UNIVERSIDADE DE SAO PAULO

ESCOLA DE ENGENHARIA DE SAO CARLOS

DEPARTAMENTO DE ENGENHARIA ELETRICA

Estudo de caso para analise de rendimento na
produciao de software em TI para start-ups
explorando o modelo classico em cascata e o

modelo agil Scrum

Autor: Verivaldo Teles Lobo Filho

Orientador: Prof. Dr. Evandro Luis Linhari Rodrigues

Sao Carlos

2017

[Verivaldo Teles Lobo Filho]

Estudo de caso de rendimento na
producao de software para TI explorando
o modelo classico em cascata e o modelo

agil Scrum

Trabalho de Conclusao de Curso apresentado
a Escola de Engenharia de Sao Carlos, da

Universidade de Sao Paulo

Curso de Engenharia Elétrica

ORIENTADOR: Prof. Dr. Evandro Luis Linhari Rodrigues

Sao Carlos

2017

AUTORIZO A REPRODUGAO TOTAL OU PARCIAL DESTE TRABALHO,
POR QUALQUER MEIO CONVENCIONAL OU ELETRONICO, PARA FINS
DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE.

Teles Lobo Filho, Verivaldo

T516e Estudo de caso para andlise de rendimento na
producédo de software em TI para start-ups explorando o
modelo cléassico em Cascata e o modelo &gil Scrum /
Verivaldo Teles Lobo Filho; orientador Evandro Luis
Linhari Rodrigues. S&o Carlos, 2017.

Monografia (Graduacdo em Engenharia Elétrica com

énfase em Sistemas de Energia e Automacédo) -- Escola de
Engenharia de Sdo Carlos da Universidade de S&o Paulo,
2017.

1. Scrum. 2. desenvolvimento &gil. 3. software. 4.
gestdo. 5. tecnologia de informacdo. 6. start-up. I.
Titulo.

FOLHA DE APROVAGAO

Nome: Verivaldo Teles Lobo Filho

Titulo: “Estudo de caso para anilise de rendimento na produgio
de software em TI para start-ups explorando o modelo classico
em cascata e o modelo agil Scrum”

Trabalho de Concluséo de Curso defendido e aprovado
emZ7 106 |20/F

com NOTA—/ 2%, (JE2_, 2620), pela Comissao Julgadora:

Prof. Associado Evandro Luis Linhari Rodrigues - Orientador -
SEL/EESC/USP

Prof. Associado Ivan Nunes da Silva - SEL/EESC/USP

Prof. Associado Antonio Freitas Rentes - SEL/EESC/USP

Coordenador da CoC-Engenharia Elétrica - EESC/USP:
Prof. Associado José Carlos de Melo Vieira Junior

Dedicatoria

Dedico este trabalho a meus pais Verivaldo e Eliedil Lobo, minha irma Thaiane Lobo,
minha av6 Cota, a Sophie Winter, a Gabriella Fonseca e a todos os meus amigos da Cubos

Tecnologia.

[Verivaldo Teles Lobo Filho].

Agradecimentos

Agradeco a todas as pessoas que acreditaram e as que ndo acreditaram em mim. Sou grato
a todos os meus amigos e conhecidos, aos que me apoiaram e aos que foram obsticulos, aos
que me desafiaram e aos que me motivaram. Muito obrigado a todos, vocés ajudaram a

construir quem sou hoje.

[Verivaldo Teles Lobo Filho].

"At the end of the day, we can endure much more than we think we can."”

[Frida Kahlo]

Resumo

FILHO, V. T. L. Estudo de caso de rendimento na producao de software para TI
explorando o modelo classico em cascata e o0 modelo agil Scrum. O avango da tecnolo-
gia da informacao esta criando um campo rico para o aparecimento exponencial de start-ups
em todo planeta. Essas jovens empresas, que t€m um incrivel potencial de escalabilidade,
tém o objetivo de resolver problemas do dia a dia e de industrias complexas. Contudo, os
empreendedores devem estar sempre alerta quanto a produtividade de suas equipes. Como
essas empresas tém baixo recuso financeiro e alto risco de negécio envolvidos, todo desper-
dicio pode significar no fim de todo o projeto. Assim, este estudo analisou quatro start-ups
desenvolvidas pela Cubos Tecnologia. Nesses quatro projetos foram utilizados dois méto-
dos de desenvolvimento, o tradicional modelo em Cascata e o método agil Scrum. Todos
os projetos possuem o mesmo nivel de complexidade técnica, entdo o foco € entender qual
dos dois métodos se apresenta mais eficiénte no processo de desenvolvimento de [software]
nesse mercado com alto nivel de inovagdo. Para tornar esta andlise possivel, duas principais
ferramentas foram utilizadas. A primeira é o CubosTime, um programa desenvolvido pela
Cubos Tecnologia que mensura o tempo gasto na fase de codificagdo do projeto. O segundo
se trata da plataforma Asana, um gerenciador de tarefas. Deste modo, esses casos possibili-
tam demonstrar como a metodologia 4gil pode trazer aumento de produtividade, flexibilidade
e motivacdo na equipe. Todos esses trés aspectos sdo vitais para o constru¢ao de um negdcio
de sucesso e um bom software que realmente preenche as necessidades do usudrio.

Palavras-Chave: Scrum, desenvolvimento 4gil, software, gestao, tecnologia da informacgao,start-

up.

Abstract

FILHO, V. T. L. Case study of income in IT software production exploring the classic
Waterfall model and the agile model Scrum. The advence of the informational technology
is developing a rich field for the exponencial appereance of start-ups all around the globe.
These young companies, witch have a huge scalable potencial, aim to solve everyday and
industrial problems. Although, the enterprenuers must stay awared of their team’s producti-
vity. As these small companies have lowbudget and high risk involved in the business, every
loss may bring the end of all the work. Thus, these study analised four start-ups developed
by Cubos Tecnologia. In these four projects were used two different development methods,
the tradicional Waterfall method and agile model Scrum. Every project has the same level of
technology complexity, so the focus is to understand witch of the two methods show more
efficiency in the process of developing software in a market with high level of inovation. To
make this analisys possible, two main tools were used. The first one used was CubosTime,
a software developed by Cubos Tecnologia that counts how much time were spent during
the codification phase of the development. And the second tool was Asana, a task manager
platform. Hence, these cases make it possible to show how the agile development method
can bring more productivity, flexibility and motivation to a team. All these three aspects are
vital to build a long term sucessful business and a good software product that actually fulfils

the user’s needs.

Keywords: Scrum, agile development, software, information technology, management,

start-up.

Lista de Figuras

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8

3.1

4.1
4.2
43
4.4

Camadas da Engenharia de Software
Fluxo Linear.
Fluxo Iterativo.
Fluxo Evoluciondrio. L L
Fluxo Paralelo.
Fluxoem Cascata.
Estrutura SCRUM.
Estrutura Espiral ou Prototipagdo.
Fluxograma do CubosTimes.
Graficos das tarefas do projetos A - Método Cascata.
Graéficos das tarefas do projetos B - Método Cascata.
Griéficos dos projetos C - Scrum. oo

Griéficos dos projetos D - Scrum. o oL

42

44
44

Lista de Tabelas

3.1
3.2

4.1
4.2

Lista e fungdes dos desenvolvedores 38
Distribuicdo dos projetos L. 38
Retrabalhos registrados Lo L. 46
Medicdo do Cubos Time 47

Siglas

UX User Experience - Experiéncia do Usudrio

Ul User Interface - Interface do Usudrio

API Application Programming Interface - Interface da Aplicacdo do Programa

IDE Integrated Development Environment - Ambiente de Desenvolvimento Integrado

TI Tecnologia da Informacao

Sumario

1 Introducio
1.1 Motivagdo
1.2 Objetivo(s)

1.3 Justificativas/relevancia

1.4 Organizagdo do Trabalho

2 Embasamento Teorico

2.1 A Engenhariade Software
2.1.1 OProcesso e
2.1.2 FluxodoProcesso
22 OMeétodoCascata. o vt e e e
23 OScrum e e e e e
2.4 Sobre o Método Espiral ou Prototipacdo

3 Material e Métodos
3.1 AsEquipes
3.2 OsProjetos

3.3 Ferramentas Utilizadas

3.4 Coletando Dados com O CubosTime

4 Resultados e Discussoes
4.1 Andamento das Tarefas
4.2 Qualidade do software
4.3 Utilizacao dos recursos

4.4 Depoimento das equipes

5 Conclusao

21

23
24
25
25
26

27
27
28
29
30
32
35

37
37
38
40
41

43
43
46
46
47

51

22

Referéncias

52

23

Capitulo 1

Introducao

O desenvolvimento de software € topico constante no estudo de processo nas universida-
des e no mercado. Hoje, a capacidade de se organizar, padronizar e estruturar a producdo em
uma empresa pode determinar o seu sucesso ou fracasso. Em empresas embriondrias como
start-up a necessidde de evitar dispedicios € ainda mais critica do que em grandes corpora-
coes. Portanto, entender dos processos de desenvolvimento e buscar o alto rendimento é de
extrema importancia para o sucesso das solugdes criadas por estas empresas.

No estudo aqui apresentado, tem-se uma andlise de duas metodologias de desenvolvi-
mento de software. De um lado a estrutura tradicional do método Cascata e do outro a
récem-criada metodologia de desenvolvimento dgil denominada Scrum. Este estudo foi rea-
lizado a partir de dados obtidos de uma empresa de desenvolvimento de software, a Cubos
Tecnologia, aplicando-se as duas metodologias e medindo-se o tempo gasto para desenvolver
o cddigo de projetos de mesmo nivel de complexidade. Para o desenvolvimento de quatro
projetos, dois em cascata e dois construidos com o método agil, foram formadas trés equipes.
Estas foram criadas para que se pudesse cruzar informacgdes de equipes que trabalharam com
um método exclusivo e uma equipe que utilizou os dois métodos em momentos distintos.

O método Cascata, amplamente utilizado ndo apenas na drea de software mas em diversos
ramos da engenharia, vem frustrando os profissionais dos mercados em que € utilizado, assim
como os seus clientes. Este método ocasiona em sua aplicacdo os constantes atrasos de
entrega, gastos ndo previstos e desconforto para as equipes envolvidas.

O Scrum surge com a ideia de se adaptar aos obstaculos decorrentes do processo produ-
tivo, como por exemplo a baixa capacidade do ser humano de prever problemas e de mensura-
los com precisao, como relata o criador do método. Esta metodologia tem influéncia direta da

cultura japonesa e das praticas do Sistema Toyota de Produgdo e € utilizada em empresas de

24

grande porte, como o Google, na resolucao dos mais diversos problemas, conforme descrito
por Jake Knapp em seu livro Sprint [1]).

Nos anos 2000, apds os atentados de 11 de setembro nos Estados Unidos, o FBI (Fede-
ral Bureau of Investigation, a policia federal americana) decidiu investir em um sistema que
unificaria todas as informagdes policiais do pais. Para isso, foi investido inicialmentem US$
451 milhdes para construir o sistema Sentinel em quatro anos, como conta Jeff Sutherland em
seu livro "SCRUM:: A arte de fazer o dobro do trabalho na metade do tempo"[2]. O desen-
volvimento do programa seria feito de acordo com o método em cascata. Porém, apds 5 anos
de desenvolvimento, ja haviam sido gastos US$405 milhdes e o sistema ndo estava pronto
para uso. Sutherland conta que uma anélise foi feita e a expectativa era de um acrécimo nos
gastos de US$ 350 milhdes, quantia proveniente dos contribuintes americanos. Jeff Johnson
entdo foi contratado para resolver o problema e chegou-se a conclusao de que o Scrum seria
utilizado em substituicdo ao método Cascata. O resultado foi que a parte mais desafiadora do
projeto foi feita em um quinto do tempo estimado, com um gasto de um décimo do previsto
e utilizando menos desenvolvedores.

A Cubos Tecnologia desenvolveu um software com a finalidade de medir quanto tempo
¢ dedicado a fase de codificagdo, medindo-se assim um indicador de nivel de produtividade
das equipes. E com outras ferramentas utilizadas neste estudo, foi possivel analisar como se
comporta o desenvolvimento de programas na area da tecnologia da informacao, com foco
em negdcios em fase embriondria, as chamadas Startups. Assim, este trabalho mostra, em
quatro casos com foco em TI, como a metodologia utilizada em empresas como Google e

Amazon pode impactar na produtividade de uma equipe.

1.1 Motivacao

Desde o advento dos computadores, dos semicondutores e dos processos que permitiram
que os componentes eletronicos se tornassem mais baratos, novas dreas do conhecimento
tomaram forma e for¢a. A drea de desenvolvimento de software se tornou muito importante,
pois € responsdvel por fazer com que os computadores, microcontroladores e sistemas em
geral possam funcionar de forma mais eficiente ou até mesmo autonoma. Hoje, programas
estdo empregados em diversos objetos de uso corrente como mdaquinas, eletrodomésticos,
celulares, televisores e computadores.

Na presente era da informacdo, novas empresas estdo surgindo para criar solu¢des base-

25

adas nas novas tecnologias. Essas empresas sdo conhecidas como startups e geralmente sao
criadas sem uma estrutura bem definida, plano de negdcios ou estrutura de monetizagdo. Isso
ocorre devido ao valor inovador que elas trazem para o mercado. Uma estratégia muito utili-
zada pelas startups € o enfoque em MVP (Minimum Valuable Product, em portugués Minimo
Produto Vidvel), definido na obra "Startup Enxuta", do autor Eric Reis[3]. Nessa abordagem
estratégica, o tempo de reagdo para o mercado precisa ser muito rapido, ou seja, evoluir o
produto e responder as necessidades do mercado de maneira 4gil definem o sucesso do soft-
ware e do negdcio. Portanto, no cendrio atual da tecnologia da informacao, o tempo € fator
primordial para se alavancar o negdcio e possibilitar que um programa ganhe escala na sua
utilizagdo.

Em resumo, este estudo € motivado pela busca de melhorar o processo de desenvolvi-
mento de software diminuindo o tempo de producdo. Isso deve ocorrer sem haver perdas na

qualidade do programa.

1.2 Objetivo(s)

O objetivo principal € comparar dois métodos de desenvolvimento de software. O pri-
meiro se trata do método Cascata, por ser tradicional ndo apenas na drea de programagao,
mas também em diversas outras frentes da engenharia. O Srum, como segundo método es-
tudado, € uma metodologia recente de desenvolvimento 4gil que vem ganhando forca nos
dltimos dez anos. Desse modo, este trabalho busca avaliar e contrapor, em um estudo de
caso, os resultados obtidos com a metodologia agil e com o método tradicional aplicado a

projetos embriondrios de start-ups.

1.3 Justificativas/relevancia

Um bom processo de desenvolvimento de software é observado quando se obtém produtos
de alta qualidade técnica no menor tempo possivel. Neste trabalho foram escolhidos o método
em cascata e o Scrum, pois o primeiro é um dos mais tradicionais da Engenharia de Software e
o segundo € recente e surgiu quebrando paradigmas do processo produtivo. Colocando esses
dois métodos a prova, pode-se obter informacdes sobre qual deles se mostra mais eficiente
em projetos de tecnologia da informagdo, em que os mercados sdo extremamente dindmicos

e as tecnologias evoluem em uma velocidade nunca antes vista.

26

1.4 Organizacao do Trabalho

Este estudo esté distribuido em 6 capitulos, incluindo esta introdugdo, dispostos conforme
a descri¢cdo que segue:

Capitulo 2: descreve uma introducgdo a teoria que serve de base para o estudo da engenha-
ria de software, a estrutura em cascata e a estrutura do Scrum.

Capitulo 3: discorre sobre as ferramentas utilizadas para se obter os dados de cada caso
estudado, a organizacdo das equipes e a composi¢ao dos projetos que foram objetos de estudo.

Capitulo 4: apresenta todos os resultados coletados pelas ferramentas e discute os pontos
mais relevantes sobre 0s casos.

Capitulo 5: analisa o que pode ser concluido a partir dos dados coletados e propde novos

estudos de caso relevantes.

27

Capitulo 2

Embasamento Teorico

Este capitulo apresenta uma introdu¢do a Engenharia de Software, a estrutura do método

Cascata, as bases e principios do Scrum e o método espiral.

2.1 A Engenharia de Software

Em sua obra "Engenharia de Software", lan Sommerville[4] avalia que a Engenharia de
Software € responsdvel por "toda documentacio associada e dados de configura¢do necessa-
rios para fazer com que esses programas operem corretamente”. Além disso, trata também
do processo de gestdao das informacdes, da gestdo de pessoas e recursos. Complementando
a 1deia de Sommerville, Pressman[5] a define como uma tecnologia em camadas, apresen-
tadas na figura 2.1. Estas sdo estruturadas para fundamentar uma organiza¢do com foco na
qualidade. Filosofias como a Seis Sigma, prossegue o autor, "promovem uma cultura de
aperfeicoamento continuo de processos, e € essa cultura que no final das contas leva ao de-

senvolvimento de abordagens cada vez mais eficazes".

Ferramentas

Método

Processo

Foco na qualidade

Figura 2.1: Camadas da Engenharia de Software

28

A camada de suporte da Engenharia de Software € a de processos, em que todas as de-
mais camadas de execug¢do se sustentam. A de foco na qualidade simboliza o objetivo final.
A de método € a que permite o software ser desenvolvido, atribuindo a ela todas as ativida-
des necessdrias para que o trabalho seja concluido, enquanto a de ferramentas possibilita a
execucdo das tarefas, facilitando, agilizando e evitando erros durante o processo de desenvol-
vimento. Essas camadas s@o definidas por Pressman[5]. No método escolhido pela equipe
de desenvolvimento, deve haver impreterivelmente tarefas de comunicacao, anélise de requi-
sitos, modelagem de projetos, construcdo de programas, testes e suporte. Sommerville[4]
divide o processo de software em quatro partes: especificacdo do software; desenvolvimento

do software; validacao do software; evolugdo do software.

2.1.1 O Processo

Todo método em Engenharia de Software deve ter cinco fases: comunicagdo, planeja-
mento, modelagem, constru¢do e entrega. Na fase de comunica¢do, o desenvolvedor busca
entender quais as reais necessidades do projeto em questdo. Ele deve compreender de forma
clara em qual contexto a solu¢do € necessdria e deve apresentar as possibilidades a serem
desenvolvidas de maneira coesa e consistente .

Em todo projeto complexo € necessario criar um guia a partir do qual os membros podem
se orientar. Desenvolver um software é sempre algo complicado, por mais simples que a
aplicacao seja, portanto € necessario planejar descrevendo o trabalho que ser4 feito, as tarefas
necessdrias, os provaveis riscos do projeto, quais recursos serdo alocados, qual o produto
desejado e como construir um cronograma de atividades.

Para iniciar uma fase de desenvolvimento, o desenvolvedor deve projetar o que serd cons-
truido, analisar o que serd necessdrio, definir como serd feito e como cada caracteristica do
software deve se comportar, o que € de vital importincia para uma construcao bem executada
- compondo assim a fase de modelagem. Na fase de construcdo, a equipe técnica codifica
o que foi projetado e efetua testes internos para se certificar de que aquele projeto foi bem
executado. Essa fase geralmente € a mais longa do processo inteiro, e este estudo tem foco na
coleta de dados nessa fase. Caso o planejamento ou o projeto tomem rumos diferentes, seja
por erro ou necessidade, € neste momento do processo que o impacto de retrabalho ocorre.

Por fim o produto, o software, é lancado e se aguardam feedbacks por parte dos usuarios,

para que ele entdo seja melhorado.

29

2.1.2 Fluxo do Processo

Para um método genérico, podem ser apresentadas algumas possibilidades de fluxo de
processo. Ele pode ser linear, interativo, evoluciondrio ou paralelo. As estruturas podem ser

vistas nas figuras 2.2 a 2.5 a seguir[5].

T o

Figura 2.2: Fluxo Linear.

- - m -

Figura 2.3: Fluxo Iterativo.

— HEUEEGERGY — BCLEECN

Figura 2.4: Fluxo Evoluciondrio.

Comunicacao easelll Planejamento

|—— Modelagem -J

L

Figura 2.5: Fluxo Paralelo.

30

No fluxo linear, executa-se cada atividade em sequéncia, sendo que uma comeca quando
a anterior termina, culminando com a entrega. Este € de dificil ocorréncia no mercado, visto
que novas tecnologias e necessidades do software surgem de forma muito rapida. Em um am-
biente de Startup, a velocidade dessas mudancas € ainda maior, fazendo com que a agilidade
da equipe seja exigida ao maximo. Os demais fluxos sdo mais préximos da realidade em que
0s processos vao se repetindo indefinidamente ou volta-se a uma fase anterior quando neces-
sario. Além disso, apds o lancamento de funcionalidades € que realmente € avaliado se o que
foi projetado obteve sucesso ou pode ser melhorado dependendo do retorno de resposta do
usudrio. Cada vez mais a opinido do usudrio tem sido foco dos desenvolvedores de software.
O principio de "foco no usudrio"vem sendo extremamente utilizado na criagdo de solugdes
em TI (Tecnologia da Informacdo) e esse € um dos grandes motivos para que os softwares
tenham uma elevada taxa de atualizacgao.

Para este estudo, dois fluxos de processo foram analisados. O método Cascata segue o
fluxo linear, ao passo que o Scrum tem uma estrutura de fluxo evolucionaria. O primeiro é
engessado e tradicional, o segundo permite que o programa evolua para se adaptar a demanda.
Assim, o fluxo evoluciondrio é encontrado na grande maioria das startups e empresas de

desenvolvimento de software.

2.2 O Método Cascata

O método em Cascata tem sua origem nos procedimentos ja utilizados em dreas mais
antigas da engenharia. Assim o método tem um formato muito claro de sua estrutura e or-
ganizacdo. Também conhecido no mercado como "escopo fechado", esta metodologia se
caracteriza como um método de fluxo linear, em que uma fase s se inicia quando a anterior
termina. Todavia, € possivel retornar a algum estado anterior caso seja detectado algum erro.
A literatura diz ainda que "a fase seguinte ndo deve se iniciar até que a fase precedente tenha
sido concluida. Na prética, esses estdgios sobrepdem e trocam informacdes entre si"(citar
Pressman)(pag 38). Essa possibilidade prejudica diretamente na entrega final do projeto. A

seguir pode-se observar como essa estrutura funciona.

31

Analise de
Requisitos

Projeto

Desenvolvimento
e
Testes unitarios

Intergracao
e
Testes de Sistema

Entrega

Figura 2.6: Fluxo em Cascata.

O nome "cascata"(em inglés waterfall) se da devido ao formado do fluxograma da meto-
dologia e a estrutura de que a etapa mais inferior s se inicia quando a superior € finalizada.
Na primeira fase, o engenheiro de software deve analisar e documentar as funcdes necessa-
rias para todo o projeto, verificar quais as tecnologias que poderao ser utilizadas e definir as
especificacdes de todo o sistema que serd desenvolvido. Posteriormente, a fase de projeto (ou
modelagem) se inicia. Nesse momento o engenheiro, munido das informagdes colhidas na
andlise de requisitos, deve projetar todo o sistema, como ele ird se comportar, 0 que 0 Usuario
esperaria em termos de experi€ncia e definir toda a estrutura do soffware em que os desen-
volvedores irdo se basear para poder implementar o cddigo. Nessa fase o escopo completo
do projeto deve ser definido. Essas duas fases sdo compostas por tarefas bem definidas, logo
pode-se mensurar quais atividades estdo sendo completadas nos prazos.

As fases subsequentes sao as fases em que o desenvolvedor elabora o cédigo e faz testes
de unidade, ou seja, testa-se as fungdes que foram implementadas de forma individual. Nesse
etapa este estudo mensura quanto tempo € gasto para se concluir a fase de implementacao.
Em seguida inicia-se a fase de integracdo e teste do sistema, em que todas as funcdes sdo
unificadas para compor um sé sistema. Como esta etapa também pode envolver trabalho de
implementagao por parte do desenvolvedor, o tempo de trabalho pode ser medido.

Por fim, quando o sistema € lancado para o usudrio final, comeca-se a fase de operacdo e
manutencdo. A ultima fase consiste em permitir que o programa continue em uso de maneira

estdvel, sendo que € necessdria codificacdo de manutencdo e nenhuma nova funcionalidade

32

¢ implementada. Caso novas fungdes e caracteristicas do sistema tenham que ser alteradas,
deve-se iniciar todo o fluxo a partir da andlise de requisitos.

O ideal para este método é quando o processo ocorre sem interrupgdes da fase de requi-
sitos até a entrega final. Porém, isso ndo € o que ocorre na pratica devido as mudancas de
rumo no projeto por motivos como: novas tecnologias langcadas que se adequem melhor ao
sistema, novas possibilidades de idéias do cliente, erro em qualquer uma das fases anteriores
que s6 foram verificados em uma fase posterior, dentre outros. Os autores do livro "Enge-
nharia de Software, Uma Abordagem Profissional"[5] declaram que "durante o projeto, sdo
identificados problemas com os requisitos; durante a codificacdo, sdo verificados problemas
de projeto, e assim por diante". Com isso ocorre a necessidade de retrabalhos e atraso na
entrega, ou seja, elevado desperdicio de recursos. Nos casos estudados, serd verificado que a
redefinicao do projetos durante todo o fluxo é algo muito comum quando se trata de solugdes

em TI, especialmente em startups.

2.3 O Scrum

O método Scrum foi proposto na década de 80 por Hirotaka Takeuchi e Ikujiro Nonaka,
visando uma estratégia de producdo incremental colaborativa - como descrito em "A Guide
to the Scrum body of knowledge (SBOK Guide)"[6](Um Guia para o corpo de conhecimento
Scrum, em portugués). Em 1995, Ken Schwaber e Jeff Sutherland aplicaram o conceito
para desenvolvimento de software. E gradativamente esse método vem tomando espaco no
mercado, sendo incorporado por empresas em fase embriondria e empresas de grande porte
que adotam uma filosofia de desenvolvimento 4gil em seus processos.

O Scrum tem influéncia direta do Sistema Toyota de Produgao, desenvolvido por Taiichi
Ohno e, por conseguinte, tem principios japoneses em sua filosofia. O conceito consiste em
criar equipes compactas que realizam tarefas bem definidas em um intervalo de tempo curto,
denominado Sprint. Em cada Sprint, um ciclo deve ser finalizado e um software utilizavel
deve ser disponibilizado para uso. Isso se assemelha muito ao método de prototipagdo, mas
ha diferencas claras, como serd visto.

O Scrum segue seis principios basicos[6]. Baseado no Guia SBOK, sdo eles: processo
de controle empirico, auto-organizagdo, colaboragdo, prioriza¢do baseada em valores, time-
boxing (em portugués, caixa de tempo) e desenvolvimento iterativo. O principio de controle

empirico enfatiza o ponto de equilibrio do método, baseado na transparéncia, inspecio e

33

adaptagdo. A auto-organizacao diz respeito ao apoio aos trabalhadores, que sao aqueles que
agregam valor ao produto. Esse principio visa o compartilhamento de responsabilidades. O
terceiro principio coloca o foco na colaboragdo entre os membros da equipe e como este time
deve trabalhar de forma compacta e harmonica. O principio seguinte trata da priorizagdo do
que agrega mais valor ao produto naquele momento, sendo as tarefas mais importantes exe-
cutadas primeiro. O Scrum percebe que tempo € um recurso escasso, assim o principio de
time-boxing define estratégias para utilizar o tempo da forma mais eficiente possivel. Alguns
elementos do time-boxing sao os Sprints, Daily Standup Meetings (em portugués, reunioes
didrias em pé), Sprint Planning Meeting (em portugués, reunides de planejamento de Sprint)
e Sprint Review Meeting (em portugués, reunides de revisao de Sprint). E o Gltimo principio
se refere a estrutura iterativa de desenvolvimento. Este permite que o software seja desen-
volvido com foco nas necessidades reais do usudrio, pois neste contexto € possivel se obter
informacdes de respostas dos usudrios e ter o poder de reacdo necessario para satisfazé-los.
O Scrum tem uma estrutura evoluciondria muito bem definida. A figura a seguir mostra

como essa dindmica ocorre.

Reunido
Stand-up

1-4 semanas
Backlog [l sornszcioc TR -

SPRINT

Desenvolvimento

Figura 2.7: Estrutura SCRUM.

O primeiro elemento da figura é o backlog, que € a lista de todas as funcionalidades
que o projeto visa ter a longo prazo. Essa pratica é importante para a equipe ter visdo das
possibilidades que aquele sistema que estd sendo criado pode abordar. A partir do backlog
que € possivei se definir prioridades de desenvolvimento e construir o sprint backlog, que é
a lista de todas as funcionalidades que serdo desenvolvidas naquelesprint em especifico. O
Sprint € um ciclo de desenvolvimento, e a metodologia do Scrum indica que um Sprint tenha
durac¢do de duas a quatro semanas. Todavia, € possivel encontrar no mercado empresas que

fogem a essa regra, fazendo ciclos de desenvolvimento de apenas uma semana.

34

O sprint backlog € definido em planejamento (chamado de planning meeting), que € o
momento em que toda a equipe se reune para defini¢cao do Sprint. Essa reunido € importante
para que cada membro da equipe possa opinar e que de forma colaborativa todos tenham o co-
nhecimento do que precisa e pode ser desenvolvido. Essas defini¢cdes sdo reavaliadas durante
o desenvolvimento em encontros didrios (Daily Standup Meetings). Estes sdo momentos bre-
ves de conversa, no qual se relata o que ja foi feito, qual o préximo passo e se houve algum
problema encontrado. Caso haja algum problema, isso fica a cargo do Scrum Master, que é
o membro da equipe com a incumbéncia de minimizar despedicios e agilizar o desenvolvi-
mento. E ele que lidera a equipe durante os Sprints e organiza a equipe, inclusive guiando
todos na reunido de planejamento. Jeff Sutherland comenta em seu livro [] "ele ou ela con-
duziria todas as reunides, se certificaria de que houvesse transparéncia e, o mais importante,
ajudaria a equipe a descobrir o que estava atrapalhando o andamento do projeto"."

O product owner (em portugués, dono do produto) representa o cliente. Em casos de
startups, pode ser o lider do negdcio.

A equipe no Scrum dever ser compacta e variada. Jeff Sutherland indica que o nimero
maximo de integrantes da equipe € de nove pessoas e ela deve englobar programadores, de-
signers e gestores, além do proprio Scrum Master[2]. O objetivo dessa equipe tdo enxuta é
proporcionar entrosamento de forma rapida. Assim todos os membros podem interagir facil-
mente. Isso permite que os seis principios da metodologia sejam possiveis. Com uma equipe
pequena € possivel se fazer reunides rdpidas de atualizac@o da informacdo para gerir melhor
as pessoas, criar empatia entre 0s membro para incentivar a colaboragdo e engajar toda a
equipe no projeto.

E importante salientar dois pontos sobre o Scrum. Primeiramente, ele ndo tem um escopo
fechado e bem definido. Apesar de ter um backlog como guia, 0 Scrum nao indica um prazo
final onde todas as funcionalidades irdo estar completamente implementadas, nem mesmo se
todas elas serdo de fato feitas. A execucao das tarefas prioriza as necessidades reais do pro-
jeto, que depende diretamente do momento de mercado em que o software em questao estd
inserido. Essa abordagem assume que € impossivel prever como 0s usudrios irdo se com-
portar num futuro distante e se concentra em resolver problemas a medida que eles surgem.
Em empresas jovens, o gasto estrategicamente equivocado de seus recursos pode levar ao
fracasso, portanto € fundamental que a maior parte do tempo seja despendida em atividades
que realmente agregem valor a solugdo.

O Google ¢ uma das empresas que utiliza metodologia 4gil em seus projetos e no "Como

35

O Google Funciona"[7], de autoria de Eric Schmidt e Jonathan Rosenberg, € relatado: "ndo
temos a menor ideia de qual é seu empreendimento ou sua indudstria, entdo ndo ousaremos
lhe dizer como criar um plano de negécios. Contudo, podemos afirmar com 100% de certeza
que, se voc€ tem um plano, ele estd errado”, e continua "na verdade, é 6timo ter um plano,
mas saiba que ele mudara conforme vocé progride e descobre novas coisas sobre os produtos
e o mercado. Essa reacdo rdpida é fundamental para o sucesso, mas as fundacdes do plano sdo
tao importantes quanto”. O plano € o backlog, e a agilidade para mudar conforme se progride
€ proporcionada pela dinamica do Scrum. Deve-se sempre assumir que o plano pode estar
errado e deve-se estar preparado para mudar de dire¢do. As ferramentas que o método utiliza
para embasar as reformulacdes de planejamento estao nos feedbacks constantes do usudrio e

da equipe. Este € um dos grandes beneficios do Scrum.

2.4 Sobre o0 Método Espiral ou Prototipacao

Proposto por Boehm em 1988[5], a metodologia de prototipacdo é amplamente conhecida,
assim como a tradicional em Cascata. Nesse método, representado por uma espiral, cada nova

versao do software € obtida ao passo que se completa uma volta no plano de incremento.

planejamento

desenvolvimento andlise de riscos

Figura 2.8: Estrutura Espiral ou Prototipacgao.

As fases deste modelo, segundo Sommerville[4], sdo quatro, como ilustrado na figura 2.4.
A primeira fase, de defini¢do do objetivo, € em que se define quais os fins daquele ciclo, ana-
lisando os riscos e se € preciso tomar medidas alternativas. No segundo quadrante, seguindo
o sentido horério, se faz avaliacdes profundas sobre os riscos que envolvem o desenvolvi-

mento do software especificado e como minimizar os riscos a0 miximo. Subsequentemente,

36

inicia-se a fase de desenvolvimento e valida¢do, em que se escolhe qual modelo de desen-
volvimento de software € mais adequado, dependendo de quais os riscos envolvidos e qual o
foco do sistema. E por fim se planeja quais 0s proximos passos para novo ciclo a depender
do que ocorra nas fases anteriores.

Apesar da metodologia se assemelhar ao Scrum, ela ndo define como todo o processo deve
ocorrer, a estrutura da equipe nem tampouco os ciclos no método de prototipacdo sao curtos o
suficiente para reagir as necessidades dos usudrios. Desse modo, € possivel se cometer erros
parecidos aos cometidos no modelo em Cascata. Inclusive, Sommervile[] define a fase de
desenvolvimento e validagdo da seguinte forma: "(...) € escolhido um modelo de desenvolvi-
mento para o sistema. Por exemplo, se forem dominantes os riscos relacionados a interface
com o usudrio, um modelo apropriado de desenvolvimento pode ser a prototipacdo evoluci-
ondria. Se os riscos de seguranga forem a principal consideracdo, o desenvolvimento com
base em transformacdes formais podera ser o mais apropriado e assim por diante. O modelo
em Cascata podera ser o modelo de desenvolvimento mais apropriado se o risco principal
identificado for o da integracdo de sistemas". Sendo assim, como o modelo de prototipacdo
permite que qualquer método possa ser empregado na fase de desenvolvimento a depender

da necessidade, ele ndo pode ser equivalente ao Scrum.

37

Capitulo 3

Material e Métodos

Este capitulo é exclusivamente dedicado a apresentacdo de todas as ferramentas que fo-
ram utilizadas nos projetos desenvolvidos, a composi¢do das equipes e o conteido de cada
projeto. Esta secdo do trabalho tem um foco maior no conceito do Cubos Time, software
utilizado para metrificagao do uso de recurso e a interagdo entre os componentes das equipes.
Por motivos de confidencialidade, ndo serdo listadas as descri¢des das fungdes exatas dos
softwares desenvolvidos, mas quais tecnologias foram empregadas. Pelo mesmo motivo, ndo
serd revelado o nome dos componentes das equipes. Além disso, é importante salientar que
todos os projetos foram desenvolvidos no mesmo espaco fisico seguindo as mesmas bases

culturais da empresa Cubos Tecnologia, que se voluntariou a participar do estudo.

3.1 As Equipes

No estudo aqui apresentado, foram selecionadas trés equipes a serem acompanhadas du-
rante o desenvolvimento dos projetos. Os trés grupos foram compostas por dois desenvolve-
dores e um designer, bem como um gerente de projeto, que para o modelo Scrum obteve o
posto de Scrum Master.

O designer tem a fungdo de trabalhar na UX e na Ul das aplicagcdes. Com relagdo a
experiéncia do usudrio, o designer, profissional capacitado e com dominio das tecnologias
que serdo empregadas, também precisa se comunicar frequentimente com o desenvolvedor
para dar diretrizes do leiaute do projeto.

A equipe é composta por dois desenvolvedores, sendo um responsavel por toda a constru-
cdo de BackEnd do projeto, ou seja, estruturagdo e criacdo do banco de dados, comunicagao

entre o banco de dados e a aplicagdo, integracdes com API(Application Programing Inter-

38

face, em portugués Interface de Aplicacdo do Programa), configuragdo das instancias das
maquinas virtuais, criacao dos servicos do servidor, configura as conexao entre cliente e ser-
vidor e desenvolve as fungdes relacionada a l6gica de negdcio. O outro desenvolvedor, por
sua vez, € responsdvel por toda codificacio do leiaute da aplicacdo, todas as fun¢des que sdo
executadas em aparelhos méveis ou na interface do browser, requisicdo de dados do servidor,
animagdes e integragdes com API.

Para nomear os desenvolvedores tem-se a seguir na tabela 3.1.

Tabela 3.1: Lista e fun¢des dos desenvolvedores

Desenvolvedor | Plataforma Especialidade
Dev 1 | Web FrontEnd
Dev 2 | Servidor BackEnd
Dev 3 | iOS e Android FrontEnd
Dev 4 | Servidor BackEnd
Dev 5 | i0S e Android FrontEnd
Dev 6 | Servidor BackEnd

3.2 Os Projetos

Como objeto desse estudo, quadro projetos foram selecionados. Todos eles com mesmo
nivel de complexidade, segundo julgamento dos desenvolvedores. Para o modelo em Cascata
foram selecionados os projetos A e B, e para o modelo Scrum os projetos C e D. A tabela 3.2

a seguir mostra essa estrutura.

Tabela 3.2: Distribui¢@o dos projetos

Projeto(s) | Desenvolvedores Método
Projeto A | Dev 1e2 Cascata
Projeto B | Dev3e4 Cascata
Projeto C | Dev 1e2 Scrum
ProjetoD | Dev5¢e6 Scrum

O grupo que contém os desenvolvedores Dev 1 e Dev 2, participaram de um projeto no

método Cascata e um projeto no método Scrum para assim ser feito uma analise comparativa.

39

Por outro lado, a equipe composta pelos demais desenvolvedores ndo trabalharam com mais
de uma metodologia, com o objetivo de se comparar a diferenga de produtividade desses dois
métodos de forma isolada.

Todas as equipes ja4 haviam trabalhado anteriormente em conjunto, sendo assim, ndo
houve fase de adaptacdo dos membros entre si. A Unica adaptacdo que as equipes tiveram
que passar foi cm relacdo ao método empregado, no caso do Scrum.

Cada projeto foi composto por uma serie de tecnologias agregadas e funcdes de usabili-
dade para platatormas 10S, Android e aplicacdes web. Em todos os projetos foram compostos
pelas seguintes funcdes base: cadastro de usudrios; sistema de mensagem em tempo real entre
0s usudrios; sistema de pagamento; integracdo com API de pagamento; integracdo com Go-
ogle Maps; sistema de comentdrios e avaliagdes; armazenamento dinamico de informagdes;
histérico de uso do programa pelo usuario; filtros de busca de informagdes; nivel de usuario;
integracdo com sistema de anélise do comportamento de usudrios. Demais funcionalidades
dos projetos em especifico foram consequéncias de um modelo de negdcio de cada caso e
partiram da base das funcionalidades listadas anteriormente.

O projeto A se trata de um sistema web voltado ao setor de hotelaria. Neste site o usudrio
pode interagir buscando héteis, efetuar reservas e acompanhar todas as agdes feitas no sis-
tema. Todo o site foi desenvolvido em React, uma biblioteca de Typescript desenvolvida pelo
Facebook. Esta tecnologia possibilta uma seria de vantagens para o usuério, como velocidade
nas respostas durante a interagdo com a interface grafica. Isso permite que as buscas pelos
servigos desejados sejam feitas de uma forma muito dindmica. Além disso o usudrio pode
editar o seu perfil, utilizar dados do Facebook para completar suas informag¢des na plataforma.

O projeto B consiste em um sistema de de reserva de servigos residenciais. O usudrio
pode interagir com o sistema via interface gravida no celular. As plataformas utilizadas para
o desenvolvimento dos aplicativos foram o Android e i0S, das empresas Google e Apple
respectivamente. Neste aplicativo € possivel se cadastrar, fazer busca e pedido de servigos e
efetuar pagamento. Além disso o usudrio acompanha o status de todos os servigos.

O projeto C é um sistema de acompanhamento médico online que possue todas funci-
onalidades listadas anteriormente. A diferenca em relacdo os outros projetos estd em qual
funcionalidade o usuério interage mais. Neste caso o sistema de mensagens em tempo real
entre os usudrios € o foco da plataforma.

O projeto D € um aplicativo para iPhone e dispositivos Android para acompanhamento

de gastos em eventos. O usudrio pode pagar utilizando o aplicativo, acompanhar seus gastos,

40

entrar em contato com o suporte técnico por um chat online. Além disso, o usudrio tem
total controle sobre seus dados de perfil, carddpio do evento e local de todos os eventos que
utilizam o sistema.

Portanto, em todos os projetos, seja web ou aplicativo para smartphone, as funcionali-
dades listadas anteriormente estavam presentes em algum momento do desenvolvimento de
cada plataforma. O grau de prioridade de cada funcdo varia de acordo com a necessidade
do projeto, ou seja, depende do interesse principal do usudrio em determinado caso. E im-
portante lembrar que o foco destes sistemas sempre € o usudrio. A abordagem de foco no
usudrio possibilita que as solugdes desenvolvidas apresentem o méaximo de valor agregado
para as pessoas que realmente irdo interagir com o software desenvolvido e a partir delas é
possivel se obter informacdes constantes que podem auxiliar no aperfeicoamento do projeto.

E importante salientar que ndo houve reaproveitamento de c6digo em nenhum dos proje-
tos, 1sso ocorreu devido ao teor sigiloso de cada desenvolvimento. Além disso, a documen-
tacdo dos projetos foi feita pela Cubos Tecnologia e este estudo ndo teve o intuito de avaliar

esta etapa do processo de desenvolvimento.

3.3 Ferramentas Utilizadas

Para a comunica¢do, documentacdo e acompanhamento dos projetos, algumas ferramen-
tas foram utilizadas. Estas tém o intuito de dar suporte a metodologia de desenvolvimento,
buscando agilizar processos, evitar falhas, gerir tarefas, gerir informacdo e documentacgao, dar
suporte ao desenvolvimento na constru¢do da UX (User Experience, Experiéncia do Usudrio
em portugués) e gerenciamento de c4digos.

Na comunicag¢do entre membros da equipe e os clientes foi utilizada a plataforma Slack,
que pode ser encontrado na web. Este software permite integracdo com outras ferramentas
utilizadas pela no trabalho. Deste modo, é possivel automatizar alertas, como por exem-
plo comunicar a todos os membros do projeto quando alguma nova versdao do software €
implementada ou alguma data de entrega estd proxima. Para cada projeto dois canais de co-
municagdo foram criado, um para comunicacio interna da equipe de desenvolvimento e a
outra para comunicac¢ao direta com o cliente.

No controle de desenvolvimento do processo foi utilizada a plataforma Asana. Assim,
todas as atividades de gestio, design e programacdo foram listadas, associadas a um mem-

bro da equipe e estipuladas datas de entrega. No Asana também é possivel anexar arquivos

41

relevantes as tarefas, inserir descri¢des, criar sub-tarefas e adicionar comentarios feitos por
componentes da equipe. Para todas as atividades € vital que seja vinculada a responsabili-
dade para algum membro da equipe. Assim, é possivel se avaliar quantas atividades estdo
previstas no projeto, se as entregas estdo sendo feitas no prazo estipulado e se o projeto estd
bem distribuido na equipe. Na metodologia Scrum esta plataforma se foi importante para o
armazenamento do backlog e do sprint backlog.

Para a criagcdo da interface do usudrio e elaboracao de protétipos para validagdes tanto de
User Interface (Ul) quanto de User Experience (UX), fora utilizados os programas Sketch
e Marvel. O Sketch € uma ferramenta utilizada pelos designers para composi¢do das telas,
elaboragdo de icones e criagdo do fluxo de experiéncia do usudrio. O Marvel, por sua vez,
€ uma aplicacdo web que possibilita que a experiéncia criada no Sketch seja reproduzida em
forma de protétipo para interagdo do usudrio. Esta estratégia € adotada visando a validacao
do projeto antes de entrar na fase de codificacdo. Essa estratégia é tomada para que se evite
retrabalhos.

Para gerenciamento de cédigo foi utilizado o GitHub. Este, € um repositorio que possibi-
lita o controle dos c6digos. Nessa plataforma os projetos sao subdivididos e organizados no
intuito de otimizar a atualiza¢do de novas versdes, transferéncia de responsabilidade pelo c6-
digo, desenvolvimento em paralelo por parte de mais de um programador e revisao de cédigos
. Em ambos os processos, tanto no método em Cascata quando no Scrum, os projetos foram
seccionados no GitHub em pastas da seguinte maneira: uma pasta para API, uma pasta para
desenvolvimento do aplicativo mével ou frontEnd web e uma pasta para cddigo do dashboard

(quando existente no projeto).

3.4 Coletando Dados com O CubosTime

Num processo de desenvolvimento de software, como ja foi visto, ndo se resume apenas
ao momento de implementagdo do c6digo, mas também de documentag¢do, comunicagdo com
o cliente e com os usudrios, desenvolvimento da interface grafica do sistema, e testes do
software. Contudo a fase de codificacdo € a mais que contém maior carga de trabalho com
valor agregado ao projeto. Por isso, neste estudo, a andlise de quanto tempo foi gasto para se
fazer implementacdo dos cdgicos € uma das principais métricas utilizadas.

No mercado € possivel encontrar diferente sistemas que podem medir o tempo de trabalho

de uma pessoa. Porém estes programas precisam ser iniciados e finalizados manualmente.

42

Por isso, a Cubos Tecnologia desenvolveu o CubosTime, um programa que € instalado no
computador do desenvolvedor e é executado em background. Este estd sempre em execugao
para evitar que o desenvolvedor esqueca de executa-lo, problema que ocorre em outros siste-
mas de medi¢do de tempo para gerenciamento de atividades. Deste modo, o desenvolvedor
ndo precisa se preocupar em ter uma tarefa a mais na sua rotina.

O CubosTime segue a seguinte estrutura de andlise de informagao. O programa assume
que um desenvolvedor ndo pode trabalhar em dois cédigos ao mesmo tempo e a cada 20
minutos verifica se alguma das pastas do repositorio vinculadas aquele desenvolvedor foi
alterada.O software entdo verifica se a alteracdo sinalizada se trata de um trabalho real ou se
alguma ferramenta foi acionada, pois, quando o programador inicia 0 Android Studio, por
exemplo, a propria IDE(do inglés Integrated Developement Enviroment) faz alteracdes no
codigo desenvolvido e salva, porém nao se trata de um trabalho real do desenvolvedor. Assim,
o CubosTime verifica se a atualizacdo do c6digo € apenas devido a mudanga automatica de
uma das ferramentas ou se realmente um trabalho foi feito. Somente depois disso a diferenca
no tempo de atualizacdo da pasta € somada ao tempo total de trabalho.

A seguir tem-se o fluxograma de como se estrutura o CubosTime.

Inicio
automaticamente

@ cada 20 minutos Varredura nos horarios
das pastas

0/ Houve mudanca
nos horarios?

Mudanga
feita pela
ferramenta?

executando
em 0,/ Houve mudanga ™\ 1

‘em mais de uma
background pasta?
Divide tempo
entre os projetos

Soma valor(es) a0 DB

Stand by

Figura 3.1: Fluxograma do CubosTimes.

43

Capitulo 4

Resultados e Discussoes

Ap06s o entendimento da teoria dos processos e de como este estudo se equipou de ferra-
mentas para o acompanhamento dos projetos, pode-se emfim obter os dados necessdrio para
andlise. Para isso tem-se 3 sec¢des onde estdo expostos o progresso de cada atividade reali-
zada, o tempo gasto em cada parte de cada projeto, e qual o impacto dos dois métodos com

respeito a qualidade dos c6digos e ambiente de trabalho.

4.1 Andamento das Tarefas

Com a ferramenta Asana pode-se obter dados de quantas tarefas foram definidas e quan-
tas foram completadas ao decorrer do projeto. Essas tarefas sdo referentes a atividades de
comunicacdo, projeto, codificacdo e testes. A seguir tem-se os graficos dos projetos A e B,

desenvolvidos pelo Método em Cascata.

Projeto A

80
70 —
60
50
40
30
20
10 _
0 —7
1357 91113151719212325272931333537394143454749515355575961

—Tarefas entregas

Figura 4.1: Gréficos das tarefas do projetos A - Método Cascata.

44

Projeto B

70
60
50
40
30
20

10
-

1357 9111315171921232527293133353739414345474951535557596163

=—Tarefas Entregas

Figura 4.2: Gréficos das tarefas do projetos B - Método Cascata.

A seguir tem-se os graficos dos projetos C e D, desenvolvidos com o Scrum.

Projeto C

50 '
40
30

20 /—

1357 9111315171921232527293133353739414345474951535557596163

=—Tarefas Entregas

Figura 4.3: Gréficos dos projetos C - Scrum.

Projeto D

- -
20 — :

1357 9111315171921232527293133353739414345474951535557596163

=—Tarefas Entregas

Figura 4.4: Graficos dos projetos D - Scrum.

As linhas azuis representam o total de atividades criadas em cada dia de desenvolvimento,
as linhas vermelhas, por sua vez, sdo o total de atividades completadas. Os pontos de encontro
entre as duas linhas mostrar quando todas as tarefas definidas até o momento foram comple-
tadas.

Como pode ser observado nos graficos anteriormente, tanto nos projetos feitos no Mé-
todo Cascata quanto Scrum as linhas de tarefas e entregas sdo ascendentes. Isso mostra que
durante o processo de desenvolvimento mais necessidades para o software surgem gradati-
vamente. Mesmo que com uma andlise de requisitos extremamente rigorosa, esse grafico

continua sendo real. O acrescimo no numero de atividades € esperado pela metodologia agil,

45

isso é evidenciado pelo formato de escada que as linhas de tarefas dos graficos D e C tracam.
O Método Cascata ignora essa realidade e faz com que prazos sejam prorrogados constante-
mente.

Um dos fatores que podem gerar esse grafico crescente ¢ uma fase de anélise de requisitos
mal feita, gerando assim problemas de projeto, por sua vez problemas de cédigo e assim
sucessivamente. Porém nao se pode designar este fator como tnico motivo possivel. Pois,
defasamento de tecnologia, mudangas na l6gica de negdcio (a qual depende diretamente do
comportamento do mercado que o software estd inserido), falha na comunicacdo, influenciam
diretamente para que esses graficos tenham o formato apresentado.

Ainda analisando os graficos, pode-se observar que na evolugdo do projeto a quantidade
de entregas no método em Cascata sao menores do que a do Scrum. Isso ocorre por uma
questao de principios das metodologias e revela a inflexibilidade do modelo em Cascata. Nos
Grificos A e B, ndo hd intersec¢do das linhas em um estdgio mais avancado dos projetos, essa
¢ uma evidencia de atrasos na entrega e mudancgas de plano ndo esperada pelos desenvolvedo-
res. Isso gera conflitos entre desenvolvedores e clientes, causando desconforto no ambiente
de trabalho.

Problemas no ambiente de trabalho proporcionam duas consequéncias perigosas para uma
empresa. Primeiramente hd um impacto direto na qualidade do produto. Conflitos desesti-
mulam a equipe a fazer melhores entregas e manter o alto nivel de comunicagdo interna e
externa. Um outro fator que € impactado € o de formacdo de equipe. Em um ambiente de tra-
balho in6spito hd perda de talentos, ou seja, funciondrio infelizes tentem a buscar alternativas
para uma vida melhor, assim a empresa pode perde o seu recurso mais valioso.

Outro ganho importante que esses graficos revelam é a data final de entrega. E possivel
observar que, como os desenvolvedores assumiram que os projetos sdo equivalentes, hd um
ganho de cerca de 15 dias quando utilizada a metodologia Scrum. Tanto no caso de equipes
distintas desenvolvendo softwares com métodos diferentes (como € o caso do grafico B e D),
quanto a mesma equipe desenvolvendo dois projetos com métodos diferentes (como € o caso
dos projetos A e C), a diferenca de data de entrega foi observada. Assim, € evidente que
ha ganho real na velocidade em que se desenvolve utilizando o método 4gil. Como se gasta

menos tempo para produzir o mesmo nivel de trabalho, se ganha na producao.

46

4.2 Qualidade do software

E importante sempre estar atento 2 qualidade do software. Nestes estudo, o pardmetro uti-
lizado para medir a qualidade dos cédigos desenvolvidos, foram a quantidade de fungdes que
precisaram ser refeitas. Ainda utilizando a plataforma Asana, foi possivel construir a tabela a
seguir que mostra quantas das funcionalidade definidas nos projetos foram produzidas mais

de uma vez.
Tabela 4.1: Retrabalhos registrados

Projeto | Ndmero de funcdes refeitas

Projeto A | 23
Projeto B | 15
Projeto C | 3

Projeto D | 4

Como no método em Cascata os requisitos s@o avaliados em uma fase prévia isolada,
ele ndo acompanha as reais necessidades de uma start-up e de projetos em TI em geral. O
grande numero de funcdes refeitas nos projetos A e B ocorrem devido a mudanca de realidade
que o mercado vai apresentando conforme o tempo passa € o programa precisa se adaptar
para isso. Nos projetos feitos com métodologia 4gil, as fun¢des vao sendo criadas conforme
as necessidades do momento, logo elas se apresentam mais estaveis. Além disso, com o
processo iterativo, o desenvolvedor tem tempo hébil para focar em uma funcionalidade de

cada vez e assim evita erros.

4.3 Utilizacao dos recursos

O maior recurso em uma empresa de desenvolvimento de programas computacionais sao
as pessoas, os profissionais que colocam em cddigo sua capacidade de implementacdo. Logo,
0 gasto de recurso que tem maior impacto nesse setor é o tempo. Como ja explanado anteri-
ormente, o CubosTime captura o tempo total gasto na fase de codificacdo e permite que todos
os componentes da equipe possam se estruturar e planejar as proximas agdes baseados em
dados obtidos das suas experiéncias nos projetos.

A seguir tem-se os tempos totais de desenvolvimento em cada projeto. O fator de parada

de medicdo, para que seja possivel criar uma andlise comparativa entre os métodos, foi a

47

estabilidade do programam no mercado.
Tabela 4.2: Medi¢ao do Cubos Time

Projeto | Tempo Total em horas

Projeto A | 942,51
Projeto B | 657,33
Projeto C | 326,04
Projeto D | 489,64

Os projetos A e C foram desenvolvidos pela mesma equipe. Esta parte do estudo tem
o intuito de analisar como uma mesma equipe se comporta praticando duas metodologias
distintas. Os numeros sdo evidentes quanto a diferenca de horas trabalhadas e de tarefas
executadas no prazo. Com o método 4gil o tempo reduz consideravelmente, e isso ocorre
por dois fatores importantes. O projeto evolui junto com a comunicagdo, assim hd menos
atritos entre as partes e com melhor entendimento sobre o projeto, as acdes tomadas sdo
mais precisas. Além disso, os impactos negativos que o mercado pode trazer ao projeto sao
mitigados pelo modo que o Scrum € desenhado.

Esta diferenga de produtividade tem consequéncias diretas no or¢camento dos projetos. O
projeto A, por exemplo, teve um orcamento previsto de trinta mil reais. Se for proposto o
custo médio de setenta reais por hora do desenvolvedor e utilizando dois desenvolvedores,
tem-se cerca de 215 horas previstas para execucao do projeto. Contudo, com mudancas feitas
durante o desenvolvimento, o tempo total medido foi de cerca de 942 horas trabalhadas.
Assim, a empresa teve um prejuizo de aproximadamente 160 mil reais. Nao estdo sendo
contabilizados encargos e despesas internas da empresa. Para um start-up isso provavelmente

significard o fracasso ou um gravissimo problema com os investidores.

4.4 Depoimento das equipes

Um fator de extrema relevancia na produtividade e qualidade dos produtos € o nivel de
satisfacdo das pessoas que trabalham nos projetos. Para qualquer negdcio, e especialmente
para empresas muito novas, ¢ fundamental se contruir uma cultura que possa engajar os
profissionais e assim elevar a criatividade ao maximo. Uma boa estrutura de processos deve
estd alinhada com os pensamentos da empresa e das pessoas que a sustentam.

Portanto, é importante se obter opinides sobre o time que desenvolveu os projetos aqui

48

estudados. Algumas perguntas foram feitas. Para a equipe que utilizou o metodo em Cascata
e o Scrum foi perguntado": Depois de utilizar o método os dois métodos, quais aspectos voceé
acredita ser mais relevantes se essas duas metodologias forem comparadas? Ao adotar Scrum,
a equipe notou alguma mudanca no seu ambiente de trabalho? Ao adotar o Scrum, qual fator
na dindmica da comunicagdo com o cliente que voc€ gostaria de resaltar? Quais os principais
beneficios do Scrum?"

Assim, a equipe respondeu: "Acreditamos que o maior impacto que sentimos a0 comparar
as duas metodologias foi a dinAmica de cada uma. O Scrum faz com que estejamos todos
juntos pensando sobre os problemas o tempo inteiro e essa intera¢do nos faz produzir de
forma mais rédpida. Algo muito positivo também foi ter visao do que estavamos produzindo.
Quando trabalhamos em Cascata estavamos fazendo um sistema pensando muito a frente e
quando o dia chegava nao era mais aquilo que precisavamos ter desenvolvido. A partir dai era
redefinir o projeto e refazer o que precisava ser refeito. Como esses acontecimentos foram
frustrando o cliente, a comunicagdo foi se tornando cada vez pior. Um outro grande beneficio
que sentimos do Scrum foi a melhora na comunicacao, tanto da equipe quanto com o cliente".
Declararam os desenvolvedores Guilherme Bernal e Victor Magalhaes.

Para as equipe que desenvolveu o projeto B e D e ndo tiveram contato com apenas
uma metodologia foram feitas as seguintes perguntas: "Qual a maior dificuldade do pro-
jeto? Houve alguma barreira técnica? O cliente se demontrou satisfeiro ao finalizar o pro-
jeto? Ocorreram atrasos nas entregas? Os problemas encontrados foram solucionados rapi-
damente?

A equipe do projeto B declarou que: "A maior dificuldade apresentada foi de comunica-
cdo, o cliente ndo sabia detalhar todas as funcionalidades como ele desejava e nunca tinha
tempo disponivel para reunides muito longas onde nds desenvolvedores tivessemos a opor-
tunidade de relatar cada ponto relevante. Além de que constantemente o cliente mudava de
opinido com base em conversas que tinha com investidores e pessoas fora do ambiente de
desenvolvimento". A equipe entdo prossegue falando, "Nao houve nenhuma barreira técnica,
as tecnologias utilizadas ja eram de conhecimento da empresa, porém ocorreram problemas,
novamente devido ao mecanismo de comunicacao entre as partes, gerando assim atrasos nas
entregas. Resolvemos os problemas o mais rapido que foi possivel, mas ao final do projeto
o cliente ndo estava 100% satisfeito. O programa ficou bom, porém os atrasos e gastos nao
previstos foram pontos negativos". Disseram os desenvolvedores Jodo Pedro Gouveia e José

Messias Junior.

49

A equipe do projeto D por sua vez declarou que: "A maior dificuldade foi entender o
que os usudrios queriam, tecnicamente nio enfrentamos nenhum problema impossivel, mas
tivemos que pensar bastante como a experi€ncia do usudrio deveria ser. Mas mesmo assim,
depois de muito trabalho o cliente se mostrou satisfeitos, e ndés da equipe também. Nao
houve nenhum atraso nas entregas, porque tinhamos o controle das tarefas e das datas o
tempo inteiro, se algum problema acontecia ele era rapidamente solucionado". Comentaram
os desenvolvedores Clara Battesini e Rodrigo Araujo

Como relatado pelas equipes, o Scrum ndo apenas melhora a estrutura do desenvolvimento
de programas dando a ela maior flexibilidade e agilidade, a metodologia também impacta na
qualidade do ambiente de trabalho. Com uma equipe mais motivada e sincronizada se obtem
melhores resultados a curto, médio e longo prazo. A motivacdo é gerada porque € criado o
habito de entregas curtas. O escritor best seller Chales Duhigg comenta em seu livro "O Poder
do Hébito"[8]: "Uma vez que uma pequena vitdria foi conquistada, forcas que favorecem
outra pequena vitdria sdo postas em movimento. Pequenas vitdrias alimentam mudancas
transformadoras, elevando vantagens minusculas a padrdoes que convencem as pessoas de
que conquistas maiores estao dentro de seu alcance". Por outro lado, o método em Cascata,
além de permitir que ocorram desperdicios no processo produtivo, torna os profissionais mais

infelizes e os clientes insatisfeitos.

50

51

Capitulo 5

Conclusao

Apos a aplicacdo dos dois métodos de desenvolvimento nas equipes da Cubos Tecnolo-
gia, que se voluntariou a participar deste estudo de caso, ficou evitente os beneficios que
a metodologia 4gil na producdo de programas na darea de TI. O primeira fator relevante é
o menor tempo de trabalho gasto para execucdo de tarefas durante o decorrer do projeto.
Além disso, a quantidade de atividades refeitas e acidentes de percurso utilizando o método
Scrum cairam drasticamente quando comparados aos projetos feitos em Cascata . E por fim,
o melhoramento da qualidade de vida dos profissionais envolvidos.

Quando a equipe gasta menos tempo, impacta diretamento de forma benéfica na satide
financeira da empresa contratada e do projeto em si. A alta produtividade encontrada ao se
consumir menos tempo, possibilita respostas mais rdpidas ao mercado em termos de dispo-
nibilizar novas versdes aperfeicoadas do software e assim agregar mais valor ao trabalho do
desenvolvedor. Deste modo, € possivel se destacadas em um cendrio de concorréncia com
outras empresas de desenvolvimento. Como consequéncia, hd um ganho consideravem nos
custos e lucros envolvidos. Nos casos aqui apresentados, houve um ganho aproximado de
49% na receita da empresa. Este € um nimero que permite que a empresa atinja um outro
patamar no mercado.

Ao se analisar a quantidade de retrabalhos feitos em cada projeto, percebeu-se que o
método Cascata apresenta uma recorrencia maior do que o Scrum. Isso mostra como no
método tradicional ha mais desperdicios e menor qualidade nos programas desenvolvidos.
Apesar de todos os projetos estarem atualmente em funcionamento de maneira estavel, houve
uma demora significativa na convergéncia dos sistemas desenvolvidos em Cascata. Portanto,
pode-se dizer que houve uma influéncia negativa por parte da metodologia tradicional quando

comparada ao desenvolvimento agil.

52

Por fim, o Scrum se apresentou como um método que estrutura a equipe para produzir
em alto nivel, assumindo sempre a realidade em que as pessoas trabalham e como o mercado
se comporta. Os principios que o método se sustenta permitem que a equipe trabalhe de
forma compacta, colaborativa e mais feliz. A satisfacdo em produzir e a dinamica de trabalho
impulsiona os profissionais a entregar produtos de maior qualidade e em menos tempo. Todos

esses fatores sdo extremamente benéficas para emprendimentos como startups.

53

Referéncias

[1] Jake Knapp, John Zeratsky, and Braden Kowitz. Sprint: how to solve big problems and

test new ideas in just five days. Simon and Schuster, 2016.

[2] Jeff Sutherland. Scrum: a arte de fazer o dobro do trabalho na metade do tempo. Leya,
2016.

[3] Eric Ries. The lean startup: How today’s entrepreneurs use continuous innovation to

create radically successful businesses. Crown Business, 2011.

[4] Tan Sommerville, Selma Shin Shimizu Melnikoff, Reginaldo Arakaki, and Edilson de An-
drade Barbosa. Engenharia de software, volume 6. Addison Wesley Sao Paulo, 2003.

[5] Roger S Pressman. Engenharia de software; tradugdo josé carlos barbosa dos santos. Sdo

Paulo: Makron, 1995.
[6] T Satpathy. A guide to the scrum body of knowledge, 2013.

[7] Eric Schmidt and Jonathan Rosenberg. Como o Google funciona. Editora Intrinseca,

2015.

[8] Charles Duhigg. O poder do hdbito: por que fazemos o que fazemos na vida e nos

negocios. Editora Objetiva, 2012.

