UNIVERSIDADE DE SAO PAULO

Departamento de Engenharia Elétrica e de Computacao

Implementagao de um servidor utilizando Linux embarcado

com acesso e gerenciamento através de smartphone

André Ricardo Gouveia Barros

A IS,

&

Universidade de Sao Paulo
Escola de Engenharia de Sdao Carlos

Sao Carlos - SP

Implementagao de um servidor utilizando Linux embarcado

com acesso e gerenciamento através de smartphone

André Ricardo Gouveia Barros

Orientador: Evandro Luis Linhari Rodrigues

Monografia final de conclusdo do curso Engenharia de
Computacdo apresentada ao Departamento de Engenharia
Elétrica e de Computacdo — EESC-USP.

USP - Sao Carlos
Outubro de 2013

AUTORIZO A REPRODUGAO TOTAL OU PARCIAL DESTE TRABALHO,
POR QUALQUER MEIO CONVENCIONAL OU ELETRONICO, PARA FINS
DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE.

B2681i

Barros, André Ricardo Gouveia

Implementagdo de um servidor utilizando Linux
embarcado com acesso e gerenciamento através de
smartphone / André Ricardo Gouveia Barros; orientador
Evandro Luis Linhari Rodrigues. S&o Carlos, 2013.

Monografia (Graduacdo em Engenharia de Computacéo)
-- Escola de Engenharia de S&o Carlos da Universidade
de Sdo Paulo, 2013.

1. Raspberry Pi. 2. Android. 3. Cliente/Servidor.
4. GPIO. I. Titulo.

FOLHA DE APROVACAO

Nome: André Ricardo Gouveia Barros

Titulo: “Implementagdo de um servidor utilizando Linux embarcado com
acesso e gerenciamento através de smartphone”

Trabalho de Conclusio de Curso defendido em ,‘// / -(/ /“/0-/5’ .

Comissio Julgadora: Resultado:

Prof. Associado Evandro Luis Linhari Rodrigues

Orientador - SEL/EESC/USP APLOVADE)
Prof. Dr. Marcelo Andrade da Costa Vieira /J ?/2—’ A-DO
SEL/EESC/USP

Prof. Dr. Valdir Grassi Junior A Provo.d0
SEL/EESC/USP ‘

Coordenador pela EESC/USP do Curso de Engenharia de Computaciio:

Prof. Associado Evandro Luis Linhari Rodrigues

“Pepe! Ja tirei a vela!”

Ruben Aguirre.
Chapolin: A Troca de Cérebros.

Dedicatoria

A minha mae Rosangela e meu pai Aclézio, pela compreensdo, apoio e contribui¢cdo para

minha formacao pessoal e académica.

Agradecimentos

Agradeco a minha familia pelo apoio e disposi¢cdo em me ajudar a conquistar meus sonhos
e explorar meus potenciais, ao corpo docente da USP pelo conhecimento compartilhado e aos
meus amigos pelo auxilio e incentivo neste trabalho, além da companhia e alegrias durante a

graduacdo.

Resumo

Com o surgimento de sistemas embarcados com propdsitos educacionais a criagdo de pro-
jetos embarcados tornou-se economicamente vidvel, aumentando o nimero de usudrios que se
aventuram nessa area. Neste trabalho, € projetado e desenvolvido um servidor implementado
na Raspberry Pi que fornece fungdes relacionadas a sua camera e a seus pinos de GPIO. O
acesso a esse servidor € feito remotamente por clientes desenvolvidos em Java e executados em
smartphone Android. Com esta combinacdo € possivel a utiliza¢cdo em diversas areas, como por
exemplo um sistema de seguranca e vigilancia, com acesso a caméra e possibilidade de acio-
namento de alarmes, sensores e lampadas e tantas outras aplicagdes que se possa imaginar no
campo de automacao via Web. O desenvolvimento deste projeto possibilitou uma maneira inte-
ressante de introducgd@o nesse universo de conhecimento de forma prética e funcional, agregando

valor técnico, tedrico e cientifico.

Palavras-chaves: Sistemas Embarcados, Linux Embarcado, Android, Raspberry Pi, Ras-
piVid, RaspiStill.

Abstract

With the growing of embedded systems for educational purposes, creating embedded pro-
ject became economically viable, increasing the number of users who venture into this area.
In this work is the design and developed a server implemented in a Raspberry Pi that provides
functions related to its camera and its GPIO pins. Access to this server is done remotely by cli-
ents on smartphone Android. With this combination is possible to use in various areas, such as
a security system, having access to the camera and the possibility of triggering alarms, sensors
and lamps, and many other applications imaginable in automation via web. The development of
this project allowed an interesting way of introducing this universe of knowledge in a practical

and functional, adding value technical, theoretical and scientific.

Keywords: Embedded Systems, Embedded Linux, Android, Raspberry Pi, RaspiVid,
RaspiStill.

Sumario

Lista de Figuras p.V
1 Introducio p.7
1.1 Contextualizagdo e Motivagdo p.7

1.2 Objetivos o o e e e e e e p.8

1.3 Organizacdo do Trabalho p-9

2 Materiais e Métodos p. 10
2.1 Raspberry e p-10
2.1.1 Sistema Operacional, p.-11

2.1.2 RaspberryPiCamera p. 12

2.1.3 General-purpose input/output- GPIO p.-13

22 Android e p. 14
2.2.1 Eclipsee Plugin ADT p-15

222 AndroidStudio p. 15

2.3 Video Streaming e p.- 16
231 Motion e e p.- 16

232 MIPG-streamer p.16

233 FFmpeg e p. 16

234 RTSP . . o e p-17

2.4 Modulacdo por largurade pulso-PWMo p.-17

24.1 ServoBlaster p.- 18

242 Pi-blaster

3 Desenvolvimento do Trabalho

3.1

3.2

33

Descricdo das Etapas de Desenvolvimento
Servidor - Raspberry Pi
Cliente - Aplicativo Android

33.1 Comunicacdo e e e e e e e e e e e

4 Resultados e Discussoes

4.1

4.2

Resultados Obtidos e

Dificuldades e Limitacdes

5 Conclusoes

5.1

5.2

Relacionamento entre o Cursoe o Projeto

Trabalhos Futuros

Referéncias Bibliograficas

6 Apéndice A - Imagens capturadas com diferentes parametros

7 Apéndice B - Céodigo do Servidor

7.1

7.2

Server e e e e e e e
7.1.1 ServerJava
7.1.2 ServerHandlerjava
GPIO . . . e
7.2.1 GpioOScheduleThreadjava
7.2.2 GpioScheduleHandlerjava
723 P4 .o

p.-19

p. 20

p. 26

p.35

p-43
p.43

p. 44

p. 45
p. 46

p. 46

p. 48

p.50

7.3.1 CameraPictureScheduleThread.java p. 65

7.3.2 CameraPictureScheduleHandlerjava p. 67

7.3.3 CameraPictureTakeThread.java p.- 69

74 Camera-Video e p. 69
7.4.1 CameraVideoThreadjava. p. 69

7.4.2 CameraVideoScheduleThreadjava p-70

7.4.3 CameraVideoScheduleHandlerjava p.71

7.5 ATQUIVOS . . . o o e e e e e e e e p-73
7.5.1 FilePicturesTransferThread.java p-73

7.5.2 FileVideosTransferThread.java p.74

8 Apéndice C - Cédigo do Cliente p.-75
81 Cliente e p-75
8.1.1 LoginActivity.Java p.75

8.1.2 MainActivity.Java L p-76

8.1.3 ConnectionUtilitiesJava p.77

8.1.4 ConnectionAsyncTask.JJava p.79

82 CAmera e e e e p-79
8.2.1 CameraListActivityJava p-79

8.2.2 CameraPictureScheduleActivityJava p- 80

8.2.3 CameraPictureTakeActivityJava p- 86

8.2.4 CameraVideoScheduleActivityJava p-90

8.2.5 CameraRealTimeActivityJava p-95

83 GPIO e p.-97
8.3.1 GpioListActivityJava. p.97

8.3.2 GpioActivityJava Lo p- 98

84 Arquivos. p- 102

8.4.1

8.4.2

8.4.3

8.4.4

8.4.5

FileListActivity.Java p.102
FilePicturesActivity.Java p. 102
FileVideosActivityJava. p. 105
FileVideosTransferThread.Java. p- 109

FilePicturesTransferThread.Java p.110

2.1

22

2.3

24

2.5

3.1

32

33

34

3.5

3.6

3.7

3.8

3.9

3.10

3.11

3.12

3.13

3.14

3.15

3.16

Lista de Figuras

Raspberry PimodeloB [8] p. 11
Raspberry Pi modelo B e médulodacamera [8] p-13
Pinos GPIO da Raspberry Pi. No modelo B a nomenclatura muda, o pino 21

passaaser 27 [24]. L. p. 14
Numero aplicativos Android instalados entre 2009 e 2012 [18]. p. 15
Sistema para controle do posicionamento da camera [25]. p-17
Estrutura do XML correspondente a captura de imagem p-22
Estrutura do XML correspondente a gravagdode video p.22
Estrutura do XML correspondente ao GPIO nimeroO p.22
Estrutura das threads no servidor p.23
Tela de login do aplicativo p.27
Tela principal do aplicativo Lo p.27
Tela com as funcdes relacionadas acamera p.28
Tela utilizada para capturade imagem p-29
Tela utilizada para agendamento da captura de imagem p-30
Tela de controle do streaming p-30
Tela utilizada para agendamento da capturade video p.31
Tela inicial de acesso para aos pinos GPIO p.32
Tela de controle e agendamento do pino GPIOO p.-32
Tela inicial para escolha dos arquivos p-33
Telas com arquivos de imagemevideo p.34
Esquema de comunicacio do projeto entre Cliente e Servidor p-35

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

Imagem capturada com os parametros padroes p-50
Imagem capturada com 70 de brilho p.51
Imagem capturada com 100 de contraste p.51
Imagem capturada com 30 de saturacao p.52
Imagem capturada com -40 de saturacdo p-52
Imagem capturada com 60 de sharpness p.53
Imagem capturada com efeito colorswap p.53
Imagem capturada com efeito emboss p. 54
Imagem capturada com efeito negative p. 54

6.10 Imagem capturada com exposicao off p.55

1 Introducao

1.1 Contextualizacao e Motivacao

O telefone movel, ou celular, foi lancado em 1973, em Nova lorque. Na época, o aparelho
era gigantesco, tanto que o primeiro a ser viavel comercialmente pesava em torno de 800 gramas
e foi langado uma década apds sua criagdo. No seu inicio ndo existia o sinal digital, somente o
analdgico e seu uso era restrito para a parcela da populagdo com maior poder aquisitivo. Outro
aspecto que se alterou completamente foi a questdo da percep¢do do usudrio em relacio ao seu
uso uma vez que no seu inicio as pessoas nao viam tanta utilidade a nio ser poder falar em
diferentes localidades com o mesmo telefone. Atualmente, o celular € um dos equipamentos
tecnolégicos mais comuns no pais. E extremamente dificil encontrar alguém com mais de 12

anos que ndo possua ou ji tenha utilizado um aparelho. [17].

O smartphone é basicamente um celular com funcionalidades avangadas que podem ser
estendidas através de programas e aplicacdes, tendo sua utilidade em diversas dreas, como fer-
ramenta de trabalho, lazer e comunicagdo. O uso de smartphones nao para de aumentar, o Brasil

¢ o quarto pais do mundo em nimero de smartphones no mundo sao 70 milhdes. [19]

Outra parte importante a considerar € a crescente adocao e uso da internet em dispositivos
méveis. E esperado que nos préximos anos, os usudrios de Internet troquem os computadores
pessoais pelos seus smartphones. Segundo o IDC (International Data Corporation), espera-se
que em 2015 o numero de usudrios conectados a internet via smartphones seja consideravel-

mente maior dos que o fazem através do computador.

Outra 4rea abrangida por este trabalho € o de sistemas embarcados, mais especificamente

aqueles capazes de rodar Linux, no caso, a Raspberry Pi.

Sistemas embarcados consistem em sistemas microprocessados no qual o poder de proces-
samento € voltado a realizacdo de uma atividade especifica. Se comparado com um computador
normal, o sistema embarcado € construido para realizar sua atividade mais rapidamente, ocu-

pando menor espago, consumindo menos energia € com custo reduzido. Existem dispositivos

com sistemas embarcados com diversos propositos, alguns mais dedicados e outros mais abran-

gentes.

Sistemas embarcados com propésito dedicado tem seu uso mais restrito. Como por exem-
plo: microondas, geladeiras, freios ABS, impressoras, entre outros. Esses sistemas tem seus
componentes computacionais dimensionados de acordo com suas tarefas, podendo possuir um
processador de menor frequéncia, mas que consegue responder em tempo esperado para desem-

penho da aplicacao [22].

Sistemas embarcados com propdsito geral possuem geralmente processadores € memorias
mais potentes e de maior desempenho se comparados aos dedicados. Seu uso pode variar de
acordo com sua finalidade [22]. Um exemplo comum desses sistemas € a Raspberry Pi, um
computador do tamanho de um cartio de crédito criado para estimular o ensino de programagao
e tecnologia. Foi anunciado em 2011 e lancado em 29 de fevereiro de 2012, idealizado pelo
inglés Pete Lomas para ser o computador mais barato do mercado, com o preco de 25 ddlares
(modelo A) ou 35 ddlares (modelo B).

1.2 Objetivos

O objetivo deste trabalho € unir as duas areas citadas, smartphone e sistema embarcado,
mais especificamente, Android e Raspberry Pi, criando uma plataforma que ofereca acesso
a camera e aos pinos GPIO da Raspberry Pi, controlados por um celular Android. Essa
combinagdo possibilita o uso em diversas dreas, desde segurancga residencial com acesso a
caméra e acionamento de alarmes, sensores e lampadas, até ao controle de uma estufa, com
acompanhamento do crescimento das plantas através de imagens capturadas de tempo em

tempo.

O trabalho pretende focar no controle de algumas funcoes presentes na Raspberry Pi através
de qualquer smartphone que utilize Android versdo 2.2 ou superior, englobando 98 por cento

dos usuarios de Android.

O celular Android conectado a internet com o aplicativo desenvolvido neste projeto atuard
como cliente, que permitird o acesso, monitoramento e controle de fun¢des fornecidas pela

Raspberry Pi.

A Raspberry Pi conectada a internet, atuard como servidor, fornecendo acesso a sua camera

e a seus pinos de proposito geral (General-purpose input/output - GP10).

Com essa combinagdo espera-se obter o acesso remoto a Raspberry Pi, possibilitando:

e Movimentacdo da camera com uso de servos controlados pelo acelerometro do Android.
e Captura de imagem em tempo real.

e Agendamento para captura de imagem.

e Visualizacio de video em tempo real.

e Agendamento para gravagdo de video.

e Acesso, download e visualizac¢do dos arquivos de imagem e video gerados.

e Acionamento dos pinos GPIO.

e Agendamento do funcionamento dos pinos GPIO.

e Uso do acelerdometro do smartphone para controle do posicionamento da camera.

1.3 Organizacao do Trabalho

Nos proximos capitulos sdo apresentados a fundamentagdo tedrica pesquisada e utili-
zada durante o desenvolvimento do projeto, a implementa¢do do servidor, do cliente e da
comunicacao. Por fim, € apresentado os resultados obtidos, dificuldades encontradas e possiveis

trabalhos futuros.

10

2 Materiais e Métodos

Neste capitulo sdo apresentados os materiais, métodos e as terminologias bédsicas da drea em
que o projeto se insere e o levantamento bibliografico necessario para realizagcao deste trabalho.
Em particular, a descri¢do dos principais trabalhos de pesquisa relacionados com este, bem

como dos trabalhos que serviram de base para a solug@o proposta por este projeto.

2.1 Raspberry

A Raspberry Pi € um computador de pequeno porte, do tamanho de um cartdo de crédito,

com dimensoes de 85.60mm x 56mm x 21 mm que pesa 45g [8].

Raspberry Pi foi anunciado em 2011, idealizado pelo inglés Pete Lomas para ser o compu-
tador mais barato do mercado, com o prego de 25 ddlares (Modelo A) ou 35 ddlares (Modelo B).
O aparelho foi langado em 29 de fevereiro de 2012 com finalidades educativas. O computador

de cédigo aberto foi criado para estimular o ensino de programacao e tecnologia [12].

E baseado em um system on a chip Broadcom BCM2835 [7], que inclui um processador
ARM1176JZF-S de 700 MHz com operagdes em ponto flutuante, 256 ou 512 MB de memdria
RAM e uma GPU Videocore 4, capaz de reproduzir videos em qualidade de BluRay, utilizando
H264 a taxas de 40MBits/s, com acesso a OpenGL ES2.0 e bibliotecas OpenVG.

Existem dois modelos: Modelo A que conta com 256 MB RAM, uma porta USB e nenhuma
porta Ethernet e o Modelo B, figura 2.1, com 512 MB RAM, 2 portas USB e uma porta Ethernet
[12].

Os requisitos de energia do dispositivo sdo bem comuns, ela é alimentada por 5V via porta
micro USB. Para o Modelo B € necessario uma fonte que forneca até¢ 700mA, enquanto para o

Modelo A, sdo apenas 300mA. Muitos carregadores de celular atendem a essa exigéncia [10].

11

RASPBERRY PI MODEL B

RCAVIDEO AUDIO LEDS USB

SD CARD

POWER

Figura 2.1: Raspberry Pi modelo B [§8]
2.1.1 Sistema Operacional

Existem diversas possibilidades de sistema operacional para a Raspberry Pi, no site ofi-
cial [9] sdo disponibilizadas algumas versdes. A seguir sdo descritos brevemente os principais

sistemas operacionais fornecidos.

Raspbian Wheezy

Raspbian é um sistema operacional livre baseado em Debian otimizado para o hardware da

Raspberry Pi, que conta com mais de 35 mil pacotes.

A construcdo inicial destes pacotes otimizados do Raspbian foi concluida em junho de
2012. No entanto, o Raspbian encontra-se em desenvolvimento ativo, com €nfase em melhorar

a estabilidade e o desempenho de tantos pacotes quanto possivel.

Raspbian € a distribuicdo recomendada para a maioria dos usudrios da Raspberry Pi. A
excecdo € para os usudrios que sao dependentes de software que ainda ndo estd presente ou

funcional em raspbian.

Soft Float Debian Wheezy

O Soft Float Debian Wheezy é idéntico ao Raspbian wheezy, porém utiliza soft-float. E
recomendado para se utilizar com softwares como Oracle JVM, que ainda nao tem suporte ao

hard-float utilizado pelo Raspbian.

12

Arch Linux ARM

O Arch Linux ARM ¢é baseado no Arch Linux. Foca na simplicidade e controle total para o
usudrio final, dando-lhe total controle e responsabilidade sobre o sistema. Essa versao pode ser

complicada para iniciantes.

Fornece suporte a soft-float para ARMVS5 e suporte hard-float para ARMv6 e ARMv7 [2].

RISC OS

E um sistema operacional projetado em Cambrigde pela Acorn. Lancado em 1987, suas

origens levam ao time original de desenvolvedores do ARM.

De 1988 a 1998 o RISC OS era vastamente utilizado em todo computador baseado em
ARM produzido pela Acorn. Apds o desmembramento da Acorn, em 1998, o desenvolvimento
do sistema operacional foi bifurcada e continuou separadamente por varias empresas. Em 2011

foi anunciado uma versao de desenvolvimento para a Raspberry Pi [21].

2.1.2 Raspberry Pi Camera

A camera da Raspberry Pi € um moddulo adicional. Ela € ligada a um dos dois sockets
superiores presentes na Raspberry Pi. Esse socket trata-se de uma interface CSI (Camera Serial
Interface), que é desenhada especialmente para cameras, sendo capaz de suportar altas taxas de

transferéncia de dados [14].

A placa da camera em si € pequena e pesa menos de 4 gramas, se tornando excelente para

aplicagdes moveis ou em aplicagdes que o tamanho e peso sdo importantes.

O sensor da camera tem resolugdo nativa de 5 megapixel com lentes fixas. Em termos de
imagem estdtica, a camera € capaz de gerar fotos de até 2592 x 1944 pixel, além de suportar
videos em 1080p a 30fps, 720p a 60fps e 480p a 90fps.

A camera foi lancado para venda em 14 de Maio de 2013 com producao inicial de dez mil

unidades que teve seu estoque esgotado alguns dias depois do inicio das vendas.

A imagem 2.2 mostra uma foto do moédulo da camera acoplado a Raspberry Pi.

Tabela 2.1: Dados técnicos da cdmera Raspberry Pi

Tipo de sensor

OmniVision OV5647 Color CMOS QSXGA (5 megapixel)

Tamanho do sensor

3.67 x 2.74 (mm)

Quantidade de pixel

2592 x 1944

Tamanho do pixel

1.4 x 1.4 (um)

Anglo de visao

54 x 41 (graus)

Campo de visdo

20x1.33mha2m

Lente equivalente 35 mm

Foco fixo I m

Video 1080p a 30 fps com codec H264
Tamanho da placa 25 x 24 (mm)

Figura 2.2: Raspberry Pi modelo B e mddulo da camera [8]

2.1.3 General-purpose input/output - GPIO

13

Um General Purpose Input/Output, ou GPIO, € um pino genérico que pode ter seu compor-

tamento (de entrada ou de saida) controlado/programado por software. Fornece saidas 16gicas

0 e 1, podendo ser utilizado para o acionamento de diversos atuadores.

A Raspberry Pi possui 26 pinos, alinhados em duas colunas de 13, que fornecem: 8 GPIO,
12C, SPI, UART, +3.3V, +5.0V e GND. Todos os pinos de UART, SPI e I2C podem ser recon-
figurados como GPIO, sendo possivel alcangar 17 pinos GPIO [24].

O nivel de tensao do GPIO € de 3.3V e nao de 5V. Nao existe qualquer tipo de protecao

de sobrecarga, a intencdo € que pessoas interessadas no uso intensivo destes pinos utilizem

uma placa externa ao invés da ligacdo direta na Raspberry Pi, porém nada impede o uso direto,

desde que seja tomada as devidas precaugdes. A figura 2.3 exibe o posicionamento dos pinos

da Raspberry Pi.

14

5v GND GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO

2NN

3.3 GPIOO GPIO1 GPIO GPIO GPIO GPIO GPIO GPIO GPIO
(SDA) (SCL) 4 17 21 22 10 (MOSI) 9(MISQ) 11 (SCKL)

Raspberry Pi GPIO

Figura 2.3: Pinos GPIO da Raspberry Pi. No modelo B a nomenclatura muda, o pino 21 passa
aser 27 [24].

2.2 Android

O Android € um sistema operacional baseado em Linux projetado para dispositivos méveis

touchscreen, como smartphones e tablet.

Foi inicialmente desenvolvido pela Android Inc, com apoio financeiro do Google, que pos-
teriormente comprou a empresa. Foi langado em 2007 junto com a fundagdo Open Handset Al-
liance, um consorcio de hardware, software, telecomunicagdes e empresas dedicadas ao avango
dos dispositivos méveis [16]. O primeiro telefone com Android foi vendido em outubro de
2008.

O Android é open source e o Google libera o cédigo sob a licenga Apache, permitindo que
o software seja livremente modificado e distribuido por fabricantes de aparelhos, operadoras

sem fio e desenvolvedores entusiastas [15].

Além disso, o Android tem uma grande comunidade de desenvolvedores que criam aplica-
tivos que estendem a funcionalidade de dispositivos, 0s quais sdo escritos principalmente em

uma versdo personalizada da linguagem de programacao Java.

Em outubro de 2012, havia cerca de 700 mil aplicativos disponiveis para Android [27]. O
numero estimado de aplicativos instalados a partir do Google Play, principal loja de aplicativos

do Android, € de 25 bilhdes, como mostra a figura 2.4.

Esses fatores t€ém contribuido para tornar o Android plataforma de smartphone mais usado

do mundo.

15

Google play APP INSTALLS

\ 4

| 3suuion |
| 1muon |
el

15 BILLION
10 BILLICN

2008 2009 2010 20M 2012

Figura 2.4: Nuimero aplicativos Android instalados entre 2009 e 2012 [18].
2.2.1 Eclipse e Plugin ADT

O Eclipse ¢ um ambiente de desenvolvimento multi-linguagem Integrado (IDE), escrito
principalmente em Java. Pode ser usado para desenvolver aplicagdes em Java e, por meio de
varios plugins, outras linguagens de programacdo, incluindo Ada, C, C++, COBOL, Fortran,
Haskell, JavaScript, Lasso, Perl, PHP, Python, R, Ruby, Scala, Clojure, Groovy, Scheme e
Erlang.

O Android Development Tools (ADT) € um plugin projetado para o Eclipse IDE para for-

necer um ambiente poderoso e integrado para a criacdo de aplicativos Android [1].

O ADT amplia os recursos do Eclipse para que se possa criar novos projetos, interfaces do
usudrio, adicionar pacotes com base no quadro API Android, depurar seus aplicativos usando
as ferramentas do SDK do Android e até mesmo exportar o aplicativo a fim de distribuir a sua

aplicacdo .

2.2.2 Android Studio

O Android Studio ¢ um novo ambiente de desenvolvimento Android com base no Infel-
liJ IDEA. Semelhante ao Eclipse com o plugin ADT, Android Studio fornece ferramentas de

desenvolvimento integradas Android para desenvolvimento e depuragdo [13].

16

Foi anunciado em 16 de Maio de 2013 na conferéncia Google I/O. Em junho de 2013, ele

foi disponivel em forma de beta para os usudrios.

2.3 Video Streaming

Streaming € utilizado para distribuir conteudo multimidia através da Internet. Em strea-
ming, as informacdes multimidia ndo sdo, usualmente, arquivadas pelo usudrio que esta rece-
bendo o streaming (a ndo ser o armazenamento temporario no cache do sistema ou que o usuario
ativamente faca a gravacdo dos dados) a midia é reproduzida a medida que chega ao usudrio,

desde que a sua largura de banda seja suficiente para reproduzir os contetidos em tempo real.

Assim, para visualiza¢do da camera em tempo real se faz necesséario a utilizagdao do servigo
de streaming. Existem softwares que provem tal servico. Abaixo sdo listados alguns, bem como

uma breve descri¢do de cada um.

2.3.1 Motion

O motion € um programa que controla o sinal de video a partir de uma ou mais cameras.
E capaz de detectar se uma parte significativa da imagem mudou, ou seja, ele pode detectar o
movimento [4]. O programa € escrito em C e € feito para o sistema operacional Linux, usando

a interface video4linux.

2.3.2 MJPG-streamer

MIJPG-streamer € uma aplicagdo baseada em linha de comando para transmitir arquivos

JPG através de uma rede IP da webcam para um navegador.

E possivel fazer uso do sistema de compressdo que certas cameras dispoem, a fim de re-
duzir o custo de processamento no servidor. Isso o torna uma solucdo leve para dispositivos
embarcados e servidores comuns, que ndo devem usar a maior parte de seu processamento para

comprimir quadros [23].

2.3.3 FFmpeg

FFmpeg ¢ um dos principais framework multimidia. Ele é capaz de codificar, decodificar ,

mux, demux, realizar streaming, filtrar e rodar praticamente qualquer formato.

17

O FFmpeg € um projeto que tenta oferecer boas solucdes técnicas para os desenvolvedores
de aplicacOes e usudrios finais. Para isso ele combina as melhores opcdes de software dis-

poniveis gratuitamente [3].

2.3.4 RTSP

O Real Time Streaming Protocol é um protocolo de controle de rede projetado para uso em

sistemas de entretenimento e de comunicacao para controlar servidores de streaming de midia.

A transmissao de streaming de dados em si ndao é uma tarefa do protocolo RTSP. A maioria
dos servidores RTSP usam o Real-time Transport Protocol (RTP) em conjunto com o Real-time

Control Protocol (RTCP) para entrega em fluxo de midia.

O RTSP foi desenvolvido pelo Multiparty Multimedia Session Control Working Grouo da
Internet Engineering Task Force (IETF) e publicado como RFC 2326 em 1998 [6].

2.4 Modulacao por largura de pulso - PWM

Uma possibilidade para o controle da camera € utilizacio de servos montados como mostra
a figura 2.5. O posicionamento dos servos € feito por PWM, como angulo definido pela largura

do pulso.

Figura 2.5: Sistema para controle do posicionamento da camera [25].

A modulacdo por largura de pulso (PWM, Pulse Width Modulation) é uma técnica larga-
mente utilizada para o controle de dispositivos e sinais, desde iluminacdo e acionamento de
motores até dudio. Consiste em uma onda que alterna seu estado em nivel 16gico alto e um

nivel 16gico baixo e varia seu duty cicle. Com isso € possivel o controle de motores e servos.

18

Apesar de dispor de diferentes comunicagdes (GPIO, 12C, SPI, UART, +3.3V, +5.0V e
GND), a Raspberry Pi ndo conta com PWM. A seguir sdo listadas algumas maneiras pesquisa-

das e utilizadas para se conseguir gerar PWM para a Raspberry Pi.

2.4.1 ServoBlaster

ServoBlaster € um software para a Raspberry Pi, que fornece uma interface para geragao de
PWM através dos pinos GPIO. E possivel se comunicar com o driver informando qual a largura
de pulso desejada. O driver cria um arquivo de dispositivo /dev/servoblaster, no qual vocé pode

enviar comandos.

O driver funciona através da criagdo de uma lista encadeada de blocos de controle de DMA,
com o ultimo ligado ao primeiro, por isso, uma vez iniciado o controlador de DMA roda conti-
nuamente € o driver nao precisa se envolver, a ndo ser quando uma largura de pulso precisa ser

mudado. Com isso, a influéncia do uso do processador na geragao do PWM ¢é reduzida.

Existem duas implementagoes de ServoBlaster, uma sendo baseado em um mdédulo do ker-
nel e outra baseado no user space daemon. O médulo baseado no kernel € o original, porém
dificil de se alcangar, pois € preciso de um kernel que combine com o versao utilizada pelo de-
senvolvedor. A implementacio no user space daemon é muito mais conveniente para se utilizar

e conta com 0s mesmos recursos [20].

O desempenho do ServoBlaster para controle dos servos € satisfatorio, porém, o uso de
PWM desta forma interfere com algumas outras saidas da Raspberry Pi, como por exemplo, a

saida de dudio de 3.5mm e com a prépria camera.

2.4.2 Pi-blaster

Pi-blaster é um software que foi feito a partir do ServoBlaster, tornando possivel a criagdo
de oito sinais PWM que alcangcam de zero a cem por cento da largura do pulso, diferente do

ServoBlaster que alcanga apenas doze por cento quando todas as saidas sdo utilizadas [26].

O desempenho é o mesmo alcancado com o ServoBlaster, inclusive no que se diz respeito

as interferéncias nos outros pinos.

19

3 Desenvolvimento do Trabalho

Para o desenvolvimento deste trabalho foi adotada uma arquitetura semelhante ao para-
digma cliente/servidor. Com a Raspberry Pi atuando como servidor e o smartphone Android
atuando como cliente. A conexao entre cliente e servidor € feita em qualquer rede através de
sockets TCP/IP.

O servidor aceita conexao do cliente durante toda sua execuc¢do. O cliente por sua vez
deve efetuar a conexao utilizando o aplicativo desenvolvido neste trabalho, no qual informa o

endereco IP e a porta do servidor.

Quando estabelecido a conexao entre ambas as partes, inicia-se a troca de mensagens, sendo
o cliente o responsével por fazer requisi¢des ao servidor e, com isso, obter acesso as funcdes

disponiveis.
As funcdes que o servidor oferece sdo:

e Captura de imagem em tempo real com controle de parametros da imagem.

e Agendamento para captura de imagem, com controle de parametros e do tempo entre a

captura das imagens.
e Acionamento e desligamento do streaming de video.
e Agendamento para captura de video com controle de parametros da imagem.
e Acionamento e desligamento dos oito pinos GPIO.
e Agendamento dos oito pinos GPIO.
e Download e visualizacao das imagens capturadas.

e Download e visualizacdo dos videos capturados.

As secOes a seguir descrevem as etapas do desenvolvimento, seguido pela descricdo do

funcionamento e implementacao do servidor, do cliente e da comunicagdo.

20

3.1 Descricao das Etapas de Desenvolvimento

O primeiro passo no desenvolvimento do trabalho foi a criacdo da comunicac¢do, para isso
foram criados dois softwares simples que se conectavam por socket € trocavam mensagens.
Ap6s a verificacdo do funcionamento e estabelecimento dessa conexdo inicial, o software ser-

vidor foi incrementado para permitir a conexao de mais dispositivos a0 mesmo tempo.

O passo seguinte foi a pesquisa e teste das maneiras disponiveis para geracao do PWM.
Com o método PiBlaster escolhido, foi feita a implementagao do acionamento do PWM através
da linguagem Java. O acelerdometro do smartphone foi mapeado para controlar o valor do PWM,

com isso0, 0 posicionamento da camera era controlado pelo movimento do smartphone.

Posteriormente, foi realizado a instalacao, configuracao e testes inicias da camera. Apds o
aprendizado bésico da cAmera, foi feita a implementagdo de seu acionamento e controle através

da linguagem Java.

Com isso o servidor tinha suas principais fun¢des implementadas, entdo foi iniciado a
criacdo do aplicativo Android. A primeira versdo criada possibilitava a captura de imagem
sem alteracdo dos parametros e a geracao de PWM para dois servos utilizados para controle da

camera.

Com versoes basicas do servidor e do cliente, foi iniciado o incremento da comunicagdo

com a criagdo das requisigoes.

Durante o incremento de ambos os softwares, cliente e servidor, eram realizados testes de
uso. Em um desses testes foi detectado um grave problema: o método escolhido para geracao
do PWM alterava todas as saidas da Raspberry Pi, inclusive na saida utilizada pela camera,
causando seu mal funcionamento. Os outros métodos de PWM foram testados, porém nenhum
gerou o resultado esperado. A opcao escolhida foi a ndo utilizacio do PWM, perdendo com

1sso o controle de movimento da cimera.

Com a incompatibilidade eliminada, foram incrementadas as fungdes de GPIO, com a ex-
pansdo para oito pinos e criagdo do agendamento dos mesmos. O mesmo agendamento foi feito
para captura de imagem e video, seguido da criacdo do streaming e da captura de imagem em

tempo real.

Finalizadas as funcdes de camera e GPIO, o préximo passo foi a organiza¢do, comunicagao

e transferéncia dos arquivos gerados para o Android.

Com servidor e cliente funcionando, o passo final foi a organiza¢do e melhoria visual do

aplicativo.

21

3.2 Servidor - Raspberry Pi

A programacdo do servidor poderia ter sido realizada em diversas linguagens, necessitando
apenas que oferecesse acesso aos sockets, mas a linguagem escolhida foi Java, devido ao fato
do cliente Android ser necessariamente programado em Java, assim tanto cliente como servidor
compartilham a mesma linguagem. Existe também o uso da linguagem XML para armazenar

algumas informagdes relacionadas ao agendamento das fungdes do servidor.

Para descrever o funcionamento com mais detalhes os topicos a seguir abordam as fun-
cionalidades e caracteristicas do servidor, mostrando quais as estratégias e ferramentas foram

utilizadas para sua realizagdo.

Controle dos Agendamentos

Para realizar o controle dos agendamentos o servidor conta com a utilizagdo de arquivos
XML para armazenar as informagdes e com threads que acessam, obtém e modificam essas

informacoes.

Quando o servidor ¢ inicializado, sdo criadas dez threads. Essas threads sdo executadas
indefinidamente, sendo oito delas responsaveis por verificar o agendamento dos pinos GPIO e

duas por verificar o agendamento da cdmera, uma para imagem e outra para video.

A cada dez segundos cada uma dessas threads realiza a leitura de um arquivo XML es-
pecifico de sua fun¢do, obtendo informacdes a respeito do agendamento das fungdes. Através
dessas informacgdes a thread toma as acdes necessdrias, ou seja, liga ou desliga o GPIO ou
realiza a gravacao de video ou captura de imagem de acordo com a informagao guardada no
XML.

A cada nova programagao realizada pelo cliente o arquivo XML deve ser atualizado. Na
figura 3.1 € apresentado um exemplo do XML responsavel por salvar informacdes referente ao
agendamento da captura de imagem. Nele € possivel notar a hora de inicio, hora de fim, bem

como os parametros utilizados na captura, como por exemplo qualidade, resolucdo e brilho.

Nas figuras 3.2 e 3.3 sdo apresentados exemplos do agendamento da captura de video e do

acionamento do pino GPIO nimero O.

22

=] o A = a3 B

P TR]

o
e

P

13

<?xml version="1.0" encoding="UTF-8" standalone="no"?2?>
<3chedule>
E <picture>
<atartdate>25/12/2010</atartdate
<3tarthour>11:00</3tarthours>
<enddate>01/01/2011</enddate>
<endhour>11:00</endhour>
<interval>6l</interval>
<3lzewxT720</3izew>
<3izeh>480</3izeh>
<guality>100</quality>
<brightness>50</brightness>
<contrast>0</contrasts>
<gaturaticn>0</saturaticon>
<sharpness>0</sharpness>
<effectrnone</effect>
<exposurerautod/exposure>
- </picture>
- </achedule>

Figura 3.1: Estrutura do XML correspondente a captura de imagem

=1 & A = L R

F T]

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<achedule>
E <wideo>
<3tartdate>04,/08/2013</atartdate>
<starthour>12:00</3tarthours>
<enddate>04/08/2013</enddate>
<endhour>12:30</endhours>
<3izew>T720</3izew>
<3izeh>480</3izeh>
<brightness>50</brightness>
<contrasat>0</contrast>
<gaturation>0</saturation>
<sharpness>0</sharpness>
<effectrnone</effects>
<exposurerautod/exposure>
b </video>
-</3achedule>

Figura 3.2: Estrutura do XML correspondente a gravagdo de video

=1 o N o= L R

=
=owm

<7?xml wversion="1.0" encoding="UTF-8" standalone="no"?>
<3chedule>
E <gpicl>
<atate>0.0</atate>
<atartdate>08/10/2013</3tartdate
<3tarthour>18:18</starthour>
<enddatex08/10/2013</enddates
<endhour>18:20</endhours>
B </gpici>
- </3achedule>

Figura 3.3: Estrutura do XML correspondente ao GPIO ntiimero 0

23

Gerenciamento de Clientes

Depois de iniciadas as threads, o servidor cria um socket que fica a espera de clientes.

Quando um cliente realiza a conexao com o servidor, o gerenciamento da conexao € trans-
ferido para uma nova thread, permitindo que o servidor aceite novas conexodes. A figura 3.4

ilustra o funcionamento das threads.

Thread de conexdo Smarphone
com Cliente A Android A

RASPBERRY Pl

Thread de conexio Smarphone
com Chente N Android N

Figura 3.4: Estrutura das threads no servidor

Ap6s conectado, o servidor fica na espera de requisi¢des do cliente. Ao recebe-las, o ser-
vidor faz a analise, realiza as tarefas requisitadas e retorna uma mensagem ao cliente. As

requisicoes, bem como exemplos da comunicacdo serdo mostradas mais a frente nesta secao.

Utilizacao da Camera

O uso da camera se baseia no uso de programas oferecidos pela propria Raspberry Pi. Esses
programas sdo executados diretamente no bash. O bash é um interpretador de comandos, uma

espécie de tradutor entre o sistema operacional e o usudrio.

Para a execucdo desses programas diretamente no bash foi necessario o uso de classe Run-
time em Java que permite a interagdo da aplicacdo com o ambiente no qual estd sendo execu-
tada, assim o servidor consegue executar ambos os programas como se fossem executados pelo

proprio cliente diretamente no bash.

O programa raspistill é responsdvel pela captura de imagens e o raspivid pela captura de

24

video. Os parametros utilizados na execucao sdo obtidos das requisi¢des realizadas pelo cliente.

Esses parametros sdo listados nas tabelas 3.1 e 3.2.

Tabela 3.1: Parametros oferecidas pelo raspistill [11]

Comando | Descri¢do

-? Ajuda

-w Define largura da imagem

-h Define altura da imagem

-q Define a qualidade do jpeg (0 a 100)
-r Adiciona dados ao metadata do jpeg
-0 Nome do arquivo

-v Informacdes detalhadas de saida durante a execugio
-t Tempo antes de tirar a foto (ms)

-th Definie parametros do thumbnail

-d Roda um modo demo, sem captura
-e Define o tipo de encoding (jpg, bmp, gif, png)
-X EXIF tag

-tl Modo timelapse

-sh Define o sharpness (-100 a 100)

-Co Define o contraste (-100 a 100)

-br Define o brilho (0 a 100)

-sa Define a saturagdo (-100 a 100)

-ISO Define o ISO

-vs Liga a estabilizacao de video

-ev Define a compensacdo EV (-10 a 10)
-ex Define o modo de exposi¢io

-awb Habilita 0 modo AWB

-ifx Define o efeito da imagem

-cfx Define os efeitos de cores

-mm Define o modo metering

-rot Define a rotagdo da imagem(0 a 359)
-hf Define o flip horizontal

-vf Define o flip vertical

Tabela 3.2: Parametros oferecidas pelo raspivid [11]

Comando | Descri¢do

-? Ajuda

-W Define largura da imagem

-h Define altura da imagem

-b Define o bitrate

-0 Nome do arquivo

-v Informagdes detalhadas de saida durante a execugdo
-t Tempo antes de tirar a foto (ms)

-d Roda um modo demo, sem captura

-fps Definie o numero de imagens por segundo
-e Define o tipo de encoding (jpg, bmp, gif, png)
-sh Define o sharpness (-100 a 100)

-co Define o contraste (-100 a 100)

-br Define o brilho (0 a 100)

-sa Define a saturagio (-100 a 100)

-ISO Define o ISO

-vs Liga a estabilizacio de video

-ev Define a compensacdo EV (-10 a 10)

-ex Define o modo de exposicdo

-awb Habilita 0 modo AWB

-ifx Define o efeito da imagem

-cfx Define os efeitos de cores

-mm Define o modo metering

-rot Define a rotagdo da imagem(0 a 359)

-hf Define o flip horizontal

-vf Define o flip vertical

25

Solucoes para o Streaming

Para o streaming de video foram considerados varios métodos, entre eles, os ja citados: Mo-
tion, MJPEG e FFmpeg. Todos eles se baseiam no dispositivo mapeado no arquivo /dev/videoO

do Linux.

O mddulo da camera da Raspberry Pi ndo fornece o driver necessério para o mapeamento no
arquivo /dev/videoO0, assim foi necessario a busca de novas solucdes. Observacdo: atualmente
usudrios da Raspberry Pi estdo em um projeto para producdo um driver para a cdmera, porém,

a ultima versdo testada ainda conta com instabilidade para videos H264.

A solucdo encontrada foi o uso do streaming através do uso do pacote VLC. Assim o ser-

vidor consegue que seu video passe a ser transmitido por uma porta definida pelo programador.

O cliente pode visualizar o streaming através programa VLC em qualquer computador pes-

soal, através do enderec¢o fornecido pelo aplicativo, como serd mostrado nas se¢des seguintes.

Assim como os programas raspistill e raspivid, o VLC também € executado no bash e
como a fun¢do de streaming pode rodar durante um tempo indefinido, o processo responsdvel
pelo streaming é executado em um thread em background, para que o acesso ao bash nao seja

bloqueado.

Controle e acesso dos pinos de gpio

Para controle e acesso dos pinos GPIO existem diversos wrappers em diversas linguagens
que oferecem as mesmas funcionalidades. Por exemplo, a biblioteca WiringPi para C, a biblio-

teca RaspberryPi.Net para C sharp, o médulo RPi.GPIO para Python, entre outros.

Para este projeto foi utilizado o Pi4j, um projeto destinado a fornecer uma ponte entre as
bibliotecas nativas e o Java para acesso total a Raspberry Pi. Além do controle do GPIO, Pi4j o
ainda oferece suporte para comunicagdo serial, [2C e SPI.

Sua utilizacao € bem simples, como mostra o trecho de c6digo a seguir.

final GpioController gpio = GpioFactory.getInstance();

GpioPinDigitalOutput myGpio = gpio.provisionDigitalOutputPin(RaspiPin.GPI0_04, "My GPI0", PinState.LOW);
myGpio.setState(PinState.HIGH) ;

myGpio.setState(PinState.LOW);

26

Gerenciamento dos arquivos de imagem e videos

Todos os arquivos gerados sdo armazenados na Raspberry Pi. Eles podem ser de imagem

no formato jpg ou de video, nos formatos H264 ou MP4.

A quantidade de imagens e videos armazenados variam de acordo com o cartdo SD utilizado
na Raspberry PI. Existe a possibilidade de se utilizar um HD externo para aumentar a capacidade

de armazenamento.

Caso haja necessidade de conversdo do formato H264 para outros formatos, pode-se utilizar
o programa MP4Box que é uma ferramenta baseada em linha de comando que converte arquivos
dos tipos MPEG-4, DivX, XviD, 3ivx e H264 em arquivo MP4 [5]. Sua utilizacdo € simples,

rapida e os resultados sio de boa qualidade.

Além da conversao, o servidor possibilita a opcao do cliente realizar o download do arquivo

para depois visualiza-lo no proprio smartphone.

3.3 Cliente - Aplicativo Android

A programacao do aplicativo é mais restrita que a do servidor. Por se tratar de um aplicativo

Android a programacao deve ser feita em Java e a parte visual deve ser feita em XML.

Os tdpicos a seguir abordam o funcionamento do aplicativo de acordo com cada tela apre-

sentada.

Conexao e Tela Principal

A primeira tela do aplicativo que o usudrio tem contato € a tela de login. O usudrio informa

o IP, a porta do servidor e realiza a conexao, como mostra a figura 3.5.

Ap6s estabelecido a conexdo, € apresentado ao usudrio a tela principal. Nela existem os
trés principais blocos de funcdes disponiveis: Camera, GPIO e Arquivos, como mostra a fi-
gura 3.6. A seguir sdo listados detalhadamente o que cada um desses blocos contém e o seu

funcionamento.

[H+]| 14:56

PiHome

192.168.0.105

5555

CONNECT

Figura 3.5: Tela de login do aplicativo

& .1l = 1456

Figura 3.6: Tela principal do aplicativo

27

28
Funcoes da Camera

Como exibido na figura 3.7, existem quatro fung¢des relacionado a camera:

Captura de imagem

Agendamento da captura de imagem

Agendamento da captura de video

Gerenciamento do streaming

TAKE PICTURE
PICTURE SCHEDULE

VIDEO REAL TIME
VIDEO SCHEDULE

Figura 3.7: Tela com as funcdes relacionadas a camera

Na op¢do captura de imagem o usudrio pode escolher como deseja capturar a imagem,
podendo variar os parametros: resolugdo, qualidade, brilho, contraste, saturacdo, sharpness,

efeito e exposicao, como mostra na figura 3.8.

A opcdo de agendamento para captura de imagem oferece ao usudrio captura de imagens

de tempo em tempo durante um intervalo desejado.

E possivel escolher as mesmas caracteristicas presentes na captura de imagem, além da

data/hora de inicio/fim e o intervalo, em minutos, que se deseja entre as fotos. Ao acessar a

29

G .1l =B 14:58

TAKE PICTURE

SETTINGS

SIZE: 1920 x 1080 n

QUALITY (100): SRR
BRIGHTNESS (31): w

CONTRAST (28): .W

SATURATION (64): l

SHARPNESS (36):

TAKE PICTURE

Figura 3.8: Tela utilizada para captura de imagem

opc¢ao de agendamento, € mostrado ao usudrio o tltimo agendamento e os parametros utilizados

pelo servidor. A figura 3.9 ilustra um exemplo dessa fung@o.

Na op¢ao de streaming € possivel ligd-lo e desliga-lo. Quando ligado € fornecido um link
que o usudrio deve usar em qualquer computador pessoal para visualizar o streaming através do
programa VLC. Existe a op¢ao de receber o link por email para facilitar o acesso. A imagem

3.10 demonstra as duas op¢des, ligado e desligado.

A idéia inicial para a opcao de streaming era a visualizacao direta do video captado pela
Raspberry Pi no smartphone, porém nenhuma das opg¢des testadas teve desempenho aceitdvel,
demonstraram excessiva lentiddo, com grandes atrasos e congelamentos devido a baixa malea-

bilidade do formato H264 em smartphones.

A opgdo de agendamento para captura de video oferece ao usudrio a captura de video
durante um tempo definido. O usudrio escolhe a data/hora de inicio/fim para a captura e os
parametros: resolugdo, brilho, contraste, saturacao, sharpness, efeito e exposi¢do. A figura 3.11
mostra um exemplo desta fungcdo. Ao acessar a opcdo de agendamento é mostrado ao usudrio
o ultimo agendamento e os parametros utilizados pelo servidor, semelhante ao agendamento da

captura de imagem.

& .l = 15:00

PICTURE SCHEDULE

SETTINGS

SIZE: 1280 x 720 ‘ v

QUALITY (100):
BRIGHTNESS (41):

CONTRAST (34):

SATURATION (-36):

SHARPNESS (-18):

EFFECT: oilpaint

EXPOSURE: auto

INTERVAL BEETWEN PICTURES

SCHEDULE
START: 15/09/2013 15:00
END: 15/09/2013 15:15

INTERVAL: 1 min

Figura 3.9: Tela utilizada para agendamento da captura de imagem

& . = 1501 & .l B8 15:02

CAMERA REAL TIME CAMERA REAL TIME

DESATIVADO ATIVADO

Stream address: Stream address:

OFFLINE rtsp://192.168.0.105:8554/pi_encode.h264

SEND LINK TO EMAIL SEND LINK TO EMAIL

Figura 3.10: Tela de controle do streaming

31

& .l = 15:02

VIDEO SCHEDULE

SETTINGS

SIZE: 1280 x 720 n

BRIGHTNESS (81):]
CONTRAST (14):]

SATURATION (-32):]

SHARPNESS (24): l

- -
—_—

SCHEDULE
START: 18/09/2013 16:00

END: 18/09/2013 16:40

Figura 3.11: Tela utilizada para agendamento da captura de video

Funcoes relacionadas ao GPIO

A segunda op¢do, GPIO, € uma funcdo com uso ilimitado. Pode ser utilizado para ativar
diversos sensores e atuadores, por exemplo, acionamento de alarmes e lampadas para seguranca
residencial, ou entdo, acionamento de umificadores, aquecedores e ventiladores para uso em

uma estufa.

E apresentado ao usudrio todos os oito pinos GPIO disponiveis na Raspberry Pi, como
mostra a figura 3.12, cada um tem seu uso e gerenciamento individual, sem influéncia dos

demais.

Para os todos os pinos GPIO o usudrio pode optar por ligar e desligar diretamente acionando
o botdo no canto superior direito do aplicativo, ou optar pelo agendamento. Para o agendamento
o usudrio escolhe a data/hora que deseja ligar e a data/hora que deseja desligar. A figura 3.13

mostra um exemplo para a pino zero.

GPIO #0

GPIO #4

GPIO #6

GPIO #7

w®
-
]
=]
w

Figura 3.12: Tela inicial de acesso para aos pinos GPIO

i .1l B 15:04

GPIO #0 DESATIVADO

SCHEDULE

START: 05/08/2013 15:00

END: 10/08/2013 22:35

Figura 3.13: Tela de controle e agendamento do pino GPIO 0

33

Funcoes relacionadas aos arquivos

Na terceira op¢ao o usudrio tem contato com os arquivos de video e imagem gerados. Ini-
cialmente o usudrio deve optar se deseja visualizar a lista de arquivos de imagem ou de video,

como apresentado na figura 3.14.

VIDEOS

PICTURES

Figura 3.14: Tela inicial para escolha dos arquivos

Ap6s escolher entre imagem ou video, o usudrio se depara com uma lista de arquivos dis-
poniveis no servidor. Baseado nessa lista é possivel realizar o download de qualquer arquivo
para o smartphone e a visualizacdo do mesmo através do proprio aplicativo. A figura 3.15 exibe

um exemplo para imagens e videos.

Como a reproducdo de videos no formato H264 nao € tao simples em smartphones, existe
a opg¢do de conversao dos videos para o formato MP4. Essa conversdo € realizada no servidor

que mantém ambos 0s arquivos.

34

FILE: PICTURES

picture_04-10-2013_11-06-23.jpg
04/10/2013 11:06 234.0kB

picture_07-10-2013_15-32-35.jpg
07/10/2013 15:32 1.1MB

picture_07-10-2013_15-35-26.jpg
07/10/2013 15:35 1.1MB

picture_07-10-2013_16-53-53.jpg
07/10/2013 16:53 2.1MB

picture_07-10-2013_16-54-01.jpg
07/10/2013 16:54 1.1MB

picture_07-10-2013_17-13-11.jpg
07/10/2013 17:13 2003 kB

picture_07-10-2013_17-15-03.jpg
07/10/2013 17:15 188.0 kB

picture_07-10-2013_17-17-05.jpg

FILE: VIDEOS

videos_04-10-2013_11-55-15.h264
07/10/2013 12:04 248.7 kB

videos_04-10-2013_11-55-15.mp4
07/10/2013 15:53 249.6 kB

videos_07-10-2013_13-47-09.h264
07/10/2013 13:49 63.4MB

videos_07-10-2013_13-47-09.mp4
07/10/2013 16:42 63.4 MB

videos_07-10-2013_14-12-08.h264
07/10/2013 14:13 204 MB

videos_07-10-2013_14-12-08.mp4
07/10/2013 16:39 204 MB

Videos

videos_07-10-2013_14-12-08.mp4

LDownload file View video Cancel

(a) Arquivos de imagem

Figura 3.15: Telas com arquivos de imagem e video

(b) Arquivos de video e suas opcdes

35
3.3.1 Comunicacao

A comunicacio entre cliente e servidor pode utilizar até 3 portas, dependendo do uso que o

cliente deseja.

Como opg¢ao de projeto foram escolhidas as portas de nimero 5555, 5556 e 8854, por se

tratarem de portas genéricas e disponiveis para uso.

A principal porta é a 5555. E nela que ocorre todo o fluxo das requisi¢des, sendo res-

ponsavel por todas as mensagens trocadas entre servidor e cliente.

A porta 5556 € utilizada apenas para a realizacdo do download de arquivos do servidor para
o cliente. A requisi¢do para o download é feita através da porta 5555, o cliente responde na

mesma porta 5555 e entdo libera a porta 5556 para o download.

A porta 8854 ¢ utilizada para a o streaming. Pelo motivos citados no capitulo anterior, essa
porta é utilizada apenas entre a Raspberry Pi e um computador pessoal para transmissdao do
video em tempo real. Assim como no download, a troca de requisi¢des também € feita na porta

5555 e ao final o streaming é realizado pela porta 8854.

A figura 3.16 mostra as relagdo entre as portas do servidor e dos clientes.

Requisigées do Cliente

Porta 5555 Respostas do Servidor

Raspberry Pi Porta 5556 Transferéncias de arquivo

Porta 8554 Porta 8554

Porta 5555

Streaming

Porta 5556

Figura 3.16: Esquema de comunicacio do projeto entre Cliente e Servidor

Toda comunicacdo criada entre cliente e servidor € baseada na troca de mensagens. Todas
as mensagens sdo constituidas por campos, separados por espagos, e seguem o mesmo padrao.
O primeiro campo corresponde ao tipo da requisi¢ao. Os demais campos variam de acordo com

a funcdo:

Campol Campo2 Campo3 ... CampoN
Requisigédo Dadol Dado2 ... DadoN

36

As possiveis requisi¢des e os valores que as identificam sdo listadas a seguir com uma breve

explicacdo de cada uma, seguidas por exemplos de comunicagao.

Requisicoes do GPIO

Existem trés requisi¢des ligadas a funcdo dos pinos GPIO. O trecho em Java a seguir foi

extraido do cédigo do servidor e lista as possiveis requisi¢oes:

public static final int MSG_WHAT_GPIO = 1;
public static final int MSG_WHAT_GPIO_PROGRAMMATION = 2;
public static final int MSG_WHAT_GPIO_PROGRAMMATIONREQUEST = 3;

A primeira requisicdo, "MSG_WHAT _GPIO” , € utilizada quando o usudrio deseja ligar ou

desligar qualquer pino GPIO. A mensagem enviada pelo cliente tem o seguinte formato:

1 pino_gpio estado_desejado

O servidor retorna um echo da mensagem recebida. No exemplo de comunicac¢do a seguir,

o cliente requisita que o pino 0 seja ligado (1):
e Cliente envia: /1 0 1

e Servidor responde: 1 0 /

A requisi¢ao "MSG_WHAT_GPIO_PROGRAMMATION” ¢ utilizada quando o usudrio realiza
o agendamento de um pino GPIO. A mensagem enviada pelo cliente tem o seguinte formato:

2 pino_gpio estado_pino data_inicial hora_inicial data_final hora_final

O servidor retorna um echo da mensagem recebida. Neste exemplo, o pino GPIO 0
encontra-se desligado (0), sera ligado no dia 20/09/2013 as 10:00 horas e desligado 20/09/2013
as 11:30 horas.

e Cliente envia: 2 0 0 20/9/2013 10:00 20/9/2013 11:30

e Servidor responde: 2 0 0 20/10/2013 10:00 20/10/2013 11:30

37

A requisi¢ao "MSG_WHAT_GPIO _PROGRAMMATIONREQUEST” € utilizada toda vez que
0 usudrio acessa a tela relacionada com GPIO. Essa requisi¢do € responsavel por obter a tltima
hora agendada e o estado atual do pino. A mensagem enviada pelo cliente tem o seguinte

formato:

3 pino_gpio

O servidor retorna o estado atual do pino GPIO e a data/hora de inicio/fim do agendamento.

O formato dessa mensagem € o seguinte:

3 estado_pino data_inicial hora_inicial data_final hora_final

O exemplo a seguir mostra uma requisicdo do agendamento relacionado ao pino GPIO 3.
O servidor informa que o estado atual € desligado (0), programado para ligar no dia 01/10/2013

as 00:52 e desligar no dia 05/10/2013 as 10:55.

e Cliente envia: 33

e Servidor responde: 3 0 1/10/2013 00:52 05/10/2013 10:55

Requisicoes da Camera

Para a camera, existem sete requisi¢des, sendo 4 de video e 3 de imagem. Todas elas sdao

listadas a seguir:

public static final int MSG_WHAT_CAMERA_VIDEO_REALTIME = 4;

public static final int MSG_WHAT_CAMERA_VIDEO_REALTIMESTATUS = 5;
public static final int MSG_WHAT_CAMERA_VIDEO_PROGRAMMATION = 6;

public static final int MSG_WHAT_CAMERA_VIDEO_PROGRAMMATIONREQUEST = 7;

public static final int MSG_WHAT_CAMERA_PICTURE_TAKEPICTURE = 8;
public static final int MSG_WHAT_CAMERA_PICTURE_PROGRAMMATION = 9;
public static final int MSG_WHAT_CAMERA_PICTURE_PROGRAMMATIONREQUEST = 10;

As duas primeiras requisicoes, "MSG_WHAT_CAMERA VIDEO REALTIME” ¢ "MSG -
WHAT _CAMERA VIDEO REALTIMESTATUS” sao bem simples. A primeira habilita e desa-
bilita o servi¢o de streaming. A segunda € utilizada para verificar a situacdo do streaming, se

estd ligado ou desligado.

38

A mensagem enviada pelo cliente € formada apenas pelo valor 4 ou 5. O servidor retorna

um echo da mensagem recebida.

A requisi¢ao seguinte, "MSG_WHAT_CAMERA VIDEO_PROGRAMMATION” ¢ semelhante
a "MSG_WHAT_CAMERA _PICTURE PROGRAMMATION”. Ambas sao utilizadas quando o

usudrio realiza o agendamento da captura de imagem ou video.

A mensagem enviada pelo cliente tem o seguinte formato:

6 data_inicial hora_inicial data_final hora_final parametrosl[...]

9 data_inicial hora_inicial data_final hora_final parametros[...]

O servidor retorna um echo da mensagem recebida.

Os dois exemplos a seguir mostram o uso destas varidveis. No primeiro, a gravacio de
video deve iniciar no dia 15/08/2013 as 05:00 e finalizar no mesmo dia as 05:15. Os valores
seguintes se referem, respectivamente, ao tamanho horizontal (1280), tamanho vertical (720),

brilho (66), contraste (26), saturacao (-24), sharpness (52), efeito (pastel) e exposicao (auto).

e Cliente envia: 6 15/08/2013 05:00 15/08/2013 05:15 1280 720 66 26 -24 52 pastel auto

e Servidor responde: 6 15/08/2013 05:00 15/08/2013 05:15 1280 720 66 26 -24 52 pastel auto

No caso de captura de imagem o comando enviado pelo cliente € bem parecido. No exemplo
a seguir o cliente deseja que a captura das imagem se inicie no dia 20/10/2013 as 03:00 e finalize
no mesmo dia as 06:00, com um intervalo de 5 minutos entre cada imagem. Os valores seguintes
se referem, respectivamente, ao tamanho horizontal (1920), tamanho vertical (1080), qualidade
(100), brilho (66), contraste (40), saturacdo (18), sharpness (36), efeito (none) e exposicao

(auto).

e Cliente envia: 9 20/10/2013 03:00 20/10/2013 06:00 5 1920 1080 100 66 40 18 36 none auto

e Servidor responde: 9 20/10/2013 03:00 20/10/2013 06:00 5 1920 1080 100 66 40 18 36 none

auto

A requisicio "MSG_WHAT CAMERA VIDEO PROGRAMMATIONREQUEST” ¢ "MSG -
WHAT _CAMERA PICTURE _PROGRAMMATIONREQUEST” também siao semelhantes. Ambas

sdo utilizadas quando o usudrio acessa a tela para captura de imagem ou video. Sdo responsaveis

39

por obter do servidor a ultima data e hora agendada para as respectivas fungdes, bem como os

parametros utilizados.

A mensagem enviada pelo cliente € formada apenas pelo valor 7 para video ou 10 para

imagem. O servidor retorna os dados solicitados no seguinte formato:

7 data_inicial hora_inicial data_final hora_final parametros[...]

10 data_inicial hora_inicial data_final hora_final parametros[...]

Os exemplos a seguir demonstram a requisi¢ao do agendamento de video e imagem respec-
tivamente. No primeiro exemplo o servidor informa que a gravacao de video deve iniciar no
dia 15/08/2013 as 05:00 e finalizar no mesmo dia as 05:15. Os valores seguintes se referem,
respectivamente, ao tamanho horizontal (1280), tamanho vertical (720), brilho (66), contraste

(26), saturacdo (-24), sharpness (52), efeito (pastel) e exposicao (auto).

e Cliente envia: 7

e Servidor responde: 7 15/08/2013 05:00 15/08/2013 05:15 1280 720 66 26 -24 52 pastel auto

Para o exemplo de imagem o servidor informa que a captura das imagens deve iniciar no
dia 20/10/2013 as 03:00 e finalizar no mesmo dia as 06:00 com um intervalo de 5 minutos entre
cada imagem. Os valores seguintes se referem, respectivamente, ao tamanho horizontal (1920),
tamanho vertical (1080), qualidade (100), brilho (66), contraste (40), saturacdo (18), sharpness

(36), efeito (none) e exposigao (auto).

e Cliente envia: 10

e Servidor responde: 10 20/10/2013 03:00 20/10/2013 06:00 5 1920 1080 100 66 40 18 36 none

auto

A requisicdo "MSG_WHAT_CAMERA PICTURE TAKEPICTURE”¢ utilizada para captura

de imagem. A mensagem enviada pelo cliente tem o seguinte formato:

8 parametros(...]

O servidor retorna um echo da mensagem recebida. No exemplo a seguir o cliente deseja
a captura de uma imagem com os seguintes parametros: ao tamanho horizontal (720), tamanho
vertical (480), qualidade (100), brilho (43), contraste (36), saturacdo (-38), sharpness (60),

efeito (pastel) e exposicao (auto).

40

e Cliente envia: 8 720 480 100 43 36 -38 60 pastel auto

e Servidor responde: 8 720 480 100 43 36 -38 60 pastel auto

Requisicoes dos Arquivos

Existem cinco requisicdes ligadas aos arquivos:

public static final int MSG_WHAT_FILES_PICTURES_FILELIST = 11;
public static final int MSG_WHAT_FILES_PICTURES_DOWNLOAD = 12;

public static final int MSG_WHAT_FILES_VIDEOS_FILELIST 13;
public static final int MSG_WHAT_FILES_VIDEOS_DOWNLOAD 14;
public static final int MSG_WHAT_FILES_VIDEOS_CONVERT = 15;

As requisicoes "MSG _WHAT FILES PICTURES FILELIST” e "MSG _WHAT FILES VI-
DEOS _FILELIST” sdo utilizadas para se obter os arquivos disponiveis no servidor. A mensagem

enviada pelo cliente consiste apenas o valor 11 para imagem ou 13 para video.

O servidor responde a quantidade de arquivos, o nome do arquivo, a ultima data de

modificacdo e o tamanho em bytes. O padrao que o servidor utiliza € o seguinte:

11 quantidade_de_arquivos nome @ ultima_data_modificacao @ tamanho

13 quantidade_de_arquivos nome @ ultima_data_modificacao @ tamanho

Observacdo: no Java, a data da ultima modificacdo é um valor em milisegundos desde a
data 1 de janeiro de 1970, 00:00:00 GMT, esse valor é convertido no cliente para o formato
dd/mm/aaaa.

No exemplo a seguir o servidor informa que existe apenas 1 arquivo de imagem se-
guido pelo campo com suas informagdes. Desse campo sdo obtidos o nome do arquivo: pic-
ture_ 04_102013_11_06_23.jpg, a tltima data de modificacdo: 1380895585000 milisegundos
(04/10/2013 14:06) e tamanho: 233.955 bytes.

e Cliente envia: 11

e Servidor responde: 11 1 picture_04_10_2013_11_06_23.jpg@ 1380895585000 @233955

41

O exemplo a seguir representa a requisi¢ao para os arquivos de video. O servidor informa

que existem 2 arquivos seguidos de suas informacdes.

e Cliente envia: 13

e Servidor responde: 13 2 videos_04_10_2013_11_55_15.h264@1381158272000@248683
videos_07_10-2013_14_12_08.mp4 @1381174783000@20377408

As requisi¢coes "MSG_WHAT _FILES PICTURES DOWNLOAD” ¢ "MSG_WHAT FILES VI-
DEOS_DOWNLOAD” sao bem semelhantes, ambas s3o utilizadas quando o cliente requisita o

download de um arquivo. A mensagem enviada pelo cliente tem o seguinte formato:

12 nome_do_arquivo

14 nome_do_arquivo

O servidor retorna um echo da mensagem recebida. Os exemplos a seguir ilustram a

comunicagao para download de uma imagem e de um video.

e Cliente envia: 12 picture_04_10_2013_11_06_23.jpg

e Servidor responde: 12 picture_04_10-2013_-11_06_23.jpg

e Cliente envia: 14 videos_04_10-2013_11_55_15.mp4

e Servidor responde: 14 videos_04_10_2013_11_55_15.mp4

Por fim, a requisicdo "MSG_WHAT _FILES_VIDEOS_CONVERT” ¢ para converter arquivos
de video do formato H264 para o formato MP4. A mensagem enviada pelo cliente tem o

seguinte formato:

15 nome_do_arquivo

O servidor retorna o nome do video, a data da dltima modificacdo e o tamanho em bytes no

seguinte formato:

15 nome_do_arquivo @ ultima_data_modificacao @ tamanho

42

O exemplo a seguir ilustra a conversao de um arquivo.

e Cliente envia: 15 videos_04_10_2013_11_.55_15.h264

e Servidor responde: 15 videos_04_10_2013_11_55_15.mp4@1382317532000@498970

43

4 Resultados e Discussoes

4.1 Resultados Obtidos

Este projeto resultou em uma Raspberry Pi atuando como servidor que, conectado a inter-
net, permite ao usuario o controle de todos os seus pinos GPIO, o uso de algumas fungdes rela-
cionadas a camera e o acesso, download e visualizacdo dos arquivos geradas por estas funcoes.

Tudo isso feito remotamente através de um smartphone.

O Apéndice A apresenta algumas imagens capturadas na versao final do projeto com dife-

rentes parametros.

Apesar de contar com um grande nimero de threads e de constantes verificagdes a arquivos,
o servidor ndo apresentou atrasos para a execug¢ao e resposta das requisi¢des. A utilizacdo da
cpu atingiu picos de vinte por cento durante uso intenso, exceto durante a conversao do video,

que o uso da cpu é o maximo possivel.

Resultou também em um aplicativo para smartphone Android, que possibilita a

comunicacao com o servidor e o acesso as funcdes disponibilizadas através da internet.

Nos smartphones testados, o aplicativo apresentou uma utilizacdo fluida, respondendo
rapido aos comandos do usudrio, sem travamentos ou crashs inesperados. O fator negativo
foi em relag@o a execucdo de videos H264, que é prejudicada em alguns smartphones de baixo

custo. A solucdo foi a adog¢ao de videos no formato MP4.

Para a comunicagdo, os principais testes foram realizados em rede local, assim a influéncia

de possiveis atrasos pela variacdo da internet foram descartados.

Os testes mostraram que ambos 0s softwares trocam mensagens praticamente de forma

instantanea. A comunicagdo se mostrou estavel, sem perdas de mensagem ou de conexao.

O desempenho das funcdes de arquivo pode ser visto na tabela 4.1 que exibe os tempos

necessdrios para conversao e download de dois arquivos de video com tamanhos diferentes.

44

Tabela 4.1: Tempo para conversdo e download de arquivos de video
Tamanho do Arquivo | Tempo para conversao | Tempo para download
20.4 MB 25 segundos 15 segundos
63.4 MB 70 segundos 58 segundos

Em relagdo a porta GPIO, nao houve o uso de nenhum atuador especifico. Seu uso pode
ser vasto, cabendo ao usudrio a escolha. No projeto existem leds nos pinos GPIO para ilustrar

o possivel agendamento e controle dos tedricos atuadores.

Os demais pinos de comunicagdo oferecidos pela Raspberry Pi permanecem intactos, po-

dendo ser utilizados sem interferéncia alguma do projeto.

4.2 Dificuldades e Limitacoes

A dificuldade inicial foi em relagdo ao PWM, desde a pesquisa das diferentes formas de

geracao da onda até a utilizagdo.

A maioria das informagdes e projetos disponibilizados para PWM sao criados por usudrios,

sendo alguns incompletos ou mal documentados.

A utilizacdo esbarrou na limitacdo que os mddulos geradores de PWM criam: a in-
fluéncia/interferéncia nas demais portas. Com isso € reduzido o niimero de projetos que podem

ser desenvolvido com a utilizagao desses modulos.

Outra dificuldade foi no ajuste das threads que realizam a verificagao do agendamento dos

pinos GPIO junto aos arquivos XML.

A solucdo para que essa verificagdo nao ficasse lenta foi a criacdo de uma thread e um ar-
quivo XML para cada GPIO, desse modo, os oito pinos sao verificados em paralelo e funcionam
individualmente. A utiliza¢do de um tnico arquivo XML nio € interessante pois limita o acesso
a diferentes pinos no mesmo intervalo de tempo, pois a utilizacdo de qualquer pino bloquearia

0 acesso aos demais durante o intervalo de tempo que este € utilizado.

Em um trabalho futuro que se deseja utilizar PWM na Raspberry Pi € altamente recomen-
dado o uso de alguma outra comunicagdo para sua geragao, como por exemplo o uso de I2C ou
a utilizacdo da saida de dudio com uma pequena alteracao no hardware da placa, colocando em

curto o capacitor de acoplamento.

45

5 Conclusoes

Neste trabalho foram desenvolvidas duas aplicagdes para duas plataformas distintas, a
Raspberry Pi e smartphones Android, que permitiram um bom envolvimento com a érea de
comunicacao utilizando sockets, com liberdade total de criag¢do, partindo do projeto do proto-

colo de comunicagdo até a sua implementacao e uso.

Permitiu também o aprofundamento na programacdo para sistemas Android, dado a
constru¢do total do aplicativo, desde a escolha das ilustracdes utilizadas até a programacgdo

dos sockets e das threads.

Comparando os resultados com os objetivos iniciais propostos pode-se notar algumas

alteracoes:

e O controle de posicionamento da camera foi excluido para ndo alterar o funcionamento

dos pinos de comunicacdo oferecidos pela Raspberry Pi e viabilizar o uso da camera.

e O streaming nao pode ser exibido diretamente no aplicativo, porém, seu uso se tornou

vidvel em computadores pessoais com o uso do programa VLC.

e A melhoria no uso da camera, com a possibilidade de alteracao de diversos parametros

de imagem.

e Maior elaborag@o no acesso aos arquivos, permitindo conversio de videos e download de

todos arquivos gerados.

A utilizacdo da Raspberry Pi confirmou-se uma escolha correta, pois, considerando todas
as caracteristicas que ela oferece, constitui uma plataforma economicamente vidvel para entu-
siastas e amantes de sistemas embarcados, que conta com um grande grupo ativo de usuadrios,

com diferentes projetos surgindo todo os dias pelos foruns de discussao.

Apesar de Java ndo ser a linguagem mais recomendada para sistemas embarcados, por nao

se preocupar com o uso de memoria, o servidor nao apresentou problemas de performance. Seu

46

desempenho foi suficiente para a implementacao do sistema proposto, havendo possibilidade de

futuras expansoes.

O Android por sua vez demonstrou ser uma excelente plataforma para criacdo de aplicativos

moveis.

Existem diversos pacotes para as mais variadas funcdes desejadas e conta com uma infini-
dade de desenvolvedores em diversos féruns que participam ativamente na criacdo de tutoriais

e na solug@o de problemas, além da boa documentacio oferecida pelo Google.

Em geral, tanto servidor como cliente apresentaram o funcionamento de todas as fungdes
implementadas sem qualquer tipo de travamento ou lentidao, oferecendo o resultado projetado

de cada funcao.

5.1 Relacionamento entre o Curso e o Projeto

A realizacdo desse projeto possibilitou a utilizacdo de conceitos, ferramentas e técnicas

aprendidas durante o curso de Engenharia de Computagdo para a formacao do sistema final.

Os conhecimentos adquiridos em disciplinas de programacao, redes de computadores, sis-
temas embarcados, multimidia e hipermidia, circuitos elétricos e circuitos eletronicos foram
fundamentais para a realizac@o deste projeto, permitindo realizar tarefas de forma mais rapida

e pratica.

Realizar a integragdo de tecnologias diversas e ajudar o desenvolvimento de novas e melho-
res tecnologias € parte do papel de engenheiro de computacao e reflete o conhecimento obtido
durante o curso de graduacdo. O desenvolvimento deste projeto possibilitou a verificagdao de
uma 6tima maneira de introduzir esse universo de conhecimento de maneira prética e funcio-

nal, agregando grande valor técnico, tedrico e cientifico obtido com o desenvolvimento.

5.2 Trabalhos Futuros

Projetos futuros podem ser realizados expandindo o acesso ao servidor e a inser¢ao de novas

fungoes.

A expansao do acesso pode ser feita através da criagdo de uma pagina web, permitindo que

qualquer computador tenha acesso as funcoes disponiveis.

Para novas fung¢des, pode-se incluir o movimento da camera, com uso do protocolo 12C.

47

Existem pequenos dispositivos que permitem o controle de varias saidas PWM através de 12C,
um exemplo € o Adafruit 16 Channel 12 bit PWM/Servo Driver PCA9685 que pemite até 16
sinais PWM a partir de um 12C.

Outra op¢do para expansdao das fungdes € a inclusdo de métodos de monitoramento,
sendo possivel ao cliente verificar algumas informagdes do servidor como temperatura, uptime,

laténcia da comunicacdo e quantidade de clientes conectados.

E possivel também a transformacao do servidor em uma estagao multimidia, ja que a Rasp-
berry Pi é capaz de reproduzir videos em alta resolugdo, permitindo seu controle através da

internet.

48

Referéncias Bibliogrdficas

[1] Adt plugin. Disponivel em: http://developer.android.com/tools/sdk/eclipse-adt.html.
Acesso em 24 Out. 2013. Citado na pagina 15.

[2] Arch linux arm. Disponivel em: http://archlinuxarm.org/. Acesso em 24 Out. 2013. Citado
na pagina 12.

[3] Ffmpeg. Disponivel em: http://www.ffmpeg.org. Acesso em 24 Out. 2013. Citado na
pagina 17.

[4] Motion, a software motion detector. Disponivel em:
http://www.lavrsen.dk/foswiki/bin/view/Motion/WebHome. Acesso em 24 Out. 2013.
Citado na pagina 16.

[S] Mp4box overview. Disponivel em: http://gpac.wp.mines-telecom.fr/mp4box/. Acesso em
24 Out. 2013. Citado na pagina 26.

[6] Real time streaming protocol (rtsp). Disponivel em:
http://tools.ietf.org/html/rfc2326: Acesso em 24 Out. 2013. Citado na pagina 17.

[7] High definition 1080p embedded multimedia applications processor, 2012. Disponivel
em: http://www.broadcom.com/products/BCM2835. Acesso em 24 Out. 2013. Citado na
pagina 10.

[8] Oficial faq raspberry pi, 2012. Disponivel em: http://www.raspberrypi.org/fags. Acesso
em 24 Out. 2013. Citado nas paginas V, 10, 11, e 13.

[9] Raspberry pi os, 2012. Disponivel em: http://www.raspberrypi.org/downloads. Acesso em
24 Out. 2013. Citado na pagina 11.

[10] Raspberry pi quick start guide v1.2, 2012. Disponivel em: . Acesso em 24 Out. 2013.
Citado na pagina 10.

[11] Raspicam documentation, 2012. Disponivel em: http://www.raspberrypi.org/wp-
content/uploads/2013/07/RaspiCam-Documentation.pdf. Acesso em 24 Out. 2013. Ci-
tado na pagina 24.

[12] Site oficial raspberry pi, 2012. Disponivel em: http://www.raspberrypi.org/. Acesso em
24 Out. 2013. Citado na pagina 10.

[13] Getting started with android studio, 2013. Disponivel em:
http://developer.android.com/sdk/installing/studio.html. Acesso em 24 Out. 2013.
Citado na pagina 15.

49

[14] Mipi Alliance. Camera interface specifications, 2013. Disponivel em:
http://www.mipi.org/specifications/camera-interface. Acesso em 24 Out. 2013. Ci-
tado na pigina 12.

[15] Open Handset Alliance. Android overview. Disponivel em:
http://www.openhandsetalliance.com/android_overview.html. Acesso em 24 Out.
2013. Citado na pagina 14.

[16] Open Handset Alliance. Industry leaders announce open platform for mobile devices,
2007. Disponivel em: http://www.openhandsetalliance.com/press_110507.html. Acesso
em 24 Out. 2013. Citado na pagina 14.

[17] Fernando Campanholli, Ana Alice Vilas Boas, AndrA@ia de Souza Pereira, and Gerard
Fillion. Aplicabilidade e importancia do celular pro uso pessoal e profissional, 2013. Dis-
ponivel em: http://www.aedb.br/seget/artigos12/34816478.pdf. Acesso em 24 Out. 2013.
Citado na pagina 7.

[18] Eurodroid, 2013. Disponivel em: http://eurodroid.com/2012/09/26/google-celebrates-
25-billion-app-downloads-with-25-themed-sales/. Acesso em 24 Out. 2013. Citado nas
paginas V e 15.

[19] Saulo Pereira GuimarAfes. Brasil AC) o quarto pafs do mundo em nA°mero de
smartphones, 2013. Disponivel em: http://exame.abril.com.br/tecnologia/noticias/brasil-
e-o-quarto-pais-do-mundo-em-numero-de-smartphones. Acesso em 24 Out. 2013. Citado
na pagina 7.

[20] Richard Hirst. Servoblaster, 2013. Disponivel em:
https://github.com/richardghirst/PiBits/tree/master/ServoBlaster. Acesso em 24 Out.
2013. Citado na pagina 18.

[21] Thom Holwerda. Raspberry pi to embrace risc os. Disponivel em:
http://www.osnews.com/story/25276/Raspberry_Pi_To_Embrace RISC_OS. Acesso
em 24 Out. 2013. Citado na pagina 12.

[22] Daniel Elias Machado Junho. Controle de robo movel embarcado, 2013. Citado na
pagina 8.

[23] Jackson Liam. Mjpg streamer. Disponivel em: https://github.com/jacksonliam/mjpg-
streamer. Acesso em 24 Out. 2013. Citado na pagina 16.

[24] Simon Monk. The gpio connector. Disponivel em: http://learn.adafruit.com/adafruits-
raspberry-pi-lesson-4-gpio-setup/the-gpio-connector. Acesso em 24 Out. 2013. Citado
nas paginas V, 13, e 14.

[25] SparkFun, 2013. Disponivel em: https://www.sparkfun.com/tutorials/304. Acesso em 24
Out. 2013. Citado nas péaginas Ve 17.

[26] Thomas. Piblaster, 2013. Disponivel em: https://github.com/sarfata/pi-blaster/. Acesso
em 24 Out. 2013. Citado na pagina 18.

[27] Brian Womack. Google says 700,000 applications available for android, 2013. Disponivel
em: http://www.businessweek.com/news/2012-10-29/google-says-700-000-applications-
available-for-android-devices. Acesso em 24 Out. 2013. Citado na pagina 14.

50

6 Apéndice A - Imagens capturadas com

diferentes pardmetros

Neste apéndice sdo apresentadas algumas figuras captadas a partir do projeto finalizado.

A tabela 6.1 exibe os parametros utilizado em cada uma das imagens. A figura 6.1 € a

imagem de referéncia, seus parametros sdo os padroes. As imagens seguintes a 6.1 tem apenas

um parametro alterado por vez.

Tabela 6.1: Parametros das imagens capturadas

Figura 6.1: Imagem capturada com os parametros padrdes

Figura 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10
Resolucdo | 1280x720 | 1280x720 | 1280x720 | 1280x720 | 1280x720 | 1280x720 | 1280x720 1280x720 | 1280x720 | 1280x720
Qualidade | 100 100 100 100 100 100 100 100 100 100
Brilho 50 70 50 50 50 50 50 50 50 50
Contraste 0 0 100 0 0 0 0 0 0 0
Saturagdo | O 0 0 30 -40 0 0 0 0 0
Sharpness | 0 0 0 0 0 60 0 0 0 0
Efeito none none none none none none colorswap | emboss negative none
Exposi¢ao auto auto auto auto auto auto auto auto auto off
-
1
o’ |
- }-
T. e
e, 00 :
oee !
eee

Figura 6.2: Imagem capturada com 70 de brilho

Figura 6.3: Imagem capturada com 100 de contraste

51

52

Figura 6.4: Imagem capturada com 30 de saturacao

Figura 6.5: Imagem capturada com -40 de saturagcdo

Figura 6.6: Imagem capturada com 60 de sharpness

Figura 6.7: Imagem capturada com efeito colorswap

53

54

Figura 6.8: Imagem capturada com efeito emboss

Figura 6.9: Imagem capturada com efeito negative

Figura 6.10: Imagem capturada com exposicao off

55

56

7 Apéndice B - Codigo do Servidor

7.1 Server

7.1.1 Server.Java

public class Server

{

public static void main(String argv[]l) {

Pi4J.InitGpio();

GpioOScheduleThread gpioScheduleThread0 = new
GpiolScheduleThread gpioScheduleThreadl = new
Gpio2ScheduleThread gpioScheduleThread2 = new
Gpio3ScheduleThread gpioScheduleThread3 = new
Gpio4ScheduleThread gpioScheduleThread4 = new
GpiobScheduleThread gpioScheduleThread5 = new
Gpio6ScheduleThread gpioScheduleThread6é = new
Gpio7ScheduleThread gpioScheduleThread7 = new
gpioScheduleThread0.start("0");
gpioScheduleThreadl.start("1");
gpioScheduleThread2.start("2");
gpioScheduleThread3.start("3");
gpioScheduleThread4.start("4");
gpioScheduleThread5.start("5");
gpioScheduleThread6.start("6");
gpioScheduleThread?7.start ("7");

CameraPictureScheduleThread.start();

CameraVideoScheduleThread.start();

waitForConnections (5555) ;

}

GpioOScheduleThread();
GpiolScheduleThread();
Gpio2ScheduleThread() ;
Gpio3ScheduleThread() ;
Gpio4ScheduleThread();
Gpio5ScheduleThread();
Gpio6ScheduleThread();
Gpio7ScheduleThread() ;

public static void waitForConnections(int serverPort) {

while (true) {
try {

ServerSocket serverSocket =

new ServerSocket (serverPort);

Socket socket = null;

System.err.println("SimpleServer: Waiting connection.");
socket = serverSocket.accept();

System.err.println("SimpleServer: Accepted new socket.");

System.err.println("SimpleServer: Creating new handler.");
ServerHandler handler = new ServerHandler(socket);

handler.start();

serverSocket.close();

System.err.println("SimpleServer: Finished with socket.");
} catch (IOException e) {

e.printStackTrace(System.err);

}

7.1.2 ServerHandler.java

public class ServerHandler implements Runnable {
private Socket socket = null;

private InputStream inputSocket = null;

private OutputStream outputSocket = null;

private Thread acceptThread = null;
public static final int MSG_WHAT_PWM = 0;

public static final int MSG_WHAT_GPIO = 1;
public static final int MSG_WHAT_GPIO_PROGRAMMATION = 2;
public static final int MSG_WHAT_GPIO_PROGRAMMATIONREQUEST = 3;

public static final int MSG_WHAT_CAMERA_VIDEO_REALTIME = 4;

public static final int MSG_WHAT_CAMERA_VIDEO_REALTIMESTATUS = 5;
public static final int MSG_WHAT_CAMERA_VIDEO_PROGRAMMATION = 6;

public static final int MSG_WHAT_CAMERA_VIDEO_PROGRAMMATIONREQUEST = 7;

public static final int MSG_WHAT_CAMERA_PICTURE_TAKEPICTURE = 8;
public static final int MSG_WHAT_CAMERA_PICTURE_PROGRAMMATION = 9;
public static final int MSG_WHAT_CAMERA_PICTURE_PROGRAMMATIONREQUEST = 10;

public static final int MSG_WHAT_FILES_PICTURES_FILELIST = 11;
public static final int MSG_WHAT_FILES_PICTURES_DOWNLOAD = 12;

public static final int MSG_WHAT_FILES_VIDEOS_FILELIST = 13;
public static final int MSG_WHAT_FILES_VIDEOS_DOWNLOAD = 14;
public static final int MSG_WHAT_FILES_VIDEOS_CONVERT = 15;

public ServerHandler(Socket socket) throws IOException {
this.socket = socket;

this.inputSocket = socket.getInputStream();
this.outputSocket = socket.getOutputStream();

this.acceptThread = new Thread(this);

System.out.println("SimpleHandler: New handler created.");

}

public void start() {
acceptThread.start();
}

// All this method does is wait for some bytes from the

// connection, read them, then write them back again, until the
// socket is closed from the other side.

public void run() {

System.out.println("SimpleHandler: Handler run() starting.");
while (true) {

byte[] buf = new byte[1024];

int bytes_read = 0;

try {

// This call to read() will wait forever, until the

// program on the other side either sends some data,

// or closes the socket.

bytes_read = inputSocket.read(buf, 0, buf.length);

if (bytes_read < 0) {

System.out.println("SimpleHandler: Tried to read from socket, read() returned < 0, Closing socket.");
break;

}

System.out.println("SimpleHandler: Received: " + (new String(buf, 0, bytes_read)));
String input = (new String(buf, 0, bytes_read));

handleMessage (input) ;

58

System.out.println("SimpleHandler: Sending to client: " + (mew String(buf, 0, bytes_read)));
outputSocket.write(buf, 0, bytes_read);
outputSocket.flush();

} catch (Exception e) {
e.printStackTrace(System.err);
break;

}

}

try {

System.out.println("SimpleHandler: Closing socket.");

socket.close();

} catch (Exception e) {

System.out.println("SimpleHandler: Exception while closing socket, e = " + e);
e.printStackTrace(System.err);

}

private void handleMessage(String input) {

String[] inputMessage = input.replace("\n", "").replace("\r", "").split(" ");
int what = Integer.valueOf (inputMessage[0].replace(" ", ""));

int channelNumber;

double value;

switch (what) {

case MSG_WHAT_PWM:

// channelNumber = Integer.valueOf (inputMessage[1].replace(" ", ""));
// value = Double.valueOf (inputMessage[2] .replace(" ", ""));
break;

case MSG_WHAT_GPIO:

channelNumber = Integer.valueOf (inputMessage[1].replace(" ", ""));

value = Double.valueOf (inputMessage[2] .replace(" ", ""));

if (value == 0) {
Pi4J.getGpioPinDigitalOutput (Integer.valueOf (channelNumber)) .setState(PinState.LOW) ;
GpioScheduleHandler.writeXmlDataGpioState (String.valueOf (channelNumber), "0.0");

} else if (value == 1) {
Pi4J.getGpioPinDigitalOutput (Integer.valueOf (channelNumber)) .setState(PinState.HIGH) ;
GpioScheduleHandler.writeXmlDataGpioState (String.valueOf (channelNumber), "1.0");

}

break;

case MSG_WHAT_GPIO_PROGRAMMATION:
channelNumber = Integer.valueOf (inputMessage[1].replace(" ", ""));

value = Double.valueOf (inputMessage[2].replace(" ", ""));

String startDate = inputMessage[3].replace(" ", "");

String startHour = inputMessage[4].replace(" ", "");

String endDate = inputMessage[5].replace(" ", "");

String endHour = inputMessage[6].replace(" ", "");

GpioScheduleHandler.writeXmlData(String.valueOf (channelNumber), String.valueOf(value), startDate, startHour, endDate, endHour);

break;

case MSG_WHAT_GPIO_PROGRAMMATIONREQUEST:

channelNumber = Integer.valueOf (inputMessage[1].replace(" ", ""));

try {

if (outputSocket != null) {

ArrayList<String> xmlData = GpioScheduleHandler.getXmlData(String.valueOf (channelNumber)) ;

String gpioProgrammationMessage = MSG_WHAT_GPIO_PROGRAMMATIONREQUEST + " " + xmlData.get(1) + " " + xmlData.get(2) + " "
+ xmlData.get(3) + " " + xmlData.get(4) + " " + xmlData.get(5) + " ";

System.out.println("SimpleHandler: Sending to client (PROGRAMATIONREQUEST): " + gpioProgrammationMessage);
outputSocket.write(gpioProgrammationMessage.getBytes (Charset.forName ("UTF-8")));

outputSocket.flush();

¥

} catch (NumberFormatException e) {

e.printStackTrace();

} catch (IOException e) {
e.printStackTrace();

}

break;

case MSG_WHAT_CAMERA_VIDEO_REALTIME:

if (inputMessagel[1].equalsIgnoreCase("1"))
CameraVideoRealTimeThread.start();

else

CameraVideoRealTimeThread.end() ;

break;

case MSG_WHAT_CAMERA_VIDEO_REALTIMESTATUS:
try {

if (outputSocket != null) {

String realtimeResponse;

if (CameraVideoRealTimeThread.isStreaming)

realtimeResponse = MSG_WHAT_CAMERA_VIDEO_REALTIMESTATUS + " " + 1 + " ";
else
realtimeResponse = MSG_WHAT_CAMERA_VIDEO_REALTIMESTATUS + " " + 0 + " ";

System.out.println("SimpleHandler: Sending to client (PROGRAMATIONREQUEST): " + realtimeResponse);
outputSocket.write(realtimeResponse.getBytes(Charset.forName ("UTF-8")));

outputSocket.flush();

¥

} catch (NumberFormatException e) {

e.printStackTrace();

} catch (IOException e) {

e.printStackTrace();

¥

break;

case MSG_WHAT_CAMERA_VIDEO_PROGRAMMATION:
CameraVideoScheduleHandler.writeXmlData(inputMessage[1].replace(" ", ""), inputMessage[2].replace(" ", ""),

inputMessage[3] .replace(" ", ""), inputMessage[4].replace(" ", ""), inputMessage[5].replace(" ", ""),

inputMessage [6] .replace(" ", ""), inputMessage[7].replace(" ", ""), inputMessage[8].replace(" "y,
inputMessage[9] .replace(" ", ""), inputMessage[10].replace(" ", ""), inputMessage[11].replace(" ", ""),
inputMessage[12] .replace(" ", ""));

break;

case MSG_WHAT_CAMERA_VIDEO_PROGRAMMATIONREQUEST:

try {

if (outputSocket != null) {

ArrayList<String> xmlData = CameraVideoScheduleHandler.getXmlData();

String videoProgrammationMessage = MSG_WHAT_CAMERA_VIDEO_PROGRAMMATIONREQUEST + " " + xmlData.get(0) + " " + xmlData.get(1)
+ " " + xmlData.get(2) + " " + xmlData.get(3) + " " + xmlData.get(4) + " " + xmlData.get(5) + " " + xmlData.get(6)

+ " " + xmlData.get(7) + " " + xmlData.get(8) + " " + xmlData.get(9) + " " + xmlData.get(10) + " " + xmlData.get(11)

RN

System.out.println("SimpleHandler: Sending to client (PROGRAMATIONREQUEST): " + videoProgrammationMessage);
outputSocket.write(videoProgrammationMessage.getBytes (Charset.forName ("UTF-8")));

outputSocket.flush();

}

} catch (NumberFormatException e) {

e.printStackTrace();

} catch (IOException e) {

e.printStackTrace();

}

break;
case MSG_WHAT_CAMERA_PICTURE_TAKEPICTURE:
CameraPictureTakeThread.start (input) ;

break;

case MSG_WHAT_CAMERA_PICTURE_PROGRAMMATION:

CameraPictureScheduleHandler.writeXmlData(inputMessage[1] .replace(" ", ""), inputMessage[2].replace(" ", ""),
inputMessage[3] .replace(" ", ""), inputMessage[4].replace(" ", ""), inputMessage[5].replace(" ", ""),
inputMessage[6] .replace(" ", ""), inputMessage[7].replace(" ", ""), inputMessage[8].replace(" ", ""),
inputMessage[9] .replace(" ", ""), inputMessage[10].replace(" ", ""), inputMessage[11].replace(" ", ""),

inputMessage[12] .replace(" ", ""), inputMessage[13].replace(" ", ""), inputMessage[14].replace(" ", ""));

60

break;

case MSG_WHAT_CAMERA_PICTURE_PROGRAMMATIONREQUEST:

try {

if (outputSocket != null) {

ArrayList<String> xmlData = CameraPictureScheduleHandler.getXmlData();

//STARTDATE STARTHOUR ENDDATE ENDHOUR INTERVAL SIZEW SIZEH QUALITY BRIGHTNESS CONTRAST SATURATION SHARPNESS EFFECT EXPOSURE

String pictureProgrammationMessage = MSG_WHAT_CAMERA_PICTURE_PROGRAMMATIONREQUEST + " " + xmlData.get(0) + " "

+ xmlData.get(1) + " " + xmlData.get(2) + " " + xmlData.get(3) + " " + xmlData.get(4) + " " + xmlData.get(5) + " "
+ xmlData.get(6) + " " + xmlData.get(7) + " " + xmlData.get(8) + " " + xmlData.get(9) + " " + xmlData.get(10) + " "
+ xmlData.get(11) + " " + xmlData.get(12) + " " + xmlData.get(13) + " ";

System.out.println("SimpleHandler: Sending to client (PROGRAMATIONREQUEST): " + pictureProgrammationMessage);
outputSocket.write(pictureProgrammationMessage.getBytes(Charset.forName("UTF-8")));

outputSocket.flush();

}

} catch (NumberFormatException e) {

e.printStackTrace();

} catch (IOException e) {

e.printStackTrace();

}

break;

case MSG_WHAT_FILES_PICTURES_FILELIST:

File picturesFolder = new File("/home/pi/tcc/server/pictures");
File[] listOfPictures = picturesFolder.listFiles();

String picturesListMessage = "";

int numPictures = 0;

ArrayList<String> pictureList = new ArrayList<>();

for (int i = 0; i < listOfPictures.length; i++) {

if (listOfPictures[i].isFile()) {

pictureList.add(listOfPictures[i].getName() + "@" + listOfPictures[i].lastModified() + "@" + listOfPictures[i].length());
numPictures++;

}

¥

Collections.sort(pictureList);

for (int i = 0; i < pictureList.size(); i++)

picturesListMessage = picturesListMessage + pictureList.get(i) + " ";

picturesListMessage = MSG_WHAT_FILES_PICTURES_FILELIST + " " + numPictures + " " + picturesListMessage;

try {

if (outputSocket != null) {

System.out.println("SimpleHandler: Sending to client (FILELIST): " + picturesListMessage);
outputSocket.write(picturesListMessage.getBytes(Charset.forName("UTF-8")));
outputSocket.flush();

}

} catch (IOException e) {

e.printStackTrace();

¥

break;

case MSG_WHAT_FILES_PICTURES_DOWNLOAD:
FilePicturesTransferThread.start (inputMessage[1]);

break;

case MSG_WHAT_FILES_VIDEOS_FILELIST:

File videoFolder = new File("/home/pi/tcc/server/videos");
File[] list0fVideos = videoFolder.listFiles();

String videoListMessage = "";

int numVideos = 0;

ArrayList<String> videoList = new ArrayList<>();

for (int i = 0; i < listOfVideos.length; i++) {
if (listOfVideos[i].isFile()) {
videoList.add(list0fVideos[i].getName() + "@" + listOfVideos[i].lastModified() + "@" + listOfVideos[i].length());

numVideos++;

Collections.sort(videoList);

for (int i = 0; i < videoList.size(); i++)

videoListMessage = videoListMessage + videoList.get(i) + " ";
videoListMessage = MSG_WHAT_FILES_VIDEOS_FILELIST + " " + numVideos + " " + videoListMessage;

try {

if (outputSocket != null) {

System.out.println("SimpleHandler: Sending to client (FILELIST): " + videoListMessage);
outputSocket.write(videoListMessage.getBytes(Charset.forName("UTF-8")));
outputSocket.flush();

¥

} catch (IOException e) {

e.printStackTrace();

}

break;

case MSG_WHAT_FILES_VIDEOS_DOWNLOAD:
FileVideosTransferThread.start (inputMessage[1]);

break;

case MSG_WHAT_FILES_VIDEOS_CONVERT:

String message;

Process p = null;

try {

p = Runtime.getRuntime() .exec(

"MP4Box -add " + "/home/pi/tcc/server/videos/" + inputMessage[1] + " " + "/home/pi/tcc/server/videos/"
+ inputMessage[1].replace("h264", "mp4"));

p.waitFor();

File convertedFile = new File("/home/pi/tcc/server/videos/" + inputMessagel[1].replace("h264", "mp4"));

message = MSG_WHAT_FILES_VIDEOS_CONVERT + " " + convertedFile.getName() + "@" + convertedFile.lastModified() + "@"
+ convertedFile.length() + " ";

if (outputSocket != null) {

System.out.println("SimpleHandler: Sending to client (FILELIST): " + message);
outputSocket.write(message.getBytes(Charset.forName ("UTF-8")));
outputSocket.flush();

}

} catch (IOException | InterruptedException e) {

e.printStackTrace();

} finally {

p.destroy();

}

break;
default:

break;

}

7.2 GPIO

7.2.1 Gpio0OScheduleThread.java

public class GpioOScheduleThread implements Runnable {

private int TIME_BETWEEN_CHECKS = 10000;

private static String channelNumber;

public void start(String channel) {
channelNumber = channel;

(new Thread(new GpioOScheduleThread())).start();
}

62

public void run() {

boolean flagStart = false;
boolean flagEnd = false;

ArrayList<String> xmlData;

Date current;
Date start;

Date end;

try {
while (true) {
while (!flagStart) {

xmlData = GpioScheduleHandler.getXmlData(channelNumber) ;
current = getCurrentDate();

start = getStartDate(xmlData);

end = getEndDate(xmlData);

if (current.compareTo(start) >= 0 && current.compareTo(end) < 0) {
System.out.println(channelNumber + ": START");

flagStart = true;
Pi4J.getGpioPinDigitalOutput (Integer.valueOf (channelNumber)) .setState (PinState.HIGH);
GpioScheduleHandler.writeXmlDataGpioState (channelNumber, "1.0");

} else {

Thread.sleep (TIME_BETWEEN_CHECKS) ;

}

}

flagStart = false;

while (!flagEnd) {

xmlData = GpioScheduleHandler.getXmlData(channelNumber) ;
current = getCurrentDate();

start = getStartDate(xmlData);

end = getEndDate(xmlData);

if (current.compareTo(end) >= 0) {
System.out.println(channelNumber + ": END");

flagEnd = true;
Pi4J.getGpioPinDigitalOutput (Integer.valueOf (channelNumber)) .setState(PinState.LOW);
GpioScheduleHandler.writeXmlDataGpioState (channelNumber, "0.0");
} else {

Thread.sleep (TIME_BETWEEN_CHECKS) ;

}

}

flagEnd = false;

¥

} catch (InterruptedException e) {
e.printStackTrace();

}

}

private Date getCurrentDate() {

try {

Date date = new Date();

Calendar calendar = GregorianCalendar.getInstance();

calendar.setTime(date) ;

return new SimpleDateFormat("dd/MM/yyyy HH:mm", Locale.ENGLISH).parse(calendar.get(Calendar.DAY_OF_MONTH) + "/"
+ (calendar.get(Calendar.MONTH) + 1) + "/" + calendar.get(Calendar.YEAR) + " " + calendar.get(Calendar .HOUR_OF_DAY) + ":"
+ calendar.get(Calendar.MINUTE)) ;

} catch (ParseException e) {

e.printStackTrace();

}

return null;

}

private Date getStartDate(ArrayList<String> xmlData) {
try {
return new SimpleDateFormat("dd/MM/yyyy HH:mm", Locale.ENGLISH).parse(xmlData.get(2) + " " + xmlData.get(3));

63

} catch (ParseException e) {
e.printStackTrace();
¥

return null;

}

private Date getEndDate(ArrayList<String> xmlData) {

try {

return new SimpleDateFormat("dd/MM/yyyy HH:mm", Locale.ENGLISH).parse(xmlData.get(4) + " " + xmlData.get(5));
} catch (ParseException e) {

e.printStackTrace();

}

return null;

¥

¥

7.2.2 GpioScheduleHandler.java

public class GpioScheduleHandler {
private static final String GPIO_SCHEDULE_DIR = "/home/pi/tcc/server/gpioSchedule/";

private static final String GPIO = "gpio";

private static final String TAGNAME_STATE = "state";

private static final String TAGNAME_STARTDATE = "startdate";
private static final String TAGNAME_STARTHOUR = "starthour";
private static final String TAGNAME_ENDDATE = "enddate";
private static final String TAGNAME_ENDHOUR = "endhour";

public static boolean writeXmlData(String channelNumber, String state, String startdate, String starthour, String enddate, String endhour) {
try {

DocumentBuilderFactory documentBuilderFactory = DocumentBuilderFactory.newInstance();

DocumentBuilder documentBuilder = documentBuilderFactory.newDocumentBuilder();

Document document = documentBuilder.parse (GPIO_SCHEDULE_DIR + "gpio" + channelNumber + "Schedule.xml");

Node nodeGpio = document.getElementsByTagName(GPIO + channelNumber).item(0);
NodeList nodeList = nodeGpio.getChildNodes();

for (int i = 0; i < nodeList.getLength(); i++) {

Node node = nodeList.item(i);

if (node.getNodeName () .equalsIgnoreCase(TAGNAME_STATE))

node.setTextContent (state) ;

if (node.getNodeName () .equalsIgnoreCase (TAGNAME_STARTDATE))
node.setTextContent (startdate) ;

if (node.getNodeName () .equalsIgnoreCase(TAGNAME_STARTHOUR))

node.setTextContent (starthour) ;

if (node.getNodeName () .equalsIgnoreCase(TAGNAME_ENDDATE))
node.setTextContent (enddate) ;

if (node.getNodeName () .equalsIgnoreCase (TAGNAME_ENDHOUR))
node.setTextContent (endhour) ;

}

TransformerFactory transformerFactory = TransformerFactory.newInstance();

Transformer transformer = transformerFactory.newTransformer();

DOMSource domSource = new DOMSource(document) ;

Str R 1t str R 1t = new StreamResult(new File(GPIO_SCHEDULE_DIR + "gpio" + channelNumber + "Schedule.xml"));

transformer.transform(domSource, streamResult);

return true;

} catch (ParserConfigurationException pce) {
pce.printStackTrace();

} catch (TransformerException tfe) {
tfe.printStackTrace();

} catch (IOException ioe) {

64

ioe.printStackTrace();
} catch (SAXException sae) {
sae.printStackTrace();

}

return false;

}

public static boolean writeXmlDataGpioState(String channelNumber, String state) {
try {

DocumentBuilderFactory documentBuilderFactory = DocumentBuilderFactory.newInstance();
DocumentBuilder documentBuilder = documentBuilderFactory.newDocumentBuilder();

Document document = documentBuilder.parse(GPIO_SCHEDULE_DIR + "gpio" + channelNumber + "Schedule.xml");

Node nodeGpio = document.getElementsByTagName(GPIO + channelNumber).item(0);
NodeList nodeList = nodeGpio.getChildNodes();

for (int i = 0; i < nodeList.getLength(); i++) {

Node node = nodeList.item(i);

if (node.getNodeName () .equalsIgnoreCase(TAGNAME_STATE))
node.setTextContent (state) ;
}

TransformerFactory transformerFactory = TransformerFactory.newInstance();

Transformer transformer = transformerFactory.newTransformer();

DOMSource domSource = new DOMSource(document) ;

StreamResult streamResult = new StreamResult(new File(GPIO_SCHEDULE_DIR + "gpio" + channelNumber + "Schedule.xml"));
transformer.transform(domSource, streamResult);

return true;

} catch (ParserConfigurationException pce) {
pce.printStackTrace();

} catch (TransformerException tfe) {
tfe.printStackTrace();

} catch (IOException ioe) {
ioe.printStackTrace();

} catch (SAXException sae) {
sae.printStackTrace();

}

return false;

}

/* Return: CHANNELNUMBER, STATE, STARTDATE, STARTHOUR, ENDDATE, ENDHOUR */
public static ArrayList<String> getXmlData(String channelNumber) {

ArrayList<String> xmlData = new ArrayList<String>();

try {
File xmlFile = new File(GPIO_SCHEDULE_DIR + "gpio" + channelNumber + "Schedule.xml");

DocumentBuilderFactory documentBuilderFactory = DocumentBuilderFactory.newInstance();
DocumentBuilder documentBuilder = documentBuilderFactory.newDocumentBuilder();
Document document = documentBuilder.parse(xmlFile);

document . getDocumentElement () .normalize () ;
NodeList nodeList = document.getElementsByTagName(GPIO + channelNumber);

for (int i = 0; i < nodeList.getLength(); i++) {

Node node = nodeList.item(i);

if (node.getNodeType() == Node.ELEMENT_NODE) {

Element element = (Element) node;

xmlData.add (channelNumber) ;
xmlData.add(element.getElementsByTagName (TAGNAME_STATE) .item(0) .getTextContent ()) ;
xmlData.add(element.getElementsByTagName (TAGNAME_STARTDATE) .item(0) .getTextContent());
xmlData.add(element.getElementsByTagName (TAGNAME_STARTHOUR) .item(0) .getTextContent());
xmlData.add (element.getElementsByTagName (TAGNAME_ENDDATE) .item(0) .getTextContent()) ;
xmlData.add (element .getElementsByTagName (TAGNAME_ENDHOUR) .item(0) .getTextContent ()) ;

¥

¥

} catch (Exception e) {
e.printStackTrace();

¥

return xmlData;

}

}

7.2.3 Pi4]

public class Pi4J {

static GpioPinDigitalOutput myGpioO;
static GpioPinDigitalOutput myGpiol;
static GpioPinDigitalOutput myGpio2;
static GpioPinDigitalOutput myGpio3;
static GpioPinDigitalOutput myGpio4;
static GpioPinDigitalOutput myGpio5;
static GpioPinDigitalOutput myGpio6;
static GpioPinDigitalOutput myGpio7;

public static boolean InitGpio() {

try {

GpioController gpio = GpioFactory.getInstance();

myGpioO = gpio.provisionDigitalOutputPin(RaspiPin.GPIO_00, "MyLEDO", PinState.LOW);
myGpiol = gpio.provisionDigitalOutputPin(RaspiPin.GPIO_01, "MyLED1", PinState.LOW);
myGpio2 = gpio.provisionDigitalOutputPin(RaspiPin.GPI0_02, "MyLED2", PinState.LOW);
myGpio3 = gpio.provisionDigitalOutputPin(RaspiPin.GPI0_03, "MyLED3", PinState.LOW);
myGpio4 = gpio.provisionDigitalOutputPin(RaspiPin.GPIO_04, "MyLED4", PinState.LOW);
myGpiob = gpio.provisionDigitalOutputPin(RaspiPin.GPIO_05, "MyLED5", PinState.LOW);
myGpio6 = gpio.provisionDigitalOutputPin(RaspiPin.GPIO_06, "MyLED6", PinState.LOW);
myGpio7 = gpio.provisionDigitalOutputPin(RaspiPin.GPIO_07, "MyLED7", PinState.LOW);
return true;

} catch (Exception e) {

return false;

}

}

public static GpioPinDigitalOutput getGpioPinDigitalOutput(int pinNumber) {
switch (pinNumber) {
case 0:

return myGpioO;
case 1:

return myGpiol;
case 2:

return myGpio2;
case 3:

return myGpio3;
case 4:

return myGpioé4;
case 5:

return myGpio5;
case 6:

return myGpio6;
case T7:

return myGpio7;
default:

return null;

}

}

}

7.3 Camera - Imagem

7.3.1 CameraPictureScheduleThread.java

public class CameraPictureScheduleThread implements Runnable {

66

private int TIME_BETWEEN_CHECKS = 10000;

public static void start() {
(new Thread(new CameraPictureScheduleThread())).start();

}
public void run() {
ArrayList<String> xmlData = CameraPictureScheduleHandler.getXmlData();

Calendar ¢ = Calendar.getInstance();

Date current = getCurrentDate();

Date start = getStartDate(xmlData);

Date end = getEndDate(xmlData);

Date pictureDate = start;

int interval = Integer.parselnt(xmlData.get(4));

int numPictures = 0;

while (true) {

xmlData = CameraPictureScheduleHandler.getXmlData();
current = getCurrentDate();

start = getStartDate(xmlData);

end = getEndDate(xmlData);

pictureDate = start;

interval = Integer.parselnt(xmlData.get(4));

c.setTime(pictureDate);
c.add(Calendar.MINUTE, interval * numPictures);

pictureDate = c.getTime();

if (current.compareTo(pictureDate) == 0 && end.compareTo(pictureDate) >= 0) {
System.out.println("SMILE !!!1!");
Process p = null;

try {

DateFormat dateFormat = new SimpleDateFormat ("dd-MM-yyyy_HH-mm-ss");

Date currentDate = new Date();

p = Runtime.getRuntime () .exec(

"raspistill" + " -o pictures/picture_" + dateFormat.format(currentDate).toString() + ".jpg" + " -t 1000" + " -w "
+ xmlData.get(5) + " -h " + xmlData.get(6) + " -q " + xmlData.get(7) + " -br " + xmlData.get(8) + " -sh "

+ xmlData.get(9) + " -co " + xmlData.get(10) + " -sa " + xmlData.get(11) + " -ifx " + xmlData.get(12) + " -ex "
+ xmlData.get(13));

p.waitFor();

numPictures++;

} catch (IOException | InterruptedException e) {

e.printStackTrace();

} finally {

p.destroy();

¥

} else {

try {

Thread.sleep (TIME_BETWEEN_CHECKS) ;

} catch (InterruptedException e) {

e.printStackTrace();

}

}

if (end.compareTo(current) <= 0)
numPictures = 0;

}

}

private Date getCurrentDate() {

try {

Date date = new Date();

Calendar calendar = GregorianCalendar.getInstance();

calendar.setTime(date) ;

return new SimpleDateFormat("dd/MM/yyyy HH:mm", Locale.ENGLISH).parse(calendar.get(Calendar.DAY_OF_MONTH) + "/"

+ (calendar.get(Calendar.MONTH) + 1) + "/" + calendar.get(Calendar.YEAR) + " " + calendar.get(Calendar .HOUR_OF_DAY) + ":"
+ calendar.get(Calendar .MINUTE)) ;

} catch (ParseException e) {

e.printStackTrace();

}
return null;

}

private Date getStartDate(ArrayList<String> xmlData) {

try {

return new SimpleDateFormat("dd/MM/yyyy HH:mm", Locale.ENGLISH).parse(xmlData.get(0) + " " + xmlData.get(1));
} catch (ParseException e) {

e.printStackTrace();

}

return null;

}

private Date getEndDate(ArrayList<String> xmlData) {

try {

return new SimpleDateFormat("dd/MM/yyyy HH:mm", Locale.ENGLISH).parse(xmlData.get(2) + " " + xmlData.get(3));
} catch (ParseException e) {

e.printStackTrace();

}

return null;

}

}

7.3.2 CameraPictureScheduleHandler.java

public class CameraPictureScheduleHandler {

private static final String CAMERAPICTURE_SCHEDULE_DIR = "/home/pi/tcc/server/cameraSchedule/pictureSchedule.xml";

private static final String PICTURE = "picture";

private static final String TAGNAME_STARTDATE = "startdate";
private static final String TAGNAME_STARTHOUR = "starthour";
private static final String TAGNAME_ENDDATE = "enddate";
private static final String TAGNAME_ENDHOUR = "endhour";
private static final String TAGNAME_INTERVAL = "interval";
private static final String TAGNAME_SIZEW = "sizew";

private static final String TAGNAME_SIZEH = "sizeh";

private static final String TAGNAME_QUALITY = "quality";
private static final String TAGNAME_BRIGHTNESS = "brightness";
private static final String TAGNAME_CONTRAST = "contrast";
private static final String TAGNAME_SATURATION = "saturation";
private static final String TAGNAME_SHARPNESS = "sharpness";
private static final String TAGNAME_EFFECT = "effect";

private static final String TAGNAME_EXPOSURE = "exposure";

public static boolean writeXmlData(String startdate, String starthour, String enddate, String endhour, String interval, String sizeW,

String sizeH, String quality, String brightness, String contrast, String saturation, String sharpness, String effect, String exposure) {

try {
DocumentBuilderFactory documentBuilderFactory = DocumentBuilderFactory.newInstance();
DocumentBuilder documentBuilder = documentBuilderFactory.newDocumentBuilder();

Document document = documentBuilder.parse (CAMERAPICTURE_SCHEDULE_DIR);

Node nodeGpio = document.getElementsByTagName (PICTURE) .item(0);
NodeList nodeList = nodeGpio.getChildNodes();

for (int i = 0; i < nodeList.getLength(); i++) {

Node node = nodeList.item(i);

if (node.getNodeName () .equalsIgnoreCase (TAGNAME_STARTDATE))
node.setTextContent (startdate) ;

if (node.getNodeName () .equalsIgnoreCase(TAGNAME_STARTHOUR))

node.setTextContent (starthour) ;

if (node.getNodeName () .equalsIgnoreCase(TAGNAME_ENDDATE))
node.setTextContent (enddate) ;

if (node.getNodeName () .equalsIgnoreCase (TAGNAME_ENDHOUR))

node.setTextContent (endhour) ;

if (node.getNodeName () .equalsIgnoreCase(TAGNAME_INTERVAL))

67

68

node.setTextContent (interval);

if (node.getNodeName () .equalsIgnoreCase(TAGNAME_SIZEW))

node.setTextContent (sizeW) ;

if (node.getNodeName () .equalsIgnoreCase(TAGNAME_SIZEH))

node.setTextContent (sizeH) ;

if (node.getNodeName () .equalsIgnoreCase (TAGNAME_QUALITY))
node.setTextContent(quality);

if (node.getNodeName () .equalsIgnoreCase(TAGNAME_BRIGHTNESS))
node.setTextContent (brightness) ;

if (node.getNodeName () .equalsIgnoreCase (TAGNAME_CONTRAST))

node.setTextContent (contrast) ;

if (node.getNodeName () .equalsIgnoreCase (TAGNAME_SATURATION))

node.setTextContent (saturation) ;

if (node.getNodeName () .equalsIgnoreCase (TAGNAME_SHARPNESS))

node.setTextContent (sharpness) ;

if (node.getNodeName () .equalsIgnoreCase (TAGNAME_EFFECT))
node.setTextContent (effect);

if (node.getNodeName () .equalsIgnoreCase (TAGNAME_EXPOSURE))

node.setTextContent (exposure) ;

TransformerFactory transformerFactory = TransformerFactory.newInstance();
Transformer transformer = transformerFactory.newTransformer();

DOMSource domSource = new DOMSource(document) ;

StreamResult streamResult = new StreamResult(new File(CAMERAPICTURE_SCHEDULE_DIR));

transformer.transform(domSource, streamResult);
return true;

} catch (ParserConfigurationException pce) {
pce.printStackTrace();

} catch (TransformerException tfe) {
tfe.printStackTrace();

} catch (IOException ioe) {
ioe.printStackTrace();

} catch (SAXException sae) {
sae.printStackTrace();

}

return false;

}

/* Return: STARTDATE STARTHOUR ENDDATE ENDHOUR INTERVAL SIZEW SIZEH QUALITY BRIGHTNESS CONTRAST SATURATION SHARPNESS EFFECT EXPOSURE */
public static ArrayList<String> getXmlData() {

ArrayList<String> xmlData = new ArrayList<String>();

try {
File xmlFile = new File(CAMERAPICTURE_SCHEDULE_DIR) ;

DocumentBuilderFactory documentBuilderFactory = DocumentBuilderFactory.newInstance();
DocumentBuilder documentBuilder = documentBuilderFactory.newDocumentBuilder();
Document document = documentBuilder.parse(xmlFile);

document . getDocumentElement () .normalize () ;
NodeList nodeList = document.getElementsByTagName (PICTURE) ;

for (int i = 0; i < nodeList.getLength(); i++) {

Node node = nodeList.item(i);

if (node.getNodeType() == Node.ELEMENT_NODE) {
Element element = (Element) node;

xmlData.add(element.getElementsByTagName (TAGNAME_STARTDATE) . item(0) .getTextContent());

xmlData.add(element.getElementsByTagName (TAGNAME_STARTHOUR) . item(0) .getTextContent ());
xmlData.add(element.getElementsByTagName (TAGNAME_ENDDATE) .item(0) .getTextContent());
xmlData.add(element.getElementsByTagName (TAGNAME_ENDHOUR) .item(0) .getTextContent());
xmlData.add(element.getElementsByTagName (TAGNAME_INTERVAL) .item(0) .getTextContent());
xmlData.add(element .getElementsByTagName (TAGNAME_SIZEW) .item(0) .getTextContent());
xmlData.add(element.getElementsByTagName (TAGNAME_SIZEH) .item(0) .getTextContent());
xmlData.add(element.getElementsByTagName (TAGNAME_QUALITY) .item(0) .getTextContent());
xmlData.add(element . getElementsByTagName (TAGNAME_BRIGHTNESS) .item(0) .getTextContent () ;
xmlData.add(element.getElementsByTagName (TAGNAME_CONTRAST) .item(0) .getTextContent ());
xmlData.add (element .getElementsByTagName (TAGNAME_SATURATION) .item(0) .getTextContent());
xmlData.add(element.getElementsByTagName (TAGNAME_SHARPNESS) .item(0) .getTextContent ());
xmlData.add(element.getElementsByTagName (TAGNAME_EFFECT) . item(0) .getTextContent () ;
xmlData.add(element.getElementsByTagName (TAGNAME_EXPOSURE) . item(0) .getTextContent ()) ;

}

}

} catch (Exception e) {

e.printStackTrace();

}

return xmlData;
}
}

7.3.3 CameraPictureTakeThread.java

public class CameraPictureTakeThread implements Runnable {
private static String inputString;

public static void start(String message) {
inputString = message;
(new Thread(new CameraPictureTakeThread())).start();

}
public void run() {
System.out.println("SMILE !!!1");

DateFormat dateFormat = new SimpleDateFormat ("dd-MM-yyyy_HH-mm-ss");

Date currentDate = new Date();

Process p = null;

try {

p = Runtime.getRuntime() .exec(

"raspistill" + " -o pictures/picture_" + dateFormat.format(currentDate).toString() + ".jpg" + " -t 1000" + " -w "
+ inputString.split(" ")[1] + " -h " + inputString.split(" ")[2] + " -q " + inputString.split(" ")[3] + " -br "

+ inputString.split(" ")[4] + " -sh " + inputString.split(" ")[6] + " -co " + inputString.split(" ")[6] + " -sa "
+ inputString.split(" ")[7] + " -ifx " + inputString.split(" ")[8] + " -ex " + inputString.split(" ")[9]);

.waitFor();

w o

catch (IOException | InterruptedException e) {
.printStackTrace();

finally {

destroy();

I - B

7.4 Camera - Video

7.4.1 CameraVideoThread.java

public class CameraVideoRealTimeThread implements Runnable {
private static Process p;

public static boolean isStreaming;

70

public static void start() {
isStreaming = false;
(new Thread(new CameraVideoRealTimeThread())).start();

}

public static void end() {
if (p !'= null)
p.destroy();

}

public void run() {
System.out.println("STREAMING !!!!");

p = null;

try {

isStreaming = true;

p = Runtime.getRuntime().exec("sudo ./stream > /dev/null &");

// p.waitFor();

BufferedReader in = new BufferedReader(new InputStreamReader(p.getInputStream()));

@SuppressWarnings ("unused")
String line = null;
while ((line = in.readLine()) != null) {

// System.out.println(line);

}
isStreaming = false;
System.out.println("STREAM DONE !!!!");

} catch (IOException e) {

isStreaming = false;
System.out.println("STREAM CLOSED !!!!");
} finally {

if (p !'= null) {

isStreaming = false;

p.destroy();

¥

}
}
}

7.4.2 CameraVideoScheduleThread.java

public class CameraVideoScheduleThread implements Runnable {
private int TIME_BETWEEN_CHECKS = 10000;

public static void start() {
(new Thread(new CameraVideoScheduleThread())).start();
}

public void run() {
ArrayList<String> xmlData = CameraVideoScheduleHandler.getXmlData();

boolean filming = false;

Date current = getCurrentDate();

Date start = getStartDate(xmlData);

Date end = getEndDate(xmlData);

long duration = end.getTime() - start.getTime();

while (true) {

xmlData = CameraVideoScheduleHandler.getXmlData() ;
current = getCurrentDate();

start = getStartDate(xmlData);

end = getEndDate(xmlData);

duration = end.getTime() - start.getTime();

if (current.compareTo(start) == O && end.compareTo(current) >= O && 'filming && duration != 0)
filming = true;

System.out.println("FILMING !!!!");

Process p = null;
try {
DateFormat dateFormat = new SimpleDateFormat ("dd-MM-yyyy_HH-mm-ss");

Date currentDate = new Date();

p = Runtime.getRuntime () .exec(

"raspivid" + " -o videos/videos_" + dateFormat.format(currentDate).toString() + ".h264" + " -t " + duration + " -w "
+ xmlData.get(4) + " -h " + xmlData.get(5) + " -br " + xmlData.get(6) + " -sh " + xmlData.get(7) + " -co "
xmlData.get(8) + " -sa " + xmlData.get(9) + " -ifx " + xmlData.get(10) + " -ex " + xmlData.get(11));

+

p.waitFor();

} catch (IOException | InterruptedException e) {
e.printStackTrace();
} finally {
p.destroy();
}
}

else {
try {
Thread.sleep (TIME_BETWEEN_CHECKS) ;
} catch (InterruptedException e) {
e.printStackTrace();
}
}

if (end.compareTo(current) <= 0) {
filming = false;

}

}

}

private Date getCurrentDate() {

try {

Date date = new Date();

Calendar calendar = GregorianCalendar.getInstance();

calendar.setTime(date);

return new SimpleDateFormat("dd/MM/yyyy HH:mm", Locale.ENGLISH).parse(calendar.get(Calendar.DAY_OF_MONTH) + "/"
+ (calendar.get(Calendar.MONTH) + 1) + "/" + calendar.get(Calendar.YEAR) + " " + calendar.get(Calendar .HOUR_OF_DAY) + ":"
+ calendar.get(Calendar.MINUTE)) ;

} catch (ParseException e) {

e.printStackTrace();

¥

return null;

}

private Date getStartDate(ArrayList<String> xmlData) {

try {

return new SimpleDateFormat("dd/MM/yyyy HH:mm", Locale.ENGLISH).parse(xmlData.get(0) + " " + xmlData.get(1));
} catch (ParseException e) {

e.printStackTrace();

}

return null;

}

private Date getEndDate(ArrayList<String> xmlData) {

try {

return new SimpleDateFormat("dd/MM/yyyy HH:mm", Locale.ENGLISH).parse(xmlData.get(2) + " " + xmlData.get(3));
} catch (ParseException e) {

e.printStackTrace();

}

return null;

}

}

7.4.3 CameraVideoScheduleHandler.java

public class CameraVideoScheduleHandler {
private static final String CAMERAVIDEO_SCHEDULE_DIR = "/home/pi/tcc/server/cameraSchedule/videoSchedule.xml";

private static final String VIDEQ = "video";
private static final String TAGNAME_STARTDATE = "startdate";

72

private static final String TAGNAME_STARTHOUR = "starthour";
private static final String TAGNAME_ENDDATE = "enddate";
private static final String TAGNAME_ENDHOUR = "endhour";
private static final String TAGNAME_SIZEW = "sizew";

private static final String TAGNAME_SIZEH = "sizeh";

private static final String TAGNAME_BRIGHTNESS = "brightness";
private static final String TAGNAME_CONTRAST = "contrast";
private static final String TAGNAME_SATURATION = "saturation";
private static final String TAGNAME_SHARPNESS = "sharpness";
private static final String TAGNAME_EFFECT = "effect";

private static final String TAGNAME_EXPOSURE = "exposure";

public static boolean writeXmlData(String startdate, String starthour, String enddate, String endhour, String sizeW, String sizeH,
String brightness, String contrast, String saturation, String sharpness, String effect, String exposure) {

try {

DocumentBuilderFactory documentBuilderFactory = DocumentBuilderFactory.newInstance();

DocumentBuilder documentBuilder = documentBuilderFactory.newDocumentBuilder();

Document document = documentBuilder.parse (CAMERAVIDEO_SCHEDULE_DIR);

Node nodeGpio = document.getElementsByTagName (VIDEO).item(0) ;
NodeList nodeList = nodeGpio.getChildNodes();

for (int i = 0; i < nodeList.getLength(); i++) {

Node node = nodeList.item(i);

if (node.getNodeName () .equalsIgnoreCase(TAGNAME_STARTDATE))
node.setTextContent (startdate) ;

if (node.getNodeName () .equalsIgnoreCase (TAGNAME_STARTHOUR))

node.setTextContent (starthour) ;

if (node.getNodeName () .equalsIgnoreCase(TAGNAME_ENDDATE))
node.setTextContent (enddate) ;

if (node.getNodeName () .equalsIgnoreCase (TAGNAME_ENDHOUR))

node.setTextContent (endhour) ;

if (node.getNodeName () .equalsIgnoreCase(TAGNAME_SIZEW))

node.setTextContent (sizeW) ;

if (node.getNodeName () .equalsIgnoreCase(TAGNAME_SIZEH))

node.setTextContent (sizeH) ;

if (node.getNodeName () .equalsIgnoreCase (TAGNAME_BRIGHTNESS))
node.setTextContent (brightness);

if (node.getNodeName () .equalsIgnoreCase (TAGNAME_CONTRAST))

node.setTextContent (contrast);

if (node.getNodeName () .equalsIgnoreCase(TAGNAME_SATURATION))

node.setTextContent (saturation) ;

if (node.getNodeName () .equalsIgnoreCase(TAGNAME_SHARPNESS))

node.setTextContent (sharpness) ;

if (node.getNodeName () .equalsIgnoreCase (TAGNAME_EFFECT))
node.setTextContent (effect) ;

if (node.getNodeName () .equalsIgnoreCase (TAGNAME_EXPOSURE))

node.setTextContent (exposure) ;

TransformerFactory transformerFactory = TransformerFactory.newInstance();
Transformer transformer = transformerFactory.newTransformer();

DOMSource domSource = new DOMSource(document) ;

StreamResult streamResult = new StreamResult(new File(CAMERAVIDEO_SCHEDULE_DIR));

transformer.transform(domSource, streamResult);
return true;

} catch (ParserConfigurationException pce) {

pce.printStackTrace();

} catch (TransformerException tfe) {
tfe.printStackTrace();

} catch (IOException ioe) {
ioe.printStackTrace();

} catch (SAXException sae) {
sae.printStackTrace();

}

return false;

}

/* Return: STARTDATE STARTHOUR ENDDATE ENDHOUR SIZEW SIZEH QUALITY BRIGHTNESS CONTRAST SATURATION SHARPNESS EFFECT EXPOSURE */

public static ArrayList<String> getXmlData() {
ArrayList<String> xmlData = new ArrayList<String>();

try {
File xmlFile = new File(CAMERAVIDEO_SCHEDULE_DIR);

DocumentBuilderFactory documentBuilderFactory = DocumentBuilderFactory.newInstance();
DocumentBuilder documentBuilder = documentBuilderFactory.newDocumentBuilder();
Document document = documentBuilder.parse(xmlFile);

document . getDocumentElement () .normalize() ;
NodeList nodeList = document.getElementsByTagName (VIDEO) ;

for (int i = 0; i < nodelList.getLength(); i++) {

Node node = nodeList.item(i);

if (node.getNodeType() == Node.ELEMENT_NODE) {

Element element = (Element) node;
xmlData.add(element.getElementsByTagName (TAGNAME_STARTDATE) .item(0) .getTextContent());
xmlData.add(element.getElementsByTagName (TAGNAME_STARTHOUR) .item(0) .getTextContent ());
xmlData.add(element.getElementsByTagName (TAGNAME_ENDDATE) .item(0) .getTextContent());
xmlData.add(element.getElementsByTagName (TAGNAME_ENDHOUR) .item(0) .getTextContent()) ;
xmlData.add (element.getElementsByTagName (TAGNAME_SIZEW) .item(0) .getTextContent());
xmlData.add(element.getElementsByTagName (TAGNAME_SIZEH) .item(0) .getTextContent());
xmlData.add(element.getElementsByTagName (TAGNAME_BRIGHTNESS) .item(0) .getTextContent ());
xmlData.add(element.getElementsByTagName (TAGNAME_CONTRAST) .item(0) .getTextContent()) ;
xmlData.add (element .getElementsByTagName (TAGNAME_SATURATION) .item(0) .getTextContent ());
xmlData.add(element.getElementsByTagName (TAGNAME_SHARPNESS) .item(0) .getTextContent());
xmlData.add(element.getElementsByTagName (TAGNAME_EFFECT) .item(0) .getTextContent () ;
xmlData.add(element . getElementsByTagName (TAGNAME_EXPOSURE) . item(0) .getTextContent ());

}

}

} catch (Exception e) {

e.printStackTrace();

}
return xmlData;

}
}

7.5 Arquivos

7.5.1 FilePicturesTransferThread.java

public class FilePicturesTransferThread implements Runnable {
private static String filename;

public static void start(String name) {
filename = name;
(new Thread(new FilePicturesTransferThread())).start();

}

@SuppressWarnings ("resource")
public void run() {
try {

73

74

ServerSocket serverSocket;

serverSocket = new ServerSocket (5556);

Socket socket = serverSocket.accept();

File transferFile = new File("/home/pi/tcc/server/pictures/" + filename);
byte[] bytearray = new byte[8096];

FileInputStream fin = new FileInputStream(transferFile);
BufferedInputStream bin = new BufferedInputStream(fin);
OutputStream os = socket.getOutputStream();

int count;

while ((count = bin.read(bytearray, 0, 8096)) >= 0) {
os.write(bytearray, 0, count);

os.flush();

}

os.flush();

socket.close();

System.out.println("File transfer complete");
serverSocket.close();

} catch (IOException e) {

e.printStackTrace() ;

}

}

}

7.5.2 FileVideosTransferThread.java

public class FileVideosTransferThread implements Runnable {
private static String filename;

public static void start(String name) {

filename = name;

(new Thread(new FileVideosTransferThread())).start();
¥

@SuppressWarnings ("resource")

public void run() {

try {

ServerSocket serverSocket;

serverSocket = new ServerSocket (5556) ;

Socket socket = serverSocket.accept();

File transferFile = new File("/home/pi/tcc/server/videos/" + filename);
byte[] bytearray = new byte[8096];

FileInputStream fin = new FileInputStream(transferFile);
BufferedInputStream bin = new BufferedInputStream(fin);
OutputStream os = socket.getOutputStream();

int count;

while ((count = bin.read(bytearray, 0, 8096)) >= 0) {
os.write(bytearray, 0, count);

os.flushQ);

}

os.flush();

socket.close();

System.out.println("File transfer complete");
serverSocket.close();

} catch (IOException e) {

e.printStackTrace();

}

}

¥

8 Apéndice C - Codigo do Cliente

8.1 C(liente

8.1.1 LoginActivity.Java

public class LoginActivity extends Activity {

static String ip;
static String port;

SharedPreferences prefs;

EditText editTextIp;
EditText editTextPort;

@0Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;

setContentView(R.layout.activity_login);

prefs = this.getSharedPreferences("com.tcc.clienttest", Context.MODE_PRIVATE);
ip = prefs.getString("IP", "");
port = prefs.getString("PORT", "");

editTextIp = (EditText) findViewById(R.id.EditTextIp);
editTextPort = (EditText) findViewById(R.id.editTextPort);
editTextIp.setText (ip);

editTextPort.setText (port);

public void OnButtonClickConnect(View view) {
ip = editTextIp.getText().toString();
port = editTextPort.getText().toString();

if (isValidIp(ip)) {

prefs.edit () .putString("IP", ip).commit();
prefs.edit () .putString("PORT", port).commit();

// connect to the server

new ConnectionAsyncTask().execute(ip, port);

Intent intent = new Intent(LoginActivity.this, MainActivity.class);
startActivity(intent);

} else {

editTextIp.requestFocus();

editTextIp.setError("Not well formed");

}

}

public static boolean isValidIp(final String ip) {
Pattern pattern = Pattern.compile ("~ ([01]?\\d\\d?|2[0-4]1\\d|25[0-51)\\." + "([01]17\\d\\d7|2[0-4]1\\d|25[0-5]1)\\."
+ "([0117\\d\\d?|2[0-4]1\\d|26[0-51)\\." + "([01]17\\d\\d?|2[0-4]1\\d|25[0-5])$");

75

76

Matcher matcher = pattern.matcher(ip);
return matcher.matches();

¥

}

8.1.2 MainActivity.Java

public class MainActivity extends Activity {
private ConnectionUtilities client;

@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;

setContentView(R.layout.activity_main);
client = ConnectionAsyncTask.getClient();

Button buttonGpio = (Button) findViewById(R.id.buttonGpio);
buttonGpio.setOnClickListener(new View.OnClickListener() {

@0Override

public void onClick(View view) {

Intent intent = new Intent(MainActivity.this, GpioListActivity.class);
startActivity(intent);

overridePendingTransition(R.anim.push_left_in, R.anim.push_left_out);
}

b

Button buttonCamera = (Button) findViewById(R.id.buttonCamera);
buttonCamera.setOnClickListener (new View.OnClickListener() {

@Override

public void onClick(View view) {

Intent intent = new Intent(MainActivity.this, CameraListActivity.class);
startActivity(intent);

overridePendingTransition(R.anim.push_left_in, R.anim.push_left_out);

}

b

Button buttonFiles = (Button) findViewById(R.id.buttonFiles);
buttonFiles.setOnClickListener(new View.OnClickListener() {

@0Override

public void onClick(View view) {

Intent intent = new Intent(MainActivity.this, FileListActivity.class);
startActivity(intent);

overridePendingTransition(R.anim.push_left_in, R.anim.push_left_out);
¥

b

// ProgressDialog ’Connecting’
new ConnectionDialog().execute("");

}

// Watch the state of ConnectionTask.
// Display the progress dialog while the status is STATE_CONNECTING
// Dismiss the dialog when the status is STATE_CONNECTED or STATE_CONNECTIONFAIL

protected class ConnectionDialog extends AsyncTask<String, String, ConnectionUtilities> {
ProgressDialog progressDialog;

@O0verride

protected void onPreExecute() {

super.onPreExecute() ;

progressDialog = new ProgressDialog(MainActivity.this);
progressDialog.setMessage("Connecting...");
progressDialog.show() ;

}

@Override
protected void onPostExecute(ConnectionUtilities result) {
super .onPostExecute (result) ;

progressDialog.dismiss();

@Override

protected ConnectionUtilities doInBackground(String... message) {

while (client.getConnectionState().equalsIgnoreCase(ConnectionUtilities.STATE_CONNECTING)) {
}

return null;

}

}

8.1.3 ConnectionUtilities.Java

public class ConnectionUtilities {

public static final String STATE_CONNECTING = "connecting";

public static final String STATE_CONNECTED = "connected";

public static final String STATE_CONNECTIONFAIL = "connection_fail";
public static final String STATE_FINISHED = "finished";

public static final int MSG_WHAT_PWM = 0;

public static final int MSG_WHAT_GPIO = 1;
public static final int MSG_WHAT_GPIO_PROGRAMMATION = 2;
public static final int MSG_WHAT_GPIO_PROGRAMMATIONREQUEST = 3;

public static final int MSG_WHAT_CAMERA_VIDEO_REALTIME = 4;

public static final int MSG_WHAT_CAMERA_VIDEO_REALTIMESTATUS = 5;
public static final int MSG_WHAT_CAMERA_VIDEO_PROGRAMMATION = 6;

public static final int MSG_WHAT_CAMERA_VIDEO_PROGRAMMATIONREQUEST = 7;

public static final int MSG_WHAT_CAMERA_PICTURE_TAKEPICTURE = 8;
public static final int MSG_WHAT_CAMERA_PICTURE_PROGRAMMATION = 9;
public static final int MSG_WHAT_CAMERA_PICTURE_PROGRAMMATIONREQUEST = 10;

public static final int MSG_WHAT_FILES_PICTURES_FILELIST = 11;
public static final int MSG_WHAT_FILES_PICTURES_DOWNLOAD = 12;

public static final int MSG_WHAT_FILES_VIDEOS_FILELIST = 13;
public static final int MSG_WHAT_FILES_VIDEOS_DOWNLOAD = 14;
public static final int MSG_WHAT_FILES_VIDEOS_CONVERT = 15;

private PrintWriter out;
private BufferedReader in;
private String state;

private String serverMessage;
private String serverIp;

private String serverPort;

public void startConnection() {

try {
setConnectionState (STATE_CONNECTING) ;
Log.d("ConnectionUtilities", "Connecting...");

//create a socket to make the connection with the server

Socket socket = new Socket(InetAddress.getByName(serverIp), Integer.parselnt(serverPort));

try {
//send the message to the server

out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(socket.getOutputStream())), true);

//receive the message which the server sends back

in = new BufferedReader (new InputStreamReader (socket.getInputStream()));

setConnectionState (STATE_CONNECTED) ;

Log.d("ConnectionUtilities", "Connected.");

//in this while the client listens for the messages sent by the server
while (getConnectionState().equals(STATE_CONNECTED)) {

77

78

serverMessage = in.readLine();

if (serverMessage != null) {

Log.d("ConnectionUtilities", "Mensagem recebida: " + serverMessage);
handleReceivedMessage (serverMessage) ;

¥

serverMessage = null;

}

} finally {

//the socket must be closed. It is not possible to reconnect to this socket
// after it is closed, which means a new socket instance has to be created.
socket.close();

}

} catch (Exception exception) {
setConnectionState (STATE_CONNECTIONFAIL);
Log.e("ConnectionUtilities", exception.getMessage());

}

public void endConnection() {
setConnectionState (STATE_FINISHED) ;
}

public void setConnectionState(String state) {
this.state = state;

}

public String getConnectionState() {
return state;

}

public void setIp(String ip) {
this.serverIp = ip;

}

public String getIp() {
return this.serverIp;

}

public void setPort(String port) {
this.serverPort = port;

}

public String getPort() {
return this.serverPort;

}

public void sendMessage(String message) {
if (out != null && !out.checkError()) {
out.println(message);

out.flush();

Log.d("ConnectionUtilities", "Mensagem enviada: " + message);
}
}

public String getMessage() {
return serverMessage;

}

private void handleReceivedMessage(String serverMessage) {

String[] inputMessage = serverMessage.replace("\n", "").replace("\r", "").split(" ");
int what = Integer.valueOf (inputMessage[0].replace(" ", ""));

switch (what) {

case MSG_WHAT_GPIO_PROGRAMMATIONREQUEST:

GpioActivity.scheduleResponse (serverMessage) ;

break;

case MSG_WHAT_CAMERA_VIDEO_PROGRAMMATIONREQUEST:
CameraVideoScheduleActivity.scheduleResponse (serverMessage) ;

break;

case MSG_WHAT_CAMERA_VIDEO_REALTIMESTATUS:
CameraRealTimeActivity.streamStatusResponse (serverMessage);

break;

case MSG_WHAT_CAMERA_PICTURE_PROGRAMMATIONREQUEST:
CameraPictureScheduleActivity.scheduleResponse(serverMessage) ;

break;

case MSG_WHAT_FILES_PICTURES_FILELIST:
FilePicturesActivity.fileList(serverMessage);

break;

case MSG_WHAT_FILES_PICTURES_DOWNLOAD:
FilePicturesTransferThread.start(serverIp, serverPort, inputMessagel[1]);

break;

case MSG_WHAT_FILES_VIDEOS_FILELIST:
FileVideosActivity.fileList(serverMessage);

break;

case MSG_WHAT_FILES_VIDEOS_DOWNLOAD:
FileVideosTransferThread.start (serverIp, serverPort, inputMessagel[1]);

break;

case MSG_WHAT_FILES_VIDEOS_CONVERT:
FileVideosActivity.fileConversionSucess(serverMessage) ;

break;
default:

break;

}

8.1.4 ConnectionAsyncTask.Java

public class ConnectionAsyncTask extends AsyncTask<String, String, ConnectionUtilities> {
private static ConnectionUtilities client;

@Override

protected ConnectionUtilities doInBackground(String... message) {

client = new ConnectionUtilities();
client.setIp(message[0].toString());
client.setPort (message[1].toString());
client.startConnection();

return null;

}
public static ConnectionUtilities getClient() {
return client;

}
}

8.2 Camera

8.2.1 CameraListActivity.Java

public class CameraListActivity extends Activity {

Button buttonCameraRealTime;

79

80

Button buttonCameraVideoSchedule;
Button buttonCameraPictureSchedule;

Button buttonCameraPictureTake;

@0Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState);

setContentView(R.layout.activity_camera_list);

buttonCameraRealTime = (Button) findViewById(R.id.buttonCameraRealTime);
buttonCameraVideoSchedule = (Button) findViewById(R.id.buttonCameraVideoSchedule);
buttonCameraPictureSchedule = (Button) findViewById(R.id.buttonCameraPictureSchedule);
buttonCameraPictureTake = (Button) findViewById(R.id.buttonCameraPictureTake);

}

public void onClickButtonCameraRealTime(View view) {

Intent intent = new Intent(CameralistActivity.this, CameraRealTimeActivity.class);
startActivity(intent);

overridePendingTransition(R.anim.push_left_in, R.anim.push_left_out);

}

public void onClickButtonCameraVideoSchedule(View view) {

Intent intent = new Intent(CameralistActivity.this, CameraVideoScheduleActivity.class);
startActivity(intent);

cverridePendingTransition(R.anim.push_left_in, R.anim4push_1eft_out);

}

public void onClickButtonCameraPictureSchedule(View view) {

Intent intent = new Intent(CameralistActivity.this, CameraPictureScheduleActivity.class);
startActivity(intent);

overridePendingTransition(R.anim.push_left_in, R.anim.push_left_out);

}

public void onClickButtonCameraPictureTake(View view) {

Intent intent = new Intent(CameraListActivity.this, CameraPictureTakeActivity.class);
startActivity(intent);

overridePendingTransition(R.anim.push_left_in, R.anim.push_left_out);

}

@0Override

public void onBackPressed() {

super .onBackPressed() ;

overridePendingTransition(R.anim.push_right_in, R.anim.push_right_out);
}

}

8.2.2 CameraPictureScheduleActivity.Java

public class CameraPictureScheduleActivity extends FragmentActivity {
private ConnectionUtilities client;

static TextView textViewStartDate;
static TextView textViewStartHour;
static TextView textViewEndDate;
static TextView textViewEndHour;

static TextView textViewInterval;

static SeekBar seekBarQuality;
static SeekBar seekBarBrightness;
static SeekBar seekBarContrast;
static SeekBar seekBarSaturation;

static SeekBar seekBarSharpness;

static TextView textViewQuality;
static TextView textViewBrightness;
static TextView textViewContrast;
static TextView textViewSaturation;

static TextView textViewSharpness;

static Spinner spinnerSize;

static Spinner spinnerEffect;

static Spinner spinnerExposure;

private int quality = 100;
private int brightness = 50;
private int contrast = 0;
private int saturation = 0;

private int sharpness = 0;

private List<String> sizes;
private List<String> effects;

private List<String> exposures;

private static boolean flagWaitingSchedule;

private static String serverMessage;

@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState) ;

setContentView(R.layout.activity_camera_picture_schedule);

initTextView();
initSeekBar();

initSpinner();

flagWaitingSchedule = true;
client = ConnectionAsyncTask.getClient();
new AsyncTaskSchedule().execute();

}

@0Override

public void onBackPressed() {

super .onBackPressed() ;

overridePendingTransition(R.anim.push_right_in, R.anim.push_right_out);

}

public void onClickDefine(View v) {
if (textViewInterval.getText().toString().equalsIgnoreCase("")) {
showIntervalPickerDialog(v) ;

}

if (textViewEndHour.getText().toString().equalsIgnoreCase("")) {
showEndTimePickerDialog(v) ;

}

if (textViewEndDate.getText().toString().equalsIgnoreCase("")) {
showEndDatePickerDialog(v);
}

if (textViewStartHour.getText().toString().equalsIgnoreCase("")) {
showStartTimePickerDialog(v) ;

}

if (textViewStartDate.getText().toString().equalsIgnoreCase("")) {
showStartDatePickerDialog(v) ;
}

// WHAT STARTDATE STARTHOUR ENDDATE ENDHOUR INTERVAL SIZEW SIZEH QUALITY BRIGHTNESS CONTRAST SATURATION SHARPNESS EFFECT EXPOSURE
if (!textViewInterval.getText().toString().equalsIgnoreCase("") && !textViewEndHour.getText().toString().equalsIgnoreCase("")

&& !'textViewEndDate.getText().toString().equalsIgnoreCase("") && !textViewStartHour.getText().toString().equalsIgnoreCase("")

&& !'textViewStartDate.getText().toString().equalsIgnoreCase("")) {

String sizeW = sizes.get(spinnerSize.getSelectedItemPosition()).split(" x ")[0];
String sizeH = sizes.get(spinnerSize.getSelectedItemPosition()).split(" x ") [1];
String effect = effects.get(spinnerEffect.getSelectedItemPosition());

String exposure = exposures.get(spinnerExposure.getSelectedItemPosition());

client.sendMessage(ConnectionUtilities.MSG_WHAT_CAMERA_PICTURE_PROGRAMMATION + " " + textViewStartDate.getText().toString() + " "
+ textViewStartHour.getText().toString() + " " + textViewEndDate.getText().toString() + " "

+ textViewEndHour.getText().toString() + " " + textViewInterval.getText().toString().replace(" min", "") + " " + sizeW + " "

+ sizeH + " " + quality + " " + brightness + " " + contrast + " " + saturation + " " + sharpness + " " + effect + " " + exposure);

AlertDialog.Builder builder = new AlertDialog.Builder(CameraPictureScheduleActivity.this);

81

82

builder.setMessage("Schedule defined");

builder.setNegativeButton("0K", new DialogInterface.OnClickListener() {
public void onClick(DialogInterface dialog, int id) {

}

b

builder.create().show();

}

}

// AsyncTask
private class AsyncTaskSchedule extends AsyncTask<Void, Void, Void> {

@0Override

protected void onPreExecute() {

super .onPreExecute() ;

if (client != null)
client.sendMessage(ConnectionUtilities.MSG_WHAT_CAMERA_PICTURE_PROGRAMMATIONREQUEST + "");
}

@Override

protected Void doInBackground(Void... arg0) {
if (client != null) {

while (flagWaitingSchedule) {

}

}

return null;

}

@Override

protected void onPostExecute(Void result) {

if (serverMessage.split(" ").length >= 5) {
textViewStartDate.setText (serverMessage.split(" ") [1]);
textViewStartHour.setText (serverMessage.split(" ") [2]);
textViewEndDate.setText (serverMessage.split(" ") [3]);
textViewEndHour.setText (serverMessage.split(" ") [4]);
textViewInterval.setText (serverMessage.split(" ")[5] + " min");
¥

¥

public static void scheduleResponse(String serverMessage) {
CameraPictureScheduleActivity.serverMessage = serverMessage;
flagWaitingSchedule = false;

}

private void initTextView() {

textViewStartDate = (TextView) findViewById(R.id.textViewStartDate);
textViewStartHour = (TextView) findViewById(R.id.textViewStartHour);
textViewEndDate = (TextView) findViewById(R.id.textViewEndDate);
textViewEndHour = (TextView) findViewById(R.id.textViewEndHour);
textViewInterval = (TextView) findViewById(R.id.textViewInterval);

textViewQuality = (TextView) findViewById(R.id.textViewQuality);
textViewBrightness = (TextView) findViewById(R.id.textViewBrightness);
textViewContrast = (TextView) findViewById(R.id.textViewContrast);
textViewSaturation = (TextView) findViewById(R.id.textViewSaturation);
textViewSharpness = (TextView) findViewById(R.id.textViewSharpness);

textViewQuality.setText ("QUALITY (" + quality + "):");

textViewBrightness.setText ("BRIGHTNESS (" + brightness + "):");

textViewContrast.setText ("CONTRAST (" + contrast + "):");
textViewSaturation.setText ("SATURATION (" + saturation + "):");
textViewSharpness.setText ("SHARPNESS (" + sharpness + "):");

}

private void initSeekBar() {

seekBarQuality = (SeekBar) findViewById(R.id.seekBarQuality);
seekBarBrightness = (SeekBar) findViewById(R.id.seekBarBrightness);
seekBarContrast = (SeekBar) findViewById(R.id.seekBarContrast);
seekBarSaturation = (SeekBar) findViewById(R.id.seekBarSaturation);
seekBarSharpness = (SeekBar) findViewById(R.id.seekBarSharpness);

seekBarQuality.setProgress(100);
seekBarBrightness.setProgress(50) ;
seekBarContrast.setProgress(50);
seekBarSaturation.setProgress(50);

seekBarSharpness.setProgress(50);

seekBarQuality.setOnSeekBarChangeListener (OnSeekBarChangeListenerQuality) ;
seekBarBrightness.setOnSeekBarChangeListener (OnSeekBarChangeListenerBrightness) ;
seekBarContrast .setOnSeekBarChangeListener (OnSeekBarChangeListenerContrast) ;
seekBarSaturation.setOnSeekBarChangeListener (OnSeekBarChangelListenerSaturation) ;
seekBarSharpness.setOnSeekBarChangeListener (onSeekBarChangeListenerSharpness) ;

}

private void initSpinner() {

spinnerSize = (Spinner) findViewById(R.id.spinnerSize);

sizes = new ArrayList<String>();

sizes.add("720 x 480");

sizes.add ("800 x 600");

sizes.add("1366 x 768");

sizes.add("1280 x 720");

sizes.add("1920 x 1080");

ArrayAdapter<String> dataAdapterSize = new ArrayAdapter<String>(this, android.R.layout.simple_spinner_item, sizes);
dataAdapterSize.setDropDownViewResource (android.R.layout.simple_spinner_dropdown_item);

spinnerSize.setAdapter (dataAdapterSize);

spinnerEffect = (Spinner) findViewById(R.id.spinnerEffect);

effects = new ArrayList<String>();

effects.add("none");

effects.add("negative");

effects.add("sketch");

effects.add("emboss");

effects.add("oilpaint");

effects.add("pastel");

effects.add("watercolour");

effects.add("film");

effects.add("colourswap") ;

effects.add("cartoon");

ArrayAdapter<String> dataAdapterEffect = new ArrayAdapter<String>(this, android.R.layout.simple_spinner_item, effects);
dataAdapterEffect.setDropDownViewResource (android.R.layout.simple_spinner_dropdown_item) ;
spinnerEffect.setAdapter (dataAdapterEffect);

spinnerExposure = (Spinner) findViewById(R.id.spinnerExposure);

exposures = new ArrayList<String>();

exposures.add("auto") ;

exposures.add("off");

exposures.add("night");

exposures.add("sports") ;

exposures.add("snow") ;

exposures.add("beach") ;

exposures.add("fireworks");

exposures.add("backlight");

ArrayAdapter<String> dataAdapterExposure = new ArrayAdapter<String>(this, android.R.layout.simple_spinner_item, exposures);
dataAdapterExposure.setDropDownViewResource (android.R.layout.simple_spinner_dropdown_item) ;

spinnerExposure.setAdapter (dataAdapterExposure) ;

// SEEK BAR

OnSeekBarChangeListener OnSeekBarChangeListenerQuality = new OnSeekBarChangeListener() {

public void onProgressChanged(SeekBar seekBar, int progress, boolean fromUser) {
quality = progress;

textViewQuality.setText ("QUALITY (" + quality + "):");

¥

public void onStartTrackingTouch(SeekBar seekBar) {
}

public void onStopTrackingTouch(SeekBar seekBar) {
}
I

OnSeekBarChangeListener OnSeekBarChangeListenerBrightness = new OnSeekBarChangeListener() {

84

public void onProgressChanged(SeekBar seekBar, int progress, boolean fromUser) {
brightness = progress;

textViewBrightness.setText ("BRIGHTNESS (" + brightness + "):");

}

public void onStartTrackingTouch(SeekBar seekBar) {
}

public void onStopTrackingTouch(SeekBar seekBar) {
}
};

OnSeekBarChangeListener OnSeekBarChangeListenerContrast = new OnSeekBarChangeListener() {

public void onProgressChanged(SeekBar seekBar, int progress, boolean fromUser) {
contrast = (progress * 2 - 100);

textViewContrast.setText ("CONTRAST (" + contrast + "):");

}

public void onStartTrackingTouch(SeekBar seekBar) {

}

public void onStopTrackingTouch(SeekBar seekBar) {
}
I8

OnSeekBarChangeListener OnSeekBarChangeListenerSaturation = new OnSeekBarChangeListener() {

public void onProgressChanged(SeekBar seekBar, int progress, boolean fromUser) {
saturation = (progress * 2 - 100);

textViewSaturation.setText ("SATURATION (" + saturation + "):");

}

public void onStartTrackingTouch(SeekBar seekBar) {
}

public void onStopTrackingTouch(SeekBar seekBar) {
}
I

OnSeekBarChangeListener onSeekBarChangeListenerSharpness = new OnSeekBarChangeListener() {

public void onProgressChanged(SeekBar seekBar, int progress, boolean fromUser) {
sharpness = (progress * 2 - 100);

textViewSharpness.setText ("SHARPNESS (" + sharpness + "):");

}

public void onStartTrackingTouch(SeekBar seekBar) {
}

public void onStopTrackingTouch(SeekBar seekBar) {
}
};

// PICKERS

public void showIntervalPickerDialog(View v) {
DialogFragment newFragment = new IntevalPickerFragment();
newFragment . show(getSupportFragmentManager(), "timePicker");
}

public void showStartDatePickerDialog(View v) {
DialogFragment newFragment = new StartDatePickerFragment();
newFragment . show(getSupportFragmentManager(), "datePicker");
}

public void showStartTimePickerDialog(View v) {
DialogFragment newFragment = new StartTimePickerFragment();
newFragment . show(getSupportFragmentManager (), "timePicker");
}

public void showEndDatePickerDialog(View v) {
DialogFragment newFragment = new EndDatePickerFragment();

85

newFragment . show(getSupportFragmentManager(), "datePicker");
¥

public void showEndTimePickerDialog(View v) {
DialogFragment newFragment = new EndTimePickerFragment();
newFragment . show(getSupportFragmentManager(), "timePicker");

}

// DATE PICKER START

public static class StartDatePickerFragment extends DialogFragment implements DatePickerDialog.OnDateSetListener {

@Override

public Dialog onCreateDialog(Bundle savedInstanceState) {
final Calendar c = Calendar.getInstance();

int year = c.get(Calendar.YEAR);

int month = c.get(Calendar.MONTH);

int day = c.get(Calendar.DAY_OF_MONTH) ;

DatePickerDialog datePickerDialog = new DatePickerDialog(getActivity(), this, year, month, day);
datePickerDialog.setTitle("Start Date");
return datePickerDialog;

}

public void onDateSet(DatePicker view, int year, int month, int day) {
String monthString = String.valueOf (month + 1);

String dayString = String.valueOf(day);

if (monthString.length() == 1)

monthString = 0 + monthString;

if (dayString.length() == 1)

dayString = 0 + dayString;

textViewStartDate.setText(dayString + "/" + monthString + "/" + year);
}

}

// HOUR PICKER START

public static class StartTimePickerFragment extends DialogFragment implements TimePickerDialog.OnTimeSetListener {

@Override

public Dialog onCreateDialog(Bundle savedInstanceState) {
final Calendar ¢ = Calendar.getInstance();

int hour = c.get(Calendar.HOUR_OF_DAY);

int minute = c.get(Calendar.MINUTE);

TimePickerDialog timePickerDialog = new TimePickerDialog(getActivity(), this, hour, minute + 1, DateFormat.is24HourFormat(getActivity()));
timePickerDialog.setTitle("Start Hour");
return timePickerDialog;

}

public void onTimeSet(TimePicker view, int hourOfDay, int minute) {
String hourString = String.valueOf (hour0OfDay) ;

String minuteString = String.valueOf (minute);

if (hourString.length() == 1)

hourString = 0 + hourString;

1)

minuteString = 0 + minuteString;

if (minuteString.length()

textViewStartHour.setText (hourString + ":" + minuteString);
}
}

// INTERVAL PICKER

public static class IntevalPickerFragment extends DialogFragment implements TimePickerDialog.OnTimeSetListener {

@0Override

public Dialog onCreateDialog(Bundle savedInstanceState) {

TimePickerDialog timePickerDialog = new TimePickerDialog(getActivity(), this, 0, 1, DateFormat.is24HourFormat(getActivity()));
timePickerDialog.setTitle("Interval between pictures");

return timePickerDialog;

}

public void onTimeSet(TimePicker view, int hourOfDay, int minute) {
int totallnterval = hourOfDay * 60 + minute;
textViewInterval.setText(totalInterval + " min");

}

86

// DATE PICKER END
public static class EndDatePickerFragment extends DialogFragment implements DatePickerDialog.OnDateSetListener {

@0Override

public Dialog onCreateDialog(Bundle savedInstanceState) {
final Calendar ¢ = Calendar.getInstance();

int year = c.get(Calendar.YEAR);

int month = c.get(Calendar.MONTH) ;

int day = c.get(Calendar.DAY_OF_MONTH) ;

DatePickerDialog datePickerDialog = new DatePickerDialog(getActivity(), this, year, month, day);
datePickerDialog.setTitle("End Date");
return datePickerDialog;

}

public void onDateSet(DatePicker view, int year, int month, int day) {
String monthString = String.valueOf (month + 1);

String dayString = String.valueOf (day);

if (monthString.length() == 1)

monthString = 0 + monthString;

if (dayString.length() == 1)

dayString = 0 + dayString;

textViewEndDate.setText(dayString + "/" + monthString + "/" + year);

}

}

// HOUR PICKER END

public static class EndTimePickerFragment extends DialogFragment implements TimePickerDialog.OnTimeSetListener {

@0Override

public Dialog onCreateDialog(Bundle savedInstanceState) {
final Calendar c = Calendar.getInstance();

int hour = c.get(Calendar.HOUR_OF_DAY);

int minute = c.get(Calendar.MINUTE);

TimePickerDialog timePickerDialog = new TimePickerDialog(getActivity(), this, hour, minute + 2, DateFormat.is24HourFormat(getActivity()));
timePickerDialog.setTitle("End Hour");
return timePickerDialog;

}

public void onTimeSet(TimePicker view, int hourOfDay, int minute) {
String hourString = String.valueOf (hourOfDay) ;

String minuteString = String.valueOf (minute);

if (hourString.length() == 1)

hourString = 0 + hourString;

if (minuteString.length() == 1)

minuteString = 0 + minuteString;

textViewEndHour.setText (hourString + ":" + minuteString);
}

}

}

8.2.3 CameraPictureTakeActivity.Java

public class CameraPictureTakeActivity extends Activity {
private ConnectionUtilities client;

static SeekBar seekBarQuality;
static SeekBar seekBarBrightness;
static SeekBar seekBarContrast;
static SeekBar seekBarSaturation;

static SeekBar seekBarSharpness;

static TextView textViewQuality;
static TextView textViewBrightness;
static TextView textViewContrast;
static TextView textViewSaturation;

static TextView textViewSharpmess;

static Spinner spinnerSize;
static Spinner spinnerEffect;

static Spinner spinnerExposure;

private int quality = 100;
private int brightness = 50;
private int contrast = 0;
private int saturation = 0;

private int sharpness = 0;

private List<String> sizes;
private List<String> effects;

private List<String> exposures;

@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;

setContentView(R.layout.activity_camera_picture_take);

initTextView();
initSeekBar();

initSpinner();

client = ConnectionAsyncTask.getClient();

}

@0Override

public void onBackPressed() {

super .onBackPressed () ;

overridePendingTransition(R.anim.push_right_in, R.anim.push_right_out);

}

public void onClickTakePicture(View v) {

String sizeW = sizes.get(spinnerSize.getSelectedItemPosition()).split(" x ") [0];
String sizeH = sizes.get(spinnerSize.getSelectedItemPosition()).split(" x ")[1];
String effect = effects.get(spinnerEffect.getSelectedItemPosition());

String exposure = exposures.get (spinnerExposure.getSelectedItemPosition());

client.sendMessage(ConnectionUtilities.MSG_WHAT_CAMERA_PICTURE_TAKEPICTURE + " " + sizeW + " " + sizeH + " " + quality + " " + brightness

+ " " + contrast + " " + saturation + " " + sharpness + " " + effect + " " + exposure);

new ConnectionDialog().execute("");

}

protected class ConnectionDialog extends AsyncTask<String, String, ConnectionUtilities> {

ProgressDialog progressDialog;

@0Override

protected void onPreExecute() {

super .onPreExecute() ;

progressDialog = new ProgressDialog(CameraPictureTakeActivity.this);
progressDialog.setMessage("Taking picture...");
progressDialog.setCancelable(false);

progressDialogAShow();

}

@0Override

protected ConnectionUtilities doInBackground(String... message) {
try {

Thread.sleep(2000) ;

} catch (InterruptedException e) {

e.printStackTrace();

}

return null;

}

@0Override
protected void onPostExecute(ConnectionUtilities result) {
super.onPostExecute (result);

progressDialog.dismiss();

88

AlertDialog.Builder builder = new AlertDialog.Builder(CameraPictureTakeActivity.this);
builder.setMessage("Picture taken successfully");

builder.setNegativeButton("OK", new DialogInterface.OnClickListener() {

public void onClick(DialogInterface dialog, int id) {

}

b

builder.create().show();

}

}

private void initTextView() {

textViewQuality = (TextView) findViewById(R.id.textViewQuality);
textViewBrightness = (TextView) findViewById(R.id.textViewBrightness);
textViewContrast = (TextView) findViewById(R.id.textViewContrast);
textViewSaturation = (TextView) findViewById(R.id.textViewSaturation);
textViewSharpness = (TextView) findViewById(R.id.textViewSharpness);

textViewQuality.setText ("QUALITY (" + quality + "):");
textViewBrightness.setText ("BRIGHTNESS (" + brightness + "):");
textViewContrast.setText ("CONTRAST (" + contrast + "):");
textViewSaturation.setText ("SATURATION (" + saturation + "):");
textViewSharpness.setText ("SHARPNESS (" + sharpness + "):");

}

private void initSeekBar() {

seekBarQuality = (SeekBar) findViewById(R.id.seekBarQuality);
seekBarBrightness = (SeekBar) findViewById(R.id.seekBarBrightness);
seekBarContrast = (SeekBar) findViewById(R.id.seekBarContrast);
seekBarSaturation = (SeekBar) findViewById(R.id.seekBarSaturation);

seekBarSharpness = (SeekBar) findViewById(R.id.seekBarSharpness);

seekBarQuality.setProgress(100);
seekBarBrightness.setProgress(50);
seekBarContrast.setProgress(50);
seekBarSaturation.setProgress(50);

seekBarSharpness.setProgress(50);

seekBarQuality.setOnSeekBarChangeListener (OnSeekBarChangeListenerQuality) ;
seekBarBrightness.setOnSeekBarChangeListener (OnSeekBarChangeListenerBrightness) ;
seekBarContrast.setOnSeekBarChangeListener (OnSeekBarChangeListenerContrast) ;
seekBarSaturation.setOnSeekBarChangeListener (OnSeekBarChangeListenerSaturation) ;
seekBarSharpness.setOnSeekBarChangeListener (onSeekBarChangeListenerSharpness) ;

}

private void initSpinner() {

spinnerSize = (Spinner) findViewById(R.id.spinnerSize);

sizes = new ArrayList<String>();

sizes.add("720 x 480");

sizes.add ("800 x 600");

sizes.add("1366 x 768");

sizes.add("1280 x 720");

sizes.add("1920 x 1080");

ArrayAdapter<String> dataAdapterSize = new ArrayAdapter<String>(this, android.R.layout.simple_spinner_item, sizes);
dataAdapterSize.setDropDownViewResource(android.R.layout.simple_spinner_dropdown_item) ;

spinnerSize.setAdapter (dataAdapterSize);

spinnerEffect = (Spinner) findViewById(R.id.spinnerEffect);

effects = new ArrayList<String>();

effects.add("none") ;

effects.add("negative");

effects.add("sketch");

effects.add("emboss") ;

effects.add("oilpaint");

effects.add("pastel");

effects.add("watercolour");

effects.add("film");

effects.add("colourswap");

effects.add("cartoon");

ArrayAdapter<String> dataAdapterEffect = new ArrayAdapter<String>(this, android.R.layout.simple_spinner_item, effects);
dataAdapterEffect.setDropDownViewResource (android.R.layout.simple_spinner_dropdown_item) ;

spinnerEffect.setAdapter (dataAdapterEffect);

spinnerExposure = (Spinner) findViewById(R.id.spinnerExposure);

exposures = new ArrayList<String>();

exposures.add("auto") ;

exposures.add("off");

exposures.add("night");

exposures.add("sports") ;

exposures.add("snow") ;

exposures.add("beach") ;

exposures.add("fireworks");

exposures.add("backlight");

ArrayAdapter<String> dataAdapterExposure = new ArrayAdapter<String>(this, android.R.layout.simple_spinner_item, exposures);
dataAdapterExposure.setDropDownViewResource (android.R.layout.simple_spinner_dropdown_item) ;

spinnerExposure.setAdapter (dataAdapterExposure) ;

// SEEK BAR

OnSeekBarChangeListener OnSeekBarChangeListenerQuality = new OnSeekBarChangeListener() {

public void onProgressChanged(SeekBar seekBar, int progress, boolean fromUser) {
quality = progress;

textViewQuality.setText ("QUALITY (" + quality + "):");

}

public void onStartTrackingTouch(SeekBar seekBar) {
}

public void onStopTrackingTouch(SeekBar seekBar) {
}
};

OnSeekBarChangeListener OnSeekBarChangeListenerBrightness = new OnSeekBarChangeListener() {

public void onProgressChanged(SeekBar seekBar, int progress, boolean fromUser) {
brightness = progress;

textViewBrightness.setText ("BRIGHTNESS (" + brightness + "):");

}

public void onStartTrackingTouch(SeekBar seekBar) {
}

public void onStopTrackingTouch(SeekBar seekBar) {
¥
};

OnSeekBarChangeListener OnSeekBarChangeListenerContrast = new OnSeekBarChangeListener() {

public void onProgressChanged(SeekBar seekBar, int progress, boolean fromUser) {
contrast = (progress * 2 - 100);

textViewContrast.setText ("CONTRAST (" + contrast + "):");

}

public void onStartTrackingTouch(SeekBar seekBar) {
}

public void onStopTrackingTouch(SeekBar seekBar) {
}
b

OnSeekBarChangeListener OnSeekBarChangeListenerSaturation = new OnSeekBarChangeListener() {

public void onProgressChanged(SeekBar seekBar, int progress, boolean fromUser) {
saturation = (progress * 2 - 100);

textViewSaturation.setText ("SATURATION (" + saturation + "):");

¥

public void onStartTrackingTouch(SeekBar seekBar) {
}

public void onStopTrackingTouch(SeekBar seekBar) {
}
};

OnSeekBarChangeListener onSeekBarChangeListenerSharpness = new OnSeekBarChangeListener() {

90

public void onProgressChanged(SeekBar seekBar, int progress, boolean fromUser) {
sharpness = (progress * 2 - 100);
textViewSharpness.setText ("SHARPNESS (" + sharpness + "):
}

public void onStartTrackingTouch(SeekBar seekBar) {
}

public void onStopTrackingTouch(SeekBar seekBar) {
}
};
}

8.2.4 CameraVideoScheduleActivity.Java

public class CameraVideoScheduleActivity extends FragmentActivity {
private ConnectionUtilities client;

static TextView textViewStartDate;
static TextView textViewStartHour;
static TextView textViewEndDate;

static TextView textViewEndHour;

static SeekBar seekBarBrightness;
static SeekBar seekBarContrast;
static SeekBar seekBarSaturation;

static SeekBar seekBarSharpness;

static TextView textViewBrightness;
static TextView textViewContrast;
static TextView textViewSaturation;

static TextView textViewSharpness;

static Spinner spinnerSize;
static Spinner spinnerEffect;

static Spinner spinnerExposure;

private int brightness = 50;
private int contrast = 0;
private int saturation = 0;

private int sharpness = 0O;

private List<String> sizes;
private List<String> effects;

private List<String> exposures;

private static boolean flagWaitingSchedule;

private static String serverMessage;

@0Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;

setContentView(R.layout.activity_camera_video_schedule);

initTextView();
initSeekBar();

initSpinner();

flagWaitingSchedule = true;
client = ConnectionAsyncTask.getClient();
new AsyncTaskSchedule().execute();

}

@Override

public void onBackPressed() {

super.onBackPressed() ;

overridePendingTransition(R.anim.push_right_in, R.anim.push_right_out);

}

public void onClickDefine(View v) {

if (textViewEndHour.getText().toString().equalsIgnoreCase("")) {
showEndTimePickerDialog(v);

}

if (textViewEndDate.getText().toString().equalsIgnoreCase("")) {
showEndDatePickerDialog(v);
}

if (textViewStartHour.getText().toString().equalsIgnoreCase("")) {
showStartTimePickerDialog(v) ;

}

if (textViewStartDate.getText().toString().equalsIgnoreCase("")) {
showStartDatePickerDialog(v) ;
}

// WHAT STARTDATE STARTHOUR ENDDATE ENDHOUR SIZEW SIZEH BRIGHTNESS CONTRAST SATURATION SHARPNESS EFFECT EXPOSURE
if (!textViewEndHour.getText().toString().equalsIgnoreCase("") && !textViewEndDate.getText().toString().equalsIgnoreCase("")
&& !textViewStartHour.getText().toString().equalsIgnoreCase("") && !textViewStartDate.getText().toString().equalsIgnoreCase("")) {

String sizeW = sizes.get(spinnerSize.getSelectedItemPosition()).split(" x ") [0];
String sizeH = sizes.get(spinnerSize.getSelectedItemPosition()).split(" x ") [1];
String effect = effects.get(spinnerEffect.getSelectedItemPosition());

String exposure = exposures.get (spinnerExposure.getSelectedItemPosition());

client.sendMessage (ConnectionUtilities.MSG_WHAT_CAMERA_VIDEO_PROGRAMMATION + " " + textViewStartDate.getText().toString() + " "
+ textViewStartHour.getText().toString() + " " + textViewEndDate.getText().toString() + " "

+ textViewEndHour.getText().toString() + " " + sizeW + " " + sizeH + " " + brightness + " " + contrast + " " + saturation + " "
+ sharpness + " " + effect + " " + exposure);

AlertDialog.Builder builder = new AlertDialog.Builder(CameraVideoScheduleActivity.this);
builder.setMessage("Schedule defined");

builder.setNegativeButton("OK", new DialogInterface.OnClickListener() {

public void onClick(DialogInterface dialog, int id) {

}

b

builder.create().show();

}

}

// AsyncTask
private class AsyncTaskSchedule extends AsyncTask<Void, Void, Void> {

@0verride

protected void onPreExecute() {

superAOnPreExecute();

if (client != null)
client.sendMessage(ConnectionUtilities.MSG_WHAT_CAMERA_VIDEO_PROGRAMMATIONREQUEST + "");
}

@0verride

protected Void doInBackground(Void... arg0) {
if (client != null) {

while (flagWaitingSchedule) {

¥

}

return null;

}

@QOverride

protected void onPostExecute(Void result) {

if (serverMessage.split(" ").length >= 4) {
textViewStartDate.setText (serverMessage.split(" ") [1]);
textViewStartHour.setText (serverMessage.split(" ") [2]);
textViewEndDate.setText (serverMessage.split(" ") [3]);
textViewEndHour.setText (serverMessage.split (" ") [4]);

}

}

}

public static void scheduleResponse(String serverMessage) {

CameraVideoScheduleActivity.serverMessage = serverlMessage;

91

92

flagWaitingSchedule = false;
}

private void initTextView() {

textViewStartDate = (TextView) findViewById(R.id.textViewStartDate);
textViewStartHour = (TextView) findViewById(R.id.textViewStartHour);
textViewEndDate = (TextView) findViewById(R.id.textViewEndDate);
textViewEndHour = (TextView) findViewById(R.id.textViewEndHour);

textViewBrightness = (TextView) findViewById(R.id.textViewBrightness);
textViewContrast = (TextView) findViewById(R.id.textViewContrast);
textViewSaturation = (TextView) findViewById(R.id.textViewSaturation);

textViewSharpness = (TextView) findViewById(R.id.textViewSharpness);

textViewBrightness.setText ("BRIGHTNESS (" + brightness + "):");
textViewContrast.setText ("CONTRAST (" + contrast + "):");
textViewSaturation.setText ("SATURATION (" + saturation + "):");
textViewSharpness.setText ("SHARPNESS (" + sharpness + "):");

¥

private void initSeekBar() {

seekBarBrightness = (SeekBar) findViewById(R.id.seekBarBrightness);
seekBarContrast = (SeekBar) findViewById(R.id.seekBarContrast);
seekBarSaturation = (SeekBar) findViewById(R.id.seekBarSaturation);

seekBarSharpness = (SeekBar) findViewById(R.id.seekBarSharpness);

seekBarBrightness.setProgress(50);
seekBarContrast.setProgress(50);
seekBarSaturation.setProgress(50);

seekBarSharpness.setProgress(50);

seekBarBrightness.setOnSeekBarChangeListener (OnSeekBarChangeListenerBrightness) ;
seekBarContrast.setOnSeekBarChangeListener (OnSeekBarChangeListenerContrast) ;
seekBarSaturation.setOnSeekBarChangeListener (OnSeekBarChangeListenerSaturation) ;
seekBarSharpness . setOnSeekBarChangeListener (onSeekBarChangeListenerSharpness) ;

}

private void initSpinner() {

spinnerSize = (Spinner) findViewById(R.id.spinnerSize);

sizes = new ArrayList<String>();

sizes.add("100 x 100");

sizes.add("720 x 480");

sizes.add ("800 x 600");

sizes.add("1366 x 768");

sizes.add("1280 x 720");

sizes.add("1920 x 1080");

ArrayAdapter<String> dataAdapterSize = new ArrayAdapter<String>(this, android.R.layout.simple_spinner_item, sizes);
dataAdapterSize.setDropDownViewResource (android.R.layout.simple_spinner_dropdown_item) ;

spinnerSize.setAdapter (dataAdapterSize);

spinnerEffect = (Spinner) findViewById(R.id.spinnerEffect);

effects = new ArrayList<String>();

effects.add("none") ;

effects.add("negative");

effects.add("sketch");

effects.add("emboss");

effects.add("oilpaint");

effects.add("pastel");

effects.add("watercolour");

effects.add("film");

effects.add("colourswap");

effects.add("cartoon");

ArrayAdapter<String> dataAdapterEffect = new ArrayAdapter<String>(this, android.R.layout.simple_spinner_item, effects);
dataAdapterEffect.setDropDownViewResource (android.R.layout.simple_spinner_dropdown_item) ;

spinnerEffect.setAdapter (dataAdapterEffect);

spinnerExposure = (Spinner) findViewById(R.id.spinnerExposure);
exposures = new ArrayList<String>();

exposures.add("auto") ;

exposures.add("off");

exposures.add("night") ;

exposures.add("sports") ;

exposures.add("snow") ;

exposures.add("beach") ;
exposures.add("fireworks");

exposures.add("backlight");

ArrayAdapter<String> dataAdapterExposure = new ArrayAdapter<String>(this, android.R.layout.simple_spinner_item, exposures);

dataAdapterExposure.setDropDownViewResource (android.R.layout.simple_spinner_dropdown_item) ;

spinnerExposure.setAdapter (dataAdapterExposure) ;

// SEEK BAR

OnSeekBarChangeListener OnSeekBarChangeListenerBrightness = new OnSeekBarChangeListener() {

public void onProgressChanged(SeekBar seekBar, int progress, boolean fromUser) {
brightness = progress;

textViewBrightness.setText ("BRIGHTNESS (" + brightness + "):");

¥

public void onStartTrackingTouch(SeekBar seekBar) {
}

public void onStopTrackingTouch(SeekBar seekBar) {
}
I

OnSeekBarChangeListener OnSeekBarChangeListenerContrast = new OnSeekBarChangeListener() {

public void onProgressChanged(SeekBar seekBar, int progress, boolean fromUser) {
contrast = (progress * 2 - 100);
textViewContrast.setText ("CONTRAST (" + contrast + "
}

public void onStartTrackingTouch(SeekBar seekBar) {
}

public void onStopTrackingTouch(SeekBar seekBar) {
}
};

OnSeekBarChangeListener OnSeekBarChangeListenerSaturation = new OnSeekBarChangeListener() {

public void onProgressChanged(SeekBar seekBar, int progress, boolean fromUser) {
saturation = (progress * 2 - 100);

textViewSaturation.setText ("SATURATION (" + saturation + "):");

}

public void onStartTrackingTouch(SeekBar seekBar) {
}

public void onStopTrackingTouch(SeekBar seekBar) {
}
};

OnSeekBarChangeListener onSeekBarChangeListenerSharpness = new OnSeekBarChangeListener() {

public void onProgressChanged(SeekBar seekBar, int progress, boolean fromUser) {
sharpness = (progress * 2 - 100);
textViewSharpness.setText ("SHARPNESS (" + sharpness + "
}

public void onStartTrackingTouch(SeekBar seekBar) {
}

public void onStopTrackingTouch(SeekBar seekBar) {
¥
};

// PICKERS

public void showStartDatePickerDialog(View v) {
DialogFragment newFragment = new StartDatePickerFragment();
newFragment . show(getSupportFragmentManager (), "datePicker");
}

public void showStartTimePickerDialog(View v) {

93

94

DialogFragment newFragment = new StartTimePickerFragment();
newFragment . show(getSupportFragmentManager(), "timePicker");
}

public void showEndDatePickerDialog(View v) {
DialogFragment newFragment = new EndDatePickerFragment();
newFragment . show(getSupportFragmentManager (), "datePicker");
}

public void showEndTimePickerDialog(View v) {
DialogFragment newFragment = new EndTimePickerFragment();
newFragment . show(getSupportFragmentManager (), "timePicker");
}

// DATE PICKER START
public static class StartDatePickerFragment extends DialogFragment implements DatePickerDialog.OnDateSetListener {

Q@Override

public Dialog onCreateDialog(Bundle savedInstanceState) {
final Calendar ¢ = Calendar.getInstance();

int year = c.get(Calendar.YEAR);

int month = c.get(Calendar.MONTH);

int day = c.get(Calendar.DAY_OF_MONTH);

DatePickerDialog datePickerDialog = new DatePickerDialog(getActivity(), this, year, month, day);
datePickerDialog.setTitle("Start Date");
return datePickerDialog;

}

public void onDateSet(DatePicker view, int year, int month, int day) {
String monthString = String.valueOf (month + 1);

String dayString = String.valueOf (day);

if (monthString.length() == 1)

monthString = 0 + monthString;

if (dayString.length() == 1)

dayString = 0 + dayString;

textViewStartDate.setText(dayString + "/" + monthString + "/" + year);
}

}

// HOUR PICKER START

public static class StartTimePickerFragment extends DialogFragment implements TimePickerDialog.OnTimeSetListener {

@Override

public Dialog onCreateDialog(Bundle savedInstanceState) {
final Calendar ¢ = Calendar.getInstance();

int hour = c.get(Calendar.HOUR_OF_DAY);

int minute = c.get(Calendar.MINUTE);

TimePickerDialog timePickerDialog = new TimePickerDialog(getActivity(), this, hour, minute + 1, DateFormat.is24HourFormat(getActivity()));
timePickerDialog.setTitle("Start Hour");
return timePickerDialog;

}

public void onTimeSet(TimePicker view, int hourOfDay, int minute) {
String hourString = String.valueOf (hourOfDay);

String minuteString = String.valueOf (minute);

if (hourString.length() == 1)

hourString = 0 + hourString;

if (minuteString.length() == 1)

minuteString = 0 + minuteString;

textViewStartHour.setText (hourString + ":" + minuteString);

}

}

// DATE PICKER END

public static class EndDatePickerFragment extends DialogFragment implements DatePickerDialog.OnDateSetListener {

@0verride

public Dialog onCreateDialog(Bundle savedInstanceState) {
final Calendar ¢ = Calendar.getInstance();

int year = c.get(Calendar.YEAR);

int month = c.get(Calendar.MONTH);

int day = c.get(Calendar.DAY_OF_MONTH) ;

DatePickerDialog datePickerDialog = new DatePickerDialog(getActivity(), this, year, month, day);
datePickerDialog.setTitle("End Date");
return datePickerDialog;

}

public void onDateSet(DatePicker view, int year, int month, int day) {
String monthString = String.valueOf (month + 1);

String dayString = String.valueOf(day);

if (monthString.length() == 1)

monthString = 0 + monthString;

if (dayString.length() == 1)

dayString = 0 + dayString;

textViewEndDate.setText (dayString + "/" + monthString + "/" + year);

¥

}

// HOUR PICKER END

public static class EndTimePickerFragment extends DialogFragment implements TimePickerDialog.OnTimeSetListener {

@0Override

public Dialog onCreateDialog(Bundle savedInstanceState) {
final Calendar ¢ = Calendar.getInstance();

int hour = c.get(Calendar.HUUR_UF_DAY);

int minute = c.get(Calendar.MINUTE);

TimePickerDialog timePickerDialog = new TimePickerDialog(getActivity(), this, hour, minute + 2, DateFormat.is24HourFormat(getActivity()));
timePickerDialog.setTitle("End Hour");
return timePickerDialog;

}

public void onTimeSet(TimePicker view, int hourOfDay, int minute) {
String hourString = String.valueOf (hourOfDay) ;

String minuteString = String.valueOf (minute);

if (hourString.length() == 1)

hourString = 0 + hourString;

1)

minuteString = O + minuteString;

if (minuteString.length()
textViewEndHour.setText (hourString + ":" + minuteString);
¥

}
}

8.2.5 CameraRealTimeActivity.Java

public class CameraRealTimeActivity extends Activity {
private ConnectionUtilities client;
boolean toggleButtonOn = false;

private static String STREAM_LINK;
private static String VLC_LINK = "http://www.videolan.org/vlc/";

EditText edittextLink;
ToggleButton toggleButtonRealTime;

private static boolean flagWaitingStatus;

private static String serverMessage;

@0Override

protected void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView(R.layout.activity_camera_video_realtime);
client = ConnectionAsyncTask.getClient();

STREAM_LINK = "rtsp://" + LoginActivity.ip + ":8554/pi_encode.h264";

edittextLink = (EditText) findViewById(R.id.edittextLink);

96

edittextLink.setInputType (InputType.TYPE_NULL) ;
edittextLink.setEnabled(false);
edittextLink.setText ("OFFLINE");

toggleButtonRealTime = (ToggleButton) findViewById(R.id.toggleButtonRealTime);

flagWaitingStatus = true;
client = ConnectionAsyncTask.getClient();
new AsyncTaskStreamStatus().execute();

}

// AsyncTask
private class AsyncTaskStreamStatus extends AsyncTask<Void, Void, Void> {

@0Override

protected void onPreExecute() {

super .onPreExecute() ;

if (client != null)
client.sendMessage(ConnectionUtilities.MSG_WHAT_CAMERA_VIDEO_REALTIMESTATUS + "");
}

@Override

protected Void doInBackground(Void... arg0) {
if (client != null) {

while (flagWaitingStatus) {

}

}

return null;

}

@0Override

protected void onPostExecute(Void result) {
if (serverMessage.split(" ")[1].equalsIgnoreCase("1")) {
toggleButtonRealTime.setChecked (true);
edittextLink.setEnabled(true);
edittextLink.setText (STREAM_LINK) ;

} else {
toggleButtonRealTime.setChecked(false);
edittextLink.setEnabled(false);
edittextLink.setText ("OFFLINE");

¥

}

}

public static void streamStatusResponse(String serverMessage) {
CameraRealTimeActivity.serverMessage = serverMessage;
flagWaitingStatus = false;

}

public void toggleButtonRealTime(View view) {

toggleButtonOn = ((ToggleButton) view).isChecked();

if (toggleButtonOn) {

edittextLink.setEnabled(true);

edittextLink.setText (STREAM_LINK) ;
client.sendMessage(ConnectionUtilities.MSG_WHAT_CAMERA_VIDEO_REALTIME + " " + "1");
} else {

edittextLink.setEnabled(false);

edittextLink.setText ("OFFLINE");
client.sendMessage(ConnectionUtilities.MSG_WHAT_CAMERA_VIDEO_REALTIME + " " + "0");
¥

}

public void onClickSendEmail(View view) {

if (toggleButtonOn) {

Intent i = new Intent(Intent.ACTION_SEND);

i.setType("message/rfc822");

i.putExtra(Intent.EXTRA_EMAIL, new String[]l { "" })

i.putExtra(Intent.EXTRA_SUBJECT, "Raspberry Pi Stream");

i.putExtra(Intent.EXTRA_TEXT,

"Link to stream: " + STREAM_LINK + System.getProperty("line.separator") + System.getProperty("line.separator")
+ "Link to VLC Media Player: " + VLC_LINK);

try {

startActivity(Intent.createChooser(i, "Send mail..."));

} catch (android.content.ActivityNotFoundException ex) {

Toast.makeText (CameraRealTimeActivity.this, "There are no email clients installed.", Toast.LENGTH_SHORT).show();

¥

} else {

Toast.makeText (CameraRealTimeActivity.this, "Stream offline.", Toast.LENGTH_SHORT).show();
}

@0Override

public void onBackPressed() {

super.onBackPressed() ;

overridePendingTransition(R.anim.push_right_in, R.anim.push_right_out);
}

}

8.3 GPIO

8.3.1 GpioListActivity.Java

public class GpioListActivity extends Activity {

Button buttonGpioO;
Button buttonGpiol;
Button buttonGpio2;
Button buttonGpio3;
Button buttonGpio4;
Button buttonGpio5;
Button buttonGpio6;
Button buttonGpio7;

@0Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;

setContentView(R.layout.activity_gpio_list);

buttonGpio0 = (Button) findViewById(R.id.buttonGpioO);
buttonGpiol = (Button) findViewById(R.id.buttonGpiol);
buttonGpio2 = (Button) findViewById(R.id.buttonGpio2);
buttonGpio3 = (Button) findViewById(R.id.buttonGpio3);
buttonGpio4 = (Button) findViewById(R.id.buttonGpio4);
buttonGpio5 = (Button) findViewById(R.id.buttonGpio5);
buttonGpio6 = (Button) findViewById(R.id.buttonGpio6);
buttonGpio7 = (Button) findViewById(R.id.buttonGpio7);

@0Override

public void onBackPressed() {

super.onBackPressed() ;

overridePendingTransition(R.anim.push_right_in, R.anim.push_right_out);

}

public void onClickButtonGpioO(View view) {

Intent intent = new Intent(GpioListActivity.this, GpioActivity.class);
intent.putExtra("CHANNELNUMBER", "0");

startActivity(intent);

overridePendingTransition(R.anim.push_left_in, R.anim.push_left_out);

}

public void onClickButtonGpiol(View view) {

Intent intent = new Intent(GpioListActivity.this, GpioActivity.class);
intent.putExtra("CHANNELNUMBER", "1");

startActivity(intent);

overridePendingTransition(R.anim.push_left_in, R.anim.push_left_out);

}

public void onClickButtonGpio2(View view) {
Intent intent = new Intent(GpioListActivity.this, GpioActivity.class);
intent.putExtra("CHANNELNUMBER", "2");

97

98

startActivity(intent);
overridePendingTransition(R.anim.push_left_in, R.anim.push_left_out);

}

public void onClickButtonGpio3(View view) {

Intent intent = new Intent(GpioListActivity.this, GpioActivity.class);
intent.putExtra("CHANNELNUMBER", "3");

startActivity(intent);

overridePendingTransition(R.anim.push_left_in, R.anim.push_left_out);

}

public void onClickButtonGpio4(View view) {

Intent intent = new Intent(GpioListActivity.this, GpioActivity.class);
intent.putExtra("CHANNELNUMBER", "4");

startActivity(intent);

overridePendingTransition(R.anim.push_left_in, R.anim.push_left_out);

}

public void onClickButtonGpio5(View view) {

Intent intent = new Intent(GpioListActivity.this, GpioActivity.class);
intent.putExtra("CHANNELNUMBER", "5");

startActivity(intent);

overridePendingTransition(R.anim.push_left_in, R.anim.push_left_out);

}

public void onClickButtonGpio6(View view) {

Intent intent = new Intent(GpioListActivity.this, GpioActivity.class);
intent.putExtra("CHANNELNUMBER", "6");

startActivity(intent);

overridePendingTransition(R.anim.push_left_in, R.anim.push_left_out);

}

public void onClickButtonGpio7(View view) {

Intent intent = new Intent(GpioListActivity.this, GpioActivity.class);
intent.putExtra("CHANNELNUMBER", "7");

startActivity(intent);

overridePendingTransition(R.anim.push_left_in, R.anim.push_left_out);

}

8.3.2 GpioActivity.Java

public class GpioActivity extends FragmentActivity {

static ToggleButton toggleButtonGpio;
static TextView textViewGpioNumber;
static TextView textViewStartDate;
static TextView textViewStartHour;
static TextView textViewEndDate;
static TextView textViewEndHour;

private ConnectionUtilities client;
private static String gpioNumber;

private static boolean flagWaitingSchedule;

private static String serverMessage;

@0Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState) ;

setContentView(R.layout.activity_gpio_schedule);

Intent intent = getIntent();
gpioNumber = intent.getStringExtra("CHANNELNUMBER") ;

toggleButtonGpio = (ToggleButton) findViewById(R.id.toggleButtonGpio);
textViewGpioNumber = (TextView) findViewById(R.id.textViewGpioNumber);
textViewGpioNumber.setText ("GPI0 #" + gpioNumber);

textViewStartDate = (TextView) findViewById(R.id.textViewStartDate);
textViewStartHour = (TextView) findViewById(R.id.textViewStartHour);

textViewEndDate = (TextView) findViewById(R.id.textViewEndDate);
textViewEndHour = (TextView) findViewById(R.id.textViewEndHour);

flagWaitingSchedule = true;
client = ConnectionAsyncTask.getClient();

new AsyncTaskSchedule().execute();

@0Override

public void onBackPressed() {

super.onBackPressed() ;

overridePendingTransition(R.anim.push_right_in, R.anim.push_right_out);

}

public void onClickDefine(View v) {

if (textViewEndHour.getText().toString().equalsIgnoreCase("")) {
showEndTimePickerDialog(v) ;

}

if (textViewEndDate.getText().toString().equalsIgnoreCase("")) {
showEndDatePickerDialog(v) ;
}

if (textViewStartHour.getText().toString().equalsIgnoreCase("")) {
showStartTimePickerDialog(v) ;
}

if (textViewStartDate.getText().toString().equalsIgnoreCase("")) {
showStartDatePickerDialog(v);
}

if (!textViewEndHour.getText().toString().equalsIgnoreCase("") && !textViewEndDate.getText().toString().equalsIgnoreCase("")
&& !'textViewStartHour.getText () .toString().equalsIgnoreCase("") && !textViewStartDate.getText().toString().equalsIgnoreCase("")) {

client.sendMessage(ConnectionUtilities.MSG_WHAT_GPIO_PROGRAMMATION + " " + gpioNumber + " " + "O" + " "
+ textViewStartDate.getText().toString() + " " + textViewStartHour.getText().toString() + " "

+ textViewEndDate.getText().toString() + " " + textViewEndHour.getText().toString());

}

}

public void onToggleClicked(View view) {

boolean on = ((ToggleButton) view).isChecked();

if (omn) {

client.sendMessage(ConnectionUtilities.MSG_WHAT_GPIO + " " + gpioNumber + " " + "1");
} else {

client.sendMessage(ConnectionUtilities.MSG_WHAT_GPIO + " " + gpioNumber + " " + "0");
}

}

public void showStartDatePickerDialog(View v) {
DialogFragment newFragment = new StartDatePickerFragment();
newFragment . show(getSupportFragmentManager(), "datePicker");
}

public void showStartTimePickerDialog(View v) {
DialogFragment newFragment = new StartTimePickerFragment();
newFragment . show(getSupportFragmentManager (), "timePicker");
}

public void showEndDatePickerDialog(View v) {
DialogFragment newFragment = new EndDatePickerFragment();
newFragment . show(getSupportFragmentManager(), "datePicker");
¥

public void showEndTimePickerDialog(View v) {
DialogFragment newFragment = new EndTimePickerFragment();
newFragment . show(getSupportFragmentManager(), "timePicker");
}

// AsyncTask
private class AsyncTaskSchedule extends AsyncTask<Void, Void, Void> {

100

@0Override

protected void onPreExecute() {

super.onPreExecute();

if (client != null)

client.sendMessage(ConnectionUtilities.MSG_WHAT_GPIO_PROGRAMMATIONREQUEST + " " + gpioNumber);
}

@Override

protected Void doInBackground(Void... arg0) {
if (client != null) {

while (flagWaitingSchedule) {

}

}

return null;

}

@Override

protected void onPostExecute(Void result) {

if (serverMessage.split(" ")[1].equalsIgnoreCase("1.0"))
toggleButtonGpio.setChecked(true);

else if (serverMessage.split(" ")[1].equalsIgnoreCase("0.0"))
toggleButtonGpio.setChecked(false);

textViewStartDate.setText (serverMessage.split(" ") [2]);
textViewStartHour.setText (serverMessage.split(" ") [3]);
textViewEndDate.setText (serverMessage.split(" ") [4]);
textViewEndHour.setText (serverMessage.split(" ") [5]);

}

public static void scheduleResponse(String serverMessage) {
GpioActivity.serverMessage = serverMessage;
flagWaitingSchedule = false;

}

// PICKERS
// DATE PICKER START
public static class StartDatePickerFragment extends DialogFragment implements DatePickerDialog.OnDateSetListener {

@0Override

public Dialog onCreateDialog(Bundle savedInstanceState) {
final Calendar c = Calendar.getInstance();

int year = c.get(Calendar.YEAR);

int month = c.get(Calendar.MONTH);

int day = c.get(Calendar.DAY_OF_MONTH) ;

DatePickerDialog datePickerDialog = new DatePickerDialog(getActivity(), this, year, month, day);
datePickerDialog.setTitle("Start Date");
return datePickerDialog;

}

public void onDateSet(DatePicker view, int year, int month, int day) {
String monthString = String.valueOf (month + 1);

String dayString = String.valueOf (day);

1)

monthString = 0 + monthString;

if (monthString.length()

if (dayString.length() == 1)
dayString = 0 + dayString;

textViewStartDate.setText(dayString + "/" + monthString +
}
}

+ year);

// HOUR PICKER START

public static class StartTimePickerFragment extends DialogFragment implements TimePickerDialog.OnTimeSetListener {

@0Override

public Dialog onCreateDialog(Bundle savedInstanceState) {
final Calendar c = Calendar.getInstance();

int hour = c.get(Calendar.HOUR_OF_DAY);

int minute = c.get(Calendar.MINUTE);

TimePickerDialog timePickerDialog = new TimePickerDialog(getActivity(), this, hour, minute, DateFormat.is24HourFormat(getActivity()));

101

timePickerDialog.setTitle("Start Hour");
return timePickerDialog;

}

public void onTimeSet(TimePicker view, int hourOfDay, int minute) {
String hourString = String.valueOf (hourOfDay) ;

String minuteString = String.valueOf (minute);

if (hourString.length() == 1)

hourString = 0 + hourString;

1)

minuteString = 0 + minuteString;

if (minuteString.length()

textViewStartHour.setText (hourString + ":" + minuteString);
}
}

// DATE PICKER END
public static class EndDatePickerFragment extends DialogFragment implements DatePickerDialog.OnDateSetListener {

@0Override

public Dialog onCreateDialog(Bundle savedInstanceState) {
final Calendar c = Calendar.getInstance();

int year = c.get(Calendar.YEAR);

int month = c.get(Calendar.MONTH) ;

int day = c.get(Calendar.DAY_OF_MONTH);

DatePickerDialog datePickerDialog = new DatePickerDialog(getActivity(), this, year, month, day);
datePickerDialog.setTitle("End Date");
return datePickerDialog;

}

public void onDateSet(DatePicker view, int year, int month, int day) {
String monthString = String.valueOf (month + 1);

String dayString = String.valueOf(day);

if (monthString.length() == 1)

monthString = 0 + monthString;

if (dayString.length() == 1)

dayString = 0 + dayString;

textViewEndDate.setText(dayString + "/" + monthString + "/" + year);

}

}

// HOUR PICKER END

public static class EndTimePickerFragment extends DialogFragment implements TimePickerDialog.OnTimeSetListener {

@0Override

public Dialog onCreateDialog(Bundle savedInstanceState) {
final Calendar c = Calendar.getInstance();

int hour = c.get(Calendar.HOUR_OF_DAY);

int minute = c.get(Calendar.MINUTE);

TimePickerDialog timePickerDialog = new TimePickerDialog(getActivity(), this, hour, minute, DateFormat.is24HourFormat(getActivity()));
timePickerDialog.setTitle("End Hour");
return timePickerDialog;

}

public void onTimeSet(TimePicker view, int hourOfDay, int minute) {
String hourString = String.valueOf (hourOfDay) ;

String minuteString = String.valueOf (minute);

if (hourString.length() == 1)

hourString = 0 + hourString;

if (minuteString.length() == 1)

minuteString = 0 + minuteString;

textViewEndHour.setText (hourString + ":" + minuteString);

}

}

102

8.4 Arquivos

8.4.1 FileListActivity.Java

public class FileListActivity extends Activity {

Button buttonPictures;

Button buttonVideos;

@0Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;

setContentView(R.layout.activity_file_list);

buttonPictures = (Button) findViewById(R.id.buttonPictures);
buttonVideos = (Button) findViewById(R.id.buttonVideos);
}

public void onClickButtonPictures(View v) {

Intent intent = new Intent(FileListActivity.this, FilePicturesActivity.class);
startActivity(intent);

overridePendingTransition(R.anim.push_left_in, R.anim.push_left_out);

}

public void onClickButtonVideos(View v) {

Intent intent = new Intent(FileListActivity.this, FileVideosActivity.class);
startActivity(intent);

overridePendingTransition(R.anim.push_left_in, R.anim.push_left_out);

}

@O0verride

public void onBackPressed() {

super.onBackPressed () ;

overridePendingTransition(R.anim.push_right_in, R.anim.push_right_out);
}

}

8.4.2 FilePicturesActivity.Java

@SuppressLint ({ "SimpleDateFormat" })

public class FilePicturesActivity extends Activity {
private ConnectionUtilities client;

ListView listViewPictureFiles;

static ArrayList<String> arrayAdapter;

ProgressDialog progressDialog;
static ListViewFilePicturesAdapter listViewFilePicturesAdapter;

private static String serverMessage = "";

private static boolean flagWaitingFileList;

private static boolean flagWaitingFileTransfer = true;

@0Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;

setContentView(R.layout.activity_file_pictures);

arrayAdapter = new ArrayList<String>();
listViewFilePicturesAdapter = new ListViewFilePicturesAdapter(this, arrayAdapter);

creatListView();
flagWaitingFileList = true;

client = ConnectionAsyncTask.getClient();

new AsyncTaskFillFileList().execute();

@0Override

103

public void onBackPressed() {
super.onBackPressed() ;
overridePendingTransition(R.anim.push_right_in, R.anim.push_right_out);

}

private void creatListView() {
listViewPictureFiles = (ListView) findViewById(R.id.listViewPictureFiles);
listViewPictureFiles.setAdapter(listViewFilePicturesAdapter);

listViewPictureFiles.setOnItemClickListener(new OnItemClickListener() {

@Override

public void onItemClick(final AdapterView<?> argO, final View argl, final int arg2, final long arg3) {
final String fileName = arrayAdapter.get(arg2).split("e")[0];

AlertDialog.Builder builder = new AlertDialog.Builder(FilePicturesActivity.this);
builder.setTitle("Pictures");

builder.setMessage (arrayAdapter.get (arg2) .split("@") [0]);
builder.setPositiveButton("Download file", new DialogInterface.OnClickListener() {
public void onClick(DialogInterface dialog, int id) {

downloadFile(fileName) ;

}

b

builder.setNeutralButton("View picture", new DialogInterface.OnClickListener() {
public void onClick(DialogInterface dialog, int id) {

viewImage (fileName) ;

}

b

builder.setNegativeButton("Cancel", new DialogInterface.OnClickListener() {
public void onClick(DialogInterface dialog, int id) {

¥

b

builder.create().show();

b

private void downloadFile(String fileName) {

new AsyncTaskFileTransferProgress().execute();
client.sendMessage(ConnectionUtilities.MSG_WHAT_FILES_PICTURES_DOWNLOAD + " " + fileName);
}

private void viewImage(String fileName) {

if (!(new File(Environment.getExternalStorageDirectory() + "/TCC/pictures/" + fileName).isFile())) {
Toast.makeText (FilePicturesActivity.this, "Download the file first", Toast.LENGTH_SHORT).show();

} else {

String imagePath = Environment.getExternalStorageDirectory() + "/TCC/pictures/" + fileName;

try {

Intent myIntent = new Intent(android.content.Intent.ACTION_VIEW);

File file = new File(imagePath);

String extension = android.webkit.MimeTypeMap.getFileExtensionFromUrl(Uri.fromFile(file).toString());
String mimetype = android.webkit.MimeTypeMap.getSingleton().getMimeTypeFromExtension(extension);
myIntent.setDataAndType (Uri.fromFile(file), mimetype);

startActivity(myIntent);

} catch (Exception e) {

}

// ASYNCTASK FILE TRANSFER PROGRESS
protected class AsyncTaskFileTransferProgress extends AsyncTask<Void, Void, ConnectionUtilities> {

ProgressDialog progressDialog;

@0Override

protected void onPreExecute() {

super.onPreExecute() ;

progressDialog = new ProgressDialog(FilePicturesActivity.this);

progressDialog.setMessage("Downloading...");

104

progressDialog.show() ;

}

@Override

protected ConnectionUtilities doInBackground(Void... message) {
while (flagWaitingFileTransfer) {

}

flagWaitingFileTransfer = true;

return null;

}

@0verride
protected void onPostExecute(ConnectionUtilities result) {

super.onPostExecute (result) ;
progressDialog.dismiss();

AlertDialog.Builder builder = new AlertDialog.Builder(FilePicturesActivity.this);
builder.setMessage("File transfer successfully");

builder.setNegativeButton("OK", new DialogInterface.OnClickListener() {

public void onClick(DialogInterface dialog, int id) {

}

b

builder.create().show();

}

}

public static void FileTransferSucess() {
flagWaitingFileTransfer = false;

}

// ASYNCTASK FILL FILE LIST
protected class AsyncTaskFillFileList extends AsyncTask<Void, Void, ConnectionUtilities> {

@Override

protected void onPreExecute() {

super.onPreExecute() ;

if (client != null) {

client.sendMessage (ConnectionUtilities.MSG_WHAT_FILES_PICTURES_FILELIST + "");

progressDialog = new ProgressDialog(FilePicturesActivity.this);
progressDialog.setMessage("Loading file list...");
progressDialog.show() ;

}

}

@Override

protected ConnectionUtilities doInBackground(Void... message) {
if (client != null) {

while (flagWaitingFileList) {

}

int numPictures = Integer.parselnt(serverMessage.split(" ")[1]);
arrayAdapter.clear();

for (int i = 2; i < numPictures + 2; i++) {
arrayAdapter.add(serverMessage.split(" ") [i]);

}

}

return null;

}

@Override

protected void onPostExecute(ConnectionUtilities result) {
super.onPostExecute (result);
listViewFilePicturesAdapter.notifyDataSetChanged();
progressDialog.dismiss();

}

}

public static void fileList(String serverMessage) {
FilePicturesActivity.serverMessage = serverMessage;
flagWaitingFileList = false;

}

105

// LISTVIEW ADAPTER

public class ListViewFilePicturesAdapter extends BaseAdapter {
Context context;

ArrayList<String> item;

LayoutInflater inflater = null;

public ListViewFilePicturesAdapter(Context context, ArrayList<String> data) {
this.context = context;

this.item = data;

inflater = (LayoutInflater) context.getSystemService(Context.LAYOUT_INFLATER_SERVICE);
}

@QOverride
public int getCount() {
return item.size();

}

@Override
public Object getItem(int position) {
return item.get(position);

}

@Override
public long getItemId(int position) {
return position;

}

@0Override

public View getView(int position, View convertView, ViewGroup parent) {
View vi = convertView;

if (vi == null)

vi = inflater.inflate(R.layout.row_files, null);

TextView fileName = (TextView) vi.findViewById(R.id.textViewFileName);
TextView fileDate = (TextView) vi.findViewById(R.id.textViewFileDate);
TextView fileSize = (TextView) vi.findViewById(R.id.textViewFileSize);

fileName.setText (item.get (position).split("@")[0]);
fileDate.setText(new SimpleDateFormat("dd/MM/yyy HH:mm").format(new Date(Long.parseLong(item.get(position).split("@")[1]1))));
fileSize.setText (humanReadableByteCount (Long.parseLong(item.get (position).split("@")[2]), true));

fileName.setTextColor (getResources () .getColor(R.color.red_button));
fileDate.setTextColor (getResources() .getColor (R.color.red_button));

fileSize.setTextColor (getResources () .getColor(R.color.red_button));

return vi;

}

public String humanReadableByteCount (long bytes, boolean si) {
int unit = si 7 1000 : 1024;

if (bytes < unit)

return bytes + " B";

int exp = (int) (Math.log(bytes) / Math.log(unit));

String pre = (si 7 "KMGTPE" : "KMGTPE").charAt(exp - 1) + (si ? "" : "i");

return String.format(Locale.ENGLISH, "%.1f %sB", bytes / Math.pow(unit, exp), pre);
¥

}

}

8.4.3 FileVideosActivity.Java

@SuppressLint ("SimpleDateFormat")
public class FileVideosActivity extends Activity {

private ConnectionUtilities client;

ListView listViewvideoFiles;

ArrayList<String> arrayAdapter;

ProgressDialog progressDialog;

ListViewFileVideosAdapter listViewFileVideosAdapter;

106

private static String serverMessage = "";

private static boolean flagWaitingFileList = true;
private static boolean flagWaitingFileTransfer = true;

private static boolean flagWaitingFileConversion = true;

@0Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;

setContentView(R.layout.activity_file_videos);

arrayAdapter = new ArrayList<String>();
listViewFileVideosAdapter = new ListViewFileVideosAdapter(this, arrayAdapter);

creatListView();
new FillFileList().execute();

client = ConnectionAsyncTask.getClient();
client.sendMessage(ConnectionUtilities.MSG_WHAT_FILES_VIDEOS_FILELIST + "");
}

@Override

public void onBackPressed() {

super.onBackPressed() ;

overridePendingTransition(R.anim.push_right_in, R.anim.push_right_out);

}

private void creatListView() {
listViewvideoFiles = (ListView) findViewById(R.id.listViewVideoFiles);
listViewvideoFiles.setAdapter(listViewFileVideosAdapter);

listViewvideoFiles.setOnItemClickListener(new OnItemClickListener() {

@Override

public void onItemClick(final AdapterView<?> arg0O, final View argl, final int arg2, final long arg3) {
final String fileName = arrayAdapter.get(arg2).split("e")[0];

AlertDialog.Builder builder = new AlertDialog.Builder(FileVideosActivity.this);
builder.setTitle("Videos");

builder.setMessage (arrayAdapter.get (arg2) .split("@") [0]);
builder.setPositiveButton("Download file", new DialogInterface.OnClickListener() {
public void onClick(DialogInterface dialog, int id) {

downloadFile(fileName) ;

}
s

if (arrayAdapter.get(arg2).split("@")[0].split("\\.") [1].equalsIgnoreCase("h264"))
builder.setNeutralButton("Convert video", new DialogInterface.OnClickListener() {
public void onClick(DialogInterface dialog, int id) {

convertVideo(fileName) ;

}

b

else

builder.setNeutralButton("View video", new DialogInterface.OnClickListener() {
public void onClick(DialogInterface dialog, int id) {

viewVideo(fileName) ;

¥
b

builder.setNegativeButton("Cancel", new DialogInterface.OnClickListener() {
public void onClick(DialogInterface dialog, int id) {

}

1N

builder.create().show();

private void downloadFile(String fileName) {

107

new FileTransferProgress().execute();
client.sendMessage(ConnectionUtilities.MSG_WHAT_FILES_VIDEOS_DOWNLOAD + " " + fileName);
¥

private void convertVideo(String fileName) {

new FileConvertProgress().execute();
client.sendMessage(ConnectionUtilities.MSG_WHAT_FILES_VIDEOS_CONVERT + " " + fileName);
}

private void viewVideo(String fileName) {

if (!(new File(Environment.getExternalStorageDirectory() + "/TCC/videos/" + fileName).isFile())) {
Toast .makeText (FileVideosActivity.this, "Download the file first", Toast.LENGTH_SHORT).show();

} else {

String filePath = Environment.getExternalStorageDirectory() + "/TCC/videos/" + fileName;

try {

Intent myIntent = new Intent(android.content.Intent.ACTION_VIEW);

File file = new File(filePath);

String extension = android.webkit.MimeTypeMap.getFileExtensionFromUrl(Uri.fromFile(file).toString());
String mimetype = android.webkit.MimeTypeMap.getSingleton().getMimeTypeFromExtension(extension);
myIntent.setDataAndType (Uri.fromFile(file), mimetype);

startActivity(myIntent);

} catch (Exception e) {

}

// ASYNCTASK FILE CONVERT PROGRESS

protected class FileConvertProgress extends AsyncTask<Void, Void, ConnectionUtilities> {
ProgressDialog progressDialog;

@Override

protected void onPreExecute() {

super.onPreExecute() ;

progressDialog = new ProgressDialog(FileVideosActivity.this);
progressDialog.setMessage("Converting...");
progressDialog.show();

}

@Override

protected ConnectionUtilities doInBackground(Void... message) {
while (flagWaitingFileConversion) {

}

flagWaitingFileConversion = true;
arrayAdapter.add(serverMessage.split (" ") [1]);

return null;

}

@Override
protected void onPostExecute(ConnectionUtilities result) {

super.onPostExecute (result) ;
progressDialog.dismiss();

listViewFileVideosAdapter.notifyDataSetChanged() ;

AlertDialog.Builder builder = new AlertDialog.Builder(FileVideosActivity.this);
builder.setMessage("File conversion successfully");
builder.setNegativeButton("OK", new DialogInterface.OnClickListener() {

public void onClick(DialogInterface dialog, int id) {

}

b

builder.create().show();

}

}

public static void fileConversionSucess(String serverMessage) {
FileVideosActivity.serverMessage = serverlMessage;
flagWaitingFileConversion = false;

}

// ASYNCTASK FILE TRANSFER PROGRESS

108

protected class FileTransferProgress extends AsyncTask<Void, Void,

ProgressDialog progressDialog;

@Override

protected void onPreExecute() {

super.onPreExecute() ;

progressDialog = new ProgressDialog(FileVideosActivity.this);
progressDialog.setMessage ("Downloading...");
progressDialog.show();

}

@0verride

protected ConnectionUtilities doInBackground(Void... message) {
while (flagWaitingFileTransfer) {

}

flagWaitingFileTransfer = true;

return null;

}

@Override

protected void onPostExecute(ConnectionUtilities result) {
super.onPostExecute (result);

progressDialog.dismiss();

listViewFileVideosAdapter.notifyDataSetChanged() ;

ConnectionUtilities> {

AlertDialog.Builder builder = new AlertDialog.Builder(FileVideosActivity.this);

builder.setMessage("File transfer successfully");

builder.setNegativeButton("OK", new DialogInterface.OnClickListener() {

public void onClick(DialogInterface dialog, int id) {
}

b

builder.create().show();

}

}

public static void fileTransferSucess() {
flagWaitingFileTransfer = false;

}

// ASYNCTASK FILL FILE LIST

protected class FillFileList extends AsyncTask<Void, Void, ConnectionUtilities> {

@Override
protected void onPreExecute() {
super .onPreExecute() ;

progressDialog = new ProgressDialog(FileVideosActivity.this);

progressDialog.setMessage("Loading file list...");
progressDialog.show();

¥

@0verride

protected ConnectionUtilities doInBackground(Void... message) {

while (flagWaitingFileList) {

¥

flagWaitingFileList = true;

int numVideos = Integer.parselnt(serverMessage.split(" ")[1]);
arrayAdapter.clear();

for (int i = 2; i < numVideos + 2; i++) {
arrayAdapter.add(serverMessage.split (" ") [il);

}

return null;

}

@Override

protected void onPostExecute(ConnectionUtilities result) {
super .onPostExecute (result);
listViewFileVideosAdapter.notifyDataSetChanged() ;
progressDialog.dismiss();

}

}

public static void fileList(String serverMessage) {

FileVideosActivity.serverMessage = serverMessage;
flagWaitingFileList = false;
}

// LISTVIEW ADAPTER

public class ListViewFileVideosAdapter extends BaseAdapter {
Context context;

ArrayList<String> item;

LayoutInflater inflater = null;

public ListViewFileVideosAdapter(Context context, ArrayList<String> data) {

this.context = context;

this.item = data;

inflater = (LayoutInflater) context.getSystemService(Context.LAYOUT_INFLATER_SERVICE);

}

@0verride
public int getCount() {
return item.size();

}

@Override
public Object getItem(int position) {
return item.get(position);

}

@Override
public long getItemId(int position) {
return position;

}

@0Override

public View getView(int position, View convertView, ViewGroup parent) {
View vi = convertView;

if (vi == null)

vi = inflater.inflate(R.layout.row_files, null);
TextView fileName = (TextView) vi.findViewById(R.id.textViewFileName);
TextView fileDate = (TextView) vi.findViewById(R.id.textViewFileDate);

TextView fileSize = (TextView) vi.findViewById(R.id.textViewFileSize);

fileName.setText (item.get (position).split("@")[0]);

fileDate.setText (new SimpleDateFormat("dd/MM/yyy HH:mm").format(new Date(Long.parseLong(item.get(position).split("@")[1]1))));
fileSize.setText (humanReadableByteCount (Long.parseLong(item.get (position).split("@")[2]), true));

fileName.setTextColor (getResources () .getColor(R.color.red_button));
fileDate.setTextColor (getResources () .getColor(R.color.red_button));
fileSize.setTextColor (getResources () .getColor(R.color.red_button));

if (item.get(position).split("@")[0].contains("h264"))
fileName.setTypeface(null, Typeface.ITALIC);
else

fileName.setTypeface(null, Typeface.BOLD);

return vi;

}

public String humanReadableByteCount (long bytes, boolean si) {
int unit = si 7 1000 : 1024;

if (bytes < unit)

return bytes + " B";

int exp = (int) (Math.log(bytes) / Math.log(unit));

String pre = (si 7 "KMGTPE" : "KMGTPE").charAt(exp - 1) + (si ? "" : "i");

return String.format(Locale.ENGLISH, "%.1f %sB", bytes / Math.pow(unit, exp), pre);
}

}

}

8.4.4 FileVideosTransferThread.Java

public class FileVideosTransferThread implements Runnable {

109

110

private static String serverlp;
private static String serverPort;

private static String fileName;

public static void start(String ip, String port, String name) {
serverlp = ip;

serverPort = port;

fileName = name;

(new Thread(new FileVideosTransferThread())).start();

}

public void run() {

if (!(new File(Environment.getExternalStorageDirectory() + "/TCC/videos/").isDirectory()))

new File(Environment.getExternalStorageDirectory() + "/TCC/videos/").mkdirs();

try {

Socket socket;

socket = new Socket(InetAddress.getByName(serverIp), Integer.parselnt(serverPort) + 1);

byte[] bytearray = new byte[8096];

InputStream is = socket.getInputStream();

FileOutputStream fos = new FileOutputStream(Environment.getExternalStorageDirectory() + "/TCC/videos/" + fileName);
BufferedOutputStream bos = new BufferedOutputStream(fos);

int count;

while ((count = is.read(bytearray)) >= 0) {
bos.write(bytearray, 0, count);

}

bos.flush();

bos.close();

socket.close();

FileVideosActivity.fileTransferSucess();
} catch (UnknownHostException e) {
e.printStackTrace();

} catch (IOException e) {
e.printStackTrace();

try {

Thread.sleep(2000);

(new Thread(new FileVideosTransferThread())).start();
} catch (InterruptedException el) {
el.printStackTrace();

}

}
}
}

8.4.5 FilePicturesTransferThread.Java

public class FilePicturesTransferThread implements Runnable {

private static String serverlIp;
private static String serverPort;

private static String fileName;

public static void start(String ip, String port, String name) {
serverIp = ip;

serverPort = port;

fileName = name;

(new Thread(new FilePicturesTransferThread())).start();

}
public void run() {

if (!(new File(Environment.getExternalStorageDirectory() + "/TCC/pictures/").isDirectory()))
new File(Environment.getExternalStorageDirectory() + "/TCC/pictures/").mkdirs();

try {
Socket socket;

socket = new Socket(InetAddress.getByName(serverIp), Integer.parselnt(serverPort) + 1);

byte[] bytearray = new byte[8096];

InputStream is = socket.getInputStream();

FileOutputStream fos = new FileOutputStream(Environment.getExternalStorageDirectory() + "/TCC/pictures/" + fileName);
BufferedOutputStream bos = new BufferedOutputStream(fos);

int count;

while ((count = is.read(bytearray)) >= 0) {
bos.write(bytearray, 0, count);

}

bos.flush();

bos.close();

socket.close();

FilePicturesActivity.FileTransferSucess();
} catch (UnknownHostException e) {
e.printStackTrace();

} catch (IOException e) {
e.printStackTrace();

try {

Thread.sleep(2000) ;

(new Thread(new FilePicturesTransferThread())).start();
} catch (InterruptedException el) {
el.printStackTrace();

}

}
}
}

111

	Lista de Figuras
	1 Introdução
	1.1 Contextualização e Motivação
	1.2 Objetivos
	1.3 Organização do Trabalho

	2 Materiais e Métodos
	2.1 Raspberry
	2.1.1 Sistema Operacional
	2.1.2 Raspberry Pi Camera
	2.1.3 General-purpose input/output - GPIO

	2.2 Android
	2.2.1 Eclipse e Plugin ADT
	2.2.2 Android Studio

	2.3 Video Streaming
	2.3.1 Motion
	2.3.2 MJPG-streamer
	2.3.3 FFmpeg
	2.3.4 RTSP

	2.4 Modulação por largura de pulso - PWM
	2.4.1 ServoBlaster
	2.4.2 Pi-blaster

	3 Desenvolvimento do Trabalho
	3.1 Descrição das Etapas de Desenvolvimento
	3.2 Servidor - Raspberry Pi
	3.3 Cliente - Aplicativo Android
	3.3.1 Comunicação

	4 Resultados e Discussões
	4.1 Resultados Obtidos
	4.2 Dificuldades e Limitações

	5 Conclusões
	5.1 Relacionamento entre o Curso e o Projeto
	5.2 Trabalhos Futuros

	Referências Bibliográficas
	6 Apêndice A - Imagens capturadas com diferentes parâmetros
	7 Apêndice B - Código do Servidor
	7.1 Server
	7.1.1 Server.Java
	7.1.2 ServerHandler.java

	7.2 GPIO
	7.2.1 Gpio0ScheduleThread.java
	7.2.2 GpioScheduleHandler.java
	7.2.3 Pi4J

	7.3 Câmera - Imagem
	7.3.1 CameraPictureScheduleThread.java
	7.3.2 CameraPictureScheduleHandler.java
	7.3.3 CameraPictureTakeThread.java

	7.4 Câmera - Vídeo
	7.4.1 CameraVideoThread.java
	7.4.2 CameraVideoScheduleThread.java
	7.4.3 CameraVideoScheduleHandler.java

	7.5 Arquivos
	7.5.1 FilePicturesTransferThread.java
	7.5.2 FileVideosTransferThread.java

	8 Apêndice C - Código do Cliente
	8.1 Cliente
	8.1.1 LoginActivity.Java
	8.1.2 MainActivity.Java
	8.1.3 ConnectionUtilities.Java
	8.1.4 ConnectionAsyncTask.Java

	8.2 Câmera
	8.2.1 CameraListActivity.Java
	8.2.2 CameraPictureScheduleActivity.Java
	8.2.3 CameraPictureTakeActivity.Java
	8.2.4 CameraVideoScheduleActivity.Java
	8.2.5 CameraRealTimeActivity.Java

	8.3 GPIO
	8.3.1 GpioListActivity.Java
	8.3.2 GpioActivity.Java

	8.4 Arquivos
	8.4.1 FileListActivity.Java
	8.4.2 FilePicturesActivity.Java
	8.4.3 FileVideosActivity.Java
	8.4.4 FileVideosTransferThread.Java
	8.4.5 FilePicturesTransferThread.Java

