leva a outro nó ou a um nó folha. 

 Nós folha: São as saídas finais que fornecem a previsão. 

O algoritmo de construção da árvore divide iterativamente o conjunto de dados 

em subconjuntos com base nas variáveis preditoras. O objetivo é escolher divisões 

que melhor separam os dados para a previsão da variável alvo. 

Para problemas de regressão, a função de custo usada é geralmente o erro 

quadrático médio (MSE), e a árvore tentará minimizar esse erro a cada divisão. 

A árvore cresce dividindo repetidamente os dados até que uma condição de 

parada seja atingida, como um número mínimo de amostras por nó, ou até que as 

divisões não melhorem significativamente a previsão. 

Uma vez construída, a árvore é usada para fazer previsões ao passar novas 

amostras pelos nós, seguindo as condições de divisão até chegar a um nó folha, que 

dá o valor de previsão sendo este uma média dos valores das amostras nesse nó. 
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A principal vantagem das árvores de decisão é a interpretabilidade, já que é fácil 

visualizar o processo de tomada de decisão. Além disso, elas podem capturar 

interações complexas entre variáveis sem exigir muita preparação dos dados. 

2.3.3 SVM – Máquinas de Vetores de Suporte 

As Máquinas de Vetores de Suporte (SVM) são um poderoso algoritmo de 

aprendizado supervisionado, utilizado tanto para classificação quanto para regressão. 

Seu principal objetivo é encontrar um hiperplano que melhor separa os dados em 

diferentes categorias (para classificação) ou ajusta uma função que faça previsões 

precisas (para regressão). 

O SVM busca encontrar uma função que mantém a maior parte dos dados dentro 

de um intervalo de erro aceitável, ajustando uma linha que se aproxima dos dados. 

Os vetores de suporte são os pontos de dados que estão mais próximos do 

hiperplano e determinam sua posição e orientação. Apenas esses pontos influenciam 

diretamente o modelo, ignorando os dados que estão longe da fronteira de decisão. 

O SVM maximiza a margem entre os dados mais próximos de classes opostas 

para garantir que as previsões futuras sejam feitas com maior confiança. Para 

regressão, a margem é um intervalo ao redor da linha de previsão que define o quão 

longe os pontos de dados podem estar da função de previsão sem serem penalizados. 

Quando os dados não podem ser separados linearmente, o SVM usa funções de 

kernel para transformar os dados em um espaço de dimensões mais altas, onde um 

hiperplano pode ser encontrado. Os kernels mais comuns são o linear, polinomial e o 

RBF (Radial Basis Function). 

No caso de regressão, o modelo é chamado de Support Vector Regression 

(SVR). Em vez de encontrar um hiperplano que separa as classes, o SVR encontra 

uma linha de regressão e tenta ajustar os dados dentro de uma margem de erro 

aceitável (denotada por um parâmetro ϵ) tendo como objetivo minimizar os desvios 

fora da margem de erro, penalizando os pontos de dados que estão fora desse 

intervalo. 
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O SVM é eficaz em problemas complexos e de alta dimensionalidade, com forte 

capacidade de generalização para novos dados. 

2.3.4 KNN – K–Nearest  Neighbors 

O K-Nearest Neighbors (KNN) é um algoritmo de aprendizado supervisionado 

simples, usado tanto para classificação quanto para regressão. O princípio central do 

KNN é prever o valor de uma variável com base nos valores dos exemplos mais 

próximos no conjunto de dados. 

O KNN não cria um modelo explícito durante o treinamento. Ao invés disso, 

armazena o conjunto de dados de treinamento. Quando uma previsão é solicitada, o 

KNN compara a nova entrada com os dados de treinamento para encontrar os 

exemplos mais próximos em termos de distância. A métrica de distância mais comum 

usada é a distância euclidiana (para variáveis contínuas), mas outras métricas, como 

distância de Manhattan ou Minkowski, também podem ser usadas. 

O parâmetro K define o número de vizinhos mais próximos que serão 

considerados para fazer a previsão. Para encontrar esses vizinhos, o KNN calcula a 

distância entre o ponto de teste e todos os pontos de treinamento, selecionando os K 

pontos mais próximos. 

Para regressão, o KNN faz a previsão tomando a média (ou, às vezes, a 

mediana) dos valores das variáveis alvo dos K vizinhos mais próximos. Isso significa 

que, se você estiver prevendo uma variável contínua, o valor previsto será a média 

dos valores dos vizinhos mais próximos. 

Como o KNN usa distâncias para determinar os vizinhos mais próximos, é 

comum que as variáveis sejam normalizadas ou padronizadas para garantir que 

variáveis com escalas diferentes não influenciem desproporcionalmente as distâncias 

calculadas. 

A escolha de K é crítica para o desempenho do KNN. Se K for muito pequeno, o 

modelo pode ser sensível ao ruído (overfitting). Se K for muito grande, o modelo pode 
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ser excessivamente suavizado (underfitting), não capturando bem a variabilidade dos 

dados. 

O KNN é fácil de entender e aplicar, mas sua performance depende de uma boa 

escolha de K e da normalização dos dados. 

2.3.5 Redes Neurais (Neural Networks) 

Uma rede neural é um modelo de aprendizado de máquina inspirado no 

funcionamento do cérebro humano. É usada tanto para classificação quanto para 

regressão e pode modelar relações complexas entre variáveis. As redes neurais são 

compostas por várias camadas de neurônios artificiais que aprendem padrões a partir 

dos dados. 

Um neurônio artificial recebe entradas (valores das variáveis preditoras), 

multiplica essas entradas por pesos, soma esses valores, adiciona um viés (bias) e 

passa o resultado por uma função de ativação, mostrado na Equação 9. A saída do 

neurônio, Equação 10 abaixo, é então passada para os neurônios da próxima camada. 

A fórmula geral de um neurônio é:  

Equação 9 

𝑧 = 𝜔1𝑥1 + 𝜔2𝑥2 + ⋯ + 𝜔𝑛𝑥𝑛 + 𝑏 

Equação 10 

𝑠𝑎í𝑑𝑎 = 𝑓(𝑧) 

Onde: 

ƒ(z) é a função de ativação;  

wi são os pesos; 

xi são as entradas; 

b é o viés. 

As redes neurais consistem em camada de entrada, onde os dados de entrada 

são alimentados, camadas ocultas onde os neurônios intermediários processam as 

entradas (quanto mais camadas ocultas, mais "profunda" é a rede) e a camada de 

saída onde a previsão é gerada. 
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Cada neurônio de uma camada está conectado a todos os neurônios da próxima 

camada. 

Para introduzir não-linearidade no modelo, uma função de ativação é aplicada à 

soma ponderada das entradas em cada neurônio. Funções comuns incluem: 

 ReLU (Rectified Linear Unit): ƒ(z)=max(0,z), que é rápida e eficaz em redes 

profundas. 

 Sigmoide: Transforma o valor de saída em um intervalo entre 0 e 1, útil para 

classificação binária. 

 Tanh: Transforma o valor de saída em um intervalo entre -1 e 1. 

Durante o treinamento, a rede neural ajusta os pesos e vieses para minimizar 

o erro nas previsões. Isso é feito através de um processo chamado backpropagation 

(retropropagação), onde a rede faz uma previsão. O erro entre a previsão e o valor 

real é calculado usando uma função de custo (como erro quadrático médio para 

regressão). O erro é então "propagado para trás" através da rede, e os pesos são 

atualizados usando um otimizador, como o gradiente descendente. 

Após o treinamento, a rede neural pode ser usada para prever novos dados. No 

caso de regressão, a saída será um valor contínuo. 

As redes neurais são poderosas e podem modelar relações complexas, mas 

exigem grandes volumes de dados e podem ser mais difíceis de interpretar em 

comparação com modelos mais simples. 

2.3.6 PCA – Análise de Componentes Principais 

A Análise de Componentes Principais (PCA) é uma técnica de redução de 

dimensionalidade usada para simplificar conjuntos de dados, ao transformar várias 

variáveis correlacionadas em um conjunto menor de variáveis independentes, 

chamadas componentes principais. O PCA é frequentemente utilizado antes de aplicar 

modelos de aprendizado de máquina, especialmente quando há muitas variáveis 

preditoras. 
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O objetivo do PCA é transformar um conjunto de variáveis originais (que podem 

estar correlacionadas) em um conjunto menor de componentes principais que retêm 

a maior parte da variabilidade dos dados. 

Em vez de usar todas as variáveis preditoras originais, o PCA cria novas 

variáveis (componentes principais) que são combinações lineares das variáveis 

originais. Os componentes principais são novas variáveis geradas a partir das 

variáveis originais, onde o primeiro componente principal (PC1) explica a maior parte 

da variação nos dados, o segundo componente principal (PC2) explica a segunda 

maior parte da variação, sendo ortogonal (independente) em relação ao PC1 e isso 

continua para os demais componentes, com cada um explicando menores variações 

que o anterior. 

O número de componentes principais gerados é igual ao número de variáveis 

originais, mas geralmente apenas os primeiros poucos componentes são necessários 

para capturar a maior parte da variação nos dados. 

O PCA identifica os autovalores e autovetores da matriz de covariância dos 

dados. Os autovalores representam a quantidade de variância explicada por cada 

componente, enquanto os autovetores representam as direções dos componentes 

principais. 

O PCA transforma os dados projetando-os nos autovetores, criando os 

componentes principais. Esses novos componentes podem ser usados como 

variáveis preditoras em um modelo de aprendizado de máquina. 

Antes de aplicar o PCA, as variáveis geralmente são normalizadas ou 

padronizadas (transformadas para terem média 0 e desvio padrão 1) para garantir que 

todas tenham a mesma escala. Caso contrário, variáveis com maior magnitude 

influenciariam mais no cálculo dos componentes. 

Após aplicar o PCA, os primeiros componentes principais podem ser usados 

como variáveis preditoras em um modelo de regressão ou classificação. Isso ajuda a 

reduzir o número de variáveis e a evitar problemas como multicolinearidade (quando 

variáveis preditoras são altamente correlacionadas), além de tornar o modelo mais 

eficiente e fácil de interpretar. 



33 

 

O PCA é útil quando há muitas variáveis, e ajuda a simplificar o modelo sem 

perder muita informação dos dados. 

2.3.7 GBM – Máquinas de Aprendizado por Gradiente 

GBM (Gradient Boosting Machine), ou Máquina de Aprendizado por Gradiente, 

é uma técnica de aprendizado supervisionado que combina múltiplos modelos fracos 

(geralmente árvores de decisão simples) para formar um modelo forte, com o objetivo 

de melhorar a precisão de previsões. É amplamente utilizado em tarefas de regressão 

e classificação. O objetivo é combinar esses modelos simples de forma sequencial 

para criar um modelo final mais preciso. 

O boosting é a ideia central do GBM. Ao invés de treinar todas as árvores de 

uma vez, as árvores são treinadas sequencialmente. Cada nova árvore tenta corrigir 

os erros cometidos pelas árvores anteriores, concentrando-se nos exemplos mais 

difíceis de prever. Cada nova árvore tenta minimizar o erro residual (a diferença entre 

a previsão do modelo anterior e o valor real). 

O gradiente é utilizado para medir o quanto o modelo precisa ser ajustado. A 

cada nova iteração, a árvore é ajustada para reduzir o erro residual (resíduo) das 

previsões anteriores. No GBM, o processo de ajuste é feito minimizando a função de 

perda (erro) através do gradiente descendente. Para regressão, a função de perda 

comumente utilizada é o erro quadrático médio. 

Inicialmente, o GBM começa com uma previsão simples (como a média dos 

valores de saída, no caso de regressão). Em cada iteração, a próxima árvore de 

decisão é treinada para prever os resíduos (erros) do modelo anterior. O modelo final 

é atualizado somando o novo modelo ajustado com um fator de aprendizado (learning 

rate), que controla a contribuição de cada árvore. Isso continua por várias iterações, 

até que o erro seja minimizado ou o número máximo de iterações seja atingido. 

Alguns parâmetros importantes são o número de árvores, ou seja, quantas 

árvores de decisão serão treinadas sequencialmente, o learning rate que é a taxa de 

aprendizado, que controla o peso de cada nova árvore na atualização do modelo, 

sendo que taxas de aprendizado menores resultam em um modelo mais preciso, mas 
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requerem mais iterações e a profundidade da árvore, onde quanto mais profundas as 

árvores, mais complexas elas são. Árvores muito profundas podem levar ao 

overfitting. 

Uma vez treinado, o modelo final faz previsões combinando todas as árvores de 

decisão geradas. Para problemas de regressão, a saída será um valor contínuo, 

resultante da soma ponderada das previsões de cada árvore. 

2.3.8 Random Forest 

Random Forest é um algoritmo de aprendizado supervisionado que combina 

várias árvores de decisão para criar um modelo mais robusto e preciso. Ele é utilizado 

tanto para classificação quanto para regressão, sendo conhecido por sua alta precisão 

e resistência ao overfitting. 

O Random Forest constrói várias árvores de decisão de forma independente. 

Cada árvore é treinada com um subconjunto aleatório dos dados e das variáveis, e a 

previsão final é obtida a partir da combinação das previsões dessas árvores. A 

previsão final é a média das previsões de todas as árvores. 

Para treinar cada árvore, o Random Forest usa um método chamado bootstrap, 

onde uma amostra aleatória com repetição (subconjunto dos dados) é selecionada a 

partir do conjunto de treinamento. Assim, cada árvore é treinada em um conjunto 

ligeiramente diferente de dados, o que contribui para a diversidade entre as árvores. 

Em cada nó de uma árvore de decisão, o Random Forest seleciona 

aleatoriamente um subconjunto de variáveis em vez de usar todas as variáveis 

disponíveis. Isso garante que as árvores sejam menos correlacionadas entre si, 

aumentando a robustez do modelo. 

Ao combinar múltiplas árvores (que individualmente poderiam sofrer overfitting), 

o Random Forest melhora a generalização. Ou seja, ele consegue capturar os 

padrões gerais dos dados sem se ajustar excessivamente a ruídos ou outliers. 
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Ele também calcula a importância das variáveis, avaliando o impacto de cada 

variável na precisão do modelo. Isso é útil para identificar quais variáveis são mais 

relevantes para o modelo de previsão. 

Três parâmetros principais são considerados neste modelo, sendo a quantidade 

de árvores (n_estimators) que o modelo irá treinar (mais árvores podem aumentar a 

precisão, mas também aumentam o tempo de computação), o número de variáveis 

selecionadas em cada nó (max_features), que controla quantas variáveis são 

consideradas para dividir os nós das árvores e a profundidade das árvores 

(max_depth) limitando a profundidade de cada árvore para prevenir o overfitting. 
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3 DESENVOLVIMENTO 

O desenvolvimento se inicia com o levantamento de dados históricos de 

sensores diversos da máquina de papel, que são historiados e gravados em arquivos 

Excel gerados diariamente pelo sistema DeltaV Emerson (sistema de automação) e 

dados de qualidade de ensaios e medições realizadas em laboratório que são 

registrados em sistema SAP e bases de dados SQL, representado na Figura 8. 

Os dados são historiados em um servidor local, denominado Wedge Server, 

nome da ferramenta de análise de dados utilizada pela Produção, Engenharia de 

Processos, Qualidade e Manutenção Operacional. 

 

Figura 8. Arquitetura implementada 

Fonte: Autoria própria 

Dois processos podem ser aplicados, sendo ETL (Extração, Transformação e 

Carregamento de Dados) ou KDD (Knowledge Discovery in Databases). 

Para a obtenção de um melhor resultado com a comparação de diferentes 

algoritmos, será utilizado o processo KDD que é um ciclo de descoberta de 

conhecimento em bases de dados, geralmente usado em análise de dados e 

aprendizado de máquina.  

Ele envolve várias etapas que vão desde a seleção de dados até a descoberta 

de padrões e o uso do conhecimento extraído para tomada de decisão. A relação do 

KDD com ETL, consolidada na Tabela 1, está na preparação e manipulação dos dados 

para gerar insights. 
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Fase do KDD Fase do ETL Descrição 

Seleção Extração Coleta de dados relevantes de várias fontes 

Pré-processamento Transformação Limpeza e tratamento dos dados brutos 

Transformação Transformação Criação de novas variáveis ou modificações 

Mineração de Dados - Aplicação de algoritmos para identificar padrões 

Interpretação Carregamento Armazenamento de dados processados e insights 

 

Tabela 1 – Comparação das fases do Processo KDD e ETL 

3.1 Seleção de Dados 

A seleção de dados [Fayyad et al. (1996)], é a primeira etapa e envolve a escolha 

dos conjuntos de dados apropriados para a análise. A seleção de dados depende do 

conhecimento especializado em relação ao domínio em questão. Especialistas no 

campo desempenham um papel crucial na definição dos critérios de seleção e na 

identificação dos dados mais relevantes.  

 Exploração Inicial: Para entender a estrutura e características dos dados. 

Isso ajuda na definição de critérios de seleção apropriados.  

 Iteração: A seleção de dados não é necessariamente uma etapa única e 

linear do processo de KDD. Pode envolver iterações para refinar os 

critérios de seleção à medida que se ganha maior compreensão dos 

dados e dos resultados esperados 

 

Duas bases de dados foram utilizadas para a modelagem, sendo a primeira os 

dados dos sensores de máquina com 387 variáveis (colunas) e registros a cada minuto 

do período entre 01/06/2024 e 15/09/2024, ou seja, 152.640 linhas que representam 

106 dias de produção. A segunda fonte de dados é uma base dos registros de medição 

dos parâmetros de qualidade com 93 variáveis e mesmo período considerado. 

Levando em consideração que boa parte destas variáveis não tem relação direta 

com as variáveis alvo rigidez transversal e rigidez longitudinal, uma seleção prévia foi 

realizada calculando-se a correlação entre estas e as demais variáveis possíveis.  
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Selecionando apenas correlações maiores que 70%, reduziu-se a quantidade de 

variáveis de 480 para 28, sendo que as principais podem ser observadas na Figura 9. 

 

Figura 9. Melhores correlações 

Outro tratamento prévio nos dados foi a eliminação de registros em períodos em 

que a máquina de papel estava inoperante, reduzindo a base de 152.640 linhas (cada 

linha representa um minuto) para 137.714 linhas, resultando em uma base de dados 

que pode ser observada na Figura 10 (início e fim). 

 

Figura 10. Base de dados após seleção de variáveis 

3.1.1 Análise Descritiva 

Para realização da análise descritiva dos dados, várias ferramentas podem ser 

utilizadas como Minitab, Excel e o Jamovi. A opção escolhida foi utilizar o recurso de 

Análise de Dados do Excel em conjunto com o Jamovi por se tratar de um software 

estatístico aberto para desktop e nuvem. 

 Aplicando uma fórmula que mede a correlação entre as variáveis dependentes 

(RIGIDEZ LONGITUDINAL e RIGIDEZ TRANSVERSAL) e as covariáveis (demais 26 

variáveis selecionadas), selecionou-se apenas as que tem mais de 85% de correlação 

direta ou inversa, reduzindo as variáveis do estudo para 6. 

 As 6 variáveis são RIGIDEZ LONGITUDINAL MÉDIA, RIGIDEZ 

TRANSVERSAL MÉDIA, PRESSÃO DA CAIXA DE ENTRADA DO MIOLO, VERSO E 

CAPA, GRAMATURA SCANNER, ESPESSURA SCANNER E VELOCIDADE, com 

suas correlações indicadas na matriz da Figura 11. 

CORRELAÇÃO

RIGIDEZ 

LONGITUDIN

AL MEDIA

RIGIDEZ 

TRANSVERSAL 

MEDIA

DELAMINACA

O MEDIA

PRESSAO CX 

ENT MIOLO

PRESSAO CX 

ENT VERSO

PRESSAO CX 

ENT CAPA

CONSIST 

MIOLO CALC

TEMP VAPOR 

MAQ

GRAMATURA 

SCANNER

UMIDADE 

SCANNER

ESPESSURA 

SCANNER
VELOCIDADE

RIGIDEZ LONGITUDINAL 100,0% 98,7% 27,9% -88,5% -88,2% -88,5% -7,4% 8,7% 94,6% 50,3% 93,7% -90,2%

RIGIDEZ TRANSVERSAL 98,7% 100,0% 27,8% -87,2% -86,3% -87,4% -7,2% 7,6% 95,2% 53,4% 94,4% -88,6%
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Figura 11. Matriz de correlações 

 

Figura 12. Estatística descritiva 

 Após análise descritiva dos dados realizada e mostrada na Figura 12 acima, 

temos a seguinte tabela de dados com as 5 primeiras linhas representadas na Figura 

13: 

 

Figura 13. Base de Dados com variáveis da Análise descritiva 

Antes de carregar os dados para o Colab Research, ferramenta utilizada para 

a implementação do código que avaliará os resultados para as diferentes modelagens 

propostas, carrega-se algumas bibliotecas que serão utilizadas no decorrer do 

experimento.  

import os 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

from sklearn.model_selection import train_test_split 

from sklearn.linear_model import LinearRegression 

from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score 

RIGIDEZ 

LONGITUDIN

AL MEDIA

RIGIDEZ 

TRANSVERS

AL MEDIA

PRESSAO 

CX ENT 

MIOLO

PRESSAO 

CX ENT 

VERSO

PRESSAO 

CX ENT 

CAPA

GRAMATURA 

SCANNER

ESPESSURA 

SCANNER
VELOCIDADE

RIGIDEZ LONGITUDINAL MEDIA —

RIGIDEZ TRANSVERSAL MEDIA 0,99 —

PRESSAO CX ENT MIOLO -0,89 -0,87 —

PRESSAO CX ENT VERSO -0,88 -0,86 0,99 —

PRESSAO CX ENT CAPA -0,89 -0,87 0,99 0,99 —

GRAMATURA SCANNER 0,95 0,95 -0,91 -0,91 -0,91 —

ESPESSURA SCANNER 0,94 0,94 -0,87 -0,86 -0,87 0,97 —

VELOCIDADE -0,90 -0,89 0,99 0,99 0,99 -0,92 -0,87 —

RIGIDEZ 

LONGITUDIN

AL MEDIA

RIGIDEZ 

TRANSVERS

AL MEDIA

PRESSAO 

CX ENT 

MIOLO

PRESSAO 

CX ENT 

VERSO

PRESSAO 

CX ENT 

CAPA

GRAMATURA 

SCANNER

ESPESSURA 

SCANNER
VELOCIDADE

N 137714 137714 137714 137714 137714 137714 137714 137714

Média 17.7 8.39 1994 1844 2031 246 438 408

Erro-padrão da média 0.0251 0.0114 1.29 1.23 1.34 0.107 0.221 0.154

Mediana 15.0 7.45 2153 2006 2207 241 433 431

Desvio-padrão 9.32 4.22 480 458 497 39.5 82.0 57.2

Mínimo 6.33 2.85 61.2 552 439 34.5 0.00 224

Máximo 57.1 25.2 2641 2435 2608 393 777 487

Data_Hora

RIGIDEZ 

LONGITUDIN

AL MEDIA

RIGIDEZ 

TRANSVERSAL 

MEDIA

PRESSAO CX 

ENT MIOLO

PRESSAO CX 

ENT VERSO

PRESSAO CX 

ENT CAPA

GRAMATURA 

SCANNER

ESPESSURA 

SCANNER
VELOCIDADE

01/06/24 00:01 11,76 5,96 2125,92 1980,40 2146,80 230,70 393,90 431,88

01/06/24 00:02 11,76 5,96 2122,64 1993,66 2157,86 230,10 393,70 431,81

01/06/24 00:03 11,76 5,96 2125,12 1984,23 2157,40 228,60 391,70 431,92

01/06/24 00:04 11,76 5,96 2126,00 1986,78 2167,53 228,80 391,70 431,90

01/06/24 00:05 11,76 5,96 2130,02 1989,69 2162,74 229,50 392,10 431,83
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from sklearn import preprocessing 
from sklearn.ensemble import RandomForestRegressor 

 O carregamento da base de dados do arquivo “Dados_PY.csv” com dados 

delimitados por tabulação é mostrado na Figura 14. 

df = pd.read_csv('/content/Dados_PY.csv', delimiter = '\t', encoding = 'latin-1') 
df.head() 

 

Figura 14. Carregamento da base de dados 

 Para uma verificação prévia do “data type” das variáveis, aplica-se o comando 

df.dtypes e o resultado é mostrado na Figura 15. 

 

Figura 15. Data Type base raw 

3.2 Pré-processamento de Dados 

O pré-processamento é uma das etapas mais importantes do KDD, pois aqui os 

dados são preparados e limpos. Essa fase inclui o tratamento de dados ausentes, 

inconsistentes ou ruidosos. 

Removendo colunas sem nome e valores NaN: 

df = df.loc[:, ~df.columns.str.contains('^Unnamed')] 
df_s = df.dropna() 

 Verificação de contagem, valores únicos, primeiro valor e frequência dos dados 

são mostrados na Figura 16, após aplicação do comando df_s.describe(). 
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Figura 16. Descrição dos dados 

3.3 Transformação 

Após a limpeza, a transformação de dados no KDD refere-se à criação de novas 

características ou atributos a partir dos dados brutos. Isso pode incluir cálculos, 

agregações ou combinações de variáveis para facilitar a análise posterior. 

No processo de ETL, a transformação pode envolver operações como 

agregações, cálculo de novos campos derivados, mapeamento de categorias ou 

reestruturação de dados. 

Realizando algumas transformações como a substituição de caracteres vírgula 

por ponto e transformação do data type para “float”: 

df["GRAM PADRAO"] = df['GRAM PADRAO'].str.replace(',','.') 

df["GRAM PADRAO"] = df['GRAM PADRAO'].astype(float) 

df["RIGIDEZ LONGITUDINAL MEDIA"] = df['RIGIDEZ LONGITUDINAL 

MEDIA'].str.replace(',','.') 

df["RIGIDEZ LONGITUDINAL MEDIA"] = df['RIGIDEZ LONGITUDINAL 

MEDIA'].astype(float) 

df["RIGIDEZ TRANSVERSAL MEDIA"] = df['RIGIDEZ TRANSVERSAL 

MEDIA'].str.replace(',','.') 

df["RIGIDEZ TRANSVERSAL MEDIA"] = df['RIGIDEZ TRANSVERSAL 

MEDIA'].astype(float) 

df["PRESSAO CX ENT MIOLO"] = df['PRESSAO CX ENT MIOLO'].str.replace(',','.') 

df["PRESSAO CX ENT MIOLO"] = df['PRESSAO CX ENT MIOLO'].astype(float) 

df["PRESSAO CX ENT VERSO"] = df['PRESSAO CX ENT VERSO'].str.replace(',','.') 

df["PRESSAO CX ENT VERSO"] = df['PRESSAO CX ENT VERSO'].astype(float) 

df["PRESSAO CX ENT CAPA"] = df['PRESSAO CX ENT CAPA'].str.replace(',','.') 

df["PRESSAO CX ENT CAPA"] = df['PRESSAO CX ENT CAPA'].astype(float) 

df["GRAMATURA SCANNER"] = df['GRAMATURA SCANNER'].str.replace(',','.') 

df["GRAMATURA SCANNER"] = df['GRAMATURA SCANNER'].astype(float) 

df["ESPESSURA SCANNER"] = df['ESPESSURA SCANNER'].str.replace(',','.') 

df["ESPESSURA SCANNER"] = df['ESPESSURA SCANNER'].astype(float) 

df["VELOCIDADE"] = df['VELOCIDADE'].str.replace(',','.') 

df["VELOCIDADE"] = df['VELOCIDADE'].astype(float) 
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Novamente o df.dtypes é aplicado para verificação do data type da base 

transformada e o resultado é mostrado na Figura 17. 

 

Figura 17. Data Type base transformada 

 Nova verificação de contagem, valores únicos, primeiro valor e frequência dos 

dados utilizando o df_s.describe(), resulta nos dados da Figura 18. 

 

Figura 18. Carregamento da base de dados 

3.4 Mineração de Dados (Data Mining) 

Aqui é onde o processo de descoberta de padrões realmente acontece. 

Mineração de dados envolve aplicar técnicas de aprendizado de máquina ou 

estatísticas para identificar padrões ou tendências ocultas. 

Embora essa etapa não seja exatamente parte do processo ETL, ela depende 

fortemente da qualidade dos dados que foram extraídos e transformados 

corretamente. No KDD, essa etapa pode usar os dados limpos e transformados para 

rodar algoritmos de classificação, clusterização, regressão etc. 

3.4.1 Regressão Linear com 3 variáveis 

O algoritmo de Regressão Linear modela a relação entre uma variável 

dependente e uma ou mais variáveis independentes ajustando uma linha (ou 
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hiperplano) que minimiza a diferença entre os valores observados e previstos, 

assumindo uma relação linear entre elas.  

Para iniciar a implementação de uma regressão linear com 3 variáveis, realiza-

se a seleção destas variáveis dependentes (X) e a variável alvo (Y): 

X3 = df_s[['GRAMATURA SCANNER','ESPESSURA 

SCANNER','VELOCIDADE']].values 

Y = df_s['RIGIDEZ LONGITUDINAL MEDIA'].values.reshape(-1, 1) 

Divide-se a base de dados em duas partes, sendo treino e teste com 30% dos 

dados para as variáveis dependentes (X) e variável alvo (Y): 

X_train, X_test, y_train, y_test = train_test_split(X3, Y, test_size = 0.3, random_state 

= 101) 

Modelagem com a criação do objeto para a classe e a execução da Regressão 

Linear: 

linear_regressor = LinearRegression() 

linear_regressor.fit(X_train, y_train) 

Previsões para a base de teste: 

predictions = linear_regressor.predict(X_test) 

Avaliando o modelo: 

print('mean_squared_error : ', mean_squared_error(y_test, predictions)) 

print('mean_absolute_error : ', mean_absolute_error(y_test, predictions)) 

print('r2 : ', r2_score(y_test, predictions)) 

mean_squared_error :  7.6486 

mean_absolute_error :  1.8907 

r2 :  0.9130 

Coeficientes: 

coefs = linear_regressor.coef_[0] 

coefs 

array([ 0.08170143,  0.04400415, -0.03991939]) 

intercept = linear_regressor.intercept_[0] 

intercept 

-5.367204267277689 
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Equação da Reta: 

f"y = {intercept} + {coefs[0]} * b1 + {coefs[1]} * b2 + {coefs[2]} * b3 " 

y = -5.367204267277689 + 0.08170143075754319 * b1 + 0.044004150450736454 * 

b2 + -0.03991939143707864 * b3 

 Plotando o Gráfico (Figura 19): 

y_test.shape 

(41315, 1) 

sct_x = y_test.reshape(1,41315)[0] 

sct_y = predictions.reshape(1,41315)[0] 

plt.figure(figsize = (12,8)) 

plt.xlabel('Medição') 

plt.ylabel('Previsão') 

plt.title('Medição x Previsão - Regressão 3 Variáveis') 

plt.grid(True) 

plt.scatter(sct_x, sct_y) 

plt.plot(sct_x, sct_x, color = 'red', label = "identidade") 

plt.legend(loc = 'upper center') 

 

Figura 19. Medição vs. Previsão para Regressão Linear com 3 variáveis 

print(f"y = {intercept} + {coefs[0]} * GRAMATURA SCANNER + {coefs[1]} * 

ESPESSURA SCANNER + {coefs[2]} * VELOCIDADE") 

y = -5.367204267277689 + 0.08170143075754319 * GRAMATURA SCANNER + 

0.044004150450736454 * ESPESSURA SCANNER + -0.03991939143707864 * 

VELOCIDADE 
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3.4.2 Regressão Linear com 6 variáveis 

Uma outra maneira de realizar limpeza nos dados e conversão do data type: 

for  col in ['GRAM PADRAO', 'RIGIDEZ LONGITUDINAL MEDIA', 'RIGIDEZ 

TRANSVERSAL MEDIA', 'PRESSAO CX ENT MIOLO', 'PRESSAO CX ENT 

VERSO', 'PRESSAO CX ENT CAPA', 'GRAMATURA SCANNER', 

'ESPESSURA SCANNER', 'VELOCIDADE']: 

df[col] = df[col].str.replace(',', '.', regex = False).astype(float) 

df = df.loc[:, ~df.columns.str.contains('^Unnamed')] 

df_s = df.dropna() 

Seleção de variáveis: 

X6 = df_s[['PRESSAO CX ENT MIOLO', 'PRESSAO CX ENT VERSO', 'PRESSAO 

CX ENT CAPA', 'GRAMATURA SCANNER','ESPESSURA 

SCANNER','VELOCIDADE']].values 

Y = df_s['RIGIDEZ LONGITUDINAL MEDIA'].values.reshape(-1, 1) 

Dividindo base de treinamento e de teste: 

X_train, X_test, y_train, y_test = train_test_split(X6, Y, test_size = 0.3, random_state 

= 101) 

Criando o modelo: 

linear_regressor = LinearRegression() 

linear_regressor.fit(X_train, y_train) 

Previsões para a base de teste: 

predictions = linear_regressor.predict(X_test) 

Avaliando o modelo: 

print('mean_squared_error: ', mean_squared_error(y_test, predictions)) 

print('mean_absolute_error: ', mean_absolute_error(y_test, predictions)) 

print('r2 : ', r2_score(y_test, predictions)) 

mean_squared_error :  6.2482 

mean_absolute_error :  1.6567 

r2 :  0.9290 

Coeficientes: 

coefs = linear_regressor.coef_[0] 
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intercept = linear_regressor.intercept_[0] 
 

Equação da reta: 

print(f"y = {intercept} + {coefs[0]} * PRESSAO CX ENT MIOLO + {coefs[1]} * 

PRESSAO CX ENT VERSO + {coefs[2]} * PRESSAO CX ENT CAPA + {coefs[3]} * 

GRAMATURA SCANNER + {coefs[4]} * ESPESSURA SCANNER + {coefs[5]} * 

VELOCIDADE") 

y = 22.105861398608358 + 0.0052209256160076906 * PRESSAO CX ENT MIOLO 

+ -0.0027177422169695313 * PRESSAO CX ENT VERSO + 

0.018294238688696188 * PRESSAO CX ENT CAPA + 0.07435119918212932 * 

GRAMATURA SCANNER + 0.05137885250369484 * ESPESSURA SCANNER + -

0.21520044583452272 * VELOCIDADE 

 Plotando o gráfico (Figura 20): 

sct_x = y_test.reshape(1, -1)[0] 

sct_y = predictions.reshape(1, -1)[0] 

 

plt.figure(figsize=(12, 8)) 

plt.xlabel('Medição') 

plt.ylabel('Previsão') 

plt.title('Medição x Previsão - Regressão 6 Variáveis') 

plt.grid(True) 

plt.scatter(sct_x, sct_y) 

plt.plot(sct_x, sct_x, color='red', label="identidade") 

plt.legend(loc='upper center') 

plt.show() 

 

Figura 20. Medição vs. Previsão para Regressão Linear com 6 variáveis 
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3.4.3 Random Forest 

O algoritmo Random Forest combina previsões de múltiplas Árvores de 

Decisão independentes, construídas a partir de diferentes subconjuntos dos dados e 

características, para obter um modelo robusto e preciso, reduzindo o risco de 

overfitting. Para a aplicação do Random Forest, seguindo com o código já 

desenvolvido para a Regressão linear, é necessário importar a biblioteca 

“RandomForestRegressor”: 

from sklearn.ensemble import RandomForestRegressor 

 Inicializando e treinando o modelo Random Forest: 

rf_regressor = RandomForestRegressor(random_state=101) 

rf_regressor.fit(X_train, y_train.ravel()) 

 Realizando as predições: 

rf_predictions = rf_regressor.predict(X_test) 

 Avaliando o modelo: 

print('Random Forest - mean_squared_error : ', mean_squared_error(y_test, 

rf_predictions)) 

print('Random Forest - mean_absolute_error : ', mean_absolute_error(y_test, 

rf_predictions)) 

print('Random Forest - r2 : ', r2_score(y_test, rf_predictions)) 

Random Forest - mean_squared_error :  1.6976 

Random Forest - mean_absolute_error :  0.5669 

Random Forest - r2 :  0.9807 

 Plotando o gráfico (Figura 21): 

sct_x = y_test.reshape(1, -1)[0] 

sct_y = rf_predictions 

 

plt.figure(figsize=(12, 8)) 

plt.xlabel('Medição') 

plt.ylabel('Previsão') 

plt.title('Medição x Previsão - Random Forest') 

plt.grid(True) 

plt.scatter(sct_x, sct_y) 

plt.plot(sct_x, sct_x, color='red', label="identidade") 
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plt.legend(loc='upper center') 

plt.show() 

 

Figura 21. Medição vs. Previsão para Random Forest 

3.4.4 KNN 

O algoritmo KNN (K-Nearest Neighbors) classifica um novo dado com base nas 

classes dos “k” pontos mais próximos no espaço de características, assumindo que 

dados semelhantes estarão próximos uns dos outros. Importando a biblioteca: 

from sklearn.neighbors import KNeighborsRegressor 

 Assumindo que X6 e Y já estão definidos: 

X6 = df_s[['PRESSAO CX ENT MIOLO', 'PRESSAO CX ENT VERSO', 'PRESSAO 

CX ENT CAPA', 'GRAMATURA SCANNER','ESPESSURA 

SCANNER','VELOCIDADE']].values 

Y = df_s['RIGIDEZ LONGITUDINAL MEDIA'].values.reshape(-1, 1) 

 Separando os dados de treino e teste e definição de parâmetros do KNN: 

X_train, X_test, y_train, y_test = train_test_split(X6, Y, test_size=0.3, 

random_state=101) 

 

n_neighbors = 5 #@param {type:"slider", min:1, max:20, step:1} 

weights = 'uniform' #@param ["uniform", "distance"] 

algorithm = 'auto' #@param ["auto", "ball_tree", "kd_tree", "brute"] 

leaf_size = 30 #@param {type:"slider", min:10, max:100, step:10} 

p = 2 #@param {type:"slider", min:1, max:3, step:1} 

metric = 'minkowski' #@param ["minkowski", "euclidean", "manhattan"] 
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 Inicializando e treinando o modelo KNN com os parâmetros definidos: 

knn_regressor = KNeighborsRegressor(n_neighbors=n_neighbors, weights=weights, 

algorithm=algorithm, leaf_size=leaf_size, p=p, metric=metric) 

knn_regressor.fit(X_train, y_train.ravel()) 

knn_predictions = knn_regressor.predict(X_test) 

 Avaliando o modelo: 

print('KNN - mean_squared_error : ', mean_squared_error(y_test, knn_predictions)) 

print('KNN - mean_absolute_error : ', mean_absolute_error(y_test, knn_predictions)) 

print('KNN - r2 : ', r2_score(y_test, knn_predictions)) 

KNN - mean_squared_error :  1.7161 

KNN - mean_absolute_error :  0.5858 

KNN - r2 :  0.9805 

 Plotando o gráfico (Figura 22): 

plt.figure(figsize=(12, 8)) 

plt.xlabel('Medição') 

plt.ylabel('Previsão') 

plt.title('Medição x Previsão - KNN') 

plt.grid(True) 

plt.scatter(y_test, knn_predictions) 

plt.plot(y_test, y_test, color='red', label="identidade") 

plt.legend(loc='upper center') 

plt.show() 

 

Figura 22. Medição vs. Previsão para KNN 
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3.4.5 Redes Neurais 

Inspirado no funcionamento do cérebro humano, composto por múltiplas 

camadas de neurônios artificiais que processam e aprendem padrões complexos nos 

dados, ajustando suas conexões para realizar previsões ou classificações, o modelo 

Redes Neurais foi implementado, utilizando os mesmos dados e desenvolvimento até 

este ponto com a importação das seguintes bibliotecas: 

import tensorflow as tf 

from tensorflow import keras 

from sklearn.preprocessing import StandardScaler 

Assumindo que X6 e Y já estão definidos: 

X3 = df_s[['PRESSAO CX ENT MIOLO', 'PRESSAO CX ENT VERSO', 'PRESSAO 

CX ENT CAPA', 'GRAMATURA SCANNER','ESPESSURA 

SCANNER','VELOCIDADE']].values 

Y = df_s['RIGIDEZ LONGITUDINAL MEDIA'].values 

Dimensionamento dos dados: 

scaler = StandardScaler() 

X3_scaled = scaler.fit_transform(X3) 

Y_scaled = scaler.fit_transform(Y.reshape(-1, 1)) 

Separação dos dados em treino e teste: 

X_train, X_test, y_train, y_test = train_test_split(X3_scaled, Y_scaled, test_size=0.3, 

random_state=101) 

Definição do modelo de Redes Neurais: 

model = keras.Sequential([keras.layers.Dense(64, activation='relu', 

input_shape=(X_train.shape[1],)), keras.layers.Dense(32, activation='relu'), 

keras.layers.Dense(1) 

]) 
Compilar o modelo: 

model.compile(optimizer='adam', loss='mse', metrics=['mae']) 

Treinando o modelo: 

history = model.fit(X_train, y_train, epochs=100, batch_size=32, validation_split=0.2, 

verbose=1) 

Avaliando o modelo: 

loss, mae = model.evaluate(X_test, y_test, verbose=0) 
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print(f"Mean Absolute Error: {mae}") 

Mean Absolute Error: 0.0990  

Realizando as predições: 

nn_predictions = model.predict(X_test) 

Transformação inversa das previsões e valores reais para a escala original: 

nn_predictions = scaler.inverse_transform(nn_predictions) 

y_test = scaler.inverse_transform(y_test) 

Calculando o R²: 

r2 = r2_score(y_test, nn_predictions) 

print(f"R-squared: {r2}") 

R-squared: 0.9668 

Plotar valores de perda de treinamento e validação (Figura 23): 

plt.figure(figsize=(12, 8)) 

plt.plot(history.history['loss']) 

plt.plot(history.history['val_loss']) 

plt.title('Model loss') 

plt.ylabel('Loss') 

plt.xlabel('Epoch') 

plt.legend(['Train', 'Validation'], loc='upper left') 

plt.show() 

 
Figura 23. Valores de perda de treinamento e validação 

Plotar valores reais versus valores previstos (Figura 24): 

plt.figure(figsize=(12, 8)) 

plt.scatter(y_test, nn_predictions) 
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plt.xlabel("Actual Values") 

plt.ylabel("Predicted Values") 

plt.title("Actual vs. Predicted Values (Neural Network)") 

plt.plot(y_test, y_test, color='red', label="identity") 

plt.legend(loc='upper center') 

plt.show() 

 
Figura 24. Medição vs. Previsão para Redes Neurais 

3.4.6 SVM (Support Vector Machine) 

O algoritmo SVM (Support Vector Machine) busca encontrar a melhor linha (ou 

hiperplano) que separa os dados em diferentes classes, maximizando a margem entre 

os pontos mais próximos de cada classe. Para regressão utiliza-se o SRV.  

Importando a biblioteca relacionada: 

from sklearn.svm import SVR 

Assumindo que X6 e Y já estão definidos: 

X6 = df_s[['PRESSAO CX ENT MIOLO', 'PRESSAO CX ENT VERSO', 'PRESSAO 

CX ENT CAPA', 'GRAMATURA SCANNER','ESPESSURA 

SCANNER','VELOCIDADE']].values 

Y = df_s['RIGIDEZ LONGITUDINAL MEDIA'].values 

 Separando os dados: 

X_train, X_test, y_train, y_test = train_test_split(X3, Y, test_size=0.3, 

random_state=101) 

 Inicializando e treinando o modelo: 

svr_model = SVR(kernel='rbf', C=100, gamma=0.1, epsilon=.1)  
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svr_model.fit(X_train, y_train) 

 Realizando as predições: 

svr_predictions = svr_model.predict(X_test) 

 Avaliando o modelo: 

print('SVM - mean_squared_error : ', mean_squared_error(y_test, svr_predictions)) 

print('SVM - mean_absolute_error : ', mean_absolute_error(y_test, svr_predictions)) 

print('SVM - r2 : ', r2_score(y_test, svr_predictions)) 

SVM - mean_squared_error :  25.5277 

SVM - mean_absolute_error :  3.2392 

SVM - r2 :  0.7095 

 Plotando o gráfico (Figura 25): 

plt.figure(figsize=(12, 8)) 

plt.xlabel('Medição') 

plt.ylabel('Previsão') 

plt.title('Medição x Previsão (SVM)') 

plt.grid(True) 

plt.scatter(y_test, svr_predictions) 

plt.plot(y_test, y_test, color='red', label="identidade") 

plt.legend(loc='upper center') 

plt.show() 

 
Figura 25. Medição vs. Previsão para SVM 

3.4.7 Árvore de Decisão 

Uma Árvore de Decisão é um único modelo de árvore que realiza previsões 

dividindo os dados em nós e folhas com base em regras de decisão. Cada nó 
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representa uma condição sobre um atributo do conjunto de dados, enquanto as folhas 

representam as previsões finais. 

Importando a biblioteca: 

from sklearn.tree import DecisionTreeRegressor 

Assumindo que X6 e Y já estão definidos: 

X6 = df_s[['PRESSAO CX ENT MIOLO', 'PRESSAO CX ENT VERSO', 'PRESSAO 

CX ENT CAPA', 'GRAMATURA SCANNER','ESPESSURA 

SCANNER','VELOCIDADE']].values 

Y = df_s['RIGIDEZ LONGITUDINAL MEDIA'].values.reshape(-1, 1) 

 Separando os dados: 

X_train, X_test, y_train, y_test = train_test_split(X6, Y, test_size = 0.3, random_state 

= 101) 

 Inicializando e treinando o modelo: 

dt_regressor = DecisionTreeRegressor(random_state=101) 

dt_regressor.fit(X_train, y_train) 

 Realizando as predições: 

dt_predictions = dt_regressor.predict(X_test) 

 Avaliando o modelo: 

print('Decision Tree - mean_squared_error : ', mean_squared_error(y_test, 

dt_predictions)) 

print('Decision Tree - mean_absolute_error : ', mean_absolute_error(y_test, 

dt_predictions)) 

print('Decision Tree - r2 : ', r2_score(y_test, dt_predictions)) 

Decision Tree - mean_squared_error :  3.1979 

Decision Tree - mean_absolute_error :  0.6680 

Decision Tree - r2 :  0.9636 

 Plotando o gráfico (Figura 26): 

sct_x = y_test.reshape(1, -1)[0] 

sct_y = dt_predictions 

 

plt.figure(figsize=(12, 8)) 

plt.xlabel('Medição') 

plt.ylabel('Previsão') 

plt.title('Medição x Previsão - Decision Tree') 

plt.grid(True) 

plt.scatter(sct_x, sct_y) 
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plt.plot(sct_x, sct_x, color='red', label="identidade") 

plt.legend(loc='upper center') 

plt.show() 

 

Figura 26. Medição vs. Previsão para Árvore de Decisão 

3.4.8 GBM (Gradient Boosting Machine) 

Importando a biblioteca: 

from sklearn.ensemble import GradientBoostingRegressor 

Assumindo que X6 e Y já estão definidos: 

X6 = df_s[['PRESSAO CX ENT MIOLO', 'PRESSAO CX ENT VERSO', 

'PRESSAO CX ENT CAPA', 'GRAMATURA SCANNER','ESPESSURA 

SCANNER','VELOCIDADE']].values 

Y = df_s['RIGIDEZ LONGITUDINAL MEDIA'].values.reshape(-1, 1) 

Separando os dados: 

X_train, X_test, y_train, y_test = train_test_split(X6, Y, test_size=0.3, 

random_state=101) 

Inicializando e treinando o modelo: 

gbm_regressor = GradientBoostingRegressor(random_state=101) 

gbm_regressor.fit(X_train, y_train.ravel()) 

Realizando as predições: 

gbm_predictions = gbm_regressor.predict(X_test) 

Avaliando o modelo: 
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print('GBM - mean_squared_error : ', mean_squared_error(y_test, 

gbm_predictions)) 

print('GBM - mean_absolute_error : ', mean_absolute_error(y_test, 

gbm_predictions)) 

print('GBM - r2 : ', r2_score(y_test, gbm_predictions)) 

GBM - mean_squared_error :  3.5044 

GBM - mean_absolute_error :  1.0700 

GBM - r2 :  0.9601 

Plotando o gráfico (Figura 27): 

sct_x = y_test.reshape(1, -1)[0] 

sct_y = gbm_predictions 

 

plt.figure(figsize=(12, 8)) 

plt.xlabel('Medição') 

plt.ylabel('Previsão') 

plt.title('Medição x Previsão - Gradient Boosting Machine') 

plt.grid(True) 

plt.scatter(sct_x, sct_y) 

plt.plot(sct_x, sct_x, color='red', label="identidade") 

plt.legend(loc='upper center') 

plt.show() 

 

Figura 27. Medição vs. Previsão para Gradient Boosting Machine 

3.5 Validação Cruzada 

Nesta etapa realiza-se testes em múltiplos subconjuntos de dados, 

proporcionando uma estimativa mais confiável para seu desempenho geral e será 

aplicada para as modelagens Redes Neurais e Random Forest. 
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 Existem dois tipos de validação cruzada. O K-Fold Cross-Validation divide os 

dados em k subconjuntos (folds) e em cada iteração, um fold é usado para teste e os 

restantes para treino, sendo adequado para dados aleatórios e não sequenciais, 

enquanto o Time Series Cross-Validation (ou Forward Chaining) é ideal para dados 

sequenciais ou temporais, dividindo os dados em conjuntos crescentes de treino e 

validação, mantendo a ordem temporal. Por este motivo, será implementada validação 

cruzada utilizando o Time Series Cross-Validation com o código abaixo. 

import pandas as pd 

import numpy as np 

from sklearn.model_selection import TimeSeriesSplit 

from sklearn.ensemble import RandomForestRegressor 

from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score 

import tensorflow as tf 

from tensorflow import keras 

from sklearn.preprocessing import StandardScaler 

 
Definindo as variáveis (x) e a variável alvo (y): 

X = df_s[['PRESSAO CX ENT MIOLO', 'PRESSAO CX ENT VERSO', 'PRESSAO CX 

ENT CAPA', 'GRAMATURA SCANNER','ESPESSURA SCANNER','VELOCIDADE' 

]].values 

y = df_s['RIGIDEZ LONGITUDINAL MEDIA'].values 
 

Aplicando a Validação Cruzada de Série Temporal 

tscv = TimeSeriesSplit(n_splits=5) 

 
Incluindo listas para armazenagem das métricas avaliadas: 

rf_mse_scores = [] 

rf_mae_scores = [] 

rf_r2_scores = [] 

 

nn_mse_scores = [] 

nn_mae_scores = [] 

nn_r2_scores = [] 

 

for train_index, test_index in tscv.split(X): 

    X_train, X_test = X[train_index], X[test_index] 

    y_train, y_test = y[train_index], y[test_index] 

Random Forest 

 

    rf_model = RandomForestRegressor(random_state=101)   

    rf_model.fit(X_train, y_train) 
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    rf_predictions = rf_model.predict(X_test) 

    rf_mse_scores.append(mean_squared_error(y_test, rf_predictions)) 

    rf_mae_scores.append(mean_absolute_error(y_test, rf_predictions)) 

    rf_r2_scores.append(r2_score(y_test, rf_predictions)) 

 

Redes Neurais 

 

    scaler = StandardScaler() 

    X_train_scaled = scaler.fit_transform(X_train) 

    X_test_scaled = scaler.transform(X_test) 

    y_train_scaled = scaler.fit_transform(y_train.reshape(-1, 1)) 

    y_test_scaled = scaler.transform(y_test.reshape(-1, 1)) 

 

    nn_model = keras.Sequential([ 

        keras.layers.Dense(64, activation='relu', input_shape=(X_train.shape[1],)), 

        keras.layers.Dense(32, activation='relu'), 

        keras.layers.Dense(1)]) 

    nn_model.compile(optimizer='adam', loss='mse', metrics=['mae']) 

    nn_model.fit(X_train_scaled, y_train_scaled, epochs=50, batch_size=32, 

verbose=0) 

 

    nn_predictions_scaled = nn_model.predict(X_test_scaled) 

    nn_predictions = scaler.inverse_transform(nn_predictions_scaled) 

    nn_mse_scores.append(mean_squared_error(y_test, nn_predictions)) 

    nn_mae_scores.append(mean_absolute_error(y_test, nn_predictions)) 

    nn_r2_scores.append(r2_score(y_test, nn_predictions)) 

 

Plotando os resultados: 

 

print("Random Forest:") 

print("MSE:", np.mean(rf_mse_scores)) 

print("MAE:", np.mean(rf_mae_scores)) 

print("R^2:", np.mean(rf_r2_scores)) 

 

print("\nNeural Network:") 

print("MSE:", np.mean(nn_mse_scores)) 

print("MAE:", np.mean(nn_mae_scores)) 

print("R^2:", np.mean(nn_r2_scores)) 
 
Random Forest: 
MSE: 8.6366 
MAE: 1.8555 
R²: 0.8791 
 
Neural Network: 
MSE: 7.0329 
MAE: 1.6547 
R²: 0.9016 
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4 RESULTADOS E DISCUSSÃO 

Após a mineração de dados, a interpretação dos resultados é essencial. A 

avaliação é feita para garantir que os padrões encontrados sejam válidos e úteis para 

os objetivos da empresa. 

No contexto do KDD, a fase de interpretação pode ser vista como a finalização 

do pipeline de dados, assim como a fase de carregamento do ETL, onde os dados 

são armazenados em um banco de dados para visualização, relatórios ou modelos 

analíticos. 

Na Figura 28, observa-se a consolidação dos resultados obtidos em uma tabela 

para melhor comparação entre os modelos. 

 

Figura 28. Tabela Comparativa dos Modelos 

Com base na tabela de resultados fornecida, observamos que os modelos de 

Random Forest, KNN (com K=5) e Redes Neurais se destacam pela alta precisão, 

apresentando valores de r² acima de 0,96 e erros (MSE e MAE) relativamente baixos. 

Em particular, o modelo de Redes Neurais obteve um desempenho excepcional com 

o menor MSE (0,035) e MAE (0,1038), sugerindo uma excelente capacidade de 

predição com alta acurácia para a variável alvo. Esses resultados indicam que esse 

modelo captura bem a relação entre as variáveis de processo e a rigidez do 

papelcartão, o que pode ser valioso para prever a rigidez em tempo real. 

Comparativo Modelos MSE MAE r²

Regressão Linear - 3 Variáveis 7,6486 1,8907 0,9130

Regressão Linear - 6 Variáveis 6,2482 1,6567 0,9290

Random Forest 1,6976 0,5669 0,9807

KNN (K=5) 1,7161 0,5858 0,9805

Redes Neurais 0,035 0,1038 0,9668

SVM 25,5277 3,2392 0,7095

Árvore de Decisão 3,199 0,668 0,9636

GBM 3,5044 1,0700 0,9601

PCA - Regressão Linear 15,9887 2,8509 0,8181

PCA - Random Forest 5,1657 1,2695 0,9412

PCA - KNN 4,9517 1,2499 0,9437
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Por outro lado, o modelo SVM apresentou o menor desempenho, com um MSE 

e MAE elevados e um r² significativamente inferior (0,7095), sugerindo que esse 

método pode não ser adequado para este conjunto de dados. A inclusão de técnicas 

de redução de dimensionalidade (PCA) melhorou a performance de alguns modelos, 

mas de maneira geral, as melhores performances foram obtidas com modelos não-

linearizados sem PCA. Esses resultados apontam para a viabilidade do uso de 

modelos de aprendizado supervisionado, especialmente o Random Forest e as Redes 

Neurais, para a predição eficiente e precisa da rigidez do papelcartão, possibilitando 

um controle mais dinâmico e contínuo do processo produtivo. 

Um período dentro do intervalo de dados foi escolhido para apresentar em um 

gráfico (Figura 29), o comportamento da variável alvo estimada em relação à RIGIDEZ 

LONGITUDINAL MÉDIA medida em laboratório. O intervalo do período entre 05:21h 

e 19:36h do dia 08 de Junho de 2024 mostra oscilações na Rigidez (Linha Roxa – 

“Yest Long”) que não são capturadas pelas medições de Rigidez do Laboratório de 

Qualidade (Linha Azul Claro – “RIGIDEZ LONGITUDINAL MEDIA”), inclusive com 

valores abaixo do Limite Inferior de Especificação de Produto (“L Inf” representado 

pela Linha Vermelha Tracejada).  

 

Figura 29. Rigidez Longitudinal Estimada vs. Rigidez Medida 

Um comportamento similar pode ser observado no intervalo entre 15:13h e 

23:39h do dia 16/08/2024 mostrado na Figura 30 abaixo, porém com um Yest (Rigidez 

Estimada) bem próximo do limite mínimo de especificação, o que possibilita alertas 
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aos colaboradores da operação para correção de parâmetros que levem a Rigidez 

mais próxima ao valor nominal para esta categoria de produto. 

 

Figura 30. Rigidez Longitudinal Estimada vs. Rigidez Medida 

A aplicação da validação cruzada mostrou como resultados do Random Forest 

um MSE 8.6366, MAE 1.8555 e r² 0.8791 e para Redes Neurais um MSE 7.0329, MAE 

1.6547 e r² 0.9016. 

Para comparar estes resultados e definir qual é o melhor modelo para predição 

da Rigidez do Papelcartão, calcula-se a média do desvio padrão das métricas obtidas 

de cada split, escrito no código seguinte: 

print("\nRandom Forest Standard Deviations:") 

print("MSE:", np.std(rf_mse_scores)) 

print("MAE:", np.std(rf_mae_scores)) 

print("R^2:", np.std(rf_r2_scores)) 

 

print("\nNeural Network Standard Deviations:") 

print("MSE:", np.std(nn_mse_scores)) 

print("MAE:", np.std(nn_mae_scores)) 

print("R^2:", np.std(nn_r2_scores)) 

 

rf_avg_r2 = np.mean(rf_r2_scores) 

rf_std_r2 = np.std(rf_r2_scores) 

 

nn_avg_r2 = np.mean(nn_r2_scores) 

nn_std_r2 = np.std(nn_r2_scores) 

 

print("\nModel Comparison:") 

print("Random Forest - Average R^2:", rf_avg_r2, ", Standard Deviation:", rf_std_r2) 
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print("Neural Network - Average R^2:", nn_avg_r2, ", Standard Deviation:", 

nn_std_r2) 
 
Random Forest Standard Deviations: 
MSE: 3.3640 
MAE: 0.3421 
R^2: 0.0659 
 
Neural Network Standard Deviations: 
MSE: 2.5472 
MAE: 0.2345 
R^2: 0.0507 
 
Model Comparison: 
Random Forest - Average R^2: 0.8791, Standard Deviation: 0.0659 
Neural Network - Average R^2: 0.9016, Standard Deviation: 0.0507 

 E por fim, a decisão de qual é o melhor modelo, baseado na maior média de r² 

e menor desvio padrão: 

if rf_avg_r2 > nn_avg_r2 and rf_std_r2 < nn_std_r2: 

    print("\nRandom Forest apresentou melhor performance.") 

elif nn_avg_r2 > rf_avg_r2 and nn_std_r2 < rf_std_r2: 

    print("\nRedes Neurais apresentou melhor performance.") 

else: 

    print("\nSelecao do modelo ambigua.") 
 

Redes Neurais apresentou melhor performance. 
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5 CONCLUSÃO 

O conhecimento adquirido nas disciplinas “Análise e Mineração de Dados” e 

“Análises Preditivas” foi essencial para o desenvolvimento deste trabalho que com a 

aplicação de princípios e métodos de sistemas de previsão integrados à análise de 

dados em tempo real e aprendizado de máquina, proporcionará melhoria significativa 

no produto e no processo alvo.  

Este trabalho investigou a predição da rigidez longitudinal média do papelcartão 

utilizando diversas técnicas de aprendizado de máquina. Foram avaliados modelos de 

Regressão Linear, Random Forest, KNN, Redes Neurais, Support Vector Regression 

(SVR), Árvore de Decisão e Gradient Boosting Machine, com e sem aplicação de PCA,  

e com diferentes métricas de avaliação (MSE, MAE, R²). Os resultados demonstraram 

que o desempenho dos modelos variou, sendo que o Random Forest e as Redes 

Neurais apresentaram os melhores resultados de R², e a validação cruzada por séries 

temporais confirmou a robustez dos modelos selecionados.  

A comparação final, com base na média do R² e desvio padrão dos resultados obtidos 

via validação cruzada, permite concluir que o modelo mais robusto para a predição de 

valores de rigidez do papelcartão, levando em consideração tanto a acurácia quanto 

a estabilidade da predição é o modelo Redes Neurais. 

Este algorítimo aplicado ao ambiente fabril, possibilita rápida reação dos 

operadores de máquina frente a problemas de qualidade iminentes, antes que atinjam 

o limite mínimo de especificação da rigidez do papelcartão por ter uma visualização 

em tempo real, sem ter que aguardar resultado de análise em laboratório. 

Mesmo que um problema aconteça, como visto nas figuras 29 e 30, é possível 

fazer marcações na bobina de papelcartão e retirar este material abaixo do limite 

mínimo de especificação dos processos subsequentes, garantindo que o cliente 

receba apenas produtos com rigidez conforme especificação técnica. 
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