
UNIVERSIDADE DE SÃO PAULO
Departamento de Engenharia Elétrica e de Computação

Implementação de um servidor utilizando Linux embarcado

com acesso e gerenciamento através de smartphone

André Ricardo Gouveia Barros

São Carlos - SP

Implementação de um servidor utilizando Linux embarcado

com acesso e gerenciamento através de smartphone

André Ricardo Gouveia Barros

Orientador: Evandro Luı́s Linhari Rodrigues

Monografia final de conclusão do curso Engenharia de

Computação apresentada ao Departamento de Engenharia

Elétrica e de Computação – EESC-USP.

USP - São Carlos

Outubro de 2013

AUTORIZO A REPRODUÇÃO TOTAL OU PARCIAL DESTE TRABALHO,
POR QUALQUER MEIO CONVENCIONAL OU ELETRÔNICO, PARA FINS
DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE.

Barros, André Ricardo Gouveia
 B268i Implementação de um servidor utilizando Linux

embarcado com acesso e gerenciamento através de
smartphone / André Ricardo Gouveia Barros; orientador
Evandro Luís Linhari Rodrigues. São Carlos, 2013.

Monografia (Graduação em Engenharia de Computação)
-- Escola de Engenharia de São Carlos da Universidade
de São Paulo, 2013.

1. Raspberry Pi. 2. Android. 3. Cliente/Servidor.
4. GPIO. I. Título.

”Pepe! Já tirei a vela!”

Ruben Aguirre.

Chapolin: A Troca de Cérebros.

Dedicatória

À minha mãe Rosangela e meu pai Aclézio, pela compreensão, apoio e contribuição para

minha formação pessoal e acadêmica.

Agradecimentos

Agradeço a minha famı́lia pelo apoio e disposição em me ajudar a conquistar meus sonhos

e explorar meus potenciais, ao corpo docente da USP pelo conhecimento compartilhado e aos

meus amigos pelo auxı́lio e incentivo neste trabalho, além da companhia e alegrias durante a

graduação.

Resumo

Com o surgimento de sistemas embarcados com propósitos educacionais a criação de pro-

jetos embarcados tornou-se economicamente viável, aumentando o número de usuários que se

aventuram nessa área. Neste trabalho, é projetado e desenvolvido um servidor implementado

na Raspberry Pi que fornece funções relacionadas a sua câmera e a seus pinos de GPIO. O

acesso a esse servidor é feito remotamente por clientes desenvolvidos em Java e executados em

smartphone Android. Com esta combinação é possı́vel a utilização em diversas áreas, como por

exemplo um sistema de segurança e vigilância, com acesso a camêra e possibilidade de acio-

namento de alarmes, sensores e lâmpadas e tantas outras aplicações que se possa imaginar no

campo de automação via Web. O desenvolvimento deste projeto possibilitou uma maneira inte-

ressante de introdução nesse universo de conhecimento de forma prática e funcional, agregando

valor técnico, teórico e cientı́fico.

Palavras-chaves: Sistemas Embarcados, Linux Embarcado, Android, Raspberry Pi, Ras-

piVid, RaspiStill.

Abstract

With the growing of embedded systems for educational purposes, creating embedded pro-

ject became economically viable, increasing the number of users who venture into this area.

In this work is the design and developed a server implemented in a Raspberry Pi that provides

functions related to its camera and its GPIO pins. Access to this server is done remotely by cli-

ents on smartphone Android. With this combination is possible to use in various areas, such as

a security system, having access to the camera and the possibility of triggering alarms, sensors

and lamps, and many other applications imaginable in automation via web. The development of

this project allowed an interesting way of introducing this universe of knowledge in a practical

and functional, adding value technical, theoretical and scientific.

Keywords: Embedded Systems, Embedded Linux, Android, Raspberry Pi, RaspiVid,

RaspiStill.

Sumário

Lista de Figuras p. V

1 Introdução p. 7

1.1 Contextualização e Motivação . p. 7

1.2 Objetivos . p. 8

1.3 Organização do Trabalho . p. 9

2 Materiais e Métodos p. 10

2.1 Raspberry . p. 10

2.1.1 Sistema Operacional . p. 11

2.1.2 Raspberry Pi Camera . p. 12

2.1.3 General-purpose input/output - GPIO p. 13

2.2 Android . p. 14

2.2.1 Eclipse e Plugin ADT . p. 15

2.2.2 Android Studio . p. 15

2.3 Video Streaming . p. 16

2.3.1 Motion . p. 16

2.3.2 MJPG-streamer . p. 16

2.3.3 FFmpeg . p. 16

2.3.4 RTSP . p. 17

2.4 Modulação por largura de pulso - PWM . p. 17

2.4.1 ServoBlaster . p. 18

2.4.2 Pi-blaster . p. 18

3 Desenvolvimento do Trabalho p. 19

3.1 Descrição das Etapas de Desenvolvimento p. 20

3.2 Servidor - Raspberry Pi . p. 21

3.3 Cliente - Aplicativo Android . p. 26

3.3.1 Comunicação . p. 35

4 Resultados e Discussões p. 43

4.1 Resultados Obtidos . p. 43

4.2 Dificuldades e Limitações . p. 44

5 Conclusões p. 45

5.1 Relacionamento entre o Curso e o Projeto p. 46

5.2 Trabalhos Futuros . p. 46

Referências Bibliográficas p. 48

6 Apêndice A - Imagens capturadas com diferentes parâmetros p. 50

7 Apêndice B - Código do Servidor p. 56

7.1 Server . p. 56

7.1.1 Server.Java . p. 56

7.1.2 ServerHandler.java . p. 57

7.2 GPIO . p. 61

7.2.1 Gpio0ScheduleThread.java . p. 61

7.2.2 GpioScheduleHandler.java . p. 63

7.2.3 Pi4J . p. 65

7.3 Câmera - Imagem . p. 65

7.3.1 CameraPictureScheduleThread.java p. 65

7.3.2 CameraPictureScheduleHandler.java p. 67

7.3.3 CameraPictureTakeThread.java . p. 69

7.4 Câmera - Vı́deo . p. 69

7.4.1 CameraVideoThread.java . p. 69

7.4.2 CameraVideoScheduleThread.java p. 70

7.4.3 CameraVideoScheduleHandler.java p. 71

7.5 Arquivos . p. 73

7.5.1 FilePicturesTransferThread.java . p. 73

7.5.2 FileVideosTransferThread.java . p. 74

8 Apêndice C - Código do Cliente p. 75

8.1 Cliente . p. 75

8.1.1 LoginActivity.Java . p. 75

8.1.2 MainActivity.Java . p. 76

8.1.3 ConnectionUtilities.Java . p. 77

8.1.4 ConnectionAsyncTask.Java . p. 79

8.2 Câmera . p. 79

8.2.1 CameraListActivity.Java . p. 79

8.2.2 CameraPictureScheduleActivity.Java p. 80

8.2.3 CameraPictureTakeActivity.Java . p. 86

8.2.4 CameraVideoScheduleActivity.Java p. 90

8.2.5 CameraRealTimeActivity.Java . p. 95

8.3 GPIO . p. 97

8.3.1 GpioListActivity.Java . p. 97

8.3.2 GpioActivity.Java . p. 98

8.4 Arquivos . p. 102

8.4.1 FileListActivity.Java . p. 102

8.4.2 FilePicturesActivity.Java . p. 102

8.4.3 FileVideosActivity.Java . p. 105

8.4.4 FileVideosTransferThread.Java . p. 109

8.4.5 FilePicturesTransferThread.Java . p. 110

Lista de Figuras

2.1 Raspberry Pi modelo B [8] . p. 11

2.2 Raspberry Pi modelo B e módulo da câmera [8] p. 13

2.3 Pinos GPIO da Raspberry Pi. No modelo B a nomenclatura muda, o pino 21

passa a ser 27 [24]. p. 14

2.4 Número aplicativos Android instalados entre 2009 e 2012 [18]. p. 15

2.5 Sistema para controle do posicionamento da câmera [25]. p. 17

3.1 Estrutura do XML correspondente a captura de imagem p. 22

3.2 Estrutura do XML correspondente a gravação de vı́deo p. 22

3.3 Estrutura do XML correspondente ao GPIO número 0 p. 22

3.4 Estrutura das threads no servidor . p. 23

3.5 Tela de login do aplicativo . p. 27

3.6 Tela principal do aplicativo . p. 27

3.7 Tela com as funções relacionadas a câmera p. 28

3.8 Tela utilizada para captura de imagem . p. 29

3.9 Tela utilizada para agendamento da captura de imagem p. 30

3.10 Tela de controle do streaming . p. 30

3.11 Tela utilizada para agendamento da captura de vı́deo p. 31

3.12 Tela inicial de acesso para aos pinos GPIO p. 32

3.13 Tela de controle e agendamento do pino GPIO 0 p. 32

3.14 Tela inicial para escolha dos arquivos . p. 33

3.15 Telas com arquivos de imagem e vı́deo . p. 34

3.16 Esquema de comunicação do projeto entre Cliente e Servidor p. 35

6.1 Imagem capturada com os parâmetros padrões p. 50

6.2 Imagem capturada com 70 de brilho . p. 51

6.3 Imagem capturada com 100 de contraste . p. 51

6.4 Imagem capturada com 30 de saturacao . p. 52

6.5 Imagem capturada com -40 de saturação . p. 52

6.6 Imagem capturada com 60 de sharpness . p. 53

6.7 Imagem capturada com efeito colorswap . p. 53

6.8 Imagem capturada com efeito emboss . p. 54

6.9 Imagem capturada com efeito negative . p. 54

6.10 Imagem capturada com exposição off . p. 55

7

1 Introdução

1.1 Contextualização e Motivação

O telefone móvel, ou celular, foi lançado em 1973, em Nova Iorque. Na época, o aparelho

era gigantesco, tanto que o primeiro a ser viável comercialmente pesava em torno de 800 gramas

e foi lançado uma década após sua criação. No seu inı́cio não existia o sinal digital, somente o

analógico e seu uso era restrito para a parcela da população com maior poder aquisitivo. Outro

aspecto que se alterou completamente foi a questão da percepção do usuário em relação ao seu

uso uma vez que no seu inı́cio as pessoas não viam tanta utilidade a não ser poder falar em

diferentes localidades com o mesmo telefone. Atualmente, o celular é um dos equipamentos

tecnológicos mais comuns no paı́s. É extremamente difı́cil encontrar alguém com mais de 12

anos que não possua ou já tenha utilizado um aparelho. [17].

O smartphone é basicamente um celular com funcionalidades avançadas que podem ser

estendidas através de programas e aplicações, tendo sua utilidade em diversas áreas, como fer-

ramenta de trabalho, lazer e comunicação. O uso de smartphones não para de aumentar, o Brasil

é o quarto paı́s do mundo em número de smartphones no mundo são 70 milhões. [19]

Outra parte importante a considerar é a crescente adoção e uso da internet em dispositivos

móveis. É esperado que nos próximos anos, os usuários de Internet troquem os computadores

pessoais pelos seus smartphones. Segundo o IDC (International Data Corporation), espera-se

que em 2015 o número de usuários conectados à internet via smartphones seja consideravel-

mente maior dos que o fazem através do computador.

Outra área abrangida por este trabalho é o de sistemas embarcados, mais especificamente

aqueles capazes de rodar Linux, no caso, a Raspberry Pi.

Sistemas embarcados consistem em sistemas microprocessados no qual o poder de proces-

samento é voltado à realização de uma atividade especı́fica. Se comparado com um computador

normal, o sistema embarcado é construı́do para realizar sua atividade mais rapidamente, ocu-

pando menor espaço, consumindo menos energia e com custo reduzido. Existem dispositivos

8

com sistemas embarcados com diversos propósitos, alguns mais dedicados e outros mais abran-

gentes.

Sistemas embarcados com propósito dedicado tem seu uso mais restrito. Como por exem-

plo: microondas, geladeiras, freios ABS, impressoras, entre outros. Esses sistemas tem seus

componentes computacionais dimensionados de acordo com suas tarefas, podendo possuir um

processador de menor frequência, mas que consegue responder em tempo esperado para desem-

penho da aplicação [22].

Sistemas embarcados com propósito geral possuem geralmente processadores e memórias

mais potentes e de maior desempenho se comparados aos dedicados. Seu uso pode variar de

acordo com sua finalidade [22]. Um exemplo comum desses sistemas é a Raspberry Pi, um

computador do tamanho de um cartão de crédito criado para estimular o ensino de programação

e tecnologia. Foi anunciado em 2011 e lançado em 29 de fevereiro de 2012, idealizado pelo

inglês Pete Lomas para ser o computador mais barato do mercado, com o preço de 25 dólares

(modelo A) ou 35 dólares (modelo B).

1.2 Objetivos

O objetivo deste trabalho é unir as duas áreas citadas, smartphone e sistema embarcado,

mais especificamente, Android e Raspberry Pi, criando uma plataforma que ofereça acesso

a câmera e aos pinos GPIO da Raspberry Pi, controlados por um celular Android. Essa

combinação possibilita o uso em diversas áreas, desde segurança residencial com acesso a

camêra e acionamento de alarmes, sensores e lâmpadas, até ao controle de uma estufa, com

acompanhamento do crescimento das plantas através de imagens capturadas de tempo em

tempo.

O trabalho pretende focar no controle de algumas funções presentes na Raspberry Pi através

de qualquer smartphone que utilize Android versão 2.2 ou superior, englobando 98 por cento

dos usuários de Android.

O celular Android conectado à internet com o aplicativo desenvolvido neste projeto atuará

como cliente, que permitirá o acesso, monitoramento e controle de funções fornecidas pela

Raspberry Pi.

A Raspberry Pi conectada a internet, atuará como servidor, fornecendo acesso a sua câmera

e a seus pinos de propósito geral (General-purpose input/output - GPIO).

9

Com essa combinação espera-se obter o acesso remoto a Raspberry Pi, possibilitando:

• Movimentação da câmera com uso de servos controlados pelo acelerômetro do Android.

• Captura de imagem em tempo real.

• Agendamento para captura de imagem.

• Visualização de vı́deo em tempo real.

• Agendamento para gravação de vı́deo.

• Acesso, download e visualização dos arquivos de imagem e vı́deo gerados.

• Acionamento dos pinos GPIO.

• Agendamento do funcionamento dos pinos GPIO.

• Uso do acelerômetro do smartphone para controle do posicionamento da câmera.

1.3 Organização do Trabalho

Nos próximos capı́tulos são apresentados a fundamentação teórica pesquisada e utili-

zada durante o desenvolvimento do projeto, a implementação do servidor, do cliente e da

comunicação. Por fim, é apresentado os resultados obtidos, dificuldades encontradas e possı́veis

trabalhos futuros.

10

2 Materiais e Métodos

Neste capı́tulo são apresentados os materiais, métodos e as terminologias básicas da área em

que o projeto se insere e o levantamento bibliográfico necessário para realização deste trabalho.

Em particular, a descrição dos principais trabalhos de pesquisa relacionados com este, bem

como dos trabalhos que serviram de base para a solução proposta por este projeto.

2.1 Raspberry

A Raspberry Pi é um computador de pequeno porte, do tamanho de um cartão de crédito,

com dimensões de 85.60mm x 56mm x 21mm que pesa 45g [8].

Raspberry Pi foi anunciado em 2011, idealizado pelo inglês Pete Lomas para ser o compu-

tador mais barato do mercado, com o preço de 25 dólares (Modelo A) ou 35 dólares (Modelo B).

O aparelho foi lançado em 29 de fevereiro de 2012 com finalidades educativas. O computador

de código aberto foi criado para estimular o ensino de programação e tecnologia [12].

É baseado em um system on a chip Broadcom BCM2835 [7], que inclui um processador

ARM1176JZF-S de 700 MHz com operações em ponto flutuante, 256 ou 512 MB de memória

RAM e uma GPU Videocore 4, capaz de reproduzir vı́deos em qualidade de BluRay, utilizando

H264 a taxas de 40MBits/s, com acesso a OpenGL ES2.0 e bibliotecas OpenVG.

Existem dois modelos: Modelo A que conta com 256 MB RAM, uma porta USB e nenhuma

porta Ethernet e o Modelo B, figura 2.1, com 512 MB RAM, 2 portas USB e uma porta Ethernet

[12].

Os requisitos de energia do dispositivo são bem comuns, ela é alimentada por 5V via porta

micro USB. Para o Modelo B é necessário uma fonte que forneça até 700mA, enquanto para o

Modelo A, são apenas 300mA. Muitos carregadores de celular atendem a essa exigência [10].

11

Figura 2.1: Raspberry Pi modelo B [8]

2.1.1 Sistema Operacional

Existem diversas possibilidades de sistema operacional para a Raspberry Pi, no site ofi-

cial [9] são disponibilizadas algumas versões. A seguir são descritos brevemente os principais

sistemas operacionais fornecidos.

Raspbian Wheezy

Raspbian é um sistema operacional livre baseado em Debian otimizado para o hardware da

Raspberry Pi, que conta com mais de 35 mil pacotes.

A construção inicial destes pacotes otimizados do Raspbian foi concluı́da em junho de

2012. No entanto, o Raspbian encontra-se em desenvolvimento ativo, com ênfase em melhorar

a estabilidade e o desempenho de tantos pacotes quanto possı́vel.

Raspbian é a distribuição recomendada para a maioria dos usuários da Raspberry Pi. A

exceção é para os usuários que são dependentes de software que ainda não está presente ou

funcional em raspbian.

Soft Float Debian Wheezy

O Soft Float Debian Wheezy é idêntico ao Raspbian wheezy, porém utiliza soft-float. É

recomendado para se utilizar com softwares como Oracle JVM, que ainda não tem suporte ao

hard-float utilizado pelo Raspbian.

12

Arch Linux ARM

O Arch Linux ARM é baseado no Arch Linux. Foca na simplicidade e controle total para o

usuário final, dando-lhe total controle e responsabilidade sobre o sistema. Essa versão pode ser

complicada para iniciantes.

Fornece suporte a soft-float para ARMv5 e suporte hard-float para ARMv6 e ARMv7 [2].

RISC OS

É um sistema operacional projetado em Cambrigde pela Acorn. Lançado em 1987, suas

origens levam ao time original de desenvolvedores do ARM.

De 1988 a 1998 o RISC OS era vastamente utilizado em todo computador baseado em

ARM produzido pela Acorn. Após o desmembramento da Acorn, em 1998, o desenvolvimento

do sistema operacional foi bifurcada e continuou separadamente por várias empresas. Em 2011

foi anunciado uma versão de desenvolvimento para a Raspberry Pi [21].

2.1.2 Raspberry Pi Camera

A câmera da Raspberry Pi é um módulo adicional. Ela é ligada a um dos dois sockets

superiores presentes na Raspberry Pi. Esse socket trata-se de uma interface CSI (Camera Serial

Interface), que é desenhada especialmente para câmeras, sendo capaz de suportar altas taxas de

transferência de dados [14].

A placa da câmera em si é pequena e pesa menos de 4 gramas, se tornando excelente para

aplicações móveis ou em aplicações que o tamanho e peso são importantes.

O sensor da câmera tem resolução nativa de 5 megapixel com lentes fixas. Em termos de

imagem estática, a câmera é capaz de gerar fotos de até 2592 x 1944 pixel, além de suportar

vı́deos em 1080p a 30fps, 720p a 60fps e 480p a 90fps.

A câmera foi lançado para venda em 14 de Maio de 2013 com produção inicial de dez mil

unidades que teve seu estoque esgotado alguns dias depois do inı́cio das vendas.

A imagem 2.2 mostra uma foto do módulo da câmera acoplado a Raspberry Pi.

13

Tabela 2.1: Dados técnicos da câmera Raspberry Pi
Tipo de sensor OmniVision OV5647 Color CMOS QSXGA (5 megapixel)
Tamanho do sensor 3.67 x 2.74 (mm)
Quantidade de pixel 2592 x 1944
Tamanho do pixel 1.4 x 1.4 (um)
Anglo de visão 54 x 41 (graus)
Campo de visão 2.0 x 1.33 m há 2 m
Lente equivalente 35 mm
Foco fixo 1 m
Video 1080p a 30 fps com codec H264
Tamanho da placa 25 x 24 (mm)

Figura 2.2: Raspberry Pi modelo B e módulo da câmera [8]

2.1.3 General-purpose input/output - GPIO

Um General Purpose Input/Output, ou GPIO, é um pino genérico que pode ter seu compor-

tamento (de entrada ou de saı́da) controlado/programado por software. Fornece saı́das lógicas

0 e 1, podendo ser utilizado para o acionamento de diversos atuadores.

A Raspberry Pi possui 26 pinos, alinhados em duas colunas de 13, que fornecem: 8 GPIO,

I2C, SPI, UART, +3.3V, +5.0V e GND. Todos os pinos de UART, SPI e I2C podem ser recon-

figurados como GPIO, sendo possı́vel alcançar 17 pinos GPIO [24].

O nı́vel de tensão do GPIO é de 3.3V e não de 5V. Não existe qualquer tipo de proteção

de sobrecarga, a intenção é que pessoas interessadas no uso intensivo destes pinos utilizem

uma placa externa ao invés da ligação direta na Raspberry Pi, porém nada impede o uso direto,

desde que seja tomada as devidas precauções. A figura 2.3 exibe o posicionamento dos pinos

da Raspberry Pi.

14

Figura 2.3: Pinos GPIO da Raspberry Pi. No modelo B a nomenclatura muda, o pino 21 passa
a ser 27 [24].

2.2 Android

O Android é um sistema operacional baseado em Linux projetado para dispositivos móveis

touchscreen, como smartphones e tablet.

Foi inicialmente desenvolvido pela Android Inc, com apoio financeiro do Google, que pos-

teriormente comprou a empresa. Foi lançado em 2007 junto com a fundação Open Handset Al-

liance, um consórcio de hardware, software, telecomunicações e empresas dedicadas ao avanço

dos dispositivos móveis [16]. O primeiro telefone com Android foi vendido em outubro de

2008.

O Android é open source e o Google libera o código sob a licença Apache, permitindo que

o software seja livremente modificado e distribuı́do por fabricantes de aparelhos, operadoras

sem fio e desenvolvedores entusiastas [15].

Além disso, o Android tem uma grande comunidade de desenvolvedores que criam aplica-

tivos que estendem a funcionalidade de dispositivos, os quais são escritos principalmente em

uma versão personalizada da linguagem de programação Java.

Em outubro de 2012, havia cerca de 700 mil aplicativos disponı́veis para Android [27]. O

número estimado de aplicativos instalados a partir do Google Play, principal loja de aplicativos

do Android, é de 25 bilhões, como mostra a figura 2.4.

Esses fatores têm contribuı́do para tornar o Android plataforma de smartphone mais usado

do mundo.

15

Figura 2.4: Número aplicativos Android instalados entre 2009 e 2012 [18].

2.2.1 Eclipse e Plugin ADT

O Eclipse é um ambiente de desenvolvimento multi-linguagem Integrado (IDE), escrito

principalmente em Java. Pode ser usado para desenvolver aplicações em Java e, por meio de

vários plugins, outras linguagens de programação, incluindo Ada, C, C++, COBOL, Fortran,

Haskell, JavaScript, Lasso, Perl, PHP, Python, R, Ruby, Scala, Clojure, Groovy, Scheme e

Erlang.

O Android Development Tools (ADT) é um plugin projetado para o Eclipse IDE para for-

necer um ambiente poderoso e integrado para a criação de aplicativos Android [1].

O ADT amplia os recursos do Eclipse para que se possa criar novos projetos, interfaces do

usuário, adicionar pacotes com base no quadro API Android, depurar seus aplicativos usando

as ferramentas do SDK do Android e até mesmo exportar o aplicativo a fim de distribuir a sua

aplicação .

2.2.2 Android Studio

O Android Studio é um novo ambiente de desenvolvimento Android com base no Intel-

liJ IDEA. Semelhante ao Eclipse com o plugin ADT, Android Studio fornece ferramentas de

desenvolvimento integradas Android para desenvolvimento e depuração [13].

16

Foi anunciado em 16 de Maio de 2013 na conferência Google I/O. Em junho de 2013, ele

foi disponı́vel em forma de beta para os usuários.

2.3 Video Streaming

Streaming é utilizado para distribuir conteúdo multimı́dia através da Internet. Em strea-

ming, as informações multimı́dia não são, usualmente, arquivadas pelo usuário que está rece-

bendo o streaming (a não ser o armazenamento temporário no cache do sistema ou que o usuário

ativamente faça a gravação dos dados) a mı́dia é reproduzida a medida que chega ao usuário,

desde que a sua largura de banda seja suficiente para reproduzir os conteúdos em tempo real.

Assim, para visualização da câmera em tempo real se faz necessário a utilização do serviço

de streaming. Existem softwares que provem tal serviço. Abaixo são listados alguns, bem como

uma breve descrição de cada um.

2.3.1 Motion

O motion é um programa que controla o sinal de vı́deo a partir de uma ou mais câmeras.

É capaz de detectar se uma parte significativa da imagem mudou, ou seja, ele pode detectar o

movimento [4]. O programa é escrito em C e é feito para o sistema operacional Linux, usando

a interface video4linux.

2.3.2 MJPG-streamer

MJPG-streamer é uma aplicação baseada em linha de comando para transmitir arquivos

JPG através de uma rede IP da webcam para um navegador.

É possı́vel fazer uso do sistema de compressão que certas câmeras dispõem, a fim de re-

duzir o custo de processamento no servidor. Isso o torna uma solução leve para dispositivos

embarcados e servidores comuns, que não devem usar a maior parte de seu processamento para

comprimir quadros [23].

2.3.3 FFmpeg

FFmpeg é um dos principais framework multimı́dia. Ele é capaz de codificar, decodificar ,

mux, demux, realizar streaming, filtrar e rodar praticamente qualquer formato.

17

O FFmpeg é um projeto que tenta oferecer boas soluções técnicas para os desenvolvedores

de aplicações e usuários finais. Para isso ele combina as melhores opções de software dis-

ponı́veis gratuitamente [3].

2.3.4 RTSP

O Real Time Streaming Protocol é um protocolo de controle de rede projetado para uso em

sistemas de entretenimento e de comunicação para controlar servidores de streaming de mı́dia.

A transmissão de streaming de dados em si não é uma tarefa do protocolo RTSP. A maioria

dos servidores RTSP usam o Real-time Transport Protocol (RTP) em conjunto com o Real-time

Control Protocol (RTCP) para entrega em fluxo de mı́dia.

O RTSP foi desenvolvido pelo Multiparty Multimedia Session Control Working Grouo da

Internet Engineering Task Force (IETF) e publicado como RFC 2326 em 1998 [6].

2.4 Modulação por largura de pulso - PWM

Uma possibilidade para o controle da câmera é utilização de servos montados como mostra

a figura 2.5. O posicionamento dos servos é feito por PWM, como ângulo definido pela largura

do pulso.

Figura 2.5: Sistema para controle do posicionamento da câmera [25].

A modulação por largura de pulso (PWM, Pulse Width Modulation) é uma técnica larga-

mente utilizada para o controle de dispositivos e sinais, desde iluminação e acionamento de

motores até áudio. Consiste em uma onda que alterna seu estado em nı́vel lógico alto e um

nı́vel lógico baixo e varia seu duty cicle. Com isso é possı́vel o controle de motores e servos.

18

Apesar de dispor de diferentes comunicações (GPIO, I2C, SPI, UART, +3.3V, +5.0V e

GND), a Raspberry Pi não conta com PWM. A seguir são listadas algumas maneiras pesquisa-

das e utilizadas para se conseguir gerar PWM para a Raspberry Pi.

2.4.1 ServoBlaster

ServoBlaster é um software para a Raspberry Pi, que fornece uma interface para geração de

PWM através dos pinos GPIO. É possı́vel se comunicar com o driver informando qual a largura

de pulso desejada. O driver cria um arquivo de dispositivo /dev/servoblaster, no qual você pode

enviar comandos.

O driver funciona através da criação de uma lista encadeada de blocos de controle de DMA,

com o último ligado ao primeiro, por isso, uma vez iniciado o controlador de DMA roda conti-

nuamente e o driver não precisa se envolver, a não ser quando uma largura de pulso precisa ser

mudado. Com isso, a influência do uso do processador na geração do PWM é reduzida.

Existem duas implementações de ServoBlaster, uma sendo baseado em um módulo do ker-

nel e outra baseado no user space daemon. O módulo baseado no kernel é o original, porém

difı́cil de se alcançar, pois é preciso de um kernel que combine com o versão utilizada pelo de-

senvolvedor. A implementação no user space daemon é muito mais conveniente para se utilizar

e conta com os mesmos recursos [20].

O desempenho do ServoBlaster para controle dos servos é satisfatório, porém, o uso de

PWM desta forma interfere com algumas outras saı́das da Raspberry Pi, como por exemplo, a

saı́da de áudio de 3.5mm e com a própria câmera.

2.4.2 Pi-blaster

Pi-blaster é um software que foi feito a partir do ServoBlaster, tornando possı́vel a criação

de oito sinais PWM que alcançam de zero a cem por cento da largura do pulso, diferente do

ServoBlaster que alcança apenas doze por cento quando todas as saı́das são utilizadas [26].

O desempenho é o mesmo alcançado com o ServoBlaster, inclusive no que se diz respeito

as interferências nos outros pinos.

19

3 Desenvolvimento do Trabalho

Para o desenvolvimento deste trabalho foi adotada uma arquitetura semelhante ao para-

digma cliente/servidor. Com a Raspberry Pi atuando como servidor e o smartphone Android

atuando como cliente. A conexão entre cliente e servidor é feita em qualquer rede através de

sockets TCP/IP.

O servidor aceita conexão do cliente durante toda sua execução. O cliente por sua vez

deve efetuar a conexão utilizando o aplicativo desenvolvido neste trabalho, no qual informa o

endereço IP e a porta do servidor.

Quando estabelecido a conexão entre ambas as partes, inicia-se a troca de mensagens, sendo

o cliente o responsável por fazer requisições ao servidor e, com isso, obter acesso as funções

disponı́veis.

As funções que o servidor oferece são:

• Captura de imagem em tempo real com controle de parâmetros da imagem.

• Agendamento para captura de imagem, com controle de parâmetros e do tempo entre a

captura das imagens.

• Acionamento e desligamento do streaming de vı́deo.

• Agendamento para captura de vı́deo com controle de parâmetros da imagem.

• Acionamento e desligamento dos oito pinos GPIO.

• Agendamento dos oito pinos GPIO.

• Download e visualização das imagens capturadas.

• Download e visualização dos vı́deos capturados.

As seções a seguir descrevem as etapas do desenvolvimento, seguido pela descrição do

funcionamento e implementação do servidor, do cliente e da comunicação.

20

3.1 Descrição das Etapas de Desenvolvimento

O primeiro passo no desenvolvimento do trabalho foi a criação da comunicação, para isso

foram criados dois softwares simples que se conectavam por socket e trocavam mensagens.

Após a verificação do funcionamento e estabelecimento dessa conexão inicial, o software ser-

vidor foi incrementado para permitir a conexão de mais dispositivos ao mesmo tempo.

O passo seguinte foi a pesquisa e teste das maneiras disponı́veis para geração do PWM.

Com o método PiBlaster escolhido, foi feita a implementação do acionamento do PWM através

da linguagem Java. O acelerômetro do smartphone foi mapeado para controlar o valor do PWM,

com isso, o posicionamento da câmera era controlado pelo movimento do smartphone.

Posteriormente, foi realizado a instalação, configuração e testes inicias da câmera. Após o

aprendizado básico da câmera, foi feita a implementação de seu acionamento e controle através

da linguagem Java.

Com isso o servidor tinha suas principais funções implementadas, então foi iniciado a

criação do aplicativo Android. A primeira versão criada possibilitava a captura de imagem

sem alteração dos parâmetros e a geração de PWM para dois servos utilizados para controle da

câmera.

Com versões básicas do servidor e do cliente, foi iniciado o incremento da comunicação

com a criação das requisições.

Durante o incremento de ambos os softwares, cliente e servidor, eram realizados testes de

uso. Em um desses testes foi detectado um grave problema: o método escolhido para geração

do PWM alterava todas as saı́das da Raspberry Pi, inclusive na saı́da utilizada pela câmera,

causando seu mal funcionamento. Os outros métodos de PWM foram testados, porém nenhum

gerou o resultado esperado. A opção escolhida foi a não utilização do PWM, perdendo com

isso o controle de movimento da câmera.

Com a incompatibilidade eliminada, foram incrementadas as funções de GPIO, com a ex-

pansão para oito pinos e criação do agendamento dos mesmos. O mesmo agendamento foi feito

para captura de imagem e vı́deo, seguido da criação do streaming e da captura de imagem em

tempo real.

Finalizadas as funções de câmera e GPIO, o próximo passo foi a organização, comunicação

e transferência dos arquivos gerados para o Android.

Com servidor e cliente funcionando, o passo final foi a organização e melhoria visual do

aplicativo.

21

3.2 Servidor - Raspberry Pi

A programação do servidor poderia ter sido realizada em diversas linguagens, necessitando

apenas que oferecesse acesso aos sockets, mas a linguagem escolhida foi Java, devido ao fato

do cliente Android ser necessariamente programado em Java, assim tanto cliente como servidor

compartilham a mesma linguagem. Existe também o uso da linguagem XML para armazenar

algumas informações relacionadas ao agendamento das funções do servidor.

Para descrever o funcionamento com mais detalhes os tópicos a seguir abordam as fun-

cionalidades e caracterı́sticas do servidor, mostrando quais as estratégias e ferramentas foram

utilizadas para sua realização.

Controle dos Agendamentos

Para realizar o controle dos agendamentos o servidor conta com a utilização de arquivos

XML para armazenar as informações e com threads que acessam, obtém e modificam essas

informações.

Quando o servidor é inicializado, são criadas dez threads. Essas threads são executadas

indefinidamente, sendo oito delas responsáveis por verificar o agendamento dos pinos GPIO e

duas por verificar o agendamento da câmera, uma para imagem e outra para vı́deo.

A cada dez segundos cada uma dessas threads realiza a leitura de um arquivo XML es-

pecı́fico de sua função, obtendo informações a respeito do agendamento das funções. Através

dessas informações a thread toma as ações necessárias, ou seja, liga ou desliga o GPIO ou

realiza a gravação de vı́deo ou captura de imagem de acordo com a informação guardada no

XML.

A cada nova programação realizada pelo cliente o arquivo XML deve ser atualizado. Na

figura 3.1 é apresentado um exemplo do XML responsável por salvar informações referente ao

agendamento da captura de imagem. Nele é possı́vel notar a hora de inı́cio, hora de fim, bem

como os parâmetros utilizados na captura, como por exemplo qualidade, resolução e brilho.

Nas figuras 3.2 e 3.3 são apresentados exemplos do agendamento da captura de vı́deo e do

acionamento do pino GPIO número 0.

22

Figura 3.1: Estrutura do XML correspondente a captura de imagem

Figura 3.2: Estrutura do XML correspondente a gravação de vı́deo

Figura 3.3: Estrutura do XML correspondente ao GPIO número 0

23

Gerenciamento de Clientes

Depois de iniciadas as threads, o servidor cria um socket que fica a espera de clientes.

Quando um cliente realiza a conexão com o servidor, o gerenciamento da conexão é trans-

ferido para uma nova thread, permitindo que o servidor aceite novas conexões. A figura 3.4

ilustra o funcionamento das threads.

Figura 3.4: Estrutura das threads no servidor

Após conectado, o servidor fica na espera de requisições do cliente. Ao recebe-las, o ser-

vidor faz a analise, realiza as tarefas requisitadas e retorna uma mensagem ao cliente. As

requisições, bem como exemplos da comunicação serão mostradas mais a frente nesta seção.

Utilização da Câmera

O uso da câmera se baseia no uso de programas oferecidos pela própria Raspberry Pi. Esses

programas são executados diretamente no bash. O bash é um interpretador de comandos, uma

espécie de tradutor entre o sistema operacional e o usuário.

Para a execução desses programas diretamente no bash foi necessário o uso de classe Run-

time em Java que permite a interação da aplicação com o ambiente no qual está sendo execu-

tada, assim o servidor consegue executar ambos os programas como se fossem executados pelo

próprio cliente diretamente no bash.

O programa raspistill é responsável pela captura de imagens e o raspivid pela captura de

24

vı́deo. Os parâmetros utilizados na execução são obtidos das requisições realizadas pelo cliente.

Esses parâmetros são listados nas tabelas 3.1 e 3.2.

Tabela 3.1: Parâmetros oferecidas pelo raspistill [11]
Comando Descrição
-? Ajuda
-w Define largura da imagem
-h Define altura da imagem
-q Define a qualidade do jpeg (0 a 100)
-r Adiciona dados ao metadata do jpeg
-o Nome do arquivo
-v Informações detalhadas de saı́da durante a execução
-t Tempo antes de tirar a foto (ms)
-th Definie parametros do thumbnail
-d Roda um modo demo, sem captura
-e Define o tipo de encoding (jpg, bmp, gif, png)
-x EXIF tag
-tl Modo timelapse
-sh Define o sharpness (-100 a 100)
-co Define o contraste (-100 a 100)
-br Define o brilho (0 a 100)
-sa Define a saturação (-100 a 100)
-ISO Define o ISO
-vs Liga a estabilização de vı́deo
-ev Define a compensação EV (-10 a 10)
-ex Define o modo de exposição
-awb Habilita o modo AWB
-ifx Define o efeito da imagem
-cfx Define os efeitos de cores
-mm Define o modo metering
-rot Define a rotação da imagem(0 a 359)
-hf Define o flip horizontal
-vf Define o flip vertical

Tabela 3.2: Parâmetros oferecidas pelo raspivid [11]
Comando Descrição
-? Ajuda
-w Define largura da imagem
-h Define altura da imagem
-b Define o bitrate
-o Nome do arquivo
-v Informações detalhadas de saı́da durante a execução
-t Tempo antes de tirar a foto (ms)
-d Roda um modo demo, sem captura
-fps Definie o numero de imagens por segundo
-e Define o tipo de encoding (jpg, bmp, gif, png)
-sh Define o sharpness (-100 a 100)
-co Define o contraste (-100 a 100)
-br Define o brilho (0 a 100)
-sa Define a saturação (-100 a 100)
-ISO Define o ISO
-vs Liga a estabilização de vı́deo
-ev Define a compensação EV (-10 a 10)
-ex Define o modo de exposição
-awb Habilita o modo AWB
-ifx Define o efeito da imagem
-cfx Define os efeitos de cores
-mm Define o modo metering
-rot Define a rotação da imagem(0 a 359)
-hf Define o flip horizontal
-vf Define o flip vertical

25

Soluções para o Streaming

Para o streaming de vı́deo foram considerados vários métodos, entre eles, os já citados: Mo-

tion, MJPEG e FFmpeg. Todos eles se baseiam no dispositivo mapeado no arquivo /dev/video0

do Linux.

O módulo da câmera da Raspberry Pi não fornece o driver necessário para o mapeamento no

arquivo /dev/video0, assim foi necessário a busca de novas soluções. Observação: atualmente

usuários da Raspberry Pi estão em um projeto para produção um driver para a câmera, porém,

a última versão testada ainda conta com instabilidade para vı́deos H264.

A solução encontrada foi o uso do streaming através do uso do pacote VLC. Assim o ser-

vidor consegue que seu vı́deo passe a ser transmitido por uma porta definida pelo programador.

O cliente pode visualizar o streaming através programa VLC em qualquer computador pes-

soal, através do endereço fornecido pelo aplicativo, como será mostrado nas seções seguintes.

Assim como os programas raspistill e raspivid, o VLC também é executado no bash e

como a função de streaming pode rodar durante um tempo indefinido, o processo responsável

pelo streaming é executado em um thread em background, para que o acesso ao bash não seja

bloqueado.

Controle e acesso dos pinos de gpio

Para controle e acesso dos pinos GPIO existem diversos wrappers em diversas linguagens

que oferecem as mesmas funcionalidades. Por exemplo, a biblioteca WiringPi para C, a biblio-

teca RaspberryPi.Net para C sharp, o módulo RPi.GPIO para Python, entre outros.

Para este projeto foi utilizado o Pi4j, um projeto destinado a fornecer uma ponte entre as

bibliotecas nativas e o Java para acesso total a Raspberry Pi. Além do controle do GPIO, Pi4j o

ainda oferece suporte para comunicação serial, I2C e SPI.

Sua utilização é bem simples, como mostra o trecho de código a seguir.

final GpioController gpio = GpioFactory.getInstance();

GpioPinDigitalOutput myGpio = gpio.provisionDigitalOutputPin(RaspiPin.GPIO_04, "My GPIO", PinState.LOW);

myGpio.setState(PinState.HIGH);

myGpio.setState(PinState.LOW);

26

Gerenciamento dos arquivos de imagem e vı́deos

Todos os arquivos gerados são armazenados na Raspberry Pi. Eles podem ser de imagem

no formato jpg ou de vı́deo, nos formatos H264 ou MP4.

A quantidade de imagens e vı́deos armazenados variam de acordo com o cartão SD utilizado

na Raspberry PI. Existe a possibilidade de se utilizar um HD externo para aumentar a capacidade

de armazenamento.

Caso haja necessidade de conversão do formato H264 para outros formatos, pode-se utilizar

o programa MP4Box que é uma ferramenta baseada em linha de comando que converte arquivos

dos tipos MPEG-4, DivX, XviD, 3ivx e H264 em arquivo MP4 [5]. Sua utilização é simples,

rápida e os resultados são de boa qualidade.

Além da conversão, o servidor possibilita a opção do cliente realizar o download do arquivo

para depois visualizá-lo no próprio smartphone.

3.3 Cliente - Aplicativo Android

A programação do aplicativo é mais restrita que a do servidor. Por se tratar de um aplicativo

Android a programação deve ser feita em Java e a parte visual deve ser feita em XML.

Os tópicos a seguir abordam o funcionamento do aplicativo de acordo com cada tela apre-

sentada.

Conexão e Tela Principal

A primeira tela do aplicativo que o usuário tem contato é a tela de login. O usuário informa

o IP, a porta do servidor e realiza a conexão, como mostra a figura 3.5.

Após estabelecido a conexão, é apresentado ao usuário a tela principal. Nela existem os

três principais blocos de funções disponı́veis: Câmera, GPIO e Arquivos, como mostra a fi-

gura 3.6. A seguir são listados detalhadamente o que cada um desses blocos contém e o seu

funcionamento.

27

Figura 3.5: Tela de login do aplicativo

Figura 3.6: Tela principal do aplicativo

28

Funções da Câmera

Como exibido na figura 3.7, existem quatro funções relacionado à câmera:

• Captura de imagem

• Agendamento da captura de imagem

• Agendamento da captura de vı́deo

• Gerenciamento do streaming

Figura 3.7: Tela com as funções relacionadas a câmera

Na opção captura de imagem o usuário pode escolher como deseja capturar a imagem,

podendo variar os parâmetros: resolução, qualidade, brilho, contraste, saturação, sharpness,

efeito e exposição, como mostra na figura 3.8.

A opção de agendamento para captura de imagem oferece ao usuário captura de imagens

de tempo em tempo durante um intervalo desejado.

É possı́vel escolher as mesmas caracterı́sticas presentes na captura de imagem, além da

data/hora de inı́cio/fim e o intervalo, em minutos, que se deseja entre as fotos. Ao acessar a

29

Figura 3.8: Tela utilizada para captura de imagem

opção de agendamento, é mostrado ao usuário o último agendamento e os parâmetros utilizados

pelo servidor. A figura 3.9 ilustra um exemplo dessa função.

Na opção de streaming é possı́vel ligá-lo e desligá-lo. Quando ligado é fornecido um link

que o usuário deve usar em qualquer computador pessoal para visualizar o streaming através do

programa VLC. Existe a opção de receber o link por email para facilitar o acesso. A imagem

3.10 demonstra as duas opções, ligado e desligado.

A idéia inicial para a opção de streaming era a visualização direta do vı́deo captado pela

Raspberry Pi no smartphone, porém nenhuma das opções testadas teve desempenho aceitável,

demonstraram excessiva lentidão, com grandes atrasos e congelamentos devido a baixa malea-

bilidade do formato H264 em smartphones.

A opção de agendamento para captura de vı́deo oferece ao usuário a captura de vı́deo

durante um tempo definido. O usuário escolhe a data/hora de inı́cio/fim para a captura e os

parâmetros: resolução, brilho, contraste, saturação, sharpness, efeito e exposição. A figura 3.11

mostra um exemplo desta função. Ao acessar a opção de agendamento é mostrado ao usuário

o último agendamento e os parâmetros utilizados pelo servidor, semelhante ao agendamento da

captura de imagem.

30

Figura 3.9: Tela utilizada para agendamento da captura de imagem

Figura 3.10: Tela de controle do streaming

31

Figura 3.11: Tela utilizada para agendamento da captura de vı́deo

Funções relacionadas ao GPIO

A segunda opção, GPIO, é uma função com uso ilimitado. Pode ser utilizado para ativar

diversos sensores e atuadores, por exemplo, acionamento de alarmes e lâmpadas para segurança

residencial, ou então, acionamento de umificadores, aquecedores e ventiladores para uso em

uma estufa.

É apresentado ao usuário todos os oito pinos GPIO disponı́veis na Raspberry Pi, como

mostra a figura 3.12, cada um tem seu uso e gerenciamento individual, sem influência dos

demais.

Para os todos os pinos GPIO o usuário pode optar por ligar e desligar diretamente acionando

o botão no canto superior direito do aplicativo, ou optar pelo agendamento. Para o agendamento

o usuário escolhe a data/hora que deseja ligar e a data/hora que deseja desligar. A figura 3.13

mostra um exemplo para a pino zero.

32

Figura 3.12: Tela inicial de acesso para aos pinos GPIO

Figura 3.13: Tela de controle e agendamento do pino GPIO 0

33

Funções relacionadas aos arquivos

Na terceira opção o usuário tem contato com os arquivos de vı́deo e imagem gerados. Ini-

cialmente o usuário deve optar se deseja visualizar a lista de arquivos de imagem ou de vı́deo,

como apresentado na figura 3.14.

Figura 3.14: Tela inicial para escolha dos arquivos

Após escolher entre imagem ou vı́deo, o usuário se depara com uma lista de arquivos dis-

ponı́veis no servidor. Baseado nessa lista é possı́vel realizar o download de qualquer arquivo

para o smartphone e a visualização do mesmo através do próprio aplicativo. A figura 3.15 exibe

um exemplo para imagens e vı́deos.

Como a reprodução de vı́deos no formato H264 não é tão simples em smartphones, existe

a opção de conversão dos vı́deos para o formato MP4. Essa conversão é realizada no servidor

que mantém ambos os arquivos.

34

(a) Arquivos de imagem (b) Arquivos de vı́deo e suas opções

Figura 3.15: Telas com arquivos de imagem e vı́deo

35

3.3.1 Comunicação

A comunicação entre cliente e servidor pode utilizar até 3 portas, dependendo do uso que o

cliente deseja.

Como opção de projeto foram escolhidas as portas de número 5555, 5556 e 8854, por se

tratarem de portas genéricas e disponı́veis para uso.

A principal porta é a 5555. É nela que ocorre todo o fluxo das requisições, sendo res-

ponsável por todas as mensagens trocadas entre servidor e cliente.

A porta 5556 é utilizada apenas para a realização do download de arquivos do servidor para

o cliente. A requisição para o download é feita através da porta 5555, o cliente responde na

mesma porta 5555 e então libera a porta 5556 para o download.

A porta 8854 é utilizada para a o streaming. Pelo motivos citados no capitulo anterior, essa

porta é utilizada apenas entre a Raspberry Pi e um computador pessoal para transmissão do

vı́deo em tempo real. Assim como no download, a troca de requisições também é feita na porta

5555 e ao final o streaming é realizado pela porta 8854.

A figura 3.16 mostra as relação entre as portas do servidor e dos clientes.

Figura 3.16: Esquema de comunicação do projeto entre Cliente e Servidor

Toda comunicação criada entre cliente e servidor é baseada na troca de mensagens. Todas

as mensagens são constituı́das por campos, separados por espaços, e seguem o mesmo padrão.

O primeiro campo corresponde ao tipo da requisição. Os demais campos variam de acordo com

a função:

Campo1 Campo2 Campo3 ... CampoN

Requisiç~ao Dado1 Dado2 ... DadoN

36

As possı́veis requisições e os valores que as identificam são listadas a seguir com uma breve

explicação de cada uma, seguidas por exemplos de comunicação.

Requisições do GPIO

Existem três requisições ligadas a função dos pinos GPIO. O trecho em Java a seguir foi

extraido do código do servidor e lista as possı́veis requisições:

public static final int MSG_WHAT_GPIO = 1;

public static final int MSG_WHAT_GPIO_PROGRAMMATION = 2;

public static final int MSG_WHAT_GPIO_PROGRAMMATIONREQUEST = 3;

A primeira requisição, ”MSG WHAT GPIO” , é utilizada quando o usuário deseja ligar ou

desligar qualquer pino GPIO. A mensagem enviada pelo cliente tem o seguinte formato:

1 pino_gpio estado_desejado

O servidor retorna um echo da mensagem recebida. No exemplo de comunicação a seguir,

o cliente requisita que o pino 0 seja ligado (1):

• Cliente envia: 1 0 1

• Servidor responde: 1 0 1

A requisição ”MSG WHAT GPIO PROGRAMMATION” é utilizada quando o usuário realiza
o agendamento de um pino GPIO. A mensagem enviada pelo cliente tem o seguinte formato:

2 pino_gpio estado_pino data_inicial hora_inicial data_final hora_final

O servidor retorna um echo da mensagem recebida. Neste exemplo, o pino GPIO 0

encontra-se desligado (0), será ligado no dia 20/09/2013 às 10:00 horas e desligado 20/09/2013

às 11:30 horas.

• Cliente envia: 2 0 0 20/9/2013 10:00 20/9/2013 11:30

• Servidor responde: 2 0 0 20/10/2013 10:00 20/10/2013 11:30

37

A requisição ”MSG WHAT GPIO PROGRAMMATIONREQUEST” é utilizada toda vez que

o usuário acessa a tela relacionada com GPIO. Essa requisição é responsável por obter a última

hora agendada e o estado atual do pino. A mensagem enviada pelo cliente tem o seguinte

formato:

3 pino_gpio

O servidor retorna o estado atual do pino GPIO e a data/hora de inı́cio/fim do agendamento.

O formato dessa mensagem é o seguinte:

3 estado_pino data_inicial hora_inicial data_final hora_final

O exemplo a seguir mostra uma requisição do agendamento relacionado ao pino GPIO 3.

O servidor informa que o estado atual é desligado (0), programado para ligar no dia 01/10/2013

às 00:52 e desligar no dia 05/10/2013 às 10:55.

• Cliente envia: 3 3

• Servidor responde: 3 0 1/10/2013 00:52 05/10/2013 10:55

Requisições da Câmera

Para a câmera, existem sete requisições, sendo 4 de vı́deo e 3 de imagem. Todas elas são

listadas a seguir:

public static final int MSG_WHAT_CAMERA_VIDEO_REALTIME = 4;

public static final int MSG_WHAT_CAMERA_VIDEO_REALTIMESTATUS = 5;

public static final int MSG_WHAT_CAMERA_VIDEO_PROGRAMMATION = 6;

public static final int MSG_WHAT_CAMERA_VIDEO_PROGRAMMATIONREQUEST = 7;

public static final int MSG_WHAT_CAMERA_PICTURE_TAKEPICTURE = 8;

public static final int MSG_WHAT_CAMERA_PICTURE_PROGRAMMATION = 9;

public static final int MSG_WHAT_CAMERA_PICTURE_PROGRAMMATIONREQUEST = 10;

As duas primeiras requisições, ”MSG WHAT CAMERA VIDEO REALTIME” e ”MSG -

WHAT CAMERA VIDEO REALTIMESTATUS” são bem simples. A primeira habilita e desa-

bilita o serviço de streaming. A segunda é utilizada para verificar a situação do streaming, se

está ligado ou desligado.

38

A mensagem enviada pelo cliente é formada apenas pelo valor 4 ou 5. O servidor retorna

um echo da mensagem recebida.

A requisição seguinte, ”MSG WHAT CAMERA VIDEO PROGRAMMATION” é semelhante

a ”MSG WHAT CAMERA PICTURE PROGRAMMATION”. Ambas são utilizadas quando o

usuário realiza o agendamento da captura de imagem ou vı́deo.

A mensagem enviada pelo cliente tem o seguinte formato:

6 data_inicial hora_inicial data_final hora_final parametros[...]

9 data_inicial hora_inicial data_final hora_final parametros[...]

O servidor retorna um echo da mensagem recebida.

Os dois exemplos a seguir mostram o uso destas variáveis. No primeiro, a gravação de

vı́deo deve iniciar no dia 15/08/2013 às 05:00 e finalizar no mesmo dia às 05:15. Os valores

seguintes se referem, respectivamente, ao tamanho horizontal (1280), tamanho vertical (720),

brilho (66), contraste (26), saturação (-24), sharpness (52), efeito (pastel) e exposição (auto).

• Cliente envia: 6 15/08/2013 05:00 15/08/2013 05:15 1280 720 66 26 -24 52 pastel auto

• Servidor responde: 6 15/08/2013 05:00 15/08/2013 05:15 1280 720 66 26 -24 52 pastel auto

No caso de captura de imagem o comando enviado pelo cliente é bem parecido. No exemplo

a seguir o cliente deseja que a captura das imagem se inicie no dia 20/10/2013 às 03:00 e finalize

no mesmo dia às 06:00, com um intervalo de 5 minutos entre cada imagem. Os valores seguintes

se referem, respectivamente, ao tamanho horizontal (1920), tamanho vertical (1080), qualidade

(100), brilho (66), contraste (40), saturação (18), sharpness (36), efeito (none) e exposição

(auto).

• Cliente envia: 9 20/10/2013 03:00 20/10/2013 06:00 5 1920 1080 100 66 40 18 36 none auto

• Servidor responde: 9 20/10/2013 03:00 20/10/2013 06:00 5 1920 1080 100 66 40 18 36 none

auto

A requisição ”MSG WHAT CAMERA VIDEO PROGRAMMATIONREQUEST” e ”MSG -

WHAT CAMERA PICTURE PROGRAMMATIONREQUEST” também são semelhantes. Ambas

são utilizadas quando o usuário acessa a tela para captura de imagem ou vı́deo. São responsáveis

39

por obter do servidor a última data e hora agendada para as respectivas funções, bem como os

parâmetros utilizados.

A mensagem enviada pelo cliente é formada apenas pelo valor 7 para vı́deo ou 10 para

imagem. O servidor retorna os dados solicitados no seguinte formato:

7 data_inicial hora_inicial data_final hora_final parametros[...]

10 data_inicial hora_inicial data_final hora_final parametros[...]

Os exemplos a seguir demonstram a requisição do agendamento de vı́deo e imagem respec-

tivamente. No primeiro exemplo o servidor informa que a gravação de vı́deo deve iniciar no

dia 15/08/2013 às 05:00 e finalizar no mesmo dia às 05:15. Os valores seguintes se referem,

respectivamente, ao tamanho horizontal (1280), tamanho vertical (720), brilho (66), contraste

(26), saturação (-24), sharpness (52), efeito (pastel) e exposição (auto).

• Cliente envia: 7

• Servidor responde: 7 15/08/2013 05:00 15/08/2013 05:15 1280 720 66 26 -24 52 pastel auto

Para o exemplo de imagem o servidor informa que a captura das imagens deve iniciar no

dia 20/10/2013 às 03:00 e finalizar no mesmo dia às 06:00 com um intervalo de 5 minutos entre

cada imagem. Os valores seguintes se referem, respectivamente, ao tamanho horizontal (1920),

tamanho vertical (1080), qualidade (100), brilho (66), contraste (40), saturação (18), sharpness

(36), efeito (none) e exposição (auto).

• Cliente envia: 10

• Servidor responde: 10 20/10/2013 03:00 20/10/2013 06:00 5 1920 1080 100 66 40 18 36 none

auto

A requisição ”MSG WHAT CAMERA PICTURE TAKEPICTURE”é utilizada para captura

de imagem. A mensagem enviada pelo cliente tem o seguinte formato:

8 parametros[...]

O servidor retorna um echo da mensagem recebida. No exemplo a seguir o cliente deseja

a captura de uma imagem com os seguintes parâmetros: ao tamanho horizontal (720), tamanho

vertical (480), qualidade (100), brilho (43), contraste (36), saturação (-38), sharpness (60),

efeito (pastel) e exposição (auto).

40

• Cliente envia: 8 720 480 100 43 36 -38 60 pastel auto

• Servidor responde: 8 720 480 100 43 36 -38 60 pastel auto

Requisições dos Arquivos

Existem cinco requisições ligadas aos arquivos:

public static final int MSG_WHAT_FILES_PICTURES_FILELIST = 11;

public static final int MSG_WHAT_FILES_PICTURES_DOWNLOAD = 12;

public static final int MSG_WHAT_FILES_VIDEOS_FILELIST = 13;

public static final int MSG_WHAT_FILES_VIDEOS_DOWNLOAD = 14;

public static final int MSG_WHAT_FILES_VIDEOS_CONVERT = 15;

As requisições ”MSG WHAT FILES PICTURES FILELIST” e ”MSG WHAT FILES VI-

DEOS FILELIST” são utilizadas para se obter os arquivos disponı́veis no servidor. A mensagem

enviada pelo cliente consiste apenas o valor 11 para imagem ou 13 para vı́deo.

O servidor responde a quantidade de arquivos, o nome do arquivo, a última data de

modificação e o tamanho em bytes. O padrão que o servidor utiliza é o seguinte:

11 quantidade_de_arquivos nome @ ultima_data_modificacao @ tamanho

13 quantidade_de_arquivos nome @ ultima_data_modificacao @ tamanho

Observação: no Java, a data da última modificação é um valor em milisegundos desde a

data 1 de janeiro de 1970, 00:00:00 GMT, esse valor é convertido no cliente para o formato

dd/mm/aaaa.

No exemplo a seguir o servidor informa que existe apenas 1 arquivo de imagem se-

guido pelo campo com suas informações. Desse campo são obtidos o nome do arquivo: pic-

ture 04 10 2013 11 06 23.jpg, a última data de modificação: 1380895585000 milisegundos

(04/10/2013 14:06) e tamanho: 233.955 bytes.

• Cliente envia: 11

• Servidor responde: 11 1 picture 04 10 2013 11 06 23.jpg@1380895585000@233955

41

O exemplo a seguir representa a requisição para os arquivos de vı́deo. O servidor informa

que existem 2 arquivos seguidos de suas informações.

• Cliente envia: 13

• Servidor responde: 13 2 videos 04 10 2013 11 55 15.h264@1381158272000@248683

videos 07 10 2013 14 12 08.mp4@1381174783000@20377408

As requisições ”MSG WHAT FILES PICTURES DOWNLOAD” e ”MSG WHAT FILES VI-

DEOS DOWNLOAD” são bem semelhantes, ambas são utilizadas quando o cliente requisita o

download de um arquivo. A mensagem enviada pelo cliente tem o seguinte formato:

12 nome_do_arquivo

14 nome_do_arquivo

O servidor retorna um echo da mensagem recebida. Os exemplos a seguir ilustram a

comunicação para download de uma imagem e de um vı́deo.

• Cliente envia: 12 picture 04 10 2013 11 06 23.jpg

• Servidor responde: 12 picture 04 10 2013 11 06 23.jpg

• Cliente envia: 14 videos 04 10 2013 11 55 15.mp4

• Servidor responde: 14 videos 04 10 2013 11 55 15.mp4

Por fim, a requisição ”MSG WHAT FILES VIDEOS CONVERT” é para converter arquivos

de vı́deo do formato H264 para o formato MP4. A mensagem enviada pelo cliente tem o

seguinte formato:

15 nome_do_arquivo

O servidor retorna o nome do vı́deo, a data da última modificação e o tamanho em bytes no

seguinte formato:

15 nome_do_arquivo @ ultima_data_modificacao @ tamanho

42

O exemplo a seguir ilustra a conversão de um arquivo.

• Cliente envia: 15 videos 04 10 2013 11 55 15.h264

• Servidor responde: 15 videos 04 10 2013 11 55 15.mp4@1382317532000@498970

43

4 Resultados e Discussões

4.1 Resultados Obtidos

Este projeto resultou em uma Raspberry Pi atuando como servidor que, conectado a inter-

net, permite ao usuário o controle de todos os seus pinos GPIO, o uso de algumas funções rela-

cionadas a câmera e o acesso, download e visualização dos arquivos geradas por estas funções.

Tudo isso feito remotamente através de um smartphone.

O Apêndice A apresenta algumas imagens capturadas na versão final do projeto com dife-

rentes parâmetros.

Apesar de contar com um grande número de threads e de constantes verificações a arquivos,

o servidor não apresentou atrasos para a execução e resposta das requisições. A utilização da

cpu atingiu picos de vinte por cento durante uso intenso, exceto durante a conversão do vı́deo,

que o uso da cpu é o máximo possı́vel.

Resultou também em um aplicativo para smartphone Android, que possibilita a

comunicação com o servidor e o acesso as funções disponibilizadas através da internet.

Nos smartphones testados, o aplicativo apresentou uma utilização fluida, respondendo

rápido aos comandos do usuário, sem travamentos ou crashs inesperados. O fator negativo

foi em relação a execução de vı́deos H264, que é prejudicada em alguns smartphones de baixo

custo. A solução foi a adoção de vı́deos no formato MP4.

Para a comunicação, os principais testes foram realizados em rede local, assim a influência

de possı́veis atrasos pela variação da internet foram descartados.

Os testes mostraram que ambos os softwares trocam mensagens praticamente de forma

instantânea. A comunicação se mostrou estável, sem perdas de mensagem ou de conexão.

O desempenho das funções de arquivo pode ser visto na tabela 4.1 que exibe os tempos

necessários para conversão e download de dois arquivos de vı́deo com tamanhos diferentes.

44

Tabela 4.1: Tempo para conversão e download de arquivos de vı́deo
Tamanho do Arquivo Tempo para conversão Tempo para download
20.4 MB 25 segundos 15 segundos
63.4 MB 70 segundos 58 segundos

Em relação a porta GPIO, não houve o uso de nenhum atuador especı́fico. Seu uso pode

ser vasto, cabendo ao usuário a escolha. No projeto existem leds nos pinos GPIO para ilustrar

o possı́vel agendamento e controle dos teóricos atuadores.

Os demais pinos de comunicação oferecidos pela Raspberry Pi permanecem intactos, po-

dendo ser utilizados sem interferência alguma do projeto.

4.2 Dificuldades e Limitações

A dificuldade inicial foi em relação ao PWM, desde a pesquisa das diferentes formas de

geração da onda até a utilização.

A maioria das informações e projetos disponibilizados para PWM são criados por usuários,

sendo alguns incompletos ou mal documentados.

A utilização esbarrou na limitação que os módulos geradores de PWM criam: a in-

fluência/interferência nas demais portas. Com isso é reduzido o número de projetos que podem

ser desenvolvido com a utilização desses módulos.

Outra dificuldade foi no ajuste das threads que realizam a verificação do agendamento dos

pinos GPIO junto aos arquivos XML.

A solução para que essa verificação não ficasse lenta foi a criação de uma thread e um ar-

quivo XML para cada GPIO, desse modo, os oito pinos são verificados em paralelo e funcionam

individualmente. A utilização de um único arquivo XML não é interessante pois limita o acesso

a diferentes pinos no mesmo intervalo de tempo, pois a utilização de qualquer pino bloquearia

o acesso aos demais durante o intervalo de tempo que este é utilizado.

Em um trabalho futuro que se deseja utilizar PWM na Raspberry Pi é altamente recomen-

dado o uso de alguma outra comunicação para sua geração, como por exemplo o uso de I2C ou

a utilização da saı́da de áudio com uma pequena alteração no hardware da placa, colocando em

curto o capacitor de acoplamento.

45

5 Conclusões

Neste trabalho foram desenvolvidas duas aplicações para duas plataformas distintas, a

Raspberry Pi e smartphones Android, que permitiram um bom envolvimento com a área de

comunicação utilizando sockets, com liberdade total de criação, partindo do projeto do proto-

colo de comunicação até a sua implementação e uso.

Permitiu também o aprofundamento na programação para sistemas Android, dado a

construção total do aplicativo, desde a escolha das ilustrações utilizadas até a programação

dos sockets e das threads.

Comparando os resultados com os objetivos iniciais propostos pode-se notar algumas

alterações:

• O controle de posicionamento da câmera foi excluı́do para não alterar o funcionamento

dos pinos de comunicação oferecidos pela Raspberry Pi e viabilizar o uso da câmera.

• O streaming não pode ser exibido diretamente no aplicativo, porém, seu uso se tornou

viável em computadores pessoais com o uso do programa VLC.

• A melhoria no uso da câmera, com a possibilidade de alteração de diversos parâmetros

de imagem.

• Maior elaboração no acesso aos arquivos, permitindo conversão de vı́deos e download de

todos arquivos gerados.

A utilização da Raspberry Pi confirmou-se uma escolha correta, pois, considerando todas

as caracterı́sticas que ela oferece, constitui uma plataforma economicamente viável para entu-

siastas e amantes de sistemas embarcados, que conta com um grande grupo ativo de usuários,

com diferentes projetos surgindo todo os dias pelos fóruns de discussão.

Apesar de Java não ser a linguagem mais recomendada para sistemas embarcados, por não

se preocupar com o uso de memória, o servidor não apresentou problemas de performance. Seu

46

desempenho foi suficiente para a implementação do sistema proposto, havendo possibilidade de

futuras expansões.

O Android por sua vez demonstrou ser uma excelente plataforma para criação de aplicativos

móveis.

Existem diversos pacotes para as mais variadas funções desejadas e conta com uma infini-

dade de desenvolvedores em diversos fóruns que participam ativamente na criação de tutoriais

e na solução de problemas, além da boa documentação oferecida pelo Google.

Em geral, tanto servidor como cliente apresentaram o funcionamento de todas as funções

implementadas sem qualquer tipo de travamento ou lentidão, oferecendo o resultado projetado

de cada função.

5.1 Relacionamento entre o Curso e o Projeto

A realização desse projeto possibilitou a utilização de conceitos, ferramentas e técnicas

aprendidas durante o curso de Engenharia de Computação para a formação do sistema final.

Os conhecimentos adquiridos em disciplinas de programação, redes de computadores, sis-

temas embarcados, multimı́dia e hipermı́dia, circuitos elétricos e circuitos eletrônicos foram

fundamentais para a realização deste projeto, permitindo realizar tarefas de forma mais rápida

e prática.

Realizar a integração de tecnologias diversas e ajudar o desenvolvimento de novas e melho-

res tecnologias é parte do papel de engenheiro de computação e reflete o conhecimento obtido

durante o curso de graduação. O desenvolvimento deste projeto possibilitou a verificação de

uma ótima maneira de introduzir esse universo de conhecimento de maneira prática e funcio-

nal, agregando grande valor técnico, teórico e cientı́fico obtido com o desenvolvimento.

5.2 Trabalhos Futuros

Projetos futuros podem ser realizados expandindo o acesso ao servidor e a inserção de novas

funções.

A expansão do acesso pode ser feita através da criação de uma pagina web, permitindo que

qualquer computador tenha acesso as funções disponı́veis.

Para novas funções, pode-se incluir o movimento da câmera, com uso do protocolo I2C.

47

Existem pequenos dispositivos que permitem o controle de várias saı́das PWM através de I2C,

um exemplo é o Adafruit 16 Channel 12 bit PWM/Servo Driver PCA9685 que pemite até 16

sinais PWM a partir de um I2C.

Outra opção para expansão das funções é a inclusão de métodos de monitoramento,

sendo possı́vel ao cliente verificar algumas informações do servidor como temperatura, uptime,

latência da comunicação e quantidade de clientes conectados.

É possı́vel também a transformação do servidor em uma estação multimı́dia, já que a Rasp-

berry Pi é capaz de reproduzir vı́deos em alta resolução, permitindo seu controle através da

internet.

48

Referências Bibliográficas

[1] Adt plugin. Disponı́vel em: http://developer.android.com/tools/sdk/eclipse-adt.html.
Acesso em 24 Out. 2013. Citado na página 15.

[2] Arch linux arm. Disponı́vel em: http://archlinuxarm.org/. Acesso em 24 Out. 2013. Citado
na página 12.

[3] Ffmpeg. Disponı́vel em: http://www.ffmpeg.org. Acesso em 24 Out. 2013. Citado na
página 17.

[4] Motion, a software motion detector. Disponı́vel em:
http://www.lavrsen.dk/foswiki/bin/view/Motion/WebHome. Acesso em 24 Out. 2013.
Citado na página 16.

[5] Mp4box overview. Disponı́vel em: http://gpac.wp.mines-telecom.fr/mp4box/. Acesso em
24 Out. 2013. Citado na página 26.

[6] Real time streaming protocol (rtsp). Disponı́vel em:
http://tools.ietf.org/html/rfc2326:Acesso em 24 Out. 2013. Citado na página 17.

[7] High definition 1080p embedded multimedia applications processor, 2012. Disponı́vel
em: http://www.broadcom.com/products/BCM2835. Acesso em 24 Out. 2013. Citado na
página 10.

[8] Oficial faq raspberry pi, 2012. Disponı́vel em: http://www.raspberrypi.org/faqs. Acesso
em 24 Out. 2013. Citado nas páginas V, 10, 11, e 13.

[9] Raspberry pi os, 2012. Disponı́vel em: http://www.raspberrypi.org/downloads. Acesso em
24 Out. 2013. Citado na página 11.

[10] Raspberry pi quick start guide v1.2, 2012. Disponı́vel em: . Acesso em 24 Out. 2013.
Citado na página 10.

[11] Raspicam documentation, 2012. Disponı́vel em: http://www.raspberrypi.org/wp-
content/uploads/2013/07/RaspiCam-Documentation.pdf. Acesso em 24 Out. 2013. Ci-
tado na página 24.

[12] Site oficial raspberry pi, 2012. Disponı́vel em: http://www.raspberrypi.org/. Acesso em
24 Out. 2013. Citado na página 10.

[13] Getting started with android studio, 2013. Disponı́vel em:
http://developer.android.com/sdk/installing/studio.html. Acesso em 24 Out. 2013.
Citado na página 15.

49

[14] Mipi Alliance. Camera interface specifications, 2013. Disponı́vel em:
http://www.mipi.org/specifications/camera-interface. Acesso em 24 Out. 2013. Ci-
tado na página 12.

[15] Open Handset Alliance. Android overview. Disponı́vel em:
http://www.openhandsetalliance.com/android overview.html. Acesso em 24 Out.
2013. Citado na página 14.

[16] Open Handset Alliance. Industry leaders announce open platform for mobile devices,
2007. Disponı́vel em: http://www.openhandsetalliance.com/press 110507.html. Acesso
em 24 Out. 2013. Citado na página 14.

[17] Fernando Campanholli, Ana Alice Vilas Boas, AndrÃ c©ia de Souza Pereira, and Gerard
Fillion. Aplicabilidade e importancia do celular pro uso pessoal e profissional, 2013. Dis-
ponı́vel em: http://www.aedb.br/seget/artigos12/34816478.pdf. Acesso em 24 Out. 2013.
Citado na página 7.

[18] Eurodroid, 2013. Disponı́vel em: http://eurodroid.com/2012/09/26/google-celebrates-
25-billion-app-downloads-with-25-themed-sales/. Acesso em 24 Out. 2013. Citado nas
páginas V e 15.

[19] Saulo Pereira GuimarÃ£es. Brasil Ã c© o quarto paı́s do mundo em nÃomero de
smartphones, 2013. Disponı́vel em: http://exame.abril.com.br/tecnologia/noticias/brasil-
e-o-quarto-pais-do-mundo-em-numero-de-smartphones. Acesso em 24 Out. 2013. Citado
na página 7.

[20] Richard Hirst. Servoblaster, 2013. Disponı́vel em:
https://github.com/richardghirst/PiBits/tree/master/ServoBlaster. Acesso em 24 Out.
2013. Citado na página 18.

[21] Thom Holwerda. Raspberry pi to embrace risc os. Disponı́vel em:
http://www.osnews.com/story/25276/Raspberry Pi To Embrace RISC OS. Acesso
em 24 Out. 2013. Citado na página 12.

[22] Daniel Elias Machado Junho. Controle de robo movel embarcado, 2013. Citado na
página 8.

[23] Jackson Liam. Mjpg streamer. Disponı́vel em: https://github.com/jacksonliam/mjpg-
streamer. Acesso em 24 Out. 2013. Citado na página 16.

[24] Simon Monk. The gpio connector. Disponı́vel em: http://learn.adafruit.com/adafruits-
raspberry-pi-lesson-4-gpio-setup/the-gpio-connector. Acesso em 24 Out. 2013. Citado
nas páginas V, 13, e 14.

[25] SparkFun, 2013. Disponı́vel em: https://www.sparkfun.com/tutorials/304. Acesso em 24
Out. 2013. Citado nas páginas V e 17.

[26] Thomas. Piblaster, 2013. Disponı́vel em: https://github.com/sarfata/pi-blaster/. Acesso
em 24 Out. 2013. Citado na página 18.

[27] Brian Womack. Google says 700,000 applications available for android, 2013. Disponı́vel
em: http://www.businessweek.com/news/2012-10-29/google-says-700-000-applications-
available-for-android-devices. Acesso em 24 Out. 2013. Citado na página 14.

50

6 Apêndice A - Imagens capturadas com
diferentes parâmetros

Neste apêndice são apresentadas algumas figuras captadas a partir do projeto finalizado.

A tabela 6.1 exibe os parâmetros utilizado em cada uma das imagens. A figura 6.1 é a

imagem de referência, seus parâmetros são os padrões. As imagens seguintes a 6.1 tem apenas

um parâmetro alterado por vez.

Tabela 6.1: Parâmetros das imagens capturadas
Figura 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10
Resolução 1280x720 1280x720 1280x720 1280x720 1280x720 1280x720 1280x720 1280x720 1280x720 1280x720
Qualidade 100 100 100 100 100 100 100 100 100 100
Brilho 50 70 50 50 50 50 50 50 50 50
Contraste 0 0 100 0 0 0 0 0 0 0
Saturação 0 0 0 30 - 40 0 0 0 0 0
Sharpness 0 0 0 0 0 60 0 0 0 0
Efeito none none none none none none colorswap emboss negative none
Exposição auto auto auto auto auto auto auto auto auto off

Figura 6.1: Imagem capturada com os parâmetros padrões

51

Figura 6.2: Imagem capturada com 70 de brilho

Figura 6.3: Imagem capturada com 100 de contraste

52

Figura 6.4: Imagem capturada com 30 de saturacao

Figura 6.5: Imagem capturada com -40 de saturação

53

Figura 6.6: Imagem capturada com 60 de sharpness

Figura 6.7: Imagem capturada com efeito colorswap

54

Figura 6.8: Imagem capturada com efeito emboss

Figura 6.9: Imagem capturada com efeito negative

55

Figura 6.10: Imagem capturada com exposição off

56

7 Apêndice B - Código do Servidor

7.1 Server

7.1.1 Server.Java

public class Server {

public static void main(String argv[]) {

Pi4J.InitGpio();

Gpio0ScheduleThread gpioScheduleThread0 = new Gpio0ScheduleThread();

Gpio1ScheduleThread gpioScheduleThread1 = new Gpio1ScheduleThread();

Gpio2ScheduleThread gpioScheduleThread2 = new Gpio2ScheduleThread();

Gpio3ScheduleThread gpioScheduleThread3 = new Gpio3ScheduleThread();

Gpio4ScheduleThread gpioScheduleThread4 = new Gpio4ScheduleThread();

Gpio5ScheduleThread gpioScheduleThread5 = new Gpio5ScheduleThread();

Gpio6ScheduleThread gpioScheduleThread6 = new Gpio6ScheduleThread();

Gpio7ScheduleThread gpioScheduleThread7 = new Gpio7ScheduleThread();

gpioScheduleThread0.start("0");

gpioScheduleThread1.start("1");

gpioScheduleThread2.start("2");

gpioScheduleThread3.start("3");

gpioScheduleThread4.start("4");

gpioScheduleThread5.start("5");

gpioScheduleThread6.start("6");

gpioScheduleThread7.start("7");

CameraPictureScheduleThread.start();

CameraVideoScheduleThread.start();

waitForConnections(5555);

}

public static void waitForConnections(int serverPort) {

while (true) {

try {

ServerSocket serverSocket = new ServerSocket(serverPort);

Socket socket = null;

System.err.println("SimpleServer: Waiting connection.");

socket = serverSocket.accept();

System.err.println("SimpleServer: Accepted new socket.");

System.err.println("SimpleServer: Creating new handler.");

ServerHandler handler = new ServerHandler(socket);

handler.start();

serverSocket.close();

System.err.println("SimpleServer: Finished with socket.");

} catch (IOException e) {

e.printStackTrace(System.err);

}

57

}

}

}

7.1.2 ServerHandler.java
public class ServerHandler implements Runnable {

private Socket socket = null;

private InputStream inputSocket = null;

private OutputStream outputSocket = null;

private Thread acceptThread = null;

public static final int MSG_WHAT_PWM = 0;

public static final int MSG_WHAT_GPIO = 1;

public static final int MSG_WHAT_GPIO_PROGRAMMATION = 2;

public static final int MSG_WHAT_GPIO_PROGRAMMATIONREQUEST = 3;

public static final int MSG_WHAT_CAMERA_VIDEO_REALTIME = 4;

public static final int MSG_WHAT_CAMERA_VIDEO_REALTIMESTATUS = 5;

public static final int MSG_WHAT_CAMERA_VIDEO_PROGRAMMATION = 6;

public static final int MSG_WHAT_CAMERA_VIDEO_PROGRAMMATIONREQUEST = 7;

public static final int MSG_WHAT_CAMERA_PICTURE_TAKEPICTURE = 8;

public static final int MSG_WHAT_CAMERA_PICTURE_PROGRAMMATION = 9;

public static final int MSG_WHAT_CAMERA_PICTURE_PROGRAMMATIONREQUEST = 10;

public static final int MSG_WHAT_FILES_PICTURES_FILELIST = 11;

public static final int MSG_WHAT_FILES_PICTURES_DOWNLOAD = 12;

public static final int MSG_WHAT_FILES_VIDEOS_FILELIST = 13;

public static final int MSG_WHAT_FILES_VIDEOS_DOWNLOAD = 14;

public static final int MSG_WHAT_FILES_VIDEOS_CONVERT = 15;

public ServerHandler(Socket socket) throws IOException {

this.socket = socket;

this.inputSocket = socket.getInputStream();

this.outputSocket = socket.getOutputStream();

this.acceptThread = new Thread(this);

System.out.println("SimpleHandler: New handler created.");

}

public void start() {

acceptThread.start();

}

// All this method does is wait for some bytes from the

// connection, read them, then write them back again, until the

// socket is closed from the other side.

public void run() {

System.out.println("SimpleHandler: Handler run() starting.");

while (true) {

byte[] buf = new byte[1024];

int bytes_read = 0;

try {

// This call to read() will wait forever, until the

// program on the other side either sends some data,

// or closes the socket.

bytes_read = inputSocket.read(buf, 0, buf.length);

if (bytes_read < 0) {

System.out.println("SimpleHandler: Tried to read from socket, read() returned < 0, Closing socket.");

break;

}

System.out.println("SimpleHandler: Received: " + (new String(buf, 0, bytes_read)));

String input = (new String(buf, 0, bytes_read));

handleMessage(input);

58

System.out.println("SimpleHandler: Sending to client: " + (new String(buf, 0, bytes_read)));

outputSocket.write(buf, 0, bytes_read);

outputSocket.flush();

} catch (Exception e) {

e.printStackTrace(System.err);

break;

}

}

try {

System.out.println("SimpleHandler: Closing socket.");

socket.close();

} catch (Exception e) {

System.out.println("SimpleHandler: Exception while closing socket, e = " + e);

e.printStackTrace(System.err);

}

}

private void handleMessage(String input) {

String[] inputMessage = input.replace("\n", "").replace("\r", "").split(" ");

int what = Integer.valueOf(inputMessage[0].replace(" ", ""));

int channelNumber;

double value;

switch (what) {

case MSG_WHAT_PWM:

// channelNumber = Integer.valueOf(inputMessage[1].replace(" ", ""));

// value = Double.valueOf(inputMessage[2].replace(" ", ""));

break;

case MSG_WHAT_GPIO:

channelNumber = Integer.valueOf(inputMessage[1].replace(" ", ""));

value = Double.valueOf(inputMessage[2].replace(" ", ""));

if (value == 0) {

Pi4J.getGpioPinDigitalOutput(Integer.valueOf(channelNumber)).setState(PinState.LOW);

GpioScheduleHandler.writeXmlDataGpioState(String.valueOf(channelNumber), "0.0");

} else if (value == 1) {

Pi4J.getGpioPinDigitalOutput(Integer.valueOf(channelNumber)).setState(PinState.HIGH);

GpioScheduleHandler.writeXmlDataGpioState(String.valueOf(channelNumber), "1.0");

}

break;

case MSG_WHAT_GPIO_PROGRAMMATION:

channelNumber = Integer.valueOf(inputMessage[1].replace(" ", ""));

value = Double.valueOf(inputMessage[2].replace(" ", ""));

String startDate = inputMessage[3].replace(" ", "");

String startHour = inputMessage[4].replace(" ", "");

String endDate = inputMessage[5].replace(" ", "");

String endHour = inputMessage[6].replace(" ", "");

GpioScheduleHandler.writeXmlData(String.valueOf(channelNumber), String.valueOf(value), startDate, startHour, endDate, endHour);

break;

case MSG_WHAT_GPIO_PROGRAMMATIONREQUEST:

channelNumber = Integer.valueOf(inputMessage[1].replace(" ", ""));

try {

if (outputSocket != null) {

ArrayList<String> xmlData = GpioScheduleHandler.getXmlData(String.valueOf(channelNumber));

String gpioProgrammationMessage = MSG_WHAT_GPIO_PROGRAMMATIONREQUEST + " " + xmlData.get(1) + " " + xmlData.get(2) + " "

+ xmlData.get(3) + " " + xmlData.get(4) + " " + xmlData.get(5) + " ";

System.out.println("SimpleHandler: Sending to client (PROGRAMATIONREQUEST): " + gpioProgrammationMessage);

outputSocket.write(gpioProgrammationMessage.getBytes(Charset.forName("UTF-8")));

outputSocket.flush();

}

} catch (NumberFormatException e) {

59

e.printStackTrace();

} catch (IOException e) {

e.printStackTrace();

}

break;

case MSG_WHAT_CAMERA_VIDEO_REALTIME:

if (inputMessage[1].equalsIgnoreCase("1"))

CameraVideoRealTimeThread.start();

else

CameraVideoRealTimeThread.end();

break;

case MSG_WHAT_CAMERA_VIDEO_REALTIMESTATUS:

try {

if (outputSocket != null) {

String realtimeResponse;

if (CameraVideoRealTimeThread.isStreaming)

realtimeResponse = MSG_WHAT_CAMERA_VIDEO_REALTIMESTATUS + " " + 1 + " ";

else

realtimeResponse = MSG_WHAT_CAMERA_VIDEO_REALTIMESTATUS + " " + 0 + " ";

System.out.println("SimpleHandler: Sending to client (PROGRAMATIONREQUEST): " + realtimeResponse);

outputSocket.write(realtimeResponse.getBytes(Charset.forName("UTF-8")));

outputSocket.flush();

}

} catch (NumberFormatException e) {

e.printStackTrace();

} catch (IOException e) {

e.printStackTrace();

}

break;

case MSG_WHAT_CAMERA_VIDEO_PROGRAMMATION:

CameraVideoScheduleHandler.writeXmlData(inputMessage[1].replace(" ", ""), inputMessage[2].replace(" ", ""),

inputMessage[3].replace(" ", ""), inputMessage[4].replace(" ", ""), inputMessage[5].replace(" ", ""),

inputMessage[6].replace(" ", ""), inputMessage[7].replace(" ", ""), inputMessage[8].replace(" ", ""),

inputMessage[9].replace(" ", ""), inputMessage[10].replace(" ", ""), inputMessage[11].replace(" ", ""),

inputMessage[12].replace(" ", ""));

break;

case MSG_WHAT_CAMERA_VIDEO_PROGRAMMATIONREQUEST:

try {

if (outputSocket != null) {

ArrayList<String> xmlData = CameraVideoScheduleHandler.getXmlData();

String videoProgrammationMessage = MSG_WHAT_CAMERA_VIDEO_PROGRAMMATIONREQUEST + " " + xmlData.get(0) + " " + xmlData.get(1)

+ " " + xmlData.get(2) + " " + xmlData.get(3) + " " + xmlData.get(4) + " " + xmlData.get(5) + " " + xmlData.get(6)

+ " " + xmlData.get(7) + " " + xmlData.get(8) + " " + xmlData.get(9) + " " + xmlData.get(10) + " " + xmlData.get(11)

+ " ";

System.out.println("SimpleHandler: Sending to client (PROGRAMATIONREQUEST): " + videoProgrammationMessage);

outputSocket.write(videoProgrammationMessage.getBytes(Charset.forName("UTF-8")));

outputSocket.flush();

}

} catch (NumberFormatException e) {

e.printStackTrace();

} catch (IOException e) {

e.printStackTrace();

}

break;

case MSG_WHAT_CAMERA_PICTURE_TAKEPICTURE:

CameraPictureTakeThread.start(input);

break;

case MSG_WHAT_CAMERA_PICTURE_PROGRAMMATION:

CameraPictureScheduleHandler.writeXmlData(inputMessage[1].replace(" ", ""), inputMessage[2].replace(" ", ""),

inputMessage[3].replace(" ", ""), inputMessage[4].replace(" ", ""), inputMessage[5].replace(" ", ""),

inputMessage[6].replace(" ", ""), inputMessage[7].replace(" ", ""), inputMessage[8].replace(" ", ""),

inputMessage[9].replace(" ", ""), inputMessage[10].replace(" ", ""), inputMessage[11].replace(" ", ""),

inputMessage[12].replace(" ", ""), inputMessage[13].replace(" ", ""), inputMessage[14].replace(" ", ""));

60

break;

case MSG_WHAT_CAMERA_PICTURE_PROGRAMMATIONREQUEST:

try {

if (outputSocket != null) {

ArrayList<String> xmlData = CameraPictureScheduleHandler.getXmlData();

//STARTDATE STARTHOUR ENDDATE ENDHOUR INTERVAL SIZEW SIZEH QUALITY BRIGHTNESS CONTRAST SATURATION SHARPNESS EFFECT EXPOSURE

String pictureProgrammationMessage = MSG_WHAT_CAMERA_PICTURE_PROGRAMMATIONREQUEST + " " + xmlData.get(0) + " "

+ xmlData.get(1) + " " + xmlData.get(2) + " " + xmlData.get(3) + " " + xmlData.get(4) + " " + xmlData.get(5) + " "

+ xmlData.get(6) + " " + xmlData.get(7) + " " + xmlData.get(8) + " " + xmlData.get(9) + " " + xmlData.get(10) + " "

+ xmlData.get(11) + " " + xmlData.get(12) + " " + xmlData.get(13) + " ";

System.out.println("SimpleHandler: Sending to client (PROGRAMATIONREQUEST): " + pictureProgrammationMessage);

outputSocket.write(pictureProgrammationMessage.getBytes(Charset.forName("UTF-8")));

outputSocket.flush();

}

} catch (NumberFormatException e) {

e.printStackTrace();

} catch (IOException e) {

e.printStackTrace();

}

break;

case MSG_WHAT_FILES_PICTURES_FILELIST:

File picturesFolder = new File("/home/pi/tcc/server/pictures");

File[] listOfPictures = picturesFolder.listFiles();

String picturesListMessage = "";

int numPictures = 0;

ArrayList<String> pictureList = new ArrayList<>();

for (int i = 0; i < listOfPictures.length; i++) {

if (listOfPictures[i].isFile()) {

pictureList.add(listOfPictures[i].getName() + "@" + listOfPictures[i].lastModified() + "@" + listOfPictures[i].length());

numPictures++;

}

}

Collections.sort(pictureList);

for (int i = 0; i < pictureList.size(); i++)

picturesListMessage = picturesListMessage + pictureList.get(i) + " ";

picturesListMessage = MSG_WHAT_FILES_PICTURES_FILELIST + " " + numPictures + " " + picturesListMessage;

try {

if (outputSocket != null) {

System.out.println("SimpleHandler: Sending to client (FILELIST): " + picturesListMessage);

outputSocket.write(picturesListMessage.getBytes(Charset.forName("UTF-8")));

outputSocket.flush();

}

} catch (IOException e) {

e.printStackTrace();

}

break;

case MSG_WHAT_FILES_PICTURES_DOWNLOAD:

FilePicturesTransferThread.start(inputMessage[1]);

break;

case MSG_WHAT_FILES_VIDEOS_FILELIST:

File videoFolder = new File("/home/pi/tcc/server/videos");

File[] listOfVideos = videoFolder.listFiles();

String videoListMessage = "";

int numVideos = 0;

ArrayList<String> videoList = new ArrayList<>();

for (int i = 0; i < listOfVideos.length; i++) {

if (listOfVideos[i].isFile()) {

videoList.add(listOfVideos[i].getName() + "@" + listOfVideos[i].lastModified() + "@" + listOfVideos[i].length());

numVideos++;

61

}

}

Collections.sort(videoList);

for (int i = 0; i < videoList.size(); i++)

videoListMessage = videoListMessage + videoList.get(i) + " ";

videoListMessage = MSG_WHAT_FILES_VIDEOS_FILELIST + " " + numVideos + " " + videoListMessage;

try {

if (outputSocket != null) {

System.out.println("SimpleHandler: Sending to client (FILELIST): " + videoListMessage);

outputSocket.write(videoListMessage.getBytes(Charset.forName("UTF-8")));

outputSocket.flush();

}

} catch (IOException e) {

e.printStackTrace();

}

break;

case MSG_WHAT_FILES_VIDEOS_DOWNLOAD:

FileVideosTransferThread.start(inputMessage[1]);

break;

case MSG_WHAT_FILES_VIDEOS_CONVERT:

String message;

Process p = null;

try {

p = Runtime.getRuntime().exec(

"MP4Box -add " + "/home/pi/tcc/server/videos/" + inputMessage[1] + " " + "/home/pi/tcc/server/videos/"

+ inputMessage[1].replace("h264", "mp4"));

p.waitFor();

File convertedFile = new File("/home/pi/tcc/server/videos/" + inputMessage[1].replace("h264", "mp4"));

message = MSG_WHAT_FILES_VIDEOS_CONVERT + " " + convertedFile.getName() + "@" + convertedFile.lastModified() + "@"

+ convertedFile.length() + " ";

if (outputSocket != null) {

System.out.println("SimpleHandler: Sending to client (FILELIST): " + message);

outputSocket.write(message.getBytes(Charset.forName("UTF-8")));

outputSocket.flush();

}

} catch (IOException | InterruptedException e) {

e.printStackTrace();

} finally {

p.destroy();

}

break;

default:

break;

}

}

}

7.2 GPIO

7.2.1 Gpio0ScheduleThread.java
public class Gpio0ScheduleThread implements Runnable {

private int TIME_BETWEEN_CHECKS = 10000;

private static String channelNumber;

public void start(String channel) {

channelNumber = channel;

(new Thread(new Gpio0ScheduleThread())).start();

}

62

public void run() {

boolean flagStart = false;

boolean flagEnd = false;

ArrayList<String> xmlData;

Date current;

Date start;

Date end;

try {

while (true) {

while (!flagStart) {

xmlData = GpioScheduleHandler.getXmlData(channelNumber);

current = getCurrentDate();

start = getStartDate(xmlData);

end = getEndDate(xmlData);

if (current.compareTo(start) >= 0 && current.compareTo(end) < 0) {

System.out.println(channelNumber + ": START");

flagStart = true;

Pi4J.getGpioPinDigitalOutput(Integer.valueOf(channelNumber)).setState(PinState.HIGH);

GpioScheduleHandler.writeXmlDataGpioState(channelNumber, "1.0");

} else {

Thread.sleep(TIME_BETWEEN_CHECKS);

}

}

flagStart = false;

while (!flagEnd) {

xmlData = GpioScheduleHandler.getXmlData(channelNumber);

current = getCurrentDate();

start = getStartDate(xmlData);

end = getEndDate(xmlData);

if (current.compareTo(end) >= 0) {

System.out.println(channelNumber + ": END");

flagEnd = true;

Pi4J.getGpioPinDigitalOutput(Integer.valueOf(channelNumber)).setState(PinState.LOW);

GpioScheduleHandler.writeXmlDataGpioState(channelNumber, "0.0");

} else {

Thread.sleep(TIME_BETWEEN_CHECKS);

}

}

flagEnd = false;

}

} catch (InterruptedException e) {

e.printStackTrace();

}

}

private Date getCurrentDate() {

try {

Date date = new Date();

Calendar calendar = GregorianCalendar.getInstance();

calendar.setTime(date);

return new SimpleDateFormat("dd/MM/yyyy HH:mm", Locale.ENGLISH).parse(calendar.get(Calendar.DAY_OF_MONTH) + "/"

+ (calendar.get(Calendar.MONTH) + 1) + "/" + calendar.get(Calendar.YEAR) + " " + calendar.get(Calendar.HOUR_OF_DAY) + ":"

+ calendar.get(Calendar.MINUTE));

} catch (ParseException e) {

e.printStackTrace();

}

return null;

}

private Date getStartDate(ArrayList<String> xmlData) {

try {

return new SimpleDateFormat("dd/MM/yyyy HH:mm", Locale.ENGLISH).parse(xmlData.get(2) + " " + xmlData.get(3));

63

} catch (ParseException e) {

e.printStackTrace();

}

return null;

}

private Date getEndDate(ArrayList<String> xmlData) {

try {

return new SimpleDateFormat("dd/MM/yyyy HH:mm", Locale.ENGLISH).parse(xmlData.get(4) + " " + xmlData.get(5));

} catch (ParseException e) {

e.printStackTrace();

}

return null;

}

}

7.2.2 GpioScheduleHandler.java
public class GpioScheduleHandler {

private static final String GPIO_SCHEDULE_DIR = "/home/pi/tcc/server/gpioSchedule/";

private static final String GPIO = "gpio";

private static final String TAGNAME_STATE = "state";

private static final String TAGNAME_STARTDATE = "startdate";

private static final String TAGNAME_STARTHOUR = "starthour";

private static final String TAGNAME_ENDDATE = "enddate";

private static final String TAGNAME_ENDHOUR = "endhour";

public static boolean writeXmlData(String channelNumber, String state, String startdate, String starthour, String enddate, String endhour) {

try {

DocumentBuilderFactory documentBuilderFactory = DocumentBuilderFactory.newInstance();

DocumentBuilder documentBuilder = documentBuilderFactory.newDocumentBuilder();

Document document = documentBuilder.parse(GPIO_SCHEDULE_DIR + "gpio" + channelNumber + "Schedule.xml");

Node nodeGpio = document.getElementsByTagName(GPIO + channelNumber).item(0);

NodeList nodeList = nodeGpio.getChildNodes();

for (int i = 0; i < nodeList.getLength(); i++) {

Node node = nodeList.item(i);

if (node.getNodeName().equalsIgnoreCase(TAGNAME_STATE))

node.setTextContent(state);

if (node.getNodeName().equalsIgnoreCase(TAGNAME_STARTDATE))

node.setTextContent(startdate);

if (node.getNodeName().equalsIgnoreCase(TAGNAME_STARTHOUR))

node.setTextContent(starthour);

if (node.getNodeName().equalsIgnoreCase(TAGNAME_ENDDATE))

node.setTextContent(enddate);

if (node.getNodeName().equalsIgnoreCase(TAGNAME_ENDHOUR))

node.setTextContent(endhour);

}

TransformerFactory transformerFactory = TransformerFactory.newInstance();

Transformer transformer = transformerFactory.newTransformer();

DOMSource domSource = new DOMSource(document);

StreamResult streamResult = new StreamResult(new File(GPIO_SCHEDULE_DIR + "gpio" + channelNumber + "Schedule.xml"));

transformer.transform(domSource, streamResult);

return true;

} catch (ParserConfigurationException pce) {

pce.printStackTrace();

} catch (TransformerException tfe) {

tfe.printStackTrace();

} catch (IOException ioe) {

64

ioe.printStackTrace();

} catch (SAXException sae) {

sae.printStackTrace();

}

return false;

}

public static boolean writeXmlDataGpioState(String channelNumber, String state) {

try {

DocumentBuilderFactory documentBuilderFactory = DocumentBuilderFactory.newInstance();

DocumentBuilder documentBuilder = documentBuilderFactory.newDocumentBuilder();

Document document = documentBuilder.parse(GPIO_SCHEDULE_DIR + "gpio" + channelNumber + "Schedule.xml");

Node nodeGpio = document.getElementsByTagName(GPIO + channelNumber).item(0);

NodeList nodeList = nodeGpio.getChildNodes();

for (int i = 0; i < nodeList.getLength(); i++) {

Node node = nodeList.item(i);

if (node.getNodeName().equalsIgnoreCase(TAGNAME_STATE))

node.setTextContent(state);

}

TransformerFactory transformerFactory = TransformerFactory.newInstance();

Transformer transformer = transformerFactory.newTransformer();

DOMSource domSource = new DOMSource(document);

StreamResult streamResult = new StreamResult(new File(GPIO_SCHEDULE_DIR + "gpio" + channelNumber + "Schedule.xml"));

transformer.transform(domSource, streamResult);

return true;

} catch (ParserConfigurationException pce) {

pce.printStackTrace();

} catch (TransformerException tfe) {

tfe.printStackTrace();

} catch (IOException ioe) {

ioe.printStackTrace();

} catch (SAXException sae) {

sae.printStackTrace();

}

return false;

}

/* Return: CHANNELNUMBER, STATE, STARTDATE, STARTHOUR, ENDDATE, ENDHOUR */

public static ArrayList<String> getXmlData(String channelNumber) {

ArrayList<String> xmlData = new ArrayList<String>();

try {

File xmlFile = new File(GPIO_SCHEDULE_DIR + "gpio" + channelNumber + "Schedule.xml");

DocumentBuilderFactory documentBuilderFactory = DocumentBuilderFactory.newInstance();

DocumentBuilder documentBuilder = documentBuilderFactory.newDocumentBuilder();

Document document = documentBuilder.parse(xmlFile);

document.getDocumentElement().normalize();

NodeList nodeList = document.getElementsByTagName(GPIO + channelNumber);

for (int i = 0; i < nodeList.getLength(); i++) {

Node node = nodeList.item(i);

if (node.getNodeType() == Node.ELEMENT_NODE) {

Element element = (Element) node;

xmlData.add(channelNumber);

xmlData.add(element.getElementsByTagName(TAGNAME_STATE).item(0).getTextContent());

xmlData.add(element.getElementsByTagName(TAGNAME_STARTDATE).item(0).getTextContent());

xmlData.add(element.getElementsByTagName(TAGNAME_STARTHOUR).item(0).getTextContent());

xmlData.add(element.getElementsByTagName(TAGNAME_ENDDATE).item(0).getTextContent());

xmlData.add(element.getElementsByTagName(TAGNAME_ENDHOUR).item(0).getTextContent());

}

}

65

} catch (Exception e) {

e.printStackTrace();

}

return xmlData;

}

}

7.2.3 Pi4J
public class Pi4J {

static GpioPinDigitalOutput myGpio0;

static GpioPinDigitalOutput myGpio1;

static GpioPinDigitalOutput myGpio2;

static GpioPinDigitalOutput myGpio3;

static GpioPinDigitalOutput myGpio4;

static GpioPinDigitalOutput myGpio5;

static GpioPinDigitalOutput myGpio6;

static GpioPinDigitalOutput myGpio7;

public static boolean InitGpio() {

try {

GpioController gpio = GpioFactory.getInstance();

myGpio0 = gpio.provisionDigitalOutputPin(RaspiPin.GPIO_00, "MyLED0", PinState.LOW);

myGpio1 = gpio.provisionDigitalOutputPin(RaspiPin.GPIO_01, "MyLED1", PinState.LOW);

myGpio2 = gpio.provisionDigitalOutputPin(RaspiPin.GPIO_02, "MyLED2", PinState.LOW);

myGpio3 = gpio.provisionDigitalOutputPin(RaspiPin.GPIO_03, "MyLED3", PinState.LOW);

myGpio4 = gpio.provisionDigitalOutputPin(RaspiPin.GPIO_04, "MyLED4", PinState.LOW);

myGpio5 = gpio.provisionDigitalOutputPin(RaspiPin.GPIO_05, "MyLED5", PinState.LOW);

myGpio6 = gpio.provisionDigitalOutputPin(RaspiPin.GPIO_06, "MyLED6", PinState.LOW);

myGpio7 = gpio.provisionDigitalOutputPin(RaspiPin.GPIO_07, "MyLED7", PinState.LOW);

return true;

} catch (Exception e) {

return false;

}

}

public static GpioPinDigitalOutput getGpioPinDigitalOutput(int pinNumber) {

switch (pinNumber) {

case 0:

return myGpio0;

case 1:

return myGpio1;

case 2:

return myGpio2;

case 3:

return myGpio3;

case 4:

return myGpio4;

case 5:

return myGpio5;

case 6:

return myGpio6;

case 7:

return myGpio7;

default:

return null;

}

}

}

7.3 Câmera - Imagem

7.3.1 CameraPictureScheduleThread.java
public class CameraPictureScheduleThread implements Runnable {

66

private int TIME_BETWEEN_CHECKS = 10000;

public static void start() {

(new Thread(new CameraPictureScheduleThread())).start();

}

public void run() {

ArrayList<String> xmlData = CameraPictureScheduleHandler.getXmlData();

Calendar c = Calendar.getInstance();

Date current = getCurrentDate();

Date start = getStartDate(xmlData);

Date end = getEndDate(xmlData);

Date pictureDate = start;

int interval = Integer.parseInt(xmlData.get(4));

int numPictures = 0;

while (true) {

xmlData = CameraPictureScheduleHandler.getXmlData();

current = getCurrentDate();

start = getStartDate(xmlData);

end = getEndDate(xmlData);

pictureDate = start;

interval = Integer.parseInt(xmlData.get(4));

c.setTime(pictureDate);

c.add(Calendar.MINUTE, interval * numPictures);

pictureDate = c.getTime();

if (current.compareTo(pictureDate) == 0 && end.compareTo(pictureDate) >= 0) {

System.out.println("SMILE !!!!");

Process p = null;

try {

DateFormat dateFormat = new SimpleDateFormat("dd-MM-yyyy_HH-mm-ss");

Date currentDate = new Date();

p = Runtime.getRuntime().exec(

"raspistill" + " -o pictures/picture_" + dateFormat.format(currentDate).toString() + ".jpg" + " -t 1000" + " -w "

+ xmlData.get(5) + " -h " + xmlData.get(6) + " -q " + xmlData.get(7) + " -br " + xmlData.get(8) + " -sh "

+ xmlData.get(9) + " -co " + xmlData.get(10) + " -sa " + xmlData.get(11) + " -ifx " + xmlData.get(12) + " -ex "

+ xmlData.get(13));

p.waitFor();

numPictures++;

} catch (IOException | InterruptedException e) {

e.printStackTrace();

} finally {

p.destroy();

}

} else {

try {

Thread.sleep(TIME_BETWEEN_CHECKS);

} catch (InterruptedException e) {

e.printStackTrace();

}

}

if (end.compareTo(current) <= 0)

numPictures = 0;

}

}

private Date getCurrentDate() {

try {

Date date = new Date();

Calendar calendar = GregorianCalendar.getInstance();

calendar.setTime(date);

return new SimpleDateFormat("dd/MM/yyyy HH:mm", Locale.ENGLISH).parse(calendar.get(Calendar.DAY_OF_MONTH) + "/"

+ (calendar.get(Calendar.MONTH) + 1) + "/" + calendar.get(Calendar.YEAR) + " " + calendar.get(Calendar.HOUR_OF_DAY) + ":"

+ calendar.get(Calendar.MINUTE));

} catch (ParseException e) {

e.printStackTrace();

67

}

return null;

}

private Date getStartDate(ArrayList<String> xmlData) {

try {

return new SimpleDateFormat("dd/MM/yyyy HH:mm", Locale.ENGLISH).parse(xmlData.get(0) + " " + xmlData.get(1));

} catch (ParseException e) {

e.printStackTrace();

}

return null;

}

private Date getEndDate(ArrayList<String> xmlData) {

try {

return new SimpleDateFormat("dd/MM/yyyy HH:mm", Locale.ENGLISH).parse(xmlData.get(2) + " " + xmlData.get(3));

} catch (ParseException e) {

e.printStackTrace();

}

return null;

}

}

7.3.2 CameraPictureScheduleHandler.java
public class CameraPictureScheduleHandler {

private static final String CAMERAPICTURE_SCHEDULE_DIR = "/home/pi/tcc/server/cameraSchedule/pictureSchedule.xml";

private static final String PICTURE = "picture";

private static final String TAGNAME_STARTDATE = "startdate";

private static final String TAGNAME_STARTHOUR = "starthour";

private static final String TAGNAME_ENDDATE = "enddate";

private static final String TAGNAME_ENDHOUR = "endhour";

private static final String TAGNAME_INTERVAL = "interval";

private static final String TAGNAME_SIZEW = "sizew";

private static final String TAGNAME_SIZEH = "sizeh";

private static final String TAGNAME_QUALITY = "quality";

private static final String TAGNAME_BRIGHTNESS = "brightness";

private static final String TAGNAME_CONTRAST = "contrast";

private static final String TAGNAME_SATURATION = "saturation";

private static final String TAGNAME_SHARPNESS = "sharpness";

private static final String TAGNAME_EFFECT = "effect";

private static final String TAGNAME_EXPOSURE = "exposure";

public static boolean writeXmlData(String startdate, String starthour, String enddate, String endhour, String interval, String sizeW,

String sizeH, String quality, String brightness, String contrast, String saturation, String sharpness, String effect, String exposure) {

try {

DocumentBuilderFactory documentBuilderFactory = DocumentBuilderFactory.newInstance();

DocumentBuilder documentBuilder = documentBuilderFactory.newDocumentBuilder();

Document document = documentBuilder.parse(CAMERAPICTURE_SCHEDULE_DIR);

Node nodeGpio = document.getElementsByTagName(PICTURE).item(0);

NodeList nodeList = nodeGpio.getChildNodes();

for (int i = 0; i < nodeList.getLength(); i++) {

Node node = nodeList.item(i);

if (node.getNodeName().equalsIgnoreCase(TAGNAME_STARTDATE))

node.setTextContent(startdate);

if (node.getNodeName().equalsIgnoreCase(TAGNAME_STARTHOUR))

node.setTextContent(starthour);

if (node.getNodeName().equalsIgnoreCase(TAGNAME_ENDDATE))

node.setTextContent(enddate);

if (node.getNodeName().equalsIgnoreCase(TAGNAME_ENDHOUR))

node.setTextContent(endhour);

if (node.getNodeName().equalsIgnoreCase(TAGNAME_INTERVAL))

68

node.setTextContent(interval);

if (node.getNodeName().equalsIgnoreCase(TAGNAME_SIZEW))

node.setTextContent(sizeW);

if (node.getNodeName().equalsIgnoreCase(TAGNAME_SIZEH))

node.setTextContent(sizeH);

if (node.getNodeName().equalsIgnoreCase(TAGNAME_QUALITY))

node.setTextContent(quality);

if (node.getNodeName().equalsIgnoreCase(TAGNAME_BRIGHTNESS))

node.setTextContent(brightness);

if (node.getNodeName().equalsIgnoreCase(TAGNAME_CONTRAST))

node.setTextContent(contrast);

if (node.getNodeName().equalsIgnoreCase(TAGNAME_SATURATION))

node.setTextContent(saturation);

if (node.getNodeName().equalsIgnoreCase(TAGNAME_SHARPNESS))

node.setTextContent(sharpness);

if (node.getNodeName().equalsIgnoreCase(TAGNAME_EFFECT))

node.setTextContent(effect);

if (node.getNodeName().equalsIgnoreCase(TAGNAME_EXPOSURE))

node.setTextContent(exposure);

}

TransformerFactory transformerFactory = TransformerFactory.newInstance();

Transformer transformer = transformerFactory.newTransformer();

DOMSource domSource = new DOMSource(document);

StreamResult streamResult = new StreamResult(new File(CAMERAPICTURE_SCHEDULE_DIR));

transformer.transform(domSource, streamResult);

return true;

} catch (ParserConfigurationException pce) {

pce.printStackTrace();

} catch (TransformerException tfe) {

tfe.printStackTrace();

} catch (IOException ioe) {

ioe.printStackTrace();

} catch (SAXException sae) {

sae.printStackTrace();

}

return false;

}

/* Return: STARTDATE STARTHOUR ENDDATE ENDHOUR INTERVAL SIZEW SIZEH QUALITY BRIGHTNESS CONTRAST SATURATION SHARPNESS EFFECT EXPOSURE */

public static ArrayList<String> getXmlData() {

ArrayList<String> xmlData = new ArrayList<String>();

try {

File xmlFile = new File(CAMERAPICTURE_SCHEDULE_DIR);

DocumentBuilderFactory documentBuilderFactory = DocumentBuilderFactory.newInstance();

DocumentBuilder documentBuilder = documentBuilderFactory.newDocumentBuilder();

Document document = documentBuilder.parse(xmlFile);

document.getDocumentElement().normalize();

NodeList nodeList = document.getElementsByTagName(PICTURE);

for (int i = 0; i < nodeList.getLength(); i++) {

Node node = nodeList.item(i);

if (node.getNodeType() == Node.ELEMENT_NODE) {

Element element = (Element) node;

xmlData.add(element.getElementsByTagName(TAGNAME_STARTDATE).item(0).getTextContent());

69

xmlData.add(element.getElementsByTagName(TAGNAME_STARTHOUR).item(0).getTextContent());

xmlData.add(element.getElementsByTagName(TAGNAME_ENDDATE).item(0).getTextContent());

xmlData.add(element.getElementsByTagName(TAGNAME_ENDHOUR).item(0).getTextContent());

xmlData.add(element.getElementsByTagName(TAGNAME_INTERVAL).item(0).getTextContent());

xmlData.add(element.getElementsByTagName(TAGNAME_SIZEW).item(0).getTextContent());

xmlData.add(element.getElementsByTagName(TAGNAME_SIZEH).item(0).getTextContent());

xmlData.add(element.getElementsByTagName(TAGNAME_QUALITY).item(0).getTextContent());

xmlData.add(element.getElementsByTagName(TAGNAME_BRIGHTNESS).item(0).getTextContent());

xmlData.add(element.getElementsByTagName(TAGNAME_CONTRAST).item(0).getTextContent());

xmlData.add(element.getElementsByTagName(TAGNAME_SATURATION).item(0).getTextContent());

xmlData.add(element.getElementsByTagName(TAGNAME_SHARPNESS).item(0).getTextContent());

xmlData.add(element.getElementsByTagName(TAGNAME_EFFECT).item(0).getTextContent());

xmlData.add(element.getElementsByTagName(TAGNAME_EXPOSURE).item(0).getTextContent());

}

}

} catch (Exception e) {

e.printStackTrace();

}

return xmlData;

}

}

7.3.3 CameraPictureTakeThread.java
public class CameraPictureTakeThread implements Runnable {

private static String inputString;

public static void start(String message) {

inputString = message;

(new Thread(new CameraPictureTakeThread())).start();

}

public void run() {

System.out.println("SMILE !!!!");

DateFormat dateFormat = new SimpleDateFormat("dd-MM-yyyy_HH-mm-ss");

Date currentDate = new Date();

Process p = null;

try {

p = Runtime.getRuntime().exec(

"raspistill" + " -o pictures/picture_" + dateFormat.format(currentDate).toString() + ".jpg" + " -t 1000" + " -w "

+ inputString.split(" ")[1] + " -h " + inputString.split(" ")[2] + " -q " + inputString.split(" ")[3] + " -br "

+ inputString.split(" ")[4] + " -sh " + inputString.split(" ")[5] + " -co " + inputString.split(" ")[6] + " -sa "

+ inputString.split(" ")[7] + " -ifx " + inputString.split(" ")[8] + " -ex " + inputString.split(" ")[9]);

p.waitFor();

} catch (IOException | InterruptedException e) {

e.printStackTrace();

} finally {

p.destroy();

}

}

}

7.4 Câmera - Vı́deo

7.4.1 CameraVideoThread.java
public class CameraVideoRealTimeThread implements Runnable {

private static Process p;

public static boolean isStreaming;

70

public static void start() {

isStreaming = false;

(new Thread(new CameraVideoRealTimeThread())).start();

}

public static void end() {

if (p != null)

p.destroy();

}

public void run() {

System.out.println("STREAMING !!!!");

p = null;

try {

isStreaming = true;

p = Runtime.getRuntime().exec("sudo ./stream > /dev/null &");

// p.waitFor();

BufferedReader in = new BufferedReader(new InputStreamReader(p.getInputStream()));

@SuppressWarnings("unused")

String line = null;

while ((line = in.readLine()) != null) {

// System.out.println(line);

}

isStreaming = false;

System.out.println("STREAM DONE !!!!");

} catch (IOException e) {

isStreaming = false;

System.out.println("STREAM CLOSED !!!!");

} finally {

if (p != null) {

isStreaming = false;

p.destroy();

}

}

}

}

7.4.2 CameraVideoScheduleThread.java
public class CameraVideoScheduleThread implements Runnable {

private int TIME_BETWEEN_CHECKS = 10000;

public static void start() {

(new Thread(new CameraVideoScheduleThread())).start();

}

public void run() {

ArrayList<String> xmlData = CameraVideoScheduleHandler.getXmlData();

boolean filming = false;

Date current = getCurrentDate();

Date start = getStartDate(xmlData);

Date end = getEndDate(xmlData);

long duration = end.getTime() - start.getTime();

while (true) {

xmlData = CameraVideoScheduleHandler.getXmlData();

current = getCurrentDate();

start = getStartDate(xmlData);

end = getEndDate(xmlData);

duration = end.getTime() - start.getTime();

if (current.compareTo(start) == 0 && end.compareTo(current) >= 0 && !filming && duration != 0) {

filming = true;

System.out.println("FILMING !!!!");

71

Process p = null;

try {

DateFormat dateFormat = new SimpleDateFormat("dd-MM-yyyy_HH-mm-ss");

Date currentDate = new Date();

p = Runtime.getRuntime().exec(

"raspivid" + " -o videos/videos_" + dateFormat.format(currentDate).toString() + ".h264" + " -t " + duration + " -w "

+ xmlData.get(4) + " -h " + xmlData.get(5) + " -br " + xmlData.get(6) + " -sh " + xmlData.get(7) + " -co "

+ xmlData.get(8) + " -sa " + xmlData.get(9) + " -ifx " + xmlData.get(10) + " -ex " + xmlData.get(11));

p.waitFor();

} catch (IOException | InterruptedException e) {

e.printStackTrace();

} finally {

p.destroy();

}

} else {

try {

Thread.sleep(TIME_BETWEEN_CHECKS);

} catch (InterruptedException e) {

e.printStackTrace();

}

}

if (end.compareTo(current) <= 0) {

filming = false;

}

}

}

private Date getCurrentDate() {

try {

Date date = new Date();

Calendar calendar = GregorianCalendar.getInstance();

calendar.setTime(date);

return new SimpleDateFormat("dd/MM/yyyy HH:mm", Locale.ENGLISH).parse(calendar.get(Calendar.DAY_OF_MONTH) + "/"

+ (calendar.get(Calendar.MONTH) + 1) + "/" + calendar.get(Calendar.YEAR) + " " + calendar.get(Calendar.HOUR_OF_DAY) + ":"

+ calendar.get(Calendar.MINUTE));

} catch (ParseException e) {

e.printStackTrace();

}

return null;

}

private Date getStartDate(ArrayList<String> xmlData) {

try {

return new SimpleDateFormat("dd/MM/yyyy HH:mm", Locale.ENGLISH).parse(xmlData.get(0) + " " + xmlData.get(1));

} catch (ParseException e) {

e.printStackTrace();

}

return null;

}

private Date getEndDate(ArrayList<String> xmlData) {

try {

return new SimpleDateFormat("dd/MM/yyyy HH:mm", Locale.ENGLISH).parse(xmlData.get(2) + " " + xmlData.get(3));

} catch (ParseException e) {

e.printStackTrace();

}

return null;

}

}

7.4.3 CameraVideoScheduleHandler.java
public class CameraVideoScheduleHandler {

private static final String CAMERAVIDEO_SCHEDULE_DIR = "/home/pi/tcc/server/cameraSchedule/videoSchedule.xml";

private static final String VIDEO = "video";

private static final String TAGNAME_STARTDATE = "startdate";

72

private static final String TAGNAME_STARTHOUR = "starthour";

private static final String TAGNAME_ENDDATE = "enddate";

private static final String TAGNAME_ENDHOUR = "endhour";

private static final String TAGNAME_SIZEW = "sizew";

private static final String TAGNAME_SIZEH = "sizeh";

private static final String TAGNAME_BRIGHTNESS = "brightness";

private static final String TAGNAME_CONTRAST = "contrast";

private static final String TAGNAME_SATURATION = "saturation";

private static final String TAGNAME_SHARPNESS = "sharpness";

private static final String TAGNAME_EFFECT = "effect";

private static final String TAGNAME_EXPOSURE = "exposure";

public static boolean writeXmlData(String startdate, String starthour, String enddate, String endhour, String sizeW, String sizeH,

String brightness, String contrast, String saturation, String sharpness, String effect, String exposure) {

try {

DocumentBuilderFactory documentBuilderFactory = DocumentBuilderFactory.newInstance();

DocumentBuilder documentBuilder = documentBuilderFactory.newDocumentBuilder();

Document document = documentBuilder.parse(CAMERAVIDEO_SCHEDULE_DIR);

Node nodeGpio = document.getElementsByTagName(VIDEO).item(0);

NodeList nodeList = nodeGpio.getChildNodes();

for (int i = 0; i < nodeList.getLength(); i++) {

Node node = nodeList.item(i);

if (node.getNodeName().equalsIgnoreCase(TAGNAME_STARTDATE))

node.setTextContent(startdate);

if (node.getNodeName().equalsIgnoreCase(TAGNAME_STARTHOUR))

node.setTextContent(starthour);

if (node.getNodeName().equalsIgnoreCase(TAGNAME_ENDDATE))

node.setTextContent(enddate);

if (node.getNodeName().equalsIgnoreCase(TAGNAME_ENDHOUR))

node.setTextContent(endhour);

if (node.getNodeName().equalsIgnoreCase(TAGNAME_SIZEW))

node.setTextContent(sizeW);

if (node.getNodeName().equalsIgnoreCase(TAGNAME_SIZEH))

node.setTextContent(sizeH);

if (node.getNodeName().equalsIgnoreCase(TAGNAME_BRIGHTNESS))

node.setTextContent(brightness);

if (node.getNodeName().equalsIgnoreCase(TAGNAME_CONTRAST))

node.setTextContent(contrast);

if (node.getNodeName().equalsIgnoreCase(TAGNAME_SATURATION))

node.setTextContent(saturation);

if (node.getNodeName().equalsIgnoreCase(TAGNAME_SHARPNESS))

node.setTextContent(sharpness);

if (node.getNodeName().equalsIgnoreCase(TAGNAME_EFFECT))

node.setTextContent(effect);

if (node.getNodeName().equalsIgnoreCase(TAGNAME_EXPOSURE))

node.setTextContent(exposure);

}

TransformerFactory transformerFactory = TransformerFactory.newInstance();

Transformer transformer = transformerFactory.newTransformer();

DOMSource domSource = new DOMSource(document);

StreamResult streamResult = new StreamResult(new File(CAMERAVIDEO_SCHEDULE_DIR));

transformer.transform(domSource, streamResult);

return true;

} catch (ParserConfigurationException pce) {

pce.printStackTrace();

73

} catch (TransformerException tfe) {

tfe.printStackTrace();

} catch (IOException ioe) {

ioe.printStackTrace();

} catch (SAXException sae) {

sae.printStackTrace();

}

return false;

}

/* Return: STARTDATE STARTHOUR ENDDATE ENDHOUR SIZEW SIZEH QUALITY BRIGHTNESS CONTRAST SATURATION SHARPNESS EFFECT EXPOSURE */

public static ArrayList<String> getXmlData() {

ArrayList<String> xmlData = new ArrayList<String>();

try {

File xmlFile = new File(CAMERAVIDEO_SCHEDULE_DIR);

DocumentBuilderFactory documentBuilderFactory = DocumentBuilderFactory.newInstance();

DocumentBuilder documentBuilder = documentBuilderFactory.newDocumentBuilder();

Document document = documentBuilder.parse(xmlFile);

document.getDocumentElement().normalize();

NodeList nodeList = document.getElementsByTagName(VIDEO);

for (int i = 0; i < nodeList.getLength(); i++) {

Node node = nodeList.item(i);

if (node.getNodeType() == Node.ELEMENT_NODE) {

Element element = (Element) node;

xmlData.add(element.getElementsByTagName(TAGNAME_STARTDATE).item(0).getTextContent());

xmlData.add(element.getElementsByTagName(TAGNAME_STARTHOUR).item(0).getTextContent());

xmlData.add(element.getElementsByTagName(TAGNAME_ENDDATE).item(0).getTextContent());

xmlData.add(element.getElementsByTagName(TAGNAME_ENDHOUR).item(0).getTextContent());

xmlData.add(element.getElementsByTagName(TAGNAME_SIZEW).item(0).getTextContent());

xmlData.add(element.getElementsByTagName(TAGNAME_SIZEH).item(0).getTextContent());

xmlData.add(element.getElementsByTagName(TAGNAME_BRIGHTNESS).item(0).getTextContent());

xmlData.add(element.getElementsByTagName(TAGNAME_CONTRAST).item(0).getTextContent());

xmlData.add(element.getElementsByTagName(TAGNAME_SATURATION).item(0).getTextContent());

xmlData.add(element.getElementsByTagName(TAGNAME_SHARPNESS).item(0).getTextContent());

xmlData.add(element.getElementsByTagName(TAGNAME_EFFECT).item(0).getTextContent());

xmlData.add(element.getElementsByTagName(TAGNAME_EXPOSURE).item(0).getTextContent());

}

}

} catch (Exception e) {

e.printStackTrace();

}

return xmlData;

}

}

7.5 Arquivos

7.5.1 FilePicturesTransferThread.java
public class FilePicturesTransferThread implements Runnable {

private static String filename;

public static void start(String name) {

filename = name;

(new Thread(new FilePicturesTransferThread())).start();

}

@SuppressWarnings("resource")

public void run() {

try {

74

ServerSocket serverSocket;

serverSocket = new ServerSocket(5556);

Socket socket = serverSocket.accept();

File transferFile = new File("/home/pi/tcc/server/pictures/" + filename);

byte[] bytearray = new byte[8096];

FileInputStream fin = new FileInputStream(transferFile);

BufferedInputStream bin = new BufferedInputStream(fin);

OutputStream os = socket.getOutputStream();

int count;

while ((count = bin.read(bytearray, 0, 8096)) >= 0) {

os.write(bytearray, 0, count);

os.flush();

}

os.flush();

socket.close();

System.out.println("File transfer complete");

serverSocket.close();

} catch (IOException e) {

e.printStackTrace();

}

}

}

7.5.2 FileVideosTransferThread.java
public class FileVideosTransferThread implements Runnable {

private static String filename;

public static void start(String name) {

filename = name;

(new Thread(new FileVideosTransferThread())).start();

}

@SuppressWarnings("resource")

public void run() {

try {

ServerSocket serverSocket;

serverSocket = new ServerSocket(5556);

Socket socket = serverSocket.accept();

File transferFile = new File("/home/pi/tcc/server/videos/" + filename);

byte[] bytearray = new byte[8096];

FileInputStream fin = new FileInputStream(transferFile);

BufferedInputStream bin = new BufferedInputStream(fin);

OutputStream os = socket.getOutputStream();

int count;

while ((count = bin.read(bytearray, 0, 8096)) >= 0) {

os.write(bytearray, 0, count);

os.flush();

}

os.flush();

socket.close();

System.out.println("File transfer complete");

serverSocket.close();

} catch (IOException e) {

e.printStackTrace();

}

}

}

75

8 Apêndice C - Código do Cliente

8.1 Cliente

8.1.1 LoginActivity.Java

public class LoginActivity extends Activity {

static String ip;

static String port;

SharedPreferences prefs;

EditText editTextIp;

EditText editTextPort;

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_login);

prefs = this.getSharedPreferences("com.tcc.clienttest", Context.MODE_PRIVATE);

ip = prefs.getString("IP", "");

port = prefs.getString("PORT", "");

editTextIp = (EditText) findViewById(R.id.EditTextIp);

editTextPort = (EditText) findViewById(R.id.editTextPort);

editTextIp.setText(ip);

editTextPort.setText(port);

}

public void OnButtonClickConnect(View view) {

ip = editTextIp.getText().toString();

port = editTextPort.getText().toString();

if (isValidIp(ip)) {

prefs.edit().putString("IP", ip).commit();

prefs.edit().putString("PORT", port).commit();

// connect to the server

new ConnectionAsyncTask().execute(ip, port);

Intent intent = new Intent(LoginActivity.this, MainActivity.class);

startActivity(intent);

} else {

editTextIp.requestFocus();

editTextIp.setError("Not well formed");

}

}

public static boolean isValidIp(final String ip) {

Pattern pattern = Pattern.compile("^([01]?\\d\\d?|2[0-4]\\d|25[0-5])\\." + "([01]?\\d\\d?|2[0-4]\\d|25[0-5])\\."

+ "([01]?\\d\\d?|2[0-4]\\d|25[0-5])\\." + "([01]?\\d\\d?|2[0-4]\\d|25[0-5])$");

76

Matcher matcher = pattern.matcher(ip);

return matcher.matches();

}

}

8.1.2 MainActivity.Java
public class MainActivity extends Activity {

private ConnectionUtilities client;

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_main);

client = ConnectionAsyncTask.getClient();

Button buttonGpio = (Button) findViewById(R.id.buttonGpio);

buttonGpio.setOnClickListener(new View.OnClickListener() {

@Override

public void onClick(View view) {

Intent intent = new Intent(MainActivity.this, GpioListActivity.class);

startActivity(intent);

overridePendingTransition(R.anim.push_left_in, R.anim.push_left_out);

}

});

Button buttonCamera = (Button) findViewById(R.id.buttonCamera);

buttonCamera.setOnClickListener(new View.OnClickListener() {

@Override

public void onClick(View view) {

Intent intent = new Intent(MainActivity.this, CameraListActivity.class);

startActivity(intent);

overridePendingTransition(R.anim.push_left_in, R.anim.push_left_out);

}

});

Button buttonFiles = (Button) findViewById(R.id.buttonFiles);

buttonFiles.setOnClickListener(new View.OnClickListener() {

@Override

public void onClick(View view) {

Intent intent = new Intent(MainActivity.this, FileListActivity.class);

startActivity(intent);

overridePendingTransition(R.anim.push_left_in, R.anim.push_left_out);

}

});

// ProgressDialog ’Connecting’

new ConnectionDialog().execute("");

}

// Watch the state of ConnectionTask.

// Display the progress dialog while the status is STATE_CONNECTING

// Dismiss the dialog when the status is STATE_CONNECTED or STATE_CONNECTIONFAIL

protected class ConnectionDialog extends AsyncTask<String, String, ConnectionUtilities> {

ProgressDialog progressDialog;

@Override

protected void onPreExecute() {

super.onPreExecute();

progressDialog = new ProgressDialog(MainActivity.this);

progressDialog.setMessage("Connecting...");

progressDialog.show();

}

@Override

protected void onPostExecute(ConnectionUtilities result) {

super.onPostExecute(result);

progressDialog.dismiss();

77

}

@Override

protected ConnectionUtilities doInBackground(String... message) {

while (client.getConnectionState().equalsIgnoreCase(ConnectionUtilities.STATE_CONNECTING)) {

}

return null;

}

}

}

8.1.3 ConnectionUtilities.Java
public class ConnectionUtilities {

public static final String STATE_CONNECTING = "connecting";

public static final String STATE_CONNECTED = "connected";

public static final String STATE_CONNECTIONFAIL = "connection_fail";

public static final String STATE_FINISHED = "finished";

public static final int MSG_WHAT_PWM = 0;

public static final int MSG_WHAT_GPIO = 1;

public static final int MSG_WHAT_GPIO_PROGRAMMATION = 2;

public static final int MSG_WHAT_GPIO_PROGRAMMATIONREQUEST = 3;

public static final int MSG_WHAT_CAMERA_VIDEO_REALTIME = 4;

public static final int MSG_WHAT_CAMERA_VIDEO_REALTIMESTATUS = 5;

public static final int MSG_WHAT_CAMERA_VIDEO_PROGRAMMATION = 6;

public static final int MSG_WHAT_CAMERA_VIDEO_PROGRAMMATIONREQUEST = 7;

public static final int MSG_WHAT_CAMERA_PICTURE_TAKEPICTURE = 8;

public static final int MSG_WHAT_CAMERA_PICTURE_PROGRAMMATION = 9;

public static final int MSG_WHAT_CAMERA_PICTURE_PROGRAMMATIONREQUEST = 10;

public static final int MSG_WHAT_FILES_PICTURES_FILELIST = 11;

public static final int MSG_WHAT_FILES_PICTURES_DOWNLOAD = 12;

public static final int MSG_WHAT_FILES_VIDEOS_FILELIST = 13;

public static final int MSG_WHAT_FILES_VIDEOS_DOWNLOAD = 14;

public static final int MSG_WHAT_FILES_VIDEOS_CONVERT = 15;

private PrintWriter out;

private BufferedReader in;

private String state;

private String serverMessage;

private String serverIp;

private String serverPort;

public void startConnection() {

try {

setConnectionState(STATE_CONNECTING);

Log.d("ConnectionUtilities", "Connecting...");

//create a socket to make the connection with the server

Socket socket = new Socket(InetAddress.getByName(serverIp), Integer.parseInt(serverPort));

try {

//send the message to the server

out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(socket.getOutputStream())), true);

//receive the message which the server sends back

in = new BufferedReader(new InputStreamReader(socket.getInputStream()));

setConnectionState(STATE_CONNECTED);

Log.d("ConnectionUtilities", "Connected.");

//in this while the client listens for the messages sent by the server

while (getConnectionState().equals(STATE_CONNECTED)) {

78

serverMessage = in.readLine();

if (serverMessage != null) {

Log.d("ConnectionUtilities", "Mensagem recebida: " + serverMessage);

handleReceivedMessage(serverMessage);

}

serverMessage = null;

}

} finally {

//the socket must be closed. It is not possible to reconnect to this socket

// after it is closed, which means a new socket instance has to be created.

socket.close();

}

} catch (Exception exception) {

setConnectionState(STATE_CONNECTIONFAIL);

Log.e("ConnectionUtilities", exception.getMessage());

}

}

public void endConnection() {

setConnectionState(STATE_FINISHED);

}

public void setConnectionState(String state) {

this.state = state;

}

public String getConnectionState() {

return state;

}

public void setIp(String ip) {

this.serverIp = ip;

}

public String getIp() {

return this.serverIp;

}

public void setPort(String port) {

this.serverPort = port;

}

public String getPort() {

return this.serverPort;

}

public void sendMessage(String message) {

if (out != null && !out.checkError()) {

out.println(message);

out.flush();

Log.d("ConnectionUtilities", "Mensagem enviada: " + message);

}

}

public String getMessage() {

return serverMessage;

}

private void handleReceivedMessage(String serverMessage) {

String[] inputMessage = serverMessage.replace("\n", "").replace("\r", "").split(" ");

int what = Integer.valueOf(inputMessage[0].replace(" ", ""));

switch (what) {

case MSG_WHAT_GPIO_PROGRAMMATIONREQUEST:

GpioActivity.scheduleResponse(serverMessage);

break;

79

case MSG_WHAT_CAMERA_VIDEO_PROGRAMMATIONREQUEST:

CameraVideoScheduleActivity.scheduleResponse(serverMessage);

break;

case MSG_WHAT_CAMERA_VIDEO_REALTIMESTATUS:

CameraRealTimeActivity.streamStatusResponse(serverMessage);

break;

case MSG_WHAT_CAMERA_PICTURE_PROGRAMMATIONREQUEST:

CameraPictureScheduleActivity.scheduleResponse(serverMessage);

break;

case MSG_WHAT_FILES_PICTURES_FILELIST:

FilePicturesActivity.fileList(serverMessage);

break;

case MSG_WHAT_FILES_PICTURES_DOWNLOAD:

FilePicturesTransferThread.start(serverIp, serverPort, inputMessage[1]);

break;

case MSG_WHAT_FILES_VIDEOS_FILELIST:

FileVideosActivity.fileList(serverMessage);

break;

case MSG_WHAT_FILES_VIDEOS_DOWNLOAD:

FileVideosTransferThread.start(serverIp, serverPort, inputMessage[1]);

break;

case MSG_WHAT_FILES_VIDEOS_CONVERT:

FileVideosActivity.fileConversionSucess(serverMessage);

break;

default:

break;

}

}

}

8.1.4 ConnectionAsyncTask.Java
public class ConnectionAsyncTask extends AsyncTask<String, String, ConnectionUtilities> {

private static ConnectionUtilities client;

@Override

protected ConnectionUtilities doInBackground(String... message) {

client = new ConnectionUtilities();

client.setIp(message[0].toString());

client.setPort(message[1].toString());

client.startConnection();

return null;

}

public static ConnectionUtilities getClient() {

return client;

}

}

8.2 Câmera

8.2.1 CameraListActivity.Java
public class CameraListActivity extends Activity {

Button buttonCameraRealTime;

80

Button buttonCameraVideoSchedule;

Button buttonCameraPictureSchedule;

Button buttonCameraPictureTake;

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_camera_list);

buttonCameraRealTime = (Button) findViewById(R.id.buttonCameraRealTime);

buttonCameraVideoSchedule = (Button) findViewById(R.id.buttonCameraVideoSchedule);

buttonCameraPictureSchedule = (Button) findViewById(R.id.buttonCameraPictureSchedule);

buttonCameraPictureTake = (Button) findViewById(R.id.buttonCameraPictureTake);

}

public void onClickButtonCameraRealTime(View view) {

Intent intent = new Intent(CameraListActivity.this, CameraRealTimeActivity.class);

startActivity(intent);

overridePendingTransition(R.anim.push_left_in, R.anim.push_left_out);

}

public void onClickButtonCameraVideoSchedule(View view) {

Intent intent = new Intent(CameraListActivity.this, CameraVideoScheduleActivity.class);

startActivity(intent);

overridePendingTransition(R.anim.push_left_in, R.anim.push_left_out);

}

public void onClickButtonCameraPictureSchedule(View view) {

Intent intent = new Intent(CameraListActivity.this, CameraPictureScheduleActivity.class);

startActivity(intent);

overridePendingTransition(R.anim.push_left_in, R.anim.push_left_out);

}

public void onClickButtonCameraPictureTake(View view) {

Intent intent = new Intent(CameraListActivity.this, CameraPictureTakeActivity.class);

startActivity(intent);

overridePendingTransition(R.anim.push_left_in, R.anim.push_left_out);

}

@Override

public void onBackPressed() {

super.onBackPressed();

overridePendingTransition(R.anim.push_right_in, R.anim.push_right_out);

}

}

8.2.2 CameraPictureScheduleActivity.Java
public class CameraPictureScheduleActivity extends FragmentActivity {

private ConnectionUtilities client;

static TextView textViewStartDate;

static TextView textViewStartHour;

static TextView textViewEndDate;

static TextView textViewEndHour;

static TextView textViewInterval;

static SeekBar seekBarQuality;

static SeekBar seekBarBrightness;

static SeekBar seekBarContrast;

static SeekBar seekBarSaturation;

static SeekBar seekBarSharpness;

static TextView textViewQuality;

static TextView textViewBrightness;

static TextView textViewContrast;

static TextView textViewSaturation;

static TextView textViewSharpness;

static Spinner spinnerSize;

81

static Spinner spinnerEffect;

static Spinner spinnerExposure;

private int quality = 100;

private int brightness = 50;

private int contrast = 0;

private int saturation = 0;

private int sharpness = 0;

private List<String> sizes;

private List<String> effects;

private List<String> exposures;

private static boolean flagWaitingSchedule;

private static String serverMessage;

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_camera_picture_schedule);

initTextView();

initSeekBar();

initSpinner();

flagWaitingSchedule = true;

client = ConnectionAsyncTask.getClient();

new AsyncTaskSchedule().execute();

}

@Override

public void onBackPressed() {

super.onBackPressed();

overridePendingTransition(R.anim.push_right_in, R.anim.push_right_out);

}

public void onClickDefine(View v) {

if (textViewInterval.getText().toString().equalsIgnoreCase("")) {

showIntervalPickerDialog(v);

}

if (textViewEndHour.getText().toString().equalsIgnoreCase("")) {

showEndTimePickerDialog(v);

}

if (textViewEndDate.getText().toString().equalsIgnoreCase("")) {

showEndDatePickerDialog(v);

}

if (textViewStartHour.getText().toString().equalsIgnoreCase("")) {

showStartTimePickerDialog(v);

}

if (textViewStartDate.getText().toString().equalsIgnoreCase("")) {

showStartDatePickerDialog(v);

}

// WHAT STARTDATE STARTHOUR ENDDATE ENDHOUR INTERVAL SIZEW SIZEH QUALITY BRIGHTNESS CONTRAST SATURATION SHARPNESS EFFECT EXPOSURE

if (!textViewInterval.getText().toString().equalsIgnoreCase("") && !textViewEndHour.getText().toString().equalsIgnoreCase("")

&& !textViewEndDate.getText().toString().equalsIgnoreCase("") && !textViewStartHour.getText().toString().equalsIgnoreCase("")

&& !textViewStartDate.getText().toString().equalsIgnoreCase("")) {

String sizeW = sizes.get(spinnerSize.getSelectedItemPosition()).split(" x ")[0];

String sizeH = sizes.get(spinnerSize.getSelectedItemPosition()).split(" x ")[1];

String effect = effects.get(spinnerEffect.getSelectedItemPosition());

String exposure = exposures.get(spinnerExposure.getSelectedItemPosition());

client.sendMessage(ConnectionUtilities.MSG_WHAT_CAMERA_PICTURE_PROGRAMMATION + " " + textViewStartDate.getText().toString() + " "

+ textViewStartHour.getText().toString() + " " + textViewEndDate.getText().toString() + " "

+ textViewEndHour.getText().toString() + " " + textViewInterval.getText().toString().replace(" min", "") + " " + sizeW + " "

+ sizeH + " " + quality + " " + brightness + " " + contrast + " " + saturation + " " + sharpness + " " + effect + " " + exposure);

AlertDialog.Builder builder = new AlertDialog.Builder(CameraPictureScheduleActivity.this);

82

builder.setMessage("Schedule defined");

builder.setNegativeButton("OK", new DialogInterface.OnClickListener() {

public void onClick(DialogInterface dialog, int id) {

}

});

builder.create().show();

}

}

// AsyncTask

private class AsyncTaskSchedule extends AsyncTask<Void, Void, Void> {

@Override

protected void onPreExecute() {

super.onPreExecute();

if (client != null)

client.sendMessage(ConnectionUtilities.MSG_WHAT_CAMERA_PICTURE_PROGRAMMATIONREQUEST + "");

}

@Override

protected Void doInBackground(Void... arg0) {

if (client != null) {

while (flagWaitingSchedule) {

}

}

return null;

}

@Override

protected void onPostExecute(Void result) {

if (serverMessage.split(" ").length >= 5) {

textViewStartDate.setText(serverMessage.split(" ")[1]);

textViewStartHour.setText(serverMessage.split(" ")[2]);

textViewEndDate.setText(serverMessage.split(" ")[3]);

textViewEndHour.setText(serverMessage.split(" ")[4]);

textViewInterval.setText(serverMessage.split(" ")[5] + " min");

}

}

}

public static void scheduleResponse(String serverMessage) {

CameraPictureScheduleActivity.serverMessage = serverMessage;

flagWaitingSchedule = false;

}

private void initTextView() {

textViewStartDate = (TextView) findViewById(R.id.textViewStartDate);

textViewStartHour = (TextView) findViewById(R.id.textViewStartHour);

textViewEndDate = (TextView) findViewById(R.id.textViewEndDate);

textViewEndHour = (TextView) findViewById(R.id.textViewEndHour);

textViewInterval = (TextView) findViewById(R.id.textViewInterval);

textViewQuality = (TextView) findViewById(R.id.textViewQuality);

textViewBrightness = (TextView) findViewById(R.id.textViewBrightness);

textViewContrast = (TextView) findViewById(R.id.textViewContrast);

textViewSaturation = (TextView) findViewById(R.id.textViewSaturation);

textViewSharpness = (TextView) findViewById(R.id.textViewSharpness);

textViewQuality.setText("QUALITY (" + quality + "):");

textViewBrightness.setText("BRIGHTNESS (" + brightness + "):");

textViewContrast.setText("CONTRAST (" + contrast + "):");

textViewSaturation.setText("SATURATION (" + saturation + "):");

textViewSharpness.setText("SHARPNESS (" + sharpness + "):");

}

private void initSeekBar() {

seekBarQuality = (SeekBar) findViewById(R.id.seekBarQuality);

seekBarBrightness = (SeekBar) findViewById(R.id.seekBarBrightness);

seekBarContrast = (SeekBar) findViewById(R.id.seekBarContrast);

seekBarSaturation = (SeekBar) findViewById(R.id.seekBarSaturation);

seekBarSharpness = (SeekBar) findViewById(R.id.seekBarSharpness);

83

seekBarQuality.setProgress(100);

seekBarBrightness.setProgress(50);

seekBarContrast.setProgress(50);

seekBarSaturation.setProgress(50);

seekBarSharpness.setProgress(50);

seekBarQuality.setOnSeekBarChangeListener(OnSeekBarChangeListenerQuality);

seekBarBrightness.setOnSeekBarChangeListener(OnSeekBarChangeListenerBrightness);

seekBarContrast.setOnSeekBarChangeListener(OnSeekBarChangeListenerContrast);

seekBarSaturation.setOnSeekBarChangeListener(OnSeekBarChangeListenerSaturation);

seekBarSharpness.setOnSeekBarChangeListener(onSeekBarChangeListenerSharpness);

}

private void initSpinner() {

spinnerSize = (Spinner) findViewById(R.id.spinnerSize);

sizes = new ArrayList<String>();

sizes.add("720 x 480");

sizes.add("800 x 600");

sizes.add("1366 x 768");

sizes.add("1280 x 720");

sizes.add("1920 x 1080");

ArrayAdapter<String> dataAdapterSize = new ArrayAdapter<String>(this, android.R.layout.simple_spinner_item, sizes);

dataAdapterSize.setDropDownViewResource(android.R.layout.simple_spinner_dropdown_item);

spinnerSize.setAdapter(dataAdapterSize);

spinnerEffect = (Spinner) findViewById(R.id.spinnerEffect);

effects = new ArrayList<String>();

effects.add("none");

effects.add("negative");

effects.add("sketch");

effects.add("emboss");

effects.add("oilpaint");

effects.add("pastel");

effects.add("watercolour");

effects.add("film");

effects.add("colourswap");

effects.add("cartoon");

ArrayAdapter<String> dataAdapterEffect = new ArrayAdapter<String>(this, android.R.layout.simple_spinner_item, effects);

dataAdapterEffect.setDropDownViewResource(android.R.layout.simple_spinner_dropdown_item);

spinnerEffect.setAdapter(dataAdapterEffect);

spinnerExposure = (Spinner) findViewById(R.id.spinnerExposure);

exposures = new ArrayList<String>();

exposures.add("auto");

exposures.add("off");

exposures.add("night");

exposures.add("sports");

exposures.add("snow");

exposures.add("beach");

exposures.add("fireworks");

exposures.add("backlight");

ArrayAdapter<String> dataAdapterExposure = new ArrayAdapter<String>(this, android.R.layout.simple_spinner_item, exposures);

dataAdapterExposure.setDropDownViewResource(android.R.layout.simple_spinner_dropdown_item);

spinnerExposure.setAdapter(dataAdapterExposure);

}

// SEEK BAR

OnSeekBarChangeListener OnSeekBarChangeListenerQuality = new OnSeekBarChangeListener() {

public void onProgressChanged(SeekBar seekBar, int progress, boolean fromUser) {

quality = progress;

textViewQuality.setText("QUALITY (" + quality + "):");

}

public void onStartTrackingTouch(SeekBar seekBar) {

}

public void onStopTrackingTouch(SeekBar seekBar) {

}

};

OnSeekBarChangeListener OnSeekBarChangeListenerBrightness = new OnSeekBarChangeListener() {

84

public void onProgressChanged(SeekBar seekBar, int progress, boolean fromUser) {

brightness = progress;

textViewBrightness.setText("BRIGHTNESS (" + brightness + "):");

}

public void onStartTrackingTouch(SeekBar seekBar) {

}

public void onStopTrackingTouch(SeekBar seekBar) {

}

};

OnSeekBarChangeListener OnSeekBarChangeListenerContrast = new OnSeekBarChangeListener() {

public void onProgressChanged(SeekBar seekBar, int progress, boolean fromUser) {

contrast = (progress * 2 - 100);

textViewContrast.setText("CONTRAST (" + contrast + "):");

}

public void onStartTrackingTouch(SeekBar seekBar) {

}

public void onStopTrackingTouch(SeekBar seekBar) {

}

};

OnSeekBarChangeListener OnSeekBarChangeListenerSaturation = new OnSeekBarChangeListener() {

public void onProgressChanged(SeekBar seekBar, int progress, boolean fromUser) {

saturation = (progress * 2 - 100);

textViewSaturation.setText("SATURATION (" + saturation + "):");

}

public void onStartTrackingTouch(SeekBar seekBar) {

}

public void onStopTrackingTouch(SeekBar seekBar) {

}

};

OnSeekBarChangeListener onSeekBarChangeListenerSharpness = new OnSeekBarChangeListener() {

public void onProgressChanged(SeekBar seekBar, int progress, boolean fromUser) {

sharpness = (progress * 2 - 100);

textViewSharpness.setText("SHARPNESS (" + sharpness + "):");

}

public void onStartTrackingTouch(SeekBar seekBar) {

}

public void onStopTrackingTouch(SeekBar seekBar) {

}

};

// PICKERS

public void showIntervalPickerDialog(View v) {

DialogFragment newFragment = new IntevalPickerFragment();

newFragment.show(getSupportFragmentManager(), "timePicker");

}

public void showStartDatePickerDialog(View v) {

DialogFragment newFragment = new StartDatePickerFragment();

newFragment.show(getSupportFragmentManager(), "datePicker");

}

public void showStartTimePickerDialog(View v) {

DialogFragment newFragment = new StartTimePickerFragment();

newFragment.show(getSupportFragmentManager(), "timePicker");

}

public void showEndDatePickerDialog(View v) {

DialogFragment newFragment = new EndDatePickerFragment();

85

newFragment.show(getSupportFragmentManager(), "datePicker");

}

public void showEndTimePickerDialog(View v) {

DialogFragment newFragment = new EndTimePickerFragment();

newFragment.show(getSupportFragmentManager(), "timePicker");

}

// DATE PICKER START

public static class StartDatePickerFragment extends DialogFragment implements DatePickerDialog.OnDateSetListener {

@Override

public Dialog onCreateDialog(Bundle savedInstanceState) {

final Calendar c = Calendar.getInstance();

int year = c.get(Calendar.YEAR);

int month = c.get(Calendar.MONTH);

int day = c.get(Calendar.DAY_OF_MONTH);

DatePickerDialog datePickerDialog = new DatePickerDialog(getActivity(), this, year, month, day);

datePickerDialog.setTitle("Start Date");

return datePickerDialog;

}

public void onDateSet(DatePicker view, int year, int month, int day) {

String monthString = String.valueOf(month + 1);

String dayString = String.valueOf(day);

if (monthString.length() == 1)

monthString = 0 + monthString;

if (dayString.length() == 1)

dayString = 0 + dayString;

textViewStartDate.setText(dayString + "/" + monthString + "/" + year);

}

}

// HOUR PICKER START

public static class StartTimePickerFragment extends DialogFragment implements TimePickerDialog.OnTimeSetListener {

@Override

public Dialog onCreateDialog(Bundle savedInstanceState) {

final Calendar c = Calendar.getInstance();

int hour = c.get(Calendar.HOUR_OF_DAY);

int minute = c.get(Calendar.MINUTE);

TimePickerDialog timePickerDialog = new TimePickerDialog(getActivity(), this, hour, minute + 1, DateFormat.is24HourFormat(getActivity()));

timePickerDialog.setTitle("Start Hour");

return timePickerDialog;

}

public void onTimeSet(TimePicker view, int hourOfDay, int minute) {

String hourString = String.valueOf(hourOfDay);

String minuteString = String.valueOf(minute);

if (hourString.length() == 1)

hourString = 0 + hourString;

if (minuteString.length() == 1)

minuteString = 0 + minuteString;

textViewStartHour.setText(hourString + ":" + minuteString);

}

}

// INTERVAL PICKER

public static class IntevalPickerFragment extends DialogFragment implements TimePickerDialog.OnTimeSetListener {

@Override

public Dialog onCreateDialog(Bundle savedInstanceState) {

TimePickerDialog timePickerDialog = new TimePickerDialog(getActivity(), this, 0, 1, DateFormat.is24HourFormat(getActivity()));

timePickerDialog.setTitle("Interval between pictures");

return timePickerDialog;

}

public void onTimeSet(TimePicker view, int hourOfDay, int minute) {

int totalInterval = hourOfDay * 60 + minute;

textViewInterval.setText(totalInterval + " min");

}

86

}

// DATE PICKER END

public static class EndDatePickerFragment extends DialogFragment implements DatePickerDialog.OnDateSetListener {

@Override

public Dialog onCreateDialog(Bundle savedInstanceState) {

final Calendar c = Calendar.getInstance();

int year = c.get(Calendar.YEAR);

int month = c.get(Calendar.MONTH);

int day = c.get(Calendar.DAY_OF_MONTH);

DatePickerDialog datePickerDialog = new DatePickerDialog(getActivity(), this, year, month, day);

datePickerDialog.setTitle("End Date");

return datePickerDialog;

}

public void onDateSet(DatePicker view, int year, int month, int day) {

String monthString = String.valueOf(month + 1);

String dayString = String.valueOf(day);

if (monthString.length() == 1)

monthString = 0 + monthString;

if (dayString.length() == 1)

dayString = 0 + dayString;

textViewEndDate.setText(dayString + "/" + monthString + "/" + year);

}

}

// HOUR PICKER END

public static class EndTimePickerFragment extends DialogFragment implements TimePickerDialog.OnTimeSetListener {

@Override

public Dialog onCreateDialog(Bundle savedInstanceState) {

final Calendar c = Calendar.getInstance();

int hour = c.get(Calendar.HOUR_OF_DAY);

int minute = c.get(Calendar.MINUTE);

TimePickerDialog timePickerDialog = new TimePickerDialog(getActivity(), this, hour, minute + 2, DateFormat.is24HourFormat(getActivity()));

timePickerDialog.setTitle("End Hour");

return timePickerDialog;

}

public void onTimeSet(TimePicker view, int hourOfDay, int minute) {

String hourString = String.valueOf(hourOfDay);

String minuteString = String.valueOf(minute);

if (hourString.length() == 1)

hourString = 0 + hourString;

if (minuteString.length() == 1)

minuteString = 0 + minuteString;

textViewEndHour.setText(hourString + ":" + minuteString);

}

}

}

8.2.3 CameraPictureTakeActivity.Java
public class CameraPictureTakeActivity extends Activity {

private ConnectionUtilities client;

static SeekBar seekBarQuality;

static SeekBar seekBarBrightness;

static SeekBar seekBarContrast;

static SeekBar seekBarSaturation;

static SeekBar seekBarSharpness;

static TextView textViewQuality;

static TextView textViewBrightness;

static TextView textViewContrast;

static TextView textViewSaturation;

static TextView textViewSharpness;

87

static Spinner spinnerSize;

static Spinner spinnerEffect;

static Spinner spinnerExposure;

private int quality = 100;

private int brightness = 50;

private int contrast = 0;

private int saturation = 0;

private int sharpness = 0;

private List<String> sizes;

private List<String> effects;

private List<String> exposures;

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_camera_picture_take);

initTextView();

initSeekBar();

initSpinner();

client = ConnectionAsyncTask.getClient();

}

@Override

public void onBackPressed() {

super.onBackPressed();

overridePendingTransition(R.anim.push_right_in, R.anim.push_right_out);

}

public void onClickTakePicture(View v) {

String sizeW = sizes.get(spinnerSize.getSelectedItemPosition()).split(" x ")[0];

String sizeH = sizes.get(spinnerSize.getSelectedItemPosition()).split(" x ")[1];

String effect = effects.get(spinnerEffect.getSelectedItemPosition());

String exposure = exposures.get(spinnerExposure.getSelectedItemPosition());

client.sendMessage(ConnectionUtilities.MSG_WHAT_CAMERA_PICTURE_TAKEPICTURE + " " + sizeW + " " + sizeH + " " + quality + " " + brightness

+ " " + contrast + " " + saturation + " " + sharpness + " " + effect + " " + exposure);

new ConnectionDialog().execute("");

}

protected class ConnectionDialog extends AsyncTask<String, String, ConnectionUtilities> {

ProgressDialog progressDialog;

@Override

protected void onPreExecute() {

super.onPreExecute();

progressDialog = new ProgressDialog(CameraPictureTakeActivity.this);

progressDialog.setMessage("Taking picture...");

progressDialog.setCancelable(false);

progressDialog.show();

}

@Override

protected ConnectionUtilities doInBackground(String... message) {

try {

Thread.sleep(2000);

} catch (InterruptedException e) {

e.printStackTrace();

}

return null;

}

@Override

protected void onPostExecute(ConnectionUtilities result) {

super.onPostExecute(result);

progressDialog.dismiss();

88

AlertDialog.Builder builder = new AlertDialog.Builder(CameraPictureTakeActivity.this);

builder.setMessage("Picture taken successfully");

builder.setNegativeButton("OK", new DialogInterface.OnClickListener() {

public void onClick(DialogInterface dialog, int id) {

}

});

builder.create().show();

}

}

private void initTextView() {

textViewQuality = (TextView) findViewById(R.id.textViewQuality);

textViewBrightness = (TextView) findViewById(R.id.textViewBrightness);

textViewContrast = (TextView) findViewById(R.id.textViewContrast);

textViewSaturation = (TextView) findViewById(R.id.textViewSaturation);

textViewSharpness = (TextView) findViewById(R.id.textViewSharpness);

textViewQuality.setText("QUALITY (" + quality + "):");

textViewBrightness.setText("BRIGHTNESS (" + brightness + "):");

textViewContrast.setText("CONTRAST (" + contrast + "):");

textViewSaturation.setText("SATURATION (" + saturation + "):");

textViewSharpness.setText("SHARPNESS (" + sharpness + "):");

}

private void initSeekBar() {

seekBarQuality = (SeekBar) findViewById(R.id.seekBarQuality);

seekBarBrightness = (SeekBar) findViewById(R.id.seekBarBrightness);

seekBarContrast = (SeekBar) findViewById(R.id.seekBarContrast);

seekBarSaturation = (SeekBar) findViewById(R.id.seekBarSaturation);

seekBarSharpness = (SeekBar) findViewById(R.id.seekBarSharpness);

seekBarQuality.setProgress(100);

seekBarBrightness.setProgress(50);

seekBarContrast.setProgress(50);

seekBarSaturation.setProgress(50);

seekBarSharpness.setProgress(50);

seekBarQuality.setOnSeekBarChangeListener(OnSeekBarChangeListenerQuality);

seekBarBrightness.setOnSeekBarChangeListener(OnSeekBarChangeListenerBrightness);

seekBarContrast.setOnSeekBarChangeListener(OnSeekBarChangeListenerContrast);

seekBarSaturation.setOnSeekBarChangeListener(OnSeekBarChangeListenerSaturation);

seekBarSharpness.setOnSeekBarChangeListener(onSeekBarChangeListenerSharpness);

}

private void initSpinner() {

spinnerSize = (Spinner) findViewById(R.id.spinnerSize);

sizes = new ArrayList<String>();

sizes.add("720 x 480");

sizes.add("800 x 600");

sizes.add("1366 x 768");

sizes.add("1280 x 720");

sizes.add("1920 x 1080");

ArrayAdapter<String> dataAdapterSize = new ArrayAdapter<String>(this, android.R.layout.simple_spinner_item, sizes);

dataAdapterSize.setDropDownViewResource(android.R.layout.simple_spinner_dropdown_item);

spinnerSize.setAdapter(dataAdapterSize);

spinnerEffect = (Spinner) findViewById(R.id.spinnerEffect);

effects = new ArrayList<String>();

effects.add("none");

effects.add("negative");

effects.add("sketch");

effects.add("emboss");

effects.add("oilpaint");

effects.add("pastel");

effects.add("watercolour");

effects.add("film");

effects.add("colourswap");

effects.add("cartoon");

ArrayAdapter<String> dataAdapterEffect = new ArrayAdapter<String>(this, android.R.layout.simple_spinner_item, effects);

dataAdapterEffect.setDropDownViewResource(android.R.layout.simple_spinner_dropdown_item);

spinnerEffect.setAdapter(dataAdapterEffect);

spinnerExposure = (Spinner) findViewById(R.id.spinnerExposure);

89

exposures = new ArrayList<String>();

exposures.add("auto");

exposures.add("off");

exposures.add("night");

exposures.add("sports");

exposures.add("snow");

exposures.add("beach");

exposures.add("fireworks");

exposures.add("backlight");

ArrayAdapter<String> dataAdapterExposure = new ArrayAdapter<String>(this, android.R.layout.simple_spinner_item, exposures);

dataAdapterExposure.setDropDownViewResource(android.R.layout.simple_spinner_dropdown_item);

spinnerExposure.setAdapter(dataAdapterExposure);

}

// SEEK BAR

OnSeekBarChangeListener OnSeekBarChangeListenerQuality = new OnSeekBarChangeListener() {

public void onProgressChanged(SeekBar seekBar, int progress, boolean fromUser) {

quality = progress;

textViewQuality.setText("QUALITY (" + quality + "):");

}

public void onStartTrackingTouch(SeekBar seekBar) {

}

public void onStopTrackingTouch(SeekBar seekBar) {

}

};

OnSeekBarChangeListener OnSeekBarChangeListenerBrightness = new OnSeekBarChangeListener() {

public void onProgressChanged(SeekBar seekBar, int progress, boolean fromUser) {

brightness = progress;

textViewBrightness.setText("BRIGHTNESS (" + brightness + "):");

}

public void onStartTrackingTouch(SeekBar seekBar) {

}

public void onStopTrackingTouch(SeekBar seekBar) {

}

};

OnSeekBarChangeListener OnSeekBarChangeListenerContrast = new OnSeekBarChangeListener() {

public void onProgressChanged(SeekBar seekBar, int progress, boolean fromUser) {

contrast = (progress * 2 - 100);

textViewContrast.setText("CONTRAST (" + contrast + "):");

}

public void onStartTrackingTouch(SeekBar seekBar) {

}

public void onStopTrackingTouch(SeekBar seekBar) {

}

};

OnSeekBarChangeListener OnSeekBarChangeListenerSaturation = new OnSeekBarChangeListener() {

public void onProgressChanged(SeekBar seekBar, int progress, boolean fromUser) {

saturation = (progress * 2 - 100);

textViewSaturation.setText("SATURATION (" + saturation + "):");

}

public void onStartTrackingTouch(SeekBar seekBar) {

}

public void onStopTrackingTouch(SeekBar seekBar) {

}

};

OnSeekBarChangeListener onSeekBarChangeListenerSharpness = new OnSeekBarChangeListener() {

90

public void onProgressChanged(SeekBar seekBar, int progress, boolean fromUser) {

sharpness = (progress * 2 - 100);

textViewSharpness.setText("SHARPNESS (" + sharpness + "):");

}

public void onStartTrackingTouch(SeekBar seekBar) {

}

public void onStopTrackingTouch(SeekBar seekBar) {

}

};

}

8.2.4 CameraVideoScheduleActivity.Java
public class CameraVideoScheduleActivity extends FragmentActivity {

private ConnectionUtilities client;

static TextView textViewStartDate;

static TextView textViewStartHour;

static TextView textViewEndDate;

static TextView textViewEndHour;

static SeekBar seekBarBrightness;

static SeekBar seekBarContrast;

static SeekBar seekBarSaturation;

static SeekBar seekBarSharpness;

static TextView textViewBrightness;

static TextView textViewContrast;

static TextView textViewSaturation;

static TextView textViewSharpness;

static Spinner spinnerSize;

static Spinner spinnerEffect;

static Spinner spinnerExposure;

private int brightness = 50;

private int contrast = 0;

private int saturation = 0;

private int sharpness = 0;

private List<String> sizes;

private List<String> effects;

private List<String> exposures;

private static boolean flagWaitingSchedule;

private static String serverMessage;

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_camera_video_schedule);

initTextView();

initSeekBar();

initSpinner();

flagWaitingSchedule = true;

client = ConnectionAsyncTask.getClient();

new AsyncTaskSchedule().execute();

}

@Override

public void onBackPressed() {

super.onBackPressed();

overridePendingTransition(R.anim.push_right_in, R.anim.push_right_out);

}

91

public void onClickDefine(View v) {

if (textViewEndHour.getText().toString().equalsIgnoreCase("")) {

showEndTimePickerDialog(v);

}

if (textViewEndDate.getText().toString().equalsIgnoreCase("")) {

showEndDatePickerDialog(v);

}

if (textViewStartHour.getText().toString().equalsIgnoreCase("")) {

showStartTimePickerDialog(v);

}

if (textViewStartDate.getText().toString().equalsIgnoreCase("")) {

showStartDatePickerDialog(v);

}

// WHAT STARTDATE STARTHOUR ENDDATE ENDHOUR SIZEW SIZEH BRIGHTNESS CONTRAST SATURATION SHARPNESS EFFECT EXPOSURE

if (!textViewEndHour.getText().toString().equalsIgnoreCase("") && !textViewEndDate.getText().toString().equalsIgnoreCase("")

&& !textViewStartHour.getText().toString().equalsIgnoreCase("") && !textViewStartDate.getText().toString().equalsIgnoreCase("")) {

String sizeW = sizes.get(spinnerSize.getSelectedItemPosition()).split(" x ")[0];

String sizeH = sizes.get(spinnerSize.getSelectedItemPosition()).split(" x ")[1];

String effect = effects.get(spinnerEffect.getSelectedItemPosition());

String exposure = exposures.get(spinnerExposure.getSelectedItemPosition());

client.sendMessage(ConnectionUtilities.MSG_WHAT_CAMERA_VIDEO_PROGRAMMATION + " " + textViewStartDate.getText().toString() + " "

+ textViewStartHour.getText().toString() + " " + textViewEndDate.getText().toString() + " "

+ textViewEndHour.getText().toString() + " " + sizeW + " " + sizeH + " " + brightness + " " + contrast + " " + saturation + " "

+ sharpness + " " + effect + " " + exposure);

AlertDialog.Builder builder = new AlertDialog.Builder(CameraVideoScheduleActivity.this);

builder.setMessage("Schedule defined");

builder.setNegativeButton("OK", new DialogInterface.OnClickListener() {

public void onClick(DialogInterface dialog, int id) {

}

});

builder.create().show();

}

}

// AsyncTask

private class AsyncTaskSchedule extends AsyncTask<Void, Void, Void> {

@Override

protected void onPreExecute() {

super.onPreExecute();

if (client != null)

client.sendMessage(ConnectionUtilities.MSG_WHAT_CAMERA_VIDEO_PROGRAMMATIONREQUEST + "");

}

@Override

protected Void doInBackground(Void... arg0) {

if (client != null) {

while (flagWaitingSchedule) {

}

}

return null;

}

@Override

protected void onPostExecute(Void result) {

if (serverMessage.split(" ").length >= 4) {

textViewStartDate.setText(serverMessage.split(" ")[1]);

textViewStartHour.setText(serverMessage.split(" ")[2]);

textViewEndDate.setText(serverMessage.split(" ")[3]);

textViewEndHour.setText(serverMessage.split(" ")[4]);

}

}

}

public static void scheduleResponse(String serverMessage) {

CameraVideoScheduleActivity.serverMessage = serverMessage;

92

flagWaitingSchedule = false;

}

private void initTextView() {

textViewStartDate = (TextView) findViewById(R.id.textViewStartDate);

textViewStartHour = (TextView) findViewById(R.id.textViewStartHour);

textViewEndDate = (TextView) findViewById(R.id.textViewEndDate);

textViewEndHour = (TextView) findViewById(R.id.textViewEndHour);

textViewBrightness = (TextView) findViewById(R.id.textViewBrightness);

textViewContrast = (TextView) findViewById(R.id.textViewContrast);

textViewSaturation = (TextView) findViewById(R.id.textViewSaturation);

textViewSharpness = (TextView) findViewById(R.id.textViewSharpness);

textViewBrightness.setText("BRIGHTNESS (" + brightness + "):");

textViewContrast.setText("CONTRAST (" + contrast + "):");

textViewSaturation.setText("SATURATION (" + saturation + "):");

textViewSharpness.setText("SHARPNESS (" + sharpness + "):");

}

private void initSeekBar() {

seekBarBrightness = (SeekBar) findViewById(R.id.seekBarBrightness);

seekBarContrast = (SeekBar) findViewById(R.id.seekBarContrast);

seekBarSaturation = (SeekBar) findViewById(R.id.seekBarSaturation);

seekBarSharpness = (SeekBar) findViewById(R.id.seekBarSharpness);

seekBarBrightness.setProgress(50);

seekBarContrast.setProgress(50);

seekBarSaturation.setProgress(50);

seekBarSharpness.setProgress(50);

seekBarBrightness.setOnSeekBarChangeListener(OnSeekBarChangeListenerBrightness);

seekBarContrast.setOnSeekBarChangeListener(OnSeekBarChangeListenerContrast);

seekBarSaturation.setOnSeekBarChangeListener(OnSeekBarChangeListenerSaturation);

seekBarSharpness.setOnSeekBarChangeListener(onSeekBarChangeListenerSharpness);

}

private void initSpinner() {

spinnerSize = (Spinner) findViewById(R.id.spinnerSize);

sizes = new ArrayList<String>();

sizes.add("100 x 100");

sizes.add("720 x 480");

sizes.add("800 x 600");

sizes.add("1366 x 768");

sizes.add("1280 x 720");

sizes.add("1920 x 1080");

ArrayAdapter<String> dataAdapterSize = new ArrayAdapter<String>(this, android.R.layout.simple_spinner_item, sizes);

dataAdapterSize.setDropDownViewResource(android.R.layout.simple_spinner_dropdown_item);

spinnerSize.setAdapter(dataAdapterSize);

spinnerEffect = (Spinner) findViewById(R.id.spinnerEffect);

effects = new ArrayList<String>();

effects.add("none");

effects.add("negative");

effects.add("sketch");

effects.add("emboss");

effects.add("oilpaint");

effects.add("pastel");

effects.add("watercolour");

effects.add("film");

effects.add("colourswap");

effects.add("cartoon");

ArrayAdapter<String> dataAdapterEffect = new ArrayAdapter<String>(this, android.R.layout.simple_spinner_item, effects);

dataAdapterEffect.setDropDownViewResource(android.R.layout.simple_spinner_dropdown_item);

spinnerEffect.setAdapter(dataAdapterEffect);

spinnerExposure = (Spinner) findViewById(R.id.spinnerExposure);

exposures = new ArrayList<String>();

exposures.add("auto");

exposures.add("off");

exposures.add("night");

exposures.add("sports");

exposures.add("snow");

93

exposures.add("beach");

exposures.add("fireworks");

exposures.add("backlight");

ArrayAdapter<String> dataAdapterExposure = new ArrayAdapter<String>(this, android.R.layout.simple_spinner_item, exposures);

dataAdapterExposure.setDropDownViewResource(android.R.layout.simple_spinner_dropdown_item);

spinnerExposure.setAdapter(dataAdapterExposure);

}

// SEEK BAR

OnSeekBarChangeListener OnSeekBarChangeListenerBrightness = new OnSeekBarChangeListener() {

public void onProgressChanged(SeekBar seekBar, int progress, boolean fromUser) {

brightness = progress;

textViewBrightness.setText("BRIGHTNESS (" + brightness + "):");

}

public void onStartTrackingTouch(SeekBar seekBar) {

}

public void onStopTrackingTouch(SeekBar seekBar) {

}

};

OnSeekBarChangeListener OnSeekBarChangeListenerContrast = new OnSeekBarChangeListener() {

public void onProgressChanged(SeekBar seekBar, int progress, boolean fromUser) {

contrast = (progress * 2 - 100);

textViewContrast.setText("CONTRAST (" + contrast + "):");

}

public void onStartTrackingTouch(SeekBar seekBar) {

}

public void onStopTrackingTouch(SeekBar seekBar) {

}

};

OnSeekBarChangeListener OnSeekBarChangeListenerSaturation = new OnSeekBarChangeListener() {

public void onProgressChanged(SeekBar seekBar, int progress, boolean fromUser) {

saturation = (progress * 2 - 100);

textViewSaturation.setText("SATURATION (" + saturation + "):");

}

public void onStartTrackingTouch(SeekBar seekBar) {

}

public void onStopTrackingTouch(SeekBar seekBar) {

}

};

OnSeekBarChangeListener onSeekBarChangeListenerSharpness = new OnSeekBarChangeListener() {

public void onProgressChanged(SeekBar seekBar, int progress, boolean fromUser) {

sharpness = (progress * 2 - 100);

textViewSharpness.setText("SHARPNESS (" + sharpness + "):");

}

public void onStartTrackingTouch(SeekBar seekBar) {

}

public void onStopTrackingTouch(SeekBar seekBar) {

}

};

// PICKERS

public void showStartDatePickerDialog(View v) {

DialogFragment newFragment = new StartDatePickerFragment();

newFragment.show(getSupportFragmentManager(), "datePicker");

}

public void showStartTimePickerDialog(View v) {

94

DialogFragment newFragment = new StartTimePickerFragment();

newFragment.show(getSupportFragmentManager(), "timePicker");

}

public void showEndDatePickerDialog(View v) {

DialogFragment newFragment = new EndDatePickerFragment();

newFragment.show(getSupportFragmentManager(), "datePicker");

}

public void showEndTimePickerDialog(View v) {

DialogFragment newFragment = new EndTimePickerFragment();

newFragment.show(getSupportFragmentManager(), "timePicker");

}

// DATE PICKER START

public static class StartDatePickerFragment extends DialogFragment implements DatePickerDialog.OnDateSetListener {

@Override

public Dialog onCreateDialog(Bundle savedInstanceState) {

final Calendar c = Calendar.getInstance();

int year = c.get(Calendar.YEAR);

int month = c.get(Calendar.MONTH);

int day = c.get(Calendar.DAY_OF_MONTH);

DatePickerDialog datePickerDialog = new DatePickerDialog(getActivity(), this, year, month, day);

datePickerDialog.setTitle("Start Date");

return datePickerDialog;

}

public void onDateSet(DatePicker view, int year, int month, int day) {

String monthString = String.valueOf(month + 1);

String dayString = String.valueOf(day);

if (monthString.length() == 1)

monthString = 0 + monthString;

if (dayString.length() == 1)

dayString = 0 + dayString;

textViewStartDate.setText(dayString + "/" + monthString + "/" + year);

}

}

// HOUR PICKER START

public static class StartTimePickerFragment extends DialogFragment implements TimePickerDialog.OnTimeSetListener {

@Override

public Dialog onCreateDialog(Bundle savedInstanceState) {

final Calendar c = Calendar.getInstance();

int hour = c.get(Calendar.HOUR_OF_DAY);

int minute = c.get(Calendar.MINUTE);

TimePickerDialog timePickerDialog = new TimePickerDialog(getActivity(), this, hour, minute + 1, DateFormat.is24HourFormat(getActivity()));

timePickerDialog.setTitle("Start Hour");

return timePickerDialog;

}

public void onTimeSet(TimePicker view, int hourOfDay, int minute) {

String hourString = String.valueOf(hourOfDay);

String minuteString = String.valueOf(minute);

if (hourString.length() == 1)

hourString = 0 + hourString;

if (minuteString.length() == 1)

minuteString = 0 + minuteString;

textViewStartHour.setText(hourString + ":" + minuteString);

}

}

// DATE PICKER END

public static class EndDatePickerFragment extends DialogFragment implements DatePickerDialog.OnDateSetListener {

@Override

public Dialog onCreateDialog(Bundle savedInstanceState) {

final Calendar c = Calendar.getInstance();

int year = c.get(Calendar.YEAR);

int month = c.get(Calendar.MONTH);

95

int day = c.get(Calendar.DAY_OF_MONTH);

DatePickerDialog datePickerDialog = new DatePickerDialog(getActivity(), this, year, month, day);

datePickerDialog.setTitle("End Date");

return datePickerDialog;

}

public void onDateSet(DatePicker view, int year, int month, int day) {

String monthString = String.valueOf(month + 1);

String dayString = String.valueOf(day);

if (monthString.length() == 1)

monthString = 0 + monthString;

if (dayString.length() == 1)

dayString = 0 + dayString;

textViewEndDate.setText(dayString + "/" + monthString + "/" + year);

}

}

// HOUR PICKER END

public static class EndTimePickerFragment extends DialogFragment implements TimePickerDialog.OnTimeSetListener {

@Override

public Dialog onCreateDialog(Bundle savedInstanceState) {

final Calendar c = Calendar.getInstance();

int hour = c.get(Calendar.HOUR_OF_DAY);

int minute = c.get(Calendar.MINUTE);

TimePickerDialog timePickerDialog = new TimePickerDialog(getActivity(), this, hour, minute + 2, DateFormat.is24HourFormat(getActivity()));

timePickerDialog.setTitle("End Hour");

return timePickerDialog;

}

public void onTimeSet(TimePicker view, int hourOfDay, int minute) {

String hourString = String.valueOf(hourOfDay);

String minuteString = String.valueOf(minute);

if (hourString.length() == 1)

hourString = 0 + hourString;

if (minuteString.length() == 1)

minuteString = 0 + minuteString;

textViewEndHour.setText(hourString + ":" + minuteString);

}

}

}

8.2.5 CameraRealTimeActivity.Java
public class CameraRealTimeActivity extends Activity {

private ConnectionUtilities client;

boolean toggleButtonOn = false;

private static String STREAM_LINK;

private static String VLC_LINK = "http://www.videolan.org/vlc/";

EditText edittextLink;

ToggleButton toggleButtonRealTime;

private static boolean flagWaitingStatus;

private static String serverMessage;

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_camera_video_realtime);

client = ConnectionAsyncTask.getClient();

STREAM_LINK = "rtsp://" + LoginActivity.ip + ":8554/pi_encode.h264";

edittextLink = (EditText) findViewById(R.id.edittextLink);

96

edittextLink.setInputType(InputType.TYPE_NULL);

edittextLink.setEnabled(false);

edittextLink.setText("OFFLINE");

toggleButtonRealTime = (ToggleButton) findViewById(R.id.toggleButtonRealTime);

flagWaitingStatus = true;

client = ConnectionAsyncTask.getClient();

new AsyncTaskStreamStatus().execute();

}

// AsyncTask

private class AsyncTaskStreamStatus extends AsyncTask<Void, Void, Void> {

@Override

protected void onPreExecute() {

super.onPreExecute();

if (client != null)

client.sendMessage(ConnectionUtilities.MSG_WHAT_CAMERA_VIDEO_REALTIMESTATUS + "");

}

@Override

protected Void doInBackground(Void... arg0) {

if (client != null) {

while (flagWaitingStatus) {

}

}

return null;

}

@Override

protected void onPostExecute(Void result) {

if (serverMessage.split(" ")[1].equalsIgnoreCase("1")) {

toggleButtonRealTime.setChecked(true);

edittextLink.setEnabled(true);

edittextLink.setText(STREAM_LINK);

} else {

toggleButtonRealTime.setChecked(false);

edittextLink.setEnabled(false);

edittextLink.setText("OFFLINE");

}

}

}

public static void streamStatusResponse(String serverMessage) {

CameraRealTimeActivity.serverMessage = serverMessage;

flagWaitingStatus = false;

}

public void toggleButtonRealTime(View view) {

toggleButtonOn = ((ToggleButton) view).isChecked();

if (toggleButtonOn) {

edittextLink.setEnabled(true);

edittextLink.setText(STREAM_LINK);

client.sendMessage(ConnectionUtilities.MSG_WHAT_CAMERA_VIDEO_REALTIME + " " + "1");

} else {

edittextLink.setEnabled(false);

edittextLink.setText("OFFLINE");

client.sendMessage(ConnectionUtilities.MSG_WHAT_CAMERA_VIDEO_REALTIME + " " + "0");

}

}

public void onClickSendEmail(View view) {

if (toggleButtonOn) {

Intent i = new Intent(Intent.ACTION_SEND);

i.setType("message/rfc822");

i.putExtra(Intent.EXTRA_EMAIL, new String[] { "" });

i.putExtra(Intent.EXTRA_SUBJECT, "Raspberry Pi Stream");

i.putExtra(Intent.EXTRA_TEXT,

"Link to stream: " + STREAM_LINK + System.getProperty("line.separator") + System.getProperty("line.separator")

+ "Link to VLC Media Player: " + VLC_LINK);

try {

startActivity(Intent.createChooser(i, "Send mail..."));

97

} catch (android.content.ActivityNotFoundException ex) {

Toast.makeText(CameraRealTimeActivity.this, "There are no email clients installed.", Toast.LENGTH_SHORT).show();

}

} else {

Toast.makeText(CameraRealTimeActivity.this, "Stream offline.", Toast.LENGTH_SHORT).show();

}

}

@Override

public void onBackPressed() {

super.onBackPressed();

overridePendingTransition(R.anim.push_right_in, R.anim.push_right_out);

}

}

8.3 GPIO

8.3.1 GpioListActivity.Java
public class GpioListActivity extends Activity {

Button buttonGpio0;

Button buttonGpio1;

Button buttonGpio2;

Button buttonGpio3;

Button buttonGpio4;

Button buttonGpio5;

Button buttonGpio6;

Button buttonGpio7;

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_gpio_list);

buttonGpio0 = (Button) findViewById(R.id.buttonGpio0);

buttonGpio1 = (Button) findViewById(R.id.buttonGpio1);

buttonGpio2 = (Button) findViewById(R.id.buttonGpio2);

buttonGpio3 = (Button) findViewById(R.id.buttonGpio3);

buttonGpio4 = (Button) findViewById(R.id.buttonGpio4);

buttonGpio5 = (Button) findViewById(R.id.buttonGpio5);

buttonGpio6 = (Button) findViewById(R.id.buttonGpio6);

buttonGpio7 = (Button) findViewById(R.id.buttonGpio7);

}

@Override

public void onBackPressed() {

super.onBackPressed();

overridePendingTransition(R.anim.push_right_in, R.anim.push_right_out);

}

public void onClickButtonGpio0(View view) {

Intent intent = new Intent(GpioListActivity.this, GpioActivity.class);

intent.putExtra("CHANNELNUMBER", "0");

startActivity(intent);

overridePendingTransition(R.anim.push_left_in, R.anim.push_left_out);

}

public void onClickButtonGpio1(View view) {

Intent intent = new Intent(GpioListActivity.this, GpioActivity.class);

intent.putExtra("CHANNELNUMBER", "1");

startActivity(intent);

overridePendingTransition(R.anim.push_left_in, R.anim.push_left_out);

}

public void onClickButtonGpio2(View view) {

Intent intent = new Intent(GpioListActivity.this, GpioActivity.class);

intent.putExtra("CHANNELNUMBER", "2");

98

startActivity(intent);

overridePendingTransition(R.anim.push_left_in, R.anim.push_left_out);

}

public void onClickButtonGpio3(View view) {

Intent intent = new Intent(GpioListActivity.this, GpioActivity.class);

intent.putExtra("CHANNELNUMBER", "3");

startActivity(intent);

overridePendingTransition(R.anim.push_left_in, R.anim.push_left_out);

}

public void onClickButtonGpio4(View view) {

Intent intent = new Intent(GpioListActivity.this, GpioActivity.class);

intent.putExtra("CHANNELNUMBER", "4");

startActivity(intent);

overridePendingTransition(R.anim.push_left_in, R.anim.push_left_out);

}

public void onClickButtonGpio5(View view) {

Intent intent = new Intent(GpioListActivity.this, GpioActivity.class);

intent.putExtra("CHANNELNUMBER", "5");

startActivity(intent);

overridePendingTransition(R.anim.push_left_in, R.anim.push_left_out);

}

public void onClickButtonGpio6(View view) {

Intent intent = new Intent(GpioListActivity.this, GpioActivity.class);

intent.putExtra("CHANNELNUMBER", "6");

startActivity(intent);

overridePendingTransition(R.anim.push_left_in, R.anim.push_left_out);

}

public void onClickButtonGpio7(View view) {

Intent intent = new Intent(GpioListActivity.this, GpioActivity.class);

intent.putExtra("CHANNELNUMBER", "7");

startActivity(intent);

overridePendingTransition(R.anim.push_left_in, R.anim.push_left_out);

}

}

8.3.2 GpioActivity.Java
public class GpioActivity extends FragmentActivity {

static ToggleButton toggleButtonGpio;

static TextView textViewGpioNumber;

static TextView textViewStartDate;

static TextView textViewStartHour;

static TextView textViewEndDate;

static TextView textViewEndHour;

private ConnectionUtilities client;

private static String gpioNumber;

private static boolean flagWaitingSchedule;

private static String serverMessage;

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_gpio_schedule);

Intent intent = getIntent();

gpioNumber = intent.getStringExtra("CHANNELNUMBER");

toggleButtonGpio = (ToggleButton) findViewById(R.id.toggleButtonGpio);

textViewGpioNumber = (TextView) findViewById(R.id.textViewGpioNumber);

textViewGpioNumber.setText("GPIO #" + gpioNumber);

textViewStartDate = (TextView) findViewById(R.id.textViewStartDate);

textViewStartHour = (TextView) findViewById(R.id.textViewStartHour);

99

textViewEndDate = (TextView) findViewById(R.id.textViewEndDate);

textViewEndHour = (TextView) findViewById(R.id.textViewEndHour);

flagWaitingSchedule = true;

client = ConnectionAsyncTask.getClient();

new AsyncTaskSchedule().execute();

}

@Override

public void onBackPressed() {

super.onBackPressed();

overridePendingTransition(R.anim.push_right_in, R.anim.push_right_out);

}

public void onClickDefine(View v) {

if (textViewEndHour.getText().toString().equalsIgnoreCase("")) {

showEndTimePickerDialog(v);

}

if (textViewEndDate.getText().toString().equalsIgnoreCase("")) {

showEndDatePickerDialog(v);

}

if (textViewStartHour.getText().toString().equalsIgnoreCase("")) {

showStartTimePickerDialog(v);

}

if (textViewStartDate.getText().toString().equalsIgnoreCase("")) {

showStartDatePickerDialog(v);

}

if (!textViewEndHour.getText().toString().equalsIgnoreCase("") && !textViewEndDate.getText().toString().equalsIgnoreCase("")

&& !textViewStartHour.getText().toString().equalsIgnoreCase("") && !textViewStartDate.getText().toString().equalsIgnoreCase("")) {

client.sendMessage(ConnectionUtilities.MSG_WHAT_GPIO_PROGRAMMATION + " " + gpioNumber + " " + "0" + " "

+ textViewStartDate.getText().toString() + " " + textViewStartHour.getText().toString() + " "

+ textViewEndDate.getText().toString() + " " + textViewEndHour.getText().toString());

}

}

public void onToggleClicked(View view) {

boolean on = ((ToggleButton) view).isChecked();

if (on) {

client.sendMessage(ConnectionUtilities.MSG_WHAT_GPIO + " " + gpioNumber + " " + "1");

} else {

client.sendMessage(ConnectionUtilities.MSG_WHAT_GPIO + " " + gpioNumber + " " + "0");

}

}

public void showStartDatePickerDialog(View v) {

DialogFragment newFragment = new StartDatePickerFragment();

newFragment.show(getSupportFragmentManager(), "datePicker");

}

public void showStartTimePickerDialog(View v) {

DialogFragment newFragment = new StartTimePickerFragment();

newFragment.show(getSupportFragmentManager(), "timePicker");

}

public void showEndDatePickerDialog(View v) {

DialogFragment newFragment = new EndDatePickerFragment();

newFragment.show(getSupportFragmentManager(), "datePicker");

}

public void showEndTimePickerDialog(View v) {

DialogFragment newFragment = new EndTimePickerFragment();

newFragment.show(getSupportFragmentManager(), "timePicker");

}

// AsyncTask

private class AsyncTaskSchedule extends AsyncTask<Void, Void, Void> {

100

@Override

protected void onPreExecute() {

super.onPreExecute();

if (client != null)

client.sendMessage(ConnectionUtilities.MSG_WHAT_GPIO_PROGRAMMATIONREQUEST + " " + gpioNumber);

}

@Override

protected Void doInBackground(Void... arg0) {

if (client != null) {

while (flagWaitingSchedule) {

}

}

return null;

}

@Override

protected void onPostExecute(Void result) {

if (serverMessage.split(" ")[1].equalsIgnoreCase("1.0"))

toggleButtonGpio.setChecked(true);

else if (serverMessage.split(" ")[1].equalsIgnoreCase("0.0"))

toggleButtonGpio.setChecked(false);

textViewStartDate.setText(serverMessage.split(" ")[2]);

textViewStartHour.setText(serverMessage.split(" ")[3]);

textViewEndDate.setText(serverMessage.split(" ")[4]);

textViewEndHour.setText(serverMessage.split(" ")[5]);

}

}

public static void scheduleResponse(String serverMessage) {

GpioActivity.serverMessage = serverMessage;

flagWaitingSchedule = false;

}

// PICKERS

// DATE PICKER START

public static class StartDatePickerFragment extends DialogFragment implements DatePickerDialog.OnDateSetListener {

@Override

public Dialog onCreateDialog(Bundle savedInstanceState) {

final Calendar c = Calendar.getInstance();

int year = c.get(Calendar.YEAR);

int month = c.get(Calendar.MONTH);

int day = c.get(Calendar.DAY_OF_MONTH);

DatePickerDialog datePickerDialog = new DatePickerDialog(getActivity(), this, year, month, day);

datePickerDialog.setTitle("Start Date");

return datePickerDialog;

}

public void onDateSet(DatePicker view, int year, int month, int day) {

String monthString = String.valueOf(month + 1);

String dayString = String.valueOf(day);

if (monthString.length() == 1)

monthString = 0 + monthString;

if (dayString.length() == 1)

dayString = 0 + dayString;

textViewStartDate.setText(dayString + "/" + monthString + "/" + year);

}

}

// HOUR PICKER START

public static class StartTimePickerFragment extends DialogFragment implements TimePickerDialog.OnTimeSetListener {

@Override

public Dialog onCreateDialog(Bundle savedInstanceState) {

final Calendar c = Calendar.getInstance();

int hour = c.get(Calendar.HOUR_OF_DAY);

int minute = c.get(Calendar.MINUTE);

TimePickerDialog timePickerDialog = new TimePickerDialog(getActivity(), this, hour, minute, DateFormat.is24HourFormat(getActivity()));

101

timePickerDialog.setTitle("Start Hour");

return timePickerDialog;

}

public void onTimeSet(TimePicker view, int hourOfDay, int minute) {

String hourString = String.valueOf(hourOfDay);

String minuteString = String.valueOf(minute);

if (hourString.length() == 1)

hourString = 0 + hourString;

if (minuteString.length() == 1)

minuteString = 0 + minuteString;

textViewStartHour.setText(hourString + ":" + minuteString);

}

}

// DATE PICKER END

public static class EndDatePickerFragment extends DialogFragment implements DatePickerDialog.OnDateSetListener {

@Override

public Dialog onCreateDialog(Bundle savedInstanceState) {

final Calendar c = Calendar.getInstance();

int year = c.get(Calendar.YEAR);

int month = c.get(Calendar.MONTH);

int day = c.get(Calendar.DAY_OF_MONTH);

DatePickerDialog datePickerDialog = new DatePickerDialog(getActivity(), this, year, month, day);

datePickerDialog.setTitle("End Date");

return datePickerDialog;

}

public void onDateSet(DatePicker view, int year, int month, int day) {

String monthString = String.valueOf(month + 1);

String dayString = String.valueOf(day);

if (monthString.length() == 1)

monthString = 0 + monthString;

if (dayString.length() == 1)

dayString = 0 + dayString;

textViewEndDate.setText(dayString + "/" + monthString + "/" + year);

}

}

// HOUR PICKER END

public static class EndTimePickerFragment extends DialogFragment implements TimePickerDialog.OnTimeSetListener {

@Override

public Dialog onCreateDialog(Bundle savedInstanceState) {

final Calendar c = Calendar.getInstance();

int hour = c.get(Calendar.HOUR_OF_DAY);

int minute = c.get(Calendar.MINUTE);

TimePickerDialog timePickerDialog = new TimePickerDialog(getActivity(), this, hour, minute, DateFormat.is24HourFormat(getActivity()));

timePickerDialog.setTitle("End Hour");

return timePickerDialog;

}

public void onTimeSet(TimePicker view, int hourOfDay, int minute) {

String hourString = String.valueOf(hourOfDay);

String minuteString = String.valueOf(minute);

if (hourString.length() == 1)

hourString = 0 + hourString;

if (minuteString.length() == 1)

minuteString = 0 + minuteString;

textViewEndHour.setText(hourString + ":" + minuteString);

}

}

}

102

8.4 Arquivos

8.4.1 FileListActivity.Java
public class FileListActivity extends Activity {

Button buttonPictures;

Button buttonVideos;

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_file_list);

buttonPictures = (Button) findViewById(R.id.buttonPictures);

buttonVideos = (Button) findViewById(R.id.buttonVideos);

}

public void onClickButtonPictures(View v) {

Intent intent = new Intent(FileListActivity.this, FilePicturesActivity.class);

startActivity(intent);

overridePendingTransition(R.anim.push_left_in, R.anim.push_left_out);

}

public void onClickButtonVideos(View v) {

Intent intent = new Intent(FileListActivity.this, FileVideosActivity.class);

startActivity(intent);

overridePendingTransition(R.anim.push_left_in, R.anim.push_left_out);

}

@Override

public void onBackPressed() {

super.onBackPressed();

overridePendingTransition(R.anim.push_right_in, R.anim.push_right_out);

}

}

8.4.2 FilePicturesActivity.Java
@SuppressLint({ "SimpleDateFormat" })

public class FilePicturesActivity extends Activity {

private ConnectionUtilities client;

ListView listViewPictureFiles;

static ArrayList<String> arrayAdapter;

ProgressDialog progressDialog;

static ListViewFilePicturesAdapter listViewFilePicturesAdapter;

private static String serverMessage = "";

private static boolean flagWaitingFileList;

private static boolean flagWaitingFileTransfer = true;

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_file_pictures);

arrayAdapter = new ArrayList<String>();

listViewFilePicturesAdapter = new ListViewFilePicturesAdapter(this, arrayAdapter);

creatListView();

flagWaitingFileList = true;

client = ConnectionAsyncTask.getClient();

new AsyncTaskFillFileList().execute();

}

@Override

103

public void onBackPressed() {

super.onBackPressed();

overridePendingTransition(R.anim.push_right_in, R.anim.push_right_out);

}

private void creatListView() {

listViewPictureFiles = (ListView) findViewById(R.id.listViewPictureFiles);

listViewPictureFiles.setAdapter(listViewFilePicturesAdapter);

listViewPictureFiles.setOnItemClickListener(new OnItemClickListener() {

@Override

public void onItemClick(final AdapterView<?> arg0, final View arg1, final int arg2, final long arg3) {

final String fileName = arrayAdapter.get(arg2).split("@")[0];

AlertDialog.Builder builder = new AlertDialog.Builder(FilePicturesActivity.this);

builder.setTitle("Pictures");

builder.setMessage(arrayAdapter.get(arg2).split("@")[0]);

builder.setPositiveButton("Download file", new DialogInterface.OnClickListener() {

public void onClick(DialogInterface dialog, int id) {

downloadFile(fileName);

}

});

builder.setNeutralButton("View picture", new DialogInterface.OnClickListener() {

public void onClick(DialogInterface dialog, int id) {

viewImage(fileName);

}

});

builder.setNegativeButton("Cancel", new DialogInterface.OnClickListener() {

public void onClick(DialogInterface dialog, int id) {

}

});

builder.create().show();

}

});

}

private void downloadFile(String fileName) {

new AsyncTaskFileTransferProgress().execute();

client.sendMessage(ConnectionUtilities.MSG_WHAT_FILES_PICTURES_DOWNLOAD + " " + fileName);

}

private void viewImage(String fileName) {

if (!(new File(Environment.getExternalStorageDirectory() + "/TCC/pictures/" + fileName).isFile())) {

Toast.makeText(FilePicturesActivity.this, "Download the file first", Toast.LENGTH_SHORT).show();

} else {

String imagePath = Environment.getExternalStorageDirectory() + "/TCC/pictures/" + fileName;

try {

Intent myIntent = new Intent(android.content.Intent.ACTION_VIEW);

File file = new File(imagePath);

String extension = android.webkit.MimeTypeMap.getFileExtensionFromUrl(Uri.fromFile(file).toString());

String mimetype = android.webkit.MimeTypeMap.getSingleton().getMimeTypeFromExtension(extension);

myIntent.setDataAndType(Uri.fromFile(file), mimetype);

startActivity(myIntent);

} catch (Exception e) {

}

}

}

// ASYNCTASK FILE TRANSFER PROGRESS

protected class AsyncTaskFileTransferProgress extends AsyncTask<Void, Void, ConnectionUtilities> {

ProgressDialog progressDialog;

@Override

protected void onPreExecute() {

super.onPreExecute();

progressDialog = new ProgressDialog(FilePicturesActivity.this);

progressDialog.setMessage("Downloading...");

104

progressDialog.show();

}

@Override

protected ConnectionUtilities doInBackground(Void... message) {

while (flagWaitingFileTransfer) {

}

flagWaitingFileTransfer = true;

return null;

}

@Override

protected void onPostExecute(ConnectionUtilities result) {

super.onPostExecute(result);

progressDialog.dismiss();

AlertDialog.Builder builder = new AlertDialog.Builder(FilePicturesActivity.this);

builder.setMessage("File transfer successfully");

builder.setNegativeButton("OK", new DialogInterface.OnClickListener() {

public void onClick(DialogInterface dialog, int id) {

}

});

builder.create().show();

}

}

public static void FileTransferSucess() {

flagWaitingFileTransfer = false;

}

// ASYNCTASK FILL FILE LIST

protected class AsyncTaskFillFileList extends AsyncTask<Void, Void, ConnectionUtilities> {

@Override

protected void onPreExecute() {

super.onPreExecute();

if (client != null) {

client.sendMessage(ConnectionUtilities.MSG_WHAT_FILES_PICTURES_FILELIST + "");

progressDialog = new ProgressDialog(FilePicturesActivity.this);

progressDialog.setMessage("Loading file list...");

progressDialog.show();

}

}

@Override

protected ConnectionUtilities doInBackground(Void... message) {

if (client != null) {

while (flagWaitingFileList) {

}

int numPictures = Integer.parseInt(serverMessage.split(" ")[1]);

arrayAdapter.clear();

for (int i = 2; i < numPictures + 2; i++) {

arrayAdapter.add(serverMessage.split(" ")[i]);

}

}

return null;

}

@Override

protected void onPostExecute(ConnectionUtilities result) {

super.onPostExecute(result);

listViewFilePicturesAdapter.notifyDataSetChanged();

progressDialog.dismiss();

}

}

public static void fileList(String serverMessage) {

FilePicturesActivity.serverMessage = serverMessage;

flagWaitingFileList = false;

}

105

// LISTVIEW ADAPTER

public class ListViewFilePicturesAdapter extends BaseAdapter {

Context context;

ArrayList<String> item;

LayoutInflater inflater = null;

public ListViewFilePicturesAdapter(Context context, ArrayList<String> data) {

this.context = context;

this.item = data;

inflater = (LayoutInflater) context.getSystemService(Context.LAYOUT_INFLATER_SERVICE);

}

@Override

public int getCount() {

return item.size();

}

@Override

public Object getItem(int position) {

return item.get(position);

}

@Override

public long getItemId(int position) {

return position;

}

@Override

public View getView(int position, View convertView, ViewGroup parent) {

View vi = convertView;

if (vi == null)

vi = inflater.inflate(R.layout.row_files, null);

TextView fileName = (TextView) vi.findViewById(R.id.textViewFileName);

TextView fileDate = (TextView) vi.findViewById(R.id.textViewFileDate);

TextView fileSize = (TextView) vi.findViewById(R.id.textViewFileSize);

fileName.setText(item.get(position).split("@")[0]);

fileDate.setText(new SimpleDateFormat("dd/MM/yyy HH:mm").format(new Date(Long.parseLong(item.get(position).split("@")[1]))));

fileSize.setText(humanReadableByteCount(Long.parseLong(item.get(position).split("@")[2]), true));

fileName.setTextColor(getResources().getColor(R.color.red_button));

fileDate.setTextColor(getResources().getColor(R.color.red_button));

fileSize.setTextColor(getResources().getColor(R.color.red_button));

return vi;

}

public String humanReadableByteCount(long bytes, boolean si) {

int unit = si ? 1000 : 1024;

if (bytes < unit)

return bytes + " B";

int exp = (int) (Math.log(bytes) / Math.log(unit));

String pre = (si ? "kMGTPE" : "KMGTPE").charAt(exp - 1) + (si ? "" : "i");

return String.format(Locale.ENGLISH, "%.1f %sB", bytes / Math.pow(unit, exp), pre);

}

}

}

8.4.3 FileVideosActivity.Java
@SuppressLint("SimpleDateFormat")

public class FileVideosActivity extends Activity {

private ConnectionUtilities client;

ListView listViewvideoFiles;

ArrayList<String> arrayAdapter;

ProgressDialog progressDialog;

ListViewFileVideosAdapter listViewFileVideosAdapter;

106

private static String serverMessage = "";

private static boolean flagWaitingFileList = true;

private static boolean flagWaitingFileTransfer = true;

private static boolean flagWaitingFileConversion = true;

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_file_videos);

arrayAdapter = new ArrayList<String>();

listViewFileVideosAdapter = new ListViewFileVideosAdapter(this, arrayAdapter);

creatListView();

new FillFileList().execute();

client = ConnectionAsyncTask.getClient();

client.sendMessage(ConnectionUtilities.MSG_WHAT_FILES_VIDEOS_FILELIST + "");

}

@Override

public void onBackPressed() {

super.onBackPressed();

overridePendingTransition(R.anim.push_right_in, R.anim.push_right_out);

}

private void creatListView() {

listViewvideoFiles = (ListView) findViewById(R.id.listViewVideoFiles);

listViewvideoFiles.setAdapter(listViewFileVideosAdapter);

listViewvideoFiles.setOnItemClickListener(new OnItemClickListener() {

@Override

public void onItemClick(final AdapterView<?> arg0, final View arg1, final int arg2, final long arg3) {

final String fileName = arrayAdapter.get(arg2).split("@")[0];

AlertDialog.Builder builder = new AlertDialog.Builder(FileVideosActivity.this);

builder.setTitle("Videos");

builder.setMessage(arrayAdapter.get(arg2).split("@")[0]);

builder.setPositiveButton("Download file", new DialogInterface.OnClickListener() {

public void onClick(DialogInterface dialog, int id) {

downloadFile(fileName);

}

});

if (arrayAdapter.get(arg2).split("@")[0].split("\\.")[1].equalsIgnoreCase("h264"))

builder.setNeutralButton("Convert video", new DialogInterface.OnClickListener() {

public void onClick(DialogInterface dialog, int id) {

convertVideo(fileName);

}

});

else

builder.setNeutralButton("View video", new DialogInterface.OnClickListener() {

public void onClick(DialogInterface dialog, int id) {

viewVideo(fileName);

}

});

builder.setNegativeButton("Cancel", new DialogInterface.OnClickListener() {

public void onClick(DialogInterface dialog, int id) {

}

});

builder.create().show();

}

});

}

private void downloadFile(String fileName) {

107

new FileTransferProgress().execute();

client.sendMessage(ConnectionUtilities.MSG_WHAT_FILES_VIDEOS_DOWNLOAD + " " + fileName);

}

private void convertVideo(String fileName) {

new FileConvertProgress().execute();

client.sendMessage(ConnectionUtilities.MSG_WHAT_FILES_VIDEOS_CONVERT + " " + fileName);

}

private void viewVideo(String fileName) {

if (!(new File(Environment.getExternalStorageDirectory() + "/TCC/videos/" + fileName).isFile())) {

Toast.makeText(FileVideosActivity.this, "Download the file first", Toast.LENGTH_SHORT).show();

} else {

String filePath = Environment.getExternalStorageDirectory() + "/TCC/videos/" + fileName;

try {

Intent myIntent = new Intent(android.content.Intent.ACTION_VIEW);

File file = new File(filePath);

String extension = android.webkit.MimeTypeMap.getFileExtensionFromUrl(Uri.fromFile(file).toString());

String mimetype = android.webkit.MimeTypeMap.getSingleton().getMimeTypeFromExtension(extension);

myIntent.setDataAndType(Uri.fromFile(file), mimetype);

startActivity(myIntent);

} catch (Exception e) {

}

}

}

// ASYNCTASK FILE CONVERT PROGRESS

protected class FileConvertProgress extends AsyncTask<Void, Void, ConnectionUtilities> {

ProgressDialog progressDialog;

@Override

protected void onPreExecute() {

super.onPreExecute();

progressDialog = new ProgressDialog(FileVideosActivity.this);

progressDialog.setMessage("Converting...");

progressDialog.show();

}

@Override

protected ConnectionUtilities doInBackground(Void... message) {

while (flagWaitingFileConversion) {

}

flagWaitingFileConversion = true;

arrayAdapter.add(serverMessage.split(" ")[1]);

return null;

}

@Override

protected void onPostExecute(ConnectionUtilities result) {

super.onPostExecute(result);

progressDialog.dismiss();

listViewFileVideosAdapter.notifyDataSetChanged();

AlertDialog.Builder builder = new AlertDialog.Builder(FileVideosActivity.this);

builder.setMessage("File conversion successfully");

builder.setNegativeButton("OK", new DialogInterface.OnClickListener() {

public void onClick(DialogInterface dialog, int id) {

}

});

builder.create().show();

}

}

public static void fileConversionSucess(String serverMessage) {

FileVideosActivity.serverMessage = serverMessage;

flagWaitingFileConversion = false;

}

// ASYNCTASK FILE TRANSFER PROGRESS

108

protected class FileTransferProgress extends AsyncTask<Void, Void, ConnectionUtilities> {

ProgressDialog progressDialog;

@Override

protected void onPreExecute() {

super.onPreExecute();

progressDialog = new ProgressDialog(FileVideosActivity.this);

progressDialog.setMessage("Downloading...");

progressDialog.show();

}

@Override

protected ConnectionUtilities doInBackground(Void... message) {

while (flagWaitingFileTransfer) {

}

flagWaitingFileTransfer = true;

return null;

}

@Override

protected void onPostExecute(ConnectionUtilities result) {

super.onPostExecute(result);

progressDialog.dismiss();

listViewFileVideosAdapter.notifyDataSetChanged();

AlertDialog.Builder builder = new AlertDialog.Builder(FileVideosActivity.this);

builder.setMessage("File transfer successfully");

builder.setNegativeButton("OK", new DialogInterface.OnClickListener() {

public void onClick(DialogInterface dialog, int id) {

}

});

builder.create().show();

}

}

public static void fileTransferSucess() {

flagWaitingFileTransfer = false;

}

// ASYNCTASK FILL FILE LIST

protected class FillFileList extends AsyncTask<Void, Void, ConnectionUtilities> {

@Override

protected void onPreExecute() {

super.onPreExecute();

progressDialog = new ProgressDialog(FileVideosActivity.this);

progressDialog.setMessage("Loading file list...");

progressDialog.show();

}

@Override

protected ConnectionUtilities doInBackground(Void... message) {

while (flagWaitingFileList) {

}

flagWaitingFileList = true;

int numVideos = Integer.parseInt(serverMessage.split(" ")[1]);

arrayAdapter.clear();

for (int i = 2; i < numVideos + 2; i++) {

arrayAdapter.add(serverMessage.split(" ")[i]);

}

return null;

}

@Override

protected void onPostExecute(ConnectionUtilities result) {

super.onPostExecute(result);

listViewFileVideosAdapter.notifyDataSetChanged();

progressDialog.dismiss();

}

}

public static void fileList(String serverMessage) {

109

FileVideosActivity.serverMessage = serverMessage;

flagWaitingFileList = false;

}

// LISTVIEW ADAPTER

public class ListViewFileVideosAdapter extends BaseAdapter {

Context context;

ArrayList<String> item;

LayoutInflater inflater = null;

public ListViewFileVideosAdapter(Context context, ArrayList<String> data) {

this.context = context;

this.item = data;

inflater = (LayoutInflater) context.getSystemService(Context.LAYOUT_INFLATER_SERVICE);

}

@Override

public int getCount() {

return item.size();

}

@Override

public Object getItem(int position) {

return item.get(position);

}

@Override

public long getItemId(int position) {

return position;

}

@Override

public View getView(int position, View convertView, ViewGroup parent) {

View vi = convertView;

if (vi == null)

vi = inflater.inflate(R.layout.row_files, null);

TextView fileName = (TextView) vi.findViewById(R.id.textViewFileName);

TextView fileDate = (TextView) vi.findViewById(R.id.textViewFileDate);

TextView fileSize = (TextView) vi.findViewById(R.id.textViewFileSize);

fileName.setText(item.get(position).split("@")[0]);

fileDate.setText(new SimpleDateFormat("dd/MM/yyy HH:mm").format(new Date(Long.parseLong(item.get(position).split("@")[1]))));

fileSize.setText(humanReadableByteCount(Long.parseLong(item.get(position).split("@")[2]), true));

fileName.setTextColor(getResources().getColor(R.color.red_button));

fileDate.setTextColor(getResources().getColor(R.color.red_button));

fileSize.setTextColor(getResources().getColor(R.color.red_button));

if (item.get(position).split("@")[0].contains("h264"))

fileName.setTypeface(null, Typeface.ITALIC);

else

fileName.setTypeface(null, Typeface.BOLD);

return vi;

}

public String humanReadableByteCount(long bytes, boolean si) {

int unit = si ? 1000 : 1024;

if (bytes < unit)

return bytes + " B";

int exp = (int) (Math.log(bytes) / Math.log(unit));

String pre = (si ? "kMGTPE" : "KMGTPE").charAt(exp - 1) + (si ? "" : "i");

return String.format(Locale.ENGLISH, "%.1f %sB", bytes / Math.pow(unit, exp), pre);

}

}

}

8.4.4 FileVideosTransferThread.Java
public class FileVideosTransferThread implements Runnable {

110

private static String serverIp;

private static String serverPort;

private static String fileName;

public static void start(String ip, String port, String name) {

serverIp = ip;

serverPort = port;

fileName = name;

(new Thread(new FileVideosTransferThread())).start();

}

public void run() {

if (!(new File(Environment.getExternalStorageDirectory() + "/TCC/videos/").isDirectory()))

new File(Environment.getExternalStorageDirectory() + "/TCC/videos/").mkdirs();

try {

Socket socket;

socket = new Socket(InetAddress.getByName(serverIp), Integer.parseInt(serverPort) + 1);

byte[] bytearray = new byte[8096];

InputStream is = socket.getInputStream();

FileOutputStream fos = new FileOutputStream(Environment.getExternalStorageDirectory() + "/TCC/videos/" + fileName);

BufferedOutputStream bos = new BufferedOutputStream(fos);

int count;

while ((count = is.read(bytearray)) >= 0) {

bos.write(bytearray, 0, count);

}

bos.flush();

bos.close();

socket.close();

FileVideosActivity.fileTransferSucess();

} catch (UnknownHostException e) {

e.printStackTrace();

} catch (IOException e) {

e.printStackTrace();

try {

Thread.sleep(2000);

(new Thread(new FileVideosTransferThread())).start();

} catch (InterruptedException e1) {

e1.printStackTrace();

}

}

}

}

8.4.5 FilePicturesTransferThread.Java
public class FilePicturesTransferThread implements Runnable {

private static String serverIp;

private static String serverPort;

private static String fileName;

public static void start(String ip, String port, String name) {

serverIp = ip;

serverPort = port;

fileName = name;

(new Thread(new FilePicturesTransferThread())).start();

}

public void run() {

if (!(new File(Environment.getExternalStorageDirectory() + "/TCC/pictures/").isDirectory()))

new File(Environment.getExternalStorageDirectory() + "/TCC/pictures/").mkdirs();

try {

Socket socket;

socket = new Socket(InetAddress.getByName(serverIp), Integer.parseInt(serverPort) + 1);

111

byte[] bytearray = new byte[8096];

InputStream is = socket.getInputStream();

FileOutputStream fos = new FileOutputStream(Environment.getExternalStorageDirectory() + "/TCC/pictures/" + fileName);

BufferedOutputStream bos = new BufferedOutputStream(fos);

int count;

while ((count = is.read(bytearray)) >= 0) {

bos.write(bytearray, 0, count);

}

bos.flush();

bos.close();

socket.close();

FilePicturesActivity.FileTransferSucess();

} catch (UnknownHostException e) {

e.printStackTrace();

} catch (IOException e) {

e.printStackTrace();

try {

Thread.sleep(2000);

(new Thread(new FilePicturesTransferThread())).start();

} catch (InterruptedException e1) {

e1.printStackTrace();

}

}

}

}

	Lista de Figuras
	1 Introdução
	1.1 Contextualização e Motivação
	1.2 Objetivos
	1.3 Organização do Trabalho

	2 Materiais e Métodos
	2.1 Raspberry
	2.1.1 Sistema Operacional
	2.1.2 Raspberry Pi Camera
	2.1.3 General-purpose input/output - GPIO

	2.2 Android
	2.2.1 Eclipse e Plugin ADT
	2.2.2 Android Studio

	2.3 Video Streaming
	2.3.1 Motion
	2.3.2 MJPG-streamer
	2.3.3 FFmpeg
	2.3.4 RTSP

	2.4 Modulação por largura de pulso - PWM
	2.4.1 ServoBlaster
	2.4.2 Pi-blaster

	3 Desenvolvimento do Trabalho
	3.1 Descrição das Etapas de Desenvolvimento
	3.2 Servidor - Raspberry Pi
	3.3 Cliente - Aplicativo Android
	3.3.1 Comunicação

	4 Resultados e Discussões
	4.1 Resultados Obtidos
	4.2 Dificuldades e Limitações

	5 Conclusões
	5.1 Relacionamento entre o Curso e o Projeto
	5.2 Trabalhos Futuros

	Referências Bibliográficas
	6 Apêndice A - Imagens capturadas com diferentes parâmetros
	7 Apêndice B - Código do Servidor
	7.1 Server
	7.1.1 Server.Java
	7.1.2 ServerHandler.java

	7.2 GPIO
	7.2.1 Gpio0ScheduleThread.java
	7.2.2 GpioScheduleHandler.java
	7.2.3 Pi4J

	7.3 Câmera - Imagem
	7.3.1 CameraPictureScheduleThread.java
	7.3.2 CameraPictureScheduleHandler.java
	7.3.3 CameraPictureTakeThread.java

	7.4 Câmera - Vídeo
	7.4.1 CameraVideoThread.java
	7.4.2 CameraVideoScheduleThread.java
	7.4.3 CameraVideoScheduleHandler.java

	7.5 Arquivos
	7.5.1 FilePicturesTransferThread.java
	7.5.2 FileVideosTransferThread.java

	8 Apêndice C - Código do Cliente
	8.1 Cliente
	8.1.1 LoginActivity.Java
	8.1.2 MainActivity.Java
	8.1.3 ConnectionUtilities.Java
	8.1.4 ConnectionAsyncTask.Java

	8.2 Câmera
	8.2.1 CameraListActivity.Java
	8.2.2 CameraPictureScheduleActivity.Java
	8.2.3 CameraPictureTakeActivity.Java
	8.2.4 CameraVideoScheduleActivity.Java
	8.2.5 CameraRealTimeActivity.Java

	8.3 GPIO
	8.3.1 GpioListActivity.Java
	8.3.2 GpioActivity.Java

	8.4 Arquivos
	8.4.1 FileListActivity.Java
	8.4.2 FilePicturesActivity.Java
	8.4.3 FileVideosActivity.Java
	8.4.4 FileVideosTransferThread.Java
	8.4.5 FilePicturesTransferThread.Java

